WO2002079083A2 - Verfahren zur herstellung von ammoniak aus methanol - Google Patents

Verfahren zur herstellung von ammoniak aus methanol Download PDF

Info

Publication number
WO2002079083A2
WO2002079083A2 PCT/EP2002/002008 EP0202008W WO02079083A2 WO 2002079083 A2 WO2002079083 A2 WO 2002079083A2 EP 0202008 W EP0202008 W EP 0202008W WO 02079083 A2 WO02079083 A2 WO 02079083A2
Authority
WO
WIPO (PCT)
Prior art keywords
gas
ammonia
mixture
synthesis
gas mixture
Prior art date
Application number
PCT/EP2002/002008
Other languages
English (en)
French (fr)
Other versions
WO2002079083A3 (de
Inventor
William Davey
Original Assignee
Mg Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mg Technologies Ag filed Critical Mg Technologies Ag
Priority to AU2002308211A priority Critical patent/AU2002308211A1/en
Priority to EP02757716A priority patent/EP1377518A2/de
Priority to US10/473,320 priority patent/US7547428B2/en
Priority to CN028071972A priority patent/CN1498190B/zh
Publication of WO2002079083A2 publication Critical patent/WO2002079083A2/de
Publication of WO2002079083A3 publication Critical patent/WO2002079083A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/025Preparation or purification of gas mixtures for ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/586Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being a methanation reaction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a process for the catalytic generation of ammonia from a nitrogen-nitrogen mixture.
  • the invention is based on the object of being able to produce ammonia on an industrial scale, even if no fossil fuels are available. According to the invention, this is achieved in that a vaporous feed mixture, which consists of 30-60% by volume of methanol and 40-70% by volume of water vapor and has a volume ratio of water vapor to methanol of 1-3, is pressed at Range of 30 - 200 bar passes through at least one bed of a gap catalyst, the temperatures in the catalyst bed in the range of 200 - 500 ° C are that a first gas mixture is withdrawn from the catalyst bed, which, calculated dry, consists of 40 - 80 vol .-% of H 2 and 10 - 30 vol .-% of CO 2 , that the cools the first gas mixture, removes CO 2 from the first gas mixture in a gas purification and generates a second gas mixture which consists of at least 95% by volume of nitrogen and hydrogen and which is fed as synthesis gas to an ammonia synthesis for the catalytic generation of ammonia.
  • the ammonia synthesis can be designed in one or more stages;
  • One of the possible variants is that the synthesis gas in the ammonia synthesis is passed through at least two reactors containing catalyst, the synthesis gas in a reactor serving as a cooling medium for indirectly cooling the catalyst.
  • a further development of the invention consists in converting the ammonia generated in the ammonia synthesis at least partially to urea by reaction with CO. It is expedient to recover at least partially the CO removed in the gas purification and to use it to generate urea.
  • Various methods known per se can be used for gas cleaning of the first gas mixture and can also be combined with one another.
  • One possibility is to remove the C0 2 in the gas cleaning by physical washing with methanol at temperatures in the range from -20 to -70 ° C.
  • the CO 2 removal can also be carried out by pressure swing absorption, furthermore the pressure swing adsorption can be preceded by physical washing with methanol to remove CO.
  • CO has been removed from the first gas mixture
  • fine cleaning is recommended. This fine cleaning can be carried out, for example, by washing with liquid nitrogen and a second gas mixture is withdrawn therefrom, which essentially consists of H 2 and N 2 and can be fed to the ammonia synthesis as synthesis gas.
  • the first gas mixture is passed through a catalytic methanation, in which CO is converted to CH with H 2 . This also converts residual CO 2 to methane.
  • Methanol which usually has a pressure of 30-200 bar and preferably at least 100 bar, is introduced in line (1) and mixed with water from line (2).
  • the mixture is led in line (la) to a fired heater (3) and line (4) gives a vaporous feed mixture with temperatures in the range from 200 to 500 ° C. and preferably at least 300 ° C., which is fed to a gasification reactor ( 5) gives up.
  • the reactor
  • (5) contains two beds (5a and 5b) with cracked catalysts, this can be a Zn-Cr catalyst in the upper bed (5a) and a Cu-Zn cracked catalyst in the lower bed (5b).
  • the mixture coming from the upper bed (5a) usually enters the lower bed (5b) at temperatures of 200-350 ° C. and preferably at least 250 ° C. In the present case there is heating in the lower bed
  • the first gas mixture causing the gasification reactor (5) in the line (7) consists primarily of H 2 and CO 2 , it also contains CO, CH and methanol, and possibly other impurities in small amounts.
  • This gas mixture is first cooled in the heat exchanger (8) and then fed through line (9) to a washing column (10), in which it is further cooled in countercurrent with sprayed water from line (11).
  • methanol condenses which is discharged together with the used washing water in line (2).
  • the washed gas is then passed through line (13) to a gas washing system (14), in particular to remove CO 2 .
  • a gas washing system 14
  • This can e.g. B. by physical washing with methanol at temperatures in the range of about -70 to -20 ° C, another possibility is such.
  • CO 2 -containing washing solution is drawn off in line (16) and fed to a regeneration (17) in order to remove the CO 2 from the washing solution.
  • Regenerated washing solution is fed back into the gas washing system (14) in line (18).
  • the CO produced is very suitable for being fed through line (20) to a urea synthesis (21).
  • the amount of CO 2 produced is usually sufficient to convert all of the ammonia produced to urea.
  • Partially cleaned synthesis gas is drawn off from the gas scrubber (14) in line (22) and is treated in a second scrubber (23), where liquid nitrogen serves as the scrubbing liquid.
  • the nitrogen required for this comes, for example, from an air separation plant and is introduced in line (26). Details of washing with liquid nitrogen to produce an NH 3 synthesis gas can be found in EP patent 0307983, which has already been mentioned above.
  • a CO and CH waste gas is produced in the washing system (23), which is supplied as fuel to the heater (3) through the line (42).
  • the wash (23) is carried out in such a way that the synthesis gas obtained in the line (24) already has a molar ratio H 2 : N 2 of approximately 3: 1.
  • This synthesis gas is heated in the indirect heat exchanger (45) and flows through the line (24a) to an ammonia synthesis, to which the indirectly cooled reactor (25) and include adiabatic reactor (26).
  • Circulated synthesis gas from line (27) together with the fresh synthesis gas from line (24a) enters line (27a) at temperatures in the range of 100 - 200 ° C into reactor (25) and flows through tubes ( 28) or channels, the gas serving as a cooling medium and removing heat from the catalyst bed (25a).
  • the synthesis gas leaves the reactor (25) in line (29) at temperatures in the range from 300 to 500 ° C. and comes into contact with the catalyst in the reactor (26), which forms a bed.
  • the NH 3 -forming reaction is exothermic, so that the mixture flowing out in the line (30) has temperatures of 400-600 ° C and a cooler (31) is thereby guided.
  • the NH 3 -containing synthesis gas then enters the reactor (25) from the line (32) and flows through the indirectly cooled catalyst bed.
  • the outlet temperature in line (33) is in the range of 300-500 ° C and preferably 380-430 ° C.
  • the product mixture in line (33) has an NH 3 concentration of at least 20% by volume; it also contains above all N 2 and H 2 .
  • This mixture is subjected to a multi-stage cooling (34) and finally reaches a separator (35), from which NH 3 is withdrawn in liquid form through line (36).
  • the gaseous components are drawn off in line (27) and fed back as recycle gas
  • All or part of the NH 3 produced can be removed through line (37) and fed to a use known per se. Furthermore, all or part of the NH 3 can be fed through line (38) to a urea synthesis which is known per se. Generated urea is withdrawn in line (39).
  • the catalyst of the upper bed (5 a) mainly consists of Zn and Cr and the catalyst of the lower bed (5b) mainly consists of Cu and Zn.
  • the catalysts of the ammonia synthesis are commercially available (manufacturer eg Süd-Chemie, Kunststoff (DE) , Type G-90 and AS-4).
  • the gas scrubber (14) works with methanol from scrubbing liquid, the temperature in the scrubbing zone being approximately -58 ° C. The fine cleaning is carried out by washing with liquid nitrogen according to EP patent 0307 983. 54 t / h of CO 2 are obtained in line (20), which is practically pure and can be used for a urea synthesis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Ammoniak wird katalytisch aus einem Stickstoff-Wasserstoff-Gemisch hergestellt. Zunächst leitet man ein dampfförmiges Einsatzgemisch, welches zu 30-60 Vol.-% aus Methanol und zu 40-70 Vol.-% aus Wasserdampf besteht und ein Volumenverhältnis Wasserdampf: Methanol von 1-3 aufweist, bei Drücken im Bereich von 30-200 bar durch mindestens ein Bett eines Spaltkatalysators (5a,5b), wobei die Temperaturen im Katalysatorbett im Bereich von 200-500 °C liegen. Es wird ein erstes Gasgemisch (7) aus dem Katalysatorbett abgezogen, welches, trocken gerechnet, zu 40-80 Vol.-% aus H2 und 10-30 Vol.-% aus CO2 (14) besteht. Man kühlt das erste Gasgemisch, entfernt in einer Gasreinigung Co2 und erzeugt ein zweites Gasgemisch, welches zu mindestens 95 Vol.-% aus Stickstoff und Wasserstoff besteht und welches als Synthesegas einer Ammoniak-Synthese zum katalytischen Erzeugen von Ammoniak zugeführt wird (25).

Description

Verfahren zur Herstellung von Ammoniak aus Methanol
Die Erfindung betrifft ein Verfahren zum katalytischen Erzeugen von Ammoniak aus einem Stickstoff- asserstoff-Gemisch.
Aus dem deutschen Patent 20 07441 ist die Erzeugung eines Ammoniak- Synthesegases bekannt, wobei man durch Vergasung von Kohlenwasserstoffen ein Rohgas erzeugt, das man entschwefelt, konvertiert, von CO2 befreit und schließlich zum Entfernen restlicher Verunreinigungen einer Wäsche mit flüssigem Stickstoff unterzieht. Im EP-Patent 0307983 wird ein ähnliches Verfahren beschrieben, wobei konvertiertes Synthesegas vor der Ammoniak-Synthese einer Wäsche mit flüssigem Stickstoff unterzogen wird. Einzelheiten zur katalytischen Herstellung von Ammoniak finden sich in Ullmann's Encyclopedia of Industrial Chemistry, 5. Auflage, Band A 2, Seiten 143 - 215, die Herstellung von Harnstoff ist dort im Band A 27, Seiten 333 - 350 beschrieben.
Der Erfindung liegt die Aufgabe zu Grunde, auf großtechnische Weise Ammoniak herstellen zu können, auch wenn keine fossilen Brennstoffe zur Verfügung stehen. Erfindungsgemäß wird dies dadurch erreicht, dass man ein dampfförmiges Einsatzgemisch, welches zu 30 - 60 Vol.-% aus Methanol und zu 40 - 70 Vol.-% aus Wasserdampf besteht und ein Volumenverhaltnis Wasserdampf zu Methanol von 1 - 3 aufweist, bei drücken im Bereich von 30 - 200 bar durch mindestens ein Bett eines Spaltkatalysators leitet, wobei die Temperaturen im Katalysatorbett im Bereich von 200 - 500 °C liegen, dass man ein erstes Gasgemisch aus dem Katalysatorbett abzieht, welches, trocken gerechnet, zu 40 - 80 Vol.-% aus H2 und zu 10 - 30 Vol.-% aus CO2 besteht, dass man das erste Gasgemisch kühlt, in einer Gasreinigung CO2 aus dem ersten Gasgemisch entfernt und ein zweites Gasgemisch erzeugt, welches zu mindestens 95 Vol.-% aus Stickstoff und Wasserstoff besteht und welches als Synthesegas einer Ammoniak-Synthese zum katalytischen Erzeugen von Ammoniak zugeführt wird. Bei diesem Verfahren ist es zweckmäßig, wenn die Kohlenstoff enthaltenden Bestandteile des Einsatzgemisches zu 80 - 100 Vol.-% aus Methanol bestehen.
Die Ammoniak-Synthese kann ein- oder mehrstufig ausgebildet sein; eine der möglichen Varianten besteht darin, dass man das Synthesegas in der Ammoniak- Synthese durch mindestens zwei Katalysator enthaltende Reaktoren führt, wobei das Synthese gas in einem Reaktor als Kühlmedium zum indirekten Kühlen des Katalysators dient.
Eine Weiterbildung der Erfindung besteht darin, dass man den in der Ammoniak- Synthese erzeugten Ammoniak mindestens teilweise durch Umsetzen mit CO zu Harnstoff umwandelt. Dabei ist es zweckmäßig, dass in der Gasreinigung entfernte CO mindestens teilweise zurückzugewinnen und zum Erzeugen von Harnstoff zu verwenden.
Die Umsetzung des Einsatzgemisches am Spaltkatalysator ist ein endothermer Vorgang, dabei laufen vor allem folgende Reaktionen ab:
CH3OH + H2O → CO2 + 3H2 CO + H2O → CO2 + H2
Es kann zweckmäßig sein, das Einsatzgemisch durch mehrere Betten eines Spaltkatalysators zu leiten, wobei mindestens ein Bett mit einem Heizfluid indirekt erwärmt wird. Für die Gasreinigung des ersten Gasgemisches können verschiedene, an sich bekannte Verfahren Verwendung finden und auch miteinander kombiniert werden. Eine Möglichkeit ist, das C02 in der Gasreinigung durch eine physikalische Wäsche mit Methanol bei Temperaturen im Bereich von -20 bis -70 °C zu entfernen. Die CO2- Entfemung kann aber auch durch Druckwechsel-Absorption erfolgen, ferner kann man die Druckwechsel-Adsorption zum Entfernen von C0 einer physikalischen Wäsche mit Methanol vorschalten.
Wenn man aus dem ersten Gasgemisch CO entfernt hat, ist noch eine Feinreinigung zu empfehlen. Diese Feinreinigung kann z.B. durch eine Wäsche mit flüssigem Stickstoff erfolgen und man zieht daraus ein zweites Gasgemisch ab, welches im wesentlichen aus H2 und N2 besteht und der Ammoniak-Synthese als Synthesegas zugeführt werden kann. Alternativ wird das erste Gasgemisch nach der Entfernung von CO2 durch eine katalytische Methanisierung geleitet, in welcher CO mit H2 zu CH umgesetzt wird. Hierbei wird auch restliches CO2 zu Methan umgesetzt.
Ausgestaltungsmöglichkeiten des Verfahrens werden mit Hilfe der Zeichnung erläutert. Die Zeichnung zeigt ein Fliesschema des Verfahrens.
Methanol, welches üblicherweise einen Druck von 30 - 200 bar und vorzugsweise mindestens 100 bar aufweist, wird in der Leitung (1) herangeführt und mit Wasser aus der Leitung (2) gemischt. Das Gemisch führt man in der Leitung (la) zu einem gefeuerten Erhitzer (3) und erhält in der Leitung (4) ein dampfförmiges Einsatzgemisch mit Temperaturen im Bereich von 200 - 500 °C und vorzugsweise mindestens 300 °C, welches man einem Vergasungsreaktor (5) aufgibt. Der Reaktor
(5) enthält zwei Betten (5a und 5b) mit Spaltkatalysatoren, dabei kann es sich im oberen Bett (5a) um einen Zn-Cr-Katalysator und im unteren Bett (5b) um einen Cu- Zn-Spaltkatalysator handeln. Das vom oberen Bett (5a) kommende Gemisch tritt üblicherweise mit Temperaturen von 200 - 350 °C und vorzugsweise mindestens 250 °C in das untere Bett (5b) ein. Im vorliegenden Fall ist im unteren Bett eine Beheizung
(6) durch indirekten Wärmeaustausch mittels eines Heizfluids vorgesehen. Das den Vergasungsreaktor (5) in der Leitung (7) veranlassende erste Gasgemisch besteht vor allem aus H2 und CO2, es enthält ferner noch CO, CH und Methanol, sowie möglicherweise in kleinen Mengen weitere Verunreinigungen. Dieses Gasgemisch wird zunächst im Wärmeaustauscher (8) gekühlt und dann durch die Leitung (9) einer Waschsäule (10) zugeführt, in welcher es im Gegenstrom mit eingesprühtem Wasser aus der Leitung (11) weiter abgekühlt wird. Hierbei kondensiert vor allem Methanol, welches zusammen mit dem gebrauchten Waschwasser in der Leitung (2) abgeführt wird.
Das gewaschene Gas gibt man dann durch die Leitung (13) einer Gaswaschanlage (14) auf, um insbesondere C02 zu entfernen. Dies kann z. B. durch eine physikalische Wäsche mit Methanol bei Temperaturen im Bereich von etwa -70 bis -20 °C erfolgen, eine andere Möglichkeit ist z. B. eine Wäsche mittels Methyldiethylamin oder die Selexol- Wäsche. Gebrauchte, CO2-haltige Waschlösung zieht man in der Leitung (16) ab und gibt sie einer Regeneration (17) auf, um das CO2 aus der Waschlösung zu entfernen. Regenerierte Waschlösung wird in der Leitung (18) zurück in die Gaswaschanlage (14) geführt. Das anfallende CO eignet sich sehr gut dazu, um durch die Leitung (20) einer Harnstoff-Synthese (21) zugeführt zu werden. Die anfallende CO2-Menge reicht üblicherweise aus, um das gesamte produzierte Ammoniak zu Harnstoff umzuwandeln.
Teilgereinigtes Synthesegas zieht aus der Gaswaschanlage (14) in der Leitung (22) ab und wird in einer zweiten Waschanlage (23) behandelt, wo flüssiger Stickstoff als Waschflüssigkeit dient. Der dazu nötige Stickstoff kommt z.B. aus einer Luftzerlegungsanlage und wird in der Leitung (26) herangeführt. Einzelheiten einer Wäsche mit flüssigem Stickstoff zum Erzeugen eines NH3-Synthesegases finden sich im EP-Patent 0307983, das bereits oben erwähnt wurde. Üblicherweise fällt in der Waschanlage (23) ein CO und CH entfallendes Abgas an, welches man durch die Leitung (42) als Brennstoff dem Erhitzer (3) zuführt.
Die Wäsche (23) wird so geführt, dass das in der Leitung (24) anfallende Synthesegas bereits ein Molverhältnis H2 : N2 von etwa 3 : 1 aufweist. Dieses Synthesegas wird im indirekten Wärmeaustauscher (45) angewärmt und strömt durch die Leitung (24a) zu einer Ammoniaksynthese, zu welcher der indirekt gekühlte Reaktor (25) und der adiabatisch arbeitende Reaktor (26) gehören. Im Kreislauf geführtes Synthesegas aus der Leitung (27) zusammen mit dem frischen Synthesegas der Leitung (24a) tritt durch die Leitung (27a) mit Temperaturen im Bereich von 100 - 200 °C in den Reaktor (25) ein und strömt dort durch Röhren (28) oder Kanäle, wobei das Gas als Kühlmedium dient und Wärme aus dem Katalysatorbett (25a) abführt.
Das Synthesegas verlässt den Reaktor (25) in der Leitung (29) mit Temperaturen im Bereich von 300 - 500 °C und kommt im Reaktor (26) mit dessen Katalysator in Kontakt, der eine Schüttung bildet. Die NH3-bildende Reaktion ist exotherm, so dass das in der Leitung (30) abströmende Gemisch Temperaturen von 400 - 600 °C aufweist und dadurch einen Kühler (31) geführt wird. Anschließend tritt das NH3- haltige Synthesegas von der Leitung (32) kommend in den Reaktor (25) ein und strömt durch dessen indirekt gekühltes Katalysatorbett. Die Austrittstemperatur in der Leitung (33) liegt im Bereich von 300 - 500 °C und vorzugsweise 380 - 430 °C. Das Produktgemisch in der Leitung (33) weist eine NH3 -Konzentration von mindestens 20 Vol.-% auf, es enthält daneben vor allem noch N2 und H2. Dieses Gemisch wird einer mehrstufigen Kühlung (34) unterworfen und gelangt schließlich zu einem Separator (35), aus welchem man NH3 durch die Leitung (36) flüssig abzieht. Die gasförmigen Komponenten zieht man in der Leitung (27) ab und führt sie als Kreislaufgas zurück.
Das erzeugte NH3 kann ganz oder teilweise durch die Leitung (37) entfernt und einer an sich bekannten Verwendung zugeführt werden. Ferner kann man das NH3 ganz oder teilweise durch die Leitung (38) einer Harnstoff-Synthese zuführen, die an sich bekannt ist. Erzeugter Harnstoff wird in der Leitung (39) abgezogen.
Beispiel:
In einer der Zeichnung entsprechenden Verfahrensführung werden pro Stunde 42 t Methanol zu 41,7 t Ammoniak verarbeitet. Die nachfolgende Tabelle gibt in verschiedenen Leitungen die fließenden Mengen (t/h), die Gaszusammensetzungen (Vol.-%) sowie die Temperatur und den Druck an, die Daten sind teilweise berechnet.
Figure imgf000008_0001
Der Katalysator des oberen Bettes (5 a) besteht hauptsächlich aus Zn und Cr und der Katalysator des unteren Bettes (5b) besteht hauptsächlich aus Cu und Zn. Die Katalysatoren der Ammoniak-Synthese sind handelsüblich (Hersteller z.B. Süd- Chemie, München (DE), Typ G-90 und AS-4). Die Gaswäsche (14) arbeitet mit Methanol aus Waschflüssigkeit, wobei die Temperatur in der Waschzone bei etwa -58 °C liegt. Die Feinreinigung erfolgt durch eine Wäsche mit flüssigem Stickstoff gemäß EP-Patent 0307 983. In der Leitung (20) fallen 54 t/h CO2 an, das praktisch rein ist und für eine Harnstoff-Synthese verwendet werden kann.

Claims

Patentansprüche
1. Verfahren zum katalytischen Erzeugen von Ammoniak aus einem Stickstoff- Wasserstoff-Gemisch, dadurch gekennzeichnet, dass man ein dampfförmiges Einsatzgemisch, welches zu 30 - 60 Vol.-% aus Methanol und zu 40 - 70 Vol.-% aus Wasserdampf besteht und ein Volumenverhaltnis Wasserdampf : Methanol von 1 - 3 aufweist, bei Drücken im Bereich von 30 - 200 bar durch mindestens ein Bett eines Spaltkatalysators leitet, wobei die Temperaturen im Katalysatorbett im Bereich von 200 - 500 °C liegen, dass man ein erstes Gasgemisch aus dem Katalysatorbett abzieht, welches, trocken gerechnet, zu 40 - 80 Vol.-% aus H2 und 10 - 30 Vol.-% aus CO2 besteht, dass man das erste Gasgemisch kühlt, in einer Gasreinigung CO2 aus dem ersten Gasgemisch entfernt, und ein zweites Gasgemisch erzeugt, welches zu mindestens 95 Vol.-% aus Stickstoff und Wasserstoff besteht und welches als Synthesegas einer Ammoniak-Synthese zum katalytischen Erzeugen von Ammoniak zugeführt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man den in der Ammoniak-Synthese erzeugten Ammoniak mindestens teilweise durch Umsetzen mit CO2 zu Harnstoff umwandelt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man das in der Gasreinigung entfernte CO2 mindestens teilweise zurückgewinnt und zum Erzeugen von Harnstoff verwendet.
4. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, dass man das Einsatzgemisch durch mehrere Betten eines Spaltkatalysators leitet, wobei mindestens ein Bett mit einem Heizfluid indirekt erwärmt wird.
5. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeiclinet, dass man das erste Gasgemisch nach der Entfernung von CO2 durch eine Wäsche mit flüssigem Stickstoff führt und daraus das zweite Gasgemisch abzieht, welches man nach Erwärmung als Synthesegas der Ammoniak-Synthese zuführt.
6. Verfahren nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, dass man das erste Gasgemisch nach der Entfernung von CO2 durch eine Methanisierung leitet, in welcher CO mit H2 zu CH4 umgesetzt wird.
7. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, dass man CO2 in der Gasreinigung in einer physikalischen Wäsche mit Methanol bei Temperaturen im Bereich von -20 bis -70 °C entfernt.
8. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man in der Gasreinigung CO2 durch Druckwechsel-Adsorption entfernt.
9. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekermzeichnet, dass man das Synthesegas in der Ammoniaksynthese durch mindestens zwei Katalysator enthaltende Reaktoren führt, wobei das Synthesegas in einem Reaktor als Kühlmedium zum indirekten Kühlen des Katalysators dient.
PCT/EP2002/002008 2001-03-31 2002-02-26 Verfahren zur herstellung von ammoniak aus methanol WO2002079083A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2002308211A AU2002308211A1 (en) 2001-03-31 2002-02-26 Method for producing ammonia from methanol
EP02757716A EP1377518A2 (de) 2001-03-31 2002-02-26 Verfahren zur herstellung von ammoniak aus methanol
US10/473,320 US7547428B2 (en) 2001-03-31 2002-02-26 Method for producing ammonia from methanol
CN028071972A CN1498190B (zh) 2001-03-31 2002-02-26 从甲醇生产氨的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10116152A DE10116152A1 (de) 2001-03-31 2001-03-31 Verfahren zur Herstellung von Ammoniak aus Methanol
DE10116152.2 2001-03-31

Publications (2)

Publication Number Publication Date
WO2002079083A2 true WO2002079083A2 (de) 2002-10-10
WO2002079083A3 WO2002079083A3 (de) 2003-02-13

Family

ID=7679935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/002008 WO2002079083A2 (de) 2001-03-31 2002-02-26 Verfahren zur herstellung von ammoniak aus methanol

Country Status (6)

Country Link
US (1) US7547428B2 (de)
EP (1) EP1377518A2 (de)
CN (1) CN1498190B (de)
AU (1) AU2002308211A1 (de)
DE (1) DE10116152A1 (de)
WO (1) WO2002079083A2 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10226424A1 (de) * 2002-06-13 2004-01-08 Viessmann Werke Gmbh & Co Kg Verfahren und Vorrichtung zur Bereitstellung von Wasserstoff zum Betrieb einer Brennstoffzellenanlage
EP1607371A1 (de) * 2004-06-18 2005-12-21 Ammonia Casale S.A. Verfahren zur Herstellung von Ammoniak aus Stickstoff und Wasserstoff ausgehend von Erdgas
US7506685B2 (en) * 2006-03-29 2009-03-24 Pioneer Energy, Inc. Apparatus and method for extracting petroleum from underground sites using reformed gases
US9605522B2 (en) * 2006-03-29 2017-03-28 Pioneer Energy, Inc. Apparatus and method for extracting petroleum from underground sites using reformed gases
US8616294B2 (en) 2007-05-20 2013-12-31 Pioneer Energy, Inc. Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery
US8450536B2 (en) 2008-07-17 2013-05-28 Pioneer Energy, Inc. Methods of higher alcohol synthesis
US7753972B2 (en) * 2008-08-17 2010-07-13 Pioneer Energy, Inc Portable apparatus for extracting low carbon petroleum and for generating low carbon electricity
US7937948B2 (en) * 2009-09-23 2011-05-10 Pioneer Energy, Inc. Systems and methods for generating electricity from carbonaceous material with substantially no carbon dioxide emissions
CN106701229A (zh) * 2016-12-30 2017-05-24 李卫教 一种二氧化碳与甲醇转化天然气的装置
CN114804025B (zh) * 2022-05-10 2024-04-05 集美大学 一种基于零能耗碳捕集甲醇重整制氨的方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2007441A1 (en) * 1970-02-18 1971-09-16 Linde Ag, 6200 Wiesbaden Hydrogen-nitrogen mixture prodn
US4215099A (en) * 1976-11-15 1980-07-29 Imperial Chemical Industries Limited Ammonia synthesis process
EP0303032A1 (de) * 1987-08-01 1989-02-15 Uhde GmbH Verfahren und Anlage zur Durchführung einer Synthese, insbesondere zur Synthese von Ammoniak
EP0307983A1 (de) * 1987-09-16 1989-03-22 Metallgesellschaft Ag Verfahren zur Erzeugung eines Ammoniak-Synthesegases
EP0311932A1 (de) * 1987-10-16 1989-04-19 Air Products And Chemicals, Inc. Rückgewinnung von Stickstoff, Wasserstoff und Kohlendioxid aus reformierten Kohlenwasserstoffen
US4913842A (en) * 1983-02-14 1990-04-03 Mitsubishi Gas Chemical Company, Inc. Steam reforming of methanol
EP0931762A1 (de) * 1998-01-21 1999-07-28 Haldor Topsoe A/S Verfahren zur Herstellung von wasserstoffreichem Gas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617646B2 (ja) * 1989-12-20 1994-03-09 株式会社新燃焼システム研究所 超低公害メタノールエンジン
US6599491B2 (en) * 2001-01-22 2003-07-29 Kenneth Ebenes Vidalin Bimodal hydrogen manufacture
US6699457B2 (en) * 2001-11-29 2004-03-02 Wisconsin Alumni Research Foundation Low-temperature hydrogen production from oxygenated hydrocarbons

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2007441A1 (en) * 1970-02-18 1971-09-16 Linde Ag, 6200 Wiesbaden Hydrogen-nitrogen mixture prodn
US4215099A (en) * 1976-11-15 1980-07-29 Imperial Chemical Industries Limited Ammonia synthesis process
US4913842A (en) * 1983-02-14 1990-04-03 Mitsubishi Gas Chemical Company, Inc. Steam reforming of methanol
EP0303032A1 (de) * 1987-08-01 1989-02-15 Uhde GmbH Verfahren und Anlage zur Durchführung einer Synthese, insbesondere zur Synthese von Ammoniak
EP0307983A1 (de) * 1987-09-16 1989-03-22 Metallgesellschaft Ag Verfahren zur Erzeugung eines Ammoniak-Synthesegases
EP0311932A1 (de) * 1987-10-16 1989-04-19 Air Products And Chemicals, Inc. Rückgewinnung von Stickstoff, Wasserstoff und Kohlendioxid aus reformierten Kohlenwasserstoffen
EP0931762A1 (de) * 1998-01-21 1999-07-28 Haldor Topsoe A/S Verfahren zur Herstellung von wasserstoffreichem Gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 457 (M-1181), 20. November 1991 (1991-11-20) & JP 03 194111 A (SHINNENSHIYOU SYST KENKYUSHO:KK), 23. August 1991 (1991-08-23) *

Also Published As

Publication number Publication date
DE10116152A1 (de) 2002-10-10
US7547428B2 (en) 2009-06-16
US20040161377A1 (en) 2004-08-19
CN1498190A (zh) 2004-05-19
CN1498190B (zh) 2011-10-05
WO2002079083A3 (de) 2003-02-13
AU2002308211A1 (en) 2002-10-15
EP1377518A2 (de) 2004-01-07

Similar Documents

Publication Publication Date Title
EP0682002B1 (de) Verfahren zur Erzeugung von Methanol
DE3111030C2 (de)
EP1751080A1 (de) Koproduktion von methanol und ammoniak aus erdgas
EP2697188A1 (de) Verfahren und anlage zur herstellung von methanol aus inertenreichem synthesegas
DE102004028200B3 (de) Verfahren zur Durchführung heterogen katalytischer exothermer Gasphasenreaktionen für die Methanolsynthese
EP2864242B1 (de) Verfahren zur herstellung von co, h2 und methanol-synthesegas aus einem synthesegas, insbesondere aus acetylen-offgas
DE102010008857A1 (de) Verfahren zur Herstellung von Methanol
EP0091551A1 (de) Verfahren zur Entschweflung von H2S-haltigen Gasen
WO2002079083A2 (de) Verfahren zur herstellung von ammoniak aus methanol
DE102015210801A1 (de) Mehrdruckverfahren zur Herstellung von Ammoniak ohne Anreicherung von Inertgas
EP0140045B1 (de) Verfahren zur Entschwefelung von H 2 S-haltigen Gasen
DE2432885A1 (de) Verfahren zur herstellung von methan
DE69921777T2 (de) Entfernung von ammoniak und cyanwasserstoff aus synthesegas mit herstellung von sauberem wasser
CA3019431A1 (en) A methanol synthesis process layout for large production capacity
EP3219697A1 (de) Methanolsynthese aus synthesegasen mit wasserstoffmangel
US6723876B2 (en) Process for the integrated preparation of ammonia and urea
EP2134648B1 (de) Verfahren zur schwefelsäureerzeugung und anlage zur durchführung des verfahrens
EP0307983B1 (de) Verfahren zur Erzeugung eines Ammoniak-Synthesegases
EP3401280B1 (de) Verfahren zur herstellung von ammoniak
DE4318444C2 (de) Verfahren zur Hochtemperatur-Konvertierung
EP3466869B1 (de) Verfahren zur kombinierten herstellung von methanol und von ammoniak
EP0542838A1 (de) Verfahren zur schwefelrückgewinnung aus einem h 2?s-haltigen gasstrom unter hohem druck.
DE3112761C2 (de)
BR112019017712A2 (pt) Processo e planta integrados de amônia-ureia
EP3782973B1 (de) Verfahren und anlage zur herstellung von methanol

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1059/KOLNP/2003

Country of ref document: IN

Ref document number: 01058/KOLNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2002757716

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 028071972

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002757716

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10473320

Country of ref document: US

WWR Wipo information: refused in national office

Ref document number: 2002757716

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002757716

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP