WO2002076544A1 - Beatmungsgerät - Google Patents

Beatmungsgerät Download PDF

Info

Publication number
WO2002076544A1
WO2002076544A1 PCT/DE2002/001000 DE0201000W WO02076544A1 WO 2002076544 A1 WO2002076544 A1 WO 2002076544A1 DE 0201000 W DE0201000 W DE 0201000W WO 02076544 A1 WO02076544 A1 WO 02076544A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
valve
expiration
flow
oxygen
Prior art date
Application number
PCT/DE2002/001000
Other languages
English (en)
French (fr)
Inventor
Andreas Schober
Wilhelm Breitenfelder
Original Assignee
Salvia Lifetec Geräte Für Medizintechnik Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salvia Lifetec Geräte Für Medizintechnik Gmbh & Co. Kg filed Critical Salvia Lifetec Geräte Für Medizintechnik Gmbh & Co. Kg
Publication of WO2002076544A1 publication Critical patent/WO2002076544A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • A61M16/203Proportional
    • A61M16/205Proportional used for exhalation control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/16Devices to humidify the respiration air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0021Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with a proportional output signal, e.g. from a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0039Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the inspiratory circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0042Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the expiratory circuit

Definitions

  • Ventilators are used to promote, support or replace an independent breathing activity damaged by illness or also to prevent a breathing disorder. They contain a breathing gas line system, which consists of an inspiration branch for supplying the patient with fresh gas, an expiration branch for discharging the used breathing gas exhaled by the patient and a patient branch, which is connected between the inspiration branch and the expiration branch - usually by means of a Y branch.
  • a breathing gas line system which consists of an inspiration branch for supplying the patient with fresh gas, an expiration branch for discharging the used breathing gas exhaled by the patient and a patient branch, which is connected between the inspiration branch and the expiration branch - usually by means of a Y branch.
  • the ventilators that are common today are electronically controlled.
  • the required actual values such as the gas flow flowing in the individual branches and the breathing gas pressure, are recorded by sensors and converted into electrical signals, which are transmitted to an electronic control unit.
  • the control unit controls the gas flow in the line system by means of appropriate valves so that the time course of the measured actual values corresponds as exactly as possible to a desired value course desired from a medical point of view.
  • Different operating modes are possible, whereby the basic types are pressure-controlled ventilation and volume-controlled ventilation.
  • the amount of fresh gas flowing per unit of time via the inspiration branch to the branch and thus to the patient can be controlled (based on corresponding commands from the control unit) by means of a gas flow controller.
  • the expiration branch usually contains an expiration valve, the opening cross section of which is adjusted during operation of the ventilator in accordance with the respective requirements. If the patient's lungs are filled with breathing gas in the inspiratory phase of the ventilation process, it is usually largely or completely closed to avoid any unnecessary loss of breathing gas. When the patient exhales, i.e. in the expiration phase of the device, the expiration valve is opened in a controlled manner. For medical reasons, compliance with a defined target pressure curve during the expiration phase is sought in many applications. To ensure that the target pressure curve is approximated as completely as possible, the.
  • a control circuit which has a pressure sensor for detecting the breathing gas pressure, an Ex adjustable with respect to its opening cross section. Spirationsventil and control electronics integrated in the electronic control unit. Since the reliability of this control is of great importance for the operational safety of the ventilator, two independent pressure sensors are often available, the second sensor being used to monitor the correct functioning of the control circuit and, if necessary, to trigger an alarm and / or via an additional safety valve. Keeping gas pressure within safe limits. Despite this great effort, the behavior of known ventilators is not always satisfactory from a medical point of view, especially in the expiration phase.
  • the invention is based on the object of making available a ventilator which is characterized by improved control of the respiratory gas pressure, with little design effort and with full compliance with the safety requirements.
  • the object is achieved in a ventilator of the general construction described above by the combination of the following features:
  • the expiration valve has a valve element with a closing surface enclosed by a sealing edge. The sealing edge is pressed sealingly against a corresponding annular valve seat.
  • the valve element can be moved in an operating movement range by means of a movement device. In the entire operating movement range, it can be loaded with a closing force in the direction of the valve seat, which can be set electrically by means of the control unit.
  • the operating movement range in this sense is the movement path of the valve element that is used in normal operation of the ventilator to control the ventilation pressure. It is possible, although less preferred, for the movement path of the valve element to include other partial areas (for example a parking position for transport purposes) in which the closing force cannot be set electrically.
  • the valve element is preferably a horizontally running sealing plate, which is surrounded on one side, preferably the lower side in the installation direction, by the sealing edge.
  • the annular valve seat, against which the sealing edge is pressed in the closed position of the valve is preferably formed by an edge of the boundary element facing the valve element and enclosing a valve chamber into which the part of the inspiration branch coming from the patient branch opens.
  • the sealing edge of the valve element rests on the valve seat like a lid and is very easy to move.
  • the breathing gas can flow freely through the annular gap that forms between the sealing edge and the sealing edge when the valve is opened.
  • the annular gap is thus fully available as the opening cross-section of the valve.
  • the drive is generated by the electrically adjustable closing "force, electromagnetically, wherein the clamping force by interaction of a throughput of a current carrying coil and a magnet is generated.
  • the control unit then controls by the the coil flowing current to adjust the closing force.
  • the closing force should be set as largely as possible without delay. As a result, there should in particular be no electrical attenuators that would result in a delayed response.
  • the movement device for adjusting the closing element should also work with as little damping as possible.
  • An actuating rod which is referred to below as a plunger, is preferably used to connect the (preferably electromagnetic) drive to the valve element. To minimize friction, the plunger is preferably installed vertically. Pneumatic power transmission is not suitable due to the associated damping of the coupling between the drive and the closing element.
  • the required safety function in connection with only one electrical pressure sensor is implemented in a simple and inexpensive manner.
  • the expiration valve used in the context of the invention simultaneously forms a check valve, so that an additional component can also be saved in this regard.
  • the invention enables a simple and compact construction. The invention is explained in more detail below with reference to an embodiment shown in the figures. The special features described can be used individually or in combination to create preferred embodiments of the invention. Show it:
  • FIG. 1 is a gas flow diagram of a ventilator according to the invention
  • Fig. 2 is a graph of a typical target pressure curve during the inspiration phase
  • FIG. 4 is a perspective schematic diagram to explain the interaction of some of the components shown in FIG. 3,
  • Fig. 5 is a circuit diagram of a circuit suitable for controlling the flow of Srom in the coil of the expiration valve.
  • the breathing gas line system 1 shown in FIG. 1 essentially consists of an inspiration branch 2, an expiration branch 3 and a patient branch 4, which is connected to a branch 5 lying between the inspiration branch 2 and the expiration branch 3.
  • the patient's lungs are symbolized by circle 6.
  • the inspiration branch 2 contains a gas flow control 10, which in the case shown is designed as a mixing unit 11 (the elements of which are framed by a dash-dotted line).
  • the mixing unit 11 contains an air supply line 12 and an oxygen supply line 13 which each have a safety pressure switch 14, 15, a pair of proportional valves 16a, 16b connected in parallel; 17a, 17b and an oxygen flow sensor 18 and an air flow sensor 19 are arranged.
  • the parallel connection of two proportional valves enables a particularly fine adjustment of the gas flow.
  • the oxygen flow sensor 18 and the air flow sensor 19 each consist of a flow resistance 20 or 21 and a differential pressure sensor 22 or 23, and are thus designed as differential pressure flow sensors.
  • the air line 12 and the oxygen line 13 are brought together at a mixing point 25.
  • the following elements are arranged on the following line section up to the junction 5, which primarily serve to ensure the required operational safety under all conditions:
  • the correct function of the respiratory gas pressure control described below is monitored by means of a respiratory gas pressure sensor 26.
  • the correct functioning of the mixing unit 11 is checked by means of an oxygen concentration sensor 27.
  • a spontaneous breathing check valve 28 enables spontaneous breathing even in the event of a complete device failure.
  • An electrical pressure relief valve 29, which can be opened as a function of the signal from the respiratory gas pressure sensor 26, serves to control an excess pressure which quickly exceeds a specified limit in the event of a fault (for example if one of the following line hoses is kinked or blocked) .
  • a mechanical pressure relief valve 30 essentially fulfills the same function as the electrical pressure relief valve 29. This function is implemented twice for safety reasons, the mechanical valve 30 also functioning in the event of a power failure.
  • a breathing gas humidifier 30 is arranged in the patient branch 4 in the usual way.
  • a separate breathing gas flow sensor is not required in the preferred construction shown. However, it can optionally be arranged in the patient branch 4.
  • An expiratory flow sensor 34 is provided downstream in the direction of flow and, like the sensors 17 and 18, is designed as a differential pressure flow sensor with a flow resistor 35 and a differential pressure sensor 36.
  • FIG. 2 shows an example of a typical target pressure curve, that is, depending on the medical view. Indication for a certain clinical picture
  • the movement device 52 consists of a plunger 53 and an electromagnetic drive 54.
  • the electromagnetic drive 54 is formed by a permanent magnet 55 and a coil 56 through which an electrical current flows during operation, which acts as a plunger coil in an air gap 55a of the magnet 55 is positioned. It is rigidly connected to the plunger 53 and thus to the valve element 49 via a yoke 57. Because the plunger 53 is installed vertically, it can be guided through two bearings 58 and 59 in a simple manner almost without friction.
  • the electrical current is supplied to the plunger coil 56 mechanically stress-free by means of lines (not shown) through the cover 60.
  • an annular gap 61 is formed between the sealing edge 51 and the valve seat 47, the height of which is the distance between the valve seat 47 and the valve, which is referred to below as the actuating path D.
  • Sealing edge 51 corresponds and the length of which is determined by the circumference of the closing surface 50 (in the preferred case of a circular closing surface by its diameter d).
  • the breathing gas can flow through the annular gap 61 from the chamber 45 into an exhaust air duct 62 which surrounds the valve chambers 45 in a ring shape.
  • the exhaust air duct 62 is closed off from the electromagnetic drive 54 by an elastic membrane 63, which is preferably firmly connected (e.g. welded) to the valve element 49 in the vicinity of the plunger 53.
  • a flow resistance 35 of the expiration flow sensor 34 is integrated into the same component together with the expiration valve 33.
  • the flow resistance becomes concrete ⁇ ⁇ tt ⁇ ⁇ in ooo in tr ⁇ PJ: -. tQ tj ⁇ Cß D tr CQ ⁇ l? P. ⁇ - ⁇ d rt ii P. rt CQ Pi H ⁇ f 01 P. PJ ⁇
  • Pi ⁇ Pf 0 ⁇ - ⁇ P tr H Pi ⁇ ⁇ tQ ⁇ ⁇ , CQ tQ P CQ 0 C ⁇ ⁇ co li P 1 tr ⁇ tQ ⁇ ⁇ - ⁇ CQ 3; ⁇ - CD CQ tr ⁇ P CD ⁇ - ⁇ ⁇ d ⁇ - P. ⁇ ⁇ t in P co fi rt ⁇ - P PJ ⁇ p- P ) ⁇ - tQ H 1 CQ Pf j

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

Beatmungsgerät mit einem Atemgasleitungssystem, das einen Inspirationszweig, einen Exspirationszweig und einen Patientenzweig umfasst, und einer elektronischen Steuerungseinheit. Der Inspirationszweig weist eine Gasflusssteuerung auf, mit der die Menge des zu der Abzweigung strömenden Frischgases steuerbar ist. Der Exspirationszweig weist ein Exspirationsventil (33) auf, durch das Atemgas aus dem Exspirationszweig abströmen kann und dessen Öffnungsquerschnitt im Betrieb des Beatmungsgerätes verstellt wird, um den Atemgasdruckverlauf an einen vorgegebenen Solldruckverlauf anzunähern, wobei das Exspirationsventil (33) ein Ventilelement (49) aufweist, dessen eine Schliessfläche (50) umschliessender Dichtrand (51) in der Schliessstellung des Ventils abdichtend gegen einen ringförmigen Ventilsitz (47) gedrückt wird, das Ventilelement (49) mittels einer Bewegungseinrichtung in einem Betriebsbewegungsbereich (43) bewegbar und in dem gesamten Betriebsbewegungsbereich (43) mit einer mittels der Steuerungseinheit elektrisch einstellbaren Schliesskraft in Richtung auf den Ventilsitz belastbar ist.

Description

Beatmungsgerät
Beatmungsgeräte dienen zur Förderung, Unterstützung oder zum Ersatz einer durch Erkrankung geschädigten selbständigen Atemtätigkeit oder auch zur Vorbeugung einer Atem- Störung. Sie enthalten ein Atemgasleitungssystem, das aus einem Inspirationszweig zur Versorgung des Patienten mit Frischgas, einem Exspirationszweig zur Ableitung des von dem Patienten ausgeatmeten verbrauchten Atemgases und einem Patientenzweig besteht, der - üblicherweise mittels einer Y-Verzweigung - zwischen dem Inspirationszweig und dem Exspirationszweig angeschlossen ist.
Die heute üblichen Beatmungsgeräte sind elektronisch gesteuert. Die erforderlichen Ist-Werte, wie beispielsweise der in den einzelnen Zweigen strömende Gasfluß und der Atemgasdruck werden über Sensoren erfaßt und in elektrische Signale umgewandelt, die an eine elektronische Steuerungseinheit übermittelt werden. Die Steuerungseinheit steuert mittels entsprechender Ventile den Gasstrom in dem Leitungssystem so, daß der zeitliche Verlauf der gemessenen Ist-Werte möglichst genau einem aus medizinischer Sicht gewünschten Sollwerte-Verlauf entspricht. Dabei sind unterschiedliche Betriebsmodi möglich, wobei als grundlegende Typen die druckkontrollierte Beatmung und die volumenkontrollierte Beatmung unterschieden werden.
Derartige Geräte sind beispielsweise in folgenden Publikationen beschrieben:
1) EP 0343542 Bl
2) DE 19516536 C2
3.) DE 19931807 Cl
4) DE 19961253 Cl
Die Menge des pro Zeiteinheit über den Inspirationszweig zu der Abzweigung und somit zu dem Patienten strömenden Frischgases ist (aufgrund entsprechender Befehle der Steuerungseinheit) mittels einer Gasflußsteuerung steuerbar. Der Exspirationszweig enthält üblicherweise ein Ex- spirationsventil dessen Öffnungsquerschnitt im Betrieb des Beatmungsgerätes entsprechend den jeweiligen Anforderungen verstellt wird. Wenn in der Inspirationsphase des Beatmungsvorganges die Lunge des Patienten mit Atemgas gefüllt wird, ist es in der Regel weitgehend oder voll- ständig geschlossen, um jeden unnötigen Verlust an Atemgas zu vermeiden. Beim Ausatmen des Patienten, also in der Exspirationsphase des Gerätes, wird das Exspirationsventil kontrolliert geöffnet . Aus medizinischen Gründen wird in vielen Anwendungsfällen die Einhaltung eines de- finierten Solldruckverlaufes während der Exspirationsphase angestrebt . Um eine möglichst vollständige Annäherung an diesen Solldruckverlauf zu gewährleisten, ist bei den . bekannten Geräten ein Regelkreis vorgesehen, der einen Drucksensor zur Erfassung des Atemgasdruckes, ein hin- sichtlich seines Öffnungsquerschnittes einstellbares Ex- spirationsventil und eine in die elektronische Steuerungseinheit integrierte Regelungselektronik umfaßt . Da die Zuverlässigkeit dieser Regelung von großer Bedeutung für die Betriebssicherheit des Beatmungsgerätes ist, sind häufig zwei unabhängige Drucksensoren vorhanden, wobei der zweite Sensor dazu dient, die korrekte Funktion des Regelkreises zu überwachen und erforderlichenfalls einen Alarm auszulösen und/oder über ein zusätzliches Sicherheitsventil den. temgasdruck in sicheren Grenzen zu hal- ten. Trotz dieses hohen Aufwandes ist das Verhalten bekannter Beatmungsgeräte insbesondere in der Exspirati- onsphase aus medizinischer Sicht nicht immer befriedigend.
Der Erfindung liegt auf dieser Grundlage die Aufgabe zugrunde, mit geringem konstruktivem Aufwand und unter vollständiger Wahrung der Sicherheitsanforderungen ein Beatmungsgerät zur Verfügung zu stellen, das sich durch eine verbesserte Kontrolle des Atemgasdruckes auszeich- net .
Die Aufgabe wird bei einem Beatmungsgerät der vorstehend beschriebenen allgemeinen Bauweise durch die Kombination folgender Merkmale gelöst : - Das Exspirationsventil weist ein Ventilelement mit einer von einem Dichtrand umschlossenen Schließfläche auf. Der Dichtrand wird abdichtend gegen einen entsprechenden ringförmigen Ventilsitz gedrückt.
Das Ventilelement ist mittels einer Bewegungseinrich- tung in einem Betriebsbewegungsbereich bewegbar. In dem gesamten Betriebsbewegungsbereich ist es mit einer Schließkraft in Richtung auf den Ventilsitz belastbar, die mittels der Steuerungseinheit elektrisch einstellbar ist. Als Betriebsbewegungsbereich in diesem Sinne ist der Bewegungsweg des Ventilelementes, der im normalen Betrieb des Beatmungsgerätes zur Steuerung des Beatmungsdruckes benutzt wird, zu verstehen. Es ist möglich, wenn auch we- niger bevorzugt, daß der Bewegungsweg des Ventilelementes andere Teilbereiche (z.B. eine Parkposition für Transportzwecke) einschließt, in denen die Schließkraft nicht elektrisch einstellbar ist.
Vorzugsweise ist das Ventilelement eine horizontal verlaufende Dichtplatte, die auf einer Seite, vorzugsweise der in Einbaurichtung unteren Seite, von dem Dichtrand umgeben ist. Der ringförmige Ventilsitz, gegen den der Dichtrand in der Schließstellung des Ventils gedrückt wird, wird vorzugsweise von einer dem Ventilelement zugewandten Kante von Begrenzungswänden gebildet, die eine Ventilkammer umschließen, in welche der von der Patientenabzweigung kommende Teil des Inspirationszweigs mündet . Bei einer solchen Ausführungsform liegt der Dichtrand des Ventilelementes deckelartig auf dem Ventilsitz auf und ist sehr leicht beweglich. Das Atemgas kann durch den Ringspalt, der sich beim Öffnen des Ventils zwischen dem Dichtrand und der Dichtkante bildet, frei abströmen. Der Ringspalt steht somit uneingeschränkt als Öffnungsquerschnitt des Ventils zur Verfügung.
Gemäß einer weiteren bevorzugten Ausführungsform ist der Antrieb, durch den die elektrisch einstellbare Schließ-" kraft erzeugt wird, elektromagnetisch, wobei die Schließ- kraft durch Wechselwirkung einer von einem Strom durch- flossenen Spule und eines Magneten erzeugt wird. Die Steuerungseinheit steuert dabei den durch die Spule fließenden Strom zur Einstellung der Schließkraft. Die Einstellung der Schließkraft sollte möglichst weitgehend verzδgerungsfrei erfolgen. Demzufolge sollten insbesondere keinerlei elektrische Dämpfungsglieder, die zu einem verzögerten Ansprechen führen würden, vorhanden sein. Auch die Bewegungseinrichtung zur Verstellung des Schließelementes sollte möglichst dämpfungsfrei arbeiten. Bevorzugt wird zur Verbindung des (vorzugsweise elektromagnetischen) Antriebs mit dem Ventilelement eine Betätigungsstange eingesetzt, die nachfolgend als Plunger be- zeichnet wird. Um die Reibung zu minimieren ist der Plunger vorzugsweise senkrecht eingebaut . Eine pneumatische Kraftübertragung ist wegen der damit verbundenen Dämpfung der Kopplung zwischen Antrieb und Schließelement nicht geeignet .
Die praktische Erprobung der Erfindung hat gezeigt, daß sie eine sehr gute Anpassung des Atemgasdruckverlaufes an einen vorgegebenen Solldruckverlauf ermöglicht . Insbesondere können auch relativ steil abfallende Flanken der Solldruckkurve kontrolliert und präzise realisiert werden. Überraschenderweise führt der Verzicht auf die bisher übliche Regelung der Ventilstellung mittels eines als Istwert-Geber verwendeten Drucksensors nicht zu einer Verschlechterung, sondern zu einer Verbesserung der Atem- gasdrucksteuerung.
Außerdem wird die erforderliche Sicherheitsfunktion in Verbindung mit nur einem- elektrischen Drucksensor auf einfache und kostengünstige Weise realisiert . Das im Rah- men der Erfindung eingesetzte Exspirationsventil bildet gleichzeitig ein Rückschlagventil, so daß auch diesbezüglich ein zusätzliches Bauteil eingespart werden kann. Insgesamt ermöglicht die Erfindung eine einfache und kompakte Konstruktion. Die Erfindung wird nachfolgend anhand eines in den Figuren dargestellten Ausführungsbeispiels näher erläutert. Die beschriebenen Besonderheiten können einzeln oder in Kombination verwendet werden, um bevorzugte Ausgestaltun- gen der Erfindung zu schaffen. Es zeigen:
Fig. 1 ein Gasflußdiagramm eines erfindungsgemäßen Beatmungsgerätes ,
Fig. 2 ein Kurvendiagramm eines typischen Solldruck- Verlaufes während der Inspirationsphase und der
Exspirationsphase sowie des daraus typischerweise resultierenden Verlaufes des Atemgas- flußes,
Fig. 3 einen Querschnitt einer bevorzugten Ausfüh- rungsform des Exspirationsventils,
Fig. 4 eine perspektivische Prinzipskizze zur Erläuterung des Zusammenwirkens einiger in Fig. 3 dargestellter Bauteile,
Fig. 5 ein Schaltungsschema einer zur Steuerung des Sromflußes in der Spule des Exspirationsventils geeigneten Schaltung.
Das in Figur 1 dargestellte Atemgasleitungssystem 1 besteht im wesentlichen aus einem Inspirationszweig 2, ei- nem Exspirationszweig 3 und einem Patientenzweig 4, der an einer zwischen dem Inspirationszweig 2 und dem Exspirationszweig 3 liegenden Abzweigung 5 angeschlossen ist. Die Lunge des Patienten ist durch den Kreis 6 symbolisiert.
Der Inspirationszweig 2 enthält eine Gasflußsteuerung 10, die im dargestellten Fall als Mischeinheit 11 (deren Elemente von einer strichpunktierten Linie umrahmt sind) ausgebildet ist. Die Mischeinheit 11 enthält eine Luftzu- fuhrleitung 12 und eine Sauerstoffzufuhrleitung 13, an denen jeweils ein Sicherheitsdruckschalter 14, 15, ein Paar parallel geschalteter Proportionalventile 16a, 16b; 17a, 17b und ein Sauerstoffflußsensor 18 bzw. ein Luftflußsensor 19 angeordnet sind. Die Parallelschaltung von jeweils zwei Proportionalventilen ermöglicht eine besonders feine Einstellung des Gasflußes. Der Sauerstoffflußsensor 18 und der Luftflußsensor 19 bestehen jeweils aus einem Strömungswiderstand 20 bzw. 21 und einem Differentialdrucksensor 22 bzw. 23, sind also als Differen- tialdruck-Flußsensoren ausgebildet.
Der dargestellte Aufbau einer Atemgasmischeinheit 11 ist aus der EP 0343542 Bl bekannt und muß deshalb nicht näher erläutert werden. Ihre Verwendung in Verbindung mit den nachfolgend erläuterten Besonderheiten der vorliegenden Erfindung führt zu besonders vorteilhaften Ergebnissen.
Die Luftleitung 12 und die Sauerstoffleitung 13 werden an einer Mischstelle 25 zusammengeführt. An dem nachfolgen- den Leitungsabschnitt bis zu der Abzweigung 5 sind folgende Elemente angeordnet, die in erster Linie dazu dienen, unter allen Bedingungen die erforderliche Betriebssicherheit zu gewährleisten:
Mittels eines Atemgasdrucksensors 26 wird die korrekte Funktion der nachfolgend beschriebenen Atemgasdrucksteuerung überwacht .
Mittels eines Sauerstoffkonzentrationssensors 27 wird die korrekte Funktion der Mischeinheit 11 überprüft.
Ein Spontanatmungs-Rückschlagventil 28 ermöglicht die spontane Atmung auch bei einem vollständigen Geräteausfall .
Ein elektrisches Überdruckventil 29, das in Abhängigkeit von dem Signal des Atemgasdrucksensors 26 geöffnet werden kann, dient dazu, einen Überdruck, der ei- nen festgelegten Grenzwert übersteigt, in Störungsfällen (beispielsweise wenn einer der nachfolgenden Leitungsschläuche abgeknickt oder verstopft ist) rasch abzubauen..
Ein mechanisches Überdruckventil 30 erfüllt im wesentlichen die gleiche Funktion wie das elektrische Überdruckventil 29. Diese Funktion ist aus Sicherheitsgründen doppelt realisiert, wobei das mechanische Ventil 30 auch bei Stromausfall funktioniert.
In dem Patientenzweig 4 ist in üblicher Weise ein Atem- gasbefeuchter 30 angeordnet. Ein gesonderter Atemgasflußsensor ist bei der dargestellten bevorzugten Konstruktion nicht erforderlich. Er kann jedoch fakultativ in dem Pa- tientenzweig 4 angeordnet sein.
In dem Exspirationszweig 3 befindet sich ein Exspirationsventil 33, dessen Konstruktion und Funktion nachfolgend näher erläutert wird. In Strömungsrichtung dahinter ist ein Exspirationsflußsensor 34 vorgesehen, der ebenso wie die Sensoren 17 und 18 als Differentialdruck- Flußsensor mit einem Strömungswiderstand 35 und einem Differentialdrucksensor 36 ausgebildet ist.
Sämtliche elektrische Bauelemente (Sensoren, Druckschalter, Ventile) sind über gestrichelt dargestellte elektrische Leitungen mit einer zentralen Steuerungseinheit 38 verbunden. Abgesehen von den hier beschriebenen Besonderheiten arbeitet sie in üblicher Weise mittels eines Mi- kroprozessors und eines Programms. Eine nähere Beschreibung ihrer Funktion ist deshalb nicht erforderlich.-
Die obere Hälfte von Figur 2 zeigt beispielhaft einen typischen Solldruckverlauf, also die je nach der medizini- sehen. Indikation bei einem bestimmten Krankheitsbild ge-
Figure imgf000011_0001
ten Fläche bewegt werden. Die Bewegungseinrichtung 52 besteht im dargestellten bevorzugten Fall aus einem Plunger 53 und einem elektromagnetischen Antrieb 54. Der elektromagnetische Antrieb 54 wird von einem Permanentmagneten 55 und einer im Betrieb von einem elektrischen Strom durchflossenen Spule 56 gebildet, die als Tauchspule in einem Luftspalt 55a des Magneten 55 positioniert ist. Sie ist über ein Joch 57 starr mit dem Plunger 53 und damit mit dem Ventilelement 49 verbunden. Dadurch, daß der Plunger 53 senkrecht eingebaut ist, kann er auf einfache Weise nahezu reibungsfrei durch zwei Lager 58 und 59 geführt werden. Die Zuführung des elektrischen Stroms zu der Tauchspule 56 erfolgt mechanisch spannungsfrei mit Hilfe nicht dargestellter Leitungen durch den Deckel 60.
Wenn das Ventil durch eine Bewegung des Ventilelementes 49 von dem Ventilsitz 47 weg geöffnet wird, entsteht zwischen dem Dichtrand 51 und dem Ventilsitz 47 ein Ringspalt 61, dessen Höhe dem nachfolgend als Stellweg D be- zeichneten Abstand zwischen dem Ventilsitz 47 und dem
Dichtrand 51 entspricht und dessen Länge von dem Umfang der Schließfläche 50 (im bevorzugten Fall einer kreisrunden Schließfläche also von deren Durchmesser d) bestimmt wird. Durch den Ringspalt 61 kann das Atemgas aus der Kammer 45 in einen die Ventilkämmer 45 ringförmig umgebenden Abluftkanal 62 strömen. Der Abluftkanal 62 ist zu dem elektromagnetischen Antrieb 54 hin mit einer elastischen Membran 63 verschlossen, die vorzugsweise in der Nähe des Plungers 53 mit dem Ventilelement 49 fest ver- bunden (z.B. verschweißt) ist.
In der dargestellten bevorzugten Ausführungsform ist gemeinsam mit dem Exspirationsventil 33 ein Strömüngswider- stand 35 des Exspirationsflußsensors 34 in das gleiche Bauteil integriert. Konkret wird der Strömungswiderstand ω ω t t μ μ in o o o in tr ϊ PJ: -. tQ tj φ Cß D tr CQ <l ? P. < μ- α d rt ii P. rt CQ Pi H α f 01 P. PJ ω
0 p tr μ- 0 li Ω 0 PJ: P) O Φ & d Φ CD μ- P μ- φ φ d Ω Φ μ- Φ Ch d d in r p. Φ tQ CQ CD tr P 3 l μ- r li f rt Φ Pi P P P tr tr 3 φ μ- - P CQ
Φ α. Φ H- μ- rt tQ rt N rf Ω ISI Φ i tQ H Φ rt tQ P. μ- H CQ rt Φ μ- rt μ- Φ d μ- tr 0= μ- μ- N φ "-3 μ- P <! d <; CD P. d
Φ P tQ φ μ- P Φ Φ tQ P tQ ! Φ tQ P P d Φ P Φ l-1 φ p. rt φ P 0 r φ li
& μ- 0 LΛ rt 0 tr Pi Φ 3 μ- Φ CΛ Φ ii tQ P J 3 Ω
Hl Φ P P tu CD P. <; td Φ P μ- 11 i fd PJ Φ f μ- Φ H *=. tr P tr
0 d μ- -- P)= rr μ- o φ P Φ Φ d φ μ- d P φ Ω U5 μ- μ- Pi P> H li P Ω Pi H Φ Φ P rt 3 ii P 3 tQ rt rt μ- α tr Φ TJ P P Φ μ- φ
P. ?r tr Pi Φ Hi « Φ Q tQ d 0 Φ r φ rt 3 μ- Pi 3 P μ-
Φ r tr CQ rt CQ P. μ- 0 tr P) W CD tQ H ? CD d CQ Φ d CQ d P- σi tQ P
H μ- t Φ d Ω Φ φ P ü d d Hi Φ P J P P rt P μ- Φ LΠ Hi d 0 Φ < P tr 1 tr CD tr li CQ J tQ H tr rt tQ tQ φ CQ o= S
P P μ- φ P. tQ CD rt J rf Φ Φ P> <! ω φ X tQ Φ tr d li Φ tQ tr CD P Φ μ- fτj r ii μ- 3 3 μ- P CQ Φ li Φ N cj φ P 3 r
Φ Pi Φ μ- rt CQ P) φ 0 Φ d CQ ! tπ rt μ- φ d Ό P \Ω <! € 3 P Pi μ- J
P Φ P Ω μ- P (Λ CD s 0 σ, Pi Φ rt ^ P ( • μ- 0 - Pi 0 μ- tQ rt tQ D i tr cd CQ ,v μ- Φ rt H > J P φ i ιJ ti 3 fi li CQ Φ 3 P. Φ tQ Φ φ Φ Ω H rt tQ μ- O N Hl P. P. P - P) 3 ? d= N Ω tr Φ ) P CQ
Φ M 3 μ- r tr P> μ- d o σ d d td Φ P. cn r Φ PJ Ω d tr d P. CD μ-
CQ X P φ ii Hl 0 P P LQ μ- H φ 3 Φ w μ- P P ?? tQ Φ P Φ φ rt CQ LQ 3 μ- μ- rf P - tQ tJ CQ Φ Ω rt f - 0 P rt rt P tQ H S & tr
Φ TS rt α Φ Φ Φ CD μ- P> S tΛ tr fτj σ\ P 3 D Φ μ- li μ- P tr &&' ^ Pi tr co \. Φ Φ μ- Hi S tπ CQ Φ (_I. μ- J Pi ) Pi r d σi ü 0 φ rt CQ Φ φ Φ rt 3 μ- P Φ Φ φ Φ < μ> Φ P φ rt μ- J Hi lt rt PJ 3 CD Φ tr P μ- CD ^ CQ D Pi μ- tr μ- 3 Φ Φ Pi P. CQ 3 3 f i-1 rt
• et Hi Φ CD Φ Pi P Φ p. Φ Φ φ P CQ - tr P P Φ 0 CQ O Φ . tQ μ- I-1 3 3 φ <! μ- μ- Ω P CD tr 1 r rf P Ω Ω CQ iχ) CD W o ) Φ
H 0 d tΦ Φ P P. φ Ω φ • φ rt Φ tύ PJ tr μ- tr tr rt M T3 rt μ- P tr
P P CΛ >-3 l£> tQ φ P tr μ- CQ φ P P): r-1 Φ d tr φ P) μ-
CQ CQ' *-— - Φ d 3 rt ω cd P rf μ Φ CQ H CQ Ü Φ μ- Ω P PJ= O tQ J tr Q < μ- μ- P μ- μ- (t Ω φ φ ^ σi rt ) P Φ t tQ ü P. Pi φ Φ d 3 tQ Φ φ h-1 tr μ- 0 tr d ω ω Pi rf CΛ <J φ Φ Φ cπ cn Φ
CD P 3 CQ f H φ ? 3 P) P tr Φ ω d tQ H φ μ, μ» φ. D r
PJ rt P. 3 tr rt CD μ-1 μ- μ- & CQ li tQ 0 TJ μ- ^ 1 Φ μ- li P> .
3 μ- tr φ Φ Φ Φ rt φ 3 φ φ i CQ H P Ω tQ Ω tr ( l tr d= N d= rt j 0= Q CQ li Φ 3 (Λ μ, φ <! tr μ- 0 CD P. tr Φ tr μ- ω CQ tr d tr ö Q Ω Φ Φ ^ P Φ $, ϊ H. P) P. Φ CQ tr Ω Φ P rt P rt Φ Φ ) ra tr t P μ- P Φ ii P- d ii P) li μ- tr n μ- d p. d li li Φ H CD
0 u CQ φ rt Ω r CQ rt CQ P) P) P μ- LΛ φ φ φ CQ P. P d P 0= μ- ω rf S (-1 tr Φ μ- Φ Φ Hl ii tQ μ- μ- ii 3 μ- P. rt Φ tQ P P. 3 Φ P φ
H Φ φ μ- φ Ω CQ P rt tQ CQ φ P. Ω rt H φ μ- li tQ Φ μ- Φ μ- rt rt P tQ Ω CQ 0 tr r Φ tQ 11 μ- tr Φ 0 LΛ Φ. Φ tQ P. P P 3 P Φ
Φ φ CQ d tr 11 Φ> > ] CQ Φ rt φ CQ CQ CQ Φ tQ Φ φ Φ 3 li P Φ N P) lO μ- rt CD iφ CQ μ- Ω tQ Φ 3 K Q P tQ
Φ i Φ tQ P ω d P • Ω μ- Φ Ω 3 CQ ω Ω PJ Ω r 3 P" Φ CD P> $, P) J
CQ Φ rt CD tQ tr P M tr μ- rt tr tr tr Φ 0= I-1 P rf CQ P φ CQ CD
P 3 tr d rf P. N φ S ii P).- >ö N 3 tQ μ- P> Ω P μ- &> φ μ- P) Φ P 0 μ- d P i r μ- P. ii ii μ- d P. tQ φ Pi M tr r d li CD
P CQ i P) P μ- Φ 3- Φ Φ P Pf PJ φ P φ P) μ- ΓΛ PJ rt Φ CQ tr rt
Φ μ> Φ tr P μ- d 3 P P. Φ CΛ Φ CD CQ Ω ii CQ φ μ- K μ- μ,
Pi tr o μ- tr P. P P μ- α r ,v tr P* μ- rt Φ φ J P 0=
Φ li o\° Ω P): φ Pi P. J tQ r tQ Φ P. μ- μ, 3 < Hi Ω ~. EΛJ LΛ 3
H tr P ii φ Φ tr Φ φ w φ CQ PJ Φ φ d= tr Φ rt Φ l CQ CQ Ω Hl P P t
CD rt tr r 1
) ω t to μ μ
171 o in o in o in
tQ Hi CD er P. tQ CQ tQ P. s CD S P. H rf^ r td tr p. <! g CD H _
& μ- μJ td lr1 φ d= rt J-1 μ- φ Φ Ω Φ P) φ TJ μ- Φ Φ vo ^ φ φ j μ- 0 3 0 μ- d o CQ μ- Φ Φ J t a tr Φ Φ P f P tr ii CΛ li H Ω •i CD μ- -1 Φ ii Ω H rt Ω P ii tQ
Φ li 3 Φ o μ-1 P. μ- tr d Φ d φ r rt P. tr Ω H tr • Φ φ μ- rt t-1 PJ <} μ- P) P. Φ Ω rt ^ I-1 μ- P tQ Pi Φ p Φ μ- CD tr Pi μ- tQ • Φ r tQ r 0 φ μ- P tr CD PJ rf P tQ H Φ P P) μ- φ φ rt 3 μ- CD ö Ω CQ rt P μ- ii Φ P CΛ CD φ rt P? 3 μ- φ Φ μ- li Ω CD H Pi tr Φ φ μ- tr φ
- α P. CQ 0 <J Hl . ü 3 Φ H Ω tr tr φ tQ J P) μ- φ μ- μ- φ Ω ϊΛ 0 3 o Ω μ- PJ Φ K ) tr P- Hl J d φ CD H P CD N P
P. Φ M tr Φ H φ P)= - φ φ Hl ii rt d υi Φ P) 0 Hl t i P H — d • ^ - J N tr Ω ISJ ≤ 3 rt Hi ω P ti I-1 rt μ- rt μ- M . Hi CD μ-
ΪΛ> Tj φ CQ d 4 tr in μ- tQ ( ■ Φ - tQ tQ - φ Φ P X Ω o xa P.
H rt ii Ω tQ Φ Ω φ P. d tπ μ- P. Hl Φ Φ H tQ co t i 0= Φ μ-" Ω φ
CQ ) Φ CQ tr rt- p) ≥l tr P μ- P ^ P J (^ φ CD P tr φ w d CQ 3 p- P
Φ P? 3 o li r PJ φ P. CQ o μ- rt P. μ- cn CD μ- tQ d PJ= φ
.rt tQ tr μ- 3 CD φ er CQ P CQ P- 3 Ω H Φ P 3 o φ ii P Λ 3 P > tr μ- Piφ φ Φ H Φ P? P φ P. Φ μ- < tr Φ Φ CQ 0= o μ- J Φ tQ μ- rt
CD o tt) μ- ΓΛ tr μ> PJ rt H r P φ CQ P Φ li μ- tQ P rt μ- Pi rt o Φ rt Ω P. P Hl H r ii PJ Φ f CQ μ- P in P. rt 0= Ω TJ • μ- Ω P. φ 3 tr li φ Ω μ- PJ: Hl P ,w Φ 3 r -j Φ Φ tr μ- PJ 0 tr φ H φ d tQ tr Φ d - P PJ= PJ 3 <! tQ rt Φ Ω P PJ μ- CQ P rt rt Ω td P H μ- P J
Φ Ω Ω rt 03 CQ li H M Φ H tr ^-^ φ CD CQ tr P P. CQ μ- td Ps tr CQ tQ • S P> rt 0= Ω Φ φ CQ φ td ii μ- CD cn μ- <! 0 α μ- φ P. li Φ P) φ er K Φ d P. CΛ li ii M IÖ μ- r Ω r φ μ-1 li co H Φ f
CQ *ü H in φ 0 P rf ti Φ 0= Φ d Φ P Φ tr 3 Φ P d tr r d rt li ESI D P? ϊΛ d μ- φ d (Λ o= 3 H ?r r P 0 er μ- rt Ω φ 3 Ω
Φ o d PJ Ω CΛ tQ μ- Ω 0 Pi Φ Hi φ Φ rt P) p. 13 PJ P μ- Pi pr ii 0= P> Ps1 tr CD P 3 N Φ Φ M P? Φ Hl ii P 1 d tr Φ rt H φ φ Φ μ- tQ d CQ μ- P N d li H. φ li P. P rt tπ 0 μ-< Φ li μ- — 3 ^ μ- tQ 00 μ-
3 P φ φ "* d P. 3 φ d er, 3 P> <! 3 ω P φ μ- o P
Φ tQ tr P) <; tQ tQ Φ P> 3 o CQ 3 P φ. — - J tQ 0 ö PJ I-" co l CQ P Ω o Q ii μ- P 0 rt Φ 3 0= tQ. Ω tQ tD tQ φ π μ- μ- d d rt tr o P- φ P. 3 P. l-j CQ CQ tQ tr O CD d P N 3 φ CQ <! co Φ td CD Φ
P Φ W φ rt 3 r μ- μ- d P- ^ P Φ σ d Φ N tQ P) Φ J li rt TJ 3 li M cd li Φ Φ J CQ O μ- Ω μ- 0 H μ- P. rt Φ tQ P d φ rt fi rt Tf J α φ Φ Φ μ- h-1 rt - tr Ω tr Φ rt d 1 μ- £ rf CQ P Φ d Φ d ii tQ td td μ- H ii H-1 rf in tr CQ
1 CΛ μ- Ω ? P. co μ- Φ μ- Φ 3 H 3 P 0 d ^^ X μ- ti- P φ m tr Φ Φ CQ rt Hi φ ? Φ φ Ω H P 0 H Hl CD 3 tQ r rt co CD
3 Hi φ μ- φ ) ) P CD ≥J rt P P CQ tr ? P ii P) μ- d Φ o •ö μ- P Ω μ- Hl pr PJ= rf ^-^. P φ rt Ω φ Φ d Ω P. er P P μ-
Cd P tr rt rt Ω Φ CQ <! = Φ CQ P ii P μ- Λ tr φ Φ tQ 3 H
Φ Pi Q CD S 0 er Φ Φ tr P π Ω Pi Φ Ω rt ii CQ er P) ii d rt ? CQ t ω 0 Φ μ- μ- φ Φ K tr J P i tr <! CD CQ P. d PJ r
Φ P Φ μ- μ- tr rt Ω P J CD •i (- & DQ N φ Φ 0 t rt φ φ Hi μ- μ- tQ φ P p Φ Φ 0 P μ- PJ ii
Ω tr in d rt PJ μ- rt £ li P li — 0
Ω μ- D P- μ- μ- li rf N o CQ 3 P- Hi φ ü Ω Φ - H P 0= P tr tr S P Ö μ-1 N d 11 rt CΛ μ- Φ H td cn Pi i PJ td CQ Φ CD
PJ Φ Φ Hi tr d tQ φ P. d • φ φ 3 rt PJ μ- o H d μ- N
< rt tQ f Φ & P) tQ Φ tr P φ Ω r μ- Φ d CQ CQ Hl P P £
0 φ H rt er 3 Hl tr J rt H. φ T K Φ CD Ω rt rt μ-1 3 i μ- tQ N Φ
P l_J. P Φ P φ rt PJ 1 μ- 3 tr Φ Φ \. 0= Φ H P d μ- φ' μ- CQ
CD £ d rt Ω — ' Φ φ in r μ- μ- Φ 3 tQ fi o p. 3 CD tQ
Φ P. P *ö o CQ Φ r Φ φ ii P ( • P CD μ- 1 d o= rt r 0 N li P d P. P P 1 μ- PJ rf Pi N φ P TJ P tQ Φ ÜJ
3 Ω d O P μ- μ- P d Φ Φ d P> tQ 1
P> tr 1 1 1 1 φ 1 CD CQ CQ H 1 1 μ-
0 3
10 i t μ μ o o in o in
TJ CQ pf _. P. - CD < s; rt « tπ er ta rt H PJ P. P. P) PJ P. Φ ω CQ <n ö in f rt φ ό μ- ö 0 φ μ- μ- Φ 0 σs φ μ- li PJ P φ Φ P P): P μ- ^ Ω μ- fi
PJ 0= tr ^ φ 3 li f P. Ω μ- 3 P P 0 rt li fi CQ tr CD Φ N d tr tQ d T=
Pf li li fi tQ CQ φ tr Tj P. Φ l-1 μ- Pi CQ Φ H rt Φ Φ d Ω 3 rt Φ rt - ö 1 d 0 ii rt Φ Φ PJ P. 0 Φ rt P. CQ rt φ d= d Φ P ii ?r μ- P φ 1 μ- r P fi CQ • P H φ cd Φ P 3 J d rt d er tQ Φ r
CQ P. H N 0 tQ tQ rt > CQ μ- ii Φ li CQ P li Φ φ Φ rt in ω n CQ μ-
Ω φ Φ Pi rt CD d P) b lO PJ P CD CQ < 3: P. Ω d Pi K li σi Ω CQ tr ?ö μ- φ Φ CQ P P d - rt - P. 0 Φ Φ Φ tr Φ J P •Ö tr ISJ 3
Ω μ- rt μ- •ö IQ P. μ- μ- P -J H Λ Xil li CQ Φ f tr PJ Φ o= tsJ J Φ Ω -j M ) CD p. in 0 P. tQ P. o CQ p. r μ- O Φ μ- tQ o d =3 tr < in φ P CQ ~j μ- ω P PJ μ- φ rt μ- -j μ- 3 • H P tQ CQ rt iQ I-1
Hl μ- r 0 P P Vl Φ ^ rt H tQ P)= Pi ι > Φ 3 μ- P Φ li O d rt μ- "?=
Ω d P) d PJ m P. PJ tr φ μ, φ μ- rt P J P P Ω 3
≥l tr P t-> er Pi P P tQ φ in φ CQ Φ Hi Ps- ii N CQ ü P. 3 P. tQ P. tr d rt tQ co Hi φ tQ P Φ 3 cn li μ- Φ μ- . d= φ CQ d *ü P. H φ 2! 3 Φ ** μ- P
CD rt ti d CQ φ P rt tr ii rt CQ d σ H μ- tQ ti φ μ- O
Pf Pi P>= μ- ,~. P Ω t i d Pi n PJ P): P. Φ CD P. CQ Ω
H d P Φ 3 N IQ tr S P d ) CQ P. rt ! P rt Φ td tu Φ CQ μ- 3 rt tr
ESI J fi i CΛ d • J Φ i H d rf Φ • ω Pi N d μ- H f rt tQ φ Φ • d Hl Ω μ- φ H cd Pi H Ω Ω Hl Φ li H Hl CQ rt PJ CD Φ Φ CQ φ f rt tr tQ P CQ • φ rt Pf in tr d J ^ μ- - X rt d Φ N Φ μ- d= Pi 3 μ. Φ -j Φ Φ P. P μ- Ω μ- Ω μ- p) Φ μ- d P P
Ω Pf P. J φ φ H rt μ- Pi μ- ti PJ fl tr φ H J CQ P li tQ ii rf Φ
Pf O μ- er μ- in CQ " CD <! J P d f Φ P. CΛ d= P. rt P tQ 3 φ • H Ff »ö rt φ CQ Hl P tQ μ- d= Φ P CD tr Φ CQ μ- tQ
Φ TJ P Φ < d P) li j CQ Φ P PJ tr P P. 0 PJ I W rt rt Ω d
Hl Φ CQ ö P. P H- P 3 d Ω Ω CD Φ er Φ P. Φ rt H d Φ tr rt d= P <τ3 J d 3 φ ) li φ tr P. rt P tQ li φ P 3 H μ- d Φ Φ tr CD d P pf 0 J Pi ti CQ £ Φ φ Φ Φ s μ- co Φ CQ CD φ P
1 μ- μj P rt Pi P in φ PJ J μ- fi M [ tQ J CQ P. rt μ- μ- rt ^ CQ rt Φ Φ μ- d σi 3 Ω Ω 2! I-1 p li Ω rt Φ Ω P Φ • d td rt
K Hi o μ- M tr tr φ CQ rt P) μ- tr H H H tr φ μ- P P)
S rt in l-1 P PJ Φ . — . Φ φ rt rt μ- rt Φ Hi rt 0 o P rt td tQ Φ tr
Φ 0 μ- CQ rt tQ N μ- Φ CD 11 P O Hi 3 td ISJ φ φ μ- 3 μ- li d • φ CQ μ- rt • P P P. Φ 0 tQ φ Φ μ- F P P Pi φ
P. P CΛ rt 0 . φ ISJ φ 3 CQ Φ P ö 3 rt P φ 3 Φ P μ-
Φ P. α rt H P ' td d ^ li Φ CD Ω μ- φ μ- H 3 μ- 0 S CQ rt co
P J O td . μ- H μ- rt tr P d li rt μ- 0= ISJ co Pi μ- Φ μ-
• P. Pi φ 3 Pf φ 3 P. PJ r P P>= PJ tQ P rt Φ tQ o rt d ?? CQ Φ φ d μ- μ- H φ Hl φ Φ H PJ Pi CQ Φ r d li rt Φ H
H. H P $. μ- ω < li rt :> p rt P iτj CQ μ- f P μ- 0 μ. μ- d
Ω PJ: P CQ Φ ^ φ Φ Φ d tQ d= P) co CQ Ω K tQ Φ Pf 0 P P
? tr CQ tr tQ φ li CQ μ- tQ H P tr P μ- P- N CD li 0 3 Φ tQ
Φ rt li rt tr tQ ^ ii M Φ μ- tQ Pi Φ P Φ Ω φ 1 rt rt P Hi f
CD Pf ü φ li d Pϊ μ- Ps" P Φ H d μ- tr P CQ f Φ rt M Pi rt PJ O P P. tr φ μ-1 d Ω rt er CQ P P Φ μ- ) K d Φ φ
P. P 3 Pi Φ Pf 0= μ- Φ P tr H Pi Φ Φ tQ φ μ, CQ tQ P CQ 0 CΛ μ co li P 1 tr Ω tQ Φ μ- Φ CQ 3; μ- CD CQ tr Ω P CD μ- Φ φ d μ- P. φ Φ t in P co fi rt μ- P PJ Φ p- P) μ- tQ H1 CQ Pf j
Ω P. P Φ d= μ- ii σi φ Ω Φ Ps1 Φ tr s μ- 11 H CQ P Φ rt td
Pf μ- f tr P φ N 11 cd tr CQ tr ti P Hi φ rt μ- rt PJ li μ- fi td φ d Φ φ d Φ 3 P> Φ fö rt 0 PJ CΛ rt tr 0 H P μ- ^
3 μ, P < 1 μ- 0= d d p o ≤ ≤ rt Φ ii Φ 1 1 tQ φ P tQ 1 H P 0 μ- μ- Φ 1 o p.
Φ li φ Φ P φ μ» P Φ
1 1 1 1 P- ISJ H

Claims

Ansprüche
1. Beatmungsgerät mit einem Atemgasleitungssystem (1) , das einen Inspirati- onszweig (2) zur Versorgung des Patienten (6) mit
Frischgas, einen Exspirationszweig (3) zur Ableitung des von dem Patienten (6) ausgeatmeten verbrauchten Atemgases und einen Patientenzweig (4) umfaßt, der an einer zwischen dem Inspirationszweig (2) und dem Ex- spirationszweig (3) liegenden Abzweigung (5) angeschlossen ist, und einer elektronischen Steuerungseinheit (38) , wobei der Inspirationszweig (2) eine Gasflußsteuerung (10) aufweist, mit der die Menge des zu der Abzweigung (5) strömenden Frischgases steuerbar ist, der Exspirationszweig (3) ein Exspirationsventil (33) aufweist, durch das Atemgas aus dem Exspirationszweig abströmen kann und dessen Öffnungsquerschnitt im Be- trieb des Beatmungsgerätes verstellt wird, um den
Atemgasdruckverlauf an einen vorgegebenen Solldruckverlauf anzunähern, das Exspirationsventil (33) ein Ventilelement (49) aufweist, dessen eine Schließfläche (50) umschließen- der Dichtrand (51) in der Schließstellung des Ventils abdichtend gegen einen ringförmigen Ventilsitz (47) gedrückt wird, das Ventilelement (49) mittels einer Bewegungseinrichtung in einem Betriebsbewegungsbereich (43) bewegbar und in dem gesamten Betriebsbewegungsbereich (43) mit einer mittels der Steuerungseinheit (38) elektrisch einstellbaren Schließkraft (F) in Richtung auf den Ventilsitz belastbar ist.
2. Beatmungsgerät nach Anspruch 1, bei welchem die Schließkraft (F) des Ventilelementes (49) praktisch verzögerungsfrei einstellbar ist.
3. Beatmungsgerät nach einem der Ansprüche 1 oder 2, bei welchem die Schließkraft (F) mindestens in dem ersten sich an die Schließstellung anschließenden Viertel, vorzugsweise mindestens in der ersten sich an die
Schlißestellung anschließenden Hälfte des Betriebsbewegungsbereiches (43) im wesentlichen unabhängig von der Stellung des Ventilelementes (49) ist.
4. Beatmungsgerät nach einem der vorhergehenden Ansprüche, bei welchem die Schließfläche (50) größer als 1 cm2, bevorzugt größer als 3 cm2, besonders bevorzugt größer als 5 cm2 ist.
5. Beatmungsgerät nach einem der vorhergehenden Ansprüche, bei welchem der Betriebsbewegungsbereich (43) größer als 0,5 mm, bevorzugt größer als 1 mm ist.
6. Beatmungsgerät nach einem der vorhergehenden Ansprü- ehe, bei welchem die Schließkraft (F) durch einen elektromagnetischen Antrieb (54) mit einer von einem Strom durchflossenen Spule (56) und einem Magneten (55) erzeugt wird und der durch die Spule (56) fließende Strom von der elektronischen Steuerungseinheit' (38) gesteuert wird.
7. Beatmungsgerät nach Anspruch 6, bei welchem der elektromagnetische Antrieb (54) eine in einem Luftspalt (55a) des Magneten (55) bewegliche Tauchspule auf- weist.
8. Beatmungsgerät nach einem der vorhergehenden Ansprüche, bei welchem das Ventilelement (49) mittels einer senkrecht eingebauten Betätigungsstange (53) bewegt wird.
9-. Beatmungsgerät nach einem der Ansprüche 6 bis 8, bei welchem- die Stromstärke in der Spule (56) digital gesteuert wird. ■
10. Beatmungsgerät nach einem der Ansprüche 8 oder 9, bei welchem die Stromrichtung in der Spule (56) zur Kompensation des Eigengewichtes des Ventilelementes und der Betätigungsstange umkehrbar ist.
11. Beatmungsgerät nach einem der vorhergehenden Ansprüche, bei welchem in dem Exspirationszweig (3) in Strömungsrichtung hinter dem Exspirationsventil (33) ein Exspirationsflußsensor (34) zur Erzeugung eines dem Gasfluß in dem Exspirationszweig (3) entsprechenden elektrischen Exspirationsflußsignals angeordnet und an die Steuerungseinheit (38) angeschlossen ist.
12. Beatmungsgerät nach Anspruch 11, bei welchem der Ex- spiratioήsflußsensor (34) ein Differentialdruck- Flußsensor ist .
13. Beatmungsgerät nach einem der vorhergehenden Ansprüche, bei welchem die Gasflußsteuerung (10) des Inspi- rationszweiges (2) als Mischeinheit (11) zur Mischung von Sauerstoff und Luft ausgebildet ist, wobei die Mischeinheit (11) eine Luftleitung (12) und eine Sauerstoffleitung (13) einschließt, die an einer Mischstelle (25) zusammengeführt sind, an der Luftleitung (12) ein Luf flußsensor (19) zur Erzeugung eines dem Luftfluß entsprechenden elektrischen Luftflußsignals und ein elektrisch steuerbares Luftventil (17a, 17b) zur Einstellung des Luftflußes und an der Sauer-' Stoffleitung (13) ein Sauerstoffflußsensor (18) zur Erzeugung eines dem Sauerstofffluß entsprechenden elektrischen Sauerstoffflußsignals und ein Sauer- stoffventil (16a, 16b) zur Einstellung des Sauerstoff- flußes angeordnet sind und der Luftflußsensor (19) , der Sauerstoffflußsensor (18) , das Luftventil (17a, 17b) und das Sauerstoffventil (16a, 16b) an die elektronische Steuerungseinheit (38) angeschlossen sind.
PCT/DE2002/001000 2001-03-23 2002-03-15 Beatmungsgerät WO2002076544A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10114628.0 2001-03-23
DE2001114628 DE10114628A1 (de) 2001-03-23 2001-03-23 Beatmungsgerät

Publications (1)

Publication Number Publication Date
WO2002076544A1 true WO2002076544A1 (de) 2002-10-03

Family

ID=7678957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/001000 WO2002076544A1 (de) 2001-03-23 2002-03-15 Beatmungsgerät

Country Status (2)

Country Link
DE (1) DE10114628A1 (de)
WO (1) WO2002076544A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104815379A (zh) * 2015-03-05 2015-08-05 浙江医药高等专科学校 一种滑片式呼吸机气体压力流量控制阀及其工作原理
WO2018210956A1 (de) 2017-05-18 2018-11-22 Hamilton Medical Ag Exspirationsventil für eine beatmungsvorrichtung mit geräuschminderndem strömungswiderstand
WO2018210958A1 (de) 2017-05-17 2018-11-22 Hamilton Medical Ag Exspirationsventilanordnung für eine beatmungsvorrichtung mit vorrichtung zur aufnahme eines drucksensors
US11383061B2 (en) * 2016-10-24 2022-07-12 Hamilton Medical Ag Exhalation valve for a ventilator apparatus with a valve configuration for reducing noise emission

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004019122A1 (de) * 2004-04-16 2005-11-10 Universitätsklinikum Freiburg Verfahren zur Steuerung eines Beatmungsgerätes und Anlage hierfür
DE102004039711B3 (de) 2004-08-17 2006-05-11 Dräger Medical AG & Co. KG Verfahren zur automatischen Aufnahme von Druck-Volumen-Kurven bei der künstlichen Beatmung und Vorrichtung zur Durchführung des Verfahrens
EP2440277B1 (de) 2009-06-09 2019-09-04 Resmed Paris SAS Atmungsunterstützungsvorrichtung mit linear betätigtem gasregulierungsventil
DE102014006510B3 (de) * 2014-05-02 2015-10-29 Festo Ag & Co. Kg Ventilanordnung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265594A (en) * 1990-10-30 1993-11-30 Siemens Aktiengesellschaft Apparatus for regulating the flow-through amount of a flowing medium
US5339807A (en) * 1992-09-22 1994-08-23 Puritan-Bennett Corporation Exhalation valve stabilizing apparatus
WO1996011717A1 (en) * 1994-10-14 1996-04-25 Bird Products Corporation Portable drag compressor powered mechanical ventilator
EP0860175A2 (de) * 1997-02-06 1998-08-26 Instrumentarium Oy Beatmungsgerät für verstärkte Beatmung sowie Ventil
WO1998041274A1 (en) * 1997-03-14 1998-09-24 Nellcor Puritan Bennett Incorporated Exhalation valve for a patient ventilator
US5927275A (en) * 1997-03-20 1999-07-27 Dragerwerk Ag Valve for a respirator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265594A (en) * 1990-10-30 1993-11-30 Siemens Aktiengesellschaft Apparatus for regulating the flow-through amount of a flowing medium
US5339807A (en) * 1992-09-22 1994-08-23 Puritan-Bennett Corporation Exhalation valve stabilizing apparatus
WO1996011717A1 (en) * 1994-10-14 1996-04-25 Bird Products Corporation Portable drag compressor powered mechanical ventilator
EP0860175A2 (de) * 1997-02-06 1998-08-26 Instrumentarium Oy Beatmungsgerät für verstärkte Beatmung sowie Ventil
WO1998041274A1 (en) * 1997-03-14 1998-09-24 Nellcor Puritan Bennett Incorporated Exhalation valve for a patient ventilator
US5927275A (en) * 1997-03-20 1999-07-27 Dragerwerk Ag Valve for a respirator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104815379A (zh) * 2015-03-05 2015-08-05 浙江医药高等专科学校 一种滑片式呼吸机气体压力流量控制阀及其工作原理
CN104815379B (zh) * 2015-03-05 2017-10-10 浙江医药高等专科学校 一种滑片式呼吸机气体压力流量控制阀及其工作原理
US11383061B2 (en) * 2016-10-24 2022-07-12 Hamilton Medical Ag Exhalation valve for a ventilator apparatus with a valve configuration for reducing noise emission
WO2018210958A1 (de) 2017-05-17 2018-11-22 Hamilton Medical Ag Exspirationsventilanordnung für eine beatmungsvorrichtung mit vorrichtung zur aufnahme eines drucksensors
DE102017208349A1 (de) 2017-05-17 2018-11-22 Hamilton Medical Ag Exspirationsventilanordnung für eine Beatmungsvorrichtung mit Vorrichtung zur Aufnahme eines Drucksensors
WO2018210956A1 (de) 2017-05-18 2018-11-22 Hamilton Medical Ag Exspirationsventil für eine beatmungsvorrichtung mit geräuschminderndem strömungswiderstand
DE102017208421A1 (de) 2017-05-18 2018-11-22 Hamilton Medical Ag Exspirationsventil für eine Beatmungsvorrichtung mit geräuschminderndem Strömungswiderstand
CN110650766A (zh) * 2017-05-18 2020-01-03 汉密尔顿医疗股份公司 用于呼吸设备的具有减少噪音的流动阻力的呼气阀
US11617851B2 (en) 2017-05-18 2023-04-04 Hamilton Medical Ag Exhalation valve for a ventilator apparatus with noise-reducing flow resistance

Also Published As

Publication number Publication date
DE10114628A1 (de) 2002-09-26

Similar Documents

Publication Publication Date Title
DE69935369T2 (de) Beatmungsgerät für die Überwachung eines Atmungsventil
EP0483401B1 (de) Anordnung bzw. Ventilator zur Regelung der Durchflussmenge eines fliessenden Mediums, insbesondere eines Gases
DE1814300C3 (de) Membranventil,insbesondere fuer Atmungsgeraete
DE3023095A1 (de) Lungenventilator
EP3705152B1 (de) Beatmungsgerät mit mischerkammer und mischerkammer für ein beatmungsgerät
EP0282758B1 (de) Ventilanordnung
EP0714478A1 (de) Drosselklappenvorrichtung
WO2002076544A1 (de) Beatmungsgerät
CH704346B1 (de) Steuerventil für Beatmungsgeräte.
DE60020383T2 (de) Zuführventil und membran für eine pneumatisch arbeitende gasbedarfsvorrichtung
EP0923959B1 (de) Ventil zum Regeln eines Gasflusses
DE102006030668B3 (de) Cockpitsauerstoffmaske
EP3624883B1 (de) Exspirationsventil für eine beatmungsvorrichtung mit geräuschminderndem strömungswiderstand
EP2805748A1 (de) Atemmaske mit Notatemventil
EP1436046B1 (de) Lungenautomat für pressluftatemgeräte
DE102017005805A1 (de) Beatmungsgerät und Verfahren
EP0385250A2 (de) Verfahren und Vorrichtung zur Zuführung von Atemgas
EP2540334B1 (de) Beatmungssystem
EP3366123B1 (de) Ansaugvorrichtung zur nutzung von bienenstockluft
DE10320454B4 (de) Vorrichtung zur Steuerung einer Gasströmung
DE102004042388B3 (de) Sauerstoffversorgungseinrichtung
DE10126821C1 (de) Ventilanordnung zur Regelung der Durchflussrate eines Gases
EP1676593B1 (de) Vorrichtung zur Beatmung sowie Verfahren zur Steuerung eines Beatmungsgerätes
EP1440242B1 (de) Rauchschutz für räume
DE4136560C2 (de)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP