WO2002073783A2 - Circuit d'aide a la commutation d'un convertisseur a decoupage - Google Patents

Circuit d'aide a la commutation d'un convertisseur a decoupage Download PDF

Info

Publication number
WO2002073783A2
WO2002073783A2 PCT/FR2002/000842 FR0200842W WO02073783A2 WO 2002073783 A2 WO2002073783 A2 WO 2002073783A2 FR 0200842 W FR0200842 W FR 0200842W WO 02073783 A2 WO02073783 A2 WO 02073783A2
Authority
WO
WIPO (PCT)
Prior art keywords
switch
diode
circuit
switching
inductive element
Prior art date
Application number
PCT/FR2002/000842
Other languages
English (en)
Other versions
WO2002073783A3 (fr
Inventor
Benoît Peron
Original Assignee
Stmicroelectronics S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stmicroelectronics S.A. filed Critical Stmicroelectronics S.A.
Priority to US10/469,629 priority Critical patent/US6987379B2/en
Priority to EP02714290A priority patent/EP1368884A2/fr
Publication of WO2002073783A2 publication Critical patent/WO2002073783A2/fr
Publication of WO2002073783A3 publication Critical patent/WO2002073783A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to the field of so-called switching power converters.
  • Such converters use an inductive element, associated with a power switch and a freewheeling diode, to carry out an energy conversion and a correction of the power factor, generally from a DC input voltage.
  • Voltage lowering converters (BUCK), voltage boosters (BOOST) and mixed converters (lowerers-elevators) are known.
  • the invention relates more particularly to a circuit for assisting in the switching of the power switch of a switching converter.
  • FIG. 1 represents the simplified diagram of a conventional step-up converter 1.
  • a converter has an inductance LO in series with a freewheeling diode DL between two positive input 2 and output 3 terminals of the converter, the cathode of the diode DL being connected to terminal 3.
  • a power switch K connects the midpoint 4 of this association in series with a terminal 5 of application of a negative or reference potential (generally, the ground) common to the input and to the output of the converter.
  • a source 6 of direct supply voltage supplies a voltage V E between terminals 2 and 5.
  • a storage capacitor C0 generally connects terminals 3 and 5 and delivers a voltage V s to a load Q.
  • the load Q has been represented in FIG. 1 by a dotted line integrating the capacitor C0 which may or may not be part of the load.
  • Switch K is controlled by a circuit 7 (CTRL), for example, in pulse width modulation (PWM).
  • CTRL pulse width modulation
  • FIG. 2 represents the simplified electric diagram of a step-down converter l '. The same constituents are found there as in FIG. 1. However, it is here the switch K which is connected in series with the inductance LO between the positive input 2 and output 3 terminals.
  • the freewheeling diode DL connects, to ground, the midpoint 4 'between the switch K and the inductance LO, its cathode being connected to point 4'.
  • the switch K can also be provided between the negative terminal of the source 6 and the anode of the diode DL.
  • the operating principle is the same. Energy is stored in the inductance LO during the closing periods of the switch K. During the periods when the switch K is open, this energy is restored to the capacitor C0, the freewheeling diode DL being used to loop back the circuit .
  • the control circuit 7 causes the closure of the switch K.
  • the current I L in the inductance which corresponds to the sum of the currents I DL and I ⁇ is a constant. Consequently, the current which, during the switching, increases in the switch results in a decrease with reverse slope of the current in the diode DL.
  • the current in the diode DL becomes zero and the current in the switch reaches the level I L f. From this moment, the phenomenon of charges recovered from the DL diode occurs. This perfectly known phenomenon results in an inversion of the current in the diode to a level 1 ⁇ corresponding to the maximum recovery current of the diode. This current I ⁇ m is reached at an instant t3 from which the current in the diode again tends towards zero which it reaches at an instant t4. As the current in the LO inductor is, during switching, substantially constant, the negative current peak on the diode side results in an overcurrent in the switch K whose maximum value corresponds to the current I L f plus the value 1 ⁇ .
  • the decrease in voltage occurs in practice from 1 instant t3, that is to say from the inversion of the slope of the current in the DL diode.
  • the voltage across the diode is zero between times t2 and t3 corresponding to the first recovery phase ta.
  • the voltage V s decreases from V 0 to a zero voltage.
  • the voltage supplied to capacitor C0 We consider here the voltage supplied to capacitor C0. Indeed, the presence of the capacitor leads in practice to the fact that the output voltage V s remains approximately stable.
  • the slope between the instants tl and t3 of decrease of the current in the diode DL depends on the closing speed of the switch therefore on its di / dt on closing.
  • the lower the di / dt, the longer the recovery time at blocking (trr t4-t2).
  • the phenomenon of charges recovered from the diode is particularly troublesome. Indeed, for a step-up converter, the switch then sees at its terminals, between the instants t2 and t3, the output voltage V s . In the case of a step-down converter, the voltage seen by the switch at its terminals corresponds to the voltage of the generator 6. In all cases, this is the highest voltage between the voltages V E and V s . There are then high losses in the switch K. In FIGS. 3A to 3C, the loss periods have been symbolized by hatching on the different timing diagrams.
  • a first known solution for reducing this drawback consists in using diodes without recovered charges, for example, Schottky or SIC type diodes.
  • a first drawback of this solution is that the diodes without recovered charges are often limited to a hundred volts of voltage withstand. This solution is therefore not applicable to converters operating at voltages of several hundred volts, which is in practice common in power electronics. Several diodes must then be provided in series to ensure the voltage withstand. Another drawback of this solution is that, if it reduces the losses linked to the recovered charges (times t2 to t4), the most significant losses linked to the closing of the switch alone are not avoided. Using the example of FIGS. 3A to 3C, the use of a diode without charges recovered leads to a cancellation of the voltage V s from 1 instant t2. There therefore remain the losses linked to the areas between the instants tl and t2.
  • diodes without recovered charges are particularly expensive compared to PN diodes.
  • the cost ratio is greater than
  • FIG. 4 represents a classic example of such an assistance circuit, applied to a step-up converter as shown in FIG. 1.
  • FIG. 4 shows all of the elements of FIG. 1 to which a circuit 8 of assistance in switching the switch K.
  • This circuit consists of an inductance L, associated in parallel with a resistor R and a diode D, between point 4 and the switch K.
  • the role of the inductance L is to control the di / dt of the switch. By decreasing the di / dt, the amplitude 1 ⁇ is decreased.
  • a problem which arises is that one is obliged to provide the resistor R to evacuate a reverse overvoltage in the inductor L.
  • the voltage across 1 inductance L takes the value of the output voltage V s .
  • the same losses occur at the opening of the transistor. These are resistive losses which are all the more important the higher the di / dt.
  • the dissipation element R is replaced by a capacitor, a Zener diode, etc.
  • this second solution has the same drawbacks as the use of a diode without charges recovered.
  • a third known solution (not shown) consists of a switching assistance circuit using transient switching resonance. Such a circuit uses, like the circuit of FIG. 4, an additional inductance. However, to avoid the problems of resistive losses, use is made of a second switch, the control of which is out of synchronization with that of switch K.
  • the invention more particularly aims to propose a switching assistance circuit which minimizes the losses linked to the closing of a power switch.
  • the invention also aims to propose a solution that does not require an additional switch in a poorly dissipative circuit.
  • the invention also aims to propose a particularly simple and inexpensive solution.
  • the invention also aims to propose a solution which is compatible with the use of charge-charged diodes (PN diodes).
  • the invention also aims to preserve the control of the di / dt when the power transistor is closed.
  • the present invention provides a circuit for assisting the switching of a switching converter which comprises a first inductive energy storage element in series with a freewheeling diode and a switch, and a second inductive element for controlling the di / dt when the switch is closed, comprising: a magnetic circuit, a main winding of which is formed, at least partially, by the first inductive element; means for discharging the second inductive element on opening and closing of the switch; and means for transferring the energy corresponding to the closure to said main winding.
  • said discharge means comprise: a first circuit comprising a first switching diode; and a second circuit comprising a first secondary winding of the magnetic circuit.
  • said transfer means comprise the first secondary winding of the magnetic circuit and a second switching diode.
  • the second discharge circuit comprises the second inductive element in series with the first secondary winding, the second switching diode and the switch.
  • the switching assistance circuit further comprises a second secondary winding of the magnetic circuit in series with the freewheeling diode.
  • the secondary windings have the same number of turns. According to an embodiment of the present invention, the number of turns of the main winding is greater than the number of turns of the secondary windings.
  • the invention also provides a type switching converter comprising a first inductive energy storage element in series with a freewheeling diode and a capacitive type storage element, and a second inductive di / dt control element to the closing of a switch for cutting a supply voltage, comprising a switching assistance circuit.
  • the converter is of the step-up voltage type, the first inductive element forming the main winding of the magnetic circuit being in series with the second inductive element and the switch between two application terminals of the supply voltage.
  • the converter is of the step-down type, the switch being in series with, inter alia, the second inductive element and the freewheeling diode, between two terminals for applying the voltage power.
  • FIG. 5 represents an embodiment of a switching assistance circuit according to the present invention, applied to a step-up converter
  • Figures 6A, 6B, 6C, 6D, 6E, 6F and 6G illustrate, in the form of timing diagrams, the operation of the circuit of Figure 5
  • FIGS. 7A, 7B, 7C, 7D, 7E and 7F represent the equivalent electrical diagrams of the circuit of FIG. 5 at the different switching phases
  • FIG. 8 represents an embodiment of a switching assistance circuit according to the present invention, applied to a step-down converter.
  • a feature of the present invention is to provide a magnetic circuit for organizing the discharge of a control inductor of the di / dt, in particular, when the power switch of a switching converter is closed.
  • Another characteristic of the present invention is to use this magnetic circuit to temporarily store the energy usually lost at the switching of the power switch and to recover this energy in the converter for the benefit of the load.
  • Another characteristic of the invention is to use the inductive element of the power factor correction circuit of the switching converter as an element of the magnetic circuit.
  • FIG. 5 represents the electrical diagram of a first embodiment of a voltage step-up converter, equipped with a switching assistance circuit according to the invention.
  • the power converter 10 includes a switch K controlled by a circuit (not shown), for example, a control circuit by pulse width modulation (PWM).
  • An energy storage inductor L0 is connected, by a first terminal, to a positive terminal 2 for applying an input voltage V E supplied by a source 6 (for example, continuous).
  • the switch K is in series with an inductor L for controlling the di / dt, connected to the second terminal 4 of the inductor L0.
  • the other terminal of the switch K is connected to a reference terminal 5 (generally, ground).
  • a freewheeling diode DL is placed between point 4 and a positive terminal 3 of the converter output.
  • This positive terminal is connected to a first electrode of a storage capacitor C0 (if necessary forming part of the load Q to be supplied) at the terminals of which the output voltage V s is present .
  • the other terminal of capacitor C0 is connected to ground and the anode of diode DL is on terminal 3.
  • the LO inductor is part of a magnetic circuit 11 of which it constitutes the main winding.
  • This magnetic circuit 11 comprises two secondary windings L1 and L2 having numbers of turns NI and N2 respectively less than the number NO of turns of the inductance LO.
  • a first winding L1 of the magnetic circuit 11 is connected in series with the diode DL between the terminals 3 and 4. In the example of FIG. 5, this inductance has been shown between point 4 and the anode of the diode DL. It can also be placed between the cathode of the DL diode and terminal 3, the anode of the DL diode then being directly connected to point 4.
  • a second winding L2 connects point 4 to terminal 5 by being associated in series with a diode D2, the anode of the diode D2 being directed towards the ground 5.
  • the diode D2 can be, contrary to what is represented, connected to point 4.
  • a diode Dl connects, at terminal 3, point 12 between inductance L and switch K, the cathode of diode Dl being connected to point 12.
  • the role of the winding Ll is, at the opening of the switch K, to impose a negative voltage across the terminals of the inductor L, so as to allow it to transfer the energy it contains to the capacitor C0 .
  • the diode D1 is then forward biased.
  • the role of the winding L2, when the switch K is closed, is to impose a negative voltage across the inductor L, in order to transfer the energy it contains in the winding L2 of the magnetic circuit . This energy is recovered by the winding L0 which returns it to the capacitor
  • FIGS. 6A to 6G represent, in the form of timing diagrams without respect for scale, an example of the switching cycle of switch K.
  • FIGS. 7A to 7F represent the equivalent diagrams of the circuit of FIG. 5 at the different switching phases.
  • FIG. 6A represents the voltage V DL across the terminals of the freewheeling diode DL.
  • FIG. 6B represents the current I DL in the diode DL.
  • FIG. 6C represents the voltage V ⁇ across the terminals of the switch 4.
  • FIG. 6D represents the current I ⁇ in the switch.
  • FIG. 6E represents the voltage V L at the terminals of the inductance L for controlling the di / dt.
  • FIG. 6F represents the current I D1 in the diode Dl.
  • FIG. 6G shows the current I D2 in the diode D2.
  • the signs of the currents and voltages represented in FIGS. 6A to 6G are taken in relation to the directions indicated in FIG. 5. In FIGS. 7A to 7F, the current flows have been symbolized by arrows.
  • the switch K is open, the converter then being freewheeling (phase A).
  • a current assumed to be constant I 0 flows in the diode DL while being restored by the inductors LO and Ll.
  • the equivalent diagram of the converter (FIG. 7A) comprises only the inductance L0 in series with the inductance L1 and the diode DL between terminals 2 and 3 to supply the energy to the load and to the capacitor C0.
  • the direct polarized DL diode has been symbolized by a short circuit.
  • the voltage V DL at the terminals of this diode is slightly positive and corresponds to the voltage drop in the direct PN junction (of the order of 0.7 V).
  • the latter sees at its terminals a voltage V 0 corresponding to the voltage V s increased by the voltage V DL and reduced by the voltage drop in the winding L1.
  • the voltage V L in the inductance L is indeed zero in this period as will be seen later in relation to the end of the timing diagrams.
  • the diodes D1 and D2 are blocked and the currents flowing through them are therefore zero.
  • the current I ⁇ in the open switch K is, of course, zero.
  • the switch K is closed.
  • the inductance L in series with the switch K closed (short circuit) is inserted between point 4 and ground 5.
  • the di / dt at the closing of the switch K is essentially a function of the inductance L. In fact, this di / dt depends on the voltage V s , on the voltage V E , on the mutual inductance of the magnetic circuit and on the no-load inductances LU and L22 of the transformer constituted by the main windings L0, and secondary L1 and L2.
  • the value LU is very large compared to the value L22.
  • the mutual inductance is also low compared to the LU value. It follows that the slope (di / dt) is, as a first approximation, equal to V s / L.
  • the current I DL in the diode DL therefore decreases with this slope up to an instant tl2.
  • the diode has an area of recovered charges. Consequently, the current I DL is canceled out at an instant t11, intermediate between the instants t10 and t12. This instant t11 corresponds to the instant when the current in the switch K reaches the value I 0 .
  • the voltage V L1 at its terminals is low. It follows that the capacitance constituted by the DL diode charges in negative. This phenomenon is illustrated in FIG. 6B by a continuation of the decrease in the current I DL until an instant tl3 in the form of a capacity charge. The current decreases to a current I r conditioned by the inductance L2. Indeed, the voltage V L which decreases during this phase C becomes negative until making the diode D2 passable when the voltage V L becomes sufficiently negative
  • the diode D2 then serves as a freewheel element for transferring the energy stored by the inductance L into the magnetic circuit by means of the winding L2.
  • the voltages across the DL diode and the L choke remain unchanged.
  • the switch K closed the voltage across its terminals is zero.
  • the diode Dl is blocked.
  • the current in it is canceled (instant tl4), which causes the natural blocking of the diode D2, that is to say with a low di / dt.
  • the winding L2 allows the decrease of the current in the switch K by transferring the energy to the magnetic circuit which will restore it by the inductance LO.
  • the current in the switch K decreases from the level I 0 + I r to the level I 0 .
  • phase E where the switch is closed and where the switching is completed.
  • the equivalent diagram is shown in Figure 7E. It includes only the source 6, the inductances LO and L, and the switch K.
  • the current I is stable at level I 0 as is the voltage V DL , the freewheeling diode being blocked.
  • the voltage at the terminals of the switch K is, of course, zero, as is the voltage at the terminals of the inductance L and the currents in the diodes Dl and D2.
  • phase E the inductor LO is charged through the inductor L and the switch K.
  • the slope of decrease of the current I D1 is a function of the value of the inductance L and corresponds approximately to V L1 / L.
  • the current in the inductance L is canceled at the instant t16 and all the current accumulated in the winding LO then flows through the winding Ll and the diode DL.
  • the equivalent diagram of phase F is illustrated in FIG. 7F. It will be noted that the diodes DL and Dl conduct at the same time, but the current in the diode DL starts from zero at the instant tl5.
  • An advantage of the present invention is that it makes it possible to recover the losses linked to the closing switching of the power switch in order to reinject them into the load thanks to the magnetic circuit.
  • the reinjection of the current into the converter, during phase D of switching to the closing of the switch, makes it possible to decrease the duty cycle.
  • the controller switch control circuit K
  • the controller generally automatically decreases this duty cycle by means of regulation which is not the object of one invention. We therefore see here a considerable improvement in the efficiency of the converter.
  • Another advantage of the present invention is that the proposed solution is particularly simple. Compared to the conventional circuit of FIG. 4, a power switch and, above all, a complex control circuit are saved.
  • Another advantage of the invention is that it does not require any modification of the control circuit of the power switch, provided that the latter performs (which is generally the case) regulation.
  • FIG. 8 represents another embodiment of a circuit 10 ′ for switching aid of the invention, applied to a step-down converter.
  • the diagram of FIG. 8 is to be compared to that of FIG. 2.
  • the inductance L is interposed between the point 4 'and the switch K.
  • the inductance L2 in series with the diode D2 is connected between terminal 2 and point 4 ', the anode of diode D2 being on terminal side 2.
  • the winding Ll is associated in series with the diode DL between point 4' and ground 5, l ' DL anode being on the earth side.
  • the diode Dl connects, to the ground 5, the point 12 between the switch K and the inductance L, the anode of the diode Dl being connected to the ground.
  • the phase point of the winding LO is connected to point 4 '. Consequently, to comply with the described functions of the magnetic circuit 11 ′, the phase point of the winding L1 is on the ground terminal side 5 and the phase point of the winding L2 is on the terminal side 2.
  • the present invention is susceptible of various variants and modifications which will appear to those skilled in the art.
  • the dimensions of the various windings of the magnetic circuit may be modified provided that a winding L0 is respected with a number of turns significantly greater than the windings L1 and L2.
  • the numbers of turns of the windings L1 and L2 are equal, and the number of turns of the winding L0 is of the order of 10 times greater than that of the windings NI and N2.
  • the adaptation of the invention to a mixed converter is within the reach of one skilled in the art from the indications given above.
  • the invention applies to any mounting of a converter, provided that it is a switching converter.
  • the switch has been shown with a terminal connected to the more positive potential, there are also arrangements in which this switch has a terminal to ground.
  • the invention also applies to this type of mounting. It is enough to reverse the respective positions of the associations in series KL and Ll-DL with respect to point 4 ', to connect the diode Dl by its cathode to the terminal 2, and to transfer the association in series L2-D2 in parallel on the association KL, the cathode of the diode D2 remaining connected at point 4 '.
  • the LO inductor is always connected on the cathode side of the freewheeling diode DL in series with the capacitor C0.
  • the inductance LO can be divided into a (main) element of the magnetic circuit in series with a separate inductance not belonging to the magnetic circuit. It will also be possible to adapt the switching speeds of the diodes although, to obtain the advantages of the invention, these diodes do not need to be fast.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

L'invention concerne un circuit (10) d'aide à la commutation d'un convertisseur à découpage qui comprend un premier élément inductif (L0) de stockage d'énergie en série avec une diode de roue libre (DL) et un interrupteur (K), et un deuxième élément inductif (L) de contrôle du di/dt à la fermeture de l'interrupteur, le circuit d'aide à la commutation comportant un circuit magnétique (11) dont un enroulement principal est formé, au moins partiellement, par le premier élément inductif (L0), des moyens (L1, D1, L2, D2) pour décharger le deuxième élément inductif à l'ouverture et à la fermeture de l'interrupteur, et des moyens (L2, D2) pour transférer l'énergie correspondant à la fermeture audit enroulement principal.

Description

CIRCUIT D'AIDE A LA COMMUTATION D'UN CONVERTISSEUR A DECOUPAGE
La présente invention concerne le domaine des convertisseurs de puissance dits à découpage. De tels convertisseurs utilisent un élément inductif, associé à un interrupteur de puissance et à une diode de roue libre, pour effectuer une conver- sion d'énergie et une correction du facteur de puissance, généralement à partir d'une tension d'entrée continue. On connaît des convertisseurs abaisseurs de tension (BUCK) , élévateurs de tension (BOOST) et mixtes (abaisseurs-êlévateurs) . L'invention concerne plus particulièrement un circuit d'aide à la commutation de l'interrupteur de puissance d'un convertisseur à découpage.
La figure 1 représente le schéma simplifié d'un convertisseur élévateur 1 classique. Un tel convertisseur comporte une inductance LO en série avec une diode de roue libre DL entre deux bornes positives d'entrée 2 et de sortie 3 du convertisseur, la cathode de la diode DL étant reliée à la borne 3. Un interrupteur de puissance K relie le point milieu 4 de cette association en série à une borne 5 d'application d'un potentiel négatif ou de référence (généralement, la masse) commun à l'entrée et à la sortie du convertisseur. Une source 6 de tension continue d'alimentation fournit une tension VE entre les bornes 2 et 5. Côté sortie, un condensateur de stockage C0 relie généralement les bornes 3 et 5 et délivre une tension Vs à une charge Q. La charge Q a été représentée en figure 1 par un pointillé intégrant le condensateur C0 qui peut, ou non, faire partie de la charge. L'interrupteur K est commandé par un circuit 7 (CTRL), par exemple, en modulation de largeur d'impulsions (PWM) .
Le fonctionnement parfaitement connu d'un convertisseur élévateur est brièvement rappelé ci-après. Quand l'interrupteur K est fermé, de l'énergie est emmagasinée dans l'inductance LO et la charge Q est alimentée par l'énergie stockée dans le condensateur C0. Quand 1 ' interrupteur K est ouvert, l'inductance LO restitue l'énergie emmagasinée au condensateur C0 par 1 ' intermédiaire de la diode de roue libre DL. La figure 2 représente le schéma électrique simplifié d'un convertisseur abaisseur l'. On y retrouve les mêmes constituants qu'en figure 1. Toutefois, c'est ici l'interrupteur K qui est connecté en série avec 1 ' inductance LO entre les bornes positives d'entrée 2 et de sortie 3. La diode de roue libre DL relie, à la masse, le point milieu 4' entre l'interrupteur K et l'inductance LO, sa cathode étant reliée au point 4'. L'interrupteur K peut également être prévu entre la borne négative de la source 6 et 1 'anode de la diode DL.
Le principe de fonctionnement est le même. De 1 'énergie est emmagasinée dans 1 ' inductance LO pendant les périodes de fermeture de l'interrupteur K. Pendant les périodes où l'interrupteur K est ouvert, cette énergie est restituée au condensateur C0, la diode de roue libre DL servant à reboucler le circuit . Un problème auquel on est confronté avec des convertisseurs à découpage, également appelés à commutation dure, qui se caractérisent par le fait que le courant et la tension se croisent a chaque commutation, est lié à la fermeture de 1 ' interrupteur. En effet, à chaque fermeture de l'interrupteur K, la diode de roue libre DL doit se bloquer. Or, lors du blocage d'une diode, en particulier à jonction PN, on se trouve confronté à un phénomène de charges recouvrées. Ce phénomène est illustré par les figures 3A à 3C qui représentent, en relation avec le circuit de la figure 1, un exemple d'allure du courant IDL dans la diode de roue libre, de la tension de sortie Vs, et du courant Iτ dans l'interrupteur K. On suppose initialement 1 ' interrupteur K ouvert . Par conséquent, un courant ILf circule dans la diode DL. Ce courant correspond à 1 ' énergie restituée par 1 ' inductance LO . Côté tension de sortie, celle-ci est à un niveau V0. Côté interrupteur K, le courant Iτ qui le traverse est nul .
On suppose qu'à un instant tl, le circuit de commande 7 provoque la fermeture de l'interrupteur K. Pendant la commutation, le courant IL dans l'inductance, qui correspond à la somme des courants IDL et Iτ est une constante. Par conséquent, le courant qui, pendant la commutation, croît dans l'interrupteur se traduit par une décroissance avec pente inverse du courant dans la diode DL.
A un instant t2, le courant dans la diode DL devient nul et le courant dans 1 ' interrupteur atteint le niveau ILf. A partir de cet instant, se produit le phénomène des charges recouvrées de la diode DL. Ce phénomène parfaitement connu se traduit par une inversion du courant dans la diode jusqu'à un niveau 1^ correspondant au courant de recouvrement maximum de la diode. Ce courant Iτm est atteint à un instant t3 à partir duquel le courant dans la diode tend de nouveau vers zéro qu' il atteint à un instant t4. Comme le courant dans l'inductance LO est, pendant la commutation, sensiblement constant, la pointe de courant négative côté diode se traduit par un sur-courant dans 1 ' interrupteur K dont la valeur maximale correspond au courant ILf majoré de la valeur 1^. Côté tension Vs, la décroissance de la tension intervient en pratique à partir de 1 ' instant t3, c'est-à-dire à partir de l'inversion de pente du courant dans la diode DL. En d'autres termes, la tension aux bornes de la diode est nulle entre les instants t2 et t3 correspondant à la première phase ta de recouvrement. On peut considérer que la diode conduit alors transitoirement en inverse. Entre les instants t3 et t4 (deuxième phase tb du recouvrement) , la tension Vs décroît de V0 à une tension nulle. On considère ici la tension fournie au condensateur C0. En effet, la présence du condensateur conduit en pratique à ce que la tension de sortie Vs reste approximativement stable. La pente entre les instants tl et t3 de décroissance du courant dans la diode DL dépend de la vitesse de fermeture du commutateur donc de son di/dt à la fermeture. Plus ce di/dt est élevé, ce qui favorise une commutation brusque, plus l'amplitude I.RM est élevée pour une diode à jonction PN. Toutefois, plus le di/dt est faible, plus le temps de recouvrement au blocage (trr = t4-t2) est important.
Les pertes dans une diode en fonction du di/dt ont une forme parabolique. Il existe un point optimal où l'aire (surface) de l'allure du courant entre les instants t2 et t4 est minimale, ce qui conduit à des pertes minimales de charges recouvrées dans la diode.
Pour 1 ' interrupteur K, le phénomène de charges recouvrées de la diode est particulièrement gênant. En effet, pour un convertisseur élévateur, l'interrupteur voit alors à ses bornes, entre les instants t2 et t3, la tension Vs de sortie. Dans le cas d'un convertisseur abaisseur, la tension que voit 1 ' interrupteur à ses bornes correspond à la tension du générateur 6. Dans tous les cas, il s'agit de la tension la plus élevée entre les tensions VE et Vs. On assiste alors à des pertes élevées dans l'interrupteur K. Aux figures 3A à 3C, les périodes de pertes ont été symbolisées par des hachures sur les différents chronogrammes.
En pratique, les pertes dans l'interrupteur K
(généralement, un transistor de puissance) à sa fermeture (instants tl à t4) constituent la majeure partie des pertes de commutation du convertisseur. En particulier, les pertes liées au blocage de la diode elle-même et les pertes à l'ouverture du commutateur sont négligeables par rapport aux pertes engendrées à la fermeture de celui-ci. Une première solution connue pour réduire cet inconvénient consiste à utiliser des diodes sans charges recouvrées, par exemple, des diodes de type Schottky ou SIC.
Un premier inconvénient de cette solution est que les diodes sans charges recouvrées sont souvent limitées à une cen- taine de volts de tenue en tension. Cette solution n'est donc pas applicable aux convertisseurs fonctionnant sous des tensions de plusieurs centaines de volts, ce qui est en pratique courant dans 1 ' électronique de puissance . On doit alors prévoir plusieurs diodes en série pour assurer la tenue en tension. Un autre inconvénient de cette solution est que, si elle diminue les pertes liées aux charges recouvrées (instants t2 à t4) , les pertes les plus importantes liées à la seule fermeture du commutateur ne sont pas évitées. En reprenant l'exemple des figures 3A à 3C, le recours à une diode sans charges recouvrées conduit à une annulation de la tension Vs à partir de 1 ' instant t2. Il subsiste donc les pertes liées aux aires comprises entre les instants tl et t2.
Un autre inconvénient des diodes sans charges recouvrées est qu'elles sont particulièrement onéreuses par rapport aux diodes PN. Actuellement, le rapport de coût est supérieur à
20.
Une deuxième solution pour tenter de résoudre les problèmes de charges recouvrées est de prévoir un circuit d'aide à la commutation de l'interrupteur de puissance du convertisseur. La figure 4 représente un exemple classique d'un tel circuit d'aide, appliqué à un convertisseur élévateur tel que représenté en figure 1. La figure 4 reprend l'ensemble des éléments de la figure 1 à laquelle on adjoint un circuit 8 d'aide à la commutation de l'interrupteur K. Ce circuit est constitué d'une inductance L, associée en parallèle avec une résistance R et une diode D, entre le point 4 et l'interrupteur K. Le rôle de 1 ' inductance L est de contrôler le di/dt de 1 ' interrupteur. En diminuant le di/dt, on diminue l'amplitude 1^.
Un problème qui se pose est que 1 ' on est obligé de prévoir la résistance R pour évacuer une surtension en inverse dans l'inductance L. En effet, lors de la commutation à la fermeture de 1 ' interrupteur K, la tension aux bornes de 1 ' inductance L prend la valeur de la tension de sortie Vs . Les mêmes pertes se produisent à l'ouverture du transistor. Il s'agit là de pertes résistives qui sont d'autant plus importantes que le di/dt est élevé. Dans d'autres exemples classiques, l'élément de dissipation R est remplacé par un condensateur, une diode Zener, etc.
Ainsi, cette deuxième solution présente les mêmes inconvénients que le recours à une diode sans charges recouvrées .
Une troisième solution connue (non représentée) consiste en un circuit d'aide à la commutation utilisant la résonance transitoire à la commutation. Un tel circuit utilise, comme le circuit de la figure 4, une inductance supplémentaire. Toutefois, pour éviter les problèmes de pertes résistives, on a recours à un deuxième commutateur dont la commande est désynchronisée par rapport à celle de l'interrupteur K.
Un exemple de circuit d'aide à la commutation de ce type est décrit dans l'article "An overview of soft switching technics for PWM convertors" de G. Hua et F. Lee, paru dans EPE Journal, Vol. 3 en mars 1993.
Une telle solution donne des résultats satisfaisants mais est particulièrement complexe et coûteuse à mettre en oeuvre. En particulier, on doit prévoir un système de commande désynchronisé des commutateurs utilisés. De plus, par rapport au circuit de la figure 4, il est nécessaire de disposer d'un interrupteur de puissance supplémentaire, de deux diodes supplémentaires et, surtout, d'un condensateur haute tension. La présente invention vise à pallier les inconvénients des circuits d'aide à la commutation connus.
L'invention vise plus particulièrement à proposer un circuit d'aide à la commutation qui minimise les pertes liées à la fermeture d'un interrupteur de puissance.
L'invention vise également à proposer une solution ne nécessitant pas d'interrupteur supplémentaire dans un circuit peu dissipatif .
L'invention vise également à proposer une solution particulièrement simple et peu onéreuse.
L' invention vise également à proposer une solution qui soit compatible avec l'utilisation de diodes à charges recouvrées (diodes PN) .
L'invention vise également à préserver le contrôle du di/dt à la fermeture du transistor de puissance.
Pour atteindre ces objets, la présente invention prévoit un circuit d'aide à la commutation d'un convertisseur à découpage qui comprend un premier élément inductif de stockage d'énergie en série avec une diode de roue libre et un interrup- teur, et un deuxième élément inductif de contrôle du di/dt à la fermeture de l'interrupteur, comportant : un circuit magnétique dont un enroulement principal est formé, au moins partiellement, par le premier élément inductif ; des moyens pour décharger le deuxième élément inductif à 1 'ouverture et à la fermeture de 1 ' interrupteur ; et des moyens pour transférer 1 'énergie correspondant à la fermeture audit enroulement principal.
Selon un mode de réalisation de la présente invention, lesdits moyens de décharge comprennent : un premier circuit comprenant une première diode de commutation ; et un deuxième circuit comprenant un premier enroulement secondaire du circuit magnétique. Selon un mode de réalisation de la présente invention, lesdits moyens de transfert comprennent le premier enroulement secondaire du circuit magnétique et une deuxième diode de commutation. Selon un mode de réalisation de la présente invention, le deuxième circuit de décharge comprend le deuxième élément inductif en série avec le premier enroulement secondaire, la deuxième diode de commutation et l'interrupteur.
Selon un mode de réalisation de la présente invention, le circuit d'aide à la commutation comporte en outre un deuxième enroulement secondaire du circuit magnétique en série avec la diode de roue libre.
Selon un mode de réalisation de la présente invention, les enroulements secondaires ont un même nombre de spires. Selon un mode de réalisation de la présente invention, le nombre de spires de 1 'enroulement principal est supérieur aux nombres de spires des enroulements secondaires.
L'invention prévoit également un convertisseur à découpage du type comprenant un premier élément inductif de stockage d'énergie en série avec une diode de roue libre et un élément de stockage de type capacitif, et un deuxième élément inductif de contrôle du di/dt à la fermeture d'un interrupteur de découpage d'une tension d'alimentation, comportant un circuit d'aide à la commutation. Selon un mode de réalisation de la présente invention, le convertisseur est de type élévateur de tension, le premier élément inductif formant l'enroulement principal du circuit magnétique étant en série avec le deuxième élément inductif et l'interrupteur entre deux bornes d'application de la tension d'alimentation.
Selon un mode de réalisation de la présente invention, le convertisseur est de type abaisseur de tension, l'interrupteur étant en série avec, entre autres, le deuxième élément inductif et la diode de roue libre, entre deux bornes d'application de la tension d'alimentation. Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles : la figure 1, décrite précédemment, représente un exemple classique de convertisseur à découpage, élévateur de tension ; la figure 2, décrite précédemment, représente un exemple classique de convertisseur à découpage, abaisseur de tension ; les figures 3A, 3B et 3C qui ont été décrites précédemment illustrent, sous forme de chronogrammes, un problème posé par les circuits des figures 1 et 2 ; la figure 4, décrite précédemment, représente un autre exemple classique de convertisseur à découpage, élévateur de tension ; la figure 5 représente un mode de réalisation d'un circuit d'aide à la commutation selon la présente invention, appliqué à un convertisseur élévateur de tension ; les figures 6A, 6B, 6C, 6D, 6E, 6F et 6G illustrent, sous forme de chronogrammes, le fonctionnement du circuit de la figure 5 ; les figures 7A, 7B, 7C, 7D, 7E et 7F représentent les schémas électriques équivalents du circuit de la figure 5 aux différentes phases de commutation ; et la figure 8 représente un mode de réalisation d'un circuit d'aide à la commutation selon la présente invention, appliqué à un convertisseur abaisseur de tension.
Les mêmes éléments ont été désignés par les mêmes références aux différentes figures. Pour des raisons de clarté, seuls les éléments qui sont nécessaires à la compréhension de
1 ' invention ont été représentés aux figures et seront décrits par la suite. En particulier, la constitution du circuit de commande de l'interrupteur de puissance n'a pas été détaillée et ne fait pas l'objet de l'invention, sa mise en oeuvre étant à la portée de l'homme du métier à partir des indications fonctionnelles données dans la présente description.
Une caractéristique de la présente invention est de prévoir un circuit magnétique pour organiser la décharge d'une inductance de contrôle du di/dt, notamment, à la fermeture de l'interrupteur de puissance d'un convertisseur à découpage.
Une autre caractéristique de la présente invention est d'utiliser ce circuit magnétique pour stocker temporairement l'énergie habituellement perdue à la commutation de l'interrup- teur de puissance et pour récupérer cette énergie dans le convertisseur au profit de la charge.
Une autre caractéristique de 1 ' invention est d'utiliser l'élément inductif du circuit de correction du facteur de puissance du convertisseur à découpage comme élément du circuit magnétique.
La figure 5 représente le schéma électrique d'un premier mode de réalisation d'un convertisseur à découpage élévateur de tension, équipé d'un circuit d'aide à la commutation selon l'invention. Comme précédemment, le convertisseur de puissance 10 comporte un interrupteur K commandé par un circuit (non représenté) , par exemple, un circuit de commande par modulation de largeur d'impulsions (PWM) . Une inductance d'accumulation d'énergie L0 est connectée, par une première borne, à une borne positive 2 d'application d'une tension d'entrée VE fournie par une source 6 (par exemple, continue). L'interrupteur K est en série avec une inductance L de contrôle du di/dt, reliée à la deuxième borne 4 de 1 ' inductance L0. L ' autre borne de 1 ' interrupteur K est connectée à une borne 5 de référence (généralement, la masse) . Toujours de façon classique, une diode de roue libre DL est placée entre le point 4 et une borne positive 3 de sortie du convertisseur. Cette borne positive est connectée à une première électrode d'un condensateur de stockage C0 (le cas échéant faisant partie de la charge Q à alimenter) aux bornes duquel est présente la tension de sortie Vs. L'autre borne du condensateur C0 est reliée à la masse et l'anode de la diode DL est côté borne 3.
Selon la présente invention, 1 ' inductance LO fait partie d'un circuit magnétique 11 dont elle constitue l'enroulement principal . Ce circuit magnétique 11 comprend deux enroulements secondaires Ll et L2 ayant des nombres de spires respectivement NI et N2 inférieures au nombre NO de spires de 1 ' inductance LO . Un premier enroulement Ll du circuit magnétique 11 est connecté en série avec la diode DL entre les bornes 3 et 4. Dans l'exemple de la figure 5, cette inductance a été représentée entre le point 4 et l'anode de la diode DL. Elle peut également être placée entre la cathode de la diode DL et la borne 3, l'anode de la diode DL étant alors directement reliée au point 4. Un deuxième enroulement L2 relie le point 4 à la borne 5 en étant associé en série à une diode D2, l'anode de la diode D2 étant dirigée vers la masse 5. Comme pour 1 ' inductance Ll et la diode Dl, la diode D2 peut être, contrairement à ce qui est représenté, connectée au point 4. Enfin, une diode Dl relie, à la borne 3 , le point 12 entre 1 ' inductance L et 1 ' interrupteur K, la cathode de la diode Dl étant reliée au point 12.
Le rôle de l'enroulement Ll est, à l'ouverture de l'interrupteur K, d'imposer une tension négative aux bornes de l'inductance L, de façon à lui permettre de transférer l'énergie qu'elle contient au condensateur C0. La diode Dl est alors polarisée en direct.
L'enroulement L2 a pour rôle, lors de la fermeture de l'interrupteur K, d'imposer une tension négative aux bornes de l'inductance L, afin de transférer l'énergie qu'elle contient dans l'enroulement L2 du circuit magnétique. Cette énergie est récupérée par l'enroulement L0 qui la restitue au condensateur
C0 lors de 1 ' ouverture suivante de 1 ' interrupteur.
Pour respecter ces fonctionnalités, les points de phase respectifs des enroulements sont choisis de la façon suivante . En supposant le point de phase de 1 ' enroulement L0 relié à la borne 2 comme cela est illustré en figure 5, le point de phase de 1 ' enroulement Ll doit être côté point 4 et le point de phase de l'enroulement L2 doit être côté masse 5. Par contre, si le point de phase de 1 ' enroulement LO est connecté au point 4, le point de phase de 1 ' enroulement Ll doit être côté borne 3 et le point de phase de 1 'enroulement L2 doit être côté point 4. Le fonctionnement du circuit d'aide à la commutation représenté en figure 5 sera décrit par la suite en relation avec les figures 6A à 6G et 7A à 7F. Les figures 6A à 6G représentent, sous forme de chronogrammes sans respect d'échelle, un exemple de cycle de commutation de l'interrupteur K. Les figures 7A à 7F représentent les schémas équivalents du circuit de la figure 5 aux différentes phases de commutation.
La figure 6A représente la tension VDL aux bornes de la diode de roue libre DL. La figure 6B représente le courant IDL dans la diode DL. La figure 6C représente la tension Vκ aux bornes de 1 ' interrupteur 4. La figure 6D représente le courant Iκ dans l'interrupteur. La figure 6E représente la tension VL aux bornes de 1 ' inductance L de contrôle du di/dt . La figure 6F représente le courant ID1 dans la diode Dl. La figure 6G repré- sente le courant ID2 dans la diode D2. Les signes des courants et tensions représentés aux figures 6A à 6G sont pris en relation avec les sens indiqués en figure 5. Aux figures 7A à 7F, les circulations de courant ont été symbolisées par des flèches . On suppose qu'avant un instant tlO, l'interrupteur K est ouvert, le convertisseur étant alors en roue libre (phase A) . Pendant cette période de roue libre, un courant supposé constant I0 circule dans la diode DL en étant restitué par les inductances LO et Ll . Pendant cette phase A où 1 ' interrupteur K est ouvert, le schéma équivalent du convertisseur (figure 7A) comprend uniquement 1 ' inductance L0 en série avec 1 ' inductance Ll et la diode DL entre les bornes 2 et 3 pour fournir 1 'énergie à la charge et au condensateur C0. En figure 7A, la diode DL polarisée en direct a été symbolisée par un court-circuit. La tension VDL aux bornes de cette diode est légèrement positive et correspond à la chute de tension dans la jonction PN en direct (de l'ordre de 0,7 V). Côté interrupteur K, celui-ci voit à ses bornes une tension V0 correspondant à la tension Vs majorée de la tension VDL et diminuée de la chute de tension dans 1 ' enroulement Ll . La tension VL dans 1 ' inductance L est en effet nulle dans cette période comme on le verra par la suite en relation avec la fin des chronogrammes. Les diodes Dl et D2 sont bloquées et les courants qui les traversent sont, par conséquent, nuls . Le courant Iκ dans 1 ' interrupteur K ouvert est, bien entendu, nul.
A l'instant tlO, on commande la fermeture de l'interrupteur K. On entre donc dans une phase B de début de fermeture dont le schéma équivalent est représenté en figure 7B. Par rapport à la figure 7A, la seule différence est que 1 ' inductance L en série avec l'interrupteur K fermé (court-circuit) est intercalée entre le point 4 et la masse 5. Le di/dt à la fermeture de l'interrupteur K est essentiellement fonction de l'inductance L. En effet, ce di/dt dépend de la tension Vs, de la tension VE, de la mutuelle inductance du circuit magnétique et des inductances à vide LU et L22 du transformateur constitué par les enroulements principal L0, et secondaires Ll et L2. En raison du rapport de spires choisi, la valeur LU est très grande devant la valeur L22. La mutuelle inductance est par ailleurs faible devant la valeur LU. Il en découle que la pente (di/dt) est, en première approximation, égale à Vs/L. Le courant IDL dans la diode DL décroît donc avec cette pente jusqu'à un instant tl2. Comme on a recours à une jonction PN, la diode présente une zone de charges recouvrées . Par conséquent, le courant IDL s ' annule à un instant tll, intermédiaire entre les instants tlO et tl2. Cet instant tll correspond à l'instant où le courant dans le commutateur K atteint la valeur I0. Entre les instants tlO et tl2, les diodes Dl et D2 restent bloquées. La tension VL aux bornes de 1 ' inductance L devient approximativement égale à la tension Vs . A l'instant tl2, le courant dans la diode DL atteint la valeur 1^ correspondant au maximum de charges recouvrées. A partir de 1 ' instant tl2 , les charges recouvrées par la diode DL diminuent. La diode DL se comporte alors comme une capacité. Le schéma équivalent de cette phase de fonctionnement C est représenté en figure 7C où la diode DL a été symbolisée sous la forme d'un condensateur. Le reste reprend les éléments de la figure 7B. Comme le nombre de spires de 1 ' inductance Ll est faible devant le nombre de spires de 1 ' inductance LO, la tension VL1 à ses bornes est faible. Il en découle que la capacité constituée par la diode DL se charge en négatif . Ce phénomène est illustré en figure 6B par une poursuite de la décroissance du courant IDL jusqu'à un instant tl3 en forme de charge de capacité. Le courant décroît jusqu'à un courant Ir conditionné par l'inductance L2. En effet, la tension VL qui décroît pendant cette phase C devient négative jusqu'à rendre la diode D2 passante lorsque la tension VL devient suffisamment négative
(instant tl3) . Côté diode DL, la tension VDL atteint, à l'instant tl3, la valeur - (Vs + NL1 + VL2 + VD2) • La tension VL atteint, à l'instant tl3, la valeur - (Vκ + VL2 + ND2^ •
A l'instant tl3 où la diode D2 devient passante, le courant IDL dans la diode DL s'interrompt brutalement et le courant correspondant est réinjecté dans 1 ' inductance L2. Le courant en excès (Ir) donne l'amplitude maximale du courant dans 1 ' inductance L2. Ce courant dépend des nombres de spires Ν0 et Ν2 des inductances LO et L2. A partir de 1 ' instant tl3 , on assiste à une conduction de la diode D2 (phase D) . Le schéma équivalent est illustré en figure 7D. Comme la diode DL est bloquée, le condensateur C0 est déconnecté. Le circuit magnétique est, pendant la phase D, dissocié de la charge Q. La diode D2 sert alors d'élément de roue libre pour transférer 1 ' énergie stockée par 1 ' inductance L dans le circuit magnétique par 1 ' intermédiaire de 1 ' enroulement L2. Les tensions aux bornes de la diode DL et de l'inductance L restent inchangées. De même, l'interrupteur K étant fermé, la tension à ses bornes est nulle. La diode Dl est bloquée. Quand le courant est intégralement transféré dans le circuit magnétique par 1 ' inductance L2 , le courant dans celle-ci s'annule (instant tl4) , ce qui provoque le blocage naturel de la diode D2, c'est-à-dire avec un di/dt faible. L'enroulement L2 permet la décroissance du courant dans l'interrupteur K en transférant l'énergie au circuit magnétique qui le restituera par 1 ' inductance LO . Entre les instants tl3 et tl4, le courant dans l'interrupteur K décroît depuis le niveau I0 + Ir jusqu'au niveau I0. A l'instant tl4, la tension aux bornes de l'inductance
L s'annule, l'ensemble de l'énergie qu'elle contenait ayant été transférée dans le circuit magnétique. La tension aux bornes de la diode DL remonte légèrement tout en restant négative et prend une valeur - (Vs + VL1) + VL + Vκ. On se souviendra que les tensions NL et V sont alors négligeables (considérées comme nulles) par rapport aux tensions Vs et VL1.
A partir de 1 ' instant tl4 , on entre dans une phase E où l'interrupteur est fermé et où la commutation est terminée. Le schéma équivalent est représenté en figure 7E. Il comprend uniquement la source 6, les inductances LO et L, et l'interrupteur K. Le courant I est stable au niveau I0 de même que la tension VDL, la diode de roue libre étant bloquée. La tension aux bornes de l'interrupteur K est, bien entendu, nulle de même que la tension aux bornes de 1 ' inductance L et les courants dans les diodes Dl et D2. Pendant la phase E, 1 ' inductance LO se trouve chargée à travers 1 ' inductance L et 1 ' interrupteur K.
A un instant tl5 où l'on provoque l'ouverture de l'interrupteur K, on impose, grâce à la présence de l'enroulement Ll, une tension négative aux bornes de 1 ' inductance L. On notera que, dans ce cas, il n'est pas nécessaire de contrôler le di/dt à l'ouverture du transistor (de façon classique) . Le courant s'interrompt brutalement dans l'interrupteur K. L'inversion de la tension aux bornes de l'inductance Ll provoque l'évacuation, par la diode Dl, de 1 ' énergie stockée pendant la phase E dans l'inductance L. A l'instant tl5, le courant ID1 prend donc brusquement la valeur I0 et ce courant décroît jusqu'à s'annuler à un instant tl6. La pente de décroissance du courant ID1 est fonction de la valeur de 1 ' inductance L et correspond approxima- tivement à VL1/L. Le courant dans l'inductance L s'annule à 1 ' instant tl6 et tout le courant accumulé dans 1 ' enroulement LO circule alors par l'enroulement Ll et la diode DL. Le schéma équivalent de la phase F est illustré en figure 7F. On notera que les diodes DL et Dl conduisent en même temps, mais le courant dans la diode DL part de zéro à l'instant tl5.
A l'instant tl6, on se retrouve dans la phase A où 1 ' interrupteur est ouvert.
Un avantage de la présente invention est qu'elle permet de récupérer les pertes liées à la commutation de fermeture de l'interrupteur de puissance pour les réinjecter dans la charge grâce au circuit magnétique. La réinjection du courant dans le convertisseur, pendant la phase D de commutation en fermeture de l'interrupteur, permet de diπύnuer le rapport cyclique. Le contrôleur (circuit de commande de l'interrupteur K) diminue généralement automatiquement ce rapport cyclique grâce à un moyen de régulation qui ne fait pas 1 'objet de 1 ' invention. On voit donc apparaître ici une amélioration considérable du rendement du convertisseur.
Un autre avantage de la présente invention est que la solution proposée est particulièrement simple. Par rapport au circuit classique de la figure 4, on économise un interrupteur de puissance et, surtout, un circuit de commande complexe.
Un autre avantage de l'invention est qu'elle ne nécessite aucune modification du circuit de commande de l'interrupteur de puissance, pourvu que celui-ci effectue (ce qui est généralement le cas) une régulation.
La mise en oeuvre de l'invention requiert d'ajouter un circuit magnétique L0, Ll, L2 qui peut être obtenu au moyen d'une seule inductance à trois enroulements. Un tel circuit magnétique est considérablement moins coûteux que la complexité nécessaire du circuit de commande de la figure 4 et qu'une diode sans charges recouvrées. A cet égard, on notera que la solution d'une diode sans charges recouvrées ne permet pas de récupérer les pertes dans 1 ' interrupteur. La figure 8 représente un autre mode de réalisation d'un circuit 10' d'aide à la commutation de l'invention, appliqué à un convertisseur abaisseur de tension. Le schéma de la figure 8 est à rapprocher de celui de la figure 2. Par rapport au schéma de la figure 2, on intercale l'inductance L entre le point 4' et l'interrupteur K. L'inductance L2 en série avec la diode D2 est connectée entre la borne 2 et le point 4 ' , 1 'anode de la diode D2 étant côté borne 2. L 'enroulement Ll est associé en série avec la diode DL entre le point 4 ' et la masse 5, l'anode de la diode DL étant côté masse. Enfin, la diode Dl relie, à la masse 5, le point 12 entre l'interrupteur K et l'inductance L, l'anode de la diode Dl étant reliée à la masse. Dans 1 ' exemple de la figure 8, le point de phase de l'enroulement LO est relié au point 4'. Par conséquent, pour respecter les fonctions décrites du circuit magnétique 11 ' , le point de phase de l'enroulement Ll est côté borne de masse 5 et le point de phase de 1 'enroulement L2 est côté borne 2.
Le fonctionnement du circuit d'aide à la commutation illustré par la figure 8 se déduit de l'exposé des figures 5 à 7. Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme de l'art. En particulier, les dimensionnements des différents enroulements du circuit magnétique pourront être modifiés pourvu de respecter un enroulement L0 d'un nombre de spires nettement supérieur aux enroulements Ll et L2. De préférence, les nombres de spires des enroulements Ll et L2 sont égaux, et le nombre de spires de l'enroulement L0 est de l'ordre de 10 fois supérieur à celui des enroulements NI et N2. De plus, l'adaptation de l'invention à un convertisseur mixte est à la portée de 1 'homme du métier à partir des indications données ci-dessus.
En outre, l'invention s'applique à tout montage de cαπvertis- seur pourvu qu'il s'agisse d'un convertisseur à découpage. En particulier, si dans le cas du convertisseur abaisseur (figure 8), l'interrupteur a été représenté avec une borne reliée au potentiel plus positif, il existe aussi des montages dans lequel cet interrupteur a une borne à la masse . L ' invention s ' applique également à ce type de montage. Il suffit d'inverser les positions respectives des associations en série K-L et Ll-DL par rapport au point 4 ' , de connecter la diode Dl par sa cathode à la borne 2, et de reporter l'association en série L2-D2 en parallèle sur l'association K-L, la cathode de la diode D2 restant connectée au point 4'. L'inductance LO est toujours reliée côté cathode de la diode de roue libre DL en série avec le condensateur C0.
Enfin, parmi les variantes possibles, on pourra diviser l'inductance LO en un élément (principal) du circuit magnétique en série avec une inductance distincte n'appartenant pas au circuit magnétique. On pourra également adapter les vitesses de commutation des diodes bien que, pour obtenir les avantages de l'invention, ces diodes n'aient pas besoin d'être rapides .

Claims

REVENDICATIONS
1. Circuit (10, 10') d'aide à la commutation d'un convertisseur à découpage qui comprend un premier élément inductif (LO) de stockage d'énergie en série avec une diode de roue libre (DL) et un interrupteur (K) , et un deuxième élément inductif (L) de contrôle du di/dt à la fermeture de 1 ' interrupteur, caractérisé en ce qu'il comporte : un circuit magnétique (11, 11') dont un enroulement principal est formé, au moins partiellement, par le premier élément inductif (LO) ; des moyens (Ll, Dl, L2, D2) pour décharger le deuxième élément inductif à 1 ' ouverture et à la fermeture de 1 ' interrupteur ; et des moyens (L2, D2) pour transférer l'énergie correspondant à la fermeture audit enroulement principal.
2. Circuit selon la revendication 1, caractérisé en ce que lesdits moyens de décharge comprennent : un premier circuit (L0, L, Dl) comprenant une première diode de commutation (Dl) ; et un deuxième circuit (D2, L2, K) comprenant un premier enroulement secondaire (L2) du circuit magnétique (11, 11').
3. Circuit selon la revendication 2 , caractérisé en ce que lesdits moyens de transfert comprennent le premier enroulement secondaire (L2) du circuit magnétique (11, 11') et une deuxième diode de commutation (D2) .
4. Circuit selon la revendication 2 ou 3, caractérisé en ce que le deuxième circuit de décharge comprend le deuxième élément inductif (L) en série avec le premier enroulement secondaire (L2) , la deuxième diode de commutation (D2) et l'interrupteur (K) .
5. Circuit selon l'une quelconque des revendications 2 à 4, caractérisé en ce qu'il comporte en outre un deuxième enroulement secondaire (Ll) du circuit magnétique (11, 11') en série avec la diode de roue libre (DL) .
6. Circuit selon la revendication 5, caractérisé en ce que les enroulements secondaires (Ll, L2) ont un même nombre de spires .
7. Circuit selon l'une quelconque des revendications 2 à 6, caractérisé en ce que le nombre de spires de 1 'enroulement principal (LO) est supérieur aux nombres de spires des enroulements secondaires (Ll, L2) .
8. Convertisseur à découpage du type comprenant un premier élément inductif (LO) de stockage d'énergie en série avec une diode de roue libre (DL) et un élément de stockage (CO) de type capacitif, et un deuxième élément inductif (L) de contrôle du di/dt à la fermeture d'un interrupteur (K) de découpage d'une tension d'alimentation (VE) , caractérisé en ce qu'il comporte un circuit (10, 10') d'aide à la commutation conforme à l'une quelconque des revendications 1 à 7.
9. Convertisseur selon la revendication 8, de type élévateur de tension, dans lequel le premier élément inductif (L0) formant l'enroulement principal du circuit magnétique (11) est en série avec le deuxième élément inductif (L) et l'interrupteur (K) entre deux bornes (2, 5) d'application de la tension d'alimentation (VE) .
10. Convertisseur selon la revendication 8, de type abaisseur de tension, dans lequel l'interrupteur (K) est en série avec, entre autres, le deuxième élément inductif (L) et la diode de roue libre (DL) , entre deux bornes (2, 5) d'application de la tension d'alimentation (VE) .
PCT/FR2002/000842 2001-03-09 2002-03-08 Circuit d'aide a la commutation d'un convertisseur a decoupage WO2002073783A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/469,629 US6987379B2 (en) 2001-03-09 2002-03-08 Auxiliary switching circuit for a chopping converter
EP02714290A EP1368884A2 (fr) 2001-03-09 2002-03-08 Circuit d'aide a la commutation d'un convertisseur a decoupage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0103266A FR2821996B1 (fr) 2001-03-09 2001-03-09 Circuit a la commutation d'un convertisseur a decoupage
FR01/03266 2001-03-09

Publications (2)

Publication Number Publication Date
WO2002073783A2 true WO2002073783A2 (fr) 2002-09-19
WO2002073783A3 WO2002073783A3 (fr) 2002-12-05

Family

ID=8860956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/000842 WO2002073783A2 (fr) 2001-03-09 2002-03-08 Circuit d'aide a la commutation d'un convertisseur a decoupage

Country Status (4)

Country Link
US (1) US6987379B2 (fr)
EP (1) EP1368884A2 (fr)
FR (1) FR2821996B1 (fr)
WO (1) WO2002073783A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1953904A1 (fr) * 2007-02-02 2008-08-06 St Microelectronics S.A. Circuit d'aide à la commutation pour un convertisseur à découpage

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050248963A1 (en) * 2004-05-07 2005-11-10 Cheng Chung Y Circuit for controlling the reverse recovery current in a blocking diode
KR101026806B1 (ko) * 2004-07-28 2011-04-04 삼성전자주식회사 표시 장치, 표시 장치용 광원의 구동 장치 및 dc-dc변환 장치
JP2006067730A (ja) * 2004-08-27 2006-03-09 Sanken Electric Co Ltd 力率改善回路
JP4366351B2 (ja) * 2005-10-07 2009-11-18 キヤノン株式会社 電源制御回路、電子機器及び記録装置
US7375984B2 (en) 2006-06-16 2008-05-20 Astec Custom Power (Hk) Ltd. Zero voltage zero current switching converter
US7508185B2 (en) * 2006-08-03 2009-03-24 Spi Electronic Co., Ltd. Simple zero current switch circuit
US20080071887A1 (en) * 2006-09-19 2008-03-20 Microsoft Corporation Intelligent translation of electronic data interchange documents to extensible markup language representations
JP4894469B2 (ja) * 2006-11-09 2012-03-14 日産自動車株式会社 Dc−dcコンバータ
US7579814B2 (en) * 2007-01-12 2009-08-25 Potentia Semiconductor Corporation Power converter with snubber
FR2912566B1 (fr) * 2007-02-13 2009-05-01 Hispano Suiza Sa Convertisseur a decoupage unipolaire ou bipolaire a deux enroulements magnetiquement couples.
FR2912567B1 (fr) * 2007-02-13 2009-05-01 Hispano Suiza Sa Convertisseur a decoupage unipolaire ou bipolaire a trois enroulements magnetiquement couples.
JP2010004704A (ja) * 2008-06-23 2010-01-07 Sanken Electric Co Ltd Dc−dcコンバータ
JP4382859B1 (ja) * 2008-06-23 2009-12-16 サンケン電気株式会社 スナバ回路付きdc−dcコンバータ
US8111053B2 (en) * 2008-07-24 2012-02-07 Sanken Electric Co., Ltd. DC-DC converter
EP2230754B1 (fr) * 2009-03-18 2015-04-29 STMicroelectronics (Tours) SAS Alimentation à découpage
JP5934000B2 (ja) * 2012-03-16 2016-06-15 サンケン電気株式会社 双方向dc−dcコンバータ
US8947057B2 (en) * 2012-06-29 2015-02-03 Texas Instruments Incorporated Inverting buck-boost using single-inductor boost and charge pump with a grounded switch
KR101422947B1 (ko) * 2012-12-11 2014-07-23 삼성전기주식회사 역률 보정 회로 및 이를 포함하는 전원 장치
JP6328002B2 (ja) * 2013-09-20 2018-05-23 株式会社東芝 電力変換装置
GB2532454A (en) * 2014-11-19 2016-05-25 Univ Plymouth Control arrangement
FR3104343A1 (fr) * 2019-12-06 2021-06-11 Valeo Siemens eAutomotive France Dispositif de correction de facteur de puissance et système électrique comportant un tel dispositif
KR102326432B1 (ko) * 2019-12-27 2021-11-15 한국항공우주연구원 결합 인덕터를 구비한 dc-dc 변환 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5636114A (en) * 1995-11-30 1997-06-03 Electronic Measurements, Inc. Lossless snubber circuit for use in power converters
EP0910158A1 (fr) * 1997-02-10 1999-04-21 TDK Corporation Alimentation a decoupage et a elevation de tension

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE450317B (sv) * 1980-12-23 1987-06-15 Asea Ab Sjelvkommuterad vexelriktare
JP2674341B2 (ja) * 1991-03-27 1997-11-12 三菱電機株式会社 電力変換装置のスナバ回路
JP2918022B2 (ja) * 1996-03-27 1999-07-12 日本電気株式会社 スイッチングレギュレータ
US5909107A (en) 1997-02-10 1999-06-01 Tdk Corporation Step up switching power unit and filter circuit
US6051961A (en) * 1999-02-11 2000-04-18 Delta Electronics, Inc. Soft-switching cell for reducing switching losses in pulse-width-modulated converters

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5636114A (en) * 1995-11-30 1997-06-03 Electronic Measurements, Inc. Lossless snubber circuit for use in power converters
EP0910158A1 (fr) * 1997-02-10 1999-04-21 TDK Corporation Alimentation a decoupage et a elevation de tension

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MANTOV G ET AL: "DIODE RECOVERY CURRENT SUPPRESSION CIRCUIT" INTELEC 2000. 22ND. INTERNATIONAL TELECOMMUNICATIONS ENERGY CONFERENCE. PHOENIX, AZ, SEPT. 10 - 14, 2000, INTELEC. INTERNATIONAL TELECOMMUNICATIONS ENERGY CONFERENCE, NEW YORK, NY: IEEE, US, vol. CONF. 22, 10 septembre 2000 (2000-09-10), pages 125-129, XP000968711 ISBN: 0-7803-6408-2 *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 02, 30 janvier 1998 (1998-01-30) & JP 09 266665 A (NEC CORP), 7 octobre 1997 (1997-10-07) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1953904A1 (fr) * 2007-02-02 2008-08-06 St Microelectronics S.A. Circuit d'aide à la commutation pour un convertisseur à découpage

Also Published As

Publication number Publication date
US20040113596A1 (en) 2004-06-17
EP1368884A2 (fr) 2003-12-10
WO2002073783A3 (fr) 2002-12-05
US6987379B2 (en) 2006-01-17
FR2821996B1 (fr) 2003-06-13
FR2821996A1 (fr) 2002-09-13

Similar Documents

Publication Publication Date Title
WO2002073783A2 (fr) Circuit d'aide a la commutation d'un convertisseur a decoupage
EP2230754B1 (fr) Alimentation à découpage
EP2258037B1 (fr) Alimentation a decoupage dc dc non isolee
FR2923962A1 (fr) Circuit elevateur de tension
EP2320553B1 (fr) Dispositif convertisseur et alimentation sans interruption équipée d'un tel dispositif
EP1101276B1 (fr) Circuit de conversion dc/dc
EP1953904A1 (fr) Circuit d'aide à la commutation pour un convertisseur à découpage
EP3051681A1 (fr) Circuit limiteur de courant d'appel
FR2859580A1 (fr) Gradateur pour charges resistives ou capacitives
EP2286508B1 (fr) Limitation de surtensions dans un convertisseur a decoupage
FR2820942A1 (fr) Circuit d'allumage simultane ou separe de plusieurs lampes a decharge
FR2654878A1 (fr) Systeme d'alimentation electrique impulsionnelle d'une charge, muni de moyens pour derouter l'energie electrique susceptible d'etre reflechie par la charge.
EP1929630B1 (fr) Commande rapprochee de convertisseurs d'energie electriques
EP4115512A1 (fr) Procédé et dispositif de conversion d'une tension avec commutation douce des interrupteurs
EP1434340B1 (fr) Alimentation basse tension isolée
FR2858910A1 (fr) Circuit d'eclairage a lampe a decharge a convertisseur continu-alternatif
EP0966092A1 (fr) Convertisseur courant continu-courant continu
FR2698499A1 (fr) Circuit pour faire fonctionner une charge inductive.
FR2858907A1 (fr) Circuit d'eclairage a lampe a decharge
EP0928057B1 (fr) Interrupteur haute tension realisé à partir de cellules resonantes connectées en serie
WO2010004190A1 (fr) Poste de soudage a l'arc a onduleur a commutation douce quasi resonant optimise
EP1324478A2 (fr) Oscillateur haute tension ayant un temps de réaction rapide
FR3103980A1 (fr) Commande d'interrupteur bidirectionnel
FR2731120A1 (fr) Procede de commande pour courant electrique bidirectionnel et onduleur de tension a commutation douce
FR2535543A1 (fr) Convertisseur a commande alimentee par un circuit d'aide a la commutation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 028061403

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2002714290

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002714290

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10469629

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP