WO2002083539A1 - Fadendetektor - Google Patents

Fadendetektor Download PDF

Info

Publication number
WO2002083539A1
WO2002083539A1 PCT/EP2002/003692 EP0203692W WO02083539A1 WO 2002083539 A1 WO2002083539 A1 WO 2002083539A1 EP 0203692 W EP0203692 W EP 0203692W WO 02083539 A1 WO02083539 A1 WO 02083539A1
Authority
WO
WIPO (PCT)
Prior art keywords
thread
deflector
detector according
path
deflectors
Prior art date
Application number
PCT/EP2002/003692
Other languages
English (en)
French (fr)
Inventor
Birger Johansson
Pär JOSEFSSON
Original Assignee
Iropa Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iropa Ag filed Critical Iropa Ag
Priority to EP02732552A priority Critical patent/EP1377513B1/de
Priority to DE50201115T priority patent/DE50201115D1/de
Priority to US10/474,866 priority patent/US20040188232A1/en
Priority to AT02732552T priority patent/ATE276960T1/de
Publication of WO2002083539A1 publication Critical patent/WO2002083539A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H59/00Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators
    • B65H59/40Applications of tension indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the invention relates to a thread detector according to the preamble of patent claim 1.
  • An example of a place of use of such a thread detector is the thread path between a weft thread delivery device and the shed of a weaving machine.
  • information about the current thread tension of the stationary or running thread and additional weft monitor information about thread running / stopping conditions are required.
  • the thread tension is additionally also scanned, specifically by means of a single deflector and a single, for example piezoelectric transducer.
  • An equivalent weft monitor for both functions is also known from US 4,228,828 A.
  • Clear and meaningful output signals for the two functions can be to obtain the deflector only with a relatively high level of electronic effort, which contributes to the high cost of the thread detector and its susceptibility to faults, because the requirements for monitoring the thread running / stopping conditions are different from the requirements for measuring the thread tension.
  • the invention has for its object to provide a thread detector of the type mentioned, which determines the required information in a different way and better adapted to the respective requirements, derives with low mechanical stress on the thread, is inexpensive and reliable to manufacture and a very wide Application area (for various types of thread processing systems or weaving machines and delivery devices and all thread qualities used in practice) is able to cover.
  • each deflector optimally scans the thread with regard to a special requirement and for the task assigned to it (thread tension measurement and / or running / stopping conditions). For this reason alone, each deflector can also cooperate with a relatively simple converter device which is tailored to the respective function. If one function fails, the other function remains unaffected. Since the two deflectors divide the thread deflection among themselves and act like a single form-fitting thread guide, a kind of two-dimensional thread guide, the mechanical load on the thread is moderate and is sufficient for an overall deflection that is significantly less than the sum of the deflections in two completely separate ones Devices for each " function.
  • each deflecting surface Due to the angle of less than 180 ° between the deflecting surfaces, each deflecting surface can derive a force component for increasing the pressing of the thread against the other deflecting surface in spite of a small deflecting angle, which improves the responsiveness without the thread Due to the selected geometry, each deflector absorbs just as much of the thread load as is appropriate for the function assigned to it.
  • the two deflectors are expediently adjacent in the thread path directly and without contact, so that the force generated on at least one deflection surface from the load acts as directly as possible on the deflection surface of the other deflector.
  • the mutual proximity of the deflectors has the advantage that they act together as a single two-dimensional thread guide and effectively stabilize the running thread, which is favorable for the scanning accuracy.
  • the angle between the deflection surfaces should be at least essentially 90 °. This ensures clean guidance of the running thread.
  • the degree of displacement determines the deflection of the thread in the thread detector.
  • the deflecting surfaces of both deflectors are preferably offset with respect to the elongated thread path so that the thread exerts the loads required for scanning on both deflecting surfaces.
  • This inclined position is set such that a sliding force component to the deflecting surface of the other deflector is generated from the thread loading on the inclined deflecting surface.
  • the deflecting surface of the other deflector is not only acted upon by the reaction force from the deflection of the thread, which can be small there, but also additionally by the sliding force component.
  • An inclined angle of approximately 70 ° with respect to the plane mentioned is favorable for the one deflecting surface. With a 90 ° crossing of both deflectors, the inclined angle with respect to the same plane of the other deflector is then approximately 20 °. These angles can be varied.
  • the deflector, whose deflection surface forms the inclined angle of approximately 70 ° with the plane, is expediently responsible for the thread tension measurement. Because the thread tension can be more sensitive determine if the thread exerts a significant part of the load resulting from the thread tension on this deflector.
  • Deflectors in the form of rods or tubes are simple to manufacture, functionally reliable and suitable for practically all thread qualities. The same outside diameters are useful but not absolutely necessary. Ceramic material has the advantage of high wear resistance and a certain internal damping with low weight.
  • the separately operating deflectors are each arranged on a transducer element which is supported in a stationary manner. It is expedient to attach the deflectors with their foot region to the transducer element, so that the loads on the thread are transmitted in an unadulterated manner with a favorable lever arm. Piezoelectric or photoelastic transducer elements are particularly expedient because they deliver meaningful useful signals with moderate control effort. Alternatively, inductive, triboelectric or other transducer elements could also be used, or strain gauges directly on the deflectors.
  • each piezoelectric transducer element is integrated in a film chip, which also contains at least part of the evaluation circuit.
  • a fluoroscopic photo-elastic transducer element changes its optical properties depending on its deformation or its internal stress state.
  • the intensity of the emerging light varies within a wide range and provides meaningful signals that can be easily picked up and evaluated by optoelectronic means.
  • the photoelastic transducer element is expediently a plate made of a transparent plastic such as polycarbonate (or an optical glass), which is clamped at least on one side, preferably at both ends, and is almost exclusively subjected to torsion by the deflector.
  • This material is largely isotropic in the stress-free state and becomes anisotropic with increasing internal stress, for example a torsional stress.
  • This change is followed by the optoelectronic scanning device and output as an output signal, for example representative of the thread tension, and without any appreciable amplification or conditioning effort.
  • the optical axis of the scanning device should penetrate the plate perpendicular to its surfaces.
  • isochromatic light e.g. Red light from an LED
  • the photo-elastic element is illuminated, whereby polarizing elements with crossing polarization axes are used on the input and output sides to set a position in which almost no light is emitted when the element is free of load and the intensity of the emerging light increases with increasing internal voltage a function that can even be linearized with simple control technology.
  • the variation in the intensity of the exiting light can e.g. can be tapped with a photo transistor.
  • An embodiment of the thread detector is structurally simple with a base body which contains a bearing for the transducer devices and the deflectors as well as the thread guides.
  • the deflectors should cross each other without contact.
  • the bearing expediently has an inclined position about the thread axis, so that the load on the thread on the at least one deflector results in an increased adaptation against the deflecting surface of the other deflector and increases the response behavior of the thread detector, so that overall a small deflection angle in the thread detector can be selected ,
  • 1 is a perspective view of a thread detector
  • FIG. 2 three schematic representations of detail variations to the thread detector of Fig. 1, and
  • FIG. 5 shows a further detailed variation in a perspective schematic view.
  • a thread detector F in FIG. 1 is intended for use in thread processing systems, for example for use in the thread path between a weft thread delivery device and a weaving machine.
  • the thread detector F can optionally measure the thread tension and / or monitor the thread running / stop condition of the weft thread.
  • Each function is carried out independently. If necessary, one of the two functions can remain unused without affecting the other function. Of course, both functions can be carried out permanently next to each other.
  • the thread detector F in FIG. 1 has a base body 1, in which a bearing 2 for two transducer arrangements W is mounted in correspondingly shaped receptacles 3.
  • a bridge-like holder 7 supports two thread guides 8, which define the thread path through the thread detector F. 4 with a surface of the holder 7 is designated, which can be assumed as a horizontal reference plane for easier explanation.
  • a transducer element 20 is mounted in a stationary manner, for example a piezoelectric transducer element or a photoelastic transducer element.
  • a first deflector D1 and a second deflector D2 are each projecting on one side, for example in the form of a round rod or round tube 5, for example made of ceramic material.
  • the converter elements 20 are connected to an electronic evaluation circuit 6, from which output signals i1, i2 are supplied.
  • the evaluation circuit 6 can be accommodated in the base body 1.
  • the converter elements 20 are integrated in film chips that already contain at least part of the evaluation circuit.
  • the two deflectors D1, D2 are arranged one behind the other in the thread path without touching one another.
  • Each deflector D1, D2 forms a deflecting surface 9, 10 for the thread Y supported by the thread guides 8.
  • the deflecting surfaces 9, 10 form an angle ⁇ with one another, which is illustrated by the bearing 2, for example an angle of approximately 90 °.
  • the thread Y is deflected between the thread guides 8 on both deflecting surfaces 9, 10.
  • the actual, deflected and solid line shown with the fictitious, stretched and dash-dotted thread path defines a plane E.
  • the second deflector D2 can be oriented vertically to the surface 4 or, as shown, with a crossing angle ⁇ of approximately 90 ° to the first deflector D1 with the bearing 2 in FIG be slanted at the top right.
  • the inclined angle ⁇ can be changed, for example, by an adjusting device 22 in the base body 1 on the bearing 2 as required.
  • Deflector D1 with its transducer element W is useful for measuring the thread tension.
  • Deflector D2 on the other hand, is used to monitor the thread running / stopping conditions.
  • the first and second deflecting surfaces 9, 10 share the total deflection of the thread.
  • the deflection surface 9 can be subjected to a greater force by the thread Y than the deflection surface 10.
  • the first and second deflecting surfaces 9, 10 on both deflectors D1, D2 are offset from the fictitious stretched thread path defined by the thread guides 8, so that the one that is guided in the angular bend between the two deflecting surfaces 9, 10 and on both Deflection surfaces 9, 10 deflected thread from its Load on the deflectors D1, D2 develops a sliding force component K directed at least in the direction of the orientation of the first deflection surface 9 toward the other deflection surface 10, which increases the contact pressure on the other deflection surface 10.
  • a thread section 11 of the thread Y extending to the first deflection surface 9 runs upwards and slightly to the left in FIG. 2, is deflected at the first deflection surface 9, then changes over to the second deflection surface 10.
  • the thread Y is deflected on the second deflection surface 10 and also pressed against it with the component K, and runs with a running section 12 to the other thread guide 8.
  • the second deflection surface 10 is vertically aligned with the elongated thread path defined by the thread guide 8.
  • the first deflection surface 9 is tilted to the right at an inclined angle under relative to the plane E, so that the deflected tapering thread section 11 develops a rightward sliding force component K from the load on the first deflection surface 9, which additionally presses it onto the second deflection surface 10.
  • the two deflectors D1, D2 are arranged with one another at an intersection angle of approximately 90 °.
  • the first deflector D1 is inclined to the right at an inclined angle ⁇ (for example 70 °) with respect to the plane E, so that the tapering thread section 11 on the first deflection surface 9 develops the sliding force component K to the right towards the second deflection surface 10 and the running thread section 12 against presses the second deflection surface 10.
  • the running thread section 12 is also deflected by the oblique position of the second deflector D2 on the latter.
  • a photoelastic transducer element 20 is indicated as the transducer arrangement W of the deflector D1, for example.
  • This has the shape of a thin, elongated plate 13 and consists of photo-elastic material, for example plastic or optical glass, which is largely isotropic, for example, in the stress-free state. With increasing internal tension, this material changes its optical properties, for example in the anisotropic direction, which can be converted into a clear output signal by fluoroscopy, for example with isochromatic light. The intensity of the emerging light changes and can be scanned in order to infer the tension condition and indirectly the thread tension.
  • the plate 13 is clamped stationary at 14 at both ends, for example.
  • the deflector D1 is fastened to the plate 13 and projects freely on one side, so that the load exerted on it by the thread Y in the plate 13 produces pure torsion, i.e. internal torsional stresses.
  • An optoelectronic scanning device T is provided between the fastening of the deflector D1 and a chuck 14, by means of which the change in the optical properties of the plate 13 is sensed with fluoroscopy (or reflection).
  • the optoelectronic scanning device T has an optical axis 21, which penetrates the plate 13 approximately perpendicular to its surfaces 17.
  • On one side of the plate 13 there is a light source 15, e.g. placed a red light LED which e.g. emits at least quasi-isochromatic light.
  • a first polarizing element 16 with a linear polarization axis defined in the direction is placed in front of the surface 17 of the plate 13.
  • a second polarizing element 18 is placed on the opposite surface 17 of the plate 13 in such a way that its linear polarization axis crosses the polarization axis of the first polarizing element 16.
  • a receiver 19, for example a photo transistor, is placed in the light path behind the second polarizing element 18.
  • the relative positions of the polarizing elements 16, 18, possibly also relative to the optical light transmission axis of the plate 13, are set, for example, such that no light emerges when the plate 13 is in a voltage-free state, since the light waves are extinguished, for example because of the birefringence effect of the polarizing elements.
  • the intensity of the emerging light increases according to a mathematical function, for example with the square of the torque applied by the deflector D1, which the receiver 19 registers.
  • an output signal, eg i1 is provided representative of the current thread tension.
  • the two deflectors D1, D2 are formed with deflection surfaces which are straight across the thread axis. The deflection surfaces could also be concave or convex. Furthermore, the two deflectors D1, D2 need not be immediately adjacent.
  • a small intermediate distance could be set, or conversely even a spatial overlap between the two deflectors, for example by means of corresponding cutouts in the deflectors, so that the two deflecting surfaces 9, 10 thereof are moved closer together than shown.
  • the angle included between the two deflection surfaces 9, 10 could also be significantly smaller than 90 ° or larger than 90 °, but not larger than 180 °.
  • a total deflection angle of + 15 ° for the thread is sufficient for most thread qualities in order to measure the thread tension precisely and to be able to monitor the thread running / stopping conditions.
  • Each function can be switched on or off individually. The failure of one function does not affect the other function.

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Looms (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Glass Compositions (AREA)
  • Coating With Molten Metal (AREA)

Abstract

Bei einem Fadendetektor (F) für Fadenlauf-/Stoppkonditionen und/oder die Fadenspannung ist eine Deflektoranordnung zur Fadenumlenkung vorgesehen, die die Fadenbelastung auf wenigstens eine signalerzeugende, auf mechanisch übertragene Belastungen ansprechende Wandlereinrichtung (W) überträgt, wobei wenigstens eine elektronische Auswerteschaltung (6) zum Ableiten von Ausgangssignalen (i1, i2) und stromauf und stromab der Deflektoranordnung den Fadenweg definierende Fadenführer (8) vorgesehen sind, umfasst die Drflektoranordnung einen ersten und einen zweiten im Fadenweg hintereinander liegenden Deflektor (D1, D2), von denen einer die Belastung aus der Fadenspannung und der andere die Belastung aus Lauf/Stoppkonditionen auf jeweils eine Wandlereinrichtung (W) überträgt, weisen die Deflektoren erste und zweite, quer zur Fadenachse orientierte Umlenkflächen (9, 10) auf, die miteinander in Richtung der Fadenachse gesehen einen Winkel < 180° einschliessen, und teilen sich die Umlenkflächen die Fadenumlenkung untereinander auf.

Description

Fadendetektor
Die Erfindung betrifft einen Fadendetektor gemäß Oberbegriff des Patentanspruchs 1.
Ein beispielsweiser Einsatzort eines solchen Fadendetektors ist der Fadenweg zwischen einem Schuss-Fadenliefergerät und dem Webfach einer Webmaschine. Für Steuerungsoperationen verschiedenster Art werden Informationen zur momentanen Fadenspannüng des ruhenden oder laufenden Fadens und zusätzlich Schussfadenwächter-Informationen über Fadenlauf-/Stoppkonditionen benötigt.
Aus DE 43 23 748 A ist es bekannt, beide Funktionen durch einen einzigen Fadendetektor erfüllen zu lassen, bei dem der Faden über einen einzigen Deflektor ein Pie- zoelement beaufschlagt, das signalübertragend mit einer Steuereinheit verbunden ist. Mittels der permanent gemessenen Fadenspannung wird beispielsweise die Bremskraft einer Schussfadenbremse an die Schussfadeneintragsbedingungen angepasst und aus einem starken Abfall der Fadenspannung ein Schussfadenbruch (Schussfadenwächter-Funktion) abgeleitet.
Bei dem aus DE 31 10 462 A bekannten Schussfadendetektor für die Schussfadenwächter-Funktion wird zusätzlich auch die Fadenspannung abgetastet und zwar mittels eines einzigen Deflektors und eines einzigen beispielsweise piezoelektrischen Wandlers. Ein gleichwertiger Schussfadenwächter für beide Funktionen ist auch aus US 4 228 828 A bekannt.
Bei dem aus EP 0 357 975 A bekannten Fadendetektor wird ein einziger, von einem Deflektor beaufschlagter Sensor eines Schussfadenwächters gleichzeitig als Fadenspannungssensor benutzt, um eine Fadenbremse zu steuern.
Weiterer Stand der Technik zur Fadenspannungsmessung ist enthalten in EP 0 605 550 A , EP 0 574 062 A, US 3 300 161 A, WO97/13131.
Klare und aussagefähige Ausgangssignale für die beiden Funktionen (Fadenspannungsmessung und Abtastung von FadenlaufJStoppkonditionen) sind mit einem ein- zigen Deflektor nur mit relativ hohem elektronischen Aufwand zu erhalten, der zu hohen Kosten des Fadendetektors und zu dessen Anfälligkeit auf Störungen beiträgt, denn die Voraussetzungen zum Überwachen der Fadenlauf-/Stoppkonditionen sind verschieden von den Voraussetzungen zum Messen der Fadenspannung.
Der Erfindung liegt die Aufgabe zugrunde, einen Fadendetektor der eingangs genannten Art zu schaffen, der die erforderlichen Informationen auf andere Weise und besser an die jeweiligen Voraussetzungen angepasst ermittelt, mit geringer mechanischer Belastung für den Faden ableitet, kostengünstig und betriebssicher herstellbar ist und einen sehr weiten Einsatzbereich (für verschiedenartige fadenverarbeitende Systeme bzw. Webmaschinen und Liefergeräte und alle in der Praxis eingesetzten Fadenqualitäten) abzudecken vermag.
Die gestellte Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst.
Jeder Deflektor tastet den Faden im Hinblick auf eine spezielle Voraussetzung und für die ihm zugewiesene Aufgabe (Fadenspannungsmessung oder/und Lauf- /Stoppkonditionen) optimal ab. Bereits aus diesem Grund kann jeder Deflektor auch mit einer relativ einfachen, für die jeweilige Funktion maßgeschneiderten Wandlereinrichtung kooperieren. Bei Ausfall einer Funktion bleibt die andere Funktion unbeein- flusst erhalten. Da die beiden Deflektoren die Fadenumlenkung untereinander aufteilen und wie ein einziger formschlüssiger Fadenführer, eine Art zweidimensionaler Fadenführer, wirken, ist die mechanische Belastung für den Faden moderat und reicht eine Gesamtumlenkung aus, die deutlich geringer ist als die Summe der Ablenkungen in zwei vollständig voneinander getrennten Geräten für jeweils eine "Funktion. Durch den Winkel kleiner als 180° zwischen den Umlenkflächen kann jede Umlenkfläche trotz eines kleinen Umlenkwinkels aus der Fadenbelastung eine Kraftkomponente zum verstärkten Anpressen des Fadens an die jeweils andere Umlenkfläche ableiten, was die Ansprechempfindlichkeit verbessert, ohne den Faden über Gebühr zu beanspruchen. Durch die gewählte Geometrie nimmt jeder Deflektor gerade so viel von der Fadenbelastung auf, wie es für die ihm zugewiesene Funktion zweckmäßig ist. Die beiden Deflektoren sind zweckmäßig im Fadenweg unmittelbar und kontaktfrei benachbart, damit die an zumindest einer Umlenkfläche aus der Belastung erzeugte Kraft möglichst unmittelbar an der Umlenkfläche des anderen Deflektors wirksam wird. Außerdem hat die gegenseitige Nähe der Deflektoren den Vorteil, dass diese gemeinsam wie ein einziger zweidimensionaler Fadenführer wirken und den laufenden Faden effektiv stabilisieren, was für die Abtastgenauigkeit günstig ist.
Der Winkel zwischen den Umlenkflächen sollte zumindest im Wesentlichen 90° betragen. Damit wird eine saubere Führung des laufenden Fadens gewährleistet.
Ist zumindest die Umlenkfläche eines Deflektors in Richtung der Orientierung der Umlenkfläche des jeweils anderen Deflektors quer zur Fadenachse gegenüber dem gestreckten Fadenweg versetzt, dann bestimmt das Maß der Versetzung die Umlen- kung des Fadens im Fadendetektor. Vorzugsweise sind die Umlenkflächen beider Deflektoren gegenüber dem gestreckten Fadenweg versetzt, damit der Faden die jeweils zur Abtastung erforderlichen Belastungen auf beide Umlenkflächen ausübt.
Besonders wichtig ist ein Schräglagewinkel zumindest der Umlenkfläche eines Deflektors in Relation zu einer Ebene, die durch den fiktiven geraden Fadenweg und den tatsächlichen Fadenweg definiert ist. Diese Schräglage ist so eingestellt, dass aus der Fadenbelastung an der schräggestellten Umlenkfläche eine Abgleitkraftkomponente zur Umlenkfläche des anderen Deflektors generiert wird. Dadurch wird die Umlenkfläche des anderen Deflektors nicht nur mit der Reaktionskraft aus der Umlenkung des Fadens, die dort gering sein kann, sondern zusätzlich auch durch die Abgleitkraftkomponente beaufschlagt. Mit dieser Anordnung lässt sich insgesamt ein relativ kleiner Gesamtumlenkwinkel für den Faden einstellen, was den Faden schont.
Ein Schräglagewinkel von etwa 70° gegenüber der erwähnten Ebene ist für die eine Umlenkfläche günstig. Bei einer 90°-Kreuzung beider Deflektoren beträgt dann der Schräglagewinkel bezüglich derselben Ebene des anderen Deflektors ca. 20°. Diese Winkel können variiert werden. Zweckmäßigerweise ist der Deflektor, dessen Umlenkfläche den Schräglagewinkel von etwa 70° mit der Ebene bildet, für die Fadenspannungsmessung verantwortlich. Denn die Fadenspannung lässt sich feinfühliger ermitteln, wenn der Faden einen erheblichen Teil der aus der Fadenspannung resultierenden Belastung auf diesen Deflektor ausübt. Zum Überwachen der Fadenlauf- /Stoppkonditionen reicht am anderen Deflektor ein kleinerer Schräglagewinkel aus, weil die für aussagefähige Informationen zu den Lauf/Stoppkonditionen abzutastenden Belastungen dominierend von Reib- und Vibrationsbelastungen abgreifbar sind, für die der Auflagedruck des Fadens geringer oder anders orientiert sein kann als für die Fadenspannungsmessung.
Herstellungstechnisch einfach, funktionssicher und für praktisch alle Fadenqualitäten geeignet sind Deflektoren in Form von Stäben oder Rohren. Gleiche Außendurchmesser sind zweckmäßig, jedoch nicht zwingend erforderlich. Keramisches Material hat den Vorteil hoher Verschleißfestigkeit und einer gewissen Eigendämpfung bei geringem Gewicht.
Die getrennt arbeitenden Deflektoren sind jeweils an einem Wandlerelement angeordnet, das stationär abgestützt ist. Zweckmäßig ist es, die Deflektoren jeweils mit ihrem Fußbereich am Wandlerelement zu befestigen, damit die Belastungen des Fadens mit günstigem Hebelarm und unverfälscht übertragen werden. Besonders zweckmäßig sind piezoelektrische oder fotoelastische Wandlerelemente, weil diese mit moderatem Steuerungsaufwand aussagefähige Nutzsignale liefern. Alternativ könnten auch induktive, triboelektrische oder anderen Wandlerelemente eingesetzt werden, oder auch Dehnungsmesstreifen direkt an den Deflektoren.
Der bauliche Aufwand bleibt gering, wenn jedes piezoelektrische Wandlerelement in einen Filmchip integriert ist, der auch gleich zumindest einen Teil der Auswerteschal- tung enthält.
Ein durchleuchtetes fotoelastisches Wandlerelement ändert seine optischen Eigenschaften in Abhängigkeit von seiner Deformation bzw. seinem inneren Spannungszustand. Die Intensität des austretenden Lichts variiert innerhalb eines weiten Bereiches und liefert aussagefähige Signale, die auf optoelektronischem Weg gut abgreifbar und auswertbar sind. Zweckmäßig ist das fotoelastische Wandlerelement eine Platte aus einem transparenten Kunststoff wie Polycarbonat (oder einem optischen Glas), die zumindest einseitig, vorzugsweise beidendig, eingespannt und vom Deflektor fast ausschließlich auf Torsion beaufschlagt wird. Dieses Material ist im spannungsfreien Zustand weitgehend isotrop und wird unter zunehmender innerer Spannung, z.B. einer Torsionsspannung, anisotrop. Dieser Veränderung wird durch die optoelektronische Abtasteinrichtung gefolgt und als Ausgangssignal beispielsweise repräsentativ für die Fadenspannung abgegeben, und zwar ohne nennenswerten Verstärkungs- oder Konditio- nierungsaufwand. Dabei sollte die optische Achse der Abtasteinrichtung die Platte senkrecht zu ihren Oberflächen durchdringen.
Mit isochromatischem Licht, z.B. Rotlicht aus einer LED, wird das fotoelastische Element durchleuchtet, wobei eingangs- und ausgangsseitig Polarisierelemente mit einander kreuzenden Polarisierungsachsen benutzt werden, um eine Position einzustellen, in der bei belastungsfreiem Element nahezu kein Licht abgegeben wird und mit zunehmender innerer Spannung die Intensität des austretenden Lichtes nach einer Funktion ansteigt, die mit steuerungstechnisch einfachem Aufwand sogar linearisiert werden kann. Die Variation der Intensität des austretenden Lichtes kann z.B. mit einem Fototransistor abgegriffen werden.
Baulich einfach ist eine Ausführungsform des Fadendetektors mit einem Grundkörper, der eine Lagerung für die Wandlereinrichtungen und die Deflektoren sowie die Fadenführer enthält. Die Deflektoren sollten einander berührungsfrei überkreuzen. Die Lagerung hat zweckmäßigerweise um die Fadenachse eine Schräglage, so dass aus der Belastung des Fadens auf dem zumindest einen Deflektor eine verstärkte Anpassung gegen die Umlenkfläche des anderen Deflektors entsteht und das Ansprechverhalten des Fadendetektors steigert, so dass insgesamt ein geringer Umlenkwinkel im Fadendetektor gewählt werden kann.
Zweckmäßig ist die Lagerung sogar verstellbar, um eine Anpassung an die jeweiligen Arbeitsbedingungen bzw. Fadenqualitäten durchführen zu können. Ausführungsformen des Erfindungsgegenstandes werden anhand der Zeichnung erläutert. Es zeigen:
Fig. 1 eine Perspektivansicht eines Fadendetektors,
Fig. 2, 3, 4 drei Schemadarstellungen von Detailvariationen zum Fadendetektor der Fig. 1 , und
Fig. 5 einer weitere Detailvariation in perspektivischer Schemaansicht.
Ein Fadendetektor F in Fig. 1 ist zum Einsatz in fadenverarbeitenden Systemen bestimmt, beispielsweise zum Einsatz im Fadenweg zwischen einem Schuss- Fadenliefergerät und einer Webmaschine. Mit dem Fadendetektor F kann hier wahlweise die Fadenspannung gemessen und/oder die FadenIauf-/Stoppkondition des Schuss-Fadens überwacht werden. Jede Funktion wird für sich unabhängig ausgeführt. Bei Bedarf kann eine der beiden Funktionen ungenutzt bleiben, ohne die andere Funktion zu beeinträchtigen. Selbstverständlich können beide Funktionen permanent nebeneinander durchgeführt werden.
Der Fadendetektor F in Fig. 1 weist einen Grundkörper 1 auf, in dem in entsprechend geformten Aufnahmen 3 eine Lagerung 2 für zwei Wandleranordnungen W montiert ist. Ein brückenartiger Halter 7 lagert zwei Fadenführer 8, die den Fadenweg durch den Fadendetektor F definieren. Mit 4 ist eine Oberfläche des Halters 7 bezeichnet, die zur einfacheren Erläuterung als waagrechte Referenzebene angenommen werden kann.
In jeder Wandleranordnung W ist ein Wandlerelement 20 stationär gelagert, z.B. ein piezoelektrisches Wandlerelement oder ein fotoelastisches Wandlerelement. An den Wandlerelementen 20 sind ein erster Deflektor D1 und ein zweiter Deflektor D2 jeweils einseitig auskragend angeordnet, z.B. in Form eines Rundstabes oder Rundrohres 5, beispielsweise aus keramischem Material. Die Wandlerelemente 20 sind an eine elektronische Auswerteschaltung 6 angeschlossen, von der Ausgangssignale i1, i2 geliefert werden. Die Auswerteschaltung 6 kann im Grundkörper 1 untergebracht sein. Gegebenenfalls sind die Wandlerelemente 20 in Filmchips integriert, die bereits zumindest einen Teil der Auswerteschaltung enthalten. Die beiden Deflektoren D1 , D2 sind im Fadenweg unmittelbar hintereinanderliegend angeordnet, ohne sich gegenseitig zu berühren. Jeder Deflektor D1 , D2 formt eine Umlenkfläche 9, 10 für den durch die Fadenführer 8 abgestützten Faden Y. Die Umlenkflächen 9, 10 schließen miteinander einen Winkel ß ein, der anhand der Lagerung 2 verdeutlicht ist, z.B. einen Winkel von etwa 90°. Der Faden Y wird zwischen den Fadenführern 8 an beiden Umlenkflächen 9, 10 umgelenkt.
Der tatsächliche, umgelenkte und in ausgezogener Linie gezeigte Fadenweg definiert mit dem fiktiven, gestreckten und strichpunktiert angedeuteten Fadenweg eine Ebene E. Zumindest die quer zur Fadenachse orientierte Umlenkfläche 9, ist gegenüber der Ebene E unter einem Schräglagewinkel χ schräggestellt, auch versinnbildlicht durch den Winkel α zwischen der Achse des Deflektors D1 und der Fläche 4. Der zweite Deflektor D2 kann vertikal zur Fläche 4 orientiert sein, oder, wie gezeigt, mit einem Kreuzungswinkel ß von annähernd 90° zum ersten Deflektor D1 auch mit der Lagerung 2 in Fig. 1 nach rechts oben schräggestellt sein. Der Schräglagenwinkel χ kann beispielsweise durch eine Einstellvorrichtung 22 im Grundkörper 1 an der Lagerung 2 nach Bedarf geändert werden.
Der Deflektor D1 mit seinem Wandlerelement W dient zweckmäßig zum Messen der Fadenspannung. Der Deflektor D2 dient hingegen zum Überwachen der Fadenlauf- /Stoppkonditionen. Die ersten und zweiten Umlenkflächen 9, 10 teilen sich die Ge- samtumlenkung des Fadens. Zur Fadenspannungsmessung kann die Umlenkfläche 9 vom Faden Y stärker beaufschlagt werden als die Umlenkfläche 10.
Die Fig. 2 bis 4 verdeutlichen verschiedene Detailvarianten der relativen Positionierung der ersten und zweiten Deflektoren D1 , D2 in Relation zu den Fadenführern 8.
In Fig. 2 sind die ersten und zweiten Umlenkflächen 9, 10 an beiden Deflektoren D1, D2 gegenüber dem durch die Fadenführer 8 definierten, fiktiven gestreckten Fadenweg versetzt, so dass der in der winkeligen Beuge zwischen den beiden Umlenkflächen 9, 10 geführte und an beiden Umlenkflächen 9, 10 umgelenkte Faden aus seiner Belastung an den Deflektoren D1, D2 eine zumindest in Richtung der Orientierung der ersten Umlenkfläche 9 gerichtete Abgleitkraftkomponente K zur anderen Umlenkfläche 10 entwickelt, die den Anpressdruck an der anderen Umlenkfläche 10 erhöht. Ein sich zur ersten Umlenkfläche 9 erstreckender Fadenabschnitt 11 des Fadens Y verläuft in Fig. 2 nach oben und leicht nach links, wird an der ersten Umlenkfläche 9 umgelenkt, wechselt dann auf die zweite Umlenkfläche 10 über. Der Faden Y wird an der zweiten Umlenkfläche 10 umgelenkt und gegen diese auch mit der Komponente K angedrückt, und verläuft mit einem ablaufenden Abschnitt 12 zum anderen Fadenführer 8.
In Fig. 3 ist die zweite Umlenkfläche 10 vertikal fluchtend mit dem durch die Fadenführer 8 definierten gestreckten Fadenweg angeordnet. Die erste Umlenkfläche 9 ist unter dem Schräglagewinkel χ relativ zur Ebene E nach rechts gekippt, so dass der umgelenkte zulaufende Fadenabschnitt 11 aus der Belastung an der ersten Umlenkfläche 9 eine nach rechts gerichtete Abgleitkraftkomponente K entwickelt, die ihn zusätzlich an die zweite Umlenkfläche 10 andrückt.
In Fig. 4 sind die beiden Deflektoren D1 , D2 untereinander mit einem Kreuzungswinkel von etwa 90° angeordnet. Der erste Deflektor D1 ist mit dem Schräglagewinkel χ (beispielsweise 70°) gegenüber der Ebene E nach rechts schräg gestellt, so dass der zulaufende Fadenabschnitt 11 an der ersten Umlenkfläche 9 die Abgleitkraftkomponente K nach rechts zur zweiten Umlenkfläche 10 entwickelt und den ablaufenden Fadenabschnitt 12 gegen die zweite Umlenkfläche 10 drückt. Der ablaufende Fadenabschnitt 12 wird ferner auch durch die schräge Position des zweiten Deflektors D2 an diesem umgelenkt.
In Fig. 5 ist als Wandleranordnung W beispielsweise des Deflektors D1 ein fotoelastisches Wandlerelement 20 angedeutet. Dieses hat die Form einer dünnen, langgestreckten Platte 13 und besteht aus fotoelastischem Material, beispielsweise Kunststoff oder optischem Glas, das in spannungsfreiem Zustand beispielsweise weitgehend isotrop ist. Mit zunehmender innerer Spannung ändert dieses Material seine optischen Eigenschaften z.B. in Richtung anisotrop, was über Durchleuchtung mit beispielsweise isochromatischem Licht in ein deutliches Ausgangssignal wandelbar ist. Die Intensität des austretenden Lichtes verändert sich und lässt sich abtasten, um zunächst auf die Spannungskondition und indirekt damit auf die Fadenspannung zu schließen.
Die Platte 13 wird beispielsweise an beiden Enden bei 14 stationär eingespannt. Der Deflektor D1 ist an der Platte 13 befestigt und kragt einseitig frei aus, so dass die vom Faden Y auf ihn ausgeübte Belastung in der Platte 13 reine Torsion erzeugt, d.h. innere Torsionsspannungen. Zwischen der Befestigung des Deflektors D1 und einer Ein- spannung 14 ist eine optoelektronische Abtasteinrichtung T vorgesehen, mit der die Veränderung der optischen Eigenschaften der Platte 13 mit Durchleuchtung (oder Reflexion) abgegriffen wird. Die optoelektronische Abtasteinrichtung T besitzt eine optische Achse 21, die die Platte 13 in etwa senkrecht zu ihren Oberflächen 17 durchdringt. An einer Seite der Platte 13 ist in der optischen Achse 21 eine Lichtquelle 15, z.B. eine Rotlicht-LED platziert, die z.B. zumindest quasi-isochromatisches Licht aussendet.
Vor der Oberfläche 17 der Platte 13 ist ein erstes Polarisierelement 16 mit einer in der Richtung festgelegten linearen Polarisierungsachse platziert. Bei der gegenüberliegenden Oberfläche 17 der Platte 13 ist ein zweites Polarisierelement 18 so platziert, dass seine lineare Polarisierungsachse die Polarisierungsachse des ersten Polarisierelementes 16 kreuzt. Im Lichtweg hinter dem zweiten Polarisierelement 18 ist ein Empfänger 19 platziert, beispielsweise ein Fototransistor. Die Relativpositionen der Polarisierelemente 16, 18, gegebenenfalls auch relativ zur optischen Lichtdurchgangsachse der Platte 13, sind z.B. so eingestellt, dass in spannungsfreiem Zustand der Platte 13 kein Licht austritt, da sich die Lichtwellen, z.B. wegen des Doppelbrechungseffekts der Polarisierelemente, auslöschen. Mit zunehmender innerer Torsionsspannung in der Platte 13, verursacht durch die Belastung des Fadens Y auf dem Deflektor D1 , wächst die Intensität des austretenden Lichtes nach einer mathematischen Funktion, z.B. mit dem Quadrat des vom Deflektor D1 aufgebrachten Drehmoments, was der Empfänger 19 registriert. Durch Vergleich mit dem ausgesandten Licht, oder auf direktem Weg, wird ein Ausgangssignal, z.B. i1, repräsentativ für die momentane Fadenspannung geliefert. Bei den beschriebenen Ausführungsformen sind die beiden Deflektoren D1 , D2 mit quer zur Fadenachse geraden Umlenkflächen ausgebildet. Die Umlenkflächen könnten auch konkav oder konvex gekrümmt sein. Ferner müssen die beiden Deflektoren D1 , D2 nicht unmittelbar benachbart sein. Es könnte ein geringer Zwischenabstand eingestellt sein, oder umgekehrt sogar eine räumliche Überlappung zwischen beiden Deflektoren, z.B. durch entsprechende Ausschnitte in den Deflektoren, so dass der deren beide Umlenkflächen 9, 10 noch näher aneinander gerückt sind als gezeigt. Ferner könnte der zwischen den beiden Umlenkflächen 9, 10 eingeschlossene Winkel auch deutlich kleiner als 90° oder größer als 90° sein, jedoch nicht größer als 180°. Ein Gesamtumlenkwinkel von + 15° für den Faden reicht für die meisten Fadenqualitäten aus, um die Fadenspannung präzise zu messen und die Fadenlauf- /Stoppkonditionen überwachen zu können. Jede Funktion kann für sich zu- oder abgeschaltet werden. Der Ausfall einer Funktion beeinträchtigt die andere Funktion nicht.

Claims

Patentansprüche
1. Fadendetektor für Fadenlauf-/Stoppkonditionen und/oder die Fadenspannung mit einer Deflektoranordnung zur Fadenumlenkung, wenigstens einer signalerzeugenden, von der Deflektoranordnung mechanisch beaufschlagbaren, auf vom Faden ausgeübte Belastungen ansprechenden Wandlereinrichtung (W), und wenigstens einer elektronischen Auswerteschaltung (6) zum Ableiten von Ausgangssignalen (i1, i2), wobei stromauf und stromab der Deflektoranordnung den Fadenweg definierende, stationäre Fadenführer (8) vorgesehen sind, dadurch gekennzeichnet, dass die Deflektoranordnung im Fadenweg hintereinander einen ersten Deflektor (D1) und einen zweiten Deflektor (D2) aufweist, denen jeweils eine Wandlereinrichtung (W) zugeordnet ist, und dass die ersten und zweiten Deflektoren (D1 , D2) erste und zweite, jeweils quer zur Fadenachse orientierte Umlenkflächen (9, 10) autweisen, die miteinander - in Richtung der Fadenachse gesehen - einen Winkel (ß) < 180° einschließen und die Fadenumlenkung untereinander aufteilen.
2. Fadendetektor nach Anspruch 1 , dadurch gekennzeichnet, dass die ersten und zweiten Deflektoren (D1 , D2) im Fadenweg unmittelbar und kontaktfrei benachbart sind.
3. Fadendetektor nach Anspruch 1, dadurch gekennzeichnet, dass der Winkel (ß) zumindest im Wesentlichen 90° beträgt.
4. Fadendetektor nach Anspruch 1 , dadurch gekennzeichnet, dass die Umlenkflächen (9, 10) jeweils in Richtung der Orientierung der anderen Umlenkfläche quer zur Fadenachse gegenüber einem fiktiven, gestreckten Fadenweg zwischen den Fadenführern (8) versetzt sind.
5. Fadendetektor nach Anspruch 1, dadurch gekennzeichnet, dass der fiktive gestreckte Fadenweg zwischen den Fadenführem (8) und der über die Deflektoren (D1 , D2) umgelenkte tatsächliche Fadenweg miteinander im Wesentlichen eine Ebene (E) definieren, und dass zumindest die Umlenkfläche (9) eines Deflektors (D1) in ihrer Orientierung quer zur Fadenachse relativ zu dieser Ebene (E) mit einem Schräglage- Winkel (χ) derart schräg angeordnet ist, dass die Fadenbelastung an dieser Umlenkfläche (9) eine Abgleitkraftkomponente (K) zur Umlenkfläche (10) des anderen Deflektors (D2) generiert.
6. Fadendetektor nach Anspruch 5, dadurch gekennzeichnet, dass der Schräglagewinkel (χ) des einen Deflektors (D1 ) bei etwa 70° liegt, und, vorzugsweise der andere Deflektor (D2) mit seiner Umlenkfläche (10) einen Schräglagewinkel von ca. 20° mit der Ebene (E) einschließt.
7. Fadendetektor nach Anspruch 1 , dadurch gekennzeichnet, dass beide Deflektoren (D1 , D2) runde, einendig gelagerte Stäbe oder Rohre (5) mit in etwa gleichen Außendurchmessern sind, vorzugsweise aus Keramikmaterial.
8. Fadendetektor nach Anspruch 1 , dadurch gekennzeichnet, dass jeder Deflektor (D1 , D2) an einem stationär angeordneten Wandlerelement (20) seiner Wandlereinrichtung (W) angebracht ist.
9. Fadendetektor nach Anspruch 8, gekennzeichnet durch ein piezoelektrisches o- der fotoelastisches Wandlerelement (20).
10. Fadendetektor nach Anspruch 9, dadurch gekennzeichnet, dass das piezoelektrische Wandlerelement (20) in einen Filmchip integriert ist.
11. Fadendetektor nach Anspruch 9, dadurch gekennzeichnet, dass das fotoelastische Wandlerelement (20) plattenförmig aus einem transparenten Kunststoff wie Po- lycarbonat ausgebildet und zumindest einseitig (14) eingespannt und vom Deflektor (D1) auf Torsion beaufschlagbar ist, und dass für den inneren Spannungszustand des Wandlerelements eine optoelektronische Abtasteinrichtung (T) vorgesehen ist, deren optische Achse (21 )_das Wandlerelement (20) in etwa senkrecht zur Rattenoberfläche (17) durchsetzt.
12. Fadendetektor nach Anspruch 11, dadurch gekennzeichnet, dass die optoelektronische Abtasteinrichtung (T) eine Lichtquelle (15), vorzugsweise für isochromati- sches Licht oder Rotlicht, Polarisierelemente (16, 18) mit einander kreuzenden Polarisierungsachsen beiderseits des Wandlerelements (20), und ein Fotoelement als Empfänger (19) aufweist.
13. Fadendetektor nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einem Grundkörper (1) eine Lagerung (2) mit zueinander unter etwa 90° geneigten Aufnahmen (3) für die zwei Wandlereinrichtungen (W) vorgesehen ist, dass zwei den Fadenweg definierende Fadenführer (8) am Grundkörper (1) angebracht sind, dass sich die beiden Deflektoren (D1, D2) von der Lagerung (2) ausgehend quer durch den Fadenweg erstrecken und einander unter einem Winkel < 180°, vorzugsweise von etwa 90°, kreuzen, und dass die Lagerung (2) um die Fadenachse eine Schräglage relativ zu einer Ebene (E) einnimmt, die definiert ist durch den fiktiven gestreckten Fadenweg zwischen den Fadenführern und dem tatsächlichen umgelenkten Fadenweg über beide Deflektoren (D1, D2).
14. Fadendetektor nach Anspruch 13, dadurch gekennzeichnet, dass eine Einsteilvorrichtung (22) für die Schräglage des Fadendetektors (F), vorzugsweise der Lagerung (2) im Grundkörper (1) vorgesehen ist.
PCT/EP2002/003692 2001-04-10 2002-04-03 Fadendetektor WO2002083539A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02732552A EP1377513B1 (de) 2001-04-10 2002-04-03 Fadendetektor
DE50201115T DE50201115D1 (de) 2001-04-10 2002-04-03 Fadendetektor
US10/474,866 US20040188232A1 (en) 2001-04-10 2002-04-03 Thread detector
AT02732552T ATE276960T1 (de) 2001-04-10 2002-04-03 Fadendetektor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10117879A DE10117879A1 (de) 2001-04-10 2001-04-10 Fadendetektor
DE10117879.4 2001-04-10

Publications (1)

Publication Number Publication Date
WO2002083539A1 true WO2002083539A1 (de) 2002-10-24

Family

ID=7681088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/003692 WO2002083539A1 (de) 2001-04-10 2002-04-03 Fadendetektor

Country Status (6)

Country Link
US (1) US20040188232A1 (de)
EP (1) EP1377513B1 (de)
CN (1) CN1274573C (de)
AT (1) ATE276960T1 (de)
DE (2) DE10117879A1 (de)
WO (1) WO2002083539A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011112012A1 (de) * 2011-08-30 2013-02-28 Oerlikon Textile Gmbh & Co. Kg Fadenzugkraftsensor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10333202A1 (de) * 2003-07-22 2005-03-03 Hottinger Baldwin Messtechnik Gmbh Gehäuse für einen Fadenspannungsaufnehmer
DE102005059028A1 (de) * 2005-12-10 2007-06-14 Saurer Gmbh & Co. Kg Fadenführer
JP2013049932A (ja) * 2011-08-31 2013-03-14 Murata Mach Ltd 紡績機
EP3165490A1 (de) * 2015-11-09 2017-05-10 Eltex of Sweden AB Vorrichtung zur übertragung einer mechanischen kraft in ein elektrisches signal
CN210973376U (zh) * 2019-08-29 2020-07-10 中山市普洛斯智能设备科技有限公司 张力检测装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2015589A (en) * 1978-02-16 1979-09-12 Toray Industries Yarn winding apparatus
DE19537215A1 (de) * 1995-10-06 1997-04-10 Memminger Iro Gmbh Fadenliefergerät für elastische Garne
DE10000232A1 (de) * 1999-01-19 2000-07-20 Barmag Barmer Maschf Meßeinrichtung zur Fadenspannungsmessung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2109605A (en) * 1937-05-19 1938-03-01 Wachsman Michael Stop mechanism for knitting machines
US2744174A (en) * 1953-02-17 1956-05-01 Triplite Ltd Yarn detecting mechanism for textile machine stop motions
US3300161A (en) * 1963-09-21 1967-01-24 Frau Sigrid Heim Control device
US3613065A (en) * 1970-03-03 1971-10-12 Lindly & Co Inc Apparatus utilizing a vibratable member for detecting sustained tension in a running length or strand
US3789631A (en) * 1972-02-08 1974-02-05 Stop Motion Devices Corp Yarn tension control device
US3772487A (en) * 1972-08-04 1973-11-13 N Levin Stop motion apparatus for knitting machines
US3888095A (en) * 1973-03-16 1975-06-10 Morris Philip Stop motion assembly and method
CH622561A5 (de) * 1977-11-01 1981-04-15 Loepfe Ag Geb
CH643614A5 (de) * 1980-04-01 1984-06-15 Loepfe Ag Geb Elektronischer schussfadenwaechter.
US4551591A (en) * 1984-06-18 1985-11-05 Jones Robert E Stop motion switch
IT1227077B (it) * 1988-09-08 1991-03-14 Vamatex Spa Sistema per controllare la tensione della trama alimentata ad un telaio tessile senza navette.
DE4131656A1 (de) * 1991-09-23 1993-03-25 Iro Ab Verfahren und webmaschine
US5476122A (en) * 1993-03-05 1995-12-19 Lindauer Dornier Gesellschaft Mbh Weft thread brake responsive to yarn characteristics in a loom
DE4306911C1 (de) * 1993-03-05 1993-12-23 Dornier Gmbh Lindauer Schußfadenbremse mit steuerbarer Bremswirkung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2015589A (en) * 1978-02-16 1979-09-12 Toray Industries Yarn winding apparatus
DE19537215A1 (de) * 1995-10-06 1997-04-10 Memminger Iro Gmbh Fadenliefergerät für elastische Garne
DE10000232A1 (de) * 1999-01-19 2000-07-20 Barmag Barmer Maschf Meßeinrichtung zur Fadenspannungsmessung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011112012A1 (de) * 2011-08-30 2013-02-28 Oerlikon Textile Gmbh & Co. Kg Fadenzugkraftsensor

Also Published As

Publication number Publication date
DE10117879A1 (de) 2002-10-17
US20040188232A1 (en) 2004-09-30
EP1377513A1 (de) 2004-01-07
DE50201115D1 (de) 2004-10-28
CN1511108A (zh) 2004-07-07
EP1377513B1 (de) 2004-09-22
CN1274573C (zh) 2006-09-13
ATE276960T1 (de) 2004-10-15

Similar Documents

Publication Publication Date Title
DE69527339T2 (de) Sensor und Verfahren zum Messen von Abständen zu einem Medium und/oder dessen physischen Eigenschaften
EP0252952B1 (de) Vorrichtung zum messen der banddicke von faserbändern
DE3441641A1 (de) Fuehler mit optischen fasern zum erfassen von betriebszustaenden und verfahren zu dessen herstellung
DE10123499A1 (de) Vibrations-Kontakterfassungssensor
DE3905881C2 (de) Vorrichtung zum Messen der Kettspannung in einer Webmaschine
CH699070A1 (de) Vorrichtung zur Erfassung von Parametern an einem fadenförmigen Prüfgut.
EP1377513B1 (de) Fadendetektor
EP2565139B1 (de) Fadenzugkraftsensor
DE19716134C2 (de) Fadenspannungssensor
EP1648809B1 (de) Gehäuse für einen fadenspannungsaufnehmer
CH651528A5 (de) Fotoelektrische messeinrichtung fuer elektronische garnreiniger.
DE10117878A1 (de) Fadenspannungsmesser
DE4041142A1 (de) Vorrichtung zur ermittlung der fadenspannung
DE10249278A1 (de) Fadenspannungssensor
WO2000047966A1 (de) Vorrichtung zur bestimmung der biegebeanspruchung von bauteilen
EP0460442A1 (de) Vorrichtung zum Messen der Dicke und/oder der Ungleichmässigkeit von Faserbändern
EP2052369B1 (de) Sensor und vorrichtung zur prüfung von blattgut und verfahren zur sensor-vorjustage
EP1357213A2 (de) Vorrichtung und Verfahren zur Regelung der Fadenspannung eines Fadens bei Textilverarbeitungsmaschinen
DE2708417C2 (de) Vorrichtung zum Messen einer Querdimension eines längsbewegten kontinuierlichen Gutes
DE4445720A1 (de) Verfahren und Vorrichtung zur kontinuierlichen Messung der Masse eines bewegten Faserbandes
DE69118918T2 (de) Faserorientierungssensor
WO1997036031A1 (de) Vorrichtung zum messen der dicke und/oder der ungleichmässigkeit von watten oder vliesen
CH692007A5 (de) Fadenspannungssensor.
DE102013222679A1 (de) Verfahren zum Messen der Gewebespannung in einer Webmaschine
DE4400037C2 (de) Winkelmeßeinrichtung, insbesondere für Fadenzugkraftaufnehmer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002732552

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 028102851

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002732552

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10474866

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2002732552

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP