EP1377513B1 - Fadendetektor - Google Patents

Fadendetektor Download PDF

Info

Publication number
EP1377513B1
EP1377513B1 EP02732552A EP02732552A EP1377513B1 EP 1377513 B1 EP1377513 B1 EP 1377513B1 EP 02732552 A EP02732552 A EP 02732552A EP 02732552 A EP02732552 A EP 02732552A EP 1377513 B1 EP1377513 B1 EP 1377513B1
Authority
EP
European Patent Office
Prior art keywords
thread
deflector
detector
deflectors
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02732552A
Other languages
English (en)
French (fr)
Other versions
EP1377513A1 (de
Inventor
Birger Johansson
Pär JOSEFSSON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iropa AG
Original Assignee
Iropa AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iropa AG filed Critical Iropa AG
Publication of EP1377513A1 publication Critical patent/EP1377513A1/de
Application granted granted Critical
Publication of EP1377513B1 publication Critical patent/EP1377513B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H59/00Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators
    • B65H59/40Applications of tension indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the invention relates to a thread detector according to the preamble of patent claim 1.
  • An example of a place of use of such a thread detector is the thread path between a weft thread delivery device and the shed of a weaving machine.
  • For Control operations of all kinds become information about the current Thread tension of the resting or running thread and additional weft monitor information needed over thread running / stopping conditions.
  • DE-A-100 00 232 relates to a measuring device for thread tension measurement by a thread.
  • the invention has for its object a thread detector of the aforementioned Way of creating the information required in other ways and determined better adapted to the respective conditions, with less mechanical Derives load for the thread, inexpensive and reliable to manufacture and a very wide range of applications (for different types of thread processing Systems or weaving machines and delivery devices and all used in practice Thread qualities) is able to cover.
  • each deflector feels the thread with regard to a special requirement and for the task assigned to him (thread tension measurement and / or running / stopping conditions) optimally. For this reason alone, every deflector can with a relatively simple converter device tailored to the respective function cooperate. If one function fails, the other function remains unaffected receive. Since the two deflectors divide the thread deflection among themselves and like a single positive thread guide, a kind of two-dimensional thread guide, act, the mechanical load on the thread is moderate and sufficient an overall deflection that is significantly less than the sum of the deflections in two completely separate devices for one function each.
  • each deflector takes just as much of that Thread loading as appropriate for the function assigned to it.
  • the two deflectors are expedient in the thread path directly and without contact adjacent, so that generated on at least one deflection surface from the load Force as effective as possible directly on the deflecting surface of the other deflector becomes.
  • the mutual proximity of the deflectors has the advantage that they act together as a single two-dimensional thread guide and the current one Stabilize the thread effectively, which is favorable for the scanning accuracy.
  • the angle between the deflection surfaces should be at least essentially 90 °. This ensures clean guidance of the running thread.
  • the degree of displacement determines the deflection of the thread in the thread detector.
  • the deflecting surfaces are preferably both Deflectors offset from the straight thread path, so that the thread each exerts the necessary loads on both deflection surfaces for scanning.
  • An inclined angle at least of the deflection surface of a deflector is particularly important in relation to a plane that is defined by the fictitious straight thread path and the actual thread path is defined.
  • This inclination is set so that from the Thread loading on the inclined deflection surface is a sliding force component to the deflecting surface of the other deflector is generated. This will make the deflection surface of the other deflector not only with the reaction force from the deflection of the Thread, which can be low there, but also due to the sliding force component applied.
  • This arrangement allows a relatively small overall Set the total deflection angle for the thread, which is gentle on the thread.
  • An inclination angle of about 70 ° with respect to the plane mentioned is for one Deflection surface cheap. With a 90 ° crossing of both deflectors, this is then Oblique angle with respect to the same plane of the other deflector is approximately 20 °. This Angles can be varied.
  • the deflector, its deflecting surface, is expedient forms the inclined angle of approximately 70 ° with the plane for thread tension measurement responsible. Because the thread tension can be more sensitive determine if the thread is a significant part of the resulting from the thread tension Exerts a load on this deflector.
  • the deflectors which operate separately, are each arranged on a transducer element, that is stationary supported. It is useful to use the deflectors with their To attach the foot area to the transducer element, so that the loads on the thread be transmitted with a priced lever arm and unadulterated. Especially Piezoelectric or photo-elastic transducer elements are expedient because these Deliver meaningful useful signals with moderate control effort. alternative could also use inductive, triboelectric or other transducer elements or strain gauges directly on the deflectors.
  • the construction effort remains low if every piezoelectric transducer element in a film chip is integrated, which is also at least part of the evaluation circuit contains.
  • a fluoroscopic photo-elastic transducer element changes its optical properties depending on its deformation or its internal state of tension.
  • the intensity of the emerging light varies within a wide range and delivers meaningful signals that are easy to pick up and optoelectronic are evaluable.
  • the photoelastic transducer element is expediently a plate made of a transparent one Plastic such as polycarbonate (or an optical glass) that is at least one-sided, preferably both ends, clamped and almost exclusively from the deflector Torsion is applied.
  • This material is largely in a stress-free state isotropic and becomes with increasing internal tension, e.g. a torsional stress, anisotropic. This change is due to the optoelectronic scanning device followed and as an output signal, for example, representative of the thread tension delivered, and without any significant reinforcement or conditioning effort.
  • the optical axis of the scanner should be the plate penetrate perpendicular to their surfaces.
  • isochromatic light e.g. Red light from an LED
  • isochromatic light becomes the photo-elastic element X-rayed
  • polarizing elements on the input and output sides with one another crossing polarization axes are used to set a position in which almost no light is emitted when the element is not under load and with increasing internal tension the intensity of the emerging light after a Function increases, which even linearizes with simple control technology can be.
  • the variation in the intensity of the emerging light can e.g. with a Photo transistor can be tapped.
  • An embodiment of the thread detector with a base body is structurally simple, a storage for the converter devices and the deflectors as well as the thread guides contains.
  • the deflectors should cross each other without contact.
  • the Storage advantageously has an inclined position about the thread axis, so that the load on the thread on the at least one deflector increased contact pressure against the deflection surface of the other deflector and the response behavior of the thread detector increases, so that overall a small deflection angle in Thread detector can be selected.
  • the storage is even expediently adjustable in order to adapt to the respective To be able to carry out working conditions or thread qualities.
  • a thread detector F in FIG. 1 is intended for use in thread processing systems, for example for use in the thread path between a weft thread delivery device and a weaving machine. With the thread detector F you can choose here the thread tension measured and / or the thread running / stopping condition of the Weft thread to be monitored. Each function is carried out independently. If necessary, one of the two functions can remain unused without the other Impair function. Of course, both functions can be permanent be carried out side by side.
  • the thread detector F in FIG. 1 has a base body 1, in which in FIG molded receptacles 3 a storage 2 for two transducer assemblies W mounted is.
  • a bridge-like holder 7 supports two thread guides 8 which pass through the thread path define the thread detector F. 4 with a surface of the holder 7 is designated, which are assumed to be a horizontal reference plane for easier explanation can.
  • a transducer element 20 is stationary, e.g. on piezoelectric transducer element or a photoelastic transducer element.
  • a first deflector D1 and a second deflector D2 respectively cantilevered on one side, e.g. in the form of a round bar or tube 5, for example made of ceramic material.
  • the transducer elements 20 are connected to one electronic evaluation circuit 6 connected, from the output signals i1, i2 to be delivered.
  • the evaluation circuit 6 can be accommodated in the base body 1.
  • the transducer elements 20 are integrated in film chips, which at least already contain part of the evaluation circuit.
  • the two deflectors D1, D2 are arranged one behind the other in the thread path, without each other to touch.
  • Each deflector D1, D2 forms a deflecting surface 9, 10 for the supported by the thread guide 8 thread Y.
  • the deflecting surfaces 9, 10 close with each other an angle ⁇ , which is illustrated by the bearing 2, e.g. one Angle of about 90 °.
  • the thread Y is between the thread guides 8 on both deflection surfaces 9, 10 deflected.
  • the second Deflector D2 can be oriented vertically to surface 4 or, as shown, with a Crossing angle ⁇ of approximately 90 ° to the first deflector D1 also with the bearing 2 in Fig. 1 to the top right.
  • the bank angle ⁇ can for example by an adjusting device 22 in the base body 1 on the bearing 2 be changed as needed.
  • the deflector D1 with its transducer element W is useful for measuring the Thread tension.
  • Deflector D2 on the other hand, is used to monitor the faderil / stop conditions.
  • the first and second deflection surfaces 9, 10 share the overall deflection of thread.
  • the deflection surface 9 are more strongly impacted by the thread Y than the deflecting surface 10.
  • the first and second deflecting surfaces 9, 10 on both deflectors D1, D2 compared to the fictitious stretched thread path defined by the thread guide 8 offset, so that in the angular bend between the two deflection surfaces 9, 10 guided and deflected at both deflecting surfaces 9, 10 from its Load on the deflectors D1, D2 at least in the direction of orientation first deflection surface 9 directed sliding force component K to the other deflection surface 10 developed that increases the contact pressure on the other deflecting surface 10.
  • On thread section 11 of the thread Y extending to the first deflection surface 9 2 upwards and slightly to the left, is deflected at the first deflection surface 9, then changes over to the second deflection surface 10.
  • the thread Y is on the deflected the second deflecting surface 10 and against it also with the component K pressed, and runs with a running section 12 to the other thread guide 8th.
  • the second deflection surface 10 is vertically aligned with that through the thread guide 8 defined stretched thread path arranged.
  • the first deflection surface 9 is below the tilt angle ⁇ tilted to the right relative to the plane E, so that the deflected tapering thread section 11 from the load on the first deflection surface 9 developed a rightward sliding force component K, which additionally presses against the second deflection surface 10.
  • the two deflectors D1, D2 are at an intersection angle with one another of about 90 °.
  • the first deflector D1 is with the bank angle ⁇ (for example 70 °) slanted to the right relative to plane E, so that the tapering thread section 11 on the first deflecting surface 9 the sliding force component K developed to the right to the second deflection surface 10 and the expiring Thread section 12 presses against the second deflection surface 10.
  • the running thread section 12 is also due to the oblique position of the second deflector D2 redirected this.
  • the deflector D1 is a photo-elastic one Transducer element 20 indicated.
  • This has the shape of a thin, elongated one Plate 13 and consists of photo-elastic material, such as plastic or optical glass, which, for example, largely in a voltage-free state is isotropic. With increasing internal tension, this material changes its optical Properties e.g. towards anisotropic, what about using fluoroscopy, for example isochromatic light can be converted into a clear output signal.
  • the intensity of the emerging light changes and can be scanned to initially towards the tension condition and thus indirectly towards the thread tension conclude.
  • the plate 13 is clamped stationary at 14 at both ends, for example.
  • the Deflector D1 is attached to the plate 13 and cantilevered freely on one side, so that the Thread Y applied to him in the plate 13 produces pure torsion, i.e. inner Torsional stresses.
  • an optoelectronic scanning device T is provided with which the Change in the optical properties of the plate 13 with fluoroscopy (or reflection) is tapped.
  • the optoelectronic scanning device T has an optical one Axis 21 which penetrates the plate 13 approximately perpendicular to its surfaces 17.
  • a light source 15 in the optical axis 21 e.g. placed a red light LED which e.g. emits at least quasi-isochromatic light
  • a first polarizing element 16 In front of the surface 17 of the plate 13 is a first polarizing element 16 with one in the Placed direction set linear polarization axis.
  • a second polarizing element 18 placed so that its linear polarization axis is the polarization axis of the first polarizing element 16 crosses.
  • a Receiver 19 placed, for example a photo transistor.
  • the intensity of the emerging light grows according to a mathematical Function, e.g. with the square of the torque applied by deflector D1, what the receiver 19 registers.
  • an output signal e.g. i1, representative of the current thread tension supplied.
  • the two deflectors D1, D2 are included straight deflection surfaces formed transversely to the thread axis.
  • the deflection surfaces could also be concave or convex curved.
  • the two deflectors must also be used D1, D2 should not be immediately adjacent. There could be a small gap be set, or vice versa even a spatial overlap between the two Deflectors, e.g. through corresponding cutouts in the deflectors so that the whose two deflection surfaces 9, 10 are moved closer together than shown.
  • the angle included between the two deflecting surfaces 9, 10 could also be used also be significantly smaller than 90 ° or larger than 90 °, but not larger than 180 °.
  • a total deflection angle of ⁇ 15 ° for the thread is sufficient for most thread qualities to precisely measure the thread tension and the thread running / stopping conditions to be able to monitor.
  • Each function can be switched on or off individually become. The failure of one function affects the other function Not.

Description

Die Erfindung betrifft einen Fadendetektor gemäß Oberbegriff des Patentanspruchs 1.
Ein beispielsweiser Einsatzort eines solchen Fadendetektors ist der Fadenweg zwischen einem Schuss-Fadenliefergerät und dem Webfach einer Webmaschine. Für Steuerungsoperationen verschiedenster Art werden Informationen zur momentanen Fadenspannung des ruhenden oder laufenden Fadens und zusätzlich Schussfadenwächter-Informationen über Fadenlauf-/Stoppkonditionen benötigt.
Aus DE 43 23 748 A ist es bekannt, beide Funktionen durch einen einzigen Fadendetektor erfüllen zu lassen, bei dem der Faden über einen einzigen Deflektor ein Piezoelement beaufschlagt, das signalübertragend mit einer Steuereinheit verbunden ist. Mittels der permanent gemessenen Fadenspannung wird beispielsweise die Bremskraft einer Schussfadenbremse an die Schussfadeneintragsbedingungen angepasst und aus einem starken Abfall der Fadenspannung ein Schussfadenbruch (Schussfadenwächter-Funktion) abgeleitet.
Bei dem aus DE 31 10 462 A bekannten Schussfadendetektor für die Schussfadenwächter-Funktion wird zusätzlich auch die Fadenspannung abgetastet und zwar mittels eines einzigen Deflektors und eines einzigen beispielsweise piezoelektrischen Wandlers. Ein gleichwertiger Schussfadenwächter für beide Funktionen ist auch aus US 4 228 828 A bekannt.
Bei dem aus EP 0 357 975 A bekannten Fadendetektor wird ein einziger, von einem Deflektor beaufschlagter Sensor eines Schussfadenwächters gleichzeitig als Fadenspannungssensor benutzt, um eine Fadenbremse zu steuern.
DE-A-100 00 232 betrifft eine Meßeinrichtung zur Fadenspannungsmessung an einem lenfenden Faden.
Weiterer Stand der Technik zur Fadenspannungsmessung ist enthalten in EP 0 605 550 A , EP 0 574 062 A, US 3 300 161 A, W097/13131.
Klare und aussagefähige Ausgangssignale für die beiden Funktionen (Fadenspannungsmessung und Abtastung von Fadenlauf-/Stoppkonditionen) sind mit einem einzigen Deflektor nur mit relativ hohem elektronischen Aufwand zu erhalten, der zu hohen Kosten des Fadendetektors und zu dessen Anfälligkeit auf Störungen beiträgt, denn die Voraussetzungen zum Überwachen der Fadenlauf-/Stoppkonditionen sind verschieden von den Voraussetzungen zum Messen der Fadenspannung.
Der Erfindung liegt die Aufgabe zugrunde, einen Fadendetektor der eingangs genannten Art zu schaffen, der die erforderlichen Informationen auf andere Weise und besser an die jeweiligen Voraussetzungen angepasst ermittelt, mit geringer mechanischer Belastung für den Faden ableitet, kostengünstig und betriebssicher herstellbar ist und einen sehr weiten Einsatzbereich (für verschiedenartige fadenverarbeitende Systeme bzw. Webmaschinen und Liefergeräte und alle in der Praxis eingesetzten Fadenqualitäten) abzudecken vermag.
Die gestellte Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst.
Jeder Deflektor tastet den Faden im Hinblick auf eine spezielle Voraussetzung und für die ihm zugewiesene Aufgabe (Fadenspannungsmessung oder/und Lauf/Stoppkonditionen) optimal ab. Bereits aus diesem Grund kann jeder Deflektor auch mit einer relativ einfachen, für die jeweilige Funktion maßgeschneiderten Wandlereinrichtung kooperieren. Bei Ausfall einer Funktion bleibt die andere Funktion unbeeinflusst erhalten. Da die beiden Deflektoren die Fadenumlenkung untereinander aufteilen und wie ein einziger formschlüssiger Fadenführer, eine Art zweidimensionaler Fadenführer, wirken, ist die mechanische Belastung für den Faden moderat und reicht eine Gesamtumlenkung aus, die deutlich geringer ist als die Summe der Ablenkungen in zwei vollständig voneinander getrennten Geräten für jeweils eine Funktion. Durch den Winkel kleiner als 180° zwischen den Umlenkflächen kann jede Umlenkfläche trotz eines kleinen Umlenkwinkels aus der Fadenbelastung eine Kraftkomponente zum verstärkten Anpressen des Fadens an die jeweils andere Umlenkfläche ableiten, was die Ansprechempfindlichkeit verbessert, ohne den Faden über Gebühr zu beanspruchen. Durch die gewählte Geometrie nimmt jeder Deflektor gerade so viel von der Fadenbelastung auf, wie es für die ihm zugewiesene Funktion zweckmäßig ist.
Die beiden Deflektoren sind zweckmäßig im Fadenweg unmittelbar und kontaktfrei benachbart, damit die an zumindest einer Umlenkfläche aus der Belastung erzeugte Kraft möglichst unmittelbar an der Umlenkfläche des anderen Deflektors wirksam wird. Außerdem hat die gegenseitige Nähe der Deflektoren den Vorteil, dass diese gemeinsam wie ein einziger zweidimensionaler Fadenführer wirken und den laufenden Faden effektiv stabilisieren, was für die Abtastgenauigkeit günstig ist.
Der Winkel zwischen den Umlenkflächen sollte zumindest im Wesentlichen 90° betragen. Damit wird eine saubere Führung des laufenden Fadens gewährleistet.
Ist zumindest die Umlenkfläche eines Deflektors in Richtung der Orientierung der Umlenkfläche des jeweils anderen Deflektors quer zur Fadenachse gegenüber dem gestreckten Fadenweg versetzt, dann bestimmt das Maß der Versetzung die Umlenkung des Fadens im Fadendetektor. Vorzugsweise sind die Umlenkflächen beider Deflektoren gegenüber dem gestreckten Fadenweg versetzt, damit der Faden die jeweils zur Abtastung erforderlichen Belastungen auf beide Umlenkflächen ausübt.
Besonders wichtig ist ein Schräglagewinkel zumindest der Umlenkfläche eines Deflektors in Relation zu einer Ebene, die durch den fiktiven geraden Fadenweg und den tatsächlichen Fadenweg definiert ist. Diese Schräglage ist so eingestellt, dass aus der Fadenbelastung an der schräggestellten Umlenkfläche eine Abgleitkraftkomponente zur Umlenkfläche des anderen Deflektors generiert wird. Dadurch wird die Umlenkfläche des anderen Deflektors nicht nur mit der Reaktionskraft aus der Umlenkung des Fadens, die dort gering sein kann, sondern zusätzlich auch durch die Abgleitkraftkomponente beaufschlagt. Mit dieser Anordnung lässt sich insgesamt ein relativ kleiner Gesamtumlenkwinkel für den Faden einstellen, was den Faden schont.
Ein Schräglagewinkel von etwa 70° gegenüber der erwähnten Ebene ist für die eine Umlenkfläche günstig. Bei einer 90°-Kreuzung beider Deflektoren beträgt dann der Schräglagewinkel bezüglich derselben Ebene des anderen Deflektors ca. 20°. Diese Winkel können variiert werden. Zweckmäßigerweise ist der Deflektor, dessen Umlenkfläche den Schräglagewinkel von etwa 70° mit der Ebene bildet, für die Fadenspannungsmessung verantwortlich. Denn die Fadenspannung lässt sich feinfühliger ermitteln, wenn der Faden einen erheblichen Teil der aus der Fadenspannung resultierenden Belastung auf diesen Deflektor ausübt. Zum Überwachen der Fadenlauf/Stoppkonditionen reicht am anderen Deflektor ein kleinerer Schräglagewinkel aus, weil die für aussagefähige Informationen zu den Lauf/Stoppkonditionen abzutastenden Belastungen dominierend von Reib- und Vibrationsbelastungen abgreifbar sind, für die der Auflagedruck des Fadens geringer oder anders orientiert sein kann als für die Fadenspannungsmessung.
Herstellungstechnisch einfach, funktionssicher und für praktisch alle Fadenqualitäten geeignet sind Deflektoren in Form von Stäben oder Rohren. Gleiche Außendurchmesser sind zweckmäßig, jedoch nicht zwingend erforderlich. Keramisches Material hat den Vorteil hoher Verschleißfestigkeit und einer gewissen Eigendämpfung bei geringem Gewicht.
Die getrennt arbeitenden Deflektoren sind jeweils an einem Wandlerelement angeordnet, das stationär abgestützt ist. Zweckmäßig ist es, die Deflektoren jeweils mit ihrem Fußbereich am Wandlerelement zu befestigen, damit die Belastungen des Fadens mit günstigem Hebelarm und unverfälscht übertragen werden. Besonders zweckmäßig sind piezoelektrische oder fotoelastische Wandlerelemente, weil diese mit moderatem Steuerungsaufwand aussagefähige Nutzsignale liefern. Alternativ könnten auch induktive, triboelektrische oder anderen Wandlerelemente eingesetzt werden, oder auch Dehnungsmesstreifen direkt an den Deflektoren.
Der bauliche Aufwand bleibt gering, wenn jedes piezoelektrische Wandlerelement in einen Filmchip integriert ist, der auch gleich zumindest einen Teil der Auswerteschaltung enthält.
Ein durchleuchtetes fotoelastisches Wandlerelement ändert seine optischen Eigenschaften in Abhängigkeit von seiner Deformation bzw. seinem inneren Spannungszustand. Die Intensität des austretenden Lichts variiert innerhalb eines weiten Bereiches und liefert aussagefähige Signale, die auf optoelektronischem Weg gut abgreifbar und auswertbar sind.
Zweckmäßig ist das fotoelastische Wandlerelement eine Platte aus einem transparenten Kunststoff wie Polycarbonat (oder einem optischen Glas), die zumindest einseitig, vorzugsweise beidendig, eingespannt und vom Deflektor fast ausschließlich auf Torsion beaufschlagt wird. Dieses Material ist im spannungsfreien Zustand weitgehend isotrop und wird unter zunehmender innerer Spannung, z.B. einer Torsionsspannung, anisotrop. Dieser Veränderung wird durch die optoelektronische Abtasteinrichtung gefolgt und als Ausgangssignal beispielsweise repräsentativ für die Fadenspannung abgegeben, und zwar ohne nennenswerten Verstärkungs- oder Konditionierungsaufwand. Dabei sollte die optische Achse der Abtasteinrichtung die Platte senkrecht zu ihren Oberflächen durchdringen.
Mit isochromatischem Licht, z.B. Rotlicht aus einer LED, wird das fotoelastische Element durchleuchtet, wobei eingangs- und ausgangsseitig Polarisierelemente mit einander kreuzenden Polarisierungsachsen benutzt werden, um eine Position einzustellen, in der bei belastungsfreiem Element nahezu kein Licht abgegeben wird und mit zunehmender innerer Spannung die Intensität des austretenden Lichtes nach einer Funktion ansteigt, die mit steuerungstechnisch einfachem Aufwand sogar linearisiert werden kann. Die Variation der Intensität des austretenden Lichtes kann z.B. mit einem Fototransistor abgegriffen werden.
Baulich einfach ist eine Ausführungsform des Fadendetektors mit einem Grundkörper, der eine Lagerung für die Wandlereinrichtungen und die Deflektoren sowie die Fadenführer enthält. Die Deflektoren sollten einander berührungsfrei überkreuzen. Die Lagerung hat zweckmäßigerweise um die Fadenachse eine Schräglage, so dass aus der Belastung des Fadens auf dem zumindest einen Deflektor eine verstärkte Anpressung gegen die Umlenkfläche des anderen Deflektors entsteht und das Ansprechverhalten des Fadendetektors steigert, so dass insgesamt ein geringer Umlenkwinkel im Fadendetektor gewählt werden kann.
Zweckmäßig ist die Lagerung sogar verstellbar, um eine Anpassung an die jeweiligen Arbeitsbedingungen bzw. Fadenqualitäten durchführen zu können.
Ausführungsformen des Erfindungsgegenstandes werden anhand der Zeichnung erläutert. Es zeigen:
Fig. 1
eine Perspektivansicht eines Fadendetektors,
Fig. 2, 3, 4
drei Schemadarstellungen von Detailvariationen zum Fadendetektor der Fig. 1, und
Fig. 5
einer weitere Detailvariation in perspektivischer Schemaansicht.
Ein Fadendetektor F in Fig. 1 ist zum Einsatz in fadenverarbeitenden Systemen bestimmt, beispielsweise zum Einsatz im Fadenweg zwischen einem Schuss-Fadenliefergerät und einer Webmaschine. Mit dem Fadendetektor F kann hier wahlweise die Fadenspannung gemessen und/oder die Fadenlauf-/Stoppkondition des Schuss-Fadens überwacht werden. Jede Funktion wird für sich unabhängig ausgeführt. Bei Bedarf kann eine der beiden Funktionen ungenutzt bleiben, ohne die andere Funktion zu beeinträchtigen. Selbstverständlich können beide Funktionen permanent nebeneinander durchgeführt werden.
Der Fadendetektor F in Fig. 1 weist einen Grundkörper 1 auf, in dem in entsprechend geformten Aufnahmen 3 eine Lagerung 2 für zwei Wandleranordnungen W montiert ist. Ein brückenartiger Halter 7 lagert zwei Fadenführer 8, die den Fadenweg durch den Fadendetektor F definieren. Mit 4 ist eine Oberfläche des Halters 7 bezeichnet, die zur einfacheren Erläuterung als waagrechte Referenzebene angenommen werden kann.
In jeder Wandleranordnung W ist ein Wandlerelement 20 stationär gelagert, z.B. ein piezoelektrisches Wandlerelement oder ein fotoelastisches Wandlerelement. An den Wandlerelementen 20 sind ein erster Deflektor D1 und ein zweiter Deflektor D2 jeweils einseitig auskragend angeordnet, z.B. in Form eines Rundstabes oder Rundrohres 5, beispielsweise aus keramischem Material. Die Wandlerelemente 20 sind an eine elektronische Auswerteschaltung 6 angeschlossen, von der Ausgangssignale i1, i2 geliefert werden. Die Auswerteschaltung 6 kann im Grundkörper 1 untergebracht sein.
Gegebenenfalls sind die Wandlerelemente 20 in Filmchips integriert, die bereits zumindest einen Teil der Auswerteschaltung enthalten. Die beiden Deflektoren D1, D2 sind im Fadenweg unmittelbar hintereinanderliegend angeordnet, ohne sich gegenseitig zu berühren. Jeder Deflektor D1, D2 formt eine Umlenkfläche 9, 10 für den durch die Fadenführer 8 abgestützten Faden Y. Die Umlenkflächen 9, 10 schließen miteinander einen Winkel β ein, der anhand der Lagerung 2 verdeutlicht ist, z.B. einen Winkel von etwa 90°. Der Faden Y wird zwischen den Fadenführem 8 an beiden Umlenkflächen 9, 10 umgelenkt.
Der tatsächliche, umgelenkte und in ausgezogener Linie gezeigte Fadenweg definiert mit dem fiktiven, gestreckten und strichpunktiert angedeuteten Fadenweg eine Ebene E. Zumindest die quer zur Fadenachse orientierte Umlenkfläche 9, ist gegenüber der Ebene E unter einem Schräglagewinkel χ schräggestellt, auch versinnbildlicht durch den Winkel α zwischen der Achse des Deflektors D1 und der Fläche 4. Der zweite Deflektor D2 kann vertikal zur Fläche 4 orientiert sein, oder, wie gezeigt, mit einem Kreuzungswinkel β von annähernd 90° zum ersten Deflektor D1 auch mit der Lagerung 2 in Fig. 1 nach rechts oben schräggestellt sein. Der Schräglagenwinkel χ kann beispielsweise durch eine Einstellvorrichtung 22 im Grundkörper 1 an der Lagerung 2 nach Bedarf geändert werden.
Der Deflektor D1 mit seinem Wandlerelement W dient zweckmäßig zum Messen der Fadenspannung. Der Deflektor D2 dient hingegen zum Überwachen der Faderilauf/Stoppkonditionen. Die ersten und zweiten Umlenkflächen 9, 10 teilen sich die Gesamtumlenkung des Fadens. Zur Fadenspannungsmessung kann die Umlenkfläche 9 vom Faden Y stärker beaufschlagt werden als die Umlenkfläche 10.
Die Fig. 2 bis 4 verdeutlichen verschiedene Detailvarianten der relativen Positionierung der ersten und zweiten Deflektoren D1, D2 in Relation zu den Fadenführem 8.
In Fig. 2 sind die ersten und zweiten Umlenkflächen 9, 10 an beiden Deflektoren D1, D2 gegenüber dem durch die Fadenführer 8 definierten, fiktiven gestreckten Fadenweg versetzt, so dass der in der winkeligen Beuge zwischen den beiden Umlenkflächen 9, 10 geführte und an beiden Umlenkflächen 9, 10 umgelenkte Faden aus seiner Belastung an den Deflektoren D1, D2 eine zumindest in Richtung der Orientierung der ersten Umlenkfläche 9 gerichtete Abgleitkraftkomponente K zur anderen Umlenkfläche 10 entwickelt, die den Anpressdruck an der anderen Umlenkfläche 10 erhöht. Ein sich zur ersten Umlenkfläche 9 erstreckender Fadenabschnitt 11 des Fadens Y verläuft in Fig. 2 nach oben und leicht nach links, wird an der ersten Umlenkfläche 9 umgelenkt, wechselt dann auf die zweite Umlenkfläche 10 über. Der Faden Y wird an der zweiten Umlenkfläche 10 umgelenkt und gegen diese auch mit der Komponente K angedrückt, und verläuft mit einem ablaufenden Abschnitt 12 zum anderen Fadenführer 8.
In Fig. 3 ist die zweite Umlenkfläche 10 vertikal fluchtend mit dem durch die Fadenführer 8 definierten gestreckten Fadenweg angeordnet. Die erste Umlenkfläche 9 ist unter dem Schräglagewinkel χ relativ zur Ebene E nach rechts gekippt, so dass der umgelenkte zulaufende Fadenabschnitt 11 aus der Belastung an der ersten Umlenkfläche 9 eine nach rechts gerichtete Abgleitkraftkomponente K entwickelt, die ihn zusätzlich an die zweite Umlenkfläche 10 andrückt.
In Fig. 4 sind die beiden Deflektoren D1, D2 untereinander mit einem Kreuzungswinkel von etwa 90° angeordnet. Der erste Deflektor D1 ist mit dem Schräglagewinkel χ (beispielsweise 70°) gegenüber der Ebene E nach rechts schräg gestellt, so dass der zulaufende Fadenabschnitt 11 an der ersten Umlenkfläche 9 die Abgleitkraftkomponente K nach rechts zur zweiten Umlenkfläche 10 entwickelt und den ablaufenden Fadenabschnitt 12 gegen die zweite Umlenkfläche 10 drückt. Der ablaufende Fadenabschnitt 12 wird femer auch durch die schräge Position des zweiten Deflektors D2 an diesem umgelenkt.
In Fig. 5 ist als Wandleranordnung W beispielsweise des Deflektors D1 ein fotoelastisches Wandlerelement 20 angedeutet. Dieses hat die Form einer dünnen, langgestreckten Platte 13 und besteht aus fotoelastischem Material, beispielsweise Kunststoff oder optischem Glas, das in spannungsfreiem Zustand beispielsweise weitgehend isotrop ist. Mit zunehmender innerer Spannung ändert dieses Material seine optischen Eigenschaften z.B. in Richtung anisotrop, was über Durchleuchtung mit beispielsweise isochromatischem Licht in ein deutliches Ausgangssignal wandelbar ist.
Die Intensität des austretenden Lichtes verändert sich und lässt sich abtasten, um zunächst auf die Spannungskondition und indirekt damit auf die Fadenspannung zu schließen.
Die Platte 13 wird beispielsweise an beiden Enden bei 14 stationär eingespannt. Der Deflektor D1 ist an der Platte 13 befestigt und kragt einseitig frei aus, so dass die vom Faden Y auf ihn ausgeübte Belastung in der Platte 13 reine Torsion erzeugt, d.h. innere Torsionsspannungen. Zwischen der Befestigung des Deflektors D1 und einer Einspannung 14 ist eine optoelektronische Abtasteinrichtung T vorgesehen, mit der die Veränderung der optischen Eigenschaften der Platte 13 mit Durchleuchtung (oder Reflexion) abgegriffen wird. Die optoelektronische Abtasteinrichtung T besitzt eine optische Achse 21, die die Platte 13 in etwa senkrecht zu ihren Oberflächen 17 durchdringt. An einer Seite der Platte 13 ist in der optischen Achse 21 eine Lichtquelle 15, z.B. eine Rotlicht-LED platziert, die z.B. zumindest quasi-isochromatisches Licht aussendet
Vor der Oberfläche 17 der Platte 13 ist ein erstes Polarisierelement 16 mit einer in der Richtung festgelegten linearen Polarisierungsachse platziert. Bei der gegenüberliegenden Oberfläche 17 der Platte 13 ist ein zweites Polarisierelement 18 so platziert, dass seine lineare Polarisierungsachse die Polarisierungsachse des ersten Polarisierelementes 16 kreuzt. Im Lichtweg hinter dem zweiten Polarisierelement 18 ist ein Empfänger 19 platziert, beispielsweise ein Fototransistor. Die Relativpositionen der Polarisierelemente 16, 18, gegebenenfalls auch relativ zur optischen Lichtdurchgangsachse der Platte 13, sind z.B. so eingestellt, dass in spannungsfreiem Zustand der Platte 13 kein Licht austritt, da sich die Lichtwellen, z.B. wegen des Doppelbrechungseffekts der Polarisierelemente, auslöschen. Mit zunehmender innerer Torsionsspannung in der Platte 13, verursacht durch die Belastung des Fadens Y auf dem Deflektor D1, wächst die Intensität des austretenden Lichtes nach einer mathematischen Funktion, z.B. mit dem Quadrat des vom Deflektor D1 aufgebrachten Drehmoments, was der Empfänger 19 registriert. Durch Vergleich mit dem ausgesandten Licht, oder auf direktem Weg, wird ein Ausgangssignal, z.B. i1, repräsentativ für die momentane Fadenspannung geliefert.
Bei den beschriebenen Ausführungsformen sind die beiden Deflektoren D1, D2 mit quer zur Fadenachse geraden Umlenkflächen ausgebildet. Die Umlenkflächen könnten auch konkav oder konvex gekrümmt sein. Femer müssen die beiden Deflektoren D1, D2 nicht unmittelbar benachbart sein. Es könnte ein geringer Zwischenabstand eingestellt sein, oder umgekehrt sogar eine räumliche Überlappung zwischen beiden Deflektoren, z.B. durch entsprechende Ausschnitte in den Deflektoren, so dass der deren beide Umlenkflächen 9, 10 noch näher aneinander gerückt sind als gezeigt. Femer könnte der zwischen den beiden Umlenkflächen 9, 10 eingeschlossene Winkel auch deutlich kleiner als 90° oder größer als 90° sein, jedoch nicht größer als 180°. Ein Gesamtumlenkwinkel von ± 15° für den Faden reicht für die meisten Fadenqualitäten aus, um die Fadenspannung präzise zu messen und die Fadenlauf/Stoppkonditionen überwachen zu können. Jede Funktion kann für sich zu- oder abgeschaltet werden. Der Ausfall einer Funktion beeinträchtigt die andere Funktion nicht.

Claims (14)

  1. Fadendetektor für Fadenlauf-/Stoppkonditionen und/oder die Fadenspannung mit einer Deflektoranordnung zur Fadenumlenkung, wenigstens einer signalerzeugenden, von der Deflektoranordnung mechanisch beaufschlagbaren, auf vom Faden ausgeübte Belastungen ansprechenden Wandlereinrichtung (W), und wenigstens einer elektronischen Auswerteschaltung (6) zum Ableiten von Ausgangssignalen (i1, i2), wobei stromauf und stromab der Deflektoranordnung den Fadenweg definierende, stationäre Fadenführer (8) vorgesehen sind, dadurch gekennzeichnet, dass die Deflektoranordnung im Fadenweg hintereinander einen ersten Deflektor (D1) und einen zweiten Deflektor (D2) aufweist, denen jeweils eine Wandlereinrichtung (W) zugeordnet ist, und dass die ersten und zweiten Deflektoren (D1, D2) erste und zweite, jeweils quer zur Fadenachse orientierte Umlenkflächen (9, 10) aufweisen, die miteinander - in Richtung der Fadenachse gesehen - einen Winkel (β) < 180° einschließen und die Fadenumlenkung untereinander aufteilen.
  2. Fadendetektor nach Anspruch 1, dadurch gekennzeichnet, dass die ersten und zweiten Deflektoren (D1, D2) im Fadenweg unmittelbar und kontaktfrei benachbart sind.
  3. Fadendetektor nach Anspruch 1, dadurch gekennzeichnet, dass der Winkel (β) zumindest im Wesentlichen 90° beträgt.
  4. Fadendetektor nach Anspruch 1, dadurch gekennzeichnet, dass die Umlenkflächen (9, 10) jeweils in Richtung der Orientierung der anderen Umlenkfläche quer zur Fadenachse gegenüber einem fiktiven, gestreckten Fadenweg zwischen den Fadenführern (8) versetzt sind.
  5. Fadendetektor nach Anspruch 1, dadurch gekennzeichnet, dass der fiktive gestreckte Fadenweg zwischen den Fadenführem (8) und der über die Deflektoren (D1, D2) umgelenkte tatsächliche Fadenweg miteinander im Wesentlichen eine Ebene (E) definieren, und dass zumindest die Umlenkfläche (9) eines Deflektors (D1) in ihrer Orientierung quer zur Fadenachse relativ zu dieser Ebene (E) mit einem Schräglagewinkel (χ) derart schräg angeordnet ist, dass die Fadenbelastung an dieser Umlenkfläche (9) eine Abgleitkraftkomponente (K) zur Umlenkfläche (10) des anderen Deflektors (D2) generiert.
  6. Fadendetektor nach Anspruch 5, dadurch gekennzeichnet, dass der Schräglagewinkel (χ) des einen Deflektors (D1) bei etwa 70° liegt, und, vorzugsweise der andere Deflektor (D2) mit seiner Umlenkfläche (10) einen Schräglagewinkel von ca. 20° mit der Ebene (E) einschließt.
  7. Fadendetektor nach Anspruch 1, dadurch gekennzeichnet, dass beide Deflektoren (D1, D2) runde, einendig gelagerte Stäbe oder Rohre (5) mit in etwa gleichen Außendurchmessern sind, vorzugsweise aus Keramikmaterial.
  8. Fadendetektor nach Anspruch 1, dadurch gekennzeichnet, dass jeder Deflektor (D1, D2) an einem stationär angeordneten Wandlerelement (20) seiner Wandlereinrichtung (W) angebracht ist.
  9. Fadendetektor nach Anspruch 8, gekennzeichnet durch ein piezoelektrisches oder fotoelastisches Wandlerelement (20).
  10. Fadendetektor nach Anspruch 9, dadurch gekennzeichnet, dass das piezoelektrische Wandlerelement (20) in einen Filmchip integriert ist.
  11. Fadendetektor nach Anspruch 9, dadurch gekennzeichnet, dass das fotoelastische Wandlerelement (20) plattenförmig aus einem transparenten Kunststoff wie Polycarbonat ausgebildet und zumindest einseitig (14) eingespannt und vom Deflektor (D1) auf Torsion beaufschlagbar ist, und dass für den inneren Spannungszustand des Wandlerelements eine optoelektronische Abtasteinrichtung (T) vorgesehen ist, deren optische Achse (21) das Wandlerelement (20) in etwa senkrecht zur Plattenoberfläche (17) durchsetzt.
  12. Fadendetektor nach Anspruch 11, dadurch gekennzeichnet, dass die optoelektronische Abtasteinrichtung (T) eine Lichtquelle (15), vorzugsweise für isochromatisches Licht oder Rotlicht, Polarisierelemente (16, 18) mit einander kreuzenden Polarisierungsachsen beiderseits des Wandlerelements (20), und ein Fotoelement als Empfänger (19) aufweist.
  13. Fadendetektor nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einem Grundkörper (1) eine Lagerung (2) mit zueinander unter etwa 90° geneigten Aufnahmen (3) für die zwei Wandlereinrichtungen (W) vorgesehen ist, dass zwei den Fadenweg definierende Fadenführer (8) am Grundkörper (1) angebracht sind, dass sich die beiden Deflektoren (D1, D2) von der Lagerung (2) ausgehend quer durch den Fadenweg erstrecken und einander unter einem Winkel < 180°, vorzugsweise von etwa 90°, kreuzen, und dass die Lagerung (2) um die Fadenachse eine Schräglage relativ zu einer Ebene (E) einnimmt, die definiert ist durch den fiktiven gestreckten Fadenweg zwischen den Fadenführern und dem tatsächlichen umgelenkten Fadenweg über beide Deflektoren (D1, D2).
  14. Fadendetektor nach Anspruch 13, dadurch gekennzeichnet, dass eine Einstellvorrichtung (22) für die Schräglage des Fadendetektors (F), vorzugsweise der Lagerung (2) im Grundkörper (1) vorgesehen ist.
EP02732552A 2001-04-10 2002-04-03 Fadendetektor Expired - Lifetime EP1377513B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10117879 2001-04-10
DE10117879A DE10117879A1 (de) 2001-04-10 2001-04-10 Fadendetektor
PCT/EP2002/003692 WO2002083539A1 (de) 2001-04-10 2002-04-03 Fadendetektor

Publications (2)

Publication Number Publication Date
EP1377513A1 EP1377513A1 (de) 2004-01-07
EP1377513B1 true EP1377513B1 (de) 2004-09-22

Family

ID=7681088

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02732552A Expired - Lifetime EP1377513B1 (de) 2001-04-10 2002-04-03 Fadendetektor

Country Status (6)

Country Link
US (1) US20040188232A1 (de)
EP (1) EP1377513B1 (de)
CN (1) CN1274573C (de)
AT (1) ATE276960T1 (de)
DE (2) DE10117879A1 (de)
WO (1) WO2002083539A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10333202A1 (de) * 2003-07-22 2005-03-03 Hottinger Baldwin Messtechnik Gmbh Gehäuse für einen Fadenspannungsaufnehmer
DE102005059028A1 (de) * 2005-12-10 2007-06-14 Saurer Gmbh & Co. Kg Fadenführer
DE102011112012A1 (de) * 2011-08-30 2013-02-28 Oerlikon Textile Gmbh & Co. Kg Fadenzugkraftsensor
JP2013049932A (ja) * 2011-08-31 2013-03-14 Murata Mach Ltd 紡績機
EP3165490A1 (de) * 2015-11-09 2017-05-10 Eltex of Sweden AB Vorrichtung zur übertragung einer mechanischen kraft in ein elektrisches signal
CN210973376U (zh) * 2019-08-29 2020-07-10 中山市普洛斯智能设备科技有限公司 张力检测装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2109605A (en) * 1937-05-19 1938-03-01 Wachsman Michael Stop mechanism for knitting machines
US2744174A (en) * 1953-02-17 1956-05-01 Triplite Ltd Yarn detecting mechanism for textile machine stop motions
US3300161A (en) * 1963-09-21 1967-01-24 Frau Sigrid Heim Control device
US3613065A (en) * 1970-03-03 1971-10-12 Lindly & Co Inc Apparatus utilizing a vibratable member for detecting sustained tension in a running length or strand
US3789631A (en) * 1972-02-08 1974-02-05 Stop Motion Devices Corp Yarn tension control device
US3772487A (en) * 1972-08-04 1973-11-13 N Levin Stop motion apparatus for knitting machines
US3888095A (en) * 1973-03-16 1975-06-10 Morris Philip Stop motion assembly and method
CH622561A5 (de) * 1977-11-01 1981-04-15 Loepfe Ag Geb
JPS6023065B2 (ja) * 1978-02-16 1985-06-05 東レ株式会社 糸条巻取装置
CH643614A5 (de) * 1980-04-01 1984-06-15 Loepfe Ag Geb Elektronischer schussfadenwaechter.
US4551591A (en) * 1984-06-18 1985-11-05 Jones Robert E Stop motion switch
IT1227077B (it) * 1988-09-08 1991-03-14 Vamatex Spa Sistema per controllare la tensione della trama alimentata ad un telaio tessile senza navette.
DE4131656A1 (de) * 1991-09-23 1993-03-25 Iro Ab Verfahren und webmaschine
DE4306911C1 (de) * 1993-03-05 1993-12-23 Dornier Gmbh Lindauer Schußfadenbremse mit steuerbarer Bremswirkung
US5476122A (en) * 1993-03-05 1995-12-19 Lindauer Dornier Gesellschaft Mbh Weft thread brake responsive to yarn characteristics in a loom
DE19537215C2 (de) * 1995-10-06 1999-09-02 Memminger Iro Gmbh Fadenliefergerät für elastische Garne
DE10000232A1 (de) * 1999-01-19 2000-07-20 Barmag Barmer Maschf Meßeinrichtung zur Fadenspannungsmessung

Also Published As

Publication number Publication date
CN1511108A (zh) 2004-07-07
US20040188232A1 (en) 2004-09-30
ATE276960T1 (de) 2004-10-15
DE10117879A1 (de) 2002-10-17
DE50201115D1 (de) 2004-10-28
EP1377513A1 (de) 2004-01-07
CN1274573C (zh) 2006-09-13
WO2002083539A1 (de) 2002-10-24

Similar Documents

Publication Publication Date Title
DE4332807C2 (de) Opto-elektrischer Sensor
CH661985A5 (de) Verfahren zur kraftmessung mit hilfe der spannungsinduzierten doppelbrechung in einem monomode-lichtleiter und messanordnung zur durchfuehrung des verfahrens.
WO2005090904A1 (de) Vorrichtung zum messen von änderungen der lage einer körperkante
DE3441641A1 (de) Fuehler mit optischen fasern zum erfassen von betriebszustaenden und verfahren zu dessen herstellung
EP1377513B1 (de) Fadendetektor
DE10123499A1 (de) Vibrations-Kontakterfassungssensor
EP2565139A2 (de) Fadenzugkraftsensor
DE19716134C2 (de) Fadenspannungssensor
DE4300633A1 (en) Synthetic multifilament yarn prodn. - in which yarn tension measurement is based on the movement of a flat spring in line with the yarn
EP0169444A2 (de) Rauheitssonde
CH651528A5 (de) Fotoelektrische messeinrichtung fuer elektronische garnreiniger.
DE10117878A1 (de) Fadenspannungsmesser
WO2000047966A1 (de) Vorrichtung zur bestimmung der biegebeanspruchung von bauteilen
DE4037065A1 (de) Kraftmessvorrichtung zur messung der zugspannung von faeden
EP0432511B1 (de) Optoelektronische Einrichtung
EP2052369B1 (de) Sensor und vorrichtung zur prüfung von blattgut und verfahren zur sensor-vorjustage
EP1648809A1 (de) Gehäuse für einen fadenspannungsaufnehmer
DE4041142A1 (de) Vorrichtung zur ermittlung der fadenspannung
DE10218059A1 (de) Vorrichtung und Verfahren zur Regelung der Fadenspannung eines Fadens bei Textilverarbeitungsmaschinen
DE3822512C2 (de)
CH692007A5 (de) Fadenspannungssensor.
DE4400037C2 (de) Winkelmeßeinrichtung, insbesondere für Fadenzugkraftaufnehmer
EP1604180A1 (de) Tensiometer
EP1312708B1 (de) Messvorrichtung zur Messung der Gewebespannung in einer Webmaschine und Webmaschine mit einer derartigen Messvorrichtung
DE102013222679A1 (de) Verfahren zum Messen der Gewebespannung in einer Webmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031007

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040922

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040922

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040922

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040922

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JOSEFSSON, PAER

Inventor name: JOHANSSON, BIRGER

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50201115

Country of ref document: DE

Date of ref document: 20041028

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050102

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050403

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050403

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050403

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20040922

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050623

EN Fr: translation not filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20060403

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20061101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080428

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080422

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040922

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110620

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50201115

Country of ref document: DE

Effective date: 20121101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20190418

Year of fee payment: 18

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210430

Year of fee payment: 20