WO2002082448A1 - Identification d'un circuit integre a partir de ses parametres physiques de fabrication - Google Patents

Identification d'un circuit integre a partir de ses parametres physiques de fabrication Download PDF

Info

Publication number
WO2002082448A1
WO2002082448A1 PCT/FR2002/001192 FR0201192W WO02082448A1 WO 2002082448 A1 WO2002082448 A1 WO 2002082448A1 FR 0201192 W FR0201192 W FR 0201192W WO 02082448 A1 WO02082448 A1 WO 02082448A1
Authority
WO
WIPO (PCT)
Prior art keywords
identification
circuit
delay
integrated circuit
terminal
Prior art date
Application number
PCT/FR2002/001192
Other languages
English (en)
Inventor
Michel Bardouillet
Luc Wuidart
Original Assignee
Stmicroelectronics S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stmicroelectronics S.A. filed Critical Stmicroelectronics S.A.
Priority to US10/473,058 priority Critical patent/US7178113B2/en
Priority to EP02730354A priority patent/EP1397806B1/fr
Priority to DE60205374T priority patent/DE60205374D1/de
Priority to JP2002580328A priority patent/JP3991865B2/ja
Publication of WO2002082448A1 publication Critical patent/WO2002082448A1/fr

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/20Address safety or protection circuits, i.e. arrangements for preventing unauthorized or accidental access
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/15Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors
    • H03K5/15013Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs
    • H03K5/1506Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs with parallel driven output stages; with synchronously driven series connected output stages
    • H03K5/15066Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs with parallel driven output stages; with synchronously driven series connected output stages using bistable devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/19Monitoring patterns of pulse trains

Definitions

  • the present invention relates to the identification of an electronic element or assembly from parameters related to the manufacture of an identification circuit contained in an integrated circuit chip.
  • identification generally uses a network of physical parameters (PPN) related to the manufacture of the integrated circuit chip.
  • PPN physical parameters
  • This identification is commonly designated by the Anglo-Saxon expression "integrated circuit fingerprint”.
  • a first family of known identification methods consists in measuring electrical parameters of the integrated circuit chip. It may, for example, be a measurement of a threshold voltage of a transistor, a resistance measurement or a measurement of a stray capacitance. As these characteristics are sensitive to technological and manufacturing process dispersions, it can be considered that the electrical parameter or parameters taken into account are specific to a manufacturing and constitute a "signature" of the integrated circuits resulting from this manufacturing.
  • An example of a process using measurement of electrical parameters is described in US Pat. No. 6,161,213.
  • One drawback of using an electrical parameter measurement is that these quantities change over time (in the life of the circuit). Consequently, the signature obtained is not stable.
  • Another disadvantage is that it is necessary to make the difference between a measured signature (for example, the voltage across a capacitor) and a predefined signature. It is therefore necessary to have an analog / digital converter to convert the measured signals before making the difference allowing the identification.
  • the converter In addition to the stability problems, the converter must be very precise because of the small variations which have to be measured. Indeed, these are technological dispersions which, by nature, are very low (for example, for the threshold voltage of an MOS transistor, the dispersion is generally +/- 4 millivolts. For a voltage measurement, it It could be a matter of detecting a difference of less than one millivolt over a value range of around 200 millivolts, for example, a 12-bit converter is required.
  • a second family of known solutions uses a time measurement. For example, the read / write time of an EEPROM type memory is measured.
  • An example of an identification method using a measurement of the execution time of operations is described in US Patent No. 5,818,738.
  • the invention aims to propose a new way of identifying an electronic assembly or element from physical parameters of an integrated circuit chip it contains.
  • the invention aims, more particularly, to propose a new identification method as well as a new network type identification circuit of physical parameters which overcomes at least one of the drawbacks of known methods and circuits.
  • the invention also aims to propose a solution which avoids the use of analog-digital converters or counters.
  • the present invention also aims to propose a solution that requires little integration surface.
  • the invention also aims to propose a solution which is particularly sensitive to technological and manufacturing process dispersions, while being stable over time.
  • the invention further aims to propose a solution which is compatible with internal or external processing of the identification code obtained.
  • the present invention provides a network type identification circuit of physical parameters contained in an integrated circuit chip, comprising: a single input terminal for application of an identification trigger signal; output terminals suitable for delivering a binary identification code; first electrical paths individually connecting said input terminal to each output terminal, each path providing a delay sensitive to dispersions technological and / or manufacturing process of the integrated circuit; and means for simultaneously taking into account the binary states present at the output of the electrical paths.
  • each electrical path consists of a delay element and a flip-flop, an input terminal of which is connected at the output of the corresponding delay element and an output terminal of which defines one of identification circuit output terminals.
  • said means for taking into account comprise a second electrical path providing a delay corresponding approximately to the average delay of the delays brought by said first paths, said second path being interposed between said input terminal and a trigger terminal for taking into account said binary states.
  • the clock inputs of the different flip-flops are all connected to said trigger terminal.
  • the electrical paths are chosen to provide delays of the same order of magnitude, despite the technological dispersions.
  • the invention also provides a method for identifying an integrated circuit chip on the basis of these physical parameters sensitive to technological dispersion, consisting in comparing an average journey time of a digital signal with respect to at least two others electrical paths of the same digital signal. According to an embodiment of the present invention, the taking into account of the comparisons is synchronized from the digital input signal.
  • FIG. 1 represents an embodiment of an integrated identification circuit according to the present invention
  • FIGS. 2A and 2B illustrate, in the form of timing diagrams, the operation of the identification circuit of FIG. 1, for two different integrated circuits.
  • a characteristic of the present invention is to subject, to the same input signal (logic signal comprising at least one edge), several different delays originating from electrical paths each providing a significant delay to technological and / or manufacturing process dispersions. .
  • Another characteristic of the invention is not to measure the effects of technological dispersions in terms of time difference but to provide a direct comparison of the delays brought by the different paths compared to an average delay.
  • FIG. 1 represents the electrical diagram of an embodiment of an integrated identification circuit according to the present invention.
  • circuit 1 comprises a single input terminal 2 intended to receive a digital signal E triggering an identification.
  • the signal E must comprise, as will be seen hereinafter in relation to FIGS. 2A and 2B, at least one edge per identification.
  • the role of the identification circuit 1 is to deliver a binary code B ⁇ , B2, ..., 'B ⁇ -i, Bi, ..., N. &- ⁇ , B JJ on a predetermined number of bits, this code being sensitive to technological dispersions and circuit manufacturing process.
  • Each bit Bi is delivered on a terminal 3 ⁇ , 32 ••• / 3 il ' 3 i »•••' 3 nl» 3 n ⁇ u circuit 1 which is specific to it. Circuit 1 therefore delivers the identification code in parallel form.
  • each bit Bi of the identification code is associated with an electrical path P] _, P2, ..., Pi, ..., P n connecting the common input terminal 2 to a terminal 3i of same rank.
  • the delays brought by the different electrical paths Pi are chosen to be slightly different from each other so as to guarantee sensitivity to the technological dispersions of the manufacturing process.
  • an average electrical path 4 (C0) is provided for fixing the instant of reading from the appearance of the trigger edge of the input signal.
  • each electrical path Pi includes a delay element 6 ⁇ (Cl), 62 (C2) ..., 6 ⁇ (Ci) ..., 6 n (Cn) connecting input 2 of the circuit to input D of the corresponding flip-flop on the path.
  • the delay elements 6i are the elements which, according to the present invention, have different delays with respect to each other.
  • the flip-flops 5i preferably have the same constitution. However, they participate in the delay brought to the input signal to the respective output terminals of the circuit 1 with respect to the average delay CO brought by the element 4.
  • circuit 1 are individually connected at the input of a register 7 for storing the binary code obtained, each bit Bi corresponding to one of the outputs of the circuit.
  • the connection and constitution details of the register 7 have not been shown and are not the subject of the present invention. Once the binary code is contained in this register, its exploitation depends on the application, and its implementation is within the reach of those skilled in the art.
  • FIGS. 2A and 2B illustrate, in the form of timing diagrams and without respect for scale, the operation of an identification circuit according to the invention.
  • FIGS. 2A and 2B show examples of patterns of the signal E, and of the signals at the output of the different delay elements.
  • the chronograms have been designated by the references CO, Cl, C2, C3 and C4.
  • FIGS. 2A and 2B represents the difference between two circuits 1 integrated on chips from different manufacturers.
  • FIG. 2B illustrates the same circuit resulting from a different manufacturing process therefore giving a different chip.
  • the code obtained is different. For example, it is the code 0010.
  • an instant t5 has been made arbitrarily identical to the case in FIG. 2A.
  • the instants t'0, t'1, t'2, t'3 and t'4 at which the edge of the signal E has finished traversing the respective paths C0, Cl, C2, C3 and C4 are different from the case of Figure 2A.
  • the retarding element C0 is itself sensitive to technological and manufacturing process dispersions. This does not, however, affect the implementation of the invention since this delay represents an average delay and the identification code sought is arbitrary. Indeed, for an implementation of the invention to a network type identification of physical parameters, what is important is that integrated circuits originating from the same manufacturing process provide the same code. As the retarding elements are sensitive to dispersions in the manufacturing process, this will be the case with the implementation of the invention.
  • An advantage of the present invention is that the identification is particularly precise and reliable. In particular, by eliminating the need for a measurement (of voltage or of time), one frees oneself from the problems of accuracy of converters or counters.
  • the identification circuit is particularly sensitive.
  • the detectable difference of the delays brought by the different paths is of the order of a picosecond.
  • the dispersions of the manufacturing or technological processes most often bring differences of the order of at least ten picoseconds.
  • Another advantage of the present invention is that in the event of a drift in time of one of the delays provided by the elements, this does not affect the results of the circuit. Indeed, all the delay elements preferably being of similar constitution, the dispersion will be in the same direction for all the elements (paths).
  • any integrated elements sensitive to technological dispersions or influenced by the manufacturing process may be used. It could be, for example, series of resistors and / or capacitors.
  • resistors it will be possible to use resistors in the thickness of the integrated circuit, but it will be preferable to use resistors in polycrystalline silicon whose value is linked to the geometry and which have the advantage of being less dependent on the temperature.
  • an identification phase is triggered by an edge of the input signal E. The number of phases depends on the application and the destination of the identification circuit. If it is a smart card, provision may be made, for example, for an identification for each exchange carried out between this card and an external device, even during the same transaction.
  • the present invention is susceptible of various variants and modifications which will appear to one skilled in the art.
  • the practical implementation of the retarding elements of the invention may take different forms, provided that they are sensitive to techno-logical dispersions and / or manufacturing processes.
  • the number of bits of the code supplied by the circuit of the invention also depends on the desired sensitivity. The higher the number of bits, the more the circuit will be sensitive to code variations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

L'invention concerne un procédé et un circuit (1) d'identification de type réseau de paramètres physiques contenus dans une puce de circuit intégré, comportant une unique borne (2) d'entrée d'application d'un signal (E) de déclenchement d'une identification, des bornes (31, 32, ..., 3i-1, 3i, ..., 3n-1, 3n) de sortie propres à délivrer un code binaire (B1, B2, ..., Bi-1, Bi, ..., Bn-1, Bn) d'identification, des premiers chemins électriques (P1, P2, ..., Pi, ..., Pn) relaint individuellement ladite borne d'entrée à chaque borne de sortie, et des moyens (4, 51, 52, ..., 5i, ..., 5n) de prise en compte simultanée des états binaires présents en sortie des chemins électriques, chaque chemin apportant un retard sensible aux dispertions technologiques et/ou de procédé de fabrication du circuit intégré.

Description

IDENTIFICATION D'UN CIRCUIT INTEGRE A PARTIR DE SES PARAMETRES
PHYSIQUES DE FABRICATION
La présente invention concerne l'identification d'un élément ou ensemble électronique à partir de paramètres liés à la fabrication d'un circuit d'identification contenu dans une puce de circuit intégré. Une telle identification fait généralement appel à un réseau de paramètres physiques (PPN) liés à la fabrication de la puce de circuit intégré. Cette identification est couramment désignée par 1 ' expression anglo- saxonne "integrated circuit fingerprint" .
Une première famille de méthodes connues d'iden- tification consiste à mesurer des paramètres électriques de la puce de circuit intégré. Il peut s'agir, par exemple, d'une mesure d'une tension seuil d'un transistor, d'une mesure de résistance ou d'une mesure d'une capacité parasite. Comme ces caractéristiques sont sensibles aux dispersions technologiques et de procédé de fabrication, on peut considérer que le ou les paramètres électriques pris en compte sont propres à une fabrication et constituent une "signature" des circuits intégrés issus de cette fabrication. Un exemple de procédé ayant recours à une mesure de paramètres électriques est décrit dans le brevet américain n° 6 161 213. Un inconvénient du recours à une mesure de paramètres électriques est que ces grandeurs évoluent dans le temps (dans la vie du circuit) . Par conséquent, la signature obtenue n'est pas stable. Un autre inconvénient est qu'il est nécessaire d'effectuer la différence entre une signature mesurée (par exemple, la tension aux bornes d'une capacité) et une signature prédéfinie. Il est par conséquent nécessaire de disposer d'un convertisseur analogique/numérique pour convertir les signaux mesurés avant d'en effectuer la différence permettant 1 ' identification.
Outre les problèmes de stabilité, le convertisseur doit être très précis en raison des faibles variations que 1 ' on doit mesurer. En effet, il s'agit de dispersions technologiques qui, par nature, sont très faibles (par exemple, pour la tension seuil d'un transistor MOS, la dispersion est généralement de +/- 4 millivolts. Pour une mesure de tension, il peut s'agir de détecter une différence inférieure au millivolt sur une plage de valeur d'environ 200 millivolts. Pour un tel exemple, un conver- tisseur 12 bits est nécessaire.
Un autre inconvénient est que, pour des questions de fiabilité, il est souvent nécessaire d'examiner plusieurs points du circuit. Cela nécessite par conséquent un multiplexeur analogique, sauf à augmenter le nombre de convertisseurs utilisés. Une deuxième famille de solutions connues fait appel à une mesure temporelle. Par exemple, on mesure le temps de lecture/écriture d'une mémoire de type EEPROM. Un exemple de procédé d'identification ayant recours à une mesure de temps d'exécution d'opérations est décrit dans le brevet américain n° 5 818 738.
Cette famille de solutions présente les mêmes inconvénients que la précédente. La différence est que le convertisseur est remplacé par un compteur.
Que ce soit dans la première ou dans la deuxième famille de solutions, on a recours à une mesure et on compare la signature obtenue par rapport à une valeur étalon stockée, soit dans le circuit intégré, soit dans un dispositif externe dans le cas d'une authentification par rapport à des éléments distants.
Toutes ces solutions présentent donc 1 ' inconvénient majeur d'être encombrantes et délicates à mettre en oeuvre pour un résultat incertain.
L'invention vise à proposer une nouvelle manière d'effectuer une identification d'un ensemble ou élément électronique à partir de paramètres physiques d'une puce de circuit intégré qu'il contient. L'invention vise, plus particulièrement, à proposer un nouveau procédé d'identification ainsi qu'un nouveau circuit d'identification de type réseau de paramètres physiques qui pallient au moins un des inconvénients des procédés et circuits connus. L'invention vise également à proposer une solution qui évite le recours à des convertisseurs analogiques-numériques ou à des compteurs.
La présente invention vise également à proposer une solution peu gourmande en surface d'intégration. L' invention vise également à proposer une solution qui soit particulièrement sensible aux dispersions technologiques et de procédé de fabrication, tout en étant stable dans le temps.
L'invention vise en outre à proposer une solution qui soit compatible avec un traitement interne ou externe du code d'identification obtenu.
Pour atteindre ces objets, la présente invention prévoit un circuit d'identification de type réseau de paramètres physiques contenu dans une puce de circuit intégré, comportant : une unique borne d'entrée d'application d'un signal de déclenchement d'une identification ; des bornes de sortie propres à délivrer un code binaire d'identification ; des premiers chemins électriques reliant individuellement ladite borne d'entrée à chaque borne de sortie, chaque chemin apportant un retard sensible aux dispersions technologiques et/ou de procédé de fabrication du circuit intégré ; et des moyens de prise en compte simultanée des états binaires présents en sortie des chemins électriques. Selon un mode de réalisation de la présente invention, chaque chemin électrique est constitué d'un élément retardateur et d'une bascule dont une borne d'entrée est reliée en sortie de l'élément retardateur correspondant et dont une borne de sortie définit une des bornes de sortie du circuit d'identification. Selon un mode de réalisation de la présente invention, lesdits moyens de prise en compte comprennent un deuxième chemin électrique apportant un retard correspondant approximativement au retard moyen des retards apportés par lesdits premiers chemins, ledit deuxième chemin étant intercalé entre ladite borne d'entrée et une borne de déclenchement de prise en compte desdits états binaires.
Selon un mode de réalisation de la présente invention, les entrées d'horloge des différentes bascules sont toutes reliées à ladite borne de déclenchement. Selon un mode de réalisation de la présente invention, les chemins électriques sont choisis pour apporter des retards du même ordre de grandeur, malgré les dispersions technologiques .
L'invention prévoit également un procédé d'identi- fication d'une puce de circuit intégré à partir de ces paramètres physiques sensibles aux dispersions technologiques, consistant à comparer une durée de parcours moyen d'un signal numérique par rapport à au moins deux autres chemins électriques du même signal numérique. Selon un mode de réalisation de la présente invention, on synchronise la prise en compte des comparaisons à partir du signal numérique d'entrée.
Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles : la figure 1 représente un mode de réalisation d'un circuit d'identification intégré selon la présente invention ; et les figures 2A et 2B illustrent, sous forme de chronogrammes, le fonctionnement du circuit d'identification de la figure 1, pour deux circuits intégrés différents.
Par souci de clarté, seuls les éléments qui sont nécessaires à la compréhension de l'invention ont été représentés aux figures et seront décrits par la suite. En particulier, la destination et l'exploitation faite du code d'identification obtenu par la mise en oeuvre de l'invention n'ont pas été détaillées et ne font pas 1 ' objet de 1 ' invention. De plus, le déclenchement d'une procédure d'identification au moyen d'un circuit intégré selon l'invention pourra être effectué de façon similaire aux solutions classiques qui ne seront pas détaillées.
Une caractéristique de la présente invention est de faire subir, à un même signal d'entrée (signal logique comprenant au moins un front) , plusieurs retards différents provenant de chemins électriques apportant chacun un retard sensible aux dispersions technologiques et/ou de procédé de fabrication. Une autre caractéristique de l'invention est de ne pas mesurer les effets des dispersions technologiques en terme de différence temporelle mais de prévoir une comparaison directe des retards apportés par les différents chemins par rapport à un retard moyen. La figure 1 représente le schéma électrique d'un mode de réalisation d'un circuit d'identification intégré selon la présente invention.
Dans cet exemple, le circuit 1 comporte une unique borne 2 d'entrée destinée à recevoir un signal numérique E de déclenchement d'une identification. Pour la mise en oeuvre de l'invention, le signal E doit comprendre, comme on le verra par la suite en relation avec les figures 2A et 2B, au moins un front par identification.
Le rôle du circuit d'identification 1 est de délivrer un code binaire B^, B2, ..., 'B±-i,, Bi, ..., &n.-ι, BJJ sur un nombre de bits prédéterminé, ce code étant sensible aux dispersions technologiques et de procédé de fabrication du circuit. Chaque bit Bi est délivré sur une borne 3^, 32 •••/ 3i-l' 3i» •••' 3n-l» 3n <^u circuit 1 qui lui est propre. Le circuit 1 délivre donc le code d'identification sous forme parallèle.
Selon l'invention, à chaque bit Bi du code d'identification est associé un chemin électrique P]_, P2, ..., Pi, ..., Pn reliant la borne d'entrée commune 2 à une borne 3i de même rang. De préférence, les retards apportés par les différents chemins électriques Pi sont choisis pour être légèrement différents les uns des autres de façon à garantir une sensibilité aux dispersions technologiques du procédé de fabrication.
On voit donc déjà que, par les différents retards apportés par les chemins électriques, le front déclencheur du signal d'entrée E est reproduit sur les différentes sorties à des instants différents.
Selon l'invention, on prévoit d'effectuer la lecture de 1 ' information présente aux sorties du circuit 1 de façon synchronisée et à un instant correspondant, de façon approximative, au retard moyen théorique entre les différents chemins électriques.
Plus précisément, selon le mode de réalisation préféré de l'invention illustré par la figure 1, on prévoit un chemin électrique moyen 4 (C0) pour fixer l'instant de lecture à partir de 1 ' apparition du front déclencheur du signal d'entrée E.
Par exemple, le chemin 4 relie l'entrée 2 du circuit 1 aux bornes Ck de bascules 5^, 52, ••-, 5i, ..., 5n faisant partie des chemins électriques respectifs P^, P2, ..., Pi, ..., Pn et dont les sorties respectives Q constituent les bornes 31 32, ..., 3i, ..., 3n de sortie du circuit 1. Selon ce mode de réalisation, chaque chemin électrique Pi comporte un élément retardateur 6^ (Cl), 62 (C2) ..., 6^ (Ci) ..., 6n (Cn) reliant 1 'entrée 2 du circuit à 1 'entrée D de la bascule correspondante du chemin. Les éléments retardateurs 6i sont les éléments qui présentent, selon la présente invention, des retards différents les uns par rapport aux autres. En effet, les bascules 5i ont, de préférence, la même constitution. Elles participent toutefois au retard apporté au signal d'entrée jusqu'aux bornes de sortie respectives du circuit 1 par rapport au retard moyen CO apporté par 1 ' élément 4.
Lorsqu'on applique un front sur le signal d'entrée E, ce front arrive sur les entrées D respectives des bascules à des instants différents. La lecture de l'état d'entrée des diffé- rentes bascules est synchronisée par le front du signal E retardé, cette fois, par l'élément 4. C'est notamment pour cette raison que l'on choisit préférentiellement un retard CO correspondant approximativement au retard moyen des différents éléments 6 . Dans l'exemple de la figure 1, les différentes sorties
3i du circuit 1 sont reliées individuellement en entrée d'un registre 7 de mémorisation du code binaire obtenu, chaque bit Bi correspondant à l'une des sorties du circuit. Les détails de connexion et de constitution du registre 7 n'ont pas été repré- sentes et ne font pas l'objet de la présente invention. Une fois le code binaire contenu dans ce registre, son exploitation dépend de l'application, et sa mise en oeuvre est à la portée de l'homme du métier.
Les figures 2A et 2B illustrent, sous forme de chrono- grammes et sans respect d'échelle, le fonctionnement d'un circuit d'identification selon l'invention. Les figures 2A et 2B représentent des exemples d'allures du signal E, et des signaux en sortie des différents éléments retardateurs . Dans 1 ' exemple des figures 2A et 2B, on considère le cas d'un code binaire sur quatre bits. Les chronogrammes ont été désignés par les références CO, Cl, C2, C3 et C4.
La différence entre les figures 2A et 2B représente la différence entre deux circuits 1 intégrés sur des puces issues de fabrications différentes.
En figure 2A, on suppose qu'à un instant t5, on déclenche un front montant sur le signal E. Ce front apparaît sur les différentes entrées des bascules D (correspondant aux sorties des éléments retardateurs Cl, C2, C3 et C4) à des instants respectifs différents tl, t2, t3 et t4. Par ailleurs, l'élément 4 (CO) apporte un retard déclenchant la lecture des données en entrée des bascules à un instant to. Tous les chemins qui génèrent un retard supérieur au retard C0 fournissent un bit à 1 ' état 0 dans la mesure où le front du signal E ne leur est pas encore parvenu. Tous les chemins qui génèrent un délai inférieur au délai CO produisent un bit à l'état 1 dans le mesure où le front du signal E arrive sur l'entrée de la bascule correspondante avant 1 ' expiration du délai CO . Dans 1 'exemple de la figure 2A, à l'instant tO, on fournit le code 1010 comme code d' identification.
La figure 2B illustre le même circuit issu d'un procédé de fabrication différent donnant donc une puce différente. Le code obtenu y est différent. Par exemple, il s'agit du code 0010. En figure 2B, on a fait apparaître arbitrairement un instant t5 identique au cas de la figure 2A. Par contre, les instants t'0, t'1, t'2, t'3 et t'4 auxquels le front du signal E a terminé de parcourir les chemins respectifs C0, Cl, C2, C3 et C4 sont différents du cas de la figure 2A.
On remarquera que l'élément retardateur C0 est lui- même sensible aux dispersions technologiques et de procédé de fabrication. Cela n'a cependant pas d'incidence pour la mise en oeuvre de 1 ' invention dans la mesure où ce retard représente un retard moyen et où le code d'identification recherché est arbitraire. En effet, pour une mise en oeuvre de l'invention à une identification de type réseau de paramètres physiques, ce qui est important, c'est que des circuits intégrés issus d'un même procédé de fabrication fournissent le même code. Comme les éléments retardateurs sont sensibles aux dispersions de procédé de fabrication, ce sera le cas avec la mise en oeuvre de l'invention.
Un avantage de la présente invention est que l'identification est particulièrement précise et fiable. En particulier, en supprimant le recours à une mesure (de tension ou de temps) , on s 'affranchit des problèmes de précision de convertisseurs ou de compteurs.
Un autre avantage de 1 ' invention est que le circuit d'identification est particulièrement sensible. En pratique, la différence détectable des retards apportés par les différents chemins est de l'ordre de la picoseconde. Or, les dispersions des procédés de fabrication ou technologiques apportent le plus souvent des différences de l'ordre d'au moins une dizaine de picosecondes . Un autre avantage de la présente invention est qu'en cas de dérive dans le temps d'un des retards apportés par les éléments, cela n'affecte pas les résultats du circuit. En effet, tous les éléments de retard étant de préférence de constitution similaire, la dispersion sera dans le même sens pour tous les éléments (chemins) .
Pour réaliser les éléments retardateurs des chemins électriques de l'invention, on pourra utiliser n'importe quels éléments intégrés sensibles aux dispersions technologiques ou influencés par le procédé de fabrication. Il pourra s'agir, par exemple, de séries de résistances et/ou de condensateurs. Pour les résistances, on pourra recourir à des résistances dans l'épaisseur du circuit intégré, mais on préférera utiliser des résistances en silicium polycristallin dont la valeur est liée à la géométrie et qui présentent l'avantage d'être moins dépendante de la température. Selon l'invention, une phase d'identification est déclenchée par un front du signal d'entrée E. Le nombre de phases dépend de l'application et de la destination du circuit d'identification. S'il s'agit d'une carte à puce, on pourra prévoir, par exemple, une identification à chaque échange effectué entre cette carte et un dispositif externe, même au cours de la même transaction.
Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à 1 'homme de l'art. En particulier, la réalisation pratique des éléments retardateurs de l'invention pourra prendre des formes différentes, pourvu d'être sensible aux dispersions techno-logiques et/ou de procédés de fabrication.
De plus, le choix de la plage de variation des retards apportés par les différents éléments dépendent de l'application et de la sensibilité souhaitée. Ce choix est à la portée de l'homme du métier à partir des indications fonctionnelles données ci-dessus.
Par ailleurs, on notera que le nombre de bits du code fournit par le circuit de l'invention dépend également de la sensibilité souhaitée. Plus le nombre de bits est élevé plus le circuit sera sensible à des variations de code.
Enfin, on pourra prévoir différents éléments d'exploitation du code binaire. Celui-ci pourra soit être stocké dans un registre, soit être exploité directement pour valider ou invalider une fonction du circuit dans lequel il est intégré, par exemple, l'alimentation de ce circuit.

Claims

REVENDICATIONS
1. Circuit (1) d'identification de type réseau de paramètres physiques contenu dans une puce de circuit intégré, caractérisé en ce qu'il comporte : une unique borne (2) d'entrée d'application d'un signal (E) de déclenchement d'une identification ; des bornes (3]_, 32, •.., 3i_χ, 3i, ..., 3n_ι, 3n) de sortie propres à délivrer un code binaire (B^, B2, ..., Bi_ι, Bi, ..., B^!, Bn) d'identification ; des premiers chemins électriques (Pi, P2, ..., Pi, ..., Pn) reliant individuellement ladite borne d'entrée à chaque borne de sortie, chaque chemin apportant un retard sensible aux dispersions technologiques et/ou de procédé de fabrication du circuit intégré ; et des moyens (4, 5]_, 52, ..., 5i, ..., 5n) de prise en compte simultanée des états binaires présents en sortie des chemins électriques.
2. Circuit selon la revendication 1, caractérisé en ce que chaque chemin électrique (P^, P2, ..., Pi, ..., Pn) est constitué d'un élément retardateur (6]_, 62, ..., 6 , . . . , 6n) et d'une bascule (5χ, 52, ..., 5i, ..., 5n) dont une borne d'entrée (D) est reliée en sortie de l'élément retardateur correspondant et dont une borne de sortie (Q) définit une des bornes de sortie (3]_, 32, ..., 3i_ι, 3i, ..., 3n_ι, 3n) du circuit d'identification.
3. Circuit selon la revendication 1 ou 2, caractérisé en ce que lesdits moyens de prise en compte comprennent un deuxième chemin électrique (4) apportant un retard (CO) correspondant approximativement au retard moyen des retards apportés par lesdits premiers chemins (P]_, P2, ..., Pi, ..., Pn) » ledit deuxième chemin étant intercalé entre ladite borne d'entrée (2) et une borne de déclenchement de prise en compte desdits états binaires .
4. Circuit selon les revendications 2 et 3 , caractérisé en ce que les entrées d'horloge (Ck) des différentes bascules (5ι, 52, •••, 5i, ..., 5n) sont toutes reliées à ladite borne de déclenchement.
5. Circuit selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les chemins électriques (P^, P2, ..., Pi, ..., Pn) sont choisis pour apporter des retards du même ordre de grandeur, malgré les dispersions technologiques.
6. Procédé d'identification d'une puce de circuit intégré à partir de ces paramètres physiques sensibles aux dispersions technologiques, caractérisé en ce qu'il consiste à comparer une durée de parcours moyen d'un signal numérique par rapport à au moins deux autres chemins électriques du même signal numérique.
7. Procédé selon la revendication 6, caractérisé en ce qu'il consiste à synchroniser la prise en compte des comparaisons à partir du signal numérique d'entrée (E) .
PCT/FR2002/001192 2001-04-04 2002-04-04 Identification d'un circuit integre a partir de ses parametres physiques de fabrication WO2002082448A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/473,058 US7178113B2 (en) 2001-04-04 2002-04-04 Identification of an integrated circuit from its physical manufacture parameters
EP02730354A EP1397806B1 (fr) 2001-04-04 2002-04-04 Identification d'un circuit integre a partir de ses parametres physiques de fabrication
DE60205374T DE60205374D1 (de) 2001-04-04 2002-04-04 Identifikation einer integrierten schaltung aus ihren physikalischen herstellungsparametern
JP2002580328A JP3991865B2 (ja) 2001-04-04 2002-04-04 物理的製造パラメータによる集積回路の識別

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/04585 2001-04-04
FR0104585A FR2823341B1 (fr) 2001-04-04 2001-04-04 Identification d'un circuit integre a partir de ses parametres physiques de fabrication

Publications (1)

Publication Number Publication Date
WO2002082448A1 true WO2002082448A1 (fr) 2002-10-17

Family

ID=8861936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/001192 WO2002082448A1 (fr) 2001-04-04 2002-04-04 Identification d'un circuit integre a partir de ses parametres physiques de fabrication

Country Status (6)

Country Link
US (1) US7178113B2 (fr)
EP (1) EP1397806B1 (fr)
JP (1) JP3991865B2 (fr)
DE (1) DE60205374D1 (fr)
FR (1) FR2823341B1 (fr)
WO (1) WO2002082448A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887721B2 (en) 2011-03-02 2018-02-06 Nokomis, Inc. Integrated circuit with electromagnetic energy anomaly detection and processing
US10475754B2 (en) 2011-03-02 2019-11-12 Nokomis, Inc. System and method for physically detecting counterfeit electronics

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2823340A1 (fr) 2001-04-04 2002-10-11 St Microelectronics Sa Stockage d'un code binaire immuable dans un circuit integre
FR2829855A1 (fr) * 2001-09-14 2003-03-21 St Microelectronics Sa Identification securisee par donnees biometriques
US7292019B1 (en) 2005-10-03 2007-11-06 Zilker Labs, Inc. Method for accurately setting parameters inside integrated circuits using inaccurate external components
US9970986B2 (en) * 2014-03-11 2018-05-15 Cryptography Research, Inc. Integrated circuit authentication
CN108008229B (zh) * 2017-11-03 2020-01-31 杭州长川科技股份有限公司 指纹模组标识码扫描装置及扫描方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911368A (en) * 1974-06-20 1975-10-07 Tarczy Hornoch Zoltan Phase interpolating apparatus and method
US4023110A (en) * 1975-12-04 1977-05-10 The United States Of America As Represented By The Secretary Of The Army Pulse comparison system
US4675612A (en) * 1985-06-21 1987-06-23 Advanced Micro Devices, Inc. Apparatus for synchronization of a first signal with a second signal
US5204559A (en) * 1991-01-23 1993-04-20 Vitesse Semiconductor Corporation Method and apparatus for controlling clock skew
DE19510038C1 (de) * 1995-03-20 1996-08-14 Siemens Nixdorf Inf Syst Anordnung zum Autokalibrieren der Taktverteilung bei synchronen digitalen Schaltungen
US5608645A (en) * 1994-03-17 1997-03-04 Vlsi Technology, Inc. Method of finding a critical path in a circuit by considering the clock skew
US5686850A (en) * 1992-01-31 1997-11-11 Konica Corporation Signal delay method, signal delay device and circuit for use in the apparatus
EP1148647A2 (fr) * 2000-04-04 2001-10-24 Infineon Technologies AG Arrangement de circuit pour la réception d'au moins deux signaux digitaux

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8924203D0 (en) * 1989-10-27 1989-12-13 Ncr Co Delay measuring circuit
JP2776247B2 (ja) * 1993-11-17 1998-07-16 日本電気株式会社 半導体集積回路及びその製造方法
US5663767A (en) * 1995-10-25 1997-09-02 Thomson Consumer Electronics, Inc. Clock re-timing apparatus with cascaded delay stages
TW340262B (en) * 1996-08-13 1998-09-11 Fujitsu Ltd Semiconductor device, system consisting of semiconductor devices and digital delay circuit
JPH1124785A (ja) * 1997-07-04 1999-01-29 Hitachi Ltd 半導体集積回路装置と半導体メモリシステム
US5867453A (en) * 1998-02-06 1999-02-02 Taiwan Semiconductor Manufacturing Co., Ltd. Self-setup non-overlap clock generator
JP3789247B2 (ja) * 1999-02-26 2006-06-21 Necエレクトロニクス株式会社 クロック周期検知回路
US6795931B1 (en) * 1999-09-30 2004-09-21 Micron Technology, Inc. Method and apparatus for an adjustable delay circuit having arranged serially coarse stages received by a fine delay stage
US6292024B1 (en) * 1999-12-14 2001-09-18 Philips Electronics North America Corporation Integrated circuit with a serpentine conductor track for circuit selection

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911368A (en) * 1974-06-20 1975-10-07 Tarczy Hornoch Zoltan Phase interpolating apparatus and method
US4023110A (en) * 1975-12-04 1977-05-10 The United States Of America As Represented By The Secretary Of The Army Pulse comparison system
US4675612A (en) * 1985-06-21 1987-06-23 Advanced Micro Devices, Inc. Apparatus for synchronization of a first signal with a second signal
US5204559A (en) * 1991-01-23 1993-04-20 Vitesse Semiconductor Corporation Method and apparatus for controlling clock skew
US5686850A (en) * 1992-01-31 1997-11-11 Konica Corporation Signal delay method, signal delay device and circuit for use in the apparatus
US5608645A (en) * 1994-03-17 1997-03-04 Vlsi Technology, Inc. Method of finding a critical path in a circuit by considering the clock skew
DE19510038C1 (de) * 1995-03-20 1996-08-14 Siemens Nixdorf Inf Syst Anordnung zum Autokalibrieren der Taktverteilung bei synchronen digitalen Schaltungen
EP1148647A2 (fr) * 2000-04-04 2001-10-24 Infineon Technologies AG Arrangement de circuit pour la réception d'au moins deux signaux digitaux

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887721B2 (en) 2011-03-02 2018-02-06 Nokomis, Inc. Integrated circuit with electromagnetic energy anomaly detection and processing
US10475754B2 (en) 2011-03-02 2019-11-12 Nokomis, Inc. System and method for physically detecting counterfeit electronics
US11450625B2 (en) 2011-03-02 2022-09-20 Nokomis, Inc. System and method for physically detecting counterfeit electronics

Also Published As

Publication number Publication date
EP1397806B1 (fr) 2005-08-03
JP3991865B2 (ja) 2007-10-17
DE60205374D1 (de) 2005-09-08
FR2823341A1 (fr) 2002-10-11
US20040125930A1 (en) 2004-07-01
EP1397806A1 (fr) 2004-03-17
FR2823341B1 (fr) 2003-07-25
US7178113B2 (en) 2007-02-13
JP2004526970A (ja) 2004-09-02

Similar Documents

Publication Publication Date Title
EP1267248B1 (fr) Stockage protégé d&#39;une donnée dans un circuit intégré
EP1397806B1 (fr) Identification d&#39;un circuit integre a partir de ses parametres physiques de fabrication
WO2002082389A2 (fr) Extraction d&#39;une donnee privee pour authentification d&#39;un circuit integre
EP0875830B1 (fr) Circuit testable à faible nombre de broches
FR2837960A1 (fr) Entite electronique transactionnelle securisee par mesure du temps
FR2833119A1 (fr) Generation de quantites secretes d&#39;identification d&#39;un circuit integre
EP1483763A1 (fr) Extraction d un code binaire a partir de parametres physique s d un circuit integre
EP1359550A1 (fr) Régéneration d&#39;une quantité secrète à partir d&#39;un identifiant d&#39;un circuit intégré
WO2006030160A1 (fr) Lecture de l&#39;etat d&#39;un element de memorisation non volatile
FR2768276A1 (fr) Generateur d&#39;alea
EP0965994B1 (fr) Dispositif à circuit intégré sécurisé au moyen de lignes complémentaires de bus
EP0884704B1 (fr) Procédé d&#39;authentification de circuit intégré
EP1291817B1 (fr) Détection d&#39;une variation de l&#39;environnement d&#39;un circuit intégré
EP1374242B1 (fr) Stockage d&#39;un code binaire immuable dans un circuit integre
EP1420416A1 (fr) Cellule mémoire à trois états
FR2656940A1 (fr) Circuit integre a microprocesseur fonctionnant en mode rom interne et eprom externe.
FR2810438A1 (fr) Circuit de detection d&#39;usure
EP0241086B1 (fr) Dispositif comportant des circuits accordés sur des fréquences données
FR2659767A1 (fr) Circuit de caracterisation de microcircuits, lecteur enregistreur de carte a microcircuits, et carte a microcircuits associee.
FR2901362A1 (fr) Circuit de qualification et de caracterisation d&#39;une memoire embarquee dans un produit semi-conducteur
FR3106424A1 (fr) Procédé pour générer une donnée unique propre à un circuit intégré en silicium
FR2846461A1 (fr) Compteur par tranches
FR2890465A1 (fr) Procede de generation d&#39;un signal d&#39;horloge
FR2837959A1 (fr) Entite electronique transactionnelle autonome securisee par mesure du temps s&#39;ecoulant entre deux transactions successives
WO2003038742A1 (fr) Carte a microcircuit sans contact incorporant un clavier et procede d&#39;utilisation d&#39;une telle carte

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002580328

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002730354

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10473058

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002730354

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002730354

Country of ref document: EP