JP2002299063A - Electroluminescent element with lead bromide system layered perovskite compound as luminescent layer - Google Patents

Electroluminescent element with lead bromide system layered perovskite compound as luminescent layer

Info

Publication number
JP2002299063A
JP2002299063A JP2001104310A JP2001104310A JP2002299063A JP 2002299063 A JP2002299063 A JP 2002299063A JP 2001104310 A JP2001104310 A JP 2001104310A JP 2001104310 A JP2001104310 A JP 2001104310A JP 2002299063 A JP2002299063 A JP 2002299063A
Authority
JP
Japan
Prior art keywords
layer
lead bromide
organic
layered perovskite
electroluminescent device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001104310A
Other languages
Japanese (ja)
Inventor
Masanao Era
正直 江良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001104310A priority Critical patent/JP2002299063A/en
Priority to PCT/JP2001/011016 priority patent/WO2002082864A1/en
Publication of JP2002299063A publication Critical patent/JP2002299063A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electroluminescent element that has lead bromide system layered perovskite as a luminescent layer, is efficient, is drivable at a low voltage and presents luminescent colors ranging from violet to blue. SOLUTION: The element is of a three-layered lamination type, where an organic molecular layer with hole transport properties and an organic molecular layer with electron transport properties hold the lead bromide system layered perovskite luminescent layer in between.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光素子の技術分
野に属し、特に、臭化鉛系層状ペロブスカイト化合物を
発光層とする新規な電界発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of light emitting devices, and more particularly to a novel electroluminescent device using a lead bromide-based layered perovskite compound as a light emitting layer.

【0002】[0002]

【従来の技術】電界発光素子は、電場の印加により物質
が発光する現象を利用する素子である。電界発光素子の
材料としては、従来より、ガリウム砒素など無機半導体
を用いたものや発光性の有機分子を用いたものが知られ
ている。最近、ハライド系層状ペロブスカイトも可視領
域に発光波長幅が小さく強度の強い励起子発光を有する
ことから発光デバイスへの応用が期待されている。本発
明者らは、以前に、ハライド系層状ペロブスカイトを用
いた電界発光素子としてヨウ化鉛系の層状ペロブスカイ
トを報告したが、その発光色は緑に限られている(M. E
ra, S. Morimoto,T. Tsutsui, and S. Saito, Appl. Ph
ys. Lett., 65, 676-678 (1994))。
2. Description of the Related Art An electroluminescent element is an element utilizing a phenomenon in which a substance emits light when an electric field is applied. As a material for an electroluminescent device, a material using an inorganic semiconductor such as gallium arsenide and a material using a light-emitting organic molecule have been conventionally known. Recently, a halide-based layered perovskite is expected to be applied to a light-emitting device because it has a small exciton emission with a small emission wavelength width in a visible region. The present inventors have previously reported a lead iodide-based layered perovskite as an electroluminescent device using a halide-based layered perovskite, but its emission color is limited to green (M.E.
ra, S. Morimoto, T. Tsutsui, and S. Saito, Appl. Ph
ys. Lett., 65, 676-678 (1994)).

【0003】本発明者らは、ハライド系層状ペロブスカ
イトを用いる電界発光素子として、この他に、臭化鉛系
層状ペロブスカイト系化合物から成る電界発光素子を提
案した。臭化鉛系層状ペロブスカイト化合物は、Aを有
機アンモニウム分子とすると一般式A2PbBr4で表わ
され、有機アンモニウム分子A層と臭化鉛PbBr4
とが交互に積層した超格子構造を形成することが知られ
ており(David B. Mitzi, "Synthesis, Structure, and
Properties of Organic-Inorganic Perovskites and R
elated Materials," Progress in Organic Chemistry,
Vol. 48, Edited by Kenneth D. Karlin, John Wiley &
Sons, Inc. (1999))、本発明者は、この化合物が紫か
ら青色の領域で強い励起子発光を示すことを見出した
(M. Era,N. Kakiyama, T. Ano, and M. Nagano, Tran
s. Mater. Res. Soc. Jpn., 24, 509-511 (1999))。図
6にアルキルアンモニウム分子を有機層とした臭化鉛系
層状ペロブスカイトの吸収スペクトルと発光スペクトル
の図を示す。アルキルアンモニウム分子のアルキル鎖長
に依存して励起子発光ピーク波長が400nmから44
0nmに変化し、紫から青色の発光色を示すことがわか
る。
The present inventors have proposed an electroluminescent device comprising a layered perovskite compound of a lead bromide type as an electroluminescent device using a layered perovskite of a halide type. The lead bromide-based layered perovskite compound is represented by the general formula A 2 PbBr 4 where A is an organic ammonium molecule, and forms a superlattice structure in which organic ammonium molecule A layers and lead bromide PbBr 4 layers are alternately stacked. (David B. Mitzi, "Synthesis, Structure, and
Properties of Organic-Inorganic Perovskites and R
elated Materials, "Progress in Organic Chemistry,
Vol. 48, Edited by Kenneth D. Karlin, John Wiley &
Sons, Inc. (1999)), the present inventor has found that this compound exhibits strong exciton emission in the violet to blue region (M. Era, N. Kakiyama, T. Ano, and M. Nagano). , Tran
s. Mater. Res. Soc. Jpn., 24, 509-511 (1999)). FIG. 6 shows an absorption spectrum and an emission spectrum of a lead bromide layered perovskite having an alkylammonium molecule as an organic layer. The exciton emission peak wavelength ranges from 400 nm to 44
It can be seen that the emission color changes from 0 nm to a violet to blue emission color.

【0004】このように臭化鉛系層状ペロブスカイト
は、紫から青色にわたる広範囲の発光を有する新しいタ
イプの電界発光素子を与えるものではあるが、所定の電
流を得るのに比較的大きな駆動電圧を必要とし、また、
所定の電流値によって得られる発光強度が低い点におい
て効率が良くない。
As described above, the lead bromide-based layered perovskite provides a new type of electroluminescent element having a wide range of light emission from purple to blue, but requires a relatively large driving voltage to obtain a predetermined current. And
The efficiency is not good in that the light emission intensity obtained by the predetermined current value is low.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、臭化
鉛系層状ペロブスカイトを発光層とし、効率が良く低電
圧で駆動可能な紫から青色の発光色を呈する電界発光素
子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electroluminescent device which emits violet to blue light with high efficiency and can be driven at a low voltage by using a lead bromide-based layered perovskite as a light emitting layer. It is in.

【0006】[0006]

【課題を解決するための手段】本発明者らは、検討を重
ねた結果、臭化鉛系層状ペロブスカイト化合物から成る
発光層にキャリヤ輸送性を有する有機分子を組み合わせ
た多層構造の作製に成功し、低電圧で効率のよい電界発
光を可能にした。
As a result of repeated studies, the present inventors have succeeded in producing a multilayer structure in which a light-emitting layer composed of a lead bromide-based layered perovskite compound is combined with an organic molecule having a carrier transporting property. And enabled efficient electroluminescence at low voltage.

【0007】かくして、本発明に従えば、Aを有機アン
モニウム分子として一般式A2PbBr4で表わされ、有
機アンモニウム分子A層と臭化鉛PbBr4層が交互に
積層した超格子構造を形成している臭化鉛系層状ペロブ
スカイト化合物を発光層とし、正孔輸送性を有する有機
分子層と電子輸送性を有する有機分子層とから成る2層
のキャリア輸送層が前記臭化鉛系層状ペロブスカイト化
合物の発光層を挟持している三層型積層構造を有するこ
とを特徴とする電界発光素子が提供される。
Thus, according to the present invention, A is represented by the general formula A 2 PbBr 4 where A is an organic ammonium molecule, and a superlattice structure in which organic ammonium molecule A layers and lead bromide PbBr 4 layers are alternately laminated is formed. The lead bromide-based layered perovskite compound is used as a light-emitting layer, and the two carrier transporting layers including an organic molecule layer having a hole-transporting property and an organic molecule layer having an electron-transporting property are used as the light-emitting layer. There is provided an electroluminescent element having a three-layer structure in which a light emitting layer of a compound is sandwiched.

【0008】本発明の電界発光素子においては、Aの有
機アンモニウム分子は、一般に、式R−(CH2)−N
3で表わされ、ここで、nは、0または1から6の整
数を表わし、Rは、炭素数1〜6のアルキル基、フェニ
ル基、または5員環から7員環のシクロアルキル基また
はシクロアルケニル基を表わす。本発明の電界発光素子
の好ましい態様においては、正孔輸送性の有機分子とし
て、フタロシアニン類、ジアミン誘導体、フルオレン誘
導体、またはポリチオフェン誘導体を用い、電子輸送性
を有する有機分子として、オキサジアゾール誘導体、ト
リアゾール誘導体、ペリレン誘導体、またはキノリノー
ル金属錯体を用いる。
[0008] In the electroluminescent device of the present invention, the organic ammonium molecule of A generally has the formula R- (CH 2 ) n -N
Represented by H 3, where, n is an integer from 0 or 1 to 6, R represents an alkyl group having 1 to 6 carbon atoms, a phenyl group or a 5-membered cycloalkyl group 7-membered ring from the ring, Or a cycloalkenyl group. In a preferred embodiment of the electroluminescent device of the present invention, a phthalocyanine, a diamine derivative, a fluorene derivative, or a polythiophene derivative is used as the hole-transporting organic molecule, and an oxadiazole derivative is used as the electron-transporting organic molecule. A triazole derivative, a perylene derivative, or a quinolinol metal complex is used.

【0009】[0009]

【発明の実施の形態】本発明の電界発光素子は、正孔輸
送性を有する有機分子層と電子輸送性を有する有機分子
層とから成る2つのキャリア輸送層が、臭化鉛系層状ペ
ロブスカイト化合物から成る発光層を挟持している三層
型積層構造を有する。図1は、本発明に従う電界発光素
子の典型例の横断面を示すものであり、電極(陽極と陰
極)間に上記の三層型積層構造が配置されている。一般
に、臭化鉛系層状ペロブスカイト発光層の厚さは、約1
0〜50nmとし、また、正孔輸送性有機分子層および
電子輸送層の厚さは、いずれも、約50〜100nmに
なるようにするのが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In an electroluminescent device according to the present invention, two carrier transporting layers comprising an organic molecular layer having a hole transporting property and an organic molecular layer having an electron transporting property are composed of a lead bromide layered perovskite compound. Has a three-layered laminated structure sandwiching a light-emitting layer composed of FIG. 1 shows a cross section of a typical example of an electroluminescent device according to the present invention, in which the above-mentioned three-layered laminated structure is arranged between electrodes (anode and cathode). Generally, the thickness of the lead bromide-based layered perovskite light-emitting layer is about 1
The thickness is preferably from 0 to 50 nm, and the thickness of each of the hole transporting organic molecular layer and the electron transporting layer is preferably about 50 to 100 nm.

【0010】電界発光素子を構成する各層は、従来より
知られた薄膜形成法により作製することができる。キャ
リア輸送層や電極層は、一般に、真空蒸着法により作製
する。また、臭化鉛系層状ペロブスカイト発光層は、ス
ピンコート法により作製するのが好ましい。すなわち、
臭化鉛系層状ペロブスカイトの結晶試料、あるいは有機
アンモニウム臭化水素酸塩と臭化鉛(PbBr4)と
を、ジメチルホルムアミド(DMF)やジメチルスルホ
キシド(DMSO)のような極性溶媒に溶かした溶液か
らスピンコートすることにより有機アンモニウム分子層
と臭化鉛層が交互に積層した超格子構造から成る臭化鉛
系層状ペロブスカイト層が形成される。
Each layer constituting the electroluminescent device can be manufactured by a conventionally known thin film forming method. The carrier transport layer and the electrode layer are generally manufactured by a vacuum evaporation method. Further, the lead bromide-based layered perovskite light-emitting layer is preferably produced by a spin coating method. That is,
Crystal samples of lead bromide-based layered perovskite, or solutions of organic ammonium hydrobromide and lead bromide (PbBr 4 ) dissolved in a polar solvent such as dimethylformamide (DMF) or dimethylsulfoxide (DMSO) By spin coating, a lead bromide-based layered perovskite layer having a superlattice structure in which organic ammonium molecular layers and lead bromide layers are alternately stacked is formed.

【0011】有機アンモニウム分子としては、有機分子
にアンモニアが結合した化学構造から成り、臭化鉛(P
bBr4)に配位して層状ペロブスカイトを形成し得る
各種の化合物が使用可能である。好ましい有機アンモニ
ウム分子は、一般式R−(CH2)−NH3で表わすこと
ができ、ここで、nは、0または1から6の整数を表わ
し、Rは炭素数1〜6のアルキル基、フェニル基、また
は5員環から7員環のシクロアルキル基もしくはシクロ
アルケニル基を表わす。かくして、本発明の電界発光素
子の発光層に用いる臭化鉛系層状ペロブスカイトの好ま
しい1例として下記の式(1)で表わされるものが挙げ
られる。
The organic ammonium molecule has a chemical structure in which ammonia is bonded to an organic molecule, and is composed of lead bromide (P
Various compounds that can form a layered perovskite by coordination with bBr 4 ) can be used. Preferred organic ammonium molecules of the general formula R- (CH 2) can be represented by n -NH 3, wherein, n is an integer from 0 or 1 to 6, R represents an alkyl group having 1 to 6 carbon atoms , A phenyl group, or a 5- to 7-membered cycloalkyl or cycloalkenyl group. Thus, a preferred example of the lead bromide-based layered perovskite used in the light emitting layer of the electroluminescent device of the present invention is represented by the following formula (1).

【0012】[0012]

【化1】 Embedded image

【0013】本発明の電界発光素子のキャリア輸送層の
うち正孔輸送性を有する有機分子層に用いられる有機分
子は、特に限定されるものではなく、正孔輸送性を示す
ものとして知られた各種の有機分子(有機化合物)が適
用可能である。好ましい正孔輸送性有機分子としては、
フタロシアニン類、ジアミン誘導体、フルオレン誘導体
またはポリチオフェン誘導体などを挙げることができ
る。例えば、好ましい正孔輸送性有機分子として下記の
式(2)で表わされる銅フタロシアニンが挙げられる。
The organic molecule used in the organic molecule layer having a hole transporting property among the carrier transporting layers of the electroluminescent device of the present invention is not particularly limited, and is known to exhibit a hole transporting property. Various organic molecules (organic compounds) are applicable. Preferred hole transporting organic molecules include
Examples include phthalocyanines, diamine derivatives, fluorene derivatives, and polythiophene derivatives. For example, a preferable hole transporting organic molecule includes copper phthalocyanine represented by the following formula (2).

【0014】[0014]

【化2】 Embedded image

【0015】本発明の電界発光素子の電子輸送性を有す
る有機分子層に用いられる有機分子も特に限定されるも
のではなく、電子輸送性を示すものとして知られた各種
の有機分子(有機化合物)が適用可能である。好ましい
電子輸送性有機分子としては、オキサジアゾール誘導
体、トリアゾール誘導体、ペリレン誘導体またはキノリ
ノール金属錯体などを挙げることができる。例えば、好
ましい電子輸送性有機分子として下記の式(3)で表わ
されるオキサジアゾール誘導体が挙げられる。
The organic molecules used in the organic molecule layer having an electron transport property of the electroluminescent device of the present invention are not particularly limited, and various organic molecules (organic compounds) known to exhibit the electron transport property are provided. Is applicable. Preferred electron transporting organic molecules include oxadiazole derivatives, triazole derivatives, perylene derivatives, and quinolinol metal complexes. For example, preferred electron transporting organic molecules include oxadiazole derivatives represented by the following formula (3).

【0016】[0016]

【化3】 Embedded image

【0017】以上のように、正孔輸送性を有する有機分
子層と電子輸送性を有する有機分子層とにより臭化鉛系
層状ペロブスカイト発光層をはさみこんだ三層積層型の
素子から成る本発明の電界発光素子は、後述の実施例に
も示されるように、低電圧で効率よく発光することがで
きる。この駆動電圧の低下および発光効率の低下の理由
は、臭化鉛系層状ペロブスカイト化合物はバンドギャッ
プやイオン化ポテンシャルが大きくキャリアの注入が困
難であったのが、三層構造により解消されたためと推察
される。すなわち、1)有機分子層と積層したことで、
陽極からの正孔の注入および陰極からの電子注入が容易
になったため駆動電圧が低下した。2)正孔輸送性分子
は、正孔を輸送するだけでなく、電子を輸送する能力が
低いため電子を発光層に閉じ込める役割をはたす。また
電子輸送性分子は、電子を輸送するだけでなく、正孔を
輸送する能力が低いため正孔を発光層に閉じ込める役割
をはたす。その結果、高密度に電子と正孔が発光層に閉
じ込められ、効率よく再結合するため発光効率が増大し
たものと考えられる。
As described above, the present invention comprises a three-layer laminated device in which a lead bromide layered perovskite light-emitting layer is sandwiched between an organic molecular layer having a hole transporting property and an organic molecular layer having an electron transporting property. Can emit light efficiently at a low voltage, as will be shown in Examples described later. The reason for the lower drive voltage and lower luminous efficiency is presumed to be that the lead bromide-based layered perovskite compound had a large band gap and ionization potential, which made carrier injection difficult, but was eliminated by the three-layer structure. You. That is, 1) by laminating with the organic molecular layer,
The drive voltage was reduced because the injection of holes from the anode and the injection of electrons from the cathode were facilitated. 2) The hole transporting molecule not only transports holes, but also has a role of confining electrons in the light emitting layer due to its low ability to transport electrons. In addition, the electron transporting molecule plays a role of confining holes in the light emitting layer due to its low ability to transport holes as well as electrons. As a result, it is considered that electrons and holes are confined in the light emitting layer with high density and recombination is efficiently performed, so that light emission efficiency is increased.

【0018】[0018]

【実施例】以下に本発明の特徴を更に明らかにするため
実施例を示すが、本発明はこの実施例に限定されるもの
ではない。実施例として、正孔輸送性の有機分子として
前記の式(2)の銅フタロシアニン(CuPc)、電子
輸送性の有機分子として前記の式(3)のオキサジアゾ
ール誘導体(OXD7)を用い前記の式(1)の臭化鉛
系層状ペロブスカイト化合物(CHEPbBr4)から
成る発光層を挟持した三層型電界発光素子を作製し、そ
の特性評価を行った。また、比較のため臭化鉛系層状ペ
ロブスカイトのみからなる単層型素子およびオキサジア
ゾール誘導体とのみ積層した2層型素子の評価も行っ
た。
The following examples are provided to further clarify the features of the present invention, but the present invention is not limited to these examples. As an example, the copper phthalocyanine (CuPc) of the above formula (2) is used as the organic molecule having the hole transporting property, and the oxadiazole derivative (OXD7) of the above formula (3) is used as the organic molecule having the electron transporting property. A three-layer type electroluminescent device sandwiching a light-emitting layer composed of a lead bromide-based layered perovskite compound of formula (1) (CHEPbBr 4 ) was fabricated, and its characteristics were evaluated. For comparison, a single-layer element composed only of the lead bromide-based layered perovskite and a two-layer element composed only of the oxadiazole derivative were also evaluated.

【0019】三層型素子は陽極として透明電極のインジ
ウム錫酸化物(ITO)をコートしたガラス板上に銅フ
タロシアニン(CuPc)層を真空蒸着法で作製した
後、臭化鉛系層状ペロブスカイト(CHEPbBr4
層をジメチルホルムアミド溶液からスピンコートし、さ
らにオキサジアゾール(OXD7)層および陰極として
アルミニウムリチウム合金(AlLi)を蒸着すること
により作製した。2層型素子はITOをコートした基板
上に臭化鉛系層状ペロブスカイトをスピンコートした
後、OXD7層およびAlLi陰極を蒸着することによ
り作製した。単層型素子は、ITOをコートした基板上
に臭化鉛系層状ペロブスカイトをスピンコートした後、
AlLi陰極を蒸着することにより作製した。三層型素
子および2層型素子の素子構造を図2に示す。各々の膜
厚は、Veeco社製Dektakを用い、触針法により測定した
ものである。
In the three-layer type device, a copper phthalocyanine (CuPc) layer is formed on a glass plate coated with indium tin oxide (ITO) as a transparent electrode as an anode by a vacuum evaporation method, and then a lead bromide-based layered perovskite (CHEPbBr) is formed. 4 )
The layer was spin-coated from a dimethylformamide solution, and further prepared by depositing an oxadiazole (OXD7) layer and an aluminum-lithium alloy (AlLi) as a cathode. The two-layer device was manufactured by spin-coating a lead bromide-based layered perovskite on a substrate coated with ITO, and then depositing an OXD7 layer and an AlLi cathode. The single-layer type device is obtained by spin-coating a lead bromide-based layered perovskite on an ITO-coated substrate,
It was prepared by depositing an AlLi cathode. FIG. 2 shows the element structure of the three-layer element and the two-layer element. Each film thickness was measured by a stylus method using Veeco's Dektak.

【0020】図3に本発明に従う三層型素子の発光スペ
クトルを示す。410nm付近に臭化鉛系層状ペロブス
カイトの励起子発光に対応した電界発光が観測されてい
る。このスペクトルより、三層型素子において目的どお
り層状ペロブスカイト層の励起子からの発光が得られた
ことがわかる。同様の結果は2層型素子においても得ら
れ、臭化鉛系層状ペロブスカイトの励起子に起因した発
光が観測された。
FIG. 3 shows an emission spectrum of the three-layer device according to the present invention. Electroluminescence corresponding to exciton emission of a lead bromide-based layered perovskite is observed at around 410 nm. From this spectrum, it can be seen that light emission from excitons in the layered perovskite layer was obtained in the three-layer device as intended. Similar results were obtained in the two-layer type device, and light emission due to excitons of the lead bromide-based layered perovskite was observed.

【0021】臭化鉛系層状ペロブスカイト発光層のみが
コートされた単層型素子においては、陽極と陰極とが導
通してしまい、素子として駆動することができなかっ
た。このことは、膜質の良い有機分子層と積層すること
が、陽極と陰極との導通を防ぎ安定に素子を駆動する上
で重要であることを示している。
In a single-layer device coated with only the lead bromide-based layered perovskite light-emitting layer, the anode and the cathode were electrically connected, and the device could not be driven. This indicates that lamination with an organic molecular layer having good film quality is important for preventing the conduction between the anode and the cathode and for driving the element stably.

【0022】次に励起子に起因した発光が得られた三層
型素子と二層型素子の電流電圧特性を比較した(図
4)。100mAの電流を流すのに必要な電圧を比較す
ると三層型では20V、二層型では72Vと、三層型の
方が3分の1以下の低電圧で素子を駆動できていること
がわかる。
Next, the current-voltage characteristics of the three-layer device and the two-layer device in which light emission caused by excitons was obtained were compared (FIG. 4). Comparing the voltage required to supply a current of 100 mA, the three-layer type can drive the element at a low voltage of 20 V, the two-layer type has a voltage of 72 V, and the three-layer type has a lower voltage of 1/3 or less. .

【0023】図5に三層型と二層型の電界発光強度特性
を比較したものを示す。高発光強度側で比較すると三層
型の素子の方が二層型素子に比べ同じ電流値でもより高
い発光強度が得られており効率がよいことがわかる。電
流値150mAで比較すると三層型の電界発光強度は二
層型の30倍である。これは三層型の素子で単位電流密
度あたりの電界発光効率が30倍と非常に高くなってい
ることを示す。
FIG. 5 shows a comparison between the three-layer type and the two-layer type electroluminescence intensity characteristics. Comparing on the high emission intensity side, it can be seen that the three-layer type element has higher emission intensity than the two-layer type element even at the same current value and is more efficient. When compared at a current value of 150 mA, the electroluminescence intensity of the three-layer type is 30 times that of the two-layer type. This indicates that the electroluminescence efficiency per unit current density of the three-layer type device is as high as 30 times.

【0024】[0024]

【発明の効果】本発明によれば、次のような効果を奏す
ることができる。 (1)臭化鉛系層状ペロブスカイトを用いた電界発光素
子を、低電圧で効率よく発光させることができる。 (2)電流注入により効率よく臭化鉛系層状ペロブスカ
イトの励起状態を作り出すことができ、励起子発光だけ
でなく層状ペロブスカイトが励起状態を経由して発現す
る機能を効率よく電流で駆動することができる。 (3)膜質の良い有機分子層との積層により、陽極陰極
間の導通を防ぐことができ、安定な素子を構築すること
ができる。
According to the present invention, the following effects can be obtained. (1) An electroluminescent device using a lead bromide-based layered perovskite can emit light efficiently at a low voltage. (2) The excited state of the lead bromide-based layered perovskite can be efficiently created by current injection, and not only the exciton emission but also the function of developing the layered perovskite via the excited state can be efficiently driven by current. it can. (3) Lamination with an organic molecular layer having good film quality can prevent conduction between the anode and the cathode, so that a stable element can be constructed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】正孔輸送性を有する有機分子層と電子輸送性を
有する有機分子層とにより臭化鉛系層状ペロブスカイト
発光層をはさみこんだ本発明の三層積層型発光素子の模
式図である。
FIG. 1 is a schematic diagram of a three-layer stacked light emitting device of the present invention in which a lead bromide-based layered perovskite light emitting layer is sandwiched between an organic molecular layer having a hole transporting property and an organic molecular layer having an electron transporting property. .

【図2】実施例で作製した三層型素子および二層型素子
の模式図である。
FIG. 2 is a schematic view of a three-layer element and a two-layer element manufactured in an example.

【図3】実施例で作製した三層型素子の電界発光スペク
トルである。
FIG. 3 is an electroluminescence spectrum of a three-layer element manufactured in an example.

【図4】実施例で作製した三層型素子と二層型素子の電
流・電圧特性を比較した図である。
FIG. 4 is a diagram comparing current-voltage characteristics of a three-layer element and a two-layer element manufactured in an example.

【図5】実施例で作製した三層型素子と二層型素子の電
流・電界発光強度特性を比較した図である。
FIG. 5 is a diagram comparing current / electroluminescence intensity characteristics of a three-layer element and a two-layer element produced in an example.

【図6】アルキルアンモニウム分子を有機層とした臭化
鉛系層状ペロブスカイトの発光スペクトルおよび吸収ス
ペクトルである。実線が発光スペクトルを、点線が吸収
スペクトルを示す。上方に示す式は層状ペロブスカイト
の化学式であり、式中のnの値はアルキルアンモニウム
分子のアルキル鎖の炭素数を示す。
FIG. 6 shows an emission spectrum and an absorption spectrum of a lead bromide-based layered perovskite having an alkylammonium molecule as an organic layer. The solid line shows the emission spectrum, and the dotted line shows the absorption spectrum. The formula shown above is the chemical formula of the layered perovskite, where the value of n indicates the number of carbon atoms in the alkyl chain of the alkyl ammonium molecule.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05B 33/22 H05B 33/22 B D ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05B 33/22 H05B 33/22 BD

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Aを有機アンモニウム分子として一般式
2PbBr4で表わされ、有機アンモニウム分子A層と
臭化鉛PbBr4層が交互に積層した超格子構造を形成
している臭化鉛系層状ペロブスカイト化合物を発光層と
し、正孔輸送性を有する有機分子層と電子輸送性を有す
る有機分子層とから成る2層のキャリア輸送層が前記臭
化鉛系層状ペロブスカイト化合物の発光層を挟持してい
る三層型積層構造を有することを特徴とする電界発光素
子。
A lead bromide represented by the general formula A 2 PbBr 4 wherein A is an organic ammonium molecule, and having a superlattice structure in which an organic ammonium molecule A layer and a lead bromide PbBr 4 layer are alternately laminated. A layered perovskite compound is used as a light emitting layer, and a carrier transport layer composed of an organic molecular layer having a hole transporting property and an organic molecular layer having an electron transporting property sandwiches the light emitting layer of the lead bromide based perovskite compound. An electroluminescent device having a three-layered laminated structure.
【請求項2】 Aの有機アンモニウム分子が、R−(C
2)−NH3(nは、0または1から6の整数を表わ
し、Rは、炭素数1〜6のアルキル基、フェニル基、ま
たは5員環から7員環のシクロアルキル基またはシクロ
アルケニル基を表わす)で表わされるものであるこをと
特徴とする請求項1の電界発光素子。
2. The method according to claim 1, wherein the organic ammonium molecule of A is R- (C
H 2) n -NH 3 (n is an integer from 0 or 1 to 6, R represents an alkyl group having 1 to 6 carbon atoms, a phenyl group or a 5-membered ring of the 7-membered cycloalkyl group or a cycloalkyl, 2. An electroluminescent device according to claim 1, wherein the electroluminescent device is represented by the following formula:
【請求項3】 正孔輸送性の有機分子として、フタロシ
アニン類、ジアミン誘導体、フルオレン誘導体、または
ポリチオフェン誘導体を用いることを特徴とする請求項
1または請求項2の電界発光素子。
3. The electroluminescent device according to claim 1, wherein a phthalocyanine, a diamine derivative, a fluorene derivative or a polythiophene derivative is used as the hole transporting organic molecule.
【請求項4】 電子輸送性を有する有機分子として、オ
キサジアゾール誘導体、トリアゾール誘導体、ペリレン
誘導体、またはキノリノール金属錯体を用いることを特
徴とする請求項1から請求項3のいずれかの電界発光素
子。
4. The electroluminescent device according to claim 1, wherein an oxadiazole derivative, a triazole derivative, a perylene derivative, or a quinolinol metal complex is used as the organic molecule having an electron transporting property. .
JP2001104310A 2001-04-03 2001-04-03 Electroluminescent element with lead bromide system layered perovskite compound as luminescent layer Pending JP2002299063A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001104310A JP2002299063A (en) 2001-04-03 2001-04-03 Electroluminescent element with lead bromide system layered perovskite compound as luminescent layer
PCT/JP2001/011016 WO2002082864A1 (en) 2001-04-03 2001-12-17 Electroluminescent element having lead bromide based layered perovskite compound as luminescent layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001104310A JP2002299063A (en) 2001-04-03 2001-04-03 Electroluminescent element with lead bromide system layered perovskite compound as luminescent layer

Publications (1)

Publication Number Publication Date
JP2002299063A true JP2002299063A (en) 2002-10-11

Family

ID=18957189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001104310A Pending JP2002299063A (en) 2001-04-03 2001-04-03 Electroluminescent element with lead bromide system layered perovskite compound as luminescent layer

Country Status (2)

Country Link
JP (1) JP2002299063A (en)
WO (1) WO2002082864A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066684A1 (en) * 2003-01-21 2004-08-05 Kyushu Electric Power Co., Inc. Electroluminescent element
WO2005004548A1 (en) * 2003-07-02 2005-01-13 Matsushita Electric Industrial Co., Ltd. Light emitting element and display device
WO2009104595A1 (en) * 2008-02-19 2009-08-27 独立行政法人産業技術総合研究所 Oxide perovskite thin film el element
US7982390B2 (en) 2003-07-02 2011-07-19 Panasonic Corporation Light emitting element and display device having an inorganic phosphor layer
JP2014078392A (en) * 2012-10-10 2014-05-01 Peccell Technologies Inc Electroluminescence element using perovskite compound
JP2014082377A (en) * 2012-10-17 2014-05-08 Peccell Technologies Inc Organic el element using perovskite compound
US8796908B2 (en) 2009-07-22 2014-08-05 Konica Minolta Medical & Graphic, Inc. Piezoelectric body, ultrasound transducer, medical ultrasound diagnostic system, and nondestructive ultrasound test system
WO2015007094A1 (en) * 2013-07-16 2015-01-22 华中科技大学 Mesoscopic solar cell based on perovskite light absorption material and preparation method thereof
CN106463639A (en) * 2014-04-30 2017-02-22 剑桥企业有限公司 Electroluminescent device
JP2017057197A (en) * 2015-09-17 2017-03-23 旭化成株式会社 Composition and preparation process therefor
JP2018041987A (en) * 2012-09-18 2018-03-15 オックスフォード ユニヴァーシティ イノヴェーション リミテッド Optoelectronic device
JP2018120846A (en) * 2016-11-30 2018-08-02 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, electronic device, display device, and lighting device
CN111403615A (en) * 2020-03-27 2020-07-10 深圳市华星光电半导体显示技术有限公司 Organic light emitting device and method of manufacturing the same
JP2020170710A (en) * 2015-11-08 2020-10-15 キング アブドラ ユニバーシティ オブ サイエンス アンド テクノロジー Air-stable surface passivated perovskite quantum dots (qd), manufacturing method of the same, and usage method of the same
US11362298B2 (en) 2014-11-28 2022-06-14 Cambridge Enterprise Limited Electroluminescent device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201208793D0 (en) 2012-05-18 2012-07-04 Isis Innovation Optoelectronic device
EP2850627B1 (en) 2012-05-18 2016-04-06 Isis Innovation Limited Optoelectronic device comprising porous scaffold material and perovskites
EP3010054B1 (en) 2012-05-18 2019-02-20 Oxford University Innovation Limited Optoelectronic device
CN112898960A (en) * 2019-12-04 2021-06-04 中国科学院大连化学物理研究所 White light luminescent material based on two-dimensional perovskite structure and preparation and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067984A (en) * 1996-08-29 1998-03-10 Futaba Corp Doping material for organic electroluminescence element an organic electroluminescence element
JPH11329723A (en) * 1998-05-08 1999-11-30 Toray Ind Inc Manufacture of organic electroluminescent element
JP2000340361A (en) * 1999-05-25 2000-12-08 Matsushita Electric Ind Co Ltd Organic electroluminescence element
JP2001060497A (en) * 1999-07-08 2001-03-06 Internatl Business Mach Corp <Ibm> Electroluminescent element having organic-inorganic hybrid material as luminescent layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067984A (en) * 1996-08-29 1998-03-10 Futaba Corp Doping material for organic electroluminescence element an organic electroluminescence element
JPH11329723A (en) * 1998-05-08 1999-11-30 Toray Ind Inc Manufacture of organic electroluminescent element
JP2000340361A (en) * 1999-05-25 2000-12-08 Matsushita Electric Ind Co Ltd Organic electroluminescence element
JP2001060497A (en) * 1999-07-08 2001-03-06 Internatl Business Mach Corp <Ibm> Electroluminescent element having organic-inorganic hybrid material as luminescent layer

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066684A1 (en) * 2003-01-21 2004-08-05 Kyushu Electric Power Co., Inc. Electroluminescent element
WO2005004548A1 (en) * 2003-07-02 2005-01-13 Matsushita Electric Industrial Co., Ltd. Light emitting element and display device
US7737622B2 (en) 2003-07-02 2010-06-15 Panasonic Corporation Light emitting element with semiconductive phosphor
US7982390B2 (en) 2003-07-02 2011-07-19 Panasonic Corporation Light emitting element and display device having an inorganic phosphor layer
WO2009104595A1 (en) * 2008-02-19 2009-08-27 独立行政法人産業技術総合研究所 Oxide perovskite thin film el element
US8193704B2 (en) 2008-02-19 2012-06-05 National Institute Of Advanced Industrial Science And Technology Perovskite oxide thin film EL element
JP5093694B2 (en) * 2008-02-19 2012-12-12 独立行政法人産業技術総合研究所 Oxide perovskite thin film EL device
US8796908B2 (en) 2009-07-22 2014-08-05 Konica Minolta Medical & Graphic, Inc. Piezoelectric body, ultrasound transducer, medical ultrasound diagnostic system, and nondestructive ultrasound test system
JP7245527B2 (en) 2012-09-18 2023-03-24 オックスフォード ユニヴァーシティ イノヴェーション リミテッド optoelectronic device
JP2018041987A (en) * 2012-09-18 2018-03-15 オックスフォード ユニヴァーシティ イノヴェーション リミテッド Optoelectronic device
US10069025B2 (en) 2012-09-18 2018-09-04 Oxford University Innovation Limited Optoelectronic device
JP2020074485A (en) * 2012-09-18 2020-05-14 オックスフォード ユニヴァーシティ イノヴェーション リミテッド Optoelectronic device
US11527663B2 (en) 2012-09-18 2022-12-13 Oxford University Innovation Limited Optoelectronic device
US11469338B2 (en) 2012-09-18 2022-10-11 Oxford University Innovation Limited Optoelectronic device
JP2014078392A (en) * 2012-10-10 2014-05-01 Peccell Technologies Inc Electroluminescence element using perovskite compound
JP2014082377A (en) * 2012-10-17 2014-05-08 Peccell Technologies Inc Organic el element using perovskite compound
WO2015007094A1 (en) * 2013-07-16 2015-01-22 华中科技大学 Mesoscopic solar cell based on perovskite light absorption material and preparation method thereof
CN106463639A (en) * 2014-04-30 2017-02-22 剑桥企业有限公司 Electroluminescent device
JP2017516317A (en) * 2014-04-30 2017-06-15 ケンブリッジ・エンタープライズ・リミテッド Electroluminescence device
JP7005345B2 (en) 2014-04-30 2022-02-04 ケンブリッジ・エンタープライズ・リミテッド Electroluminescence device
US11362298B2 (en) 2014-11-28 2022-06-14 Cambridge Enterprise Limited Electroluminescent device
JP2017057197A (en) * 2015-09-17 2017-03-23 旭化成株式会社 Composition and preparation process therefor
JP2020170710A (en) * 2015-11-08 2020-10-15 キング アブドラ ユニバーシティ オブ サイエンス アンド テクノロジー Air-stable surface passivated perovskite quantum dots (qd), manufacturing method of the same, and usage method of the same
JP7129772B2 (en) 2016-11-30 2022-09-02 株式会社半導体エネルギー研究所 Light-emitting elements, light-emitting devices, electronic devices and lighting devices
JP2018120846A (en) * 2016-11-30 2018-08-02 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, electronic device, display device, and lighting device
CN111403615A (en) * 2020-03-27 2020-07-10 深圳市华星光电半导体显示技术有限公司 Organic light emitting device and method of manufacturing the same

Also Published As

Publication number Publication date
WO2002082864A1 (en) 2002-10-17

Similar Documents

Publication Publication Date Title
KR100751626B1 (en) Organic light emitting device
JP4571359B2 (en) Intersystem crossing agent for effective use of excitons in organic light-emitting devices
KR101030158B1 (en) Organic electroluminescent element
KR101205193B1 (en) Lighting equipment
US5811833A (en) Electron transporting and light emitting layers based on organic free radicals
JP3615536B2 (en) Organic EL light emitting device
JP3841695B2 (en) Organic EL element and organic EL display
US6469437B1 (en) Highly transparent organic light emitting device employing a non-metallic cathode
KR100903918B1 (en) Organic Electroluminescence Element and Display
JP2002299063A (en) Electroluminescent element with lead bromide system layered perovskite compound as luminescent layer
JPH0741759A (en) Organic electroluminescent element
WO2001058222A1 (en) Organic electroluminescent element and method of manufacture thereof
KR100751464B1 (en) Organic electroluminescent device
JP2002352961A (en) Organic electroluminescent device
JPH06212153A (en) Organic electroluminescent element
US7948163B2 (en) Small molecule/polymer organic light emitting device capable of white light emission
JP2007096023A (en) Organic light emitting device
WO2017056682A1 (en) Organic electroluminescence panel
EP1744380B1 (en) Organic light emitting display device
JP4729203B2 (en) Electroluminescent device using phosphorescence of lead halide layered perovskite compound
JP5791129B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND ORGANIC ELECTROLUMINESCENT LIGHTING DEVICE
JP3152506B2 (en) Organic electroluminescent device
JP4109979B2 (en) Organic light emitting device
JP2004031212A (en) Organic electroluminescent element
JP2003208988A (en) Organic electroluminescent device and display equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220