WO2002084112A1 - Brennstoffeinspritzventil - Google Patents

Brennstoffeinspritzventil Download PDF

Info

Publication number
WO2002084112A1
WO2002084112A1 PCT/DE2002/001333 DE0201333W WO02084112A1 WO 2002084112 A1 WO2002084112 A1 WO 2002084112A1 DE 0201333 W DE0201333 W DE 0201333W WO 02084112 A1 WO02084112 A1 WO 02084112A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
opening
fuel injection
injection valve
valve seat
Prior art date
Application number
PCT/DE2002/001333
Other languages
English (en)
French (fr)
Inventor
Günter DANTES
Detlef Nowak
Jörg HEYSE
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to DE50202627T priority Critical patent/DE50202627D1/de
Priority to JP2002581831A priority patent/JP4083023B2/ja
Priority to EP02729866A priority patent/EP1379777B1/de
Publication of WO2002084112A1 publication Critical patent/WO2002084112A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials

Definitions

  • the invention relates to a fuel injector according to the preamble of claim 1.
  • the trench-shaped slots have truncated pyramid-shaped walls, since they are introduced into silicon wafers by means of etching.
  • DE-OS 196 07 288 has already described the so-called multilayer electroplating for the production of perforated disks, which are particularly suitable for use on fuel injectors. This
  • Metal deposition in several planes, layers or layers can also be used to produce the specialist jet nozzle disc according to the invention.
  • the fuel injector according to the invention with the characterizing features of claim 1 has the advantage that a very high atomization quality of a fuel to be sprayed off is achieved with it.
  • a fuel injection valve according to the invention in an atomizer disc integrated in it, which functionally can be referred to as a specialist jet nozzle disc, a diversification of the fuel is possible, with the optimal spray patterns, in particular when directly injecting
  • Fuel can be generated in a combustion chamber.
  • an injection valve of an internal combustion engine can the exhaust gas emission of the internal combustion engine is reduced and a reduction in fuel consumption can also be achieved.
  • the atomizer disc is advantageously provided with at least one radially extending opening region, which ends at a baffle wall and from which the fuel largely due to the slot arrangement is fanned out perpendicular to the direction of flow in the opening area.
  • Claim 1 specified fuel injector possible.
  • opening area in the atomizing disc.
  • a desired number of opening areas can be used, for example, to generate a desired spray sprayed at an angle.
  • opening areas e.g. with four opening areas, an even, finely atomized spray, composed of several specialist jets.
  • the atomizing disc by means of the so-called multilayer electroplating. Because of their metallic design, such atomizing disks are very shatterproof and easy to assemble.
  • the use of multilayer electroplating allows an extremely high degree of design freedom, since the contours of the opening areas in the atomizing disc can be freely selected. This flexible design is particularly advantageous in comparison to silicon wafers, where the contours that can be achieved due to the crystal axes are strictly specified (truncated pyramids).
  • Metallic deposition has the advantage of a very large variety of materials, especially when compared to the production of silicon wafers.
  • a wide variety of metals with their different magnetic properties and hardness can be used in the micro-electroplating used to manufacture the atomizing disks.
  • the individual layers are built on top of each other without separating or joining points so that they consistently represent homogeneous material.
  • “layers” are to be understood as a mental aid.
  • FIG. 2 shows the detail II in FIG. 1 in the area of the valve seat and the specialist jet nozzle disc according to the invention
  • FIG. 3 shows a section along the line III-III in FIG. 2 through an upper layer or layer of the specialist jet nozzle disc.
  • the electromagnetically actuable valve in the form of an injection valve for fuel injection systems of mixture-compressing, externally ignited internal combustion engines, shown by way of example in FIG. 1, has a tubular, largely hollow-cylindrical core 2, which is at least partially surrounded by a magnetic coil 1 and serves as the inner pole of a magnetic circuit.
  • the fuel injection valve is particularly suitable as a high-pressure injection valve for the direct injection of fuel into a combustion chamber of an internal combustion engine.
  • a stepped coil body 3 made of plastic takes up the winding of the magnetic coil 1 and, in conjunction with the core 2 and an annular, non-magnetic intermediate part 4 partially surrounded by the magnetic coil 1, enables a particularly compact and short construction of the injection valve in the area of the magnetic coil 1.
  • a continuous longitudinal opening 7 is provided in the core 2 and extends along a longitudinal valve axis 8.
  • the core 2 of the magnetic circuit also serves as a fuel inlet connection, the longitudinal opening 7 being one
  • An outer metallic (e.g. ferritic) housing part 14 which closes the magnetic circuit as an outer pole or outer guide element and completely surrounds the magnet coil 1 at least in the circumferential direction, is firmly connected to the core 2 above the magnet coil 1.
  • a fuel filter 15 is provided on the inlet side, which ensures that those fuel components are filtered out which, because of their size, could cause blockages or damage in the injection valve.
  • a lower tubular housing part 18 connects tightly and firmly, which, for. B. an axially movable valve part consisting of an armature 19 and a rod-shaped valve needle 20 or an elongated valve seat support 21 encloses or receives.
  • the two housing parts 14 and 18 are, for. B. firmly connected to each other with a circumferential weld.
  • the seal between the housing part 18 and the valve seat support 21 takes place, for. B. by means of a sealing ring 22nd
  • Valve seat support 21 is a disk-shaped valve seat element 26 fitted in a through opening 24 with a valve seat surface 27 tapering, for example, in the shape of a truncated cone downstream Valve needle 20 is arranged, which has a valve closing section 28 at its downstream end. This tapered, for example
  • Valve closing section 28 interacts with valve seat surface 27 in a known manner. Downstream of the
  • Valve seat surface 27 follows the valve seat element 26 by an atomizing disc 30, which is referred to below as a so-called specialist jet nozzle disc and which is produced, for example, by means of multilayer electroplating and comprises two metallic layers deposited on one another.
  • an atomizing disc 30 which is referred to below as a so-called specialist jet nozzle disc and which is produced, for example, by means of multilayer electroplating and comprises two metallic layers deposited on one another.
  • the injection valve is actuated in a known manner, e.g. electromagnetically.
  • the electromagnetic circuit with the magnet coil 1, the core 2, the housing parts 14 and 18 and the armature serves to axially move the valve needle 20 and thus to open against the spring force of a return spring 33 arranged in the longitudinal opening 7 of the core 2 or to close the injection valve 19.
  • a guide opening 34 provided in the valve seat support 21 at the end facing the armature 19 and on the other hand a disk-shaped guide element 35 with an accurate guide opening 36 arranged upstream of the valve seat element 26.
  • another excitable actuator such as a piezo stack
  • the axially movable valve part can be actuated by means of hydraulic pressure or servo pressure.
  • An adjusting sleeve 38 inserted, pressed or screwed into the longitudinal opening 7 of the core 2 is used to adjust the spring preload of the return spring 33, which is located on the adjusting sleeve 38 with its upstream side and is supported with its opposite side on the armature 19 by means of a centering piece 39.
  • One or more bore-like flow channels 40 are provided in the armature 19, through which the fuel can pass from the longitudinal opening 7 in the core 2 via connection channels 41 formed downstream of the flow channels 40 near the guide opening 34 in the valve seat carrier 21 into the through opening 24.
  • the stroke of the valve needle 20 is predetermined by the installation position of the valve seat element 26. A final position of the stroke of the valve needle 20 is predetermined by the installation position of the valve seat element 26. A final position of the stroke of the valve needle 20 is predetermined by the installation position of the valve seat element 26.
  • Valve needle 20 is fixed when the solenoid coil 1 is not energized by the valve closing section 28 bearing against the valve seat surface 27, while the other end position of the valve needle 20 when the solenoid coil 1 is energized results from the armature 19 resting on the downstream end face of the core 2.
  • Plastic extrusion 44 are provided and continue to run as a connecting cable 45.
  • the plastic encapsulation 44 can also extend over further components (for example housing parts 14 and 18) of the fuel injector.
  • a first shoulder 49 in the through opening 24 serves as a contact surface for a helical compression spring 50, for example.
  • a second step 51 provides an enlarged installation space for the three disk-shaped elements 35, 26 and 30 created.
  • the compression spring 50 enveloping the valve needle 20 tensions the guide element 35 in the valve seat support 21 since it presses against the guide element 35 with its side opposite the shoulder 49.
  • a central outlet opening 53 is introduced in the valve seat element 26, through which the fuel flowing along the valve seat surface 27 when the valve is open flows, in order to subsequently enter a first layer 58 of the specialist jet nozzle disk 30.
  • the specialist jet nozzle disk 30 is present, for example, in a recess 54 of a disk-shaped holding element 55, the holding element 55 being fixedly connected to the valve seat support 21, for example by means of welding, gluing or jamming.
  • a central outlet opening 56 is formed in the holding element 55, through which the fanned out fuel leaves the fuel injection valve.
  • FIG. 2 shows section II in FIG. 1 to clarify the geometry of the specialist jet nozzle disk 30.
  • FIG. 3 is a sectional illustration along the line III-III in FIG. 2 in order to clarify the contours of the opening geometry within the specialist jet nozzle disk 30.
  • the outlet opening 53 of the valve seat element 26 was additionally drawn in FIG. 3.
  • the specialist jet nozzle disk 30 is formed from two galvanically separated planes, layers or layers, which consequently follow one another axially in the installed state.
  • At least one radially extending opening region 61 is provided, which extends over the entire axial thickness of this layer 58 and from the lower one
  • End face 62 of the valve seat element 26 is limited.
  • Each channel-like opening region 61 ends at a baffle wall 63, on which the radial flow impinges.
  • each baffle wall 63 In the area of each baffle wall 63 there is a slot-shaped outlet opening 64 in the lower layer 59 in the downstream direction.
  • the radially outer wall 65 of each outlet opening 64 runs in alignment with the respective baffle wall 63 and thus ultimately represents its downstream extension.
  • the slot-shaped outlet openings 64 have a greater length L than the width 1 of the opening region 61 merging into them. As shown in FIG. 3 is L> 1.
  • the exit openings 64 are in their longitudinal extension run largely perpendicular to the opening areas 61, the flow impinging on the baffle wall 63 can fan out at a right angle to it, corresponding to the size of the outlet opening 64, and the fuel is discharged in a finely atomized manner in a specialist jet geometry.
  • the thickness of the lower layer 59 and thus the axial length of the outlet openings 64 are decisive for the beam widening and deflection.
  • the homogeneity of the spray jet to be sprayed can be adjusted via the cross-sectional areas of the opening areas 61.
  • the beam shape can be changed by the number and the arrangement of the outlet openings 64.
  • slotted arcuate outlet openings 64 are also conceivable.
  • the specialist jet nozzle disk 30 can also be fastened at an angle to the valve longitudinal axis 8, so that the fuel spray is sprayed off at an angle ⁇ to the valve longitudinal axis 8.
  • the specialist jet nozzle disk 30 is built up in two metallic layers, for example by galvanic deposition (multilayer electroplating). Due to the deep lithographic, galvanotechnical production, there are special features in the contouring, some of which are summarized below:
  • the deep-lithographic structuring largely vertical cuts in the layers that form the respective cavities through which flow (production-related deviations of approx. 3 ° compared to optimally vertical walls can occur), - desired undercuts and overlaps of the incisions due to the multi-layer structure of individually structured metal layers,

Abstract

Die Erfindung betrifft ein Brennstoffeinspritzventil, das ein bewegliches Ventilteil (20) aufweist, welches zum Öffnen und Schliessen des Ventils mit einem festen Ventilsitz (27) zusammenwirkt, der an einem Ventilsitzelement (26) ausgebildet ist. Stromabwärts des Ventilsitzes (27) ist eine Zerstäuberscheibe (30) angeordnet. Die Zerstäuberscheibe (30) hat eine erste stromaufwärtige Lage (58), in die Brennstoff zentral einströmt und in der wenigstens e in radial verlaufender Öffnungsbereich (61) vorgesehen ist, der radial nach aussen vom Brennstoff durchströmbar ist und der mit einer Prallwandung (63) endet. Stromabwärts der Prallwandung (63) schliesst sich in einer zweiten stromabwärtigen Lage (59) der Zerstäuberscheibe (30) eine schlitzförmige Austrittsöffnung (64) quer an, wodurch der Brennstoff aufgefächert und feinstzerstäubt wird. Das Brennstoffeinspritzventil eignet sich besonders zum direkten Einspritzen von Brennstoff in einen Brennraum einer gemischverdichtenden fremdgezündeten Brennkraftmaschine.

Description

Brennstoffeinspritzventil
Stand der Technik
Die Erfindung geht aus von einem Brennstoffeinspritzventil nach der Gattung des Anspruchs 1.
Aus der EP 0 611 886 AI ist bereits ein elektromagnetisch betätigbares Brennstoffeinspritzventil bekannt, bei dem stromabwärts eines Ventilsitzes eine Lochscheibe bzw. ein Lochscheibenpaket vorgesehen ist. Die zwei aufeinanderliegenden Lochplättchen sind jeweils mit wenigstens einem schlitzförmigen Durchgangsloch ausgeformt. Die Schlitze der einzelnen Plättchen sind derart angeordnet, dass sie sich bei einer Projektion in eine Ebene grundsätzlich schneiden, und zwar im rechten Winkel zueinander. Ein in den Schlitz des stromaufwärtigen Plättchens einströmender Brennstoff strömt von außen zur Mitte des Schlitzes, wo er von dem Schlitz des stromabwärtigen Plättchens untergraben ist. Im Schnittbereich der beiden Schlitze befindet sich somit eine Durchgangsöffnung durch die gesamte Lochscheibenanordnung, durch die der Brennstoff letztlich abgespritzt wird. Die grabenförmigen Schlitze weisen pyramidenstumpfför ige Wandungen auf, da sie mittels Ätzen in Siliziumscheiben eingebracht sind. In der DE-OS 196 07 288 wurde bereits die sogenannte Multilayergalvanik zur Herstellung von Lochscheiben, die insbesondere für den Einsatz an Brennstoffeinspritzventilen geeignet sind, ausführlich beschrieben. Dieses
Herstellungsprinzip einer Scheibenherstellung durch mehrfaches galvanisches Metallabscheiden verschiedener Strukturen aufeinander, so dass eine einteilige Scheibe vorliegt, soll ausdrucklich zum Offenbarungsgehalt vorliegender Erfindung zahlen. Die mikrogalvanische
Metallabscheidung in mehreren Ebenen, Lagen bzw. Schichten kann auch zur Herstellung der erfindungsgemaßen Facherstrahldusenscheibe zum Einsatz kommen.
Vorteile der Erfindung
Das erfindungsgemaße Brennstoffeinspritzventil mit den kennzeichnenden Merkmalen des Anspruchs 1 hat den Vorteil, dass mit ihm eine sehr hohe Zerstaubungsgute eines abzuspritzenden Brennstoffs erzielt wird. Mit dem erfindungsgemaßen Brennstoffeinspritzventil ist in einer an ihm integrierten Zerstauberscheibe, die von der Funktion her als Facherstrahldusenscheibe bezeichnet werden kann, eine Auffacherung des Brennstoffs möglich, mit der optimale Spraybilder insbesondere beim direkten Einspritzen von
Brennstoff in einen Brennraum erzeugt werden können. Als Konsequenz können an einem Einspritzventil einer Brennkraftmaschine u.a. die Abgasemission der Brennkraftmaschine reduziert und ebenso eine Verringerung des Brennstoffverbrauchs erzielt werden.
In vorteilhafter Weise ist die Zerstauberscheibe mit wenigstens einem radial verlaufenden Offnungsbereich versehen, der an einer Prallwandung endet und von der aus der Brennstoff aufgrund der Schlitzanordnung weitgehend senkrecht zur Stromungsrichtung im Offnungsbereich aufgefächert wird.
Durch die in den Unteranspruchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im
Anspruch 1 angegebenen Brennstoffeinspritzventils möglich.
Von Vorteil ist es, mehr als einen Offnungsbereich in der Zerstauberscheibe vorzusehen. Durch eine gezielte Anzahl an Offnungsbereichen kann beispielsweise ein gewünschtes schräg abgespritztes Spray erzeugt werden. Andererseits kann bei einer symmetrischen Anordnung von Offnungsbereichen, z.B. mit vier Offnungsbereichen, ein gleichmäßiges feinstzerstaubtes Spray, zusammengesetzt aus mehreren Facherstrahlen, abgegeben werden.
Besonders vorteilhaft ist es, die Zerstauberscheibe mittels der sogenannten Multilayergalvanik herzustellen. Aufgrund ihrer metallischen Ausbildung sind solche Zerstauberscheiben sehr bruchsicher und gut montierbar. Die Anwendung der Multilayergalvanik erlaubt eine extrem große Gestaltungsfreiheit, da die Konturen der Offnungsbereiche in der Zerstauberscheibe frei wahlbar sind. Besonders im Vergleich zu Siliziumscheiben, bei denen aufgrund der Kristallachsen erreichbare Konturen streng vorgegeben sind (Pyramidenstumpfe) , ist diese flexible Formgebung sehr vorteilhaft.
Das metallische Abscheiden hat besonders im Vergleich zur Herstellung von Siliziumscheiben den Vorteil einer sehr großen Materialvielfalt. Die verschiedensten Metalle mit ihren unterschiedlichen magnetischen Eigenschaften und Harten können bei der zur Herstellung der Zerstauberscheiben verwendeten Mikrogalvanik zum Einsatz kommen. Durch den Galvanikprozess werden die einzelnen Schichten ohne Trenn- oder Fugestellen so aufeinander aufgebaut, dass sie durchgehend homogenes Material darstellen. Insofern sind „Schichten" als gedankliches Hilfsmittel zu verstehen.
Zeichnung
Ein Ausfuhrungsbeispiel der Erfindung ist in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung naher erläutert. Es zeigen Figur 1 ein
Brennstoffeinspritzventil im Schnitt, Figur 2 den Ausschnitt II in Figur 1 im Bereich des Ventilsitzes und der erfindungsgemaßen Facherstrahldusenscheibe und Figur 3 einen Schnitt entlang der Linie III-III in Figur 2 durch eine obere Lage bzw. Schicht der Facherstrahldusenscheibe.
Beschreibung des Ausfuhrungsbeispieles
Das in der Figur 1 beispielhaft dargestellte elektromagnetisch betatigbare Ventil in der Form eines Einspritzventils für Brennstoffeinspritzanlagen von gemischverdichtenden, fremdgezundeten Brennkraftmaschinen hat einen von einer Magnetspule 1 zumindest teilweise umgebenen, als Innenpol eines Magnetkreises dienenden, rohrformigen, weitgehend hohlzylindrischen Kern 2. Das Brennstoffeinspritzventil eignet sich besonders als Hochdruckeinspritzventil zum direkten Einspritzen von Brennstoff in einen Brennraum einer Brennkraftmaschine.
Ein beispielsweise gestufter Spulenkorper 3 aus Kunststoff nimmt eine Bewicklung der Magnetspule 1 auf und ermöglicht in Verbindung mit dem Kern 2 und einem ringförmigen, nichtmagnetischen, von der Magnetspule 1 teilweise umgebenen Zwischenteil 4 einen besonders kompakten und kurzen Aufbau des Einspritzventils im Bereich der Magnetspule 1. In dem Kern 2 ist eine durchgangige Langsoffnung 7 vorgesehen, die sich entlang einer Ventillangsachse 8 erstreckt. Der Kern 2 des Magnetkreises dient auch als Brennstoffeinlassstutzen, wobei die Langsoffnung 7 einen
Brennstoffzufuhrkanal darstellt. Mit dem Kern 2 oberhalb der Magnetspule 1 fest verbunden ist ein äußeres metallenes (z. B. ferritisches) Gehauseteil 14, das als Außenpol bzw. äußeres Leitelement den Magnetkreis schließt und die Magnetspule 1 zumindest in Umfangsrichtung vollständig umgibt. In der Langsoffnung 7 des Kerns 2 ist zulaufseitig ein Brennstofffilter 15 vorgesehen, der für die Herausfiltrierung solcher Brennstoffbestandteile sorgt, die aufgrund ihrer Große im' Einspritzventil Verstopfungen oder Beschädigungen verursachen konnten.
An das obere Gehauseteil 14 schließt sich dicht und fest ein unteres rohrformiges Gehauseteil 18 an, das z. B. ein axial bewegliches Ventilteil bestehend aus einem Anker 19 und einer stangenformigen Ventilnadel 20 bzw. einen langgestreckten Ventilsitztrager 21 umschließt bzw. aufnimmt. Die beiden Gehauseteile 14 und 18 sind z. B. mit einer umlaufenden Schweißnaht fest miteinander verbunden. Die Abdichtung zwischen dem Gehauseteil 18 und dem Ventilsitztrager 21 erfolgt z. B. mittels eines Dichtrings 22.
Mit seinem unteren Ende 25, das auch zugleich den stromabwartigen Abschluss des gesamten Brennstoffeinspritzventils darstellt, umgibt der
Ventilsitztrager 21 ein in einer Durchgangsoffnung 24 eingepasstes scheibenförmiges Ventilsitzelement 26 mit einer sich z.B. stromabwärts kegelstumpfformig verjungenden Ventilsitzflache 27. In der Durchgangsoffnung 24 ist die Ventilnadel 20 angeordnet, die an ihrem stromabwartigen Ende einen Ventilschließabschnitt 28 aufweist. Dieser beispielsweise sich keglig verjungende
Ventilschließabschnitt 28 wirkt in bekannter Weise mit der Ventilsitzflache 27 zusammen. Stromabwarts der
Ventilsitzflache 27 folgt dem Ventilsitzelement 26 eine Zerstauberscheibe 30, die im folgenden aufgrund ihrer besonderen Funktion als sogenannte Facherstrahldusenscheibe bezeichnet wird und die beispielsweise mittels Multilayergalvanik hergestellt ist und zwei aufeinander abgeschiedene metallische Schichten umfasst.
Die Betätigung des Einspritzventils erfolgt in bekannter Weise z.B. elektromagnetisch. Zur axialen Bewegung der Ventilnadel 20 und damit zum Offnen entgegen der Federkraft einer in der Langsoffnung 7 des Kerns 2 angeordneten Ruckstellfeder 33 bzw. Schließen des Einspritzventils dient der elektromagnetische Kreis mit der Magnetspule 1, dem Kern 2, den Gehauseteilen 14 und 18 und dem Anker 19. Zur Fuhrung der Ventilnadel 20 wahrend ihrer Axialbewegung mit dem Anker 19 entlang der Ventillangsachse 8 dient einerseits eine im Ventilsitztrager 21 am dem Anker 19 zugewandten Ende vorgesehene Fuhrungsoffnung 34 und andererseits ein stromaufwärts des Ventilsitzelements 26 angeordnetes scheibenförmiges Fuhrungselement 35 mit einer maßgenauen Fuhrungsoffnung 36.
Anstelle des elektromagnetischen Kreises kann auch ein anderer erregbarer Aktuator, wie z.B. ein Piezostack, in einem vergleichbaren Brennstoffemspritzventil verwendet werden bzw. das Betatigen des axial beweglichen Ventilteils durch einen hydraulischen Druck oder Servodruck erfolgen. Eine in der Langsoffnung 7 des Kerns 2 eingeschobene, eingepresste oder eingeschraubte Einstellhulse 38 dient zur Einstellung der Federvorspannung der über ein Zentrierstuck 39 mit ihrer stromaufwartigen Seite an der Einstellhulse 38 anliegenden Ruckstellfeder 33, die sich mit ihrer gegenüberliegenden Seite am Anker 19 abstutzt. Im Anker 19 sind ein oder mehrere bohrungsahnliche Stromungskanale 40 vorgesehen, durch die der Brennstoff von der Langsoffnung 7 im Kern 2 aus über stromabwärts der Stromungskanale 40 ausgebildete Verbindungskanale 41 nahe der Fuhrungsoffnung 34 im Ventilsitztrager 21 bis in die Durchgangsoffnung 24 gelangen kann.
Der Hub der Ventilnadel 20 wird durch die Einbaulage des Ventilsitzelements 26 vorgegeben. Eine Endstellung der
Ventilnadel 20 ist bei nicht erregter Magnetspule 1 durch die Anlage des Ventilschließabschnitts 28 an der Ventilsitzflache 27 festgelegt, wahrend sich die andere Endstellung der Ventilnadel 20 bei erregter Magnetspule 1 durch die Anlage des Ankers 19 an der stromabwartigen Stirnseite des Kerns 2 ergibt.
Die elektrische Kontaktierung der Magnetspule 1 und damit deren Erregung erfolgt über Kontaktelemente 43, die außerhalb des Spulenkorpers 3 mit einer
Kunststoffumspritzung 44 versehen sind und weiter als Anschlusskabel 45 verlaufen. Die Kunststoffumspritzung 44 kann sich auch über weitere Bauteile (z. B. Gehauseteile 14 und 18) des Brennstoffeinspritzventils erstrecken.
Ein erster Absatz 49 in der Durchgangsoffnung 24 dient als Anlageflache für eine z.B. schraubenförmige Druckfeder 50. Mit einer zweiten Stufe 51 wird ein vergrößerter Einbauraum für die drei scheibenförmigen Elemente 35, 26 und 30 geschaffen. Die die Ventilnadel 20 umhüllende Druckfeder 50 verspannt das Fuhrungselement 35 im Ventilsitztrager 21, da sie mit ihrer dem Absatz 49 gegenüberliegenden Seite gegen das Fuhrungselement 35 druckt. Stromabwarts der Ventilsitzflache 27 ist im Ventilsitzelement 26 eine zentrale Austrittsoffnung 53 eingebracht, durch die der bei geöffnetem Ventil an der Ventilsitzflache 27 entlangstromende Brennstoff strömt, um nachfolgend in eine erste Lage 58 der Facherstrahldusenscheibe 30 einzutreten. Die Facherstrahldusenscheibe 30 liegt beispielsweise in einer Vertiefung 54 eines scheibenförmigen Halteelements 55 vor, wobei das Halteelement 55 fest mit dem Ventilsitztrager 21 z.B. mittels Schweißen, Kleben oder durch Verklemmen verbunden ist. In dem Halteelement 55 ist eine zentrale Auslassoffnung 56 ausgebildet, durch die der aufgefächerte Brennstoff das Brennstoffeinspritzventil verlasst.
Figur 2 zeigt den Ausschnitt II in Figur 1 zur Verdeutlichung der Geometrie der Facherstrahldusenscheibe 30. Figur 3 ist eine Schnittdarstellung entlang der Linie III-III in Figur 2, um die Konturen der Offnungsgeometrie innerhalb der Facherstrahldusenscheibe 30 zu verdeutlichen. Um die Anstromung der Facherstrahldusenscheibe 30 naher zu charakterisieren, wurde in Figur 3 noch zusatzlich die Austrittsoffnung 53 des Ventilsitzelements 26 eingezeichnet.
Gebildet wird die Facherstrahldusenscheibe 30 aus zwei galvanisch aufeinander abgeschiedenen Ebenen, Lagen bzw. Schichten, die somit im eingebauten Zustand axial aufeinander folgen. Die beiden Lagen 58 und 59 der
Facherstrahldusenscheibe 30 weisen z.B. den gleichen Außendurchmesser auf. Wie bereits erwähnt, erfolgt die Anstromung der Facherstrahldusenscheibe 30 über die zentrale Austrittsoffnung 53 in die Offnungskontur der Facherstrahldusenscheibe 30 hinein. Da die untere Lage 59 zumindest im Bereich rund um die Ventillangsachse 8 vollständig massiv ausgeführt ist, wird der einströmende Brennstoff an der der ersten Lage 58 zugewandten Oberflache 60 der unteren Lage 59 umgelenkt, um radial nach außen zu strömen.
In der ersten Lage 58 ist wenigstens ein radial verlaufender Offnungsbereich 61 vorgesehen, der über die gesamte axiale Dicke dieser Lage 58 verlauft und von der unteren
Stirnflache 62 des Ventilsitzelements 26 begrenzt wird. Wie der Figur 3 zu entnehmen ist, ist es vorteilhaft, mehrere radiale Offnungsbereiche 61 auszubilden. Denkbar sind z.B. zwischen zwei und zehn Offnungsbereiche 61. Sind vier kanalartige Offnungsbereiche 61 vorgesehen, so verlaufen diese beispielsweise in der Gesamtkontur strahlformig und bilden zusammen ein Kreuz, so dass die einzelnen Offnungsbereiche also jeweils in einem Winkel von 90° zueinander liegen. Jeder kanalartige Offnungsbereich 61 endet an einer Prallwandung 63, auf die die radial verlaufende Strömung auftrifft.
In der unteren Lage 59 der Facherstrahldusenscheibe 30 ist nur eine schlitzartige Offnungskontur eingebracht. Im Bereich jeder Prallwandung 63 schließt sich in stromabwartiger Richtung in der unteren Lage 59 eine schlitzförmige Austrittsoffnung 64 an. Die radial außen liegende Wandung 65 jeder Austrittsoffnung 64 verlauft fluchtend zur jeweiligen Prallwandung 63 und stellt somit letztlich deren stromabwartige Verlängerung dar. Die schlitzförmigen Austrittsoffnungen 64 weisen eine größere Lange L auf als die Breite 1 des in sie mundenden Offnungsbereichs 61. Wie in Figur 3 gezeigt ist, gilt L > 1. Da die Austrittsoffnungen 64 in ihrer Langserstreckung weitgehend senkrecht zu den Offnungsbereichen 61 verlaufen, kann sich die auf die Prallwandung 63 treffende Strömung im rechten Winkel dazu entsprechend der Große der Austrittsoffnung 64 auffächern, und der Brennstoff wird fein zerstaubt in einer Facherstrahlgeometrie abgegeben.
Die Dicke der unteren Lage 59 und damit die axiale Lange der Austrittsoffnungen 64 sind Ausschlag gebend für die Strahlauffacherung und -ablenkung. Über die Querschnittsflachen der Offnungsbereiche 61 lasst sich die Homogenitat des abzuspritzenden Facherstrahls einstellen. Durch die Anzahl und die Anordnung der Austrittsoffnungen 64 ist die Strahlform veränderbar. Neben den in Figur 3 gezeigten geradlinigen Austrittsoffnungen 64 sind auch geschlitzte bogenförmige Austrittsoffnungen 64 denkbar. Die Facherstrahldusenscheibe 30 kann auch im Gegensatz zur in Figur 1 gezeigten Einbauvariante schräg geneigt zur Ventillangsachse 8 befestigt sein, so dass das Brennstoffspray unter einem Winkel γ zur Ventillangsachse 8 abgespritzt wird.
Die Facherstrahldusenscheibe 30 wird in zwei metallischen Schichten beispielsweise durch galvanische Abscheidung aufgebaut (Multilayergalvanik) . Aufgrund der tiefenlithographischen, galvanotechnischen Herstellung gibt es besondere Merkmale in der Konturgebung, von denen hiermit einige in Kurzform zusammenfassend aufgeführt sind:
- Schichten mit über die Scheibenflache konstanter Dicke,
- durch die tiefenlithographische Strukturierung weitgehend senkrechte Einschnitte in den Schichten, welche die jeweils durchströmten Hohlräume bilden (fertigungstechnisch bedingte Abweichungen von ca. 3° gegenüber optimal senkrechten Wandungen können auftreten) , - gewünschte Hinterschneidungen und Überdeckungen der Einschnitte durch mehrlagigen Aufbau einzeln strukturierter Metallschichten,
- Einschnitte mit beliebigen, weitgehend achsparallele Wandungen aufweisenden Querschnittsformen,
- einteilige Ausführung der Facherstrahldusenscheibe, da die einzelnen Metallabscheidungen unmittelbar aufeinander erfolgen.
Andererseits ist es jedoch ebenso denkbar, die
Facherstrahldusenscheibe 30 stanz- und prägetechnisch, erodiertechnisch oder ätztechnisch herzustellen.

Claims

Ansprüche
1. Brennstoffeinspritzventil für Brennstoffeinspritzanlagen von Brennkraftmaschinen, insbesondere zum direkten Einspritzen von Brennstoff in einen Brennraum einer Brennkraftmaschine, mit einer Ventillangsachse (8), mit einem Aktuator (1, 2, 14, 18, 19), mit einem beweglichen Ventilteil (20), das zum Offnen und Schließen des Ventils mit einem festen Ventilsitz (27) zusammenwirkt, der an einem Ventilsitzelement (26) ausgebildet ist, und mit einer stromabwärts des Ventilsitzes (27) angeordneten
Zerstauberscheibe (30) , dadurch gekennzeichnet, dass die Zerstauberscheibe (30) eine erste stromaufwartige Lage (58) hat, in die Brennstoff zentral einstrombar ist und in der wenigstens ein radial verlaufender Offnungsbereich (61) vorgesehen ist, der radial nach außen vom Brennstoff durchstrombar ist und der mit einer Prallwandung (63) endet, und dass sich stromabwärts der Prallwandung (63) in einer zweiten stromabwartigen Lage (59) der Zerstauberscheibe (30) eine schlitzförmige Austrittsoffnung (64) anschließt.
2. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass der wenigstens eine Offnungsbereich
(61) kanalartig verlauft und von einer unteren Stirnflache
(62) des Ventilsitzelements (26) und von einer Oberflache (60) der zweiten Lage (59) begrenzt wird.
3. Brennstoffeinspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die radial außen liegende Wandung (65) der Austrittsoffnung (64) zumindest im Bereich der Prallwandung (63) fluchtend zu dieser verlauft und somit deren stromabwartige Verlängerung darstellt.
4. Brennstoffeinspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Langserstreckung der schlitzförmigen Austrittsoffnung (64) weitgehend senkrecht zu dem Offnungsbereich (61) verlauft.
5. Brennstoffeinspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die wenigstens eine Austrittsoffnung (64) geradlinig oder bogenförmig verlauft.
6. Brennstoffeinspritzventil nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Lange (L) der Austrittsoffnung (64) großer ist als die Breite (1) des in sie mundenden Offnungsbereichs (61).
7. Brennstoffeinspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass vier
Offnungsbereiche (61) in der Zerstauberscheibe (30) mit jeweils einer Austrittsoffnung (64) vorgesehen sind.
8. Brennstoffeinspritzventil nach Anspruch 7, dadurch gekennzeichnet, dass die Offnungsbereiche (61) in der ersten Lage (58) eine kreuzförmige Offnungskontur bilden.
9. Brennstoffeinspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zerstauberscheibe (30) mittels galvanischer Metallabscheidung herstellbar ist.
10. Brennstoffeinspritzventil nach Anspruch 9, dadurch gekennzeichnet, dass die zwei Lagen (58, 59) der Zerstäuberscheibe (30) als zwei metallisch abgeschiedene Schichten aufeinander aufgebaut sind.
PCT/DE2002/001333 2001-04-12 2002-04-10 Brennstoffeinspritzventil WO2002084112A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE50202627T DE50202627D1 (de) 2001-04-12 2002-04-10 Brennstoffeinspritzventil mit einer zerstäuberscheibe
JP2002581831A JP4083023B2 (ja) 2001-04-12 2002-04-10 燃料噴射弁
EP02729866A EP1379777B1 (de) 2001-04-12 2002-04-10 Brennstoffeinspritzventil mit einer zerstäuberscheibe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10118273.2 2001-04-12
DE10118273A DE10118273A1 (de) 2001-04-12 2001-04-12 Brennstoffeinspritzventil

Publications (1)

Publication Number Publication Date
WO2002084112A1 true WO2002084112A1 (de) 2002-10-24

Family

ID=7681350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/001333 WO2002084112A1 (de) 2001-04-12 2002-04-10 Brennstoffeinspritzventil

Country Status (4)

Country Link
EP (1) EP1379777B1 (de)
JP (1) JP4083023B2 (de)
DE (2) DE10118273A1 (de)
WO (1) WO2002084112A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004049281A1 (de) * 2004-10-09 2006-04-20 Robert Bosch Gmbh Brennstoffeinspritzventil
DE102004049280A1 (de) * 2004-10-09 2006-04-13 Robert Bosch Gmbh Brennstoffeinspritzventil
DE102005023793B4 (de) * 2005-05-19 2012-01-12 Ulrich Schmid Vorrichtung zur Drallerzeugung in einem Kraftstoffeinspritzventil
JP4618262B2 (ja) * 2007-03-16 2011-01-26 三菱電機株式会社 燃料噴射弁

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19607288A1 (de) * 1995-03-29 1996-10-02 Bosch Gmbh Robert Verfahren zur Herstellung einer Lochscheibe
DE19703200A1 (de) * 1997-01-30 1998-08-06 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19724075A1 (de) * 1997-06-07 1998-12-10 Bosch Gmbh Robert Verfahren zur Herstellung einer Lochscheibe für ein Einspritzventil und Lochscheibe für ein Einspritzventil und Einspritzventil
EP1006265A1 (de) * 1998-06-22 2000-06-07 Hitachi, Ltd. Direkteingespritzte brennkraftmaschine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19607288A1 (de) * 1995-03-29 1996-10-02 Bosch Gmbh Robert Verfahren zur Herstellung einer Lochscheibe
DE19703200A1 (de) * 1997-01-30 1998-08-06 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19724075A1 (de) * 1997-06-07 1998-12-10 Bosch Gmbh Robert Verfahren zur Herstellung einer Lochscheibe für ein Einspritzventil und Lochscheibe für ein Einspritzventil und Einspritzventil
EP1006265A1 (de) * 1998-06-22 2000-06-07 Hitachi, Ltd. Direkteingespritzte brennkraftmaschine

Also Published As

Publication number Publication date
EP1379777A1 (de) 2004-01-14
DE10118273A1 (de) 2002-10-17
DE50202627D1 (de) 2005-05-04
JP4083023B2 (ja) 2008-04-30
EP1379777B1 (de) 2005-03-30
JP2004518909A (ja) 2004-06-24

Similar Documents

Publication Publication Date Title
EP1003966B1 (de) Brennstoffeinspritzventil
EP1012473B1 (de) Drallscheibe und brennstoffeinspritzventil mit drallscheibe
DE19815795A1 (de) Zerstäuberscheibe und Brennstoffeinspritzventil mit Zerstäuberscheibe
DE19703200A1 (de) Brennstoffeinspritzventil
DE19937961A1 (de) Brennstoffeinspritzventil und Verfahren zur Herstellung von Austrittsöffnungen an Ventilen
EP1336048A1 (de) Brennstoffeinspritzventil
DE19815800A1 (de) Brennstoffeinspritzventil
DE102005017420A1 (de) Brennstoffeinspritzventil
DE102006041472A1 (de) Brennstoffeinspritzventil
DE19636396A1 (de) Brennstoffeinspritzventil
EP1313942B1 (de) Drallscheibe, insbesondere für einspritzventile
WO1999053190A1 (de) Brennstoffeinspritzventil und verfahren zur montage eines brennstoffeinspritzventils
EP2064438A1 (de) Brennstoffeinspritzventil
EP1399669B1 (de) Brennstoffeinspritzventil
EP1402175A1 (de) Brennstoffeinspritzventil
EP1379777B1 (de) Brennstoffeinspritzventil mit einer zerstäuberscheibe
DE102006044439A1 (de) Brennstoffeinspritzventil
EP1195516B1 (de) Brennstoffeinspritzventil
DE10118272A1 (de) Brennstoffeinspritzventil
DE102004060535A1 (de) Zerstäuberdüse
DE102004051743A1 (de) Brennstoffeinspritzventil
DE10048936A1 (de) Drallscheibe und Brennstoffeinspritzventil mit Drallscheibe
DE102018221833A1 (de) Ventil zum Zumessen eines Fluids, insbesondere Brennstoffeinspritzventil
DE102004060530A1 (de) Brennstoffeinspritzventil
DE10360773A1 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2002729866

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 581831

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2002729866

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002729866

Country of ref document: EP