WO2002082864A1 - Electroluminescent element having lead bromide based layered perovskite compound as luminescent layer - Google Patents

Electroluminescent element having lead bromide based layered perovskite compound as luminescent layer Download PDF

Info

Publication number
WO2002082864A1
WO2002082864A1 PCT/JP2001/011016 JP0111016W WO02082864A1 WO 2002082864 A1 WO2002082864 A1 WO 2002082864A1 JP 0111016 W JP0111016 W JP 0111016W WO 02082864 A1 WO02082864 A1 WO 02082864A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
lead bromide
electroluminescent device
layered perovskite
Prior art date
Application number
PCT/JP2001/011016
Other languages
French (fr)
Japanese (ja)
Inventor
Masanao Era
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Publication of WO2002082864A1 publication Critical patent/WO2002082864A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds

Definitions

  • Electroluminescent device using lead bromide-based layered perovskite compound as light emitting layer
  • the present invention belongs to the technical field of light-emitting devices, and particularly relates to a novel electroluminescent device using a lead bromide-based layered perovskite compound as a light-emitting layer.
  • An electroluminescent element is an element utilizing a phenomenon in which a substance emits light when an electric field is applied.
  • materials for electroluminescent devices those using inorganic semiconductors such as gallium arsenide and those using luminescent organic molecules have been known.
  • a halide-based layered perovskite is expected to be applied to a light-emitting device because of its small exciton emission with a small emission wavelength width in the visible region.
  • the present inventors have previously reported a lead iodide-based layered perovskite as an electroluminescent device using a halide-based layered perovskite, but the emission color is limited to green (M. Era, S. Morimoto, T. Tsutsui, and S. Saito, Appl. Phys. Lett., 65, 676-678 (1994)) 0
  • the present inventors have proposed an electroluminescent device including a lead bromide-based layered perovskite compound as an electroluminescent device using a halide-based layered perovskite.
  • Lead bromide-based layered base Robusukai DOO compound is represented by the general formula A 2 P b B r 4 when the A and organic Anmoniumu molecules, organic Anmoniumu molecules A layer and lead bromide P b B r 4 layers and are alternately It is known to form a superlattice structure stacked on the surface (David B. itzi, "Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials," Progress in Organic Chemistry, Vol. 48, Edited by Kenneth D.
  • FIG. 2 shows a diagram of an absorption spectrum and a light emission spectrum of a kite. It can be seen that the peak wavelength of the exciton emission changes from 400 nm to 450 nm depending on the alkyl chain length of the alkyl ammonium molecule, showing a violet to blue emission color.
  • the lead bromide-based layered perovskite provides a new type of electroluminescent device having a wide range of light emission from purple to blue, but requires a relatively large driving voltage to obtain a predetermined current.
  • the efficiency is not good in that the emission intensity obtained by a predetermined current value is low.
  • An object of the present invention is to provide an electroluminescent device which emits a violet to blue light and can be driven at a low voltage with high efficiency, using a lead bromide-based layered perovskite as a light emitting layer.
  • the present inventors succeeded in producing a multilayer structure in which a light-emitting layer composed of a lead bromide-based layered perovskite compound was combined with an organic molecule having a carrier-transporting property. Good electroluminescence was enabled.
  • organic Anmoniumu molecules ⁇ layer and lead bromide P b B r 4 layers are alternately stacked ultra
  • the lead bromide-based layered buskite compound having a lattice structure is used as the light-emitting layer, and a two-layer carrier transport layer composed of an organic molecule layer having a hole transport property and an organic molecule layer having an electron transport property is provided.
  • an electroluminescent device having a three-layered laminated structure sandwiching a light emitting layer of the lead bromide-based layered perovskite compound.
  • the organic ammonium molecule of A is generally represented by the formula R_ (CH 2 ) n —NH 3 , wherein n represents 0 or an integer of 1 to 6.
  • R represents an alkyl group having 1 to 6 carbon atoms, a phenyl group, or a 5- to 7-membered cycloalkyl group or a cycloalkenyl group.
  • a phthalocyanine, a diamine derivative, a fluorene derivative, or a polythiophene derivative is used as the hole-transporting organic molecule, and the oxadiazole derivative is used as the electron-transporting organic molecule.
  • Triazole derivatives, A perylene derivative or a quinolinol metal complex is used.
  • FIG. 1 shows a three-layer laminated light emitting device of the present invention in which a lead bromide layered perovskite light emitting layer is sandwiched between an organic molecular layer having a hole transporting property and an organic molecular layer having an electron transporting property. It is a schematic diagram.
  • FIG. 2 is a schematic diagram of a three-layer element and a two-layer element manufactured in the examples.
  • FIG. 3 is an electroluminescence spectrum of the three-layer device manufactured in the example.
  • FIG. 4 is a diagram comparing current-voltage characteristics of the three-layer element and the two-layer element manufactured in the example.
  • FIG. 5 is a diagram comparing the current / electroluminescence intensity characteristics of the three-layer element and the two-layer element produced in the example.
  • FIG. 6 shows a light emission spectrum and an absorption spectrum of a lead bromide-based layered graphite sheet having an alkylammonium molecule as an organic layer.
  • the solid line shows the emission spectrum
  • the dotted line shows the absorption spectrum.
  • the formula shown above is the chemical formula of the layered perovskite, and the value of n in the formula indicates the number of carbon atoms in the alkyl chain of the alkylammonium molecule.
  • the two carrier transporting layers composed of an organic molecular layer having a hole transporting property and an organic molecular layer having an electron transporting property are composed of a lead bromide-based layered perovskite compound. It has a three-layer laminate structure sandwiching layers.
  • FIG. 1 shows a cross section of a typical example of an electroluminescent device according to the present invention, in which the above-described three-layer structure is arranged between electrodes (anode and cathode).
  • the thickness of the lead bromide-based layered bellows light emitting layer is about 10 to 50 nm, and the thicknesses of the hole transporting organic molecular layer and the electron transporting layer are both: Preferably, it is about 50 to 100 nm.
  • Each layer constituting the electroluminescent device can be manufactured by a conventionally known thin film forming method.
  • the carrier transport layer and the electrode layer are generally manufactured by a vacuum evaporation method.
  • the lead bromide-based layered perovskite light-emitting layer is preferably produced by a spin coating method.
  • lead bromide-based layered Bae Robusukai bets crystal sample or an organic Anmoniumu hydrobromide and lead bromide (P b B r 4), dimethylformamide (DMF) or dimethyl sulfoxide (DMSO)
  • DMF dimethylformamide
  • DMSO dimethyl sulfoxide
  • organic Anmoniumu molecules consist chemical structure or et ammonia is bound to organic molecules, various compounds capable of forming a lamellar base Robusukai preparative coordinated to lead bromide (P b B r 4) are available .
  • Preferred organic ammonium molecules can be represented by the general formula R— (CH 2 ) n —NH 3 , where n is 0 or an integer from 1 to 6, and R is an alkyl group having 1 to 6 carbon atoms. , A phenyl group, or a 5- to 7-membered cycloalkyl or cycloalkenyl group.
  • a preferred example of the lead bromide-based layered perovskite used in the light emitting layer of the electroluminescent device of the present invention is represented by the following formula (1).
  • the organic molecules used in the organic molecule layer having a hole transporting property in the carrier transporting layer of the electroluminescent device of the present invention are not particularly limited, and various organic molecules known to exhibit the hole transporting property are used. Molecules (organic compounds) are applicable. Preferred hole transporting organic molecules include phthalocyanines, diamine derivatives, fluorene derivatives and polythiophene derivatives. For example, preferably copper phthalocyanine represented by the following formula as a hole transporting organic molecules (2) mentioned et Re ⁇ ⁇ 0
  • the organic molecules used in the organic molecule layer having an electron transport property of the electroluminescent device of the present invention are not particularly limited, and various organic molecules (organic compounds) known to exhibit the electron transport property are applied. It is possible.
  • Preferred electron transporting organic molecules include oxaziazole derivatives, triazole derivatives, perylene derivatives, and quinolinol metal complexes.
  • a preferable electron transporting organic molecule is an oxaziazol derivative represented by the following formula (3).
  • the present invention comprises a three-layer laminated device in which a lead bromide-based layered vesicular luminescent layer is sandwiched between an organic molecular layer having a hole transporting property and an organic molecular layer having an electron transporting property.
  • the electroluminescent device can emit light efficiently at a low voltage, as will be described later in Examples.
  • the reason for the lower drive voltage and lower luminous efficiency is that the lead bromide-based layered perovskite compound has a large band gap and ionization potential, making it difficult to inject carriers. It is inferred that this is the case.
  • the lamination with the organic molecular layer facilitated the injection of holes from the anode and the injection of electrons from the cathode, so that the driving voltage was lowered.
  • Hole transporting molecules have a low ability to transport electrons as well as holes. It serves to confine electrons in the light emitting layer.
  • the electron-transporting molecule plays a role of confining holes in the light-emitting layer due to its low ability to transport holes as well as electrons. As a result, it is considered that electrons and holes are confined in the light-emitting layer with high density, and the luminous efficiency is increased due to efficient recombination.
  • the hole transporting organic molecule copper phthalocyanine (CuPc :) of the above formula (2) is used, and as the electron transporting organic molecule, the oxadiazole derivative (OXD 7) of the above formula (3) is used.
  • a three-layer type electroluminescent device sandwiching a light-emitting layer composed of a lead bromide-based layered perovskite compound (CHEPbBrJ) of the above formula (1) was prepared, and its characteristics were evaluated.
  • a single-layer device composed of only a lead-based layered perovskite and a two-layer device composed only of an oxaziazole derivative were also evaluated.
  • a copper phthalocyanine (CuPc) layer is formed on a glass plate coated with indium tin oxide (ITO) as a transparent electrode by vacuum evaporation, and then a lead bromide layered perovskite (CHEPbBr) is formed. 4 ) The layer was spin-coated from a dimethylformamide solution, and further prepared by vapor-depositing an oxaziazole (OXD7) layer and an aluminum lithium alloy (AlLi) as a cathode.
  • ITO indium tin oxide
  • CHEPbBr lead bromide layered perovskite
  • the two-layer element was fabricated by spin-coating a lead bromide-based perovskite on an ITO-coated substrate, and then depositing an OXD7 layer and an AlLi cathode.
  • the single-layer element was fabricated by spin-coating a lead bromide-based layered perovskite on a substrate coated with ITO, and then depositing an AlLi cathode.
  • FIG. 2 shows the element structure of the three-layer element and the two-layer element. Each film thickness was measured by a stylus method using Veeco Dektak.
  • FIG. 3 shows a light emitting spectrum of the three-layer device according to the present invention.
  • Around 41 Onm Electroluminescence corresponding to exciton emission of a lead bromide layered perovskite is observed. From this spectrum, it was confirmed that light emission from the excitons of the layered perovskite layer was obtained as intended in the three-layer device. Understand. Similar results were obtained for the two-layer type device, and light emission due to excitons in the lead bromide layered perovskite was observed.
  • FIG. 5 shows a comparison of the electroluminescence intensity characteristics between the three-layer type and the two-layer type. Comparing on the high emission intensity side, it can be seen that the three-layer type element has higher emission intensity than the two-layer type element even at the same current value and is more efficient. When compared at a current value of 15 O mA, the electroluminescence intensity of the three-layer type is 30 times that of the two-layer type. This indicates that the electroluminescence efficiency per unit current density of the three-layer device is extremely high, 30 times.
  • an electroluminescent device having the following effects can be obtained.
  • An electroluminescent device using a lead bromide-based layered perovskite can emit light efficiently at a low voltage.
  • the excited state of the lead bromide layered perovskite can be efficiently created by current injection, and not only the exciton emission but also the function that the layered perovskite develops via the excited state can be efficiently generated. Can be driven.

Abstract

An electroluminescent element having a lead bromide based layered perovskite compound as a luminescent layer, characterized in that it has a three-layered laminate structure wherein the luminescent layer is sandwiched between an organic molecule layer having a positive hole transporting function and an organic molecule layer having an electron transporting function.

Description

明 細 書  Specification
臭化鉛系層状ぺロブスカイト化合物を発光層とした電界発光素子 技術分野  Electroluminescent device using lead bromide-based layered perovskite compound as light emitting layer
本発明は、 発光素子の技術分野に属し、 特に、 臭化鉛系層状べロブスカイ ト化 合物を発光層とする新規な電界発光素子に関する。  The present invention belongs to the technical field of light-emitting devices, and particularly relates to a novel electroluminescent device using a lead bromide-based layered perovskite compound as a light-emitting layer.
背景技術 ■ Background technology ■
電界発光素子は、電場の印加により物質が発光する現象を利用する素子である。 電界発光素子の材料としては、 従来より、 ガリウム砒素など無機半導体を用いた ものや発光性の有機分子を用いたものが知られている。 最近、 ハライ ド系層状ぺ ロブスカイ トも可視領域に発光波長幅が小さく強度の強い励起子発光を有するこ とから発光デバイスへの応用が期待されている。 本発明者らは、 以前に、 ハラィ ド系層状ぺロプスカイトを用いた電界発光素子としてヨウ化鉛系の層状ぺロブス カイ トを報告したが、 その発光色は緑に限られている (M. Era, S. Morimoto, T. Tsutsui, and S. Saito, Appl. Phys. Lett., 65, 676-678 (1994)) 0 An electroluminescent element is an element utilizing a phenomenon in which a substance emits light when an electric field is applied. As materials for electroluminescent devices, those using inorganic semiconductors such as gallium arsenide and those using luminescent organic molecules have been known. Recently, a halide-based layered perovskite is expected to be applied to a light-emitting device because of its small exciton emission with a small emission wavelength width in the visible region. The present inventors have previously reported a lead iodide-based layered perovskite as an electroluminescent device using a halide-based layered perovskite, but the emission color is limited to green (M. Era, S. Morimoto, T. Tsutsui, and S. Saito, Appl. Phys. Lett., 65, 676-678 (1994)) 0
本発明者らは、 ハラィ ド系層状ぺロブスカイ トを用いる電界発光素子として、 この他に、 臭化鉛系層状ぺロプスカイ ト系化合物から成る電界発光素子を提案し た。 臭化鉛系層状べロブスカイ ト化合物は、 Aを有機アンモニゥム分子とすると 一般式 A2P b B r 4で表わされ、 有機アンモニゥム分子 A層と臭化鉛 P b B r 4 層とが交互に積層した超格子構造を形成することが知られており (David B. itzi, "Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials," Progress in Organic Chemistry, Vol. 48, Edited by Kenneth D. Karlin, John Wiley & Sons, Inc. (1999))、 本発明者は、 この化合物 が紫から青色の領域で強い励起子発光を示すことを見出した (M. Era, N. Kakiyama, T. Ano, and Μ. Nagano, Trans. Mater. Res. Soc. Jpn., 24, 509-511 (1999))。図 6にアルキルアンモニゥム分子を有機層とした臭化鉛系層状ぺロブス カイトの吸収スぺクトルと発光スぺクトルの図を示す。 アルキルアンモニゥム分 子のアルキル鎖長に依存して励起子発光ピーク波長が 4 0 0 n mから 4 4 0 n m に変化し、 紫から青色の発光色を示すことがわかる。 The present inventors have proposed an electroluminescent device including a lead bromide-based layered perovskite compound as an electroluminescent device using a halide-based layered perovskite. Lead bromide-based layered base Robusukai DOO compound is represented by the general formula A 2 P b B r 4 when the A and organic Anmoniumu molecules, organic Anmoniumu molecules A layer and lead bromide P b B r 4 layers and are alternately It is known to form a superlattice structure stacked on the surface (David B. itzi, "Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials," Progress in Organic Chemistry, Vol. 48, Edited by Kenneth D. Karlin, John Wiley & Sons, Inc. (1999)), the present inventors have found that this compound shows strong exciton emission in the violet to blue region (M. Era, N. Kakiyama, T. Ano, and Μ. Nagano, Trans. Mater. Res. Soc. Jpn., 24, 509-511 (1999)). Figure 6 shows a lead bromide layered perovsk with an alkyl ammonium molecule as the organic layer. FIG. 2 shows a diagram of an absorption spectrum and a light emission spectrum of a kite. It can be seen that the peak wavelength of the exciton emission changes from 400 nm to 450 nm depending on the alkyl chain length of the alkyl ammonium molecule, showing a violet to blue emission color.
このように臭化鉛系層状べロブスカイトは、 紫から青色にわたる広範囲の発光 を有する新しいタイプの電界発光素子を与えるものではあるが、 所定の電流を得 るのに比較的大きな駆動電圧を必要とし、 また、 所定の電流値によって得られる 発光強度が低い点において効率が良くない。  As described above, the lead bromide-based layered perovskite provides a new type of electroluminescent device having a wide range of light emission from purple to blue, but requires a relatively large driving voltage to obtain a predetermined current. In addition, the efficiency is not good in that the emission intensity obtained by a predetermined current value is low.
本発明の目的は、 臭化鉛系層状ぺロブスカイトを発光層とし、 効率が良く低電 圧で駆動可能な紫から青色の発光色を呈する電界発光素子を提供することにある c 発明の開示  An object of the present invention is to provide an electroluminescent device which emits a violet to blue light and can be driven at a low voltage with high efficiency, using a lead bromide-based layered perovskite as a light emitting layer.
本発明者らは、 検討を重ねた結果、 臭化鉛系層状ぺロブスカイト化合物から成 る発光層にキヤリャ輸送性を有する有機分子を組み合わせた多層構造の作製に成 功し、 低電圧で効率のよい電界発光を可能にした。  As a result of repeated studies, the present inventors succeeded in producing a multilayer structure in which a light-emitting layer composed of a lead bromide-based layered perovskite compound was combined with an organic molecule having a carrier-transporting property. Good electroluminescence was enabled.
かくして、 本発明に従えば、 Aを有機アンモニゥム分子として一般式 A2P b B r 4で表わされ、 有機アンモニゥム分子 Α層と臭化鉛 P b B r 4層が交互に積層し た超格子構造を形成している臭化鉛系層状ぺ口ブスカイ ト化合物を発光層とし、 正孔輸送性を有する有機分子層と電子輸送性を有する有機分子層とから成る 2層 のキヤリア輸送層が前記臭化鉛系層状ぺロブスカイ ト化合物の発光層を挟持して いる三層型積層構造を有することを特徴とする電界発光素子が提供される。 Thus, according to the present invention, represented by the general formula A 2 P b B r 4 A as organic Anmoniumu molecules, organic Anmoniumu molecules Α layer and lead bromide P b B r 4 layers are alternately stacked ultra The lead bromide-based layered buskite compound having a lattice structure is used as the light-emitting layer, and a two-layer carrier transport layer composed of an organic molecule layer having a hole transport property and an organic molecule layer having an electron transport property is provided. There is provided an electroluminescent device having a three-layered laminated structure sandwiching a light emitting layer of the lead bromide-based layered perovskite compound.
本発明の電界発光素子においては、 Aの有機アンモニゥム分子は、 一般に、 式 R _ (C H2)n— N H3で表わされ、 ここで、 nは、 0または 1から 6の整数を表わ し、 Rは、 炭素数 1〜6のアルキル基、 フエニル基、 または 5員環から 7員環の シクロアルキル基またはシクロアルケ二ル基を表わす。 本発明の電界発光素子の 好ましい態様においては、 正孔輸送性の有機分子として、 フタロシアニン類、 ジ ァミン誘導体、 フルオレン誘導体、 またはポリチォフェン誘導体を用い、 電子輸 送性を有する有機分子として、 ォキサジァゾール誘導体、 トリァゾール誘導体、 ペリレン誘導体、 またはキノリノール金属錯体を用いる。 In the electroluminescent device of the present invention, the organic ammonium molecule of A is generally represented by the formula R_ (CH 2 ) n —NH 3 , wherein n represents 0 or an integer of 1 to 6. R represents an alkyl group having 1 to 6 carbon atoms, a phenyl group, or a 5- to 7-membered cycloalkyl group or a cycloalkenyl group. In a preferred embodiment of the electroluminescent device of the present invention, a phthalocyanine, a diamine derivative, a fluorene derivative, or a polythiophene derivative is used as the hole-transporting organic molecule, and the oxadiazole derivative is used as the electron-transporting organic molecule. Triazole derivatives, A perylene derivative or a quinolinol metal complex is used.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 正孔輸送性を有する有機分子層と電子輸送性を有する有機分子層と により臭化鉛系層状ぺロブスカイ ト発光層をはさみこんだ本発明の三層積層型発 光素子の模式図である。  FIG. 1 shows a three-layer laminated light emitting device of the present invention in which a lead bromide layered perovskite light emitting layer is sandwiched between an organic molecular layer having a hole transporting property and an organic molecular layer having an electron transporting property. It is a schematic diagram.
第 2図は、 実施例で作製した三層型素子および二層型素子の模式図である。 第 3図は、 実施例で作製した三層型素子の電界発光スペクトルである。  FIG. 2 is a schematic diagram of a three-layer element and a two-layer element manufactured in the examples. FIG. 3 is an electroluminescence spectrum of the three-layer device manufactured in the example.
第 4図は、 実施例で作製した三層型素子と二層型素子の電流 ·電圧特性を比較 した図である。  FIG. 4 is a diagram comparing current-voltage characteristics of the three-layer element and the two-layer element manufactured in the example.
第 5図は、 実施例で作製した三層型素子と二層型素子の電流 ·電界発光強度特 性を比較した図である。  FIG. 5 is a diagram comparing the current / electroluminescence intensity characteristics of the three-layer element and the two-layer element produced in the example.
第 6図は、 アルキルアンモニゥム分子を有機層とした臭化鉛系層状ぺロブス力 ィトの発光スぺクトルおよび吸収スぺクトルである。 実線が発光スぺクトルを、 点線が吸収スぺクトルを示す。 上方に示す式は層状ぺロブスカイ トの化学式であ り、 式中の nの値はアルキルアンモニゥム分子のアルキル鎖の炭素数を示す。 発明を実施するための最良の形態  FIG. 6 shows a light emission spectrum and an absorption spectrum of a lead bromide-based layered graphite sheet having an alkylammonium molecule as an organic layer. The solid line shows the emission spectrum, and the dotted line shows the absorption spectrum. The formula shown above is the chemical formula of the layered perovskite, and the value of n in the formula indicates the number of carbon atoms in the alkyl chain of the alkylammonium molecule. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の電界発光素子は、 正孔輸送性を有する有機分子層と電子輸送性を有す る有機分子層とから成る 2つのキャリア輸送層が、 臭化鉛系層状ぺロブスカイ ト 化合物から成る発光層を挟持している三層型積層構造を有する。 第 1図は、 本発 明に従う電界発光素子の典型例の横断面を示すものであり、 電極 (陽極と陰極) 間に上記の三層型積層構造が配置されている。 一般に、 臭化鉛系層状べロプス力 イト発光層の厚さは、 約 1 0〜5 0 n mとし、 また、 正孔輸送性有機分子層およ び電子輸送層の厚さは、 いずれも、 約 5 0〜 1 0 0 n mになるようにするのが好 ましい。  In the electroluminescent device of the present invention, the two carrier transporting layers composed of an organic molecular layer having a hole transporting property and an organic molecular layer having an electron transporting property are composed of a lead bromide-based layered perovskite compound. It has a three-layer laminate structure sandwiching layers. FIG. 1 shows a cross section of a typical example of an electroluminescent device according to the present invention, in which the above-described three-layer structure is arranged between electrodes (anode and cathode). Generally, the thickness of the lead bromide-based layered bellows light emitting layer is about 10 to 50 nm, and the thicknesses of the hole transporting organic molecular layer and the electron transporting layer are both: Preferably, it is about 50 to 100 nm.
電界発光素子を構成する各層は、 従来より知られた薄膜形成法により作製する ことができる。キャリア輸送層や電極層は、一般に、 真空蒸着法により作製する。 また、 臭化鉛系層状ぺロブスカイ ト発光層は、 スピンコート法により作製するの が好ましい。 すなわち、 臭化鉛系層状ぺロブスカイ トの結晶試料、 あるいは有機 アンモニゥム臭化水素酸塩と臭化鉛(P b B r 4)とを、ジメチルホルムアミド(D M F ) やジメチルスルホキシド (D M S O ) のような極性溶媒に溶かした溶液か らスピンコートすることにより有機アンモニゥム分子層と臭化鉛層が交互に積層 した超格子構造から成る臭化鉛系層状べ口ブスカイ ト層が形成される。 Each layer constituting the electroluminescent device can be manufactured by a conventionally known thin film forming method. The carrier transport layer and the electrode layer are generally manufactured by a vacuum evaporation method. Further, the lead bromide-based layered perovskite light-emitting layer is preferably produced by a spin coating method. That is, as lead bromide-based layered Bae Robusukai bets crystal sample, or an organic Anmoniumu hydrobromide and lead bromide (P b B r 4), dimethylformamide (DMF) or dimethyl sulfoxide (DMSO) By spin-coating from a solution dissolved in a polar solvent, a lead bromide layered viscous layer having a superlattice structure in which an organic ammonium molecular layer and a lead bromide layer are alternately laminated is formed.
有機アンモニゥム分子としては、 有機分子にアンモニアが結合した化学構造か ら成り、 臭化鉛(P b B r 4) に配位して層状べロブスカイ トを形成し得る各種の 化合物が使用可能である。 好ましい有機アンモニゥム分子は、 一般式 R— (C H2) n— N H3で表わすことができ、 ここで、 nは、 0または 1から 6の整数を表わし、 Rは炭素数 1〜6のアルキル基、 フエニル基、 または 5員環から 7員環のシクロ アルキル基もしくはシクロアルケ二ル基を表わす。 かくして、 本発明の電界発光 素子の発光層に用いる臭化鉛系層状ぺロブスカイ 卜の好ましい 1例として下記の 式 (1 ) で表わされるものが挙げられる。 The organic Anmoniumu molecules consist chemical structure or et ammonia is bound to organic molecules, various compounds capable of forming a lamellar base Robusukai preparative coordinated to lead bromide (P b B r 4) are available . Preferred organic ammonium molecules can be represented by the general formula R— (CH 2 ) n —NH 3 , where n is 0 or an integer from 1 to 6, and R is an alkyl group having 1 to 6 carbon atoms. , A phenyl group, or a 5- to 7-membered cycloalkyl or cycloalkenyl group. Thus, a preferred example of the lead bromide-based layered perovskite used in the light emitting layer of the electroluminescent device of the present invention is represented by the following formula (1).
Figure imgf000005_0001
Figure imgf000005_0001
本発明の電界発光素子のキヤリァ輸送層のうち正孔輸送性を有する有機分子層 に用いられる有機分子は、 特に限定されるものではなく、 正孔輸送性を示すもの として知られた各種の有機分子 (有機化合物) が適用可能である。 好ましい正孔 輸送性有機分子としては、 フタロシアニン類、 ジァミン誘導体、 フルオレン誘導 体またはポリチォフェン誘導体などを挙げることができる。 例えば、 好ましい正 孔輸送性有機分子として下記の式 (2 ) で表わされる銅フタロシアニンが挙げら れ^ ί 0
Figure imgf000006_0001
本発明の電界発光素子の電子輸送性を有する有機分子層に用いられる有機分子 も特に限定されるものではなく、 電子輸送性を示すものとして知られた各種の有 機分子(有機化合物)が適用可能である。好ましい電子輸送性有機分子としては、 ォキサジァゾール誘導体、 トリァゾール誘導体、 ペリレン誘導体またはキノリノ ール金属錯体などを挙げることができる。 例えば、 好ましい電子輸送性有機分子 として下記の式 (3 ) で表わされるォキサジァゾ一ル誘導体が挙げられる。
The organic molecules used in the organic molecule layer having a hole transporting property in the carrier transporting layer of the electroluminescent device of the present invention are not particularly limited, and various organic molecules known to exhibit the hole transporting property are used. Molecules (organic compounds) are applicable. Preferred hole transporting organic molecules include phthalocyanines, diamine derivatives, fluorene derivatives and polythiophene derivatives. For example, preferably copper phthalocyanine represented by the following formula as a hole transporting organic molecules (2) mentioned et Re ^ ί 0
Figure imgf000006_0001
The organic molecules used in the organic molecule layer having an electron transport property of the electroluminescent device of the present invention are not particularly limited, and various organic molecules (organic compounds) known to exhibit the electron transport property are applied. It is possible. Preferred electron transporting organic molecules include oxaziazole derivatives, triazole derivatives, perylene derivatives, and quinolinol metal complexes. For example, a preferable electron transporting organic molecule is an oxaziazol derivative represented by the following formula (3).
Figure imgf000006_0002
以上のように、 正孔輸送性を有する有機分子層と電子輸送性を有する有機分子 層とにより臭化鉛系層状べ口ブスカイ ト発光層をはさみこんだ三層積層型の素子 から成る本発明の電界発光素子は、 後述の実施例にも示されるように、 低電圧で 効率よく発光することができる。 この駆動電圧の低下および発光効率の低下の理 由は、 臭化鉛系層状ぺロブスカイト化合物はバンドギャップやイオン化ポテンシ ャルが大きくキャリアの注入が困難であったのが、 三層構造により解消されたた めと推察される。 すなわち、 1 ) 有機分子層と積層したことで、 陽極からの正孔 の注入および陰極からの電子注入が容易になったため駆動電圧が低下した。 2 ) 正孔輸送性分子は、 正孔を輸送するだけでなく、 電子を輸送する能力が低いため 電子を発光層に閉じ込める役割をはたす。 また電子輸送性分子は、 電子を輸送す るだけでなく、 正孔を輸送する能力が低いため正孔を発光層に閉じ込める役割を はたす。 その結果、 高密度に電子と正孔が発光層に閉じ込められ、 効率よく再結 合するため発光効率が増大したものと考えられる。
Figure imgf000006_0002
As described above, the present invention comprises a three-layer laminated device in which a lead bromide-based layered vesicular luminescent layer is sandwiched between an organic molecular layer having a hole transporting property and an organic molecular layer having an electron transporting property. The electroluminescent device can emit light efficiently at a low voltage, as will be described later in Examples. The reason for the lower drive voltage and lower luminous efficiency is that the lead bromide-based layered perovskite compound has a large band gap and ionization potential, making it difficult to inject carriers. It is inferred that this is the case. That is, 1) the lamination with the organic molecular layer facilitated the injection of holes from the anode and the injection of electrons from the cathode, so that the driving voltage was lowered. 2) Hole transporting molecules have a low ability to transport electrons as well as holes. It serves to confine electrons in the light emitting layer. In addition, the electron-transporting molecule plays a role of confining holes in the light-emitting layer due to its low ability to transport holes as well as electrons. As a result, it is considered that electrons and holes are confined in the light-emitting layer with high density, and the luminous efficiency is increased due to efficient recombination.
実施例 Example
以下に本発明の特徴を更に明らかにするため実施例を示すが、 本発明はこの実 施例に限定されるものではない。  Examples are shown below to further clarify the features of the present invention, but the present invention is not limited to these examples.
実施例として、 正孔輸送性の有機分子として前記の式 (2) の銅フタロシア二 ン (CuP c:)、 電子輸送性の有機分子として前記の式(3)のォキサジァゾール 誘導体 (OXD 7) を用い前記の式 (1) の臭化鉛系層状べロブスカイ ト化合物 (CHEPbBrJから成る発光層を挟持した三層型電界発光素子を作製し、 そ の特性評価を行った。 また、 比較のため臭化鉛系層状ぺロブスカイトのみからな る単層型素子およびォキサジァゾ一ル誘導体とのみ積層した 2層型素子の評価も 行った。  As an example, as the hole transporting organic molecule, copper phthalocyanine (CuPc :) of the above formula (2) is used, and as the electron transporting organic molecule, the oxadiazole derivative (OXD 7) of the above formula (3) is used. A three-layer type electroluminescent device sandwiching a light-emitting layer composed of a lead bromide-based layered perovskite compound (CHEPbBrJ) of the above formula (1) was prepared, and its characteristics were evaluated. A single-layer device composed of only a lead-based layered perovskite and a two-layer device composed only of an oxaziazole derivative were also evaluated.
三層型素子は陽極として透明電極のインジウム錫酸化物 (I TO) をコートし たガラス板上に銅フタロシアニン (CuPc) 層を真空蒸着法で作製した後、 臭 化鉛系層状ぺロブスカイト (CHEPbBr4)層をジメチルホルムアミ ド溶液か らスピンコートし、 さらにォキサジァゾ一ル (OXD7) 層および陰極としてァ ルミニゥムリチウム合金 (AlLi) を蒸着することにより作製した。 2層型素 子は I TOをコートした基板上に臭化鉛系層状ぺロブスカイトをスピンコートし た後、 OXD7層および AlL i陰極を蒸着することにより作製した。 単層型素 子は、 I TOをコートした基板上に臭化鉛系層状べロブスカイ トをスピンコート した後、 AlL i陰極を蒸着することにより作製した。 三層型素子および 2層型 素子の素子構造を第 2図に示す。 各々の膜厚は、 Veeco社製 Dektakを用い、 触 針法により測定したものである。 In the three-layer device, a copper phthalocyanine (CuPc) layer is formed on a glass plate coated with indium tin oxide (ITO) as a transparent electrode by vacuum evaporation, and then a lead bromide layered perovskite (CHEPbBr) is formed. 4 ) The layer was spin-coated from a dimethylformamide solution, and further prepared by vapor-depositing an oxaziazole (OXD7) layer and an aluminum lithium alloy (AlLi) as a cathode. The two-layer element was fabricated by spin-coating a lead bromide-based perovskite on an ITO-coated substrate, and then depositing an OXD7 layer and an AlLi cathode. The single-layer element was fabricated by spin-coating a lead bromide-based layered perovskite on a substrate coated with ITO, and then depositing an AlLi cathode. FIG. 2 shows the element structure of the three-layer element and the two-layer element. Each film thickness was measured by a stylus method using Veeco Dektak.
第 3図に本発明に従う三層型素子の発光スぺクトルを示す。 41 Onm付近に 臭化鉛系層状ぺロプスカイトの励起子発光に対応した電界発光が観測されている このスぺクトルより、 三層型素子において目的どおり層状ぺロブスカイト層の励 起子からの発光が得られたことがわかる。 同様の結果は 2層型素子においても得 られ、 臭化鉛系層状ぺロブスカイ トの励起子に起因した発光が観測された。 FIG. 3 shows a light emitting spectrum of the three-layer device according to the present invention. Around 41 Onm Electroluminescence corresponding to exciton emission of a lead bromide layered perovskite is observed. From this spectrum, it was confirmed that light emission from the excitons of the layered perovskite layer was obtained as intended in the three-layer device. Understand. Similar results were obtained for the two-layer type device, and light emission due to excitons in the lead bromide layered perovskite was observed.
臭化鉛系層状ぺロブスカイ ト発光層のみがコートされた単層型素子においては、 陽極と陰極とが導通してしまい、 素子として駆動することができなかった。 この ことは、 膜質の良い有機分子層と積層することが、 陽極と陰極との導通を防ぎ安 定に素子を駆動する上で重要であることを示している。  In the case of a single-layer device in which only the lead bromide layered perovskite light-emitting layer was coated, the anode and the cathode were electrically connected, and the device could not be driven. This indicates that lamination with an organic molecular layer having good film quality is important for preventing the conduction between the anode and the cathode and for driving the device stably.
次に励起子に起因した発光が得られた三層型素子と二層型素子の電流電圧特性 を比較した(第 4図)。 1 0 O mAの電流を流すのに必要な電圧を比較すると三層 型では 2 0 V、 二層型では 7 2 Vと、 三層型の方が 3分の 1以下の低電圧で素子 を駆動できていることがわかる。  Next, we compared the current-voltage characteristics of the three-layer device and the two-layer device that emitted light due to excitons (Fig. 4). Comparing the voltages required to pass a current of 10 O mA, the three-layer type requires 20 V, the two-layer type requires 72 V, and the three-layer type requires less than one third of the voltage. It can be seen that driving was possible.
第 5図に三層型と二層型の電界発光強度特性を比較したものを示す。 高発光強 度側で比較すると三層型の素子の方が二層型素子に比べ同じ電流値でもより高い 発光強度が得られており効率がよいことがわかる。 電流値 1 5 O mAで比較する と三層型の電界発光強度は二層型の 3 0倍である。 これは三層型の素子で単位電 流密度あたりの電界発光効率が 3 0倍と非常に高くなつていることを示す。  FIG. 5 shows a comparison of the electroluminescence intensity characteristics between the three-layer type and the two-layer type. Comparing on the high emission intensity side, it can be seen that the three-layer type element has higher emission intensity than the two-layer type element even at the same current value and is more efficient. When compared at a current value of 15 O mA, the electroluminescence intensity of the three-layer type is 30 times that of the two-layer type. This indicates that the electroluminescence efficiency per unit current density of the three-layer device is extremely high, 30 times.
産業上の利用可能性 Industrial applicability
本発明によれば、 次のような効果を奏する電界発光素子を得ることができる。 ( 1 ) 臭化鉛系層状ぺロブスカイ トを用いた電界発光素子を、 低電圧で効率よく 発光させることができる。  According to the present invention, an electroluminescent device having the following effects can be obtained. (1) An electroluminescent device using a lead bromide-based layered perovskite can emit light efficiently at a low voltage.
( 2 ) 電流注入により効率よく臭化鉛系層状ぺロブスカイ 卜の励起状態を作り出 すことができ、 励起子発光だけでなく層状ぺロブスカイトが励起状態を経由して 発現する機能を効率よく電流で駆動することができる。  (2) The excited state of the lead bromide layered perovskite can be efficiently created by current injection, and not only the exciton emission but also the function that the layered perovskite develops via the excited state can be efficiently generated. Can be driven.
( 3 ) 膜質の良い有機分子層との積層により、 陽極陰極間の導通を防ぐことがで き、 安定な素子を構築することができる。  (3) Lamination with an organic molecular layer having good film quality can prevent conduction between the anode and the cathode, and a stable device can be constructed.

Claims

請求の範囲 The scope of the claims
1 . Aを有機アンモニゥム分子として一般式 A2P b B r 4で表わされ、 有機ァ ンモニゥム分子 A層と臭化鉛 P b B r 4層が交互に積層した超格子構造を形成し ている臭化鉛系層状べロブスカイ ト化合物を発光層とし、 正孔輸送性を有する有 機分子層と電子輸送性を有する有機分子層とから成る 2層のキヤリァ輸送層が前 記臭化鉛系層状べロブスカイ ト化合物の発光層を挟持している三層型積層構造を 有することを特徴とする電界発光素子。 1. A to be represented by the general formula A 2 P b B r 4 as the organic Anmoniumu molecules, to form a superlattice structure in which an organic § Nmoniumu molecule A layer and lead bromide P b B r 4 layers are alternately stacked The lead bromide-based layered perovskite compound is used as the light-emitting layer, and the two carrier transport layers composed of an organic molecular layer having a hole-transport property and an organic molecular layer having an electron-transport property are formed of the lead bromide-based compound. An electroluminescent device having a three-layer structure in which a light emitting layer of a layered perovskite compound is sandwiched.
2 . Aの有機アンモニゥム分子が、 R— (C H2)n— N H3 ( nは、 0または 1か ら 6の整数を表わし、 Rは、 炭素数 1〜6のアルキル基、 フエニル基、 または 5 員環から 7員環のシクロアルキル基またはシクロアルケ二ル基を表わす) で表わ されるものであるこをと特徴とする請求項 1の電界発光素子。 2. The organic ammonium molecule of A is represented by R— (CH 2 ) n —NH 3 (n represents 0 or an integer of 1 to 6, and R represents an alkyl group having 1 to 6 carbon atoms, a phenyl group, or 2. The electroluminescent device according to claim 1, wherein the electroluminescent device is represented by a 5- to 7-membered cycloalkyl group or a cycloalkenyl group.
3 . 正孔輸送性の有機分子として、 フタロシアニン類、 ジァミン誘導体、 フル オレン誘導体、 またはポリチォフェン誘導体を用いることを特徴とする請求項 1 または請求項 2の電界発光素子。  3. The electroluminescent device according to claim 1, wherein a phthalocyanine, a diamine derivative, a fluorene derivative, or a polythiophene derivative is used as the hole transporting organic molecule.
4 . 電子輸送性を有する有機分子として、 ォキサジァゾ一ル誘導体、 トリァゾ ール誘導体、 ペリレン誘導体、 またはキノリノール金属錯体を用いることを特徴 とする請求項 1から請求項 3のいずれかの電界発光素子。  4. The electroluminescent device according to any one of claims 1 to 3, wherein an organic molecule having an electron transporting property is an oxaziazole derivative, a triazole derivative, a perylene derivative, or a quinolinol metal complex.
PCT/JP2001/011016 2001-04-03 2001-12-17 Electroluminescent element having lead bromide based layered perovskite compound as luminescent layer WO2002082864A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001104310A JP2002299063A (en) 2001-04-03 2001-04-03 Electroluminescent element with lead bromide system layered perovskite compound as luminescent layer
JP2001-104310 2001-04-03

Publications (1)

Publication Number Publication Date
WO2002082864A1 true WO2002082864A1 (en) 2002-10-17

Family

ID=18957189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011016 WO2002082864A1 (en) 2001-04-03 2001-12-17 Electroluminescent element having lead bromide based layered perovskite compound as luminescent layer

Country Status (2)

Country Link
JP (1) JP2002299063A (en)
WO (1) WO2002082864A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166006A1 (en) * 2014-04-30 2015-11-05 Cambridge Enterprise Limited Electroluminescent device
US10069025B2 (en) 2012-09-18 2018-09-04 Oxford University Innovation Limited Optoelectronic device
CN112898960A (en) * 2019-12-04 2021-06-04 中国科学院大连化学物理研究所 White light luminescent material based on two-dimensional perovskite structure and preparation and application thereof
US11038132B2 (en) 2012-05-18 2021-06-15 Oxford University Innovation Limited Optoelectronic devices with organometal perovskites with mixed anions
US11276734B2 (en) 2012-05-18 2022-03-15 Oxford University Innovation Limited Optoelectronic device comprising porous scaffold material and perovskites
US11302833B2 (en) 2012-05-18 2022-04-12 Oxford University Innovation Limited Optoelectronic device comprising perovskites

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066684A1 (en) * 2003-01-21 2004-08-05 Kyushu Electric Power Co., Inc. Electroluminescent element
JP4669786B2 (en) 2003-07-02 2011-04-13 パナソニック株式会社 Display device
WO2005004547A1 (en) 2003-07-02 2005-01-13 Matsushita Electric Industrial Co., Ltd. Light emitting element and display device
JP5093694B2 (en) * 2008-02-19 2012-12-12 独立行政法人産業技術総合研究所 Oxide perovskite thin film EL device
US8796908B2 (en) 2009-07-22 2014-08-05 Konica Minolta Medical & Graphic, Inc. Piezoelectric body, ultrasound transducer, medical ultrasound diagnostic system, and nondestructive ultrasound test system
JP6103183B2 (en) * 2012-10-10 2017-03-29 ペクセル・テクノロジーズ株式会社 Electroluminescent device using perovskite compound
JP6099036B2 (en) * 2012-10-17 2017-03-22 ペクセル・テクノロジーズ株式会社 Organic EL devices using perovskite compounds
CN103441217B (en) * 2013-07-16 2015-11-04 华中科技大学 Jie based on perovskite light absorbent sees solar cell and preparation method thereof
GB201421133D0 (en) 2014-11-28 2015-01-14 Cambridge Entpr Ltd Electroluminescent device
JP6469053B2 (en) * 2015-09-17 2019-02-13 旭化成株式会社 Composition and method for producing the same
WO2017077523A1 (en) * 2015-11-08 2017-05-11 King Abdullah University Of Science And Technology Air-stable surface-passivated perovskite quantum dots (qds), methods of making these qds, and methods of using these qds
KR102452189B1 (en) * 2016-11-30 2022-10-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting device, electronic device, display device, and lighting device
CN111403615B (en) * 2020-03-27 2022-07-12 深圳市华星光电半导体显示技术有限公司 Organic light emitting device and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329723A (en) * 1998-05-08 1999-11-30 Toray Ind Inc Manufacture of organic electroluminescent element
EP1056141A2 (en) * 1999-05-25 2000-11-29 Matsushita Electric Industrial Co., Ltd. Electroluminescent device having a very thin emission layer
JP2001060497A (en) * 1999-07-08 2001-03-06 Internatl Business Mach Corp <Ibm> Electroluminescent element having organic-inorganic hybrid material as luminescent layer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3651135B2 (en) * 1996-08-29 2005-05-25 双葉電子工業株式会社 Dope material for organic electroluminescence device and organic electroluminescence device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329723A (en) * 1998-05-08 1999-11-30 Toray Ind Inc Manufacture of organic electroluminescent element
EP1056141A2 (en) * 1999-05-25 2000-11-29 Matsushita Electric Industrial Co., Ltd. Electroluminescent device having a very thin emission layer
JP2001060497A (en) * 1999-07-08 2001-03-06 Internatl Business Mach Corp <Ibm> Electroluminescent element having organic-inorganic hybrid material as luminescent layer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERA, Masanao et al., "Self-organization of PbBr-based layer perovskite organic/in organic superlattice materials through intercalating organic ammonium molecule into PbBr2." Transactions of the Materials Research Society of Japan, 24(3) 509-511 (1999) *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11038132B2 (en) 2012-05-18 2021-06-15 Oxford University Innovation Limited Optoelectronic devices with organometal perovskites with mixed anions
US11908962B2 (en) 2012-05-18 2024-02-20 Oxford University Innovation Limited Optoelectronic device comprising perovskites
US11302833B2 (en) 2012-05-18 2022-04-12 Oxford University Innovation Limited Optoelectronic device comprising perovskites
US11276734B2 (en) 2012-05-18 2022-03-15 Oxford University Innovation Limited Optoelectronic device comprising porous scaffold material and perovskites
US11258024B2 (en) 2012-05-18 2022-02-22 Oxford University Innovation Limited Optoelectronic devices with organometal perovskites with mixed anions
EP2898553B1 (en) * 2012-09-18 2018-11-14 Oxford University Innovation Limited Optoelectronic device
US10069025B2 (en) 2012-09-18 2018-09-04 Oxford University Innovation Limited Optoelectronic device
US11469338B2 (en) 2012-09-18 2022-10-11 Oxford University Innovation Limited Optoelectronic device
EP4089753A1 (en) * 2012-09-18 2022-11-16 Oxford University Innovation Ltd. Optoelectronic device
US11527663B2 (en) 2012-09-18 2022-12-13 Oxford University Innovation Limited Optoelectronic device
EP4102586A1 (en) * 2012-09-18 2022-12-14 Oxford University Innovation Limited Optoelectronic device
US11258025B2 (en) 2014-04-30 2022-02-22 Cambridge Enterprise Limited Electroluminescent device
WO2015166006A1 (en) * 2014-04-30 2015-11-05 Cambridge Enterprise Limited Electroluminescent device
US20170054099A1 (en) * 2014-04-30 2017-02-23 Cambridge Enterprise Limited Electroluminescent device
CN112898960A (en) * 2019-12-04 2021-06-04 中国科学院大连化学物理研究所 White light luminescent material based on two-dimensional perovskite structure and preparation and application thereof

Also Published As

Publication number Publication date
JP2002299063A (en) 2002-10-11

Similar Documents

Publication Publication Date Title
JP3803015B2 (en) Electroluminescence device having organic-inorganic hybrid material as light emitting layer
KR101030158B1 (en) Organic electroluminescent element
TWI413287B (en) Electron impeding layer for high efficiency phosphorescent oleds
KR100937900B1 (en) Organic light emitting devices having carrier transporting layers comprising metal complexes
KR100751626B1 (en) Organic light emitting device
WO2002082864A1 (en) Electroluminescent element having lead bromide based layered perovskite compound as luminescent layer
CN110838549B (en) Organic electroluminescent device based on exciplex and exciplex system
JP2011109140A (en) Organic light emitting device utilizing binuclear metal-compounds as emissive material
WO2001058222A1 (en) Organic electroluminescent element and method of manufacture thereof
JP2002352961A (en) Organic electroluminescent device
JPH06212153A (en) Organic electroluminescent element
KR100769946B1 (en) Organic electroluminesecnt device capable of driving in low voltage
JP3978976B2 (en) Organic electroluminescence device
JP2007096023A (en) Organic light emitting device
KR0154995B1 (en) Thin film electroluminescence device
JP4729203B2 (en) Electroluminescent device using phosphorescence of lead halide layered perovskite compound
TWI357778B (en) Organic lighting emitting element, organic lightin
JP2000252077A (en) Organic electroluminescence element
JP4109979B2 (en) Organic light emitting device
JP2004031212A (en) Organic electroluminescent element
CA2353218C (en) Use of oligo (phenylenevinylene) s in organic light-emitting devices
WO2006104230A1 (en) Organic electroluminescent device
JP3664069B2 (en) Organic electroluminescence device
JP2002216956A (en) Light emitting element and its manufacturing method
JP3927221B2 (en) EL device using polythiophene

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)