明細書 Specification
アイドル燃料供給量の制御方法及び装置 技術分野 Method and device for controlling idle fuel supply
本発明は、 積分補正項を用いて燃料供給量を補正することにより、 内燃機関の アイドル回転数を制御するアイドル燃料供給量の制御方法及ぴ装置に関する。 背景技術 The present invention relates to an idle fuel supply control method and apparatus for controlling the idle speed of an internal combustion engine by correcting the fuel supply using an integral correction term. Background art
燃料供給量を調整することでアイドル回転数制御を実行するシステム、例えば、 特開平 1 1一 9 3 7 4 7号公報に開示されるディーゼルエンジンのアイドル回転 数制御システムにおいては、 ガパナパターンに基づいて内燃機関の回転数から基 本燃料量が設定される。 そしてこの基本燃料量に対しては、 目標回転数に対する 実際の回転数の偏差による積分補正項が計算され、 この積分補正項を用レ、ること により基本燃料量を補正する。 このことにより、 アイドル回転数のフィードバッ ク制御がなされる。 そして、 内燃機関の温度変化に伴うフリクションの変化ゃァ ィドル時の外部負荷に対応するために、冷却水温度の程度、エアコンディショナ、 パワーステアリング等の外部負荷の種類やオン ·オフ状態に応じて、 種々の見込 補正が実行されている。 このような見込捕正により、 安定したアイドル回転数制 御が実行される。 し力 し、 上述したごとくの見込補正を実行しても、 内燃機関の始動直後におい ては、 内燃機関の温度の高さに対応するフリクシヨンを考慮しただけでは捉えき れない内燃機関の始動初期に特有のフリクションが生じている。 このため、 単純 に内燃機関の温度に応じて予想されるフリクションに基づいて見込補正項を計算 して、 基本燃料量を補正していたのでは、 内燃機関の始動直後のアイドル時にお いて燃料供給量が不足して内燃機関の回転数の落ち込みが生じてしまう。
このような内燃機関の回転数の低下は、 通常、 前述した積分補正項にて燃料供 給量が増量されることで補償され、 内燃機関の回転数は目標回転数に戻されるこ とになる。 しかし、 この積分補正項は、 例えばアイドル時に半クラッチ状態等の 負荷が継続すると極端に大きくなる傾向がある。 このように積分補正項が過大と なった後に、 クラッチを遮断すると、 クラッチ接続による見込補正項と過大な積 分補正項とが重なって内燃機関の回転数が急上昇するおそれがある。 このため、 通常、 積分補正項の算出にはガード処理がなされ、 積分補正項が過大とならない ようにされている。 しかし、 上述したごとくの回転数の急上昇を防止するためにガード値による積 分補正項の制御範囲を狭くした場合には、 内燃機関の始動初期の大きなフリクシ ヨンを補償できるほどに、 積分補正項が変化できなくなり、 回転数の落ち込みに よりエンジンストールなどを引き起こし、 安定したアイドル回転ができなくなる おそれがある。 このため、 積分補正項の制御範囲を狭くすることができず、 前述 した半クラッチなどによる内燃機関の回転数の急上昇防止が十分に行われないお それがあった。 本発明は、 内燃機関の始動初期のフリクションを補償して内燃機関の回転数の 落ち込みを防止するとともに、 その後のアイドル回転数制御における積分捕正項 に起因した回転数の急上昇を防止できるアイドル燃料供給量の制御方法及ぴ装置 の提供を目的とするものである。 発明の開示 In a system that executes idle speed control by adjusting the amount of fuel supply, for example, in the idle speed control system of a diesel engine disclosed in Japanese Patent Application Laid-Open No. 11-9347, based on the gapana pattern The basic fuel amount is set based on the rotational speed of the internal combustion engine. Then, for this basic fuel amount, an integral correction term by the deviation of the actual rotational speed from the target rotational speed is calculated, and the integral fuel correction term is used to correct the basic fuel amount. As a result, feedback control of the idle speed is performed. And in order to cope with the external load at the time of change of friction due to the temperature change of the internal combustion engine, the degree of the coolant temperature, the kind of external load such as the air conditioner, power steering etc. and the on · off state And various expected corrections have been made. Stable idle speed control is executed by such expected capture. However, even if the above-described expected correction is performed, immediately after the start of the internal combustion engine, the initial stage of the start of the internal combustion engine can not be caught only by taking into consideration the friction corresponding to the temperature of the internal combustion engine. There is a friction that is specific to Therefore, if the basic fuel amount is corrected by simply calculating the estimated correction term based on the friction predicted according to the temperature of the internal combustion engine, the fuel supply at idle time immediately after the start of the internal combustion engine Insufficient quantity will cause a drop in the rotational speed of the internal combustion engine. Such a reduction in the rotational speed of the internal combustion engine is usually compensated by increasing the fuel supply amount in the above-mentioned integral correction term, and the rotational speed of the internal combustion engine is returned to the target rotational speed. . However, this integral correction term tends to become extremely large when the load such as the half clutch state continues at idle, for example. As described above, if the clutch is disconnected after the integral correction term becomes excessive, the expected correction term due to the clutch engagement and the excessive integration correction term may overlap, and the number of revolutions of the internal combustion engine may rapidly increase. Therefore, the calculation of the integral correction term is usually guarded to prevent the integral correction term from becoming excessive. However, if the control range of the integral correction term by the guard value is narrowed in order to prevent the rapid increase of the rotational speed as described above, the integral correction term can be compensated to compensate for the large friction at the start of the internal combustion engine start. Can not be changed, and a drop in engine speed may cause an engine stall etc., resulting in the inability to perform stable idle rotation. For this reason, the control range of the integral correction term can not be narrowed, and the above-described half clutch etc. may not sufficiently prevent the rapid increase in the number of revolutions of the internal combustion engine. The present invention compensates for friction in the initial stage of startup of the internal combustion engine to prevent a drop in the rotational speed of the internal combustion engine, and idle fuel that can prevent the rapid increase in the rotational speed due to the integral gain term in the idle speed control thereafter. The purpose is to provide a control method and device for supply amount. Disclosure of the invention
以下、 上記の目的を達成するための手段及びその作用効果について記载する。 本発明の一実施態様におけるアイドル燃料供給量の制御方法は、 内燃機関のァ ィドル時において目標回転数に対する実際の内燃機関の回転数の偏差に基づいて 積分補正項を算出し、 該積分補正項を用いて燃料供給量を補正することにより内
燃機関のアイドル回転数を制御するものである。 それによれば、 内燃機関の始動 時及び始動直後の一方又は両方においては、 燃料供給量に対して内燃機関の始動 初期に存在するフリクションに対応する見込補正を実行する。 このように従来とは異なり、 特別に内燃機関の始動初期に存在するフリクショ ンに対応する見込補正を、 燃料供給量に対して実行している。 このため、 目標回 転数に対する実際の内燃機関回転数の偏差分の値が、 積分補正項に大きく蓄積さ れる前に、目標回転数に対して実際の内燃機関回転数を収束させることができる。 したがって、 積分補正項が増大するのを抑制できることから、 ガード処理によ る積分補正項の制御範囲を狭くすることができる。 このため、 内燃機関の始動初 期のフリクションを補償して内燃機関の回転数の落ち込みを防止できるとともに、 その後のアイドル回転数制御における積分捕正項に起因した回転の急上昇を防止 できる。 Hereinafter, means for achieving the above-mentioned purpose and its effects are described. A control method of an idle fuel supply amount in one embodiment of the present invention calculates an integral correction term based on a deviation of an actual rotational speed of the internal combustion engine from a target rotational speed at the idle time of the internal combustion engine, and the integral correction term By correcting the fuel supply amount using It controls the idle speed of the fuel engine. According to this, at one or both of the start of the internal combustion engine and immediately after the start, an expected correction corresponding to the friction existing in the initial start of the internal combustion engine is performed on the fuel supply amount. As described above, unlike the conventional method, the expected correction corresponding to the friction that is present at the initial stage of starting the internal combustion engine is performed on the fuel supply amount. Therefore, it is possible to cause the actual internal combustion engine rotational speed to converge on the target rotational speed before the value of the deviation of the actual internal combustion engine rotational speed from the target rotational speed is largely accumulated in the integral correction term. . Therefore, since the integral correction term can be suppressed from increasing, the control range of the integral correction term by the guard process can be narrowed. As a result, it is possible to compensate for friction in the initial stage of startup of the internal combustion engine to prevent a drop in the number of revolutions of the internal combustion engine, and to prevent a rapid rise in revolution due to the integral gain term in the subsequent idle revolution control.
尚、 ここで言う始動初期とは、 始動時及び始動直後を包括する概念である。 以 下に述べる始動初期についても同じである。 好適なアイドル燃料供給量制御方法では、 前記見込補正は、 内燃機関の始動時 及び始動直後の一方又は両方にて設定された見込補正項を次第に低減させること により行われる。 この見込補正においては、 内燃機関の始動時及び始動直後の一 方又は両方にて設定された見込補正項を次第に低減させることにより、 内燃機関 の始動初期のフリクシヨンを補償した後において、 本見込補正を停止する際にお けるショックを防止して、 その後のアイドル回転数制御に円滑に引き継がせるこ とができる。 別の好適なアイドル燃料供給量の制御方法では、 前記見込補正項を次第に低減 させる前に、 該見込補正項の値を保持する期間を設けている。 このように見込補
正項の値を保持する期間を設けることにより、 初期の見込補正項を極端に大きく しなくても、 内燃機関の始動時や始動直後において積分補正項が増大するのを効 果的に抑制できる。 さらに別のアイドル燃料供給量の制御方法では、 前記見込補正項は、 内燃機関 の回転開始後又は始動後の経過時間に応じて、 次第に低減される。 見込補正項を 次第に低減させる手法としては、 内燃機関の回転開始後又は始動後の経過時間に 応じて行うようにしても良い。 内燃機関が回転を継続することにより、 内燃機関 の始動初期のフリクシヨンは次第に消滅するので、 時間の経過に基づけば適切に 見込補正項を低減させることができる。 このことにより本見込補正を停止する際 におけるショックを防止して、 その後のアイドル回転数制御に円滑に引き継がせ ることができる。 別の好適なアイドル燃料供給量の制御方法では、 前記見込補正項は、 内燃機関 回転開始後又は始動後の内燃機関の積算回転数に応じて、 次第に低減される。 内 燃機関の回転により、内燃機関の始動初期のフリクションは次第に消滅するので、 内燃機関の回転を積算してその積算回転数に基づけば、 適切に見込補正項を低減 させることができる。 このことにより本見込補正を停止する際におけるショック を防止して、 その後のアイドル回転数制御に円滑に引き継がせることができる。 さらに、 別のアイドル燃料供給量制御方法では、 前記見込補正項は、 内燃機関 の温度上昇に応じて、 次第に低減される。 始動時以後、 内燃機関が運転を継続す ることにより、 内燃機関の温度は次第に上昇する。 このような温度上昇パターン は、 内燃機関の始動初期のフリクション低減パターンと類似し、 また温度要因も 内燃機関の始動初期のフリクションの大きさに関与している。 このことから、 内 燃機関の温度上昇に基づけば、 適切に見込補正項を低減させることができる。 こ のことにより本見込補正を停止する際におけるショックを防止して、 その後のァ
ィドル回転数制御に円滑に引き継がせることができる。 また、 前記内燃機関の温度としては、 内燃機関の冷却水温度を用いることが好 ましい。 この場合、 内燃機関の冷却水温度上昇に基づいて、 適切に見込補正項を 低減させることができる。 このことにより本見込補正を停止する際におけるショ ックを防止して、 その後のアイドル回転数制御に円滑に引き継がせることができ る。 なお、 機関温度としては、 冷却水温度に代えて、 フリクションと密接に関連す るエンジン潤滑油温度を用いてもよい。 この場合も、 潤滑油温度の上昇に基づい て、 適切に見込み補正項を低減させることができる。 エンジンストール後の再始動においては、 前記見込補正項をエンジンストール 時の値に設定し、 該値から前記見込補正項の低減を開始することが好ましい。 ェ ンジンストールした場合においては、 その直前までの内燃機関の回転により低減 している始動初期のフリクシヨンはほとんど回復していない。 このためエンジン ストール後の再始動においては、 エンジンストール時点における前記見込補正項 の値を採用して、 この値から前述したごとくの低減を開始させる。 このことによ り、 適切に見込補正項を設定することができ、 内燃機関のアイドル回転数制御を 一層安定したものとすることができる。 前記見込補正項は、 変速機のシフト位置に応じて切り替えることが好ましい。 内燃機関の始動初期のフリクションの大きさは変速機のシフト位置によって変化 することから、 前記見込補正項の大きさを変速機のシフト位置によって切り替え るようにする。 このことにより、 適切に見込補正項を設定することができ、 内燃 機関のアイドル回転数制御を一層安定したものとすることができる。
前記見込補正項は、外部負荷の有無に応じて切り替えることも可能である。 内 燃機関の始動初期のフリクシヨンの大きさは、 エアコンディショナやパワーステ ァリングなどの外部負荷の有無によって変化することから、 前記見込補正項の大 きさを外部負荷の有無によって切り替えるようにする。 このことにより、 適切に 見込補正項を設定することができ、 内燃機関のアイドル回転数制御を一層安定し たものとすることができる。 前記見込補正項は、 外部負荷の種類に応じて切り替えることもできる。 内燃機 関の始動初期のフリクシヨンの大きさは、 エアコンディショナゃパワーステアリ ングなどの外部負荷の種類によって変化することから、 前記見込補正項の大きさ を外部負荷の種類によって切り替えるようにする。 このことにより、 適切に見込 補正項を設定することができ、 内燃機関のアイドル回転数制御を一層安定したも のとすることができる。 別の実施態様のアイドル燃料供給量制御方法では、 内燃機関のアイドル時にお いて目標回転数に対する実際の内燃機関回転数の偏差に基づいて積分補正項を算 出し、 該積分補正項に対して上限ガード値と下限ガード値とによりガード処理を 施すと共に、 該ガード処理後の積分補正項を用いて燃料供給量を補正することに より内燃機関のアイドル回転数を制御する。 それによれば、 内燃機関の始動時及 び始動直後の一方又は両方においては、 前記上限ガード値と前記下限ガード値と の間の積分補正項の制御範囲を、 通常運転時よりも広く設定する。 このように特別に内燃機関の始動時及び始動直後の一方又は両方においては、 ガード処理における積分補正項の制御範囲を通常運転時よりも広く設定している。 このため、 内燃機関の始動時及び始動直後の一方又は両方に限っては、 目標回転 数に対する実際の内燃機関回転数の偏差分の値が、 積分補正項に大きく蓄積され ることを許している。 したがって、 内燃機関の始動時及び始動直後の一方又は両
方に限っては、 前記積分補正項により内燃機関の始動初期のフリクシヨンが補償 され、 内燃機関回転数の落ち込みが防止される。 そして、 その後におけるアイドル回転数制御時においては、 積分補正項の制御 範囲は通常運転時の広さに戻されるため、積分補正項が過大となるのが阻止され、 ァィドル回転数制御における回転の急上昇が防止される。 好適な実施態様では、 前記ガード処理は、 内燃機関の始動時及び始動直後の一 方又は両方にて設定された前記積分補正項の制御範囲を次第に狭めて通常運転時 の範囲とする。 このガード処理においては、 内燃機関の始動時及ぴ始動直後の一 方又は両方にて設定された前記積分補正項の制御範囲を次第に狭めている。 この ことにより、 内燃機関の始動初期のフリクシヨンを積分補正項にて十分に補償し た後に、 通常運転時の積分補正項の制御範囲に戻して、 その後のアイドル回転数 制御に円滑に引き継がせることができる。 また、 前記積分補正項の制御範囲を次第に狭める前に、 該積分補正項の制御範 囲の広さを保持する期間を設けることが好ましい。 このように積分補正項の制御 範囲の広さを保持する期間を設けることにより、 内燃機関の始動時や始動直後に おいて、 積分補正項の制御範囲を極端に広くしなくても積分補正項が十分に上昇 するまでの時間的余裕を設けることができる。 このことにより、 内燃機関の始動 初期のフリクションを積分補正項にて効果的に補償することができる。 さらに、 前記積分補正項の制御範囲を、 内燃機関回転開始後又は始動後の経過 時間に応じて、 次第に狭めることもできる。 積分補正項の制御範囲を次第に狭め る手法としては、 内燃機関回転開始後又は始動後の経過時間に応じて行うように しても良い。 内燃機関が回転を継続することにより内燃機関の始動初期のフリク ションは次第に消滅するので、 積分補正項は次第に小さくなる。 このため時間の
経過に基づけば、 積分補正項の制御範囲を適切に狭めることができる。 このこと により通常運転時の積分補正項の制御範囲に戻して、 その後のアイドル回転数制 御に円滑に引き継がせることができる。 前記積分補正項の制御範囲を、 内燃機関回転開始後又は始動後の内燃機関積算 回転数に応じて、 次第に狭めることが好ましレ、。 積分補正項の制御範囲を次第に 狭める手法としては、 内燃機関回転開始後又は始動後の内燃機関の積算回転数に 応じて行うようにしても良い。 内燃機関の回転により、 内燃機関の始動初期のフ リクションは次第に消滅するので、 積分補正項は次第に小さくなる。 このため内 燃機関の回転を積算してその積算回転数に基づけば、 積分捕正項の制御範囲を適 切に狭めることができる。 このことにより通常運転時の積分補正項の制御範囲に 戻して、 その後のアイドル回転数制御に円滑に引き継がせることができる。 前記積分捕正項の制御範囲を、 内燃機闋の温度上昇に応じて、 次第に狭めるこ とが好ましい。 始動時以後、 内燃機関が運転を継続することにより、 内燃機関の 温度は次第に上昇する。 このような温度上昇パターンは、 内燃機関の始動初期の フリクション低減パターンと類似し、 また温度要因も内燃機関の始動初期のフリ クシヨンの大きさに関与している。 このことから、 内燃機関の温度上昇に基づけ ば、 積分補正項の制御範囲を適切に狭めることができる。 このことにより通常運 転時の積分補正項の制御範囲に戻して、 その後のアイドル回転数制御に円滑に引 き継がせることができる。 前記内燃機関の温度としては、内燃機関の冷却水温度を用いることが好ましい。 この場合、 内燃機関の冷却水温度上昇に基づいて、 積分補正項の制御範囲を適切 に狭めることができる。 このことにより通常運転時の積分捕正項の制御範囲に戻 して、 その後のアイドル回転数制御に円滑に引き継がせることができる。
エンジンストール後の再始動においては、 前記積分補正項の制御範囲をェンジ ンス トール時の範囲に設定し、 該範囲から次第に狭める処理を開始することが好 ましい。 エンジンス トールした場合においては、 その直前までの内燃機関の回転 により低減している始動初期のフリクシヨンはほとんど回復していない。 このた めエンジンストール後の再始動においては、 エンジンストール時点における前記 積分補正項の制御範囲を採用して、 この値から前述したごとく積分補正項の制御 範囲を狭める処理を開始させる。 このことにより、 適切に積分補正項の制御範囲 を設定することができ、 内燃機関のアイドル回転数制御を一層安定したものとす ることができる。 前記積分捕正項の制御範囲は、 変速機のシフト位置に応じて切り替えることが 好ましい。 内燃機関の始動初期のフリクシヨンの大きさは変速機のシフト位置に よって変化することから、 前記積分補正項の制御範囲を変速機のシフト位置によ つて切り替えるようにする。 このことにより、 適切に積分補正項の制御範囲を設 定することができ、 内燃機関のアイドル回転数制御を一層安定したものとするこ とができる。 前記積分捕正項の制御範囲は、 外部負荷の有無に応じて切り替えることが好ま しい。 内燃機関の始動初期のフリクションの大きさは、 エアコンディショナゃパ ワーステアリングなどの外部負荷の有無によって変化することから、 前記積分補 正項の制御範囲を外部負荷の有無によって切り替えるようにする。 このことによ り、 適切に積分捕正項の制御範囲を設定することができ、 内燃機関のアイドル回 転数制御を一層安定したものとすることができる。 前記積分捕正項の制御範囲は、 外部負荷の種類に応じて切り替えることが好ま しい。 内燃機関の始動初期のフリクションの大きさは、 エアコンディショナゃパ ワーステアリングなどの外部負荷の種類によって変化することから、 前記積分補
正項の制御範囲を外部負荷の種類によって切り替えるようにする。 このことによ り、 適切に積分補正項の制御範囲を設定することができ、 内燃機関のアイ ドル回 転数制御を一層安定したものとすることができる。 前記積分補正項の制御範囲は、 前記積分補正項の学習値を基準として設定され るものであることが好ましい。 この場合、 学習値を中心として変動する傾向のあ る積分補正項を適切にガードすることができる。 このことにより、 適切に積分捕 正項の制御範囲を設定することができ、 内燃機関のアイドル回転数制御を一層安 定したものとすることができる。 前記積分補正項の制御範囲が通常運転時の範囲に戻った場合に、 前記積分補正 項の学習値の計算を許可するようにしてもよい。 積分補正項の制御範囲が通常運 転時よりも広く設定されているような状況下では、 積分補正項が大きく変動して いることから、 積分補正項の学習値の計算を実行することは誤差を生じやすく適 当でない。 このため、 積分補正項の制御範囲が通常運転時の範囲に戻った場合に 積分補正項の学習値の計算を許可することにより、 学習値の誤差を抑制して、 一 層安定したアイドル回転数制御が可能となる。 さらに別の実施態様におけるアイドル燃料供給量の制御方法によれば、 内燃機 関の始動初期に存在するフリクションに対応する見込補正を実行する処理と、 内 燃機関の始動時及び始動直後の一方又は両方にて積分補正項の制御範囲を通常運 転時よりも広く設定する処理との両方の処理が実行される。 それにより、 内燃機 関の始動初期のフリクシヨンをネ甫償して内燃機関回転数の落ち込みを、 より効果 的に防止できるとともに、 その後のアイ ドル回転数制御における積分補正項に起 因した回転の急上昇を防止できる効果が一層顕著なものとなる。 前記見込補正項が実質的に存在する間、 前記上限ガード値と前記下限ガード値
との間の積分補正項の制御範囲を、 通常運転時よりも広く設定することが望まし い。 このように見込補正項の設定と積分補正項の制御範囲の拡大とを対応させる ことで、 内燃機関の始動初期のフリクションの補償と、 その後の積分補正項に起 因した回転の急上昇の防止とを、 より効果的なものにできる。 前記見込補正項の低減に連動して、 前記上限ガード値と前記下限ガード値との 間の積分補正項の制御範囲を、 通常運転時の範囲に向けて次第に狭くすることが 望ましい。このように見込補正項と積分補正項の制御範囲とを連動させることで、 内燃機関の始動初期のフリクションの補償と、 その後の積分補正項に起因した回 転の急上昇の防止とを、 より効果的なものにできる。 前記内燃機関はディーゼルエンジンであることが好ましい。 その場合、 ディー ゼルエンジンにおいて、 始動初期のフリクシヨンを捕償して回転数の落ち込みを 防止できるとともに、 その後のアイドル回転数制御における積分補正項に起因し た回転の急上昇を防止できる。 本発明の一実施態様によれば、 アイドル燃料供給量の制御装置が提供される。 その装置は、 内燃機関のアイドル時において目標回転数に対する実際の内燃機関 回転数の偏差に基づいて積分補正項を算出する第一算出手段 (積分補正項算出手 段) と、 内燃機関の始動時及び始動直後の一方又は両方において、 内燃機関の始 動初期に存在するフリクションに対応する見込補正項を設定する設定手段と、 前 記積分補正項算出手段にて算出された積分補正項と前記設定手段にて設定された 見込捕正項とを含めた補正項にて基本燃料量を補正することにより燃料供給量を 算出する第二算出手段 (燃料供給量算出手段) とを備える。 第二算出手段は、 第一算出手段にて算出された積分捕正項と設定手段にて設定 された見込補正項とを含めた補正項にて基本燃料量を捕正することにより燃料供
給量を算出している。 この内、 見込補正項は、 設定手段にて、 内燃機関の始動時 及ぴ始動直後の一方又は両方において、 内燃機関の始動初期に存在するフリクシ ヨンに対応する補正項として設定されるものである。 このため、 目標回転数に対 する実際の内燃機関回転数の偏差分の値が、積分補正項に大きく蓄積される前に、 目標回転数に対して実際の内燃機関回転数を収束させることができる。 したがって、 積分捕正項が増大するのを抑制できることから、 ガード処理によ る積分補正項の制御範囲を狭くすることができる。 このため、 内燃機関の始動初 期のフリクションを補償して内燃機関回転数の落ち込みを防止できるとともに、 その後のアイドル回転数制御における積分補正項に起因した回転の急上昇を防止 できる。 好適なアイドル燃料供給量の制御装置では、 前記設定手段は、 内燃機関の始動 時及び始動直後の一方又は両方にて設定された見込補正項を、 次第に低減する。 設定手段では、 内燃機関の始動時及び始動直後の一方又は両方にて設定された見 込補正項を次第に低減させることにより、 内燃機関の始動初期のフリクションを 捕償した後において、 本見込補正を停止する際におけるショックを防止して、 そ の後のアイドル回転数制御に円滑に引き継がせることができる。 別の好適なアイドル燃料供給量の制御装置では、 前記設定手段は、 前記見込補 正項を次第に低減させる前に、 該見込補正項の値を保持する期間を設ける。 この 場合、 初期の見込補正項を極端に大きくしなくても、 内燃機関の始動時あるいは 始動直後において積分補正項が増大するのを効果的に抑制できる。 さらに、 設定手段では、 見込補正項を次第に低減させる処理を、 内燃機関回転 開始後又は始動後の経過時間に応じて行うようにしても良い。 内燃機関が回転を 継続することにより内燃機関の始動初期のフリクションは次第に消滅-
時間の経過に基づけば、設定手段は適切に見込補正項を低減させることができる。 このことにより設定手段が見込補正項を低減する際におけるショックを防止して、 その後のアイドル回転数制御に円滑に引き継がせることができる。 前記設定手段は、 前記見込補正項を、 内燃機関回転開始後又は始動後の内燃機 関積算回転数に応じて次第に低減してもよい。この場合、内燃機関の回転により、 内燃機関の始動初期のフリクションは次第に消滅するので、 内燃機関の回転を積 算してその積算回転数に基づけば、 設定手段は適切に見込補正項を低減させるこ とができる。 このことにより設定手段が見込補正項を低減する際におけるショッ クを防止して、その後のアイドル回転数制御に円滑に引き継がせることができる。 好適なアイドル燃料供給量制御装置では、前記設定手段は、前記見込補正項を、 内燃機関の温度上昇に応じて次第に低減している。 始動時以後、 内燃機関が運転 を継続することにより、 内燃機関の温度は次第に上昇する。 このような温度上昇 パターンは、 内燃機関の始動初期のフリクション低減パターンと類似し、 また温 度要因も内燃機関の始動初期のフリクションの大きさに関与している。 このこと から、 内燃機関の温度上昇に基づけば、 設定手段は適切に見込補正項を低減させ ることができる。 このこと,により設定手段が見込補正項を低減する際におけるシ ョックを防止して、 その後のアイドル回転数制御に円滑に引き継がせることがで きる。 前記設定手段は、 前記内燃機関の温度として、 内燃機関の冷却水温度を用いる ことができる。 したがって内燃機関の冷却水温度上昇に基づいて、 設定手段は適 切に見込捕正項を低減させることができる。 このことにより設定手段が見込補正 項を低減する際におけるショックを防止して、 その後のアイドル回転数制御に円 滑に引き継がせることができる。
好適なアイドル燃料供給量制御装置では、 前記設定手段は、 エンジンストール 後の再始動においては、 前記見込補正項をエンジンストール時の値に設定し、 該 値から前記低減を開始する。 エンジンストールした場合においては、 直前までの 内燃機関の回転により低減している始動初期のフリクションはほとんど回復して いない。 このため設定手段は、 エンジンストール後の再始動においては、 ェンジ ンストール時点における前記見込補正項の値を採用して、 この値から前述したご とくの低減を開始させる。 このことにより、 設定手段は適切に見込補正項を設定 することができ、 内燃機関のアイドル回転数制御を一層安定したものとすること ができる。 内燃機関の始動初期のフリクションの大きさは変速機のシフト位置によって変 化することから、 設定手段は前記見込補正項の大きさを変速機のシフト位置によ つて切り替えるようにしてもよい。 このことにより、 設定手段は適切に見込補正 項を設定することができ、 内燃機関のアイドル回転数制御を一層安定したものと することができる。 内燃機関の始動初期のフリクションの大きさは、 エアコンディショナやパワー ステアリングなどの外部負荷の有無によって変化することから、 設定手段は、 前 記見込補正項の大きさを外部負荷の有無によって切り替えるようにしてもよい。 こ'のことにより、 設定手段は適切に見込ネ 正項を設定することができ、 内燃機関 のアイドル回転数制御を一層安定したものとすることができる。 内燃機関の始動初期のフリクションの大きさは、 エアコンゃパワーステアリン グなどの外部負荷の種類によって変化することから、 設定手段は、 前記見込補正 項の大きさを外部負荷の種類によって切り替えるようにしてもよい。 このことに より、 設定手段は適切に見込補正項を設定することができ、 内燃機関のアイドル 回転数制御を一層安定したものとすることができる。
好適な実施態様のアイドル燃料供給量制御装置は、 内燃機関のアイ ドル時にお いて目標回転数に対する実際の内燃機関回転数の偏差に基づいて積分補正項を算 出し、 該積分補正項に対して上限ガード値と下限ガード値とによりガード処理を 施すとともに、 内燃機関の始動時及び始動直後の一方又は両方においては、 前記 上限ガード値と前記下限ガード値との間の積分補正項の制御範囲を、 通常運転時 よりも広く設定する第一算出手段と、 前記第一算出手段にて算出された積分補正 項を含めた補正項にて基本燃料量を補正することにより燃料供給量を算出する第 二算出手段とを備える。 このように第一算出手段は、 内燃機関の始動時及び始動直後の一方又は両方に おいては、 ガード処理における積分補正項の制御範囲を通常運転時よりも広く設 定している。 このため、 内燃機関の始動時及び始動直後の一方又は両方に限って は、 目標回転数に対する実際の内燃機関回転数の偏差分の値が、 積分補正項に大 きく蓄積されることが許される。 したがって、 内燃機関の始動時及び始動直後の 一方又は両方に限っては、 第一算出手段から算出される積分補正項により内燃機 関の始動初期のフリクションが補償され、 内燃機関回転数の落ち込みが防止され る。 そして、 その後におけるアイドル回転数制御時においては、 第一算出手段は積 分補正項の制御範囲を通常運転時の広さに戻すため、 積分補正項が過大となるの を阻止し、 アイドル回転数制御における回転の急上昇を防止することができる。 前記第一算出手段は、 前記ガード処理において、 内燃機関の始動時及び始動直 後の一方又は両方にて設定された前記積分補正項の制御範囲を次第に狭めて通常 運転時の範囲としてもよい。 このことにより、 第一算出手段は、 内燃機関の始動 初期のフリクションを積分補正項にて十分に補償した後に通常運転時の積分補正 項の制御範囲に戻して、 その後のアイドル回転数制御に円滑に引き継がせること
ができる。 前記第一算出手段は、 積分補正項の制御範囲を次第に狭める前に、 積分補正項 の制御範囲の広さを保持する期間を設けてもょレ、。 内燃機関の始動時や始動直後 において、 積分補正項の制御範囲を極端に広くしなくても積分補正項が十分に上 昇するまでの時間的余裕を設けることができる。 このことにより、 内燃機関の始 動初期のフリクションを積分捕正項にて効果的に補償することができる。 第一算出手段は、 積分補正項の制御範囲を次第に狭める処理として、 内燃機関 回転開始後又は始動後の経過時間に応じて行うようにしても良い。 内燃機関が回 転を継続することにより内燃機関の始動初期のフリクションは次第に消滅するの で、 積分捕正項は次第に小さくなる。 このため時間の経過に基づけば、 第一算出 手段は、 積分補正項の制御範囲を適切に狭めることができる。 このことにより第 一算出手段は、 通常運転時の積分補正項の制御範囲に戻して、 その後のアイドル 回転数制御に円滑に引き継がせることができる。 第一算出手段は、 積分補正項の制御範囲を次第に狭める処理として、 内燃機関 回転開始後又は始動後の内燃機関積算回転数に応じて行うようにしても良い。 内 燃機関の回転により、内燃機関の始動初期のフリクシヨンは次第に消滅するので、 積分補正項は次第に小さくなる。 このため内燃機関の回転を積算してその積算回 転数に基づけば、 第一算出手段は、 積分補正項の制御範囲を適切に狭めることが できる。 このことにより第一算出手段は、 通常運転時の積分補正項の制御範囲に 戻して、 その後のアイドル回転数制御に円滑に引き継がせることができる。 前記第一算出手段は、 前記積分補正項の制御範囲を、 内燃機関の温度上昇に応 じて、次第に狭めてもょレ、。始動時以後、内燃機関が運転を継続することにより、 内燃機関の温度は次第に上昇する。 このような温度上昇パターンは、 内燃機関の
始動初期のフリクション低減パターンと類似し、 また温度要因も内燃機関の始動 初期のフリクションの大きさに関与している。 このことから、 内燃機関の温度上 昇に基づけば、 第一算出手段は、 積分補正項の制御範囲を適切に狭めることがで きる。 このことにより第一算出手段は、 通常運転時の積分補正項の制御範囲に戻 して、 その後のアイドル回転数制御に円滑に引き継がせることができる。 第一算出手段は、 内燃機関の温度として内燃機関の冷却水温度を用いることが できる。 したがって内燃機関の冷却水温度上昇に基づいて、 第一算出手段は、 積 分補正項の制御範囲を適切に狭めることができる。 このことにより第一算出手段 は、 通常運転時の積分捕正項の制御範囲に戻して、 その後のアイドル回転数制御 に円滑に引き継がせることができる。 前記第一算出手段は、 エンジンストール後の再始動においては、 前記積分補正 項の制御範囲をエンジンストール時の範囲に設定し、 該範囲から次第に狭める処 理を開始するようにしてもよい。 エンジンストールした場合においては、 直前ま での内燃機関の回転により低減している始動初期のフリクションはほとんど回復 していない。このため第一算出手段は、エンジンストール後の再始動においては、 エンジンストール時点における前記積分捕正項の制御範囲を採用して、 この値か ら前述したごとく積分捕正項の制御範囲を狭める処理を開始させる。 このことに より、 第一算出手段は、 適切に積分補正項の制御範囲を設定することができ、 内 燃機関のアイドル回転数制御を一層安定したものとすることができる。 前記第一算出手段は、 前記積分補正項の制御範囲を、 変速機のシフト位置に応 じて切り替えるようにしてもよい。 内燃機関の始動初期のフリクシヨンの大きさ は変速機のシフト位置によって変化することから、 第一算出手段は、 前記積分補 正項の制御範囲を変速機のシフト位置によって切り替えるようにする。 このこと により、 第一算出手段は、 適切に積分補正項の制御範囲を設定することができ、
内燃機関のアイドル回転数制御を一層安定したものとすることができる。 前記第一算出手段は、 前記積分補正項の制御範囲を、 外部負荷の有無に応じて 切り替えるようにしてもよい。 内燃機関の始動初期のフリクションの大きさは、 エアコンディショナやパワーステアリングなどの外部負荷の有無によって変化す ることから、 第一算出手段は、 前記積分補正項の制御範囲を外部負荷の有無によ つて切り替えるようにする。 このことにより、 第一算出手段は、 適切に積分補正 項の制御範囲を設定することができ、 内燃機関のアイドル回転数制御を一層安定 したものとすることができる。 前記第一算出手段は、 前記積分補正項の制御範囲を、 外部負荷の種類に応じて 切り替えるようにしてもよい。 内燃機関の始動初期のフリクシヨンの大きさは、 エアコンディショナゃパワーステアリングなどの外部負荷の種類によって変化す ることから、 第一算出手段は、 前記積分補正項の制御範囲を外部負荷の種類によ つて切り替えるようにする。 このことにより、 第一算出手段は、 適切に積分補正 項の制御範囲を設定することができ、 内燃機関のアイ ドル回転数制御を一層安定 したものとすることができる。 前記第一算出手段は、 前記積分補正項の制御範囲を、 前記積分補正項の学習値 を基準として設定するようにしてもよい。 この場合、 学習値を中心として変動 する傾向のある積分補正項を適切にガードすることができる。 このことにより、 第一算出手段は、 適切に積分補正項の制御範囲を設定することができ、 内燃機関 のアイドル回転数制御を一層安定したものとすることができる。 好適なアイドル燃料供給量制御装置では、 前記第一算出手段における前記積分 補正項の制御範囲が通常運転時の範囲に戻った場合に、 前記積分補正項の学習値 計算を実行する積分補正項学習手段を備:
積分補正項の制御範囲を通常運転時よりも広く設定しているような状況下では、 積分補正項が大きく変動することから、 積分補正項学習手段が積分補正項の学習 値の計算を実行することは誤差を生じやすく適当でない。 このため、 積分補正項 学習手段は、 第一算出手段における積分補正項の制御範囲が通常運転時の範囲に 戻った場合に、 積分補正項の学習値計算を実行するようにしている。 このことに より、 学習値の誤差が抑制されて、 一層安定したアイ ドル回転数制御が可能とな る。 別の実施態様のアイドル燃料供給量制御装置では、 内燃機関の始動時及び始動 直後の一方又は両方において、 内燃機関の始動初期に存在するフリクションに対 応する見込補正項を設定する設定手段と、 内燃機関のアイドル時において目標回 転数に対する実際の内燃機関回転数の偏差に基づいて積分補正項を算出し、 該積 分補正項に対して上限ガード値と下限ガード値とによりガード処理を施すととも に、 内燃機関の始動時及び始動直後の一方又は両方においては、 前記上限ガード 値と前記下限ガード値との間の積分補正項の制御範囲を、 通常運転時よりも広く 設定する第一算出手段とを備えている。 それにより、 内燃機関の始動初期のフリ クションを補償して内燃機関回転数の落ち込みを、 より効果的に防止できるとと もに、 その後のアイドル回転数制御における積分補正項に起因した回転の急上昇 を防止できる効果が、 一層顕著なものとなる。 前記第一算出手段は、 前記見込補正項が実質的に存在する間、 前記上限ガード 値と前記下限ガード値との間の積分補正項の制御範囲を、 通常運転時よりも広く 設定するようにしてもよい。 この場合、 第一算出手段は、 見込補正項の設定状態 に対して積分補正項の制御範囲の拡大を対応させている。 このことにより、 内燃 機関の始動初期のフリクションの補償と、 その後の積分補正項に起因した回転の 急上昇の防止とを、 より効果的なものとすることができる。
前記第一算出手段は、 前記設定手段による前記見込補正項の低減に連動して、 前記上限ガード値と前記下限ガード値との間の積分補正項の制御範囲を、 通常運 転時の範囲に向けて次第に狭くすることが好ましい。この場合、第一算出手段は、 見込補正項と積分補正項の制御範囲とを連動させている。 このことで、 内燃機関 の始動初期のフリクションの補償と、 その後の積分補正項に起因した回転の急上 昇の防止とを、 より効果的なものとすることができる。 前記アイ ドル燃料供給量の制御装置はディーゼルエンジンに適用されることが 好ましい。 この場合、 ディーゼルエンジンにおいて、 始動初期のフリクションを 補償して回転数の落ち込みを防止できるとともに、 その後のアイドル回転数制御 における積分補正項に起因した回転の急上昇を防止できる。 図面の簡単な説明 The term “initial start” as used herein is a concept encompassing the start and immediately after start. The same is true for the initial startup phase described below. In the preferred idle fuel supply control method, the estimation correction is performed by gradually reducing the estimation correction term set at one or both of start-up and immediately after start-up of the internal combustion engine. In this possibility correction, the present correction is made after compensating for the friction in the initial stage of starting the internal combustion engine by gradually reducing the possibility correction term set at one or both of starting and after starting the internal combustion engine. Shock can be prevented when stopping the engine, and it can be smoothly taken over to the idle speed control after that. In another preferred idle fuel supply control method, a time period for holding the value of the estimated correction term is provided before gradually reducing the estimated correction term. In this way
By providing a period for holding the value of the positive term, it is possible to effectively suppress an increase in the integral correction term at the start of the internal combustion engine or immediately after the start without increasing the initial expected correction term extremely. . In still another control method of the idle fuel supply amount, the estimated correction term is gradually reduced according to the elapsed time after the start of the rotation of the internal combustion engine or after the start. As a method of gradually reducing the expected correction term, it may be performed according to the elapsed time after the start of rotation of the internal combustion engine or after the start. By continuing the rotation of the internal combustion engine, the friction at the initial stage of starting the internal combustion engine gradually disappears, so it is possible to appropriately reduce the expected correction term based on the passage of time. As a result, the shock at the time of stopping the estimated correction can be prevented, and the idle speed control can be smoothly taken over. In another preferred idle fuel supply control method, the estimated correction term is gradually reduced according to the integrated rotation speed of the internal combustion engine after the start of rotation of the internal combustion engine or after the start of rotation. Since the friction at the start of the internal combustion engine gradually disappears due to the rotation of the internal combustion engine, the estimated correction term can be appropriately reduced based on the integrated rotation speed by integrating the rotation of the internal combustion engine. As a result, it is possible to prevent a shock when stopping the expected correction, and to smoothly carry over to the idle speed control thereafter. Furthermore, in another idle fuel supply control method, the estimated correction term is gradually reduced according to the temperature rise of the internal combustion engine. As the internal combustion engine continues to operate after the start, the temperature of the internal combustion engine gradually rises. Such a temperature rise pattern is similar to the friction reduction pattern at the start of the internal combustion engine start, and the temperature factor is also involved in the magnitude of the friction at the start of the internal combustion engine start. From this, it is possible to appropriately reduce the expected correction term based on the temperature rise of the internal combustion engine. This prevents a shock when stopping this prospective correction, and
The idle speed control can be smoothly taken over. In addition, as the temperature of the internal combustion engine, it is preferable to use a cooling water temperature of the internal combustion engine. In this case, the expected correction term can be appropriately reduced based on the temperature rise of the coolant in the internal combustion engine. This can prevent a shock when stopping the expected correction, and can smoothly carry over to the subsequent idle speed control. As the engine temperature, an engine lubricating oil temperature closely related to the friction may be used instead of the cooling water temperature. In this case as well, the likelihood correction term can be appropriately reduced based on the increase in the lubricant temperature. In restart after engine stall, it is preferable to set the expected correction term to a value at the time of engine stall and start reduction of the expected correction term from the value. In the case of engine stall, the friction at the initial stage of starting, which has been reduced by the rotation of the internal combustion engine just before that, has hardly been recovered. Therefore, in the restart after engine stall, the value of the estimated correction term at the engine stall time is adopted, and the reduction as described above is started from this value. As a result, the expected correction term can be set appropriately, and idle speed control of the internal combustion engine can be made more stable. Preferably, the expected correction term is switched according to the shift position of the transmission. Since the magnitude of friction at the start of the internal combustion engine changes depending on the shift position of the transmission, the magnitude of the expected correction term is switched according to the shift position of the transmission. As a result, the expected correction term can be set appropriately, and idle speed control of the internal combustion engine can be made more stable.
The expected correction term can also be switched according to the presence or absence of an external load. Since the size of the friction at the start of the internal combustion engine changes depending on the presence or absence of an external load such as an air conditioner or power steering, the magnitude of the estimated correction term is switched depending on the presence or absence of an external load. As a result, the expected correction term can be set appropriately, and idle speed control of the internal combustion engine can be made more stable. The expected correction term can also be switched according to the type of external load. Since the size of the initial friction of the internal combustion engine changes depending on the type of external load such as air conditioning and power steering, the size of the expected correction term is switched depending on the type of external load. As a result, the expected correction term can be set appropriately, and idle speed control of the internal combustion engine can be made more stable. In an idle fuel supply control method according to another embodiment, an integral correction term is calculated based on a deviation of an actual internal combustion engine speed from a target rotational speed when the internal combustion engine is idle, and an upper limit for the integral correction term is calculated. The guard processing is performed by the guard value and the lower limit guard value, and the idle rotation speed of the internal combustion engine is controlled by correcting the fuel supply amount using the integral correction term after the guard processing. According to this, the control range of the integral correction term between the upper limit guard value and the lower limit guard value is set wider than that in the normal operation at one or both of the start and the start of the internal combustion engine. As described above, the control range of the integral correction term in the guard process is set wider than that in the normal operation particularly at one or both of the start and the start of the internal combustion engine. For this reason, the value of deviation of the actual internal combustion engine speed from the target speed is allowed to be largely accumulated in the integral correction term only at the start of the internal combustion engine and / or immediately after the start. . Therefore, one or both of starting and immediately after starting the internal combustion engine
On the other hand, the integral correction term compensates for the friction at the start of the internal combustion engine and prevents the drop in the internal combustion engine speed. Then, at the time of idle speed control thereafter, the control range of the integral correction term is returned to the size at the time of normal operation, so that the integral correction term is prevented from becoming excessive, and the rapid increase in rotation in idle speed control Is prevented. In a preferred embodiment, the guard process gradually narrows the control range of the integral correction term set at one or both after starting of the internal combustion engine to a range of normal operation. In this guard processing, the control range of the integral correction term set at the start of the internal combustion engine and / or immediately after the start is gradually narrowed. By this, after sufficiently compensating the friction in the initial stage of starting of the internal combustion engine with the integral correction term, returning to the control range of the integral correction term in the normal operation and smoothly taking over to the subsequent idle speed control. Can. In addition, before gradually narrowing the control range of the integral correction term, it is preferable to provide a period for maintaining the width of the control range of the integral correction term. Thus, by providing a period for keeping the control range of the integral correction term wide, the integral correction term is not required to be extremely wide at the time of starting the internal combustion engine or immediately after the start of the internal combustion engine. It is possible to allow time for the time to rise sufficiently. By this, it is possible to effectively compensate the friction at the start of the internal combustion engine with the integral correction term. Furthermore, the control range of the integral correction term may be gradually narrowed in accordance with the elapsed time after the start of the internal combustion engine rotation or after the start. As a method of gradually narrowing the control range of the integral correction term, it may be performed according to the elapsed time after the start of the internal combustion engine rotation or after the start. As the internal combustion engine continues to rotate, the friction at the start of the internal combustion engine gradually disappears, so the integral correction term becomes smaller gradually. Because of this time
Based on the progress, the control range of the integral correction term can be narrowed appropriately. By this, it is possible to return to the control range of the integral correction term at the time of normal operation and smoothly take over to the idle speed control thereafter. Preferably, the control range of the integral correction term is gradually narrowed in accordance with the integrated engine speed after the start of the internal combustion engine rotation or after the start. As a method of gradually narrowing the control range of the integral correction term, it may be performed according to the integrated rotation speed of the internal combustion engine after the start of the rotation of the internal combustion engine or after the start. Since the rotation of the internal combustion engine gradually disappears at the start of the internal combustion engine, the integral correction term becomes smaller gradually. For this reason, the control range of the integral gain term can be appropriately narrowed by integrating the rotation of the internal combustion engine and based on the integrated rotation speed. As a result, it is possible to return to the control range of the integral correction term at the time of normal operation and smoothly take over to the idle speed control thereafter. It is preferable to gradually narrow the control range of the integral gain term according to the temperature rise of the internal combustion engine. Since the internal combustion engine continues to operate after the start, the temperature of the internal combustion engine gradually rises. Such a temperature rise pattern is similar to the friction reduction pattern at the start of the internal combustion engine start, and the temperature factor is also involved in the magnitude of the friction at the start of the internal combustion engine start. From this, it is possible to appropriately narrow the control range of the integral correction term based on the temperature rise of the internal combustion engine. As a result, it is possible to return to the control range of the integral correction term at the time of normal operation and smoothly take over to the idle speed control thereafter. It is preferable to use the coolant temperature of the internal combustion engine as the temperature of the internal combustion engine. In this case, the control range of the integral correction term can be appropriately narrowed based on the temperature rise of the coolant in the internal combustion engine. As a result, it is possible to return to the control range of the integral gain term during normal operation and smoothly take over to the idle speed control thereafter.
When restarting after an engine stall, it is preferable to set the control range of the integral correction term to the range at engine stall and start processing to gradually narrow from the range. In the case of engine stall, the friction at the initial stage of starting, which has been reduced by the rotation of the internal combustion engine just before that, has hardly been recovered. Therefore, in restart after engine stall, the control range of the integral correction term at the engine stall time point is adopted, and from this value, the process of narrowing the control range of the integral correction term as described above is started. As a result, the control range of the integral correction term can be set appropriately, and idle speed control of the internal combustion engine can be made more stable. It is preferable that the control range of the integral acquisition term be switched according to the shift position of the transmission. Since the size of the friction at the start of the internal combustion engine changes according to the shift position of the transmission, the control range of the integral correction term is switched according to the shift position of the transmission. As a result, the control range of the integral correction term can be set appropriately, and idle speed control of the internal combustion engine can be made more stable. The control range of the integral acquisition term is preferably switched according to the presence or absence of an external load. Since the magnitude of friction at the start of the internal combustion engine changes with the presence or absence of an external load such as an air conditioner, the control range of the integral correction term is switched according to the presence or absence of an external load. By this, the control range of the integral positive term can be appropriately set, and idle speed control of the internal combustion engine can be made more stable. The control range of the integral acquisition term is preferably switched according to the type of external load. Since the magnitude of friction at the start of an internal combustion engine changes according to the type of external load such as air conditioner and power steering, the integral
The control range of the positive term is switched according to the type of external load. As a result, the control range of the integral correction term can be appropriately set, and idle speed control of the internal combustion engine can be made more stable. It is preferable that the control range of the integral correction term is set based on the learning value of the integral correction term. In this case, it is possible to appropriately guard integral correction terms that tend to fluctuate around the learning value. As a result, the control range of the integral correction term can be appropriately set, and idle speed control of the internal combustion engine can be made more stable. The calculation of the learning value of the integral correction term may be permitted when the control range of the integral correction term returns to the range at the time of normal operation. Under conditions where the control range of the integral correction term is set wider than in normal operation, it is an error to execute the calculation of the learning value of the integral correction term because the integral correction term fluctuates significantly. And is not appropriate. For this reason, when the control range of the integral correction term returns to the normal operation range, calculation of the learning value of the integral correction term is permitted, thereby suppressing the error of the learning value, and the idle rotational speed at one layer is stabilized. Control is possible. According to the control method of the idle fuel supply amount in still another embodiment, the process of performing the expected correction corresponding to the friction existing in the initial stage of the start of the internal combustion engine, and / or at the start and / or immediately after the start of the internal combustion engine. Both the process of setting the control range of the integral correction term wider than at the time of normal operation are executed. As a result, it is possible to more effectively prevent a drop in the internal combustion engine speed by compensating the friction in the initial stage of startup of the internal combustion engine, and the rapid increase of the rotation caused by the integral correction term in the idle speed control thereafter. The effect of preventing While the expected correction term substantially exists, the upper limit guard value and the lower limit guard value
It is desirable to set the control range of the integral correction term between to be wider than in normal operation. By correlating the setting of the expected correction term with the expansion of the control range of the integral correction term in this way, compensation of friction in the initial stage of starting the internal combustion engine and prevention of a rapid rise in rotation due to the integral correction term thereafter Can be made more effective. It is desirable that the control range of the integral correction term between the upper limit guard value and the lower limit guard value be gradually narrowed toward the normal operation range in conjunction with the reduction of the expected correction term. By linking the expected correction term and the control range of the integral correction term in this way, it is more effective to compensate for friction at the initial stage of starting the internal combustion engine and to prevent a rapid increase in rotation due to the integral correction term thereafter. It can be The internal combustion engine is preferably a diesel engine. In that case, in the diesel engine, it is possible to compensate for the friction in the initial stage of start-up to prevent a drop in engine speed, and to prevent a rapid rise in engine speed due to the integral correction term in idle engine speed control thereafter. According to one embodiment of the present invention, an idle fuel supply control device is provided. The apparatus comprises first calculating means (calculating means for integral correction term) for calculating an integral correction term based on a deviation of an actual internal combustion engine speed from a target speed when the internal combustion engine is idle; And setting means for setting an expected correction term corresponding to the friction existing at the initial stage of the internal combustion engine at one or both immediately after start-up, the integral correction term calculated by the integral correction term calculation means, and the setting And a second calculation means (fuel supply amount calculation means) for calculating the fuel supply amount by correcting the basic fuel amount with a correction term including the expected capture positive term set by the means. The second calculation means is configured to collect the basic fuel amount by a correction term including the integral correction term calculated by the first calculation means and the expected correction term set by the setting means.
The amount of supply is calculated. Among these, the expected correction term is set by the setting means as a correction term corresponding to the friction existing at the initial stage of starting the internal combustion engine at one or both of the time of starting the internal combustion engine and immediately after the start. . For this reason, it is possible to cause the actual internal combustion engine speed to converge on the target rotational speed before the value of the deviation of the actual internal combustion engine speed from the target rotational speed is largely accumulated in the integral correction term. it can. Therefore, since the integral capture term can be suppressed from increasing, the control range of the integral correction term by the guard processing can be narrowed. As a result, it is possible to compensate for friction in the initial stage of startup of the internal combustion engine to prevent a drop in the internal combustion engine speed, and to prevent a rapid rise in rotation due to the integral correction term in the subsequent idle speed control. In a preferred idle fuel supply control system, the setting means gradually reduces the estimated correction term set at one or both of the start of the internal combustion engine and the start of the start of the internal combustion engine. In the setting means, the present correction is made after compensating for the friction in the initial stage of starting the internal combustion engine by gradually reducing the look-up correction term set in one or both of starting the internal combustion engine and immediately after starting. The shock at the time of stopping can be prevented, and it can be smoothly taken over by the idle speed control thereafter. In another suitable controller for controlling the amount of idle fuel, the setting means sets a period for holding the value of the estimated correction term before gradually reducing the estimated correction term. In this case, it is possible to effectively suppress the increase of the integral correction term at the start of the internal combustion engine or immediately after the start without increasing the initial expected correction term extremely. Furthermore, in the setting means, the process of gradually reducing the estimated correction term may be performed according to the elapsed time after the start of the rotation of the internal combustion engine or after the start. By continuing the rotation of the internal combustion engine, the friction at the start of the internal combustion engine gradually disappears-
Based on the passage of time, the setting means can appropriately reduce the expected correction term. As a result, it is possible to prevent a shock when the setting means reduces the expected correction term, and to smoothly carry over to the subsequent idle speed control. The setting means may gradually reduce the expected correction term in accordance with the integrated engine rotation speed after starting or after starting the internal combustion engine. In this case, since the friction in the initial stage of starting the internal combustion engine gradually disappears due to the rotation of the internal combustion engine, the setting means appropriately reduces the expected correction term based on the integrated rotation speed after calculating the rotation of the internal combustion engine. be able to. As a result, it is possible to prevent a shock when the setting means reduces the expected correction term and to smoothly carry over to the subsequent idle speed control. In a preferred idle fuel supply control system, the setting means gradually reduces the expected correction term in response to the temperature rise of the internal combustion engine. As the internal combustion engine continues to operate after the start, the temperature of the internal combustion engine gradually rises. Such a temperature rise pattern is similar to the friction reduction pattern at the start of the internal combustion engine start, and the temperature factor is also involved in the magnitude of the friction at the start of the internal combustion engine start. From this, based on the temperature rise of the internal combustion engine, the setting means can appropriately reduce the expected correction term. As a result, the shock when the setting means reduces the expected correction term can be prevented, and the subsequent idle speed control can be smoothly taken over. The setting means may use a coolant temperature of the internal combustion engine as the temperature of the internal combustion engine. Therefore, the setting means can appropriately reduce the expected positive value based on the temperature rise of the coolant in the internal combustion engine. As a result, it is possible to prevent the shock when the setting means reduces the expected correction term, and to smoothly carry over to the subsequent idle speed control.
In a preferable idle fuel supply control device, the setting means sets the estimated correction term to a value at the time of engine stall and restarts the reduction from the value at restart after engine stall. In the case of engine stall, the friction at the initial stage of starting, which has been reduced by the rotation of the internal combustion engine until just before, has hardly been recovered. For this reason, in the restart after engine stall, the setting means adopts the value of the expected correction term at the time of engine installation, and starts the above-mentioned reduction from this value. As a result, the setting means can appropriately set the expected correction term, and the idle speed control of the internal combustion engine can be made more stable. Since the magnitude of friction at the start of the internal combustion engine changes depending on the shift position of the transmission, the setting means may switch the magnitude of the expected correction term according to the shift position of the transmission. By this, the setting means can appropriately set the expected correction term, and idle speed control of the internal combustion engine can be made more stable. Since the magnitude of friction at the start of the internal combustion engine changes depending on the presence or absence of an external load such as an air conditioner or power steering, the setting means switches the magnitude of the above-mentioned expected correction term depending on the presence or absence of an external load. You may By this, the setting means can appropriately set the estimated positive term, and the idle speed control of the internal combustion engine can be made more stable. Since the size of the friction at the start of the internal combustion engine changes according to the type of external load such as air conditioner and power steering, the setting means switches the size of the expected correction term according to the type of external load. It is also good. By this, the setting means can set the expected correction term appropriately, and the idle speed control of the internal combustion engine can be made more stable.
The idle fuel supply control device of the preferred embodiment calculates an integral correction term based on the deviation of the actual internal combustion engine speed from the target rotational speed at the time of an internal combustion engine idle, and the integral correction term is calculated with respect to the integral correction term. The guard processing is performed by the upper limit guard value and the lower limit guard value, and at one or both of the start of the internal combustion engine and immediately after the start, the control range of the integral correction term between the upper limit guard value and the lower limit guard value is A first calculation means which is set wider than in normal operation, and a correction term including the integral correction term calculated by the first calculation means, for calculating the fuel supply amount by correcting the basic fuel amount; And 2 calculating means. As described above, the first calculation means sets the control range of the integral correction term in the guard processing to be wider than that in the normal operation at one or both of the startup and immediately after startup of the internal combustion engine. Therefore, the value of deviation of the actual engine speed from the target engine speed may be accumulated largely in the integral correction term only at the start of the internal combustion engine and / or immediately after the start. . Therefore, for one or both of starting and immediately after starting the internal combustion engine, the integral correction term calculated from the first calculation means compensates for the friction in the initial stage of starting the internal combustion engine and prevents the drop of the internal combustion engine speed. It is done. Then, at the time of idle speed control after that, the first calculation means returns the control range of the integral correction term to the size at the time of normal operation, and therefore prevents the integral correction term from becoming excessive. It is possible to prevent a sudden rise in rotation in control. In the guard process, the first calculation means may gradually narrow the control range of the integral correction term set at one or both after start-up and immediately after start-up of the internal combustion engine to make it a range during normal operation. As a result, the first calculation means fully compensates for the friction in the initial stage of startup of the internal combustion engine with the integral correction term, and then returns to the control range of the integral correction term in normal operation to smoothly control the idle speed thereafter. Be handed over to
Can. The first calculation means may provide a period for holding the width of the control range of the integral correction term before gradually narrowing the control range of the integral correction term. At the start of the internal combustion engine or immediately after the start, it is possible to provide a time margin until the integral correction term sufficiently rises without extremely widening the control range of the integral correction term. This makes it possible to effectively compensate for the friction at the initial stage of the internal combustion engine with the integral acquisition term. The first calculation means may perform the process of gradually narrowing the control range of the integral correction term according to the elapsed time after the start of rotation of the internal combustion engine or after the start. As the internal combustion engine continues to rotate, the friction at the start of the internal combustion engine gradually disappears, so the integral capture term becomes smaller gradually. Therefore, based on the passage of time, the first calculation means can appropriately narrow the control range of the integral correction term. By this, the first calculation means can return to the control range of the integral correction term at the time of normal operation, and can smoothly take over to the idle speed control thereafter. The first calculation means may perform the process of gradually narrowing the control range of the integral correction term according to the integrated engine rotational speed after starting or after starting the internal combustion engine. As the internal combustion engine's rotation causes the friction at the start of the internal combustion engine to disappear gradually, the integral correction term becomes smaller gradually. For this reason, the first calculation means can appropriately narrow the control range of the integral correction term based on the integrated number of revolutions of the internal combustion engine. As a result, the first calculation means can return to the control range of the integral correction term at the time of normal operation and smoothly take over to the idle speed control thereafter. The first calculation means may gradually narrow the control range of the integral correction term according to the temperature rise of the internal combustion engine. As the internal combustion engine continues to operate after the start, the temperature of the internal combustion engine gradually rises. Such a temperature rise pattern is
Similar to the friction reduction pattern at the beginning of start-up, the temperature factor is also involved in the magnitude of the friction at the start-up of the internal combustion engine. From this, based on the temperature rise of the internal combustion engine, the first calculation means can appropriately narrow the control range of the integral correction term. As a result, the first calculation means can return to the control range of the integral correction term at the time of normal operation and smoothly take over to the idle speed control thereafter. The first calculation means can use the coolant temperature of the internal combustion engine as the temperature of the internal combustion engine. Therefore, based on the increase in the coolant temperature of the internal combustion engine, the first calculation means can appropriately narrow the control range of the integral correction term. As a result, the first calculation means can return to the control range of the integral gain term during normal operation and smoothly take over to the idle speed control thereafter. In the restart after engine stall, the first calculation means may set the control range of the integral correction term to a range at the time of engine stall and start processing to gradually narrow from the range. In the case of engine stall, the friction at the initial stage of starting, which has been reduced by the rotation of the internal combustion engine until just before, has hardly been recovered. Therefore, in the restart after engine stall, the first calculation means adopts the control range of the integral positive term at the engine stall time and narrows the control range of the integral positive term from this value as described above. Start the process. As a result, the first calculation means can appropriately set the control range of the integral correction term, and can make the idle speed control of the internal combustion engine more stable. The first calculation means may switch the control range of the integral correction term according to the shift position of the transmission. Since the size of the friction at the start of the internal combustion engine changes depending on the shift position of the transmission, the first calculation means switches the control range of the integral correction term according to the shift position of the transmission. By this, the first calculation means can appropriately set the control range of the integral correction term,
Idle speed control of the internal combustion engine can be made more stable. The first calculation means may switch the control range of the integral correction term according to the presence or absence of an external load. Since the magnitude of friction at the initial stage of starting the internal combustion engine changes depending on the presence or absence of an external load such as an air conditioner or power steering, the first calculation means determines the control range of the integral correction term as the presence or absence of an external load. Switch it on later. By this, the first calculation means can appropriately set the control range of the integral correction term, and the idle speed control of the internal combustion engine can be made more stable. The first calculation means may switch the control range of the integral correction term according to the type of the external load. Since the size of the friction at the initial stage of startup of the internal combustion engine changes depending on the type of external load such as air conditioner and power steering, the first calculation means sets the control range of the integral correction term to the type of external load. Switch it on later. As a result, the first calculation means can appropriately set the control range of the integral correction term, and the idle speed control of the internal combustion engine can be made more stable. The first calculation means may set a control range of the integral correction term on the basis of a learning value of the integral correction term. In this case, it is possible to appropriately guard integral correction terms that tend to fluctuate around the learning value. By this, the first calculation means can appropriately set the control range of the integral correction term, and the idle speed control of the internal combustion engine can be made more stable. In the preferred idle fuel supply control system, the integral correction term learning for calculating the learning value of the integral correction term when the control range of the integral correction term in the first calculation means is returned to the normal operation range. Prepare the means:
In a situation where the control range of the integral correction term is set wider than in normal operation, the integral correction term largely fluctuates, so the integral correction term learning means executes the calculation of the learning value of the integral correction term. Are prone to errors and not appropriate. Therefore, when the control range of the integral correction term in the first calculation means returns to the range at the time of normal operation, the integral correction term learning means performs calculation of the learning value of the integral correction term. As a result, the error in the learning value is suppressed, and more stable idle speed control is possible. In an idle fuel supply control device according to another embodiment, setting means for setting an expected correction term corresponding to the friction existing at the initial stage of starting the internal combustion engine at one or both of the start of the internal combustion engine and immediately after the start; The integral correction term is calculated based on the deviation of the actual internal combustion engine speed from the target speed during idling of the internal combustion engine, and the integral correction term is subjected to guard processing by the upper limit guard value and the lower limit guard value. At one or both of starting and immediately after starting of the internal combustion engine, the control range of the integral correction term between the upper limit guard value and the lower limit guard value is set wider than that in the normal operation. And calculating means. As a result, it is possible to compensate for friction in the initial stage of starting the internal combustion engine and to more effectively prevent a drop in the internal combustion engine speed, and a rapid increase in rotation due to the integral correction term in the subsequent idle speed control. The effect of being able to prevent The first calculation means is configured to set the control range of the integral correction term between the upper limit guard value and the lower limit guard value wider than that during normal operation while the expected correction term substantially exists. May be In this case, the first calculation means corresponds the expansion of the control range of the integral correction term to the setting state of the expected correction term. As a result, it is possible to more effectively compensate for friction in the initial stage of starting the internal combustion engine and to prevent the rapid rise in rotation due to the integral correction term thereafter.
The first calculation means, in conjunction with the reduction of the expected correction term by the setting means, sets the control range of the integral correction term between the upper limit guard value and the lower limit guard value to a range during normal operation. It is preferable to make it narrower gradually. In this case, the first calculation means interlocks the expected correction term and the control range of the integral correction term. As a result, it is possible to more effectively compensate for friction in the initial stage of starting the internal combustion engine and to prevent the rapid rise of the rotation due to the integral correction term thereafter. The idle fuel supply control device is preferably applied to a diesel engine. In this case, in the diesel engine, it is possible to compensate for friction in the initial stage of start-up to prevent a drop in engine speed and to prevent a rapid rise in engine speed due to an integral correction term in idle engine speed control thereafter. Brief description of the drawings
図 1は実施の形態 1としての蓄圧式ディーゼルエンジンとその制御系統を示す 概略構成図。 FIG. 1 is a schematic configuration view showing a pressure accumulation type diesel engine as a first embodiment and a control system thereof.
図 2は実施の形態 1の E C Uが実行する燃料噴射量の制御処理のフローチヤ一 卜。 Fig. 2 is a flow chart of the fuel injection amount control process executed by the ECU according to the first embodiment.
図 3は前記燃料噴射量の制御処理にて用いられるエンジン回転数 N E及びァク セル開度 A C C Pからガバナ噴射量 t Q G O V 1 , t Q G O V 2を算出するため のマップ構成図。 FIG. 3 is a map configuration diagram for calculating a governor injection amount t Q G O V 1 and t Q G O V 2 from the engine rotational speed N E and the opening degree A C C P used in the control processing of the fuel injection amount.
図 4は実施の形態 1の E C Uが実行する I S C制御処理のフローチャート。 図 5は同じく積分捕正項学習値 Q I XMの算出処理のフローチヤ一ト。 FIG. 4 is a flowchart of I S C control processing executed by the E C U of the first embodiment. Figure 5 is a flow chart of the calculation process of the integral integral positive term learning value Q I XM as well.
図 6は同じく積分補正項 Q I Iのガード処理のフローチャート。 Fig. 6 is a flowchart of the guard processing of the integral correction term Q I I as well.
図 7は同じく I S C見込補正項の算出処理のフローチャート。 Fig. 7 is a flowchart of the calculation processing of the I SC expected correction term.
図 8は始動初期見込補正項 Q I P A Sの算出処理及び I S C見込捕正項の算出 処理にて用いられるマップ構成図。
図 9は I S C見込補正項の算出処理にて用いられるマップ構成図。 Fig. 8 is a map configuration diagram used in the calculation process of QIPAS and in the calculation process of ISC expected capture positive term. Fig. 9 is a map configuration diagram used in the calculation processing of the ISC expected correction term.
図 1 0は実施の形態 1の E C Uが実行する始動初期見込補正項 Q I P A Sの算 出処理のフローチヤ一ト。 Figure 10 is a flow chart of the calculation process of the start-up initial estimated correction term Q I P A S performed by the ECU according to the first embodiment.
図 1 1は同じく始動後のタイマーカウンタ T sのカウント処理のフロ一チヤ一 卜。 Figure 11 shows the same flow chart of the timer counter Ts counting process after startup.
図 1 2は実施の形態 1における処理の一例を示すタイミングチヤート。 FIG. 12 is a timing chart showing an example of processing in the first embodiment.
図 1 3は実施の形態 1における処理の一例を示すタイミングチヤ一ト。 FIG. 13 is a timing chart showing an example of processing in the first embodiment.
図 1 4は実施の形態 2の E C Uが実行するガード値設定処理のフローチヤ一ト c 図 1 5は同じく積分補正項学習値 Q I XMの算出処理のフローチヤ一ト。 Fig. 14 is a flowchart c of the guard value setting process executed by the ECU according to the second embodiment. Fig. 15 is a flowchart of the process of calculation of the integral correction term learning value QI XM.
図 1 6は実施の形態 2における処理の一例を示すタイミングチャート。 FIG. 16 is a timing chart showing an example of processing in Embodiment 2.
図 1 7は実施の形態 2における処理の一例を示すタイミングチャート。 発明を実施するための最良の形態 FIG. 17 is a timing chart showing an example of processing in Embodiment 2. BEST MODE FOR CARRYING OUT THE INVENTION
実施の形態 1 Embodiment 1
図 1は、 実施の形態 1 としての蓄圧式ディーゼルエンジン (コモンレール型デ イーゼルエンジン) 1とその制御系統を示す概略構成図である。 本ディーゼルェ FIG. 1 is a schematic configuration view showing a pressure accumulation type diesel engine (common rail type diesel engine) 1 as a first embodiment and its control system. This diesel
.は車両駆動用として車両に搭載される内燃機関である。 ディーゼルエンジン 1には、 複数の気筒 (本実施の形態では 4気筒であるが、 1気筒のみ図示している) 林 1, # 2 , # 3 , # 4が設けられており、 各気筒 # 1〜# 4の燃焼室に対してインジヱクタ 2がそれぞれ配設されている。 インジェ クタ 2からディーゼルエンジン 1の各気筒 # 1〜# 4への燃料噴射タイミングと 燃料噴射量とは、 噴射制御用の電磁弁 3のオン ·オフにより制御される。 インジヱクタ 2は、 各気筒共通の蓄圧配管としてのコモンレール 4に接続され ており、 前記噴射制御用の電磁弁 3が開いている間、 コモンレール 4内の燃料が インジヱクタ 2より各気筒 # 1〜# 4の燃焼室内へ噴射されるようになっている。
前記コモンレール 4には、 燃料嘖射圧に相当する比較的高い圧力が蓄積されてい る。 この蓄圧を実現するために、 コモンレール 4は、 供給配管 5を介してサプラ ィポンプ 6の吐出ポート 6 aに接続されている。 また、 供給配管 5の途中には、 逆止弁 7が設けられている。 この逆止弁 7の存在により、 サプライポンプ 6から コモンレール 4への燃料の供給が許容され、 かつ、 コモンレール 4からサプライ ポンプ 6への燃料の逆流が規制されている。 サプライポンプ 6は、吸入ポート 6 bを介して燃料タンク 8に接続されており、 その途中にはフィルタ 9が設けられている。 サプライポンプ 6は、 燃料タンク 8 からフィルタ 9を介して燃料を吸入する。 また、 これとともに、 サプライポンプ 6は、 ディーゼルエンジン 1の回転に同期する図示しないカムによってプランジ ャを往復運動せしめて、 燃料圧力を要求される圧力にまで高め、 高圧燃料をコモ ンレール 4に供給している。 更に、 サプライポンプ 6の吐出ポート 6 a近傍には、 圧力制御弁 1 0が設けら れている。 この圧力制御弁 1 0は、 吐出ポート 6 aからコモンレール 4へ向かつ て吐出される燃料圧力 (すなわち噴射圧力) を制御するためのものである。 この 圧力制御弁 1 0が開かれることにより、 吐出ポート 6 aから吐出されない分の余 剰燃料が、 サプライポンプ 6に設けられたリターンポート 6 cからリターン配管 1 1を経て燃料タンク 8へと戻されるようになっている。 ディーゼルエンジン 1の燃焼室には、 吸気通路 1 3および排気通路 1 4がそれ ぞれ接続されている。 ディーゼルエンジン 1の燃焼室内には、 グロ一プラグ 1 8 が配設されている。 このグロ一プラグ 1 8は、 ディーゼルエンジン 1の始動直前 にグロ一リレー 1 8 aに電流が流されることにより赤熱し、 これに燃料噴霧の一 部が吹きつけられることで着火 ·燃焼が促進される始動補助装置である。
ディーゼルエンジン 1には、以下の各種センサ等が設けられており、これらは、 本実施の形態 1において、 ディーゼルエンジン 1の運転状態を検出する。 すなわ ち、 アクセルペダル 1 9の近傍には、 アクセル開度 ACCPを検出するためのァ クセルセンサ 20が設けられている。 又、 吸気通路 1 3には、 吸入空気量センサ 22が設けられて、 吸気通路 1 3を流れる吸入空気量 GNを検出している。 ディ ーゼルエンジン 1のシリンダブ口ックには、 エンジン冷却水の温度 (冷却水温 T HW) を検出するための水温センサ 24が設けられている。 また、 前述したリターン配管 1 1には、 燃料温度を検出するための燃温センサ 26が設けられている。 また、 コモンレール 4には、 コモンレール 4内の燃料の 圧力 (噴射圧力 PC) を検出するために燃圧センサ 27が設けられている。 本実施の形態 1においては、 ディーゼルエンジン 1のクランクシャフト (図示 略) に設けられたパルサ (図示略) の近傍には、 NEセンサ (エンジン回転数セ ンサ) 28が設けられている。 更に、 クランクシャフトの回転は、 吸気弁 3 1お よび排気弁 32を開閉動作させるためのカムシャフト (図示略) にタイミングべ ルト等を介して伝達されている。 このカムシャフトは、 クランクシャフトの 1Z 2回転の回転速度で回転するよう設定されている。 このカムシャフトに設けられ たパルサ (図示略) の近傍には、 Gセンサ (加速度センサ) 29が設けられてい る。 そして、 本実施の形態 1では、 これら両センサ 28, 29から出力されるパ ルス信号により、 エンジン回転数 NE、 クランク角 CA、 各気筒 # 1〜#4の上 死点 (TDC) が算出される。 又、 図示していないトランスミッションの出力軸には、 その出力軸の回転数か ら車速 S PDを検出する車速センサ 30が設けられている。 更に、 ディーゼルエンジン 1の出力により回転駆動されるエアコンディショナ
をオン ·オフするためのエアコンディシヨナスィツチ 3 4、 ディーゼルエンジン 1の出力により回転駆動される油圧ポンプからの作動油圧を利用して駆動するパ ワーステアリングが機能しているか否かを示すパワーステアリングスィツチ 3 6、 オルタネータに設けられてオルタネータの発電を制御デューティ信号により調整 するオルタネータ発電量制御回路 3 8、 ディーゼルエンジン 1に設けられている 自動変速機のレンジ位置がニュートラルであることを示すニュートラルスィツチ 4 0、 通常アイドル状態からアイ ドルアップ状態への手動による変更、 又はアイ ドルァップ状態から通常のアイ ドル状態への手動による変更を行う際にオン又は オフ操作されるアイ ドルアップスィッチ 4 2、 及びスタータの作動状態を検知す るスタータスィツチ 4 3等が設けられている。 本実施の形態 1においては、 ディーゼルエンジン 1の各種制御を司るための電 子制御装置 (E C U ) 4 4が設けられており、 この E C U 4 4により、 燃料噴射 量制御等のディーゼルエンジン 1を制御するための処理が行われる。 E C U 4 4 は、 中央処理制御装置 (C P U)、 各種プログラムあるいは後述するマップゃデー タを予め記憶した読出専用メモリ (R O M)、 C P Uの演算結果を一時記憶するラ ンダムアクセスメモリ (R AM)、演算結果や予め記憶されたデータをバックアツ プするバックアップ R AM、 及び、 タイマカウンタを備え、 更に、 入力インター フェースおよび出カインターフェースを備えている。 これらの部材はバスによつ て接続されている。 前述したアクセルセンサ 2 0、 吸入空気量センサ 2 2、 水温センサ 2 4、 燃温 センサ 2 6、 燃圧センサ 2 7、 オルタネータ発電量制御回路 3 8は、 それぞれバ ッファ、 マルチプレクサ、 A/D変換器 (いずれも図示せず) を介して前記入力 インターフェースに接続されている。 又、 N Eセンサ2 8、 Gセンサ 2 9、 車速 センサ 3 0は、 波形整形回路 (図示せず) を介して前記入力インターフェースに 接続されている。 更に、 エアコンデイシヨナスイッチ 3 4、 パワーステアリング
スィッチ 36、 ニュートラルスィッチ 40、 アイ ドルアップスィッチ 42及ぴス タータスィツチ 43は前記入カインターフェースに直接接続されている。 CPU は、上記各センサ類の信号を前記入力インターフェースを介して読み込んでいる。 又、 電磁弁 3、 圧力制御弁 1 0及ぴグローリレー 1 8 aは、 それぞれ駆動回路 (図示せず) を介して前記出力インターフェースに接続されている。 CPUは、 前記入カインターフェースを介して読み込んだ入力値に基づいて制御演算を行い、 前記出力インターフェースを介して電磁弁 3、 圧力制御弁 1 0及びグロ一リレー 1 8 aを好適に制御する。 次に、 本実施の形態 1において、 ECU44により実行される燃料噴射量制御 処理について、 図 2のフローチャートに基づいて説明する。 本処理は、 噴射毎、 ここでは 4気筒のディーゼルエンジン 1であるので、 クランク角 180。 毎に割 り込み実行される。 なお個々の処理内容とこの処理内容に対応するフローチヤ一 ト中のステップを 「S〜」 で表す。 燃料噴射量の制御処理が開始されると、まずディーゼルエンジン 1の運転状態、 すなわち、 ここでは NEセンサ 28の信号から求められるエンジン回転数 NE、 アクセルセンサ 20の信号から求められるアクセル開度 AC C P、 後述する I S C (アイ ドルスピードコントロール) 処理にて算出される積分補正項 Q I I、 I S C見込負荷補正項 Q I PB、 及び、 I S C見込回転数補正項 Q I PNTを、 E CU 44の RAM内に設けられた作業領域に読み込む (S 1 10)。 次に、 エンジン回転数 NE及びアクセル開度 AC C Pとの関係を設定した図 3 に示すマップから、 アイドルガバナ噴射量 t Q G O V 1及ぴ走行ガバナ噴射量 t QGOV 2を算出する (S 1 20)。 なお、 図 3から判るごとく、 アイドルガバナ 噴射量 t QGOV 1はエンジンの低回転域、 すなわち自動車が主にアイドル回転
状態にあるときの噴射量であり、 図 3に破線で示している。 また、 走行ガバナ噴 射量 t QGOV2はエンジンの高回転域、 すなわち自動車が主に走行状態にある ときの噴射量であり、 図 3に実線で示している。 次に、 アイ ドルガバナ噴射量 t QGOV 1に積分補正量 Q I I、 I S C見込負 荷補正項 Q I PB及び I SC見込回転数補正項 Q I PNTを加えた値と、 走行ガ バナ噴射量 t QGOV 2に I SC見込負荷補正項 Q I P Bを加えた値とを比較し、 大きい方の値をガバナ噴射量 QGOVとして算出する (S 1 30)。 したがって、 図 3から分かるように、 エンジン 1の低回転域、 すなわちエンジン 1が主にアイ ドル回転状態にある場合においては、 上記アイドルガバナ噴射量 t QGOV 1に 積分補正量 Q I I、 I S C見込負荷補正項 Q I P B及ぴ I S C見込回転数補正項 Q I P NTを加えた値がガバナ噴射量 QGOVとして選択される傾向にある。 一 方、 エンジン 1の高回転域、 すなわち自動車が主に走行状態にある場合において は、 上記走行ガバナ噴射量 t QGOV 2に I S C見込負荷補正項 Q I P Bを加え た値が上記ガバナ噴射量 Q G O Vとして選択される傾向にある。 次に、最大噴射量 Q FULLを算出する (S 140)。 ここで最大噴射量 QFU LLは燃焼室に供給されるべき燃料量の上限値であり、 燃焼室から排出されるス モークの急増や過剰なトルク等を抑制するための限界値となっている。 次に、 最大嘖射量 QFUL L及ぴガバナ嘖射量 QGOVのうち小さい方の値を 最終噴射量 QF I Nとして算出する (S 1 50)。 そして、最終噴射量 QF I Nに 相当する噴射量指令値(時間換算値) TS Pを算出し (S 1 60)、 この噴射量指 令値 TS Pを出力し (S 1 70)、一且本処理を終了する。 この噴射量指令値 TS Pの出力により、 インジェクタ 2の電磁弁 3が駆動制御され、 燃料噴射が実行さ れる。
図 4のフローチャートに I S C (アイ ドルスピードコントロール)処理を示す。 この処理は、 アイドル時において、 噴射毎に割り込み実行される。 Reference numeral 2 denotes an internal combustion engine mounted on a vehicle for driving the vehicle. The diesel engine 1 is provided with a plurality of cylinders (in the present embodiment, four cylinders, but only one cylinder is shown), forests # 1, # 2, # 3, # 4, and each cylinder # 1 The injectors 2 are respectively disposed in the combustion chambers # 4 to # 4. The fuel injection timing and fuel injection amount from the injector 2 to the cylinders # 1 to # 4 of the diesel engine 1 are controlled by turning on and off the solenoid valve 3 for injection control. The injector 2 is connected to the common rail 4 as a common pressure accumulation pipe for each cylinder, and while the solenoid valve 3 for injection control is open, the fuel in the common rail 4 is connected to each cylinder # 1 to # 4. Is injected into the combustion chamber of the A relatively high pressure corresponding to the fuel injection pressure is accumulated in the common rail 4. In order to realize this pressure accumulation, the common rail 4 is connected to the discharge port 6 a of the supply pump 6 via the supply pipe 5. Also, a check valve 7 is provided in the middle of the supply pipe 5. The presence of the check valve 7 permits the supply of fuel from the supply pump 6 to the common rail 4, and regulates the backflow of fuel from the common rail 4 to the supply pump 6. The supply pump 6 is connected to the fuel tank 8 via the suction port 6b, and a filter 9 is provided in the middle thereof. The supply pump 6 sucks fuel from the fuel tank 8 through the filter 9. At the same time, the supply pump 6 reciprocates the plunger by a cam (not shown) synchronized with the rotation of the diesel engine 1 to raise the fuel pressure to the required pressure and supply high pressure fuel to the common rail 4. ing. Further, a pressure control valve 10 is provided near the discharge port 6 a of the supply pump 6. The pressure control valve 10 is for controlling the fuel pressure (ie, injection pressure) discharged from the discharge port 6 a toward the common rail 4. By opening the pressure control valve 10, the surplus fuel not discharged from the discharge port 6a is returned to the fuel tank 8 through the return pipe 11 from the return port 6c provided on the supply pump 6. It is supposed to be An intake passage 13 and an exhaust passage 14 are connected to the combustion chamber of the diesel engine 1 respectively. In the combustion chamber of the diesel engine 1, a glow plug 1 8 is disposed. The glow plug 18 is red-heated by applying an electric current to the glow relay 1 8 a immediately before the start of the diesel engine 1, and a part of the fuel spray is blown to this to promote ignition and combustion. Start-up assistance device. The diesel engine 1 is provided with the following various sensors and the like, which detect the operating state of the diesel engine 1 in the first embodiment. That is, an acceleration sensor 20 for detecting an accelerator opening ACCP is provided in the vicinity of the accelerator pedal 19. Further, an intake air amount sensor 22 is provided in the intake passage 13 to detect an intake air amount GN flowing through the intake passage 13. The cylinder block of the diesel engine 1 is provided with a water temperature sensor 24 for detecting the temperature (cooling water temperature T HW) of the engine cooling water. Further, a fuel temperature sensor 26 for detecting the fuel temperature is provided in the above-mentioned return pipe 11. The common rail 4 is provided with a fuel pressure sensor 27 for detecting the pressure of the fuel in the common rail 4 (injection pressure PC). In the first embodiment, an NE sensor (engine speed sensor) 28 is provided in the vicinity of a pulser (not shown) provided on a crankshaft (not shown) of the diesel engine 1. Further, the rotation of the crankshaft is transmitted to a camshaft (not shown) for opening and closing the intake valve 31 and the exhaust valve 32 via a timing belt or the like. This camshaft is set to rotate at a rotational speed of 1 Z 2 rotation of the crankshaft. A G sensor (acceleration sensor) 29 is provided in the vicinity of a pulsar (not shown) provided on the camshaft. In the first embodiment, the engine speed NE, the crank angle CA, and the top dead center (TDC) of each of the cylinders # 1 to # 4 are calculated from the pulse signals output from these two sensors 28 and 29. Ru. Further, on the output shaft of the transmission (not shown), a vehicle speed sensor 30 is provided for detecting the vehicle speed S PD from the number of revolutions of the output shaft. Furthermore, an air conditioner driven to rotate by the output of the diesel engine 1 Air conditioner for turning on / off 34 4, diesel engine 1 Power steering that indicates whether the power steering that is driven using the hydraulic pressure from the hydraulic pump rotationally driven by the output of the function is functioning. Switch 36, Alternator power generation control circuit 38 provided in the alternator to adjust the power generation of the alternator with the control duty signal 38, Neutral switch indicating that the range position of the automatic transmission provided in the diesel engine 1 is neutral 4 0, idle-up switch 42, which is turned on or off when making a manual change from normal idle state to idle-up state or a manual change from idle-up state to normal idle state. Starter to detect the operating condition of the starter Chi 4 3 and the like. In the first embodiment, an electronic control unit (ECU) 44 for controlling various controls of the diesel engine 1 is provided. The ECU 44 controls the diesel engine 1 such as fuel injection amount control. Processing is performed. The ECU 4 4 includes a central processing control unit (CPU), a read only memory (ROM) storing various programs or maps described later in advance, a random access memory (RAM) temporarily storing the calculation result of the CPU, It has a backup RAM that backs up calculation results and prestored data, and a timer counter, and also has an input interface and an output interface. These members are connected by a bus. The aforementioned accelerator sensor 20, intake air amount sensor 22, water temperature sensor 24, fuel temperature sensor 26, fuel pressure sensor 27, alternator power control circuit 38 are respectively buffer, multiplexer, A / D converter It is connected to the input interface via (not shown). The NE sensor 28, the G sensor 29, and the vehicle speed sensor 30 are connected to the input interface via a waveform shaping circuit (not shown). In addition, air conditioner switch 3 4, power steering The switch 36, the neutral switch 40, the idle switch 42 and the switch 43 are directly connected to the input interface. The CPU reads the signals of the above sensors via the input interface. The solenoid valve 3, the pressure control valve 10 and the glow relay 1 8 a are connected to the output interface via a drive circuit (not shown). The CPU performs control calculation based on the input value read through the input interface, and preferably controls the solenoid valve 3, the pressure control valve 10 and the glow relay 1 8 a through the output interface. Next, a fuel injection amount control process executed by the ECU 44 in the first embodiment will be described based on the flowchart of FIG. This process is, for each injection, here a four-cylinder diesel engine 1, so the crank angle 180. Interrupts are executed every time. The individual processing contents and the steps in the flowchart corresponding to the processing contents are indicated by "S". When control processing of the fuel injection amount is started, first, the operating condition of the diesel engine 1, that is, here, the engine speed NE obtained from the signal of the NE sensor 28, and the accelerator opening degree AC CP obtained from the signal of the accelerator sensor 20. The integral correction term QII, ISC expected load correction term QI PB, and ISC expected rotation speed correction term QI PNT calculated by ISC (idle speed control) processing described later are provided in the RAM of E CU 44. Load into the working area (S1 10). Next, the idle governor injection amount t QGOV 1 and the traveling governor injection amount t QGOV 2 are calculated from the map shown in FIG. 3 in which the relationship between the engine rotational speed NE and the accelerator opening AC CP is set (S 120) . As can be seen from FIG. 3, the idle governor injection amount t QGOV 1 is in the low speed range of the engine, that is, the car is mainly idle. This is the injection amount when it is in the state, and is shown by the broken line in FIG. Further, the traveling governor injection amount t QGOV2 is the injection amount when the engine is in a high rotation range, that is, when the vehicle is mainly in a traveling state, and is shown by a solid line in FIG. Next, the value obtained by adding the idle governor injection amount t QGOV 1 to the integral correction amount Q II, ISC expected load correction term QI PB and I SC expected rotational speed correction term QI PNT, and the traveling governor injection amount t QGOV 2 The value obtained by adding the SC expected load correction term QIPB is compared, and the larger value is calculated as the governor injection amount QGOV (S130). Therefore, as can be seen from FIG. 3, in the low speed range of the engine 1, that is, when the engine 1 is mainly in idle rotation state, the above-mentioned idle governor injection amount t QGOV 1 integrated correction amount QII, ISC expected load correction A value obtained by adding the terms QIPB and ISC expected rotational speed correction term QIP NT tends to be selected as the governor injection amount QGOV. On the other hand, when the engine 1 is in the high speed range, that is, when the vehicle is mainly traveling, a value obtained by adding the ISC expected load correction term QIPB to the traveling governor injection amount t QGOV 2 is selected as the governor injection amount QGOV. Tend to be Next, the maximum injection amount Q FULL is calculated (S 140). Here, the maximum injection amount QFU LL is the upper limit value of the amount of fuel to be supplied to the combustion chamber, and is the limit value for suppressing the rapid increase of the smoke discharged from the combustion chamber and the excessive torque. Next, the smaller of the maximum injection amount QFUL L and the governor injection amount QGOV is calculated as the final injection amount QF IN (S 150). Then, the injection amount command value (time converted value) TSP corresponding to the final injection amount QF IN is calculated (S1 60), and this injection amount command value TSP is output (S1 70). End the process. The solenoid valve 3 of the injector 2 is driven and controlled by the output of the injection amount command value TSP, and fuel injection is performed. The flowchart in Figure 4 shows ISC (idle speed control) processing. This process is interrupted at each injection when idle.
本処理が開始されると、 まず、 アクセルセンサ 20の信号から求められるァク セル開度 ACCP、 水温センサ 24の信号から求められる冷却水温 THW、 NE センサ 28の信号から求められるエンジン回転数 NE、 車速センサ 30の信号か ら求められる車速 SPD、 エアコンデイシヨナスイッチ 34から求められるォ ン 'オフ状態、パワーステアリングスィツチ 36から求められるオン ·オフ状態、 及びオルタネータ発電量制御回路 38カゝら得られるオルタネータ制御デユーティ DU等が、 ECU 44の RAM内に設けられた作業領域に読み込まれる (S 21 0)。 そして、 現在、 アイ ドル状態にあるか否かが判定される (S 220)。 例えば、 アクセル開度 AC C Pが全閉に近い所定開度以下であり、 かつ車速 S PD=0 k xn/hであるとの条件が全て満足される場合に、 アイドル状態であると判定され る。 アイドル状態でない場合には (S 220で 「NO」)、 このままー且本処理を終 了する。 アイドル状態である場合は (S 220で 「YES」)、 次に、 エアコンデ イショナのオン .オフ状態、 パワーステアリングのオン ·オフ状態、 オルタネー タ制御デューティ DUに現れている電気負荷、 及び冷却水温 THWの程度に対応 する適切なアイドル目標回転数 NETRGを設定する (S 230)。 この設定は、 E C U 44の R OM内に記憶されているマツプゃデ一タに基づいてなされる。 具 体的には、 エアコンディショナのオン状態、 パワーステアリングのオン状態、 電 気負荷が高い側、 冷却水温 THWが低い側においては、 アイドル目標回転数 NE TRGが高くなるように設定される。 次に、 アイドル目標回転数 NET RGに対する実際のエンジン回転数 NEの偏
差 NEDLを次式 1に示すごとく算出する (S 240)。 When this process is started, first, the opening degree ACCP obtained from the signal of the accelerator sensor 20, the cooling water temperature THW obtained from the signal of the water temperature sensor 24, the engine rotational speed NE obtained from the signal of the NE sensor 28, Vehicle speed SPD obtained from the signal of the vehicle speed sensor 30, on / off state obtained from the air conditioner detector 34, on / off state obtained from the power steering switch 36, and alternator power control circuit 38 units The alternator control utility DU etc. to be stored are read into the work area provided in the RAM of the ECU 44 (S 210). Then, it is judged whether or not it is currently in an idle state (S 220). For example, if all the conditions that the accelerator opening AC CP is less than the predetermined opening close to full closing and the vehicle speed S PD = 0 k x n / h are satisfied, it is determined that the vehicle is in the idle state. . If it is not in the idle state ("NO" in S220), the process is terminated as it is. If it is idle ("YES" in S 220), then the air conditioner's on / off status, power steering on / off status, electrical load appearing on the alternator control duty DU, and coolant temperature THW The appropriate idle target rotation speed NETRG is set corresponding to the degree of (S 230). This setting is made based on map data stored in the ROM of the ECU 44. Specifically, the idle target rotation speed NE TRG is set to be high at the air conditioner's ON state, power steering ON state, high electric load side, and low coolant temperature THW side. Next, deviation of the actual engine speed NE relative to the idle target speed NET RG The difference NEDL is calculated as shown in the following equation 1 (S 240).
NED L NETRG - NE … [式 1 ] そして、 このように算出した偏差 NED Lに応じて、 積分量 AQ I Iを ECU 44の ROM内に記憶されたマップに基づき算出する (S 250)。 具体的には、 偏差 NEDLがプラス側では積分量 AQ I Iをプラスの値に設定し、 偏差 NED Lがマイナス側では積分量 Δ Q I Iをマイナスの値に設定する。 次に、前回の制御周期にて求めている燃料噴射量の積分補正項 Q I I ( i一 1 ) に、 今回、 ステップ S 250にて算出された積分量 AQ I Iを加えて、 今回の積 分補正項 Q I I ( i ) として算出する (S 260)。 次に、積分補正項学習値 Q I XMが算出される (S 270)。 この積分補正項学 習値 Q I XMの算出処理は、 図 5のフローチャートに示すごとくである。 NED L NETRG-NE ... [Equation 1] Then, in accordance with the deviation NED L calculated in this manner, the integral amount AQ I I is calculated based on the map stored in the ROM of the ECU 44 (S250). Specifically, the integral quantity AQ I I is set to a positive value when the deviation NEDL is on the positive side, and the integral quantity ΔQ I I is set to a negative value when the deviation NED L is on the negative side. Next, the integral correction AQ II calculated in step S 250 is added to the integral correction term QII (i 1 1) of the fuel injection amount calculated in the previous control cycle, and the integration correction this time Calculated as the term QII (i) (S 260). Next, the integral correction term learning value Q I XM is calculated (S 270). The calculation process of the integral correction term learning value Q I XM is as shown in the flowchart of FIG.
すなわち、 まず積分補正項学習値 Q I XMの増加更新条件が成立したか否かが 判定される (S 271)。増加更新条件としては、次の式 2及び式 3の条件が満足 された場合に成立するものとする。 That is, first, it is determined whether an increase update condition of the integral correction term learning value Q I XM is satisfied (S 271). The incremental update condition is satisfied when the conditions of the following Equation 2 and Equation 3 are satisfied.
NE ≤ NETRG ·■· [式 2] NE NET NETRG · · · [Equation 2]
Q I I ( i ) > Q I XM ( i - 1 ) … [式 3] Q I I (i)> Q I XM (i-1) ... [Equation 3]
ここで、 Q I XM ( i - 1 ) は、 エアコンディショナ等の外部負荷の有無や種 類、 あるいはアイドルアップスィツチ 42のオン .オフ等のアイドル時の設定状 態毎に前回制御周期にて得られている積分補正項学習値 Q I XMである。 尚、 外 部負荷の切り替えなどにより前回の制御周期と今回の制御周期とが異なったアイ ドル状態である場合には、 前記式 3は成立しないものとする。 前記式 2及び式 3が共に成立していれば (S 271で 「YE S」)、 次式 4のご とく、今回の制御周期における積分補正項学習値 Q I XM ( i )が算出される (S
272)0 Here, QI XM (i-1) is obtained at the previous control cycle for each setting such as presence or absence of external load such as an air conditioner, or idle setting such as on / off of the idle up switch 42. Integral correction term learning value QI XM. If the previous control cycle and the current control cycle are different due to switching of the external load, etc., the equation 3 does not hold. If Equation 2 and Equation 3 both hold (S271 “YES”), the integral correction term learning value QI XM (i) in this control period is calculated according to the following Equation 4 S 272) 0
Q I XM ( i) <- Q I XM ( i - 1 ) + I Q I I MD L … [式 4] ここで増加更新値 I Q I IMDLは、 前回制御周期の積分補正項学習値 Q I XM ( i一 1) を漸増するための定数を表している。 前記式 2及び式 3のいずれか、あるいは両方が不成立であれば(S 2 71で「N 〇」)、 次に、 積分補正項学習値 Q I XMの減少更新条件が成立したか否かが判定 される (S 2 73)。減少更新条件は、次の式 5及び式 6の条件が満足された場合 に成立するものとする。 QI XM (i) <-QI XM (i-1) + IQII MD L ... [Equation 4] where the incrementally updated value IQI IMDL gradually increases the integral correction term learning value QI XM (i 1 1) of the previous control cycle. Represents a constant for If either or both of Equations 2 and 3 do not hold (“N」 ”in S 271), then it is determined whether the decrease update condition for the integral correction term learning value QI XM is satisfied. (S273). The decrease update condition is satisfied when the conditions of the following equations 5 and 6 are satisfied.
NE ≥ NETRG ··· [式 5] NE NET NETRG · · · [Equation 5]
Q I I ( i ) < Q I XM ( i - 1 ) … [式 6] Q I I (i) <Q I XM (i-1) ... [Equation 6]
尚、 外部負荷の切り替えなどにより前回の制御周期と今回の制御周期とが異な つたアイドル状態である場合には前記式 6は成立しないものとする。 前記式 5及び式 6が共に成立していれば (S 273で 「YE S」)、 次式 7のご とく、今回の制御周期における積分補正項学習値 Q I XM ( i)が算出される (S 274)0 Note that, in the idle state where the previous control cycle and the current control cycle are different due to switching of the external load or the like, it is assumed that the formula 6 does not hold. If Equation 5 and Equation 6 are both satisfied (“YE S” in S 273), the integral correction term learning value QI XM (i) in this control period is calculated according to the following Equation 7 S 274) 0
Q I XM ( i ) Q I XM ( i - 1 ) - DQ I IMDL … [式 7 ] ここで、 減少更新値 DQ I IMDLは、 前回制御周期の積分補正項学習値 Q I X M ( i - 1 ) を漸減するための定数を表している。 尚、 本実施の形態では減少更 新値 DQ I IMDLを増加更新値 I Q I I MD Lと等しい値に設定しているが、 減少更新値 DQ I IMDLが増加更新値 I Q I I MD Lと異なっていても良い。 前記式 5及び式 6のいずれ力、あるいは両方が不成立であれば(S 273で「N 0」)、 今回の制御周期における積分補正項学習値 Q I XM ( i ) には、 前回の制 御周期における積分捕正項学習値 Q I XM ( i -1) がそのまま設定される (S 275)。尚、外部負荷の切り替えなどにより前回の制御周期と今回の制御周期と
が異なったアイドル状態である場合には、 今回の制御周期における積分捕正項学 習値 Q I XM ( i) には、 今回と同じアイドル状態における最も新しい積分補正 項学習値 Q I XMが設定される。 QI XM (i) QI XM (i-1)-DQ I IMDL ... [Equation 7] Here, the decrease update value DQ I IMDL gradually decreases the integral correction term learning value QIXM (i-1) of the previous control cycle. Represents a constant for In the present embodiment, the decrease update value DQ I IMDL is set to a value equal to the increase update value IQII MD L, but the decrease update value DQ I IMDL may be different from the increase update value IQ II MD L . If either or both of the above equations 5 and 6 are not established (“N 0” in S 273), the integral correction term learning value QI XM (i) in this control period is the previous control period The integral captive positive term learning value QI XM (i -1) at is set as it is (S 275). Note that the previous control cycle and the current control cycle are switched by switching the external load, etc. In the case of an idle state different from this, the integral acquisition term learning value QI XM (i) in this control cycle is set to the newest integral correction term learning value QI XM in the same idle state as this time. .
S 272, S 274, S 275において、 今回の制御周期における積 分補正項学習値 Q I XM ( i ) が算出されると、 積分補正項学習値 Q I XMの算 出処理 (図 5) を終了する。 そして、 次に I S C処理 (図 4) にて、 上限ガード値 Q I I GMX及ぴ下限ガ 一ド値 Q I I GMNが算出される (S 280)。 これらガード値 Q I I GMX, Q I I GMNは、 エアコンディショナ等の外部負荷の有無や種類、 あるいはアイド ルアップスィツチ 42のオン ·オフ等のアイ ドル時の設定状態毎に設けられてい るものである。 したがって、 ステップ S 280では、 このようなアイ ドル時の設 定状態に応じて適切なガード値 Q I I GMX, Q I I GMNが設定される。 尚、 これらのガード値 Q I I GMX, Q I I GMNは、積分補正項学習値 Q I XM( i ) に対する上下限までの幅として設定されている。 次に、 これらのガード値 Q I I GMX, Q I I GMNにより、 今回の積分補正 項 Q I I ( i ) に対してガード処理が実行される (S 290)。 When integration correction term learning value QI XM (i) in this control cycle is calculated in S 272, S 274 and S 275, calculation processing of integral correction term learning value QI XM (FIG. 5) is ended. . Then, the upper limit guard value Q I I GMX and the lower limit guard value Q I I GMN are calculated by the I SC processing (FIG. 4) (S 280). These guard values Q I GMX and Q I I GMN are provided for each air conditioner, etc., with or without external load, or for each idle setting state such as idle-up switch 42 on / off. Therefore, in step S280, an appropriate guard value Q I I GMX, Q I I GMN is set according to such an idle setting state. Note that these guard values Q I I GMX and Q I I GMN are set as the widths to the upper and lower limits with respect to the integral correction term learning value Q I XM (i). Next, guard processing is performed on these integral correction terms Q I I (i) by these guard values Q I I GMX and Q I I GMN (S 290).
この積分補正項 Q I Iのガード処理を図 6のフローチャートに示す。 まず、 今 回の積分補正項 Q I I ( i ) が次式 8の関係を満足しているか否かが判定される (S 291)。 The guard processing of this integral correction term QII is shown in the flowchart of FIG. First, it is judged whether or not the integration correction term Q I I (i) of this time satisfies the relation of the following expression 8 (S 291).
Q I I ( i ) > Q I XM ( i ) + Q I I GMX … [式 8 ] この式 8は、 前述のごとく算出された積分補正項 Q I I ( i ) が積分補正項の 制御範囲における上限を越えていることを示している。 前記式 8が満足されれば QII (i)> QI XM (i) + QII GMX ... [Equation 8] This equation 8 indicates that the integral correction term QII (i) calculated as described above exceeds the upper limit in the control range of the integral correction term Is shown. If the above equation 8 is satisfied
(S 291で 「YE S」)、 次式 9に示すごとく、 今回の積分補正項 Q I I ( i ) には積分補正 ¾の制御範囲の上限値が設定される (S 292)。
Q I I ( i ) Q I XM ( i ) + Q I I GMX … [式 9 ] こうして本積分補正項 Q I Iのガード処理 (図 6) を出る。 又、 前記式 8が満足されていない場合には (S 29 1で 「NO」)、 次に今回の 積分補正項 Q I I ( i )が次式 10の関係を満足しているか否かが判定される(S 293)。 The upper limit value of the control range of the integral correction 3⁄4 is set to the integral correction term QII (i) of this time (S 292), as shown in the following equation 9 (“YES” in S 291). QII (i) QI XM (i) + QII GMX ... [Equation 9] In this way, this integral correction term QII guard processing (Fig. 6) is exited. If the equation 8 is not satisfied (“NO” in S 29 1), then it is determined whether the current integral correction term QII (i) satisfies the relationship of the following equation 10: (S 293).
Q I I ( i ) く Q I XM ( i ) 一 Q I I GMN … [式 10 ] この式 1 0は、 前述のごとく算出された積分補正項 Q I I ( i) が積分補正項 の制御範囲における下限を下回っていることを示している。 前記式 1 0が満足さ れれば (S 29 3で 「YES」)、 次式 1 1に示すごとく、 今回の積分補正項 Q I I ( i ) には積分補正項の制御範囲の下限値が設定される (S 294)。 QII (i) QI XM (i) 1 QII GMN ... [Equation 10] In this equation 10, the integral correction term QII (i) calculated as described above is below the lower limit of the control range of the integral correction term It is shown that. If the equation 10 is satisfied (“YES” in S 29 3), the lower limit value of the control range of the integral correction term is set to the integral correction term QII (i) as shown in the following equation 1 1 (S 294).
Q I I ( i ) ^ Q I XM ( i ) 一 Q I I GMN … [式 1 1 ] こうして本積分補正項 Q I Iガード処理 (図 6) を出る。 又、 前記式 1 0が満足されていない場合には (S 293で 「NO」)、 積分補正 項 Q I I ( i ) の値を維持して、 本積分補正項 Q I Iのガード処理 (図 6) を出 る。 そして、 次に I SC処理 (図 4) にて、 I S C見込捕正項の算出処理が実行さ れる (S 300)。 この I S C見込補正項の算出処理の詳細を図 7のフローチヤ一 トに示す。 Q I I (i) ^ Q I X M (i) One Q I I GMN ... [Equation 1 1] Thus, this integral correction term Q I I guard processing (Fig. 6) is left. Also, when the above equation 10 is not satisfied (“NO” in S 293), the integral correction term QII (i) is maintained and the guard processing of this integral correction term QII (FIG. 6) is performed. Get out. Then, in the I SC process (FIG. 4), the calculation process of the I SC expected capture positive term is executed (S 300). Details of the calculation process of this I SC expected correction term are shown in the flowchart of FIG.
I SC見込補正項の算出処理 (図 7) では、 まず、 前述したステップ S 230 にて算出されているアイドル目標回転数 NETRGに基づいて、 予め実験により 求められているマップから回転数補正項 Q I PNTを算出する (S 41 0)。 この 回転数補正項 Q I PNTは、 前述したガバナパターン (図 3) の性質によりアイ ドル目標回転数 N E T R Gの変更に伴って生じる燃料不足あるいは燃料過剰を補
完するための補正項である。 次に、 図 8 (B) に示すマップから、 冷却水温 THWに基づいて冷間補正項 Q I P B C Lを算出する (S 4 3 0)。 この冷間補正項 Q I PB CLは、 エンジン 1 の低温に伴うフリクシヨンへの影響の程度を燃料噴射量に反映させるための補正 項である。 次に、 図 8 (C) に示すマップから、 オルタネータ制御デューティ DUに基づ いて電気負荷補正項 Q I PBDFを算出する (S 440)。 この電気負荷補正項 Q I PBDFは、 グロ一プラグ 1 8やへッドランプなどのごとく車両において使用 されている電力使用量の程度を、 燃料噴射量に反映させるための補正項である。 これは、 電力使用量が、 オルタネータの発電量を調整するオルタネータ制御デュ 一ティ DUに反映されていることを利用している。 次に、 エアコンディショナがオン状態か否かが判定される (S 45 0)。 ェアコ ンデイショナがオン状態であれば (S 4 5 0で 「YE S」)、 図 9 (A) に示すマ ップから、 実際のエンジン回転数 NEに基づいてエアコンディショナ補正項 Q I PBACを算出する(S 460)。このエアコンディショナ補正項 Q I PBACは、 エアコンディショナによる負荷を燃料噴射量に反映させるための補正項であり、 エンジン 1の回転数 NEに応じて調整されている。 In the calculation process of the I SC expected correction term (FIG. 7), first, based on the idle target rotational speed NETRG calculated in step S 230 described above, the rotational speed correction term QI is obtained from a map obtained in advance by experiment. Calculate PNT (S410). This speed correction term QI PNT compensates for the lack of fuel or the fuel excess caused by the change of idle target speed NETRG due to the nature of the governor pattern (Figure 3) described above. It is a correction term to complete. Next, based on the cooling water temperature THW, a cold correction term QIPBCL is calculated from the map shown in FIG. 8 (B) (S 40). The cold correction term QI PB CL is a correction term for reflecting the degree of the influence on the friction caused by the low temperature of the engine 1 in the fuel injection amount. Next, from the map shown in FIG. 8C, the electric load correction term QI PBDF is calculated based on the alternator control duty DU (S 440). The electrical load correction term QI PBDF is a correction term for reflecting the amount of power consumption used in vehicles such as glow plugs 18 and head lamps in the fuel injection quantity. This utilizes the fact that the amount of electricity used is reflected in the alternator control duty DU, which regulates the output of the alternator. Next, it is determined whether the air conditioner is on (S450). If the energy conditioner is in the on state ("YES" in S450), the air conditioner correction term QI PBAC is calculated from the map shown in Fig. 9 (A) based on the actual engine speed NE. To do (S 460). The air conditioner correction term QI PBAC is a correction term for reflecting the load of the air conditioner on the fuel injection amount, and is adjusted in accordance with the rotational speed NE of the engine 1.
尚、 エアコンディショナがオフ状態であれば (S 4 5 0で 「NO」)、 エアコン ディショナ補正項 Q I PBACに 「0」 が設定される (S 4 7 0)。 次に、パワーステアリングがオン状態か否かが判定される (S 48 0)。 パワー ステアリングがオン状態であれば (S 4 8 0で 「YE S_))、 図 9 (B) に示すマ ップから、 実際のエンジン回転数 NEに基づいてパワーステアリング捕正項 Q I PB P Sを算出する(S 490)。このパワーステアリング補正項 Q I PB P Sは、
パワーステアリングによる負荷を燃料噴射量に反映させるための補正項であり、 エンジン 1の回転数 NEに応じて調整されている。 If the air conditioner is off ("NO" in S450), "0" is set in the air conditioner correction item QI PBAC (S470). Next, it is determined whether the power steering is on (S480). If power steering is on (“YE S_” at S 4 80), the power steering acquisition term QI PB PS is calculated from the map shown in FIG. 9 (B) based on the actual engine speed NE. Calculate (S 490) This power steering correction term QI PB PS This correction term is for reflecting the load caused by power steering in the fuel injection amount, and is adjusted according to the rotational speed NE of the engine 1.
尚、 パワーステアリングがオフ状態であれば (S 480で 「NO」)、 パワース テアリング補正項 Q I P B P Sに 「0」 が設定される (S 500)。 そして、 上述のごとく算出された補正項の内で、 冷間補正項 Q I PBCL、 電 気負荷補正項 Q I P BDF、 エアコンディショナ補正項 Q I P B AC、 パワース テアリング補正項 Q I P B P S、 及び後述する始動初期見込補正項 Q I P A Sを 合計して、負荷補正項 Q I PBが算出される (S 5 1 0)。 こう して I S C見込補 正項算出処理 (図 7) を出て、 I S C制御処理 (図 4) を一且本処理する。 このように、 積分補正項 Q I I、 回転数捕正項 Q I P NT及ぴ負荷補正項 Q I PBが算出されることにより、 負荷の発生が、 前述した燃料噴射量制御処理 (図 2) のステップ S 1 30におけるガバナ噴射量 QGOVの算出に反映される。 こ のことにより、 エンジン回転数 NEを、 負荷に応じたアイドル目標回転数 NET R.Gとするようにガバナ噴射量 Q GOVが決定される。 始動初期見込補正項 Q I PASの算出を行う処理を、 図 1 0のフローチヤ一ト に示す。 本処理は、 アイドル時に限らず、 一定の短時間毎に割り込みにより繰り 返し実行される。 まず、 ニュートラルスィツチ 40の出力から自動変速機のシフトレンジが Nレ ンジか Dレンジかを判定する。 そして、 図 8 (A) に示す Nレンジマップと Dレ ンジマップとの内から、 判定されたシフトレンジに応じたマップを選択し、 選択 されたマップに基づいて、 水温センサ 24にて検出されている冷却水温 THWか ら、 始動初期見込補正項の基準値 Q I PAS Bを算出する (S 610)。
次に、 タイマーカウンタ T sが始動初期の見込補正項を一定に保持するために 設定された始動初期見込補正項の保持時間 CQ I P OFを越えているか否かが判 定される (S 620)。 このタイマーカウンタ T sは後述するごとく、 エンジン 1 の自立運転中においてカウントアップされるタイマーカウンタである。 又、 始動 初期見込捕正項の保持時間 C Q I P〇 Fとしては、 例えば 1〜 10秒程度に相当 する値が設定される。 エンジンの自立運転とは、 エンジン 1が始動した後にェン ジンストールしておらず、 かつスタータスィツチ 43がオフとなっている状態を さす。 If the power steering is off ("NO" in S480), "0" is set to the power steering correction term QIPBPS (S500). Among the correction terms calculated as described above, the cold correction term QI PBCL, the electric load correction term QIP BDF, the air conditioner correction term QIPB AC, the power steering correction term QIPBPS, and the correction of the initial start forecast described later The term QIPAS is summed to calculate the load correction term QI PB (S510). In this way, ISC estimate correction term calculation processing (Fig. 7) is exited, and ISC control processing (Fig. 4) is processed once and for all. By calculating the integral correction term QII, the rotational speed acquisition positive term QIP NT, and the load correction term QI PB in this manner, generation of load is indicated by step S 1 of the fuel injection amount control process (FIG. 2) described above. This is reflected in the calculation of governor injection amount QGOV at 30. As a result, the governor injection amount QGOV is determined such that the engine rotational speed NE becomes the idle target rotational speed NET RG according to the load. The process to calculate the QI PAS is shown in the flowchart of Fig. 10. This process is repeatedly executed by interruption every fixed short time, not limited to idle time. First, it is determined from the output of the neutral switch 40 whether the shift range of the automatic transmission is the N range or the D range. Then, a map corresponding to the determined shift range is selected from the N range map and the D range map shown in FIG. 8 (A), and detected by the water temperature sensor 24 based on the selected map. Based on the coolant temperature THW, calculate the reference value QI PAS B of the start-up expected correction term (S 610). Next, it is judged whether or not the timer counter T s exceeds the holding time CQ IP OF of the start initial expected correction term set to keep the initial correction term at the initial start constant (S 620). . The timer counter T s is a timer counter which is counted up during the independent operation of the engine 1 as described later. In addition, a value corresponding to, for example, about 1 to 10 seconds is set as the holding time CQIP F F of the startup initial expected capture positive term. The engine self-sustaining operation refers to a state in which the engine is not stalled after the engine 1 starts and the starter switch 43 is off.
T s≤CQ I P OFであれば (S 620で 「NO」)、 始動初期見込補正項 Q I PASには前記ステップ S 6 10にて算出した始動初期見込補正項の基準値 Q I PAS Bの値が設定される (S 630)。 こうして一旦、始動初期見込補正項 Q I PASの算出処理を出る。 エンジン 1の自立運転が継続して、 T s〉CQ I POFとなると (S 620で 「YE S」)、 次式 1 2に示すごとくの計算にて始動初期見込補正項 Q I PASが 算出される (S 640)。 If T s ≤ CQ IP OF (“NO” in S 620), the QI PAS initial correction term is the reference value QI PAS B of the initial startup correction term calculated in step S 610. It is set (S 630). Thus, the calculation process of the initial start estimated correction term Q I PAS is temporarily output. When the self-sustaining operation of engine 1 continues and T s C CQ I POF ("YES" in S 620), the initial start correction term QI PAS is calculated according to the following formula 12 (S 640).
Q I P A S Q I P A S
Q I PASB - (T s ― CQ I POF) X Q I PASDLQ I PASB-(T s-CQ I POF) X Q I PASDL
… [式 12] ここで、 減少幅 Q I PASDLは、 自立運転の経過時間に応じて、 始動初期見 込補正項 Q I PASを減少させて行く速度を設定している値である。 次に、 始動初期見込補正項 Q I PASがマイナスに設定されたか否かが判定さ れる(S 650)。 Q I PAS≥ 0であれば(S 650で「NO」)、このままー且、 始動初期見込補正項 Q I PASの算出処理を出る。
—方、 Q I PASく 0であれば (S 6 50で 「YES」)、 始動初期見込補正項 Q I PASには 「0」 を設定し (S 660)、 ー且、 始動初期見込捕正項 Q I P A Sの算出処理を出る。 以後は、 ECU 44の電源がオンである限り、 始動初期見 込補正項 Q I PASがゼロである状態が維持される。 すなわち、 エンジン 1の始動以後に、 始動初期見込補正項 Q I PASは、 しば らく一定の状態を経た後、 前記ステップ S 640の処理を繰り返すことにより次 第に減少し、 最終的には始動初期見込補正項 Q I P ASは実質的に消滅すること になる。 次に、 タイマーカウンタ T sのカウント処理について説明する。 図 1 1にタイ マーカウンタ T sのカウント処理のフローチヤ一トを示す。 このタイマーカウン タ T sカウント処理は、 アイ ドル時に限らず一定の短時間毎に割り込みにより繰 り返し実行される処理である。 本処理が開始されると、 まず、 ECU 44の電源オン後の最初の処理か否かが 判定される (S 710)。 今回が最初の処理であれば (S 71 0で 「YE S」)、 タ イマ一カウンタ T sが 「0」 にクリアされる (S 720)。 最初でなければ (S 7 10で 「NO」)、 タイマーカウンタ T sの値は維持される。 ステップ S 720の後、 あるいはステップ S 71 0で 「N〇」 と判定された場 合には、 次にエンジン 1が自立運転中であるか否かが判定される (S 730)。 自立運転中でなければ (S 730で 「NO」)、 すなわち、 エンジン 1が停止し ていたり、エンジン 1が回転していてもスタータスィツチ 43がオンであったり、 あるいはエンジンス トール状態であったりした場合には、 このまま、 一旦本処理 を終了する。
自立運転中であれば (S 730で 「YES」)、 タイマーカウンタ T sを次式 1 3に示すごとくカウントアップする (S 740)。 ... [Equation 12] Here, the decrease range QI PASDL is a value that sets the speed at which the start initial correction correction term QI PAS decreases according to the elapsed time of the self-sustaining operation. Next, it is determined whether the start-up expected correction term QI PAS is set to be negative (S 650). If QI PAS 0 0 ("NO" in S 650), the calculation process of QI PAS is started. If the QI PAS value is 0 (“YES” in S 650), set “0” to the QI PAS (S 660), and the QIP PAS QIPAS Exit the calculation process of. After that, as long as the ECU 44 is powered on, the condition that the start-up initial correction value QI PAS is zero is maintained. That is, after the engine 1 is started, the initial start correction term QI PAS is reduced by repeating the process of step S 640 after a certain fixed state for a while, and finally the initial start is started. Probability adjustment term QIP AS will substantially disappear. Next, the process of counting the timer counter T s will be described. Figure 11 shows a flowchart of the timer counter Ts counting process. The timer counter Ts counting process is a process which is repeatedly executed by an interrupt at every constant short time as well as idle time. When this process is started, first, it is determined whether or not it is the first process after the ECU 44 is powered on (S 710). If this time is the first process ("YES" in S71 0), the timer counter Ts is cleared to "0" (S720). If not the first time ("NO" in S710), the value of the timer counter Ts is maintained. After step S720, or when it is determined in step S710 that "N", it is next determined whether the engine 1 is in a self-sustaining operation (S730). If not in stand-alone operation ("NO" in S 730), that is, engine 1 is stopped, starter switch 43 is on even if engine 1 is rotating, or engine stalled. In this case, the process is temporarily ended. If the self-sustaining operation is being performed ("YES" in S730), the timer counter Ts is counted up as shown in the following equation 13 (S740).
T s — T s + 1 ··· [式 1 3] T s — T s + 1 ··· [Equation 1 3]
次に、 タイマーカウンタ T sが上限値 TMXを越えたか否かが判定される (S 750)。 上限値 TMXとしては、 例えば、 1 0分から 60分に相当する値が設定 される。 Next, it is determined whether the timer counter T s has exceeded the upper limit value TMX (S 750). As the upper limit TMX, for example, a value corresponding to 10 minutes to 60 minutes is set.
T s≤TMXであれば(S 750で「NOj)、このまま一旦本処理を終了する。 T s〉TMXであれば (S 750で 「YES」)、 タイマーカウンタ T sに上限 値 TMXを設定する (S 760)。 こうして、 ー且本処理を終了する。 したがって、 エンジン 1が自立運転中であればタイマーカウンタ T sがカウン トアップし、 上限値 TMXに至れば、 タイマーカウンタ T sの値は上限値 TMX の状態で一定となる。 更に、 エンジンストールなどで自立運転中のエンジン 1が —且停止すると (S 730で 「NO」)、 タイマーカウンタ T sの値は、 エンジン ストール時の値を維持したままとなる。 そして、 再度、 始動されて自立運転し始 めると、 エンジンス トール時に維持されていた値から、 タイマーカウンタ T sの カウントアップが開始される。 本実施の形態 1における処理の一例を図 1 2のタイミングチャートに示す。 時刻 t 1からスタータが作動してエンジン 1が回転を始める。 その後、 ェンジ ン 1が始動することでスタータがオフされる (時刻 t 2)。 このことによりェンジ ン 1が自立的に回転し始める (時刻 2以降)。 この時刻 t 2からタイマーカウン タ T sのカウントアップが開始される。 しかし、 タイマーカウンタ T sが始動初 期見込補正項の保持時間 CQ I P OFを越えるまでは、 始動初期見込補正項 Q I
PASは、 始動時に既に設定されている Q I PAS Bの値を維持する。 そして、 タイマーカウンタ T sが始動初期見込補正項の保持時間 CQ I POF を越えると (時刻 t 3 )、始動初期見込補正項 Q I PASは次第に低減し、 最終的 に 「0」 となり、 実質的に消滅する (日き亥 l」 t 4)。 このように、エンジン 1の始動初期に生じる大きなフリクシヨンによる負荷を、 始動初期見込補正項 Q I PASが補償しているので、 積分補正項 Q I Iは実線で 示すごとく大きく増加することはない。 もし、 始動初期見込補正項 Q I PASが 設けられていないものとすると、 積分補正項 Q I Iは一点鎖線で示すごとく、 大 きく変化してしまう。 このため、 本実施の形態のごとく上限ガード値 Q I I GM Xを低く設定しておくことはできなくなる。 又、 図 1 3は、 始動後にエンジンストールを生じた場合を示している。 時亥 ij t 1 1にてスタータがオンされ、 時刻 t 1 2にてスタータがオンからオフに切り替 わる。 このことにより、 図 1 2にて説明した場合と同様に、 タイマーカウンタ T sがカウントァップを開始し(時刻 t 12以降)、始動初期見込補正項の保持時間 C Q I P O Fの後に、 始動初期見込補正項 Q I PASは減少を開始する (時刻 t 1 3以降)。 し力 し、 時刻 t 14にてエンジンス トールを引き起こすと、 タイマーカウンタ T sのカウントアップが停止し、 これに伴って始動初期見込補正項 Q I PASの 減少も停止する (時刻 t 14以降)。 この時、 タイマーカウンタ T sも始動初期見 込補正項 Q I PASも、 その値が維持される。 そして、再度、スタータのオンからオフへの操作により(時亥 U t 15〜 t 1 6)、 エンジン 1が自立的に回転し始めると、 タイマーカウンタ T sは、 エンジンスト
ール時に維持していた値から、 再度、 カウントアップを開始し、 これに伴い、 始 動初期見込捕正項 Q I PASもエンジンストール時に維持していた値から、再度、 減少を開始する (時刻 t 1 6以降)。 上述した本実施の形態 1において、 I SC処理 (図 4) におけるステップ S 2 40〜S 26 0が積分補正項算出手段としての処理に相当し、 始動初期見込捕正 項 Q I PASの算出処理(図 10)及びタイマーカウンタ T sのカウント処理(図 1 1) が始動時見込補正項の設定手段としての処理に相当し、 燃料噴射量制御処 理 (図 2) のステップ S 1 20, S 1 30が燃料供給量算出手段としての処理に 相当する。 以上説明した本実施の形態 1によれば、 以下の効果が得られる。 If T s ≤ T M x (“NOj” at S 750), the process ends once T s TM T Mx (“YES” at S 750), the upper limit value TMX is set to the timer counter T s (S 760). Thus, the present process ends. Therefore, when the engine 1 is in a self-sustaining operation, the timer counter Ts counts up, and when it reaches the upper limit value TMX, the value of the timer counter Ts becomes constant in the state of the upper limit value TMX. Furthermore, when the engine 1 in a stand-alone operation is stopped due to an engine stall or the like (“NO” in S 730), the value of the timer counter T s maintains the value at the engine stall. Then, when the engine is started again to start the autonomous operation, the timer counter Ts starts counting up from the value maintained at the engine stall. An example of the process according to the first embodiment is shown in the timing chart of FIG. The starter operates at time t1 and the engine 1 starts to rotate. After that, the starter is turned off by starting the engine 1 (time t 2). This causes engine 1 to rotate independently (after time 2). The timer counter Ts starts counting up from this time t2. However, until the timer counter T s exceeds the holding time CQ IP OF of the start estimation correction term, the start estimation correction term QI PAS maintains the value of QI PAS B already set at startup. Then, when the timer counter T s exceeds the holding time CQ I POF of the start-up expected correction term (time t 3), the start-up expected correction term QI PAS gradually decreases and finally becomes “0”, substantially Disappear (Hiroshi l "t 4). As described above, since the load due to the large friction occurring at the initial stage of starting the engine 1 is compensated by the QI PAS, the integral correction term QII does not increase significantly as shown by the solid line. If the QI PAS is not provided, the integral correction term QII changes significantly, as indicated by the alternate long and short dash line. Therefore, it is impossible to set the upper limit guard value QII GM X low as in the present embodiment. Also, Fig. 13 shows the case where an engine stall occurs after starting. At time ij t 1 1, the starter is turned on, and at time t 1 2, the starter is switched from on to off. As a result, as described in FIG. 12, the timer counter T s starts counting up (after time t 12), and the holding time of the initial initial correction item is after CQIPOF. QI PAS starts to decrease (after time t 13). If the engine stall is caused at time t14, counting up of the timer counter Ts stops, and along with this, the decrease of the initial start correction item QI PAS also stops (after time t14). At this time, the values of the timer counter T s and the initial start correction term Q I PAS are maintained. And again, when the engine 1 starts to rotate independently by the operation from turning on the starter to turning off (Oh Ut 15 to t 16), the timer counter T s Start counting up again from the value maintained at the time of the engine start, and along with this, start decreasing again from the value maintained at the time of engine stall. t 1 6 onwards). In the above-described first embodiment, steps S 240 to S 260 in the I SC process (FIG. 4) correspond to the process as integral correction term calculation means, and the calculation process for the expected initial capture parameter QI PAS Fig. 10) and the counting process of the timer counter T s (Fig. 11) correspond to the process as the setting means of the estimation correction term at the time of start, and the steps S 120, S 1 30 corresponds to processing as fuel supply amount calculation means. According to the first embodiment described above, the following effects can be obtained.
( 1 ) 本実施の形態 1では、 上述したごとく始動初期見込補正項 Q I P A Sを 特別に設けて、 燃料噴射量に対して、 エンジン 1の始動初期に存在するフリクシ ヨンに対応する見込補正を実行している。 このため、 アイドル目標回転数 NET RGに対する実際のエンジン回転数 NEの偏差が、 積分補正項 Q I Iに大きく蓄 積される前に、 エンジン回転数 NEをアイドル目標回転数 NETRGに収束させ ることができる。 このように積分捕正項 Q I Iが増大するのを抑制できることから、 ガード処理 による積分補正項の制御範囲を狭くすることができる。 本実施の形態 1では、 特 に上限ガード値 Q I I GMXの値を小さくすることができる。 このため、 エンジン始動初期のフリクションを補償してエンジン回転数 NEの 落ち込みを防止できるとともに、 半クラッチなどにより積分補正項 Q I Iが過大 になるのを効果的に防止することができる。 したがってアイドル回転数制御にお けるェンジン回転の急上昇を防止できる。
(2) 始動初期見込補正項 Q I PASは、 始動時に設定され、 しばらく一定に 維持された後、 次第に低減させている。 本実施の形態 1では時間の経過と共に低 下させている。 エンジン回転が継続することにより、 エンジン始動初期のフリクションは次第 に消滅する。 このため時間の経過に基づいて始動初期見込補正項 Q I PASを低 減させることにより、 始動初期見込補正項 Q I PASによる実質的な補正を、 シ ョックを生じることなく停止して、 その後のアイドル回転数制御に円滑に引き継 がせることができる。 また、 始動初期見込捕正項の保持時間 CQ I P OFを経過するまでは、 始動初 期見込補正項 Q I PASの値を変化させていないので、 始動初期見込補正項 Q I PASの初期値を極端に大きくしなくても、 エンジン 1の始動直後において積分 補正項 Q I Iが増大するのを効果的に抑制できる。 (1) In the first embodiment, as described above, QIPAS is specifically provided for the start-up expected correction term, and the fuel injection amount is subjected to the expected correction corresponding to the friction existing at the start of engine 1 start-up. ing. For this reason, the engine speed NE can be converged to the idle target speed NETRG before the deviation of the actual engine speed NE from the idle target speed NETRG is largely accumulated in the integral correction term QII. . As described above, since it is possible to suppress the increase of the integral gain term QII, the control range of the integral correction term by the guard processing can be narrowed. In the first embodiment, the upper limit guard value QII GMX can be particularly reduced. Therefore, it is possible to compensate for the friction at the initial stage of the engine start to prevent the engine speed NE from falling and to effectively prevent the integral correction term QII from becoming excessive due to the half clutch and the like. Therefore, it is possible to prevent a sudden increase in engine speed in idle speed control. (2) Start-up initial estimate correction term QI PAS is set at start-up, and after being kept constant for a while, is gradually reduced. In the first embodiment, it decreases with the passage of time. As engine rotation continues, the friction at the initial stage of engine start disappears gradually. Therefore, by reducing the QI PAS based on the passage of time, the substantial correction by the QI PAS is stopped without causing a shock, and the idle rotation thereafter is performed. The number control can be taken over smoothly. In addition, since the value of QI PAS for the initial start correction term is not changed until the retention time CQ IP OF of the initial start expected capture term has passed, the initial value of the initial start correction term QI PAS is extremely set. Even if it is not large, it is possible to effectively suppress the increase of the integral correction term QII immediately after the start of the engine 1.
(3) エンジンストールした場合においては、 その直前までのエンジン 1の回 転により低減している始動初期のフリクションはほとんど回復していない。 この ためエンジンストール後の再始動においては、 始動初期見込補正項 Q I PASを エンジンストール時の値に設定し、 この値から処理を開始している。 このことに より、 適切に始動初期見込補正項 Q I PASを設定することができ、 アイドル回 転数制御を一層安定したものとすることができる。 (3) In the case of engine stall, the friction at the initial stage of starting, which has been reduced by the rotation of engine 1 just before that, has hardly been recovered. For this reason, when restarting after an engine stall, the initial initial correction item for start-up, Q I PAS, is set to the value at engine stall and processing is started from this value. This makes it possible to properly set the initial start correction term Q I PAS and to make the idle speed control more stable.
(4) エンジン始動初期のフリクシヨンの大きさは変速機のシフト位置とェン ジン温度とによって変化する。 このことから、 始動初期見込補正項 Q I PASの 初期値である基準値 Q I PASBは、 変速機のシフト位置及び冷却水温 THWに 応じて切り替えている。 このことにより、 適切に始動初期見込補正項 Q I PAS
を設定することができ、 アイ ドル回転数制御を一層安定したものとすることがで きる。 (4) The size of the friction at the initial stage of engine start changes depending on the shift position of the transmission and the engine temperature. From this, the reference value QI PASB, which is the initial value of QI PAS, is switched according to the shift position of the transmission and the coolant temperature THW. As a result, the QI PAS can be properly adjusted. The idle speed control can be made more stable.
(5) 積分補正項 Q I Iのガード処理 (図 6) では、 積分補正項学習値 Q I X Mを基準として、 上限ガード値 Q I I GMXと下限ガード値 Q I I GMNとによ り、 積分補正項の制御範囲が設定されている。 このため、 積分補正項学習値 Q I XMを中心として変動する傾向のある積分補正項 Q I Iを適切にガードすること ができる。このことにより、適切に積分補正項の制御範囲を設定することができ、 アイドル回転数制御を一層安定したものとすることができる。 実施の形態 2 (5) Integral correction term QII guard processing (Fig. 6), the integral correction term control range is set by the upper limit guard value QII GMX and the lower limit guard value QII GMN based on the integral correction term learning value QIXM. It is done. Therefore, it is possible to appropriately guard the integral correction term Q I I which tends to fluctuate around the integral correction term learning value Q I XM. As a result, the control range of the integral correction term can be set appropriately, and idle speed control can be made more stable. Second Embodiment
本実施の形態 2では、 前記実施の形態 1とは異なり、 図 1 0に示す始動初期見 込補正項 Q I PASの算出はなされない。このため I S C見込補正項算出処理(図 7) のステップ S 510では、 冷間補正項 Q I P B C L、 電気負荷補正項 Q I P BDF、 エアコンディショナ補正項 Q I P B AC及びパワーステアリング補正項 Q I PBP Sを合計して、 負荷捕正項 Q I PBが算出される。 更に、 I SC処理 (図 4) のステップ S 280は実行されず、 この代わりに、 図 14のフローチャートに示すごとくのガード値設定処理が別個の処理として実 行される。 又、 積分捕正項学習値 Q I XMの算出処理 (図 5) の代わりに、 図 1 5に示した積分補正項学習値 Q I XMの算出処理が実行される点が前記実施の形 態 1とは異なる。 他の構成については特に説明しない限り前記実施の形態 1と同 じである。 ガード値設定処理 (図 14) について説明する。 本処理は一定の短時間毎に繰 り返し実行される処理である。 In the second embodiment, unlike the first embodiment, the calculation of the initial startup correction term Q I PAS shown in FIG. 10 is not performed. Therefore, in step S 510 of the ISC estimate correction term calculation process (FIG. 7), the cold correction term QIPBCL, the electric load correction term QIP BDF, the air conditioner correction term QIPB AC, and the power steering correction term QIPBS , Load capture term QI PB is calculated. Furthermore, step S 280 of the I SC process (FIG. 4) is not performed, and instead, the guard value setting process as shown in the flowchart of FIG. 14 is performed as a separate process. Also, in place of the calculation process of the integral capture positive term learning value QI XM (FIG. 5), the calculation process of the integral correction term learning value QI XM shown in FIG. Is different. The other configuration is the same as that of the first embodiment unless otherwise described. The guard value setting process (Fig. 14) will be described. This process is a process that is repeatedly performed every fixed short time.
まず、 タイマーカウンタ T sが始動初期ガード保持時間 CQ I GO Fを越えて
いるか否かが判定される (S 8 1 0)。 ここで、始動初期ガード保持時間 CQ I G OFは、 例えば 1〜10秒程度に相当する値が設定される。 First, the timer counter T s exceeds the start initial guard holding time CQ I GO F It is judged whether or not it is present (S 8 1 0). Here, the start initial guard holding time CQ IG OF is set to a value corresponding to, for example, about 1 to 10 seconds.
T s≤CQ I GO Fであれば (S 8 1 0で 「N〇」)、 次に上限ガード値 Q I I GMXには上限ガード初期値 Q I I GMXSが設定される (S 820)。 この上限 ガード初期値 Q I I GMXSは、 エンジン始動初期のフリクション分を積分補正 項 Q I Iが吸収できる大きさに設定されている。 そして次に、 下限ガード値 Q I I GMNには下限ガード初期値 Q I I GMNS が設定される (S 830)。 この下限ガード初期値 Q I I GMNSは、エンジン始 動初期において何らかの原因で積分補正項 Q I Iが低くなりすぎてエンジンスト ールが生じない程度の大きさに設定されている。 こうして一且本処理を終了する。 したがって、 T s CQ I GOFである限り (S 8 10で 「NO」)、 上限ガード値 Q I I GMX = Q I I GMXSに維持され (S 820)、下限ガード値 Q I I GMN = Q I I GMNSに維持される (S 8 3 0)。 タイマーカウンタ T sのカウントアップにより、 T s >CQ I GOFとなると (S 8 10で 「YE SJ)、 上限ガード値 Q I I GMXが次式 14のごとく算出さ れる (S 840)。 If T s ≤CQ I GO F (“N 8” in S 8 10), then the upper limit guard value Q I I GMX is set to the upper limit guard initial value Q I I GMXS (S 820). The upper limit guard initial value Q I I GMXS is set to such a size that the integral correction term Q I I can absorb the friction component at the initial stage of engine start. Then, the lower limit guard value Q I I GMN is set to the lower limit guard value Q I I GMN (S 830). The lower limit guard initial value Q I I GMNS is set to such an extent that the integral correction term Q I I becomes too low for some reason at the initial stage of engine start and engine stall does not occur. Thus, the present process ends. Therefore, as long as T s CQ I GOF (“NO” in S 8 10), upper limit guard value QII GMX is maintained at QII GMXS (S 820) and lower limit guard value QII GMN is maintained at QII GMNS (S 8 3 0). If T s> CQ I GOF due to the timer counter T s counting up (“YE SJ” in S 8 10), the upper limit guard value Q I I GMX is calculated as in the following equation 14 (S 840).
Q I I GMX 一 Q I I GMX one
Q I I GMXS— (T s— CQ I GOF) XQ I GMXDL … [式 1 4 ] ここで、 減少幅 Q I GMXDLは、 自立運転時間に応じて、 上限ガード値 Q I I GMXを減少させて行く速度を設定している値である。 次に、 このようにして計算された上限ガード値 Q I I GMXが通常時上限ガー
ド値 Q I I GMXBより小さいか否かが判定される (S 850)。 Q I I GMX< Q I I GMXBである場合には (S 850で 「YE S」)、 上限ガード値 Q I I G MXに通常時上限ガード値 Q I I GMXBの値を設定する (S 860)。 Q I I G MX≥Q I I GMXBである場合には (S 850で 「NO」)、 上限ガード値 Q IQII GMXS-(TS-CQ I GOF) XQ I GMXDL ... [Equation 1 4] Here, the decrease range QI GMXDL sets the speed at which the upper limit guard value QII GMX is decreased according to the freestanding operation time. The value is Next, the upper limit guard value QII GMX calculated in this way is the normal upper limit It is determined whether it is smaller than the threshold value QII GMXB (S 850). If QII GMX <QII GMXB ("YES" in S850), set the upper limit guard value QIIG MX to the normal upper limit guard value QII GMXB value (S860). If QIIG MX Q QII GMXB ("NO" in S 850), upper limit guard value QI
I GMXの値はステップ S 840にて算出された値を維持する。 ステップ S 860の後、あるいはステップ S 850で「N〇」 と判定されると、 次に下限ガード値 Q I I GMNが次式 1 5のごとく算出される (S 870)。 The value of I GMX maintains the value calculated in step S 840. After step S 860 or when it is determined in step S 850 that “N N”, the lower limit guard value Q I I GMN is calculated as in the following equation 15 (S 870).
Q I I GMN Q I I GMN
Q I I GMNS— (T s— CQ I GOF) X Q I GMNDL … [式 1 5 ] ここで、 減少幅 Q I GMNDLは、 自立運転時間に応じて、 下限ガード値 Q I I GMNを減少させて行く速度を設定している値である。 次に、 このようにして計算された下限ガード値 Q I I GMNが通常時下限ガー ド値 Q I I GMNBより小さいか否かが判定される (S 880)。 Q I I GMNく Q I I GMNBである場合には (S 880で 「YE S」)、 下限ガード値 Q I I G MNに通常時下限ガード値 Q I I GMNBの値を設定する (S 890)。 Q I I G MN≥Q I I GMNBである場合には (S 880で 「NOj)、 下限ガード値 Q I I GMNの値はステップ S 870にて算出された値を維持する。 QII GMNS-(T s-CQ I GOF) XQ I GMNDL ... [Equation 15] Here, the decrease range QI GMNDL sets the speed at which the lower limit guard value QII GMN is decreased according to the freestanding operation time. Value. Next, it is determined whether the lower limit guard value Q I I GMN thus calculated is smaller than the normal lower limit guard value Q I I GMNB (S 880). In the case of Q I I GMN or Q I I GMNB (“YES” in S 880), the lower limit guard value Q I I GM MN is set to the normal low limit guard value Q I I GMNB value (S 890). If Q I G MN QQ I I GMNB (“NOj” in S 880), the lower limit guard value Q I I GMN is maintained at the value calculated in step S 870.
ステップ S 890の後、あるいはステップ S 880で「NO」と判定されると、 ー且本処理を終了する。 After step S 890 or when “NO” is determined in step S 880, the present process ends.
次に、積分補正項学習値 Q I XMの算出処理(図 1 5) について説明する。 尚、 本処理において、 ステップ S 91 1〜S 91 5の処理は前記実施の形態 1におけ る積分補正項学習値 Q I XMの算出処理 (図 5) のステップ S 271〜S 275 と同じである。
本処理が開始されると、 まず、 上限ガード値 Q I I GMXが通常時上限ガード 値 Q I I GMXBに到達しており、 かつ下限ガード値 Q I I GMNが通常時下限 ガード値 Q I I GMNBに到達しているか否かが判定される (S 910)。 Q I I GMX≠Q I I GMXB又は Q I I GMN≠Q I I GMN Bのいずれかあるいは 両方であれば (S 9 10で 「N〇」)、 今回の積分補正項学習値 Q I XM ( i ) に 前回の積分補正項学習値 Q I XM( i— 1)が設定されることにより(S 9 1 5)、 積分補正項学習値 Q I XMは変動しないように維持される。 尚、 外部負荷の切り 替えなどにより前回の制御周期と今回の制御周期とが異なったアイドル状態であ る場合には、 今回の制御周期における積分補正項学習値 Q I XM ( i ) には、 今 回と同じアイドル状態における最も新しい積分補正項学習値 Q I XMが設定され る。 一方、 Q I I GMX = Q I I GMXBおよび Q I I GMN = Q I I GMNBで あれば (S 910で 「YES」)、 次にステップ S 9 1 1から処理が開始され、 以 後、 前記実施の形態 1にて述べたごとく、 積分補正項学習値 Q I XMの算出処理 (S 9 1 1〜S 91 5) の処理が実行され、 積分補正項学習値 Q I XMが学習に より適切な値に変化して行くことになる。 図 1 6のタイミングチャートに、 本実施の形態 2による処理の一例を示す。 時刻 t 2 1からスタータが作動してエンジン 1が回転を始めている。 その後、 エンジン 1が始動することでスタータがオフされる (時刻 t 22)。 このことによ りエンジン 1が自立的に回転し始める (時刻 t 22以降)。 この時刻 t 22からタ イマ一カウンタ T sのカウントアップが開始される。 しかし、 タイマーカウンタ T sが始動初期ガード保持時間 C Q I G〇 Fを越えるまでは、 上限ガード値 Q I I GMXは、 始動時に既に設定されている上限ガード初期値 Q I I GMXSの値 を維持し、 下限ガード値 Q I I GMNは、 始動時に既に設定されている下限ガー ド初期値 Q I I GMNSの値を維持する。
そして、 タイマーカウンタ T sが始動初期ガード保持時間 C Q I G〇Fを越え ると (時亥 IJ t 2 3 )、上限ガード値 Q I I GMX及び下限ガード値 Q I I GMNは 次第に低減し、 最終的に上限ガード値 Q I I GMXは通常時上限ガード値 Q I I GMX Bとなり (時刻 t 2 5 )、下限ガード値 Q I . I GMNは通常時下限ガード値 Q I I GMN Bとなる (時刻 t 2 4 )。 このようなエンジン 1の始動初期に生じる大きなフリクションによる負荷を補 償するために積分補正項 Q I Iが大きく増加しても、 始動時及び始動直後におい てはガード値、特に上限ガード値 Q I I GMXが一時的に大きく設定されている。 このため、始動初期のフリクシヨンに対する燃料噴射量補償を十分に実行できる。 その後、 始動初期のフリクションの低下に適合させるように、 上限ガード値 Q I I GMX及び下限ガード値 Q I I GMNを共に小さくして、 最終的には通常時 上限ガード値 Q I I GMX B及び通常時下限ガード値 Q I I GMN Bとなる。 こ のため、 上限ガード値 Q I I GMX及び下限ガード値 Q I I GMNが大きな状態 を継続することはない。 図 1 7は、 始動後にエンジンストールを生じた場合を示している。 時刻 t 3 1 にてスタータがオンされ、 時刻 t 3 2にてスタータがオフとされることにより、 図 1 6にて説明した場合と同様に、 タイマーカウンタ T sがカウントアップを開 始し(B寺刻 t 3 2以降)、始動初期ガード保持時間 C Q I G O Fの後に上限ガード 値 Q I I GMX及び下限ガード値 Q I I GMNの減少を開始する (時刻 t 3 3以 降)。 ■ しかし、 時刻 t 3 4にてエンジンストールを引き起こすと、 タイマーカウンタ T sのカウントアップが停止し、 これに伴って上限ガード値 Q I I GMX及び下
限ガード値 Q I I GMNの減少も停止する (時亥 i」 t 34以降)。 この時、 タイマ一 カウンタ T s、 上限ガード値 Q I I GMX及び下限ガード値 Q I I GMNはその 値が維持される。 そして、再度、スタータのオンおよびオフの操作により(時刻 t 35〜 t 3 6)、 エンジン 1が自立的に回転すると、 タイマーカウンタ T sは、 エンジンストール 時に維持していた値から、 再度、 カウントアップを開始し、 これに伴い、 上限ガ 一ド値 Q I I GMX及ぴ下限ガード値 Q I I GMNもエンジンストール時に維持 していた値から、 再度、 減少を開始する (時刻 t 36以降)。 そして最終的に、 上 限ガード値 Q I I GMXは通常時上限ガード値 Q I I GMX Bとなり (時刻 t 3 8)、下限ガード値 Q I I GMNは通常時下限ガード値 Q I I GMNBとなる (時 刻 t 37 )。 上述した本実施の形態 2において、 I SC処理 (図 4) におけるステップ S 2 40〜S 270, S 290、 ガード値設定処理 (図 14) 及びタイマーカウンタ T sのカウント処理 (図 1 1) が積分捕正項算出手段としての処理に相当し、 燃 料噴射量制御処理 (図 2) のステップ S 1 20, S 1 30が燃料供給量算出手段 としての処理に相当し、 積分補正項学習値 Q I XMの算出処理 (図 1 5) が積分 補正項学習手段としての処理に相当する。 以上説明した本実施の形態 2によれば、 以下の効果が得られる。 Next, calculation processing of the integral correction term learning value QI XM (FIG. 15) will be described. In this process, the process of steps S 91 1 to S 91 5 is the same as the process of steps S 271 to S 275 of the integral correction term learning value QI XM calculation process (FIG. 5) in the first embodiment. . When this process is started, first, whether the upper limit guard value QII GMX has reached the normal upper limit guard value QII GMXB and the lower limit guard value QII GMN has reached the normal lower limit guard value QII GMNB or not Is determined (S 910). If either or both of QII GMX MX QII GMXB and QII GMN MN QII GMN B (“N」 ”in S 9 10), the current integral correction term learning value QI XM (i) The previous integral correction term learning By setting the value QI XM (i-1) (S915), the integral correction term learning value QI XM is maintained so as not to fluctuate. If the previous control cycle and the current control cycle are in an idle state different from each other due to external load switching, etc., the integral correction term learning value QI XM (i) in the current control cycle is The most recent integral correction term learning value QI XM in the same idle state as the time is set. On the other hand, if QII GMX = QII GMXB and QII GMN = QII GMNB ("YES" in S 910), then the process starts from step S 91 1 and thereafter, the process described in the first embodiment. As described above, the process of calculating the integral correction term learning value QI XM (S 9 11 to S 91 5) is executed, and the integral correction term learning value Q I X M will be changed to an appropriate value by learning. . An example of the process according to the second embodiment is shown in the timing chart of FIG. The starter operates at time t 21 and the engine 1 starts rotating. Thereafter, the starter is turned off by starting the engine 1 (time t22). Due to this, the engine 1 starts to rotate independently (after time t22). From time t22, the timer counter Ts starts counting up. However, until the timer counter T s exceeds the start initial guard holding time CQIG F F, the upper limit guard value QII GMX maintains the value of the upper limit guard initial value QII GMXS already set at the start, and the lower limit guard value QII The GMN maintains the value of the lower limit initial value QII GMNS already set at startup. Then, when the timer counter T s exceeds the initial initial guard holding time CQIG F F (time IJ t 2 3), the upper limit guard value QII GMX and the lower limit guard value QII GMN gradually decrease and finally the upper limit guard value The QII GMX normally becomes the upper limit guard value QII GMX B (time t 2 5), and the lower limit guard value Q I. I GMN becomes the normal lower limit guard value Q II GMN B (time t 2 4). Even if the integral correction term QII increases to compensate for the load due to the large friction that occurs at the beginning of starting the engine 1, the guard value, especially the upper limit guard value QII GMX, is temporarily set at the start and immediately after the start. Is set large. For this reason, it is possible to sufficiently execute the fuel injection amount compensation for the friction at the initial stage of the start. Thereafter, the upper limit guard value QII GMX and the lower limit guard value QII GMN are both reduced to match the decrease in friction at the initial stage of startup, and finally the normal upper limit guard value QII GMX B and the normal lower limit guard value QII It becomes GMN B. Therefore, the upper limit guard value QII GMX and the lower limit guard value QII GMN never continue to be large. Figure 17 shows the case where an engine stall occurs after start-up. By turning on the starter at time t 31 and turning off the starter at time t 32, the timer counter T s starts counting up in the same manner as described in FIG. After the initial initial guard holding time CQIGOF, decrease of upper limit guard value QII GMX and lower limit guard value QII GMN is started (after time t 33). ■ However, when an engine stall occurs at time t 34, the timer counter T s stops counting up, and along with this, the upper limit guard value QII GMX and lower Limited guard value QII GMN reduction also stops (from time i t 34 onwards). At this time, the timer 1 counter T s, the upper limit guard value QII GMX, and the lower limit guard value QII GMN are maintained at that value. Then, when the engine 1 rotates independently by the operation of turning the starter on and off again (time t 35 to t 3 6), the timer counter T s counts again from the value maintained at the time of engine stall. As a result, the upper limit guard value QII GMX and the lower limit guard value QII GMN start decreasing again from the value maintained at the time of engine stall (after time t36). Finally, the upper limit guard value QII GMX becomes the normal upper limit guard value QII GMX B (time t 3 8), and the lower limit guard value Q II GMN becomes the normal lower limit guard value Q II GMNB (time t 37). In the second embodiment described above, steps S 240 to S 270 and S 290 in the I SC process (FIG. 4), guard value setting process (FIG. 14) and timer counter T s count process (FIG. 11) The step S 120 and step S 130 of the fuel injection amount control process (FIG. 2) correspond to the process as the fuel supply amount calculation means, and the integral correction term learning value The QI XM calculation process (Fig. 15) corresponds to the process as the integral correction term learning means. According to the second embodiment described above, the following effects can be obtained.
(1) エンジン 1の始動時及ぴ始動直後においては、 積分補正項の制御範囲、 すなわち上限ガード値 Q I I GMXと下限ガード値 Q I I GMNとの間隔を通常 運転時よりも広く設定している。 特に上限ガード値 Q I I GMXを大きくしてい る。 このため、 エンジン 1の始動時や始動直後においては、 アイドル目標回転数 NETRGに対する実際のエンジン回転数 NEの偏差分の値が、 積分補正項 Q I Iに大きく蓄積されることを許すことができる。 したがって、 始動時及び始動直
後に限っては、 積分補正項 Q I Iによりエンジン始動初期のフリクションが補償 され、 エンジン回転数 N Eの落ち込みが防止される。 そして、 その後におけるアイドル回転数制御時においては、 積分補正項の制御 範囲は通常運転時の広さに戻されるため、 積分補正項 Q I Iが過大となるのが阻 止され、 アイドル回転数制御における回転の急上昇が防止される。 (1) The control range of the integral correction term, that is, the interval between the upper limit guard value QII GMX and the lower limit guard value QII GMN, is set wider than in the normal operation at the start of engine 1 and immediately after the start. In particular, the upper limit guard value QII GMX is increased. Therefore, it is possible to allow the value of the deviation of the actual engine speed NE with respect to the idle target engine speed NETRG to be largely accumulated in the integral correction term QII at the start of the engine 1 or immediately after the start. Therefore, when starting and immediately after starting In the latter case, the integral correction term QII compensates for friction at the start of engine startup and prevents engine speed NE from falling. Then, at the time of idle speed control at a later time, the control range of the integral correction term is returned to the width at the time of normal operation, so that the integral correction term QII is prevented from becoming excessive. Soaring is prevented.
( 2 ) 上限ガード値 Q I I GMXと下限ガード値 Q I I GMNとは、 しばらく 値が維持された後に、 経過時間に応じて次第に小さくすることにより、 積分補正 項の制御範囲を次第に狭めている。 これは、 エンジン 1が回転を継続することに より、 エンジン始動初期のフリクションは次第に消滅するので、 積分補正項 Q I Iは次第に小さくなる。 したがって、 経過時間に応じて積分補正項の制御範囲を 次第に狭めることにより、 通常運転時の積分補正項の制御範囲に戻して、 その後 のアイドル回転数制御に円滑に引き継がせることができる。 更に、 初期において積分補正項の制御範囲の広さを保持する期間を設けること により、 エンジン始動時や始動直後において、 積分補正項の制御範囲を極端に広 くしなくても、 積分補正項 Q I Iが十分に上昇するまでの時間的余裕を設けるこ とができる。 このことにより、 エンジン始動初期のフリクションを積分補正項 Q I Iにて効果的に補償することができる。 (2) The upper limit guard value Q I I GMX and the lower limit guard value Q I I GMN maintain the value for a while, and then gradually reduce the control range of the integral correction term by decreasing them gradually according to the elapsed time. This is because as the engine 1 continues to rotate, the friction at the initial stage of engine start gradually disappears, so the integral correction term Q I I becomes smaller gradually. Therefore, by gradually narrowing the control range of the integral correction term according to the elapsed time, it is possible to return to the control range of the integral correction term during normal operation and smoothly take over to the idle speed control thereafter. Furthermore, by providing a period for maintaining the control range of the integral correction term in the initial stage, the integral correction term QII can be obtained without extremely widening the control range of the integral correction term at engine start or immediately after start. Allow time for sufficient rise. By this, it is possible to effectively compensate for the friction in the initial stage of the engine start by the integral correction term QII.
( 3 ) 積分補正項の制御範囲が通常運転時よりも広く設定されているような状 況下では、 積分捕正項 Q I Iが大きく変動している。 このことから、 積分補正項 学習値 Q I XMの計算を実行することは誤差を生じやすく適当でない。このため、 積分補正項の制御範囲が通常運転時の範囲に戻る前は積分補正項学習値 Q I XM の計算を禁止し、 通常運転時の範囲に戻った場合に積分補正項学習値 Q I XMの 計算を許可している。 このことにより、 積分補正項学習値 Q I XMの誤差を効果
的に抑制することができるようになり、 一層安定したアイドル回転数制御が可能 となる。 (3) In the situation where the control range of the integral correction term is set wider than in normal operation, the integral capture term QII fluctuates significantly. From this, it is not appropriate to carry out the calculation of the integral correction term learning value QI XM because it is prone to errors. Therefore, calculation of the integral correction term learning value QI XM is prohibited before the control range of the integral correction term returns to the normal operation range, and when the control range returns to the normal operation range, the integral correction term learning value QI XM Allow calculation. This makes the error of the integral correction term learning value QI XM effective. It becomes possible to suppress the idle speed automatically, which enables more stable idle speed control.
(4) エンジンストールした場合においては、 直前までのエンジン 1の回転に より低減している始動初期のフリクションはほとんど回復していないので、 積分 補正項 Q I Iも大きいままである必要がある。 このためエンジンストール後の再 始動においては、 積分補正項の制御範囲をエンジンストール時の広さに設定し、 この状態から処理を開始している。 このことにより、 適切に積分補正項の制御範 囲を設定することができ、 アイドル回転数制御を一層安定したものとすることが できる。 (4) In the case of engine stall, since the friction at the initial stage of starting reduced by the previous rotation of the engine 1 is hardly recovered, the integral correction term Q I I also needs to remain large. Therefore, when restarting after an engine stall, the control range of the integral correction term is set to the width at the time of engine stall, and processing is started from this state. As a result, the control range of the integral correction term can be set appropriately, and idle speed control can be made more stable.
(5) 前記実施の形態 1と同様に、 適切に積分補正項の制御範囲を設定するこ とができ、 アイドル回転数制御を一層安定したものとすることができる。 (5) As in the first embodiment, the control range of the integral correction term can be set appropriately, and idle speed control can be made more stable.
その他の実施の形態 Other embodiments
前記実施の形態 1と前記実施の形態 2との構成を組み合わせても良い。 すなわ ち、 前記実施の形態 2.の構成に対して、 前記実施の形態 1の始動初期見込補正項 Q I PAS (図 10) が実行されるようにして、 始動初期見込補正項 Q I PAS を算出し、 負荷捕正項 Q I PBに加えられるようにする。 そして、 例えばガード 値設定処理 (図 14 ) で用いられる始動初期ガード保持時間 C Q I G O Fと始動 初期見込補正項の保持時間 CQ I POFとは同じ値を用いる。 そして、 始動初期 見込補正項 Q I P ASが 「0」 となるタイミングと、 上限ガード値 Q I I GMX が通常時上限ガード値 Q I I GMXBとなるタイミングと、 下限ガード値 Q I I GMNが通常時下限ガード値 Q I I GMNBとなるタイミングとがほぼ同一とな るように、 前記式 1 2における減少幅 Q I PAS DLと、 前記式 14における減 少幅 Q I GMXDLと、前記式 1 5における減少幅 Q I GMNDLとを設定する。
このように構成されることにより、 始動時や始動直後の始動初期見込補正項 Q I P A Sの適用及び積分補正項の制御範囲の拡大が共に行われ、 その後、 始動初 期見込補正項 Q I P A Sの消滅と積分補正項の制御範囲の縮小とが連動して行わ れる。 このことにより、 始動時や始動直後の始動初期見込補正項 Q I P A Sの値 では始動初期のフリクションに対する補償が不十分である場合にも、 積分補正項 Q I Iにて十分に補償することができる。 したがって、 アイ ドル回転数制御を一 層安定したものとすることができる。 前記実施の形態 1の始動初期見込捕正項 Q I P A Sや前記実施の形態 2のガー ド値 Q I I GMX , Q I I GMNは、 タイマーカウンタ T sの値に応じて設定さ れたが、 エンジン回転数 N Eの積算回転数に応じて設定しても良い。 始動時及び 始動後にエンジンが回転するほど、 始動初期のフリクションは減衰するからであ る。 又、 冷却水温 T HWの上昇に応じて始動初期見込補正項 Q I P A Sやガード 値 Q I I GMX , Q I I GMNを設定しても良い。 始動時以後、 エンジン運転が 継続することにより、 冷却水温 T HWは次第に上昇する。 このような温度上昇パ ターンは、 エンジン始動初期のフリクション低減パターンと類似し、 またこのよ うな温度要因もエンジン始動初期のフリクションの大きさに関与しているからで ある。 前記各実施の形態において、 タイマーカウンタ T sは、 スタータがオンからォ フに切り替わって、 エンジン 1が完全に自立的に回転しはじめたタイミングで力 ゥントアップを開始していたが、 タイマーカウンタ T sはスタータによりェンジ ン 1が回転し始めたタイミングにてカウントアップするようにしても良い。また、 スタータがオン状態であっても、 基準回転数以上に回転数が上昇した場合にタイ マーカウンタ T sがカウントアップするようにしても良い。 前記実施の形態 1においては、 始動初期見込補正項の基準値 Q I P A S Bは、
自動変速機のシフトと冷却水温 T HWとに応じて設定したが、 これ以外に、 エア コンディショナゃパワーステアリングなどの外部負荷の種類やその有無に応じて 設定しても良い。 前記実施の形態 2において、 上限ガード初期値 Q I I GMX S及び下限ガード 初期値 Q I I GMN Sには固定値を用いたが、 自動変速機のシフト及ぴ冷却水温 T HWに応じて設定しても良く、 エアコンディショナゃパワーステアリングなど の外部負荷の種類やその有無に応じて設定しても良い。
The configurations of the first embodiment and the second embodiment may be combined. That is, the start initial expectation correction term QI PAS (FIG. 10) of the first embodiment is executed with respect to the configuration of the second embodiment to calculate the start initial expectation correction term QI PAS. And be added to the load capture term QI PB. Then, for example, the same initial value is used for the start initial guard holding time CQIGOF and the holding time CQ I POF of the start initial estimated correction term used in the guard value setting process (FIG. 14). Then, the timing at which the start initial correction item QIP AS becomes "0", the timing when the upper limit guard value QII GMX becomes the normal upper limit guard value QII GMXB, the lower limit guard value QII GMN becomes the normal lower limit guard value QII GMNB The reduction width QI PAS DL in the above equation 12, the reduction width QI GMXDL in the above equation 14, and the reduction width QI GMNDL in the above equation 15 are set so that the timing becomes substantially the same. With this configuration, both the application of QIPAS and the expansion of the control range of the integral correction term are performed at the start and immediately after the start, and then the disappearance and integration of the QIPAS and the initial correction term The reduction of the control range of the correction term is performed in conjunction with this. This makes it possible to sufficiently compensate the integral correction term QII even if the compensation for the friction in the initial stage of the start is insufficient with the value of QIPAS at the initial start estimation correction immediately after start up. Therefore, idle speed control can be made more stable. Although the start initial expected capture term QIPAS of the first embodiment and the guard values QII GMX and QII GMN of the second embodiment are set according to the value of the timer counter T s, the engine speed NE It may be set according to the integrated rotation speed. This is because the friction at the beginning of the start is attenuated as the engine is rotated at the time of start and after start. Also, according to the increase of the cooling water temperature THW, the QIPAS correction term and the guard value QII GMX, QII GMN may be set. As the engine operation continues from the start, the coolant temperature THW gradually rises. Such a temperature rise pattern is similar to the friction reduction pattern at the initial stage of engine start, and such a temperature factor is also involved in the magnitude of the friction at the initial stage of engine start. In each of the above-described embodiments, the timer counter T s has started to increase at the timing when the starter 1 switches from on to off and the engine 1 starts completely self-sustaining. The timer may be counted up at the timing when the engine 1 starts to rotate by the starter. In addition, even when the starter is in the on state, the timer counter Ts may count up when the number of revolutions rises above the reference number of revolutions. In the first embodiment, the reference value QIPASB of the initial start estimated correction term is The setting is made according to the shift of the automatic transmission and the cooling water temperature THW, but it may be set according to the type of external load such as air conditioning and power steering and the presence or absence thereof. In the second embodiment, fixed values are used for the upper limit guard initial value QII GMX S and the lower limit guard initial value QII GMN S, but may be set according to the shift of the automatic transmission and the coolant temperature T HW. It may be set according to the type of external load such as air conditioner and power steering, and the presence or absence.