WO2002085555A2 - Procede et dispositif de coulee continue de metal - Google Patents

Procede et dispositif de coulee continue de metal Download PDF

Info

Publication number
WO2002085555A2
WO2002085555A2 PCT/EP2002/004357 EP0204357W WO02085555A2 WO 2002085555 A2 WO2002085555 A2 WO 2002085555A2 EP 0204357 W EP0204357 W EP 0204357W WO 02085555 A2 WO02085555 A2 WO 02085555A2
Authority
WO
WIPO (PCT)
Prior art keywords
mold
cooling water
casting
outlet
level
Prior art date
Application number
PCT/EP2002/004357
Other languages
German (de)
English (en)
Other versions
WO2002085555A3 (fr
Inventor
Fritz-Peter Pleschiutschnigg
Erwin Wosch
Dirk Letzel
Werner Rahmfeld
Lothar Parschat
Joachim Schwellenbach
Original Assignee
Sms Demag Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sms Demag Aktiengesellschaft filed Critical Sms Demag Aktiengesellschaft
Priority to AU2002310864A priority Critical patent/AU2002310864A1/en
Publication of WO2002085555A2 publication Critical patent/WO2002085555A2/fr
Publication of WO2002085555A3 publication Critical patent/WO2002085555A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/053Means for oscillating the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means

Definitions

  • the invention relates to a process for the continuous casting of metal, in particular steel, wherein the melt is continuously poured into a cooled mold at a casting speed with the formation of a mold level and a cast product is continuously withdrawn from the mold in the casting direction, the mold having a mold inlet and a mold outlet is a water-cooled copper mold with mold cooling water channels with a channel inlet and a channel outlet, through which cooling water flows, which has an inlet pressure p 0 at the channel inlet and an outlet pressure pi at the channel outlet.
  • the invention is based on a prior art, as shown by means of FIG. 1 and explained below.
  • the heat flow I (1) makes the mold height 2 special Requirements for the process technology and thus for the execution of the mold device.
  • the mold cooling technology requires special attention with increasing casting speed (3), which meanwhile has max. 15 m / min can be.
  • the heat flow I (1) runs from the middle of the strand 9 as an energy source through the strand shell 6 and, for example, here through the Slag film 5.2 and through the mold copper plate 10 with the hot side HF (10.1), through the copper plate thickness (10.2) and through the cold side CF (10.3) into the energy sink, ie into the mold cooling water 11, which according to the prior art is from bottom to top, thus flows from the mold exit 8 to the mold entrance 12 or to the mold level ML (7).
  • the mold 1 also shows the heat flow load I * (13) of the mold, expressed as MW / m 2 , via the mold height (2).
  • the profile (13.1) of this mold heat flow load I * (13) shows a clear maximum (13.2) in the area of the mold level ML (7).
  • the copper plate skin temperature T (14) in the surface of the hot copper plate side HF (10.1) has a profile (14.1) over the mold height (2) which is similar to the heat flow load I * (13).
  • the profile (14.1 like the heat flow load (13), also has a maximum (14.2) in the mold level, ML (7).
  • the profile or the profile of the heat flow load (13) on the hot copper plate side (10.1) over the mold height and the profile of the copper plate skin temperature over the mold height are shown as similar curves.
  • the high thermal load (14) of the copper plate 10 in the mold level area (14.2) is due to the pressure difference or pressure drop ⁇ P (15.2) of the mold cooling water 11, which with the inlet pressure P 0 (15) at the mold outlet 8 and the outlet pressure Pi (15.1) on Mold entrance (12) can be described clearly.
  • This pressure loss (15.2) leads to a Nusselt layer (16.1), ie to an interface with an interface resistance (16) which is thinner at the mold outlet 8, here illustrated by the section F, than the Nusselt layer (16.2) Mold entrance (12), which is illustrated by the cut ML.
  • the Nusselt layer can be viewed as a laminar flow layer through which the heat transport predominantly via conduction and not, as in the turbulent zone with a Reynolds number Re> 2,300 (17) predominantly via forced contact. vection takes place. The thickness of each Nusselt layer is shown by the distance arrows.
  • the object of the invention is now to develop a method and a device of the generic type such that these disadvantages do not occur.
  • the high thermal load T of the mold in the mold level should be suppressed or avoided.
  • the water flow rate in the mold cooling water channels be adjusted in a controlled manner, that the pressure loss ⁇ p of the cooling water is below a predetermined maximum value.
  • tes is kept that the cooling water flow direction runs in the continuous casting direction and that this forms a Nusselt layer in the cooling channel, which is thinner at the level of the casting level than the Nusselt layer at the mold outlet, whereby through the controlled (variable) setting of the water flow speed and, if necessary.
  • the controlled (variable) setting of the cooling water supply temperature via the thickness of the Nusselt layer at the level of the casting level the temperature of the mold wall or plate on the casting level or meniscus is regulated. With this regulation, the temperature of the mold wall at the level of the pouring level can be kept constant over a certain operating window despite increasing pouring speeds.
  • the invention is characterized by the reversal of the water flow direction in the cooling channels for cooling the copper mold from originally a flow direction opposite the casting direction to a flow direction in the casting direction, which is synonymous with the direction from the mold inlet to the mold outlet or a direction from top to bottom , whereby a Nusselt layer forms which is thinner at the level of the casting level than the Nusselt layer at the mold exit.
  • the Nusselt layer can be viewed as a laminar flow layer through which the heat is transported primarily via conduction and not, as in the turbulent zone, primarily via forced convection.
  • the Nusselt layer results in a certain interface resistance on the copper plate cold side of the mold in the area of the cooling water channels.
  • the laminar flow layer is thinner in the area of the casting level than at the mold exit and thus the interface resistance on the copper plate cold side of the mold is smaller. In this way, the maximum temperature at the mold level is reduced and the mold skin temperature is evened out over the mold height.
  • the temperature of the copper plate in the area of the mold level rises with increasing casting speed and thus a greater amount of heat, since the water running temperature and the water flow rate are kept constant.
  • the temperature of the copper plate at the level of the pouring level can be kept constant despite increasing pouring speed.
  • the ratio between the thickness of the Nusselt layer or the laminar flow layer and the thickness of the turbulent zone is set by controlling or regulating the water flow rate and thus the temperature in the copper plate in the area of the mold level. In this way, it is possible to set a temperature curve that is optimized for a particular steel grade.
  • the water flow speeds in the mold cooling water channels are preferably set in a controlled manner so that the average speed does not drop below 3 m / s.
  • the pressure loss of the cooling water pressure between the channel inlet and outlet should preferably be a maximum of 4 bar, the cooling water inlet pressure p 0 (15) preferably being more than 6 bar.
  • the process is particularly suitable for continuous casting at high casting speeds of up to 15 m / min.
  • a device for carrying out the method, the channel inlet of the mold cooling water channels and the channel outlet being arranged such that the cooling water flow direction runs in the pouring direction, the Nusselt layer that forms at the level of the pouring level being thinner than the Nusselt layer at the mold outlet.
  • the channel entry of a cooling Water channel is at the mold entrance, while the channel exit is at the mold exit.
  • it has a device for the controlled adjustment of the water flow rate and, if necessary, an additional device for the controlled adjustment of the water temperature.
  • the invention characterized essentially by the reversal of the cooling water direction from top to bottom instead of from bottom to top as before and a regulated adjustment of the water flow rate, leads to the following advantages such as a homogenization of the heat flow density in the mold level over the mold width, an equalization of the thermal see loading of the copper plate and especially the copper plate hot side HF above the mold height.
  • these advantages lead to longer mold service lives and an improved strand surface by essentially avoiding longitudinal cracks in the copper plate surface in the area of the mold level and in the surface of the strand shell, which is particularly noticeable when casting the first slabs of a casting sequence in the case of crack-sensitive steel grades. Overall, a high level of casting reliability is achieved.
  • Fig. 1 schematically in section half of a mold with a copper mold plate with water cooling, the course of the heat flow load I * (MW / m 2 ) and the temperature rature course T of the copper plate skin temperature in the surface of the copper plate hot side HF, in each case via the mold height, the representation of the cooling water flow in section ML at the mold level and in section F at the mold outlet with the Nusselt layer thickness in relation to the thickness of the turbulent zone;
  • Fig. 2 schematically in section one half of a mold according to the invention with a copper mold plate with water cooling with a flow direction in the casting direction, the course of the heat flow load I * (MW / m 2 ) and the temperature course T of the copper plate skin temperature in the surface of the copper plate hot side HF, in each case over the mold height, the representation of the cooling water flow in section ML at the pouring level and in section F at the mold outlet with the walnut layer thickness in relation to the thickness of the turbulent zone.
  • Fig. 3 shows schematically the comparison of the cooling process for a continuous casting mold according to the prior art and according to the invention.
  • FIG. 1 represents the prior art, which has already been discussed in detail. 2 makes the invention clear in comparison to FIG. 1 with its unexpected solution for equalizing the thermal load (20) of the copper plate hot side HF (10.1). Components or sizes that are the same as FIG. 1 are provided with corresponding reference symbols in FIG. 2.
  • FIG. 2 shows that the heat flow load of the mold I * in the 1st approximation remains unchanged compared to the heat flow load, as is the case with the mold according to the prior art.
  • the cooling water channels 18 can be designed as slots or bores with 10-80% water coverage or as an annular gap with 100% water coverage.
  • FIG. 2 also makes it clear that by reversing the direction of flow of the mold cooling water (18), the high pressure P 0 (15) in the casting level ML (7) comes into full effect and thereby also a higher evaporation pressure of the water (gas film formation) opposite the mold outlet (8) with the pressure Pi (15.1). This higher pressure of the water in the pouring level (7) also increases the security against a possibly occurring water gas bubble or water gas film formation (Leidenfrost effect) compared to the prior art.
  • a suitable pump 21 at the channel inlet (10.5) preferably provides the cooling water with a flow rate such that an average water flow rate of more than 3 m / s results.
  • the mold is oscillated with respect to the strand or the solidified strand shell 6 by means of an oscillation device (here schematically identified by 22), in that the mold is moved vertically up and down.
  • an oscillation device here schematically identified by 22
  • the strand it is possible for the strand to be moved up and down in a fixed mold, for example by applying a pulsating magnetic field below the mold.
  • FIG. 3 schematically shows a comparison of the mold cooling according to the prior art (left) and according to the invention (right) using process Graphs.
  • the cooling water flows counter to the pouring direction, as indicated by the arrows 23.
  • the speed of the cooling water V water and the temperature of the cooling water entering T e i ⁇ or T in are constant With increasing speed (v c m / min) the temperature on the mold plate hot side rises at the level of the pouring level or the meniscus. This results in a variable temperature the Tis side meniscus.
  • the temperature on the hot plate side of the mold at the level of the meniscus (T He ß side meniscus) is regulated, the direction of flow of the cooling water runs in the direction of the pouring direction (see arrows 24) and a thinner Nusselt layer at the level of the meniscus than at the mold exit forms, their thickness and therefore the temperature at the hot mold plates page on the casting level of T is adjustable by means of the water flow rate Vw a sser and the cooling water temperature T ⁇ in or T in .
  • the temperature of the mold plate in the mold level can be freely selected and controlled within certain operating fields.
  • the actual temperature T off is tapped and, together with further process data, the water flow rate Vw asse r required for regulation to a target temperature is set with the device 25 and the water temperature T e in.
  • the cooling water inlet temperature T ⁇ in or T in is lowered and the cooling water flow velocity v WaS ser is increased.
  • the comparison also shows that there is a free choice between the different mold cooling systems.
  • the modification in the water cycle of the mold system consists of an online computer, which, when switched off, allows the conventional mold cooling strategy to be used again immediately, even during casting. LIST OF REFERENCE NUMBERS
  • Nusselt layer or interfacial resistance or laminar boundary layer (Reynolds number Re ⁇ 2,300, x 2 ) with a cooling water flow direction from bottom to top at section F 16.2 Nusselt layer with a cooling water flow direction from bottom to top at section ML
  • Direction arrow for cooling water flow direction 25 Device for setting v a sser F Section of the water flow at the mold outlet (8), flow profile with Nusselt layer (16.2) ML Section of the water flow in the area of the liquid level ML, flow profile with Nusselt layer (16.2).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

L'invention concerne un procédé et un dispositif de coulée continue de métal, en particulier d'acier, consistant à couler en continu une fonte (6.1) dans une coquille refroidie à une vitesse de coulée (3) avec formation d'une surface de bain (7), et à extraire en continu un produit de coulée à partir de la coquille dans le sens de coulée (3.1). Ladite coquille se présente sous la forme d'une coquille de cuivre refroidie par eau comportant une entrée de coquille (12) et une sortie de coquille (8), ainsi que des canaux d'eau de refroidissement de coquille (10.4) présentant une entrée de canal et une sortie de canal. Lesdits canaux sont parcourus par de l'eau de refroidissement présentant une pression d'entrée p0 (15) au niveau de l'entrée de canal et une pression de sortie p1 (15.1) au niveau de la sortie de canal. L'invention vise à améliorer lesdits procédé et dispositif de manière à supprimer ou empêcher la contrainte thermique élevée T de la coquille à la surface du bain. A cet effet, dans le cas d'un réglage contrôlé des vitesses d'écoulement d'eau dans les canaux d'eau de refroidissement de coquille (10.4) et contrôle de la chute de pression Δp de l'eau de refroidissement, le sens d'écoulement de l'eau de refroidissement (12) doit correspondre au sens de coulée continue avec formation d'une couche de Nusselt dont l'épaisseur au niveau de la surface du bain (19.1) est inférieure à celle de la couche de Nusselt au niveau de la sortie de coquille (19.2).
PCT/EP2002/004357 2001-04-20 2002-04-19 Procede et dispositif de coulee continue de metal WO2002085555A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002310864A AU2002310864A1 (en) 2001-04-20 2002-04-19 Method and device for continuously casting metal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10119354A DE10119354B4 (de) 2001-04-20 2001-04-20 Verfahren und Vorrichtung zur Vergleichmäßigung der Kokillenhauttemperatur über die Stranggießkokillenhöhe
DE10119354.8 2001-04-20

Publications (2)

Publication Number Publication Date
WO2002085555A2 true WO2002085555A2 (fr) 2002-10-31
WO2002085555A3 WO2002085555A3 (fr) 2003-02-13

Family

ID=7682078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/004357 WO2002085555A2 (fr) 2001-04-20 2002-04-19 Procede et dispositif de coulee continue de metal

Country Status (3)

Country Link
AU (1) AU2002310864A1 (fr)
DE (1) DE10119354B4 (fr)
WO (1) WO2002085555A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012224132A1 (de) * 2012-12-21 2014-06-26 Siemens Vai Metals Technologies Gmbh Überwachungsverfahren für eine Stranggießkokille mit Aufbau einer Datenbank
WO2020114801A1 (fr) * 2018-12-03 2020-06-11 Gautschi Engineering Gmbh Coquille à billettes de laminage pour la coulée continue d'aluminium et d'alliages d'aluminium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066114A (en) * 1974-08-20 1978-01-03 Mannesmann Aktiengesellschaft Supervision and control of continuous casting
EP0943382A1 (fr) * 1998-03-12 1999-09-22 Sms Schloemann-Siemag Aktiengesellschaft Procédé et dispositif de contrÔle du débit calorifique dans une lingotière de coulée continue lors de la coulée de brames
EP1103323A2 (fr) * 1999-11-29 2001-05-30 SMS Demag AG Procédé et dispositif pour la coulée continue d'acier
EP1149648A1 (fr) * 2000-04-25 2001-10-31 SMS Demag AG Procédé et dispositif pour le contrôle thermique d'une lingotière de coulée continue

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3411359A1 (de) * 1984-03-28 1985-10-31 Mannesmann AG, 4000 Düsseldorf Stranggiesskokille fuer rund- bzw. knueppelquerschnitte, insbesondere fuer das vergiessen von fluessigem stahl

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066114A (en) * 1974-08-20 1978-01-03 Mannesmann Aktiengesellschaft Supervision and control of continuous casting
EP0943382A1 (fr) * 1998-03-12 1999-09-22 Sms Schloemann-Siemag Aktiengesellschaft Procédé et dispositif de contrÔle du débit calorifique dans une lingotière de coulée continue lors de la coulée de brames
EP1103323A2 (fr) * 1999-11-29 2001-05-30 SMS Demag AG Procédé et dispositif pour la coulée continue d'acier
EP1149648A1 (fr) * 2000-04-25 2001-10-31 SMS Demag AG Procédé et dispositif pour le contrôle thermique d'une lingotière de coulée continue

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012224132A1 (de) * 2012-12-21 2014-06-26 Siemens Vai Metals Technologies Gmbh Überwachungsverfahren für eine Stranggießkokille mit Aufbau einer Datenbank
WO2014095137A1 (fr) 2012-12-21 2014-06-26 Siemens Vai Metals Technologies Gmbh Procédé de contrôle d'une lingotière de coulée continue faisant appel à une base de données
US10052684B2 (en) 2012-12-21 2018-08-21 Primetals Technologies Austria GmbH Monitoring method for a continuous casting mould including building up a database
DE102012224132B4 (de) 2012-12-21 2023-10-05 Primetals Technologies Austria GmbH Überwachungsverfahren für eine Stranggießkokille mit Aufbau einer Datenbank
WO2020114801A1 (fr) * 2018-12-03 2020-06-11 Gautschi Engineering Gmbh Coquille à billettes de laminage pour la coulée continue d'aluminium et d'alliages d'aluminium
US11407026B2 (en) 2018-12-03 2022-08-09 Casthouse Revolution Center Gmbh Rolling ingot mould for the continuous casting of aluminium and aluminium alloys

Also Published As

Publication number Publication date
AU2002310864A1 (en) 2002-11-05
WO2002085555A3 (fr) 2003-02-13
DE10119354A1 (de) 2002-10-24
DE10119354B4 (de) 2005-02-10

Similar Documents

Publication Publication Date Title
EP1937429B1 (fr) Procede et dispositif de coulee continue
DE602004007628T2 (de) Verfahren zum stranggiessen
EP0019114B1 (fr) Procédé et dispositif pour la coulée continue de plusieurs barres
EP0881018B1 (fr) Lingotières de coulée continue refroidies par eau
EP3993921B1 (fr) Alimentation de matière en fusion pour installations de coulée à bande
EP0238844A1 (fr) Procédé pour démarrer une machine de coulée continue d'acier en bande
DE102020209794A1 (de) Verfahren zur Steuerung oder Regelung der Temperatur eines Gießstrangs in einer Stranggießanlage
WO2004048016A2 (fr) Procede et dispositif pour la coulee continue de barres de brames, de brames fines, de blooms, d'ebauches, de billettes et similaires a partir de metal liquide, notamment de materiaux d'acier
DE3440236A1 (de) Verfahren und vorrichtung zum bandstranggiessen von metallen, insbesondere von stahl
WO2002085555A2 (fr) Procede et dispositif de coulee continue de metal
EP2025432A1 (fr) Procédé destiné à la production de produits allongés en acier par coulage en continu et laminage
WO2011117296A1 (fr) Procédé, busette de coulée et installation de coulée continue pour couler un métal liquide en fusion afin d'obtenir un produit coulé en continu
EP0972590B1 (fr) Lingotière de coulée continue
DE102009048567B4 (de) Verfahren und Anordnung zum Kühlen eines Gießstrangs in einer Stranggießanlage
DE60316568T2 (de) Bandtemperaturregelvorrichtung in einer kontinuierlichen bandgiessanlage
DE4032521A1 (de) Stranggiesskokille
EP0858374B1 (fr) Procede et dispositif permettant de guider les barres de coulee d'une installation de coulee continue
WO2002016061A1 (fr) Coquille refroidie pour coulee continue permettant la coulee de metal
DE102011075627A1 (de) Stützwalze mit Innenkühlung in einer Stranggießanlage
WO2003035306A1 (fr) Procede et dispositif pour optimiser la capacite de refroidissement d'une coquille de coulee continue pour metaux liquides, notamment acier liquide
DE10138988C2 (de) Gekühlte Stranggießkokille zum Gießen von Metall
EP0832989B1 (fr) Procédé et appareil pour fabriquer des barres métalliques revêtues, en particulier des bandes métalliques
EP1432539B1 (fr) Procede et dispositif de refoidissement des plaques de cuivre d'une coquille pour la coulee continue de metaux liquides, en particulier d'acier liquide
EP2219805A1 (fr) Procédé et dispositif pour uniformiser le processus de solidification d'un métal en fusion produit notamment par coulée continue ou en bande
DE10160739C2 (de) Verfahren und Einrichtung zum Kühlen der Kupferplatten einer Stranggießkokille für flüssige Metalle, insbesondere für flüssigen Stahl

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP