WO2002073201A1 - Reagents for labeling protein - Google Patents

Reagents for labeling protein Download PDF

Info

Publication number
WO2002073201A1
WO2002073201A1 PCT/JP2002/001718 JP0201718W WO02073201A1 WO 2002073201 A1 WO2002073201 A1 WO 2002073201A1 JP 0201718 W JP0201718 W JP 0201718W WO 02073201 A1 WO02073201 A1 WO 02073201A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
substance
labeling
group
molecule
Prior art date
Application number
PCT/JP2002/001718
Other languages
French (fr)
Japanese (ja)
Inventor
Naoto Nemoto
Toru Sasaki
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Publication of WO2002073201A1 publication Critical patent/WO2002073201A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/13Labelling of peptides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label

Definitions

  • the present invention relates to a protein labeling reagent. More specifically, the present invention relates to a protein labeling reagent comprising-one molecule of a labeling substance and one molecule of an affinity substance or a covalent bond-forming reactive group in a molecule.
  • Nemoto and colleagues discovered that adding a molecule of puromycin and a fluorescent molecule to a cell-free translation system at a certain concentration adds a fluorescent molecule specifically to the C-terminus of the synthesized protein. (Nemoto, N., et al (1999) FEBS Lett. 462, 43-46).
  • the one-molecule imaging method and the one-molecule labeling method described above can be combined, a system with unprecedented speed and quantitative properties can be constructed. Furthermore, it is technically very significant if a protein chip such as a DNA chip that enables large-scale parallel processing is successfully made. However, unlike the case of DNA, proteins have extremely difficult problems in terms of stability and purification methods. For example, those already reported as protein chips are limited to extremely stable proteins such as antibodies. At present, a method for immobilizing a protein encoded by cDNA or the like on a substrate while maintaining its function has not yet been established. Disclosure of the invention
  • the difference between the detection of DNA-DNA interaction on a so-called DNA chip and the detection of protein-protein interaction on a protein chip is the difference in the degree of protein-protein interaction (dynamic range). Means that it is necessary to detect an intensity difference of about 10 to the fourth power. It is an object of the present invention to provide a means for quickly and quantitatively measuring such an intermolecular interaction between a protein or nucleic acid and a target molecule. More specifically, the present invention relates to a protein capable of introducing one molecule of a labeling substance and one molecule of an affinity substance or a covalent bond-forming reactive group into a target protein molecule to be labeled. The task to be solved was to provide a labeling reagent.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, puromycin, in which a fluorescent label and biotin for immobilization were bound, was attached to the C-terminal of the protein to be immobilized by using a cell-free translation system. It has been found that by specifically introducing the protein, the protein can be immobilized onto a glass membrane or the like via a streptavidin without losing its function.
  • the present inventors have found that the number of immobilized molecules can be identified very accurately by measuring the protein immobilized as described above using the single-molecule imaging method. Furthermore, the exact number of proteins immobilized as described above was identified, and the C-terminus of the protein to be examined for interaction with this protein was labeled with fluorescent molecules with different wavelengths, and the number was quantified. Above, Ebane By quantifying the number of interacting proteins by a single-molecule imaging method using light, it is possible to obtain an accurate dissociation constant ( Figures 1 and 2).
  • the present invention has been completed based on these findings.
  • the substance having an affinity of 1 to 1 is selected from the group consisting of biotin, maltose, guanine nucleotide, metal ion, glutathione, protein-binding DNA, antigen molecule, calmodulin-binding peptide, ATP, and estradiol.
  • the covalent bond forming reactive group is a ketone group, a diol group, an azide group or a psoralen;
  • the reagent according to any one of (1) to (4).
  • a substance capable of binding to the C-terminus of the protein either S, puromycin, 3,1-N-aminoacino repuromycin aminonucleoside, or 3,1-N-aminoacyl adenosine aminonucleoside.
  • the labeling reagent according to any one of (1) to (5) which is a compound having a chemical structural skeleton or an analog thereof.
  • X represents a residue of a labeling substance
  • represents a residue of an affinity substance or a reactive group capable of forming a covalent bond
  • L 1 and L 2 each independently represent a divalent spacer group.
  • M and ⁇ n each independently represent an integer of 0 or 1
  • A represents a residue of a substance capable of binding to the C-terminus of the protein
  • the affinity substance is a substance selected from the group consisting of piotin, maltose, guanine nucleotide, metal ion, daltathione, protein-binding DNA, antigen molecule, calmodulin-binding peptide, ATP, and estradiol.
  • the covalent bond forming reactive group is a ketone group, a diol group, an azide group or a psoralen;
  • the chemical structure of the substance having the ability to bind to the C-terminus of the protein is either puromycin, 3,1-N-aminoacino repuromycin aminonucleoside, or 3,1-N-aminoacyl adenosine aminonucleoside.
  • FIG. 1 shows a schematic diagram of detection of a binding protein by single-molecule imaging.
  • a fluorescent molecule that moves randomly is not detected as a background
  • light is emitted according to the residence time.
  • the interaction between molecules can be detected by single-molecule imaging only for the C-terminal labeling method.
  • FIG. 2 shows a schematic diagram of a technique for identifying an unknown gene that interacts with a target molecule.
  • D adds a functional group or the like to the C-terminus of the target molecule in a cell-free translation system
  • E performs labeling simultaneously with protein synthesis in a cell-free translation system
  • F shows a target molecule.
  • the amount of protein immobilized in each well is quantified, and in (G), the magnitude of the interaction is measured in a few seconds in proportion to the fluorescence intensity.
  • Figure 3 shows the results of analyzing the interaction between kinesin molecules and microtubule molecules using single molecule labeling and single molecule imaging.
  • FIG. 4 shows the structural formula of a puromycin derivative (Cy5-biotin-puro) ′ having a fluorescent dye Cy5 and biotin.
  • FIG. 5 shows the results of avenolation of a protein with a puromycin derivative (Cy5-biotin-puro) having a fluorescent dye Cy5 and biotin.
  • FIG. 7 shows the results of quantification of a biotin-binding fluorescent molecule (DNA labeled with biotin and a fluorescent substance) by evanescent light.
  • a protein comprising one molecule of a substance capable of binding to the C-terminus of a protein and one molecule of a labeling substance bound to one molecule of an affinity substance or a covalent bond-forming reactive group.
  • the labeling substance and the affinity substance or the covalent bond-forming reactive group may be directly bound to the substance capable of binding to the C-terminus of the protein, or may be chemically bound via a spacer. They may be combined.
  • the labeling substance is usually selected from non-radioactive labeling substances such as fluorescent substances.
  • the fluorescent substance has a free functional group (for example, a hydroxyl group that can be converted to an active ester, a hydroxyl group that can be converted to a phosphoramidide, or an amino group), and has the above-mentioned nucleic acid derivative such asconceomycin or puromycin-like compound.
  • Various fluorescent dyes that can be linked for example, fluorescein series, rhodamine series, eosin series,
  • the fluorescent substance examples include Cy5 (Amersham), Cy3 (Amersham), IC5 (Dojindo), IC3 (Dojindo), fluorescein, tetramethylrhodamine, Texas red, and acridine orange. No.
  • a chemiluminescent substance for example, noreminol, ataridinium I, etc. may be used as the labeling substance.
  • the type of the affinity substance is not particularly limited, such as proteins, peptides, saccharides, lipids, and low molecular weight compounds as long as they have an affinity for a specific substance.
  • Specific examples of the affinity substance include biotin, maltose, guanine nucleotide, metal ion, daltathione, protein-binding DNA, antigen molecule, calmodulin-binding peptide, ATP, and estradiol.
  • Examples of the covalent bond-forming reactive group include a ketone group, a diol group, an azide group, and a psoralen.
  • nucleic acid derivative As the "substance having the ability to bind to the C-terminus of a protein" constituting the labeling reagent, a nucleic acid derivative is usually used.
  • the nucleic acid derivative is not limited as long as it is a compound capable of binding to the C-terminus of the synthesized protein when the protein is synthesized (translated) in a cell-free protein synthesis system or a living cell. However, it is possible to select one whose terminal has a similar chemical skeleton to aminoacyl tRA.
  • Representative compounds include puromycin having an amide bond, 3, -N-aminoacylbiulomycin aminonucleoside (3, -N-Aminoacylpuromycin aminonucleoside ⁇ PANS-amino acid), and tobacamine.
  • PANS-Gly with glycine in the acid part PANS-Val with palin in the amino acid part, PANS-Ala with alanine in the amino acid part, and PANS with amino acid parts corresponding to all amino acids —Amino acid dagger is fisted.
  • 3, -N-aminoaminoladenosine aminonucleoside, AA in which the amino group of 3,1-aminoadenosine and the carboxyl group of an amino acid are linked by an amide bond formed by dehydration condensation.
  • S-amino acid for example, MNS-Gly of glycine in the amino acid part, MNS-Val of palin in the amino acid part, AANS-Ala of alanine in the amino acid part, and all amino acids in the amino acid part
  • AANS-amino acid compounds corresponding to amino acids can be used.
  • nucleosides or nucleosides and ester bonds of amino acids can also be used.
  • all compounds chemically linked to a nucleic acid or a substance having a chemical structure skeleton similar to a nucleic acid and a base and a substance having a chemical structure skeleton similar to an amino acid are included in the nucleic acid derivative used in the present method.
  • the substance capable of binding to the C-terminus of protein puromycin, a compound in which a PANS-amino acid or an AANS-amino acid is bonded to a nucleoside via a phosphate group is more preferable.
  • puromycin ribocytidyl puromycin (rCpPur), deoxydilpuromycin (dCpPur), and deoxyperidyl puromycin (dU Puromycin derivatives such as pPur) are particularly preferred.
  • the substance constituting the reagent for labeling the protein of the present invention include a general formula: X— (L 1 ) m -A- (L 2 ) n -Y
  • X represents a residue of a labeling substance
  • represents a residue of an affinity substance or a reactive group capable of forming a covalent bond
  • L 1 and L 2 each independently represent a divalent spacer group.
  • M and ⁇ n each independently represent an integer of 0 or 1
  • A represents a residue of a substance capable of binding to the C-terminus of the protein
  • Examples of the divalent spacer group represented by L 1 and L 2 include an alkylene group, an alkenylene group, an alkynylene group and a combination thereof, and one or more substituents are present on these carbon atoms. You may.
  • the number of carbon atoms in the main chain is not particularly limited, but is preferably from 1 to 10 carbon atoms, more preferably from 1 to 6 carbon atoms, and still more preferably from 1 to 4 carbon atoms.
  • the spacer Ichiki indicated L 1 an unsubstituted alkylene group, ⁇ Luque two alkylene group, an alkynylene group, or a combination thereof, more preferably unsubstituted ⁇ alkylene group, a methylene group, an ethylene group, propylene And a butylene group are particularly preferred, and an ethylene group is most preferred.
  • the divalent spacer group may be a group derived from a polymer substance such as polyethylene and polyethylene glycol.
  • n and n are preferably 1.
  • the labeling reagent is a chemical bond known per se between the above-mentioned labeling substance and the above-mentioned affinity substance or a covalent bond-forming reactive group and a substance having the ability to bind to the C-terminus of the protein via a spacer, if desired. It can be manufactured by bonding by a method. Specifically, for example, a “substance capable of binding to the C-terminus of a protein” protected with an appropriate protecting group is bound on a solid-phase carrier, and is used as a spacer using a nucleic acid synthesizer.
  • Types of above parts or types of bonding Depending on the type, they may be combined by a liquid phase synthesis method, or both may be used in combination.
  • binding of a metal ion such as nickel as an affinity substance can be carried out using a chelating reagent such as di-triaminodiacetic acid which can coordinate the metal ion.
  • an aliphatic hydrocarbon group having about 1 to 10 carbon atoms may be used.
  • an alkylene group or an alkylene group or a group derived from a polymer substance such as polyethylene or polyethylene daricol.
  • the present invention provides a method in which one molecule of a substance having the ability to bind to the C-terminus of a protein is combined with one molecule of a labeling substance and one molecule of an affinity substance or a covalent bond-forming reactive group.
  • This is related to the label reagent for proteins, and specific examples thereof include the general formula: X— (L 1 ) m —A— (L 2 ) n —Y
  • X represents a residue of a labeling substance
  • Y represents a residue of an affinity substance or a reactive group capable of forming a covalent bond
  • L 1 and L 2 each independently represent a divalent spacer group.
  • M and ⁇ n each independently represent an integer of 0 or 1
  • A represents a residue of a substance capable of binding to the C-terminus of the protein
  • the compound represented by is exemplified, but the compound is itself a novel compound and constitutes one aspect of the present invention. That is, the general formula: X— (L 1 ) m —A— (L 2 ) n -Y (where X represents a residue of a labeling substance, and ⁇ represents a residue of an affinity substance or a covalent bond forming reaction.
  • L 1 and L 2 each independently represent a divalent spacer group, m and ⁇ each independently represent an integer of 0 or 1, and ⁇ represents the C-terminal of the protein. Indicates the residue of the substance capable of binding)
  • the compound represented by or a salt thereof is also within the scope of the present invention.
  • the metal salt examples include alkaline metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, aluminum salt, zinc salt, and the like.
  • Ammonium salt includes , Ammonium or tetramethylammonium; and the organic amine addition salts include addition salts such as morpholine and piperidine.
  • the above compounds and salts thereof may exist in the form of adducts (hydrates or solvates) with water or various solvents, but these adducts are also within the scope of the present invention. . Also, any crystal forms of the above compounds and salts thereof are within the scope of the present invention.
  • the present invention further provides a method for transcription using a protein-encoding nucleic acid in the presence of the aforementioned protein labeling reagent of the present invention.
  • the present invention relates to a method for labeling a C-terminus of a protein, comprising a step of performing protein synthesis in a translation system.
  • the protein labeled by the method of the present invention means a protein whose function is known or unknown and is used as an analysis target for interaction. Using the protein labeled by the method of the present invention, the interaction with a target molecule described below can be measured.
  • This protein may be a natural protein or a mutant thereof, or an artificial protein or a mutant thereof.
  • Natural proteins include organs and tissues of various organisms Alternatively, it also includes a library of proteins having diversity transcribed and translated from a cDNA library derived from a cell.
  • the artificial protein includes a sequence obtained by combining all or a part of the natural protein or a random amino acid sequence.
  • the coding region encoding the protein is controlled under the control of a promoter region derived from a virus or cell such as T7. And transcribe it to synthesize mRNA.
  • a sequence from which a stop codon is deleted is preferably used in order to improve the efficiency of labeling by several tens of times.
  • mRNA obtained from a living body by a method known per se can be used. These mRNAs can be prepared by expressing them in a translation system and performing protein synthesis.
  • Examples of the translation system used include a cell-free translation system and living cells.
  • the cell-free translation system or living cell is not limited as long as protein synthesis is performed by adding or introducing a nucleic acid encoding a protein into the cell-free translation system or living cell.
  • a cell-free translation system composed of an extract of a prokaryotic or eukaryotic organism, for example, an Escherichia coli, a heron reticulocyte, a wheat germ extract, or the like can be used.
  • Prokaryotic or eukaryotic organisms such as E. coli cells, can be used as the live cell translation system.
  • a cell-free translation system if the nucleic acid to be used is DNA, an RNA transcribed and synthesized by a method using a known RNA polymerase or the like is introduced as type II.
  • the C-terminus of the protein can be labeled with the labeling reagent by allowing the labeling reagent to be present at an appropriate concentration.
  • concentration of the labeling reagent to be present varies depending on the labeling reagent, nucleic acid or translation system actually used, but generally the final concentration is preferably in the range of 0.1 to 200 ⁇ M.
  • the concentration of the nucleic acid derivative to which the labeling substance and the affinity substance or the covalent bond-forming reactive group used in the present invention are bound may be, for example, although the concentration differs depending on the translation system and the like, those skilled in the art can appropriately determine the concentration by the following method or the like. That is, in the above-described system for producing a C-terminal labeling / reforming protein, a nucleic acid derivative to which a label substance is bound is added at a different concentration, and the resulting translation product is subjected to SDS polyacrylamide electrophoresis. Measure the signal intensity emitted from the label attached to the C-terminus, and select the concentration with the highest signal intensity.
  • the C-terminal labeling protein thus synthesized is lysed by a method known per se, and then gel filtration or the like (for example, Bio-Spin 6; BI0- Rad) removes unreacted labeling reagent and obtains it.
  • gel filtration or the like for example, Bio-Spin 6; BI0- Rad
  • unreacted labeling reagent may be removed by gel filtration.
  • the affinity substance or covalent bond-forming reactive group used in the present invention is a molecule that specifically binds to a specific polypeptide, and binds the specific polypeptide that binds to the molecule to the solid phase surface.
  • the “specific polypeptide” includes a binding protein, a receptor protein constituting a receptor, an antibody, and the like.
  • polypeptides / affinity substances bound to the solid phase or combinations of covalent bond-forming reactive groups include, for example, biotin-binding protein Z-biotin such as avidin and streptavidin, maltose-binding protein Z-maltose, Q tamper Protein Z guanine nucleotide, polyhistidine peptide z metal ions such as nickel or cobalt, glutathione-s-transferase / daltathione,
  • receptor proteins / ligands such as DNA binding protein ZDNA, antibody / antigen molecule (epitope), calmodulin / calmodulin binding peptide, ATP binding protein ZATP, or estradiol receptor protein / estradiol, etc. ⁇ is a ketone group z hydrazide group, diol group z hydrazide group, Azide group / alkyl group; psoralen / acid base (nucleic acid base such as pyrimidine ring or purine ring or analog thereof).
  • biotin-binding proteins such as avidin and streptavidin, maltose-binding protein / maltose, metal ions such as polyhistidine peptide / nickel or cobalt, glutathione-s-transferase Z glutathione, antibody Z antigen molecule (Epitope) and the like, and particularly preferred is a combination of streptavidinnobiotin.
  • biotin-binding proteins such as avidin and streptavidin, maltose-binding protein / maltose, metal ions such as polyhistidine peptide / nickel or cobalt, glutathione-s-transferase Z glutathione, antibody Z antigen molecule (Epitope) and the like, and particularly preferred is a combination of streptavidinnobiotin.
  • binding proteins are known per se, and the DNA encoding the protein has already been cloned.
  • the specific polypeptide described above can be bound to the solid phase surface by a method known per se. Specifically, for example, tannic acid, formalin, dartal aldehyde, pyrvic aldehyde, Benzizone diazotate, toluene-2,4-diisocyanate, an amino group, a carboxyl group, or a method utilizing a hydroxyl group or an amino group can be used.
  • reaction can be carried out using pyruvaldehyde, benzodiazobis bis-diazotide, toluene-2,4-diisocyanate, an amino group, a carboxyl group, or a hydroxyl group or an amino group.
  • a protein chip containing an aggregate of proteins can be constructed by binding a large number of the above-mentioned C-terminal labeled proteins of the present invention to a solid phase.
  • Such a protein chip is useful for analyzing a molecular interaction between a protein and a target molecule.
  • a protein having one molecule of a labeling substance and one molecule of an affinity substance or a covalent bond-forming reactive group in one molecule can be prepared.
  • the interaction between the protein and the target molecule can be analyzed. Specifically, for example, a method including the following steps is provided.
  • the target molecule mentioned above means a molecule that interacts with a C-terminal labeled protein, and specifically includes proteins, nucleic acids, sugar chains, low molecular weight compounds, and the like.
  • the protein is not particularly limited, as long as it has the ability to interact with the C-terminal Labelich protein, and may be a full-length protein or a partial peptide containing a binding active site.
  • the protein may have a known amino acid sequence and its function, or may have an unknown protein. These can be used as a target molecule even with a synthesized peptide chain, a protein purified from a living body, or translated from a cDNA library or the like using an appropriate translation system, and a purified protein or the like can be used as a target molecule.
  • the synthesized peptide chain may be a glycoprotein having a sugar chain bound thereto.
  • a purified protein whose amino acid sequence is known, or a protein translated and purified from the cDNA library using an appropriate method.
  • reaction performed by these target molecules with the c-terminal labeled protein generally means a covalent bond, a hydrophobic bond, a hydrogen bond, a Van der Waals bond, or a bond by electrostatic force between the protein or nucleic acid and the target molecule.
  • the covalent bond includes a coordinate bond and a dipole bond.
  • the coupling by electrostatic force includes not only electrostatic coupling but also electric repulsion.
  • a binding reaction, a synthesis reaction, and a decomposition reaction resulting from the above actions are also included in the interaction.
  • interaction examples include binding and dissociation between an antigen and an antibody, binding and dissociation between a protein receptor and a ligand, binding and dissociation between an adhesion molecule and a partner molecule, and binding and dissociation between an enzyme and a substrate. , Binding and dissociation between nucleic acids and proteins that bind to it, binding and dissociation between proteins in the signal transduction system, binding and dissociation between glycoproteins and proteins, or binding between sugar chains and proteins And dissociation.
  • the fluorescent substance examples include Cy5 (Amersham), Cy3 (Amersham), IC5 (Dojindo Chemical), IC3 (Dojindo Chemical), Honorable Resin, Tetramethylrhodamine, Texas Red, Atalidine orange and the like.
  • a chemiluminescent substance for example, luminol, ataridinium I, etc. may be used as the labeling substance.
  • the binding of the labeling substance to the target molecule can be carried out using an appropriate method known per se. Specifically, for example, when the target molecule is a protein, the method of forming a C-terminal as described in (1) above can be used. When the target molecule is a nucleic acid, labeling can be easily performed by a method of performing PCR using an oligo DNA primer to which a labeling substance is previously bound by a covalent bond or the like.
  • the fluorescence imaging analyzer method involves contacting a labeled molecule with a solid-phased molecule, and the interaction between the two molecules causes the fluorescence emitted from the labeled molecule remaining on the solid-phased molecule to be converted to a commercially available fluorescence. Measured using a fluorescence imaging analyzer or It is a method of analysis.
  • a C-terminal labeled protein or a labeled nucleic acid is immobilized, and a target molecule labeled with a labeling substance is brought into contact therewith.
  • a base for immobilizing a C-terminal labeled protein or labeled nucleic acid on a solid phase a dinitrocellulose membrane or a nylon membrane, which is usually used for immobilizing a protein or nucleic acid, or a plastic microplate, etc. Can be used.
  • a method of performing a large number of analyzes at the same time is a method of addressing a plurality of C-terminal labeled proteins on the solid phase surface and immobilizing the same, or a method of labeling one type of C-terminal.
  • a method of contacting a protein with a plurality of types of labeled target molecules is used.
  • the primary structure of a target molecule that has been found to interact with a C-terminal labeled protein by the above method is unknown, its primary structure can be analyzed by a method known per se if the primary structure of the target molecule is unknown. it can.
  • the primary structure can be identified by analyzing the amino acid sequence using an amino acid analyzer or the like.
  • the target molecule is a nucleic acid
  • the nucleotide sequence can be determined by a nucleotide sequence determination method using an automatic DNA sequencer or the like. Thereby, the target molecule can be identified.
  • Cy5 Monofunctional Dye (Amersham Fanolemasianotech) Add 50 ⁇ 1 DMF to one tube, and immediately add 80 nmol of Aminolink-dC-puromycin 0.15 M sodium carbonate buffer (pH 9.0) 100 ⁇ l The solution dissolved in 1 was added and left at room temperature for 1 hour with occasional stirring. Cy5-Puro was purified by reverse phase HPLC using Shim-Pack CLC-ODS (4.6 mm x 250 mm) (Shimadzu Corporation) and the solvent system described above. Label is 5, end It was presumed that the processing proceeded preferentially at the terminal amino group, and no product labeled with the amino group at the position was detected.
  • a Kinesin fragment having Nco I and Sac I restriction enzyme sites at both ends was obtained by using a pUC8 vector (phskinZ) encoding kinesin lacking the C-terminal side as a ⁇ type and having a base sequence having the nucleotide sequence of ⁇ in SEQ ID NO: 1.
  • PCR was performed using a primer having the nucleotide sequence shown in SEQ ID NO: 2. After purifying the obtained PCR product, the restriction enzymes Nco I and Sac
  • the linearized Kinesin DNAplasmid was applied to Transription Mix (Invitrogene) to a final concentration of 10 nM and reacted at 30 ° C for 15 minutes.
  • Translation Mix (Invitrogene) 30 ⁇ l and Cy5-puro (final concentration: 30 M) are added and reacted for 1 hour.
  • the kinesin is translated by reacting with one molecule of Cy5-puro specifically at the C-terminal. (Cy5-puro-kinesin) force S obtained.
  • the translated sample was separated by SDS-PAGE using 7.5% acrylamide gel, and the band was visualized with a 530DF30 band-pass filter of Fluorlmager (BioRad Co) without staining.
  • Streptavidin was immobilized on silica glass via Biotinylated BSA, and a partially biotinylated Microtubule (extracted from pig brain and stained with TMR-SE) was bound thereto. You. In order to prevent non-specific adsorption of Cy5-puro-kinesin, coat the glass surface with lmg / ml Casein (Sigma), and filter the Kinesin sample that has been genole-filtered with NAP5 with AssayBuffer (80 mM PIPES, 2 mM MgC12, ImM EGTA).
  • FIG. 4 shows the structural formula of the obtained puromycin derivative (Cy5-biotin-puro) having the fluorescent dye Cy5 and biotin.
  • the GFP used was GFPuv4 discovered by Ito et al. (Ito, Y. et al., Biochemical and Biophysical Research Communication 264, 556-560, (1999)), and was easily excited even by a 488 nm laser beam. To check it with an image analyzer.
  • a DNA construct having a T'7 promoter region and Kozak sequence upstream of this GFP was prepared as follows.
  • a DNA (SEQ ID NO: 3) having a T'7 promoter region and a Kozak sequence is referred to as type I DNA.
  • a primer containing the sequence on the 5th side of this type II (SEQ ID NO: 4) and a primer containing a part of the complementary strand on the 3rd side and GFP on the 5th side (SEQ ID NO: 5) were used.
  • PCR was performed. The conditions of PCR were 25 cycles of 20 seconds at 95 ° C, 20 seconds at 68 ° C and 20 seconds at 72 ° C, and were performed using EX Taq polymerase (Takara).
  • PCR was performed using the plasmid encoding GFPuv4 as type I, using a primer having the nucleotide sequence of SEQ ID NO: 6 and a primer having the nucleotide sequence of SEQ ID NO: 7.
  • the PCR conditions are 30 cycles of 20 seconds at 95 ° C, 20 seconds at 68 ° C, and 30 seconds at 72 ° C, using EX Taq polymerase (Takara).
  • PCR products were purified by phenol extraction followed by ethanol precipitation using Primer Rimpar (Edge Biosystem). Equimolar amounts of each of these DNA templates were added, and PCR was carried out using a primer having the nucleotide sequence of SEQ ID NO: 4 and a primer having the nucleotide sequence of SEQ ID NO: 7.
  • PCR conditions were 30 cycles of 20 seconds at 95 ° C, 20 seconds at 68 ° C and 40 seconds at 72 ° C, and EX Taq Performed using polymerase (Takara). After phenol extraction, these PCR products were purified by ethanol precipitation using a primer remover (Edge Biosystem). The purified DNA was transcribed using RiboMAX (Promega) to obtain mRNA for translation.
  • the GFP mRNA having the T7 promoter and Cy5-biotin-puro synthesized by the above method were added to the wheat germ cell-free translation system at a final concentration of 20 M and 40 3 ⁇ 41, respectively. For 1 hour.
  • experiments were also performed using Cy5-dC-Puro instead of Cy5-biotin-puro. These reaction products were separated by 15% SDS-acrylamide electrophoresis and confirmed by a fluorescence image analyzer, Molecular Imager (Bio-Rad). The results are shown in FIG. 5 (in FIG. 5, the results obtained using Cy5-dC-Puro are denoted as Cy5-Puro).
  • FIG. 5 the results obtained using Cy5-dC-Puro are denoted as Cy5-Puro).
  • Cy5-biotin-puro synthesized in Example 2 or Cy5-puro having no biotin for comparison were each dissolved in a 2 O mM (pH 8.0) tris puffer, and 500 M, 100 M The concentrations were adjusted to ⁇ and 10.
  • Each solution 501 was spotted on streptavidin membrane (Promega) and allowed to stand for 20 minutes. Next, it was washed about 10 times with a 2 O mM (pH 8.0) tris buffer, and then confirmed with a fluorescence image analyzer, Molecular Imager (Bio-Rad).
  • Fig. 6 shows the results.
  • Cy5-biotin-puro can bind more specifically to streptavidin membrane or streptavidin slide glass than to Cy5-puro.
  • the immobilization rate of Fluorpuro and Fluor-biotin-puro on streptavidin-membrene in Fig. 6 shows that after two washes, Fluorpuro was 15% and Fluor-biotin-puro was 88% C To hot.
  • the amount of Fluor-biotin-puro fixed to the slide glass was about 3.5 times that of Fluorpuro. That is, it can be seen that the immobilization of Fluor-biotin-puro on the slide glass is a sufficiently specific binding even in consideration of non-specific adsorption.
  • Example 4 Quantification of Piotin-Binding Fluorescent Molecules (DNA Labeled with Piotin and Fluorescent Substance) by Evanescent Light
  • Octl's Pou Single-stranded DNA (SEQ ID NO: 8) containing a DNA sequence that interacts with the specific domain (Nature vol. 362 852-855, 1993) and biotinylated on the 5 and 5 sides
  • Single-stranded DNA (SEQ ID NO: 9) which has a sequence and is labeled on the 5 'side with TAMRA (5-carbox rtetramethylrhodamine), was ordered to Nippon Milling from the 3' side using a DNA synthesizer. And synthesized. Purified with a reversed-phase simple column was used.
  • 150 ⁇ 150 pixels (about 23 ⁇ 23 ⁇ m) were averaged over 60 frames (about 2 seconds). The binding of non-specific biotin and DNA labeled with a fluorescent substance was examined in the absence of Streptavidin.
  • the number of biotin and fluorescent substance-labeled DNA adsorbed on the glass surface increases with the concentration of the flowed biotin and fluorescent substance-labeled DNA. 5
  • the number of bright spots is about 30, about 60, It was confirmed that it increased in proportion to about 180.
  • streptavidin was not immobilized on the glass surface as a control, no such increase was observed.
  • a protein labeling reagent capable of introducing one molecule of a labeling substance and one molecule of an affinity substance or a covalent bond-forming reactive group into one molecule of a target protein to be labeled. It became possible to do.
  • the labeling reagent of the present invention By analyzing the intermolecular interaction with the target molecule using a protein having a C-terminal labeled using the protein, it becomes possible to measure the interaction quickly and quantitatively.

Abstract

It is intended to provide reagents for labeling a protein which makes it possible to introduce one molecule of a labeling and one molecule of an affinity substance or a covalent bond-forming reactive group per molecule of a target protein to be labeled. Namely, reagents for labeling a protein wherein one molecule of a labeling and one molecule of an affinity substance or a covalent bond-forming reactive group are bonded to a molecule of a substance capable of binding to the C-end of a protein.

Description

タンパク質のラベル化試薬 技術分野  Technical field for protein labeling reagents
本発明は、 タンパク質のラベル化試薬に関する。 より詳細には、 本発明は、 ― 分子中に一分子の標識物質と一分子の親和性物質又は共有結合形成性反応基とを 含むタンパク質のラベル化試薬に関する。 背景技術  The present invention relates to a protein labeling reagent. More specifically, the present invention relates to a protein labeling reagent comprising-one molecule of a labeling substance and one molecule of an affinity substance or a covalent bond-forming reactive group in a molecule. Background art
ヒトゲノム計画の進展により 2 0 0 1年には全ヒトゲノムの一次配列が解読さ れようとしている. 現在、 いわゆるポストゲノム研究と呼ばれる遺伝子相互作用 の研究が注目され、蛍光偏光解消法 (Checovich, W. C. , et al. (1995) Nature 375, 254-256).、 表面プラズモン法 (Jonsson U et al. (1991) Anal Biochem. 198, 268-277)、 蛍光相関分光法 (Eigen M. and Rigler, R. (1994) Proc. Natl. Acad. Sci. USA 91, 5470-5747) 等を含む幾つかの方法が検討され研究が進められてい る。 &津らは近年、 初めて水中でェパーネッセント光を用いて蛍光ラベルしたタ ンパク質分子を 1分子レベルで観測する技術を開発することに成功した (Funatsu, T et al. (1995) Nature 374, 555-559) 0 この技術における大きな課題の一つは タンパク質分子に 1個の蛍光分子を付加することであった。 Due to the progress of the Human Genome Project, the primary sequence of the entire human genome is about to be decoded in 2001. At present, research on so-called post-genome research, which is a gene interaction study, has attracted attention, and the fluorescence depolarization method (Checovich, WC , et al. (1995) Nature 375, 254-256), surface plasmon method (Jonsson U et al. (1991) Anal Biochem. 198, 268-277), fluorescence correlation spectroscopy (Eigen M. and Rigler, R (1994) Proc. Natl. Acad. Sci. USA 91, 5470-5747). & Tsu et al. Recently succeeded in developing, for the first time, a technique for observing single-molecule labeled protein molecules in water using evanescent light (Funatsu, T et al. (1995) Nature 374, 555) -559) 0 One of the major challenges in this technology was to add one fluorescent molecule to the protein molecule.
一方、 根本らは無細胞翻訳系にピューロマイシンと蛍光分子を化学結合させた 分子をある濃度で加えることにより、 合成されるタンパク質の C末端に特異的に 蛍光分子が付加されることを発見した(Nemoto, N. , et al (1999) FEBS Lett. 462, 43-46)。  On the other hand, Nemoto and colleagues discovered that adding a molecule of puromycin and a fluorescent molecule to a cell-free translation system at a certain concentration adds a fluorescent molecule specifically to the C-terminus of the synthesized protein. (Nemoto, N., et al (1999) FEBS Lett. 462, 43-46).
上記したような 1分子ィメ一ジング法と 1分子ラベル法とを組み合わせること ができれば、 従来にない迅速性と定量性を有するシステムを構築することが可能 になる。 さらに、 大量並立処理を可能とする D NAチップのようなタンパク質の チップ化に成功すれば技術的に非常に有意義である。 しかしながら、 D NAの場合と異なり、 タンパク質は安定性や精製法等の点に おいて極めて困難な課題を持っている。 例えば、 既にタンパク質チップとして報 告されているものも抗体のような極めて安定性の高いタンパク質に限られている。 c D NA等にコードされるタンパク質をその機能を保持したまま基盤上に固定す る方法はまだ確立されていないのが現状である。 発明の開示 If the one-molecule imaging method and the one-molecule labeling method described above can be combined, a system with unprecedented speed and quantitative properties can be constructed. Furthermore, it is technically very significant if a protein chip such as a DNA chip that enables large-scale parallel processing is successfully made. However, unlike the case of DNA, proteins have extremely difficult problems in terms of stability and purification methods. For example, those already reported as protein chips are limited to extremely stable proteins such as antibodies. At present, a method for immobilizing a protein encoded by cDNA or the like on a substrate while maintaining its function has not yet been established. Disclosure of the invention
いわゆる D N Aチップにおける D N A— D N A間の相互作用の検出とタンパク 質チップにおけるタンパク質一タンパク質間の相互作用の検出との違いは, タン パク質間相互作用の結合する度合いの程度の差 (ダイナミックレンジ) が極めて 大きくおおよそ 1 0の 4乗のオーダーの強度差を検出する必要があるということ である。 本発明は、 このようなタンパク質又は核酸と標的分子との間の分子間相 互作用を迅速かつ定量的に測定することを可能にする手段を提供することを解決 すべき課題とした。 より具体的には、 本発明は、 標識すべき標的タンパク質一分 子に対して一分子の標識物質と一分子の親和性物質又は共有結合形成性反応基を 導入することを可能にするタンパク質のラベル化試薬を提供することを解決すベ き課題とした。  The difference between the detection of DNA-DNA interaction on a so-called DNA chip and the detection of protein-protein interaction on a protein chip is the difference in the degree of protein-protein interaction (dynamic range). Means that it is necessary to detect an intensity difference of about 10 to the fourth power. It is an object of the present invention to provide a means for quickly and quantitatively measuring such an intermolecular interaction between a protein or nucleic acid and a target molecule. More specifically, the present invention relates to a protein capable of introducing one molecule of a labeling substance and one molecule of an affinity substance or a covalent bond-forming reactive group into a target protein molecule to be labeled. The task to be solved was to provide a labeling reagent.
本発明者らは上記課題を解決するために鋭意検討した結果、 蛍光ラベルと固定 化のためのビォチンを結合したピューロマイシンを、 無細胞翻訳系を用いること によって、 固定すべきタンパク質の C末端に特異的に導入することにより、 当該 タンパク質をその機能を失うことなくガラスゃメンプレン等に支持体上にストレ プトァビジンを介して固定化できることを見出した。  The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, puromycin, in which a fluorescent label and biotin for immobilization were bound, was attached to the C-terminal of the protein to be immobilized by using a cell-free translation system. It has been found that by specifically introducing the protein, the protein can be immobilized onto a glass membrane or the like via a streptavidin without losing its function.
また本発明者らは、 上記のようにして固定ィ匕したタンパク質を 1分子イメージ ング法を用いて測定すると、 極めて正確に固定化した分子数を同定できることを 見出した。 さらに、 上記のようにして固定化されたタンパク質の正確な数を特定 し、 さらにこのタンパク質と相互作用するかどうか調べたいタンパク質の C末端 を波長の異なる蛍光分子で標識化し、 その数を定量した上で, エバーネ 光を用いた 1分子ィメ一ジング法で相互作用するタンパク質の数を定量すること により、 正確な解離定数を求めることが可能になる (図 1及び 2)。 In addition, the present inventors have found that the number of immobilized molecules can be identified very accurately by measuring the protein immobilized as described above using the single-molecule imaging method. Furthermore, the exact number of proteins immobilized as described above was identified, and the C-terminus of the protein to be examined for interaction with this protein was labeled with fluorescent molecules with different wavelengths, and the number was quantified. Above, Ebane By quantifying the number of interacting proteins by a single-molecule imaging method using light, it is possible to obtain an accurate dissociation constant (Figures 1 and 2).
本発明はこれらの知見に基づいて完成したものである。  The present invention has been completed based on these findings.
即ち、 本発明によれば、 以下の発明が提供される。  That is, according to the present invention, the following inventions are provided.
(1) タンパク質の C末端に結合する能力を有する物質一分子に対して一分子 の標識物質と一分子の親和性物質又は共有結合形成性反応基とが結合して成る.、 タンパク質のラベル化試薬。  (1) One molecule of a substance capable of binding to the C-terminus of a protein is combined with one molecule of a labeling substance and one molecule of an affinity substance or a covalent bond-forming reactive group. reagent.
( 2 ) 標識物質と親和性物質又は共有結合形成性反応基がそれぞれスぺ一サー を介して、 タンパク質の C末端に結合する能力を有する物質に結合している、 (2) a labeling substance and an affinity substance or a covalent bond-forming reactive group are respectively bound to a substance capable of binding to the C-terminus of the protein via a spacer;
(1) に記載のラベル化試薬。 The labeling reagent according to (1).
(3) 一般式: X— (L1) m-A- (L2) n-Y (3) General formula: X— (L 1 ) m -A- (L 2 ) n -Y
(式中、 Xは標識物質の残基を示し、 Υは親和性物質の残基又は共有結合形成性 反応基を示し、 L1および L 2はそれぞれ独立に 2価のスぺーサ基を示し、 mおよ ぴ nはそれぞれ独立に 0又は 1の整数を示し、 Aはタンパク質の C末端に結合す る能力を有する物質の残基を示す) ― (In the formula, X represents a residue of a labeling substance, Υ represents a residue of an affinity substance or a reactive group capable of forming a covalent bond, and L 1 and L 2 each independently represent a divalent spacer group. , M and ぴ n each independently represent an integer of 0 or 1, and A represents a residue of a substance capable of binding to the C-terminus of the protein.
で表される化合物から成る (1) 又は (2) に記載のラベ/レイヒ試薬。 The Labe / Reich reagent according to (1) or (2), comprising a compound represented by the formula:
(4) 標識物質が蛍光物質である、 (1) から (3) の何れかに記載のラベル化  (4) Labeling according to any one of (1) to (3), wherein the labeling substance is a fluorescent substance
(5) 親和 '1~生物質が、 ビォチン、 マルトース、 グァニンヌクレオチド、 金属ィ オン、 グルタチオン、 タンパク質結合性 DNA、 抗原分子、 カルモジュリン結合 ペプチド、 ATP、 及ぴエストラジオールからなる群より選ばれる物質であり、 共有結合形成性反応基がケトン基、 ジオール基、 アジド基又はソラレンである、(5) The substance having an affinity of 1 to 1 is selected from the group consisting of biotin, maltose, guanine nucleotide, metal ion, glutathione, protein-binding DNA, antigen molecule, calmodulin-binding peptide, ATP, and estradiol. The covalent bond forming reactive group is a ketone group, a diol group, an azide group or a psoralen;
(1) から (4) の何れかに記載のラベルィヒ試薬。 The reagent according to any one of (1) to (4).
(6) タンパク質の C末端に結合する能力を有する物質力 S、ピューロマイシン、 3, 一 N—アミノアシノレピューロマイシンアミノヌクレオシド、 又は 3, 一 N—ァ ミノアシルアデノシンァミノヌクレオシドのいずれかの化学構造骨格を含む化合 物又はそれらの類縁体である、 (1) から (5) の何れかに記載のラベル化試薬。 (7) (1) から (6) の何れかに記載のタンパク質のラベノレ化試薬の存在下 においてタンパク質をコードする核酸を用いて転写 ·翻訳系においてタンパク質 合成を行う工程を含む、 タンパク質の C末端を標識する方法。 (6) A substance capable of binding to the C-terminus of the protein, either S, puromycin, 3,1-N-aminoacino repuromycin aminonucleoside, or 3,1-N-aminoacyl adenosine aminonucleoside. The labeling reagent according to any one of (1) to (5), which is a compound having a chemical structural skeleton or an analog thereof. (7) a C-terminal of the protein, comprising a step of performing protein synthesis in a transcription / translation system using a nucleic acid encoding the protein in the presence of the reagent for labeling a protein according to any one of (1) to (6); How to label.
(8) 一般式: X— (L1) m-A- (L2) n-Y (8) General formula: X— (L 1 ) m -A- (L 2 ) n -Y
(式中、 Xは標識物質の残基を示し、 Υは親和性物質の残基又は共有結合形成性 反応基を示し、 L1および L 2はそれぞれ独立に 2価のスぺーサ基を示し、 mおよ ぴ nはそれぞれ独立に 0又は 1の整数を示し、 Aはタンパク質の C末端に結合す る能力を有する物質の残基を示す) (In the formula, X represents a residue of a labeling substance, Υ represents a residue of an affinity substance or a reactive group capable of forming a covalent bond, and L 1 and L 2 each independently represent a divalent spacer group. , M and ぴ n each independently represent an integer of 0 or 1, and A represents a residue of a substance capable of binding to the C-terminus of the protein)
で奉される化合物又はその塩。 Or a salt thereof.
(9) 標識物質が蛍光物質である、 (8) に記載の化合物又はその塩。  (9) The compound according to (8) or a salt thereof, wherein the labeling substance is a fluorescent substance.
(10) 親和性物質が、 ピオチン、 マルト—ス、 グァニンヌクレオチド、 金属 イオン、 ダルタチオン、 タンパク質結合性 DNA、 抗原分子、 カルモジュリン結 合ペプチド、 AT P、及ぴエストラジオールからなる群より選ばれる物質であり、 共有結合形成性反応基がケトン基、 ジオール基、 アジド基又はソラレンである、 (10) The affinity substance is a substance selected from the group consisting of piotin, maltose, guanine nucleotide, metal ion, daltathione, protein-binding DNA, antigen molecule, calmodulin-binding peptide, ATP, and estradiol. The covalent bond forming reactive group is a ketone group, a diol group, an azide group or a psoralen;
(8) 又は (9) に記載の化合物又はその塩。 The compound according to (8) or (9) or a salt thereof.
(11) タンパク質の C末端に結合する能力を有する物質が、 ピューロマイシ ン、 3, 一 N—アミノアシノレピューロマイシンアミノヌクレオシド、 又は 3, 一 N 一アミノアシルアデノシンァミノヌクレオシドのいずれかの化学構造骨格を含む 化合物又はそれらの類縁体である、 (8) から (10) の何れかに記載の化合物又 はその塩。 図面の籣単な説明  (11) The chemical structure of the substance having the ability to bind to the C-terminus of the protein is either puromycin, 3,1-N-aminoacino repuromycin aminonucleoside, or 3,1-N-aminoacyl adenosine aminonucleoside. The compound or salt thereof according to any one of (8) to (10), which is a compound having a skeleton or an analog thereof. Brief description of the drawings
図 1は、 1分子イメージングによる結合タンパク質の検出の模式図を示す。 図 1中、 (A)ではランダムに動く蛍光化分子はバックグランドとなって検出されず、 (B) では、滞留時間に応じて光がでる。 また、 (C) では C末端ラベル化法によ つて初めて 1分子イメージングによる分子間の相互作用検出が可能になった。  FIG. 1 shows a schematic diagram of detection of a binding protein by single-molecule imaging. In FIG. 1, in (A), a fluorescent molecule that moves randomly is not detected as a background, and in (B), light is emitted according to the residence time. In (C), the interaction between molecules can be detected by single-molecule imaging only for the C-terminal labeling method.
図 2は、 標的分子と相互作用する未知遺伝子を同定する手法の模式図を示す。 図 2中、 (D)では、ターゲット分子を無細胞翻訳系中で C末端に官能基等を付加 し、 (E ) では無細胞翻訳系中でタンパク合成と同時にラベルイ匕し、 (F ) では各 ゥエルに固定化されたタンパク質量を定量し、 (G)では相互作用の大きさを蛍光 強度に比例させて、 数秒間で計測する。 FIG. 2 shows a schematic diagram of a technique for identifying an unknown gene that interacts with a target molecule. In FIG. 2, (D) adds a functional group or the like to the C-terminus of the target molecule in a cell-free translation system, (E) performs labeling simultaneously with protein synthesis in a cell-free translation system, and (F) shows a target molecule. The amount of protein immobilized in each well is quantified, and in (G), the magnitude of the interaction is measured in a few seconds in proportion to the fluorescence intensity.
図 3は、 1分子ラベル法と 1分子イメージング法を用いたキネシン分子と微小 管分子の相互作用を解析した結果を示す。  Figure 3 shows the results of analyzing the interaction between kinesin molecules and microtubule molecules using single molecule labeling and single molecule imaging.
図 4は、 蛍光色素 Cy5 とビォチンを有するピューロマイシン誘導体 (Cy5-biotin-puro) 'の構造式を示す。  FIG. 4 shows the structural formula of a puromycin derivative (Cy5-biotin-puro) ′ having a fluorescent dye Cy5 and biotin.
図 5は、 蛍光色素 Cy5 とビォチンを有するピューロマイシン誘導体 (Cy5-biotin-puro) によるタンパク質のラベノレ化の結果を示す。  FIG. 5 shows the results of avenolation of a protein with a puromycin derivative (Cy5-biotin-puro) having a fluorescent dye Cy5 and biotin.
図 6は、 Cy5-biotin-puro の支持体 (ストレプトアビジンメンブレン又はスト レプトアビジンスライドガラス) への固定化実験の結果を示す。  FIG. 6 shows the results of an experiment in which Cy5-biotin-puro was immobilized on a support (streptavidin membrane or streptavidin slide glass).
図 7は、 エバーネッセント光によるビォチン結合蛍光分子 (ビォチン及び蛍光 物質で標識した D NA) の定量化を行った結果を示す。 発明を実施するための最良の形態  FIG. 7 shows the results of quantification of a biotin-binding fluorescent molecule (DNA labeled with biotin and a fluorescent substance) by evanescent light. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施方法および実施態様について詳細に説明する。  Hereinafter, a method and an embodiment of the present invention will be described in detail.
( 1 ) タンパク質のラベル化試薬  (1) Protein labeling reagent
本発明によれば、 タンパク質の C末端に結合する能力を有する物質一分子に対 して一分子の標識物質と一分子の親和性物質又は共有結合形成性反応基とが結合 して成る、 タンパク質のラベル化試薬が提供される。  According to the present invention, there is provided a protein comprising one molecule of a substance capable of binding to the C-terminus of a protein and one molecule of a labeling substance bound to one molecule of an affinity substance or a covalent bond-forming reactive group. Are provided.
即ち、 本発明のラベルィヒ試薬は、 その分子一分子中に一分子の標識物質と一分 子の親和性物質又は共有結合形成性反応基とを有し、 かつタンパク質の C末端に 結合する能力を有する物質を有する。  That is, the labelich reagent of the present invention has one molecule of a labeling substance and one molecule of an affinity substance or a covalent bond-forming reactive group in one molecule of the molecule, and has the ability to bind to the C-terminus of a protein. Having a substance.
標識物質および親和性物質又は共有結合形成性反応基はそれぞれ、 タンパク質 の C末端に結合する能力を有する物質に対して直接ィヒ学結合していてもよいし、 あるいはスぺーサーを介して化学結合していてもよい。 標識物質は、 通常は蛍光性物質などの非放射性標識物質から選択される。 蛍光 物質としては、 フリーの官能基 (例えば活性エステルに変換可能な力ルポキシル 基、 ホスホアミダイドに変換可能な水酸基、 あるいはアミノ基など) を持ち、 ピ ユーロマイシン又はピューロマイシン様化合物などの上記核酸誘導体に連結可能 な種々の蛍光色素、例えばフルォレセィン系列、ローダミン系列、ェォシン系列、Each of the labeling substance and the affinity substance or the covalent bond-forming reactive group may be directly bound to the substance capable of binding to the C-terminus of the protein, or may be chemically bound via a spacer. They may be combined. The labeling substance is usually selected from non-radioactive labeling substances such as fluorescent substances. The fluorescent substance has a free functional group (for example, a hydroxyl group that can be converted to an active ester, a hydroxyl group that can be converted to a phosphoramidide, or an amino group), and has the above-mentioned nucleic acid derivative such as peuromycin or puromycin-like compound. Various fluorescent dyes that can be linked, for example, fluorescein series, rhodamine series, eosin series,
N B D系列などのいかなるものであってもよい。蛍光物質としては、具体的には、 C y 5 (アマシャム)、 C y 3 (アマシャム)、 I C 5 (同仁化学)、 I C 3 (同仁 化学)、 フルォレセイン、 テトラメチルローダミン、 テキサスレツド、 ァクリジン オレンジなどが挙げられる。 また、 標識物質としては化学発光物質 (例えば、 ノレ ミノール、 アタリジニゥム一 Iなど) を使用してもよレヽ。 Anything such as an NBD sequence may be used. Specific examples of the fluorescent substance include Cy5 (Amersham), Cy3 (Amersham), IC5 (Dojindo), IC3 (Dojindo), fluorescein, tetramethylrhodamine, Texas red, and acridine orange. No. Alternatively, a chemiluminescent substance (for example, noreminol, ataridinium I, etc.) may be used as the labeling substance.
親和性物質としては、 特定の物質に対する親和性を有する物質であればタンパ ク質、ペプチド、糖類、脂質類、低分子化合物などその種類は特に限定されない。 親和性物質の具体例としては、 ビォチン、 マルトース、 グァニンヌクレオチド、 金属イオン、 ダルタチオン、 タンパク質結合性 D NA、 抗原分子、 カルモジユリ ン結合ペプチド、 AT P、 及ぴエストラジオールなどが挙げられる。  The type of the affinity substance is not particularly limited, such as proteins, peptides, saccharides, lipids, and low molecular weight compounds as long as they have an affinity for a specific substance. Specific examples of the affinity substance include biotin, maltose, guanine nucleotide, metal ion, daltathione, protein-binding DNA, antigen molecule, calmodulin-binding peptide, ATP, and estradiol.
共有結合形成性反応基としては、 ケトン基、 ジオール基、 アジド基又はソラレ ンなどが挙げられる。  Examples of the covalent bond-forming reactive group include a ketone group, a diol group, an azide group, and a psoralen.
ラベル化試薬を構成する 「タンパク質の C末端に結合する能力を有する物質」 としては、 通常は核酸誘導体が用いられる。 この核酸誘導体としては、 無細胞タ ンパク質合成系又は生細胞中でタンパク質の合成 (翻訳) が行われた時に、 合成 されたタンパク質の C末端に結合する能力を有する化合物である限り限定されな いが、その 3,末端がアミノアシル tR Aに化学構造骨格が類似しているものを選 択することができる。 代表的な化合物として、 アミド結合を有するピュー口マイ シン (Puromycin)、 3, - N-アミノアシルビユ一ロマイシンアミノヌクレオシド (3, -N-Aminoacylpuromycin aminonucleosideヽ PANS-ァミノ酸)、 たと ばヽ ァ ミノ酸部がグリシンの PANS- Gly、ァミノ酸部がパリンの PANS- Val、ァミノ酸部が ァラニンの PANS- Ala、 その他、 アミノ酸部が全ての各アミノ酸に対応する PANS —ァミノ酸ィ匕合物が拳げられる。 - また、 3, 一アミノアデノシンのァミノ基とアミノ酸のカルボキシル基が脱水 縮合して形成されるアミド結合で連結した 3,- N -ァミノァシルアデノシンァミノ ヌクレオシド (3· -Aminoacyladenosine aminonucleoside, AA S—ァミノ酸)、 たと えば、 ァミノ酸部がグリシンの MNS- Gly、ァミノ酸部がパリンの MNS-Val、了ミ ノ酸部がァラニンの AANS - Ala、 その他、 アミノ酸部が全アミノ酸の各アミノ酸に 対応する AANS -アミノ酸化合物を使用できる。 As the "substance having the ability to bind to the C-terminus of a protein" constituting the labeling reagent, a nucleic acid derivative is usually used. The nucleic acid derivative is not limited as long as it is a compound capable of binding to the C-terminus of the synthesized protein when the protein is synthesized (translated) in a cell-free protein synthesis system or a living cell. However, it is possible to select one whose terminal has a similar chemical skeleton to aminoacyl tRA. Representative compounds include puromycin having an amide bond, 3, -N-aminoacylbiulomycin aminonucleoside (3, -N-Aminoacylpuromycin aminonucleoside ヽ PANS-amino acid), and tobacamine. PANS-Gly with glycine in the acid part, PANS-Val with palin in the amino acid part, PANS-Ala with alanine in the amino acid part, and PANS with amino acid parts corresponding to all amino acids —Amino acid dagger is fisted. -In addition, 3, -N-aminoaminoladenosine aminonucleoside, AA, in which the amino group of 3,1-aminoadenosine and the carboxyl group of an amino acid are linked by an amide bond formed by dehydration condensation. (S-amino acid), for example, MNS-Gly of glycine in the amino acid part, MNS-Val of palin in the amino acid part, AANS-Ala of alanine in the amino acid part, and all amino acids in the amino acid part AANS-amino acid compounds corresponding to amino acids can be used.
また、 ヌクレオシドあるいはヌクレオシドとアミノ酸のエステル結合したもの なども使用できる。 さらにまた、 核酸あるいは核酸に類似した化学構造骨格及び 塩基を有する物質と、 アミノ酸に類似した化学構造骨格を有する物質とを化学的 に結合した化合物は、 すべて本方法において用いられる核酸誘導体に含まれる。 タ パク質の C末端に結合する能力を有する物質としては、ピューロマイシン、 P AN S—アミノ酸もしくは AAN S—アミノ酸がリン酸基を介してヌクレオシ ドと結合している化合物がより好ましい。 これらの化合物の中でピューロマイシ ン、 リボシチジルピュー口マイシン ( r C p P u r )、デォキシジルピュー口マイ シン (d C p P u r )、 デォキシゥリジルピューロマイシン ( d U p P u r ) など のピューロマイシン誘導体が特に好ましい。  In addition, nucleosides or nucleosides and ester bonds of amino acids can also be used. Furthermore, all compounds chemically linked to a nucleic acid or a substance having a chemical structure skeleton similar to a nucleic acid and a base and a substance having a chemical structure skeleton similar to an amino acid are included in the nucleic acid derivative used in the present method. . As the substance capable of binding to the C-terminus of protein, puromycin, a compound in which a PANS-amino acid or an AANS-amino acid is bonded to a nucleoside via a phosphate group is more preferable. Among these compounds, puromycin, ribocytidyl puromycin (rCpPur), deoxydilpuromycin (dCpPur), and deoxyperidyl puromycin (dU Puromycin derivatives such as pPur) are particularly preferred.
本発明のタンパク質のラベル化試薬を構成する物質の具体例としては、 一般 式: X— (L 1) m-A- ( L 2) n -Y Specific examples of the substance constituting the reagent for labeling the protein of the present invention include a general formula: X— (L 1 ) m -A- (L 2 ) n -Y
(式中、 Xは標識物質の残基を示し、 Υは親和性物質の残基又は共有結合形成性 反応基を示し、 L 1および L 2はそれぞれ独立に 2価のスぺーサ基を示し、 mおよ ぴ nはそれぞれ独立に 0又は 1の整数を示し、 Aはタンパク質の C末端に結合す る能力を有する物質の残基を示す) (In the formula, X represents a residue of a labeling substance, Υ represents a residue of an affinity substance or a reactive group capable of forming a covalent bond, and L 1 and L 2 each independently represent a divalent spacer group. , M and ぴ n each independently represent an integer of 0 or 1, and A represents a residue of a substance capable of binding to the C-terminus of the protein)
で表される化合物が挙げられる。 The compound represented by these is mentioned.
Xで表される標識物質の残基、 Yで表される親和性物質の残基又は共有結合形 成性反応基、 Aで表されるタンパク質の C末端に結合する能力を有する物質の残 基の具体例としては、 それぞれ上述した標識物質および親和性物質の残基又は共 有結合形成性反応基が挙げられる。 The residue of a labeling substance represented by X, the residue of an affinity substance represented by Y or a covalent-forming reactive group, the residue of a substance capable of binding to the C-terminus of the protein represented by A As specific examples of the above, the residues or co- Bond-forming reactive groups.
L 1および L 2が示す 2価のスぺーサ基としては、 アルキレン基、 アルケニレン 基、 アルキニレン基又はこれらの組み合わせが挙げられ、 これらの炭素原子上に は 1又は複数の置換基が存在していてもよい。 主鎖の炭素数の数は特に限定され ないが、 好ましくは炭素数 1から 1 0であり、 より好ましくは炭素数 1から 6で あり、 さらに好ましくは炭素数 1から 4である。 主鎖の炭素原子上に存在するこ とができる置換基の種類は特に限定されないが、 炭素数 1〜 4のアルキル基、 炭 素数 1〜4のアルケニル基、 炭素数 1〜 4のアルキニル基、 水酸基又はハロゲン 原子 (例えば、 フッ素、 原子、 塩素原子、 臭素原子、 ヨウ素原子など) 等を挙げ ることができる。 L 1が示すスぺーサ一基としては、 無置換のアルキレン基、 ァ ルケ二レン基、 アルキニレン基又はこれらの組み合わせが好ましく、 無置換のァ ルキレン基がより好ましく、 メチレン基、 エチレン基、 プロピレン基、 ブチレン 基が特に好ましく、 エチレン基が最も好ましい。 また、 2価のスぺーサ基として は、 ポリエチレン、 ポリエチレングリコールなどの高分子物質に由来する基でも よい。 また、 スぺーサ基の中には、 アミド結合 (一 CO— NH—基)、 エステル結 合 (一 C O O—基)、 チォゥレア結合 (一 NH— C S—NH—基)、 スルホンアミ ド基 (― S 0 2— NH―)、 リン酸ジエステル結合 (一 O— P (O) O H- 0 -) などが含まれていてもよい。 Examples of the divalent spacer group represented by L 1 and L 2 include an alkylene group, an alkenylene group, an alkynylene group and a combination thereof, and one or more substituents are present on these carbon atoms. You may. The number of carbon atoms in the main chain is not particularly limited, but is preferably from 1 to 10 carbon atoms, more preferably from 1 to 6 carbon atoms, and still more preferably from 1 to 4 carbon atoms. The type of the substituent that can be present on the carbon atom of the main chain is not particularly limited, but includes an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 1 to 4 carbon atoms, an alkynyl group having 1 to 4 carbon atoms, Examples include a hydroxyl group or a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like). The spacer Ichiki indicated L 1, an unsubstituted alkylene group, § Luque two alkylene group, an alkynylene group, or a combination thereof, more preferably unsubstituted § alkylene group, a methylene group, an ethylene group, propylene And a butylene group are particularly preferred, and an ethylene group is most preferred. Further, the divalent spacer group may be a group derived from a polymer substance such as polyethylene and polyethylene glycol. Among the spacer groups, there are amide bonds (one CO—NH— group), ester bonds (one COO— group), thiourea bonds (one NH—CS—NH— group), and sulfone amide groups (— S 0 2 —NH—) and phosphodiester bond (one O—P (O) OH-0-) may be included.
mおよび nは好ましくは 1である。  m and n are preferably 1.
ラベル化試薬は、 上記標識物質と上記親和性物質又は共有結合形成性反応基と タンパク質の C末端に結合する能力を有する物質とを所望によりスぺーサーを介 して、 それ自体既知の化学結合方法によって結合させることにより製造すること ができる。 具体的には、 例えば、 適当な保護基で保護された 「タンパク質の C末 端に結合する能力を有する物質」 を固相担体上に結合させ、 核酸合成機を用いて スぺーサ一としてスぺーサーホスホアミダイト、 蛍光物質または親和性物質又は 共有結合形成性反応基を結合したホスホアミダイトを順次結合させた後、 脱保護 を行うことによって作成することができる。 上記各部の種類、 あるいは結合の種 類によっては液相合成法で結合させるかあるいは両者を併用することもできる。 また親和性物質としてニッケル等の金属イオンを結合させるには、 金属イオンが 配位しうる二トリ口トリ酢酸ゃィミノジ酢酸等のキレート性の試薬用いて行うこ とができる。 The labeling reagent is a chemical bond known per se between the above-mentioned labeling substance and the above-mentioned affinity substance or a covalent bond-forming reactive group and a substance having the ability to bind to the C-terminus of the protein via a spacer, if desired. It can be manufactured by bonding by a method. Specifically, for example, a “substance capable of binding to the C-terminus of a protein” protected with an appropriate protecting group is bound on a solid-phase carrier, and is used as a spacer using a nucleic acid synthesizer. A phosphoramidite, a fluorescent substance or an affinity substance, or a phosphoramidite to which a covalent bond-forming reactive group is bonded in order, followed by deprotection. Types of above parts or types of bonding Depending on the type, they may be combined by a liquid phase synthesis method, or both may be used in combination. In addition, binding of a metal ion such as nickel as an affinity substance can be carried out using a chelating reagent such as di-triaminodiacetic acid which can coordinate the metal ion.
標識物質又は親和性物質又は共有結合形成性反応基と、 タンパク質の C末端に 結合する能力を有する物質とをつなぐスぺーサ一としては、 炭素数の 1から 1 0 程度の脂肪族炭化水素基 (例えば、 アルキレン基、 ァルケ-レン基など) や、 ポ リエチレン、 ポリエチレンダリコールなどの高分子物質に由来する基でもよい。 上記した通り、 本発明は、 タンパク質の C末端に結合する能力を有する物質一 分子に対して一分子の標識物質と一分子の親和性物質又は共有結合形成性反応基 とが結合して成る、 タンパク質のラベルィヒ試薬に関するものであり、 その具体例 として、 一般式: X— ( L 1) m— A— ( L 2) n— Y As a spacer for connecting a labeling substance, an affinity substance, or a reactive group capable of forming a covalent bond with a substance capable of binding to the C-terminus of a protein, an aliphatic hydrocarbon group having about 1 to 10 carbon atoms may be used. (For example, an alkylene group or an alkylene group), or a group derived from a polymer substance such as polyethylene or polyethylene daricol. As described above, the present invention provides a method in which one molecule of a substance having the ability to bind to the C-terminus of a protein is combined with one molecule of a labeling substance and one molecule of an affinity substance or a covalent bond-forming reactive group. This is related to the label reagent for proteins, and specific examples thereof include the general formula: X— (L 1 ) m —A— (L 2 ) n —Y
(式中、 Xは標識物質の残基を示し、 Yは親和性物質の残基又は共有結合形成性 反応基を示し、 L 1および L 2はそれぞれ独立に 2価のスぺーサ基を示し、 mおよ ぴ nはそれぞれ独立に 0又は 1の整数を示し、 Aはタンパク質の C末端に結合す る能力を有する物質の残基を示す) (In the formula, X represents a residue of a labeling substance, Y represents a residue of an affinity substance or a reactive group capable of forming a covalent bond, and L 1 and L 2 each independently represent a divalent spacer group. , M and ぴ n each independently represent an integer of 0 or 1, and A represents a residue of a substance capable of binding to the C-terminus of the protein)
で表される化合物を例示したが、 当該ィ匕合物自体新規なものであり、 本発明の一 つの側面を構成する。 即ち、 一般式: X— ( L 1) m—A— ( L 2) n- Y (式中、 Xは標識物質の残基を示し、 Υは親和性物質の残基又は共有結合形成性反応基を 示し、 L 1および; L 2はそれぞれ独立に 2価のスぺ一サ基を示し、 mおよび ηはそ れぞれ独立に 0又は 1の整数を示し、 Αはタンパク質の C末端に結合する能力を 有する物質の残基を示す) The compound represented by is exemplified, but the compound is itself a novel compound and constitutes one aspect of the present invention. That is, the general formula: X— (L 1 ) m —A— (L 2 ) n -Y (where X represents a residue of a labeling substance, and Υ represents a residue of an affinity substance or a covalent bond forming reaction. L 1 and L 2 each independently represent a divalent spacer group, m and η each independently represent an integer of 0 or 1, and Α represents the C-terminal of the protein. Indicates the residue of the substance capable of binding)
で表される化合物又はその塩も本発明の範囲內である。 The compound represented by or a salt thereof is also within the scope of the present invention.
ここで言う塩としては、 化合物中に存在する置換基の種類などに応じて任意の 可能な塩の全てを包含するものであり、 塩の種類は特に限定されない。 例えば、 酸付加塩、 金属塩、 アンモニゥム塩、 又は有機アミン付加塩等が包含される。 酸 付加塩としては、 塩酸塩、 硫酸塩、 硝酸塩、 リン酸塩等の無機酸塩、 酢酸塩、 マ レイン酸塩、 フマル酸塩、 又はクェン酸塩等の有機酸塩が挙げられる。 金属塩と しては、 ナトリゥム塩、 力リゥム塩等のアル力リ金属塩、 マグネシウム塩、 カル シゥム塩等のアルカリ土類金属塩、 アルミニウム塩、 又は亜鉛塩等が挙げられ、 アンモニゥム塩としては、 アンモニゥム又はテトラメチルアンモニゥム等の塩が 挙げられ、 有機アミン付加塩としては、 モルホリン又はピぺリジン等の付加塩が 挙げられる。 The salt mentioned here includes all possible salts depending on the type of substituents present in the compound and the like, and the type of salt is not particularly limited. For example, an acid addition salt, a metal salt, an ammonium salt, or an organic amine addition salt is included. Acid addition salts include inorganic acid salts such as hydrochloride, sulfate, nitrate, and phosphate, acetate, and Organic acid salts such as oleate, fumarate, and citrate are exemplified. Examples of the metal salt include alkaline metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, aluminum salt, zinc salt, and the like.Ammonium salt includes , Ammonium or tetramethylammonium; and the organic amine addition salts include addition salts such as morpholine and piperidine.
一般式: X— ( L 1) m-A- ( L 2) n— Yの化合物には、 位置異性体、 幾何異 性体、 互変異性体、 又は光学異性体のような異性体が存在する場合があるが、 全 ての可能な異性体、 並びに 2種類以上の該異性体を任意の比率で含む混合物も本 発明の範囲内のものである。 In the compound of the general formula: X— (L 1 ) m -A- (L 2 ) n — Y, there is an isomer such as a positional isomer, a geometric isomer, a tautomer, or an optical isomer. However, all possible isomers, as well as mixtures containing two or more such isomers in any ratio, are also within the scope of the invention.
上記化合物の塩を取得したい場合、 上記化合物が塩の形態で得られる場合には そのまま精製すればよく、 また、 遊離の形寧で得られる場合には適当な溶媒に溶 解又は懸濁させ、 酸又は塩基を加えて塩を形成させ単離、 精製すればよい。  When it is desired to obtain a salt of the above compound, if the compound is obtained in the form of a salt, it may be purified as it is, or when obtained in a free form, dissolved or suspended in an appropriate solvent, The salt may be formed by adding an acid or a base to isolate and purify.
また、 上記化合物及びその塩は、 水あるいは各種溶媒との付加物 (水和物又は 溶媒和物) の形で存在することもあるが、 これらの付加物も本発明の範囲内のも のである。 また、 上記化合物及びその塩の任意の結晶形も本発明の範囲内のもの である。  The above compounds and salts thereof may exist in the form of adducts (hydrates or solvates) with water or various solvents, but these adducts are also within the scope of the present invention. . Also, any crystal forms of the above compounds and salts thereof are within the scope of the present invention.
( 2 ) タンパク質のラベル化試薬を用いたタンパク質の C末端を標識する方法 本楽明はさらに、 上記した本発明のタンパク質のラベル化試薬の存在下におい てタンパク質をコードする核酸を用いて転写 ·翻訳系においてタンパク質合成を 行う工程を含む、 タンパク質の C末端を標識する方法に関する。 (2) Method for labeling the C-terminus of a protein using a protein labeling reagent The present invention further provides a method for transcription using a protein-encoding nucleic acid in the presence of the aforementioned protein labeling reagent of the present invention. The present invention relates to a method for labeling a C-terminus of a protein, comprising a step of performing protein synthesis in a translation system.
本発明の方法で標識するタンパク質は、 その機能が既知又は未知である相互作 用の解析対象として用いるタンパク質を意味する。 本発明の方法で標識されたタ ンパク質を用いて、 後述する標的分子との相互作用を測定することができる。 このタンパク質は、 天然タンパク質又はその変異体、 及ぴ人工タンパク質又は その変異体の何れでもよい。 天然タンパク質としては、 種々の生物の器官、 組織 又は細胞に由来する c D NAライプラリーから転写、 翻訳される多様性を有する タンパク質のライプラリーをも含むものである。 人工タンパク質としては、 天然 タンパク質の全てもしくは部分酉己列を組み合わせた配列、 又はランダムなァミノ 酸配列を含むものである。 The protein labeled by the method of the present invention means a protein whose function is known or unknown and is used as an analysis target for interaction. Using the protein labeled by the method of the present invention, the interaction with a target molecule described below can be measured. This protein may be a natural protein or a mutant thereof, or an artificial protein or a mutant thereof. Natural proteins include organs and tissues of various organisms Alternatively, it also includes a library of proteins having diversity transcribed and translated from a cDNA library derived from a cell. The artificial protein includes a sequence obtained by combining all or a part of the natural protein or a random amino acid sequence.
本発明によるタンパク質の C末端を標識する方法においては、 例えば、 上記ラ ベルイ匕試薬の存在下で、 前記タンパク質をコードするコーディング領域を T 7等 のウィルスや細胞に由来するプロモータ一領域の制御下に連結し、 これを転写す ることにより mRNAを合成する。該コーディング領域 D NAとしては、ラベル化の 効率が数十倍よくするためにストップコドンを削除した配列が好ましく用いられ る。 また、 それ自体既知の方法で生体から取得された mRNA を用いることもでき る。 これらの mRNAは、翻訳系で発現させてタンパク質合成を行わせることにより 調製することができる。  In the method for labeling the C-terminus of a protein according to the present invention, for example, in the presence of the above-mentioned labeling reagent, the coding region encoding the protein is controlled under the control of a promoter region derived from a virus or cell such as T7. And transcribe it to synthesize mRNA. As the coding region DNA, a sequence from which a stop codon is deleted is preferably used in order to improve the efficiency of labeling by several tens of times. Alternatively, mRNA obtained from a living body by a method known per se can be used. These mRNAs can be prepared by expressing them in a translation system and performing protein synthesis.
用いられる翻訳系としては、 無細胞翻訳系又は生細胞などが挙げられる。 無細 胞翻訳系又は生細胞などは、 その中にタンパク質をコードする核酸を添加又は導 入することによってタンパク質合成が行われるものである限り制限されない。 無 細胞翻訳系としては、原核又は真核生物の抽出物により構成される無細胞翻訳系、 例えば大腸菌、 ゥサギ網状赤血球、 小麦胚芽抽出物などが使用できる。 生細胞翻 訳系としては、 原核又は真核生物、 例えば大腸菌の細胞などが使用できる。 無細 胞翻.訳系を用いる場合、 用いる核酸が D NAである場合、 それ自体既知の R NA ポリメラーゼなどを用いる方法により転写して合成した R NAを铸型として導入 する。  Examples of the translation system used include a cell-free translation system and living cells. The cell-free translation system or living cell is not limited as long as protein synthesis is performed by adding or introducing a nucleic acid encoding a protein into the cell-free translation system or living cell. As the cell-free translation system, a cell-free translation system composed of an extract of a prokaryotic or eukaryotic organism, for example, an Escherichia coli, a heron reticulocyte, a wheat germ extract, or the like can be used. Prokaryotic or eukaryotic organisms, such as E. coli cells, can be used as the live cell translation system. When a cell-free translation system is used, if the nucleic acid to be used is DNA, an RNA transcribed and synthesized by a method using a known RNA polymerase or the like is introduced as type II.
この翻訳系において、 ラベル化試薬を適当な濃度で存在させることにより、 タ ンパク質の C末端をラベル化試薬で標識することができる。 存在させるラベル化 試薬の濃度としては、 実際に用いるラベル化試薬、 核酸、 あるいは翻訳系によつ て異なるが、 一般的には最終濃度が 0 . 1〜 2 0 0 μ Μの範囲が好ましい。  In this translation system, the C-terminus of the protein can be labeled with the labeling reagent by allowing the labeling reagent to be present at an appropriate concentration. The concentration of the labeling reagent to be present varies depending on the labeling reagent, nucleic acid or translation system actually used, but generally the final concentration is preferably in the range of 0.1 to 200 μM.
本発明で用いる標識物質および親和性物質又は共有結合形成性反応基が結合し た核酸誘導体の濃度としては、 実際に使用する 腿、 ラベル物質、 核酸誘導体、 及び翻訳系等によって異なるが、 下記の方法等により当業者は該濃度を適宜決定 することができる。 即ち、 上記した C末端ラベ/レ化タンパク質を作成する系にお いて、 ラベル物質が結合した核酸誘導体を濃度を違えて添カ卩し、 得られた翻訳産 物を S D Sポリアクリルアミド電気泳動を用いる等して分離し、 C末端に結合し ている標識物質より発せられる信号強度を測定し、 最も信号強度の高い値を示し た濃度を選択する。 - このようにして合成された C末端ラベルィヒタンパク質は、 翻訳系に生細胞を用 いた場合は細胞をそれ自体既知の方法で溶解後、ゲル濾過など(例えば、 Bio-Spin 6 ; BI0- Rad社製) によって未反応のラベル化試薬を除去し、 取得することができ る。 また、 無細胞翻訳系を用いた場合には、 ゲル濾過によって未反応のラベルイ匕 試薬を除去すればよい。 The concentration of the nucleic acid derivative to which the labeling substance and the affinity substance or the covalent bond-forming reactive group used in the present invention are bound may be, for example, Although the concentration differs depending on the translation system and the like, those skilled in the art can appropriately determine the concentration by the following method or the like. That is, in the above-described system for producing a C-terminal labeling / reforming protein, a nucleic acid derivative to which a label substance is bound is added at a different concentration, and the resulting translation product is subjected to SDS polyacrylamide electrophoresis. Measure the signal intensity emitted from the label attached to the C-terminus, and select the concentration with the highest signal intensity. -When live cells are used for the translation system, the C-terminal labeling protein thus synthesized is lysed by a method known per se, and then gel filtration or the like (for example, Bio-Spin 6; BI0- Rad) removes unreacted labeling reagent and obtains it. When a cell-free translation system is used, unreacted labeling reagent may be removed by gel filtration.
本発明の方法で製造された C末端ラベル化タンパク質を固相に結合させる場合 があるが、 固相に結合させる方法としては、 親和性物質又は共有結合形成性反応 基を介して結合させることが好ましい。  In some cases, the C-terminal labeled protein produced by the method of the present invention may be bound to a solid phase.A method for binding to the solid phase is to bind via an affinity substance or a covalent bond-forming reactive group. preferable.
本発明で用いる親和性物質又は共有結合形成性反応基は、 特定のポリぺプチド に特異的に結合する分子であり、 固相表面には該分子と結合する特定のポリぺプ チドを結合させる。 ここで言う 「特定めポリペプチド」 としては、 結合タンパク 質、 受容体を構成する受容体タンパク質、 抗体なども含まれる。  The affinity substance or covalent bond-forming reactive group used in the present invention is a molecule that specifically binds to a specific polypeptide, and binds the specific polypeptide that binds to the molecule to the solid phase surface. . As used herein, the “specific polypeptide” includes a binding protein, a receptor protein constituting a receptor, an antibody, and the like.
固相に結合された特定のポリぺプチド/親和性物質又は共有結合形成性反応基 の組み合わせとしては、 例えば、 アビジン及ぴストレプトアビジン等のビォチン 結合タンパク質 Zビォチン、 マルトース結合タンパク質 Zマルトース、 Qタンパ ク質 Zグァニンヌクレオチド、 ポリヒスチジンペプチド zニッケルあるいはコパ ルト等の金属イオン、 グルタチオン一 s—トランスフェラーゼ /ダルタチオン、 Specific polypeptides / affinity substances bound to the solid phase or combinations of covalent bond-forming reactive groups include, for example, biotin-binding protein Z-biotin such as avidin and streptavidin, maltose-binding protein Z-maltose, Q tamper Protein Z guanine nucleotide, polyhistidine peptide z metal ions such as nickel or cobalt, glutathione-s-transferase / daltathione,
D NA結合タンパク質 ZD NA、抗体/抗原分子(ェピトープ)、 カルモジュリン /カルモジュリン結合ペプチド、 AT P結合タンパク質 ZAT P、 あるいはエス トラジオール受容体タンパク質/エストラジオールなどの、 各種受容体タンパク 質/そのリガンド、並ぴにケトン基 zヒドラジド基、ジオール基 zヒドラジド基、 アジド基/アルキル基、 ソラレン/ 酸塩基 (ピリミジン環又はプリン環などの 核酸塩基またはそのアナログ) などが挙げられる。 Various receptor proteins / ligands, such as DNA binding protein ZDNA, antibody / antigen molecule (epitope), calmodulin / calmodulin binding peptide, ATP binding protein ZATP, or estradiol receptor protein / estradiol, etc.ぴ is a ketone group z hydrazide group, diol group z hydrazide group, Azide group / alkyl group; psoralen / acid base (nucleic acid base such as pyrimidine ring or purine ring or analog thereof).
これらの中で、 アビジン及ぴストレプトアビジンなどのピオチン結合タンパク 質、 マルトース結合タンパク質/マルトース、 ポリヒスチジンペプチド/二ッケ ルあるいはコバルト等の金属イオン、 グルタチオン一 s—トランスフェラーゼ Z グルタチオン、 抗体 Z抗原分子 (ェピトープ) などが好ましく、 特にストレプト ァビジンノビォチンの組み合わせが最も好ましい。 これらの結合タンパク質は、 それ自体既知のものであり、 該タンパク質をコードする D NAは既にクローニン グされている。  Among these, biotin-binding proteins such as avidin and streptavidin, maltose-binding protein / maltose, metal ions such as polyhistidine peptide / nickel or cobalt, glutathione-s-transferase Z glutathione, antibody Z antigen molecule (Epitope) and the like, and particularly preferred is a combination of streptavidinnobiotin. These binding proteins are known per se, and the DNA encoding the protein has already been cloned.
上記した特定のポリべプチドの固相表面への結合は、 それ自体既知の方法を用 いることができるが、 具体的には、 例えば、 タンニン酸、 ホルマリン、 ダルタル アルデヒド、 ピルビックアルデヒド、 ビス一ジァゾ化べンジゾン、 トルエン- 2, 4 - ジイソシァネート、 アミノ基、 カルボキシル基、 又は水酸基あるいはァミノ基な どを利用する方法を用いることができる。  The specific polypeptide described above can be bound to the solid phase surface by a method known per se. Specifically, for example, tannic acid, formalin, dartal aldehyde, pyrvic aldehyde, Benzizone diazotate, toluene-2,4-diisocyanate, an amino group, a carboxyl group, or a method utilizing a hydroxyl group or an amino group can be used.
親和性物質又は共有結合形成性反応基以外の部分により固相に結合させる場合 は、 通常はタンパク質を固相に結合させるのに用いられる既知の方法、 例えばタ ンニン酸、 ホルマリン、 グノレタルアルデヒド、 ピルビックアルデヒ ド、 ビス一ジ ァゾ化べンジゾン、トルエン- 2, 4 -ジイソシァネート、アミノ基、カルボキシル基、 又は水酸基あるいはアミノ基などを利用して行うことができる。  When binding to the solid phase by means of a moiety other than an affinity substance or a covalent bond-forming reactive group, known methods that are typically used to bind proteins to the solid phase, such as tannic acid, formalin, gnoletaldehyde, The reaction can be carried out using pyruvaldehyde, benzodiazobis bis-diazotide, toluene-2,4-diisocyanate, an amino group, a carboxyl group, or a hydroxyl group or an amino group.
さらに本発明では、 上記した本発明の C末端ラベル化タンパク質の多数を固相 に結合することにより、 タンパク質の集合体を含むプロティンチップを構築する ことができる。 このようなプロテインチップはタンパク質と標的分子との間の分 子間相互作用を解析する際に有用である。  Further, in the present invention, a protein chip containing an aggregate of proteins can be constructed by binding a large number of the above-mentioned C-terminal labeled proteins of the present invention to a solid phase. Such a protein chip is useful for analyzing a molecular interaction between a protein and a target molecule.
( 3 ) 本発明のラベル化試薬の利用 (3) Use of the labeling reagent of the present invention
本発明のラベルィヒ試薬を用いることにより、 一分子中に一分子の標識物質と一 分子の親和性物質又は共有結合形成性反応基とを有するタンパク質 (本明細書中、 C末端ラベル化タンパク質とも称する) を調製することができる。 このようなタ ンパク質を利用することにより、 当該タンパク質と標的分子との間の相互作用を 分析することができる。 具体的には、 例えば、 下記の工程を含む方法が提供され る。 By using the labelich reagent of the present invention, a protein having one molecule of a labeling substance and one molecule of an affinity substance or a covalent bond-forming reactive group in one molecule (in the present specification, C-terminally labeled protein) can be prepared. By utilizing such a protein, the interaction between the protein and the target molecule can be analyzed. Specifically, for example, a method including the following steps is provided.
( a ) —分子中に一分子の第 1の標識物質と一分子の親和性物質又は共有結合形 成性反応基とを有するタンパク質と、 第 2の標識物質で標識した標的分子とを接 触させる工程;及び  (a) — Contact between a protein having one molecule of a first labeling substance and one molecule of an affinity substance or a covalent bond-forming reactive group in a molecule and a target molecule labeled with a second labeling substance Causing; and
( b ) 上記タンパク質又は核酸と相互作用した標的分子中の第 2の標識のシグナ ルを検出する工程;  (b) detecting a signal of the second label in the target molecule interacting with the protein or nucleic acid;
上記で言う標的分子とは、 C末端ラベル化タンパク質と相互作用する分子を意 味し、 具体的にはタンパク質、 核酸、 糖鎖、 低分子化合物などが挙げられる。 タンパク質としては、 C末端ラベルィヒタンパク質と相互作用する能力を有する 限り特に制限はなく、 タンパク質の全長であっても結合活性部位を含む部分ぺプ チドでもよい。 またアミノ酸配列、 及びその機能が既知のタンパク質でも、 未知 のタンパク質でもよい。 これらは、 合成されたペプチド鎖、 生体より精製された タンパク質、あるいは c D N Aライブラリ一等から適当な翻訳系を用いて翻訳し、 精製したタンパク質等でも標的分子として用いることができる。 合成されたぺプ チド鎖はこれに糖鎖が結合した糖タンパク質であってもよい。 これらのうち好ま しくはァミノ酸配列が既知の精製されたタンパク質か、 あるいは c D NAライプ ラリー等から適当な方法を用いて翻訳、 精製されたタンパク質を用いることがで さる。  The target molecule mentioned above means a molecule that interacts with a C-terminal labeled protein, and specifically includes proteins, nucleic acids, sugar chains, low molecular weight compounds, and the like. The protein is not particularly limited, as long as it has the ability to interact with the C-terminal Labelich protein, and may be a full-length protein or a partial peptide containing a binding active site. The protein may have a known amino acid sequence and its function, or may have an unknown protein. These can be used as a target molecule even with a synthesized peptide chain, a protein purified from a living body, or translated from a cDNA library or the like using an appropriate translation system, and a purified protein or the like can be used as a target molecule. The synthesized peptide chain may be a glycoprotein having a sugar chain bound thereto. Of these, it is preferable to use a purified protein whose amino acid sequence is known, or a protein translated and purified from the cDNA library using an appropriate method.
核酸としては、 C末端ラベルィヒタンパク質と相互作用する能力を有する限り、 特に制限はなく、 D NAあるいは; R NAも用いることができる。 また、 塩基配列 あるいは機能が既知の核酸でも、 未知の核酸でもよい。 好ましくは、 タンパク質 に結合能力を有する核酸としての機能、 及ぴ塩基配列が既知のものか、 あるいは ゲノムライプラリー等から制限酵素等を用いて切断単離してきたものを用いるこ とができる。 糖鎖としては、 C末端ラベルィヒタンパク質と相互作用する能力を有する限り、 特に制限はなく、 その糖配列あるいは機能が、 既知の糖鎖でも未知の糖鎖でもよ レ、。 好ましくは、 既に分離解析され、 糖配列あるいは機能が既知の糖鎖が用いら れる。 The nucleic acid is not particularly limited as long as it has an ability to interact with the C-terminal label lig protein, and DNA or RNA can also be used. Further, the nucleic acid may have a known nucleotide sequence or function, or may have an unknown nucleic acid. Preferably, those having a known function as a nucleic acid capable of binding to a protein and having a known nucleotide sequence, or those obtained by cleavage and isolation from a genomic library or the like using a restriction enzyme or the like can be used. The sugar chain is not particularly limited, as long as it has the ability to interact with the C-terminal Labelich protein, and the sugar sequence or function may be a known sugar chain or an unknown sugar chain. Preferably, a sugar chain which has already been separated and analyzed and whose sugar sequence or function is known is used.
低分子化合物としては、 c末端ラベル化タンパク質と相互作用する能力を有す る限り、 特に制限はない。 機能が未知のものでも、 あるいはタンパク質に結合す る能力が既に知られているものでも用いることができる。  The low molecular weight compound is not particularly limited as long as it has the ability to interact with the c-terminal labeled protein. Even those whose functions are unknown or whose ability to bind to proteins are already known can be used.
これら標的分子が c末端ラベルイ匕タンパク質と行う「相互作用」とは、通常は、 タンパク質又は核酸と標的分子間の共有結 、 疎水結合、 水素結合、 ファンデル ワールス結合、 及び静電力による結合のうち少なくとも' 1つから生じる分子間に 働く力による作用を示すが、 この用語は最も広義に解釈すべきであり、 いかなる 意味においても限定的に解釈してはならない。 共有結合としては、 配位結合、 双 極子結合を含有する。 また静電力による結合とは、 静電結合の他、 電気的反発も 含有する。 また、 上記作用の結果生じる結合反応、 合成反応、 分解反応も相互作 用に含有される。  The term “interaction” performed by these target molecules with the c-terminal labeled protein generally means a covalent bond, a hydrophobic bond, a hydrogen bond, a Van der Waals bond, or a bond by electrostatic force between the protein or nucleic acid and the target molecule. Denotes the action of forces acting between molecules arising from at least one, but this term should be interpreted in the broadest sense and not in any way limited. The covalent bond includes a coordinate bond and a dipole bond. The coupling by electrostatic force includes not only electrostatic coupling but also electric repulsion. In addition, a binding reaction, a synthesis reaction, and a decomposition reaction resulting from the above actions are also included in the interaction.
相互作用の具体例としては、 抗原と抗体間の結合及び解離、 タンパク質レセプ ターとリガンドの間の結合及び解離、接着分子と相手方分子の間の結合及び解離、 酵素と基質の間の結合及び解離、 核酸とそれに結合するタンパク質の間の結合及 び解離、 情報伝達系におけるタンパク質同士の間の結合と解離、 糖タンパク質と タンパク質との間の結合及び解離、 あるいは糖鎖とタンパク質との間の結合及び 解離が挙げられる。  Specific examples of the interaction include binding and dissociation between an antigen and an antibody, binding and dissociation between a protein receptor and a ligand, binding and dissociation between an adhesion molecule and a partner molecule, and binding and dissociation between an enzyme and a substrate. , Binding and dissociation between nucleic acids and proteins that bind to it, binding and dissociation between proteins in the signal transduction system, binding and dissociation between glycoproteins and proteins, or binding between sugar chains and proteins And dissociation.
標的分子は通常、 標識物質により標識して用いる。 標的分子の標識に用いる標 識物質は、 C末端ラベル化タンパク質又はラベルィヒ核酸の標識に用いた標識物質 とは異なる標識物質を使用する。  The target molecule is usually used after being labeled with a labeling substance. As the labeling substance used for labeling the target molecule, use a labeling substance different from the labeling substance used for labeling the C-terminal labeled protein or the label nucleic acid.
標識物質は、 通常は蛍光性物質などの非放射性標識物質から選択される。 蛍光 物質としては、 フリーの官能基(例えばカルボキシル基、水酸基、 アミノ基など) を持ち、 タンパク質、 核酸等の上記標的物質と連結可能な種々の蛍光色素、 例え ばフルォレセイン系列、 ローダミン系列、 ェォシン系列、 N B D系列などのいか なるものであってもよい。 その他、 色素など標識化可能な化合物であれば、 その 化合物の種類、 大きさは問わない。 蛍光物質としては、 具体的には、 C y 5 (ァ マシャム)、 C y 3 (アマシャム)、 I C 5 (同仁化学)、 I C 3 (同仁化学)、 フ ノレ才レセイン、 テトラメチルローダミン、 テキサスレツド、 アタリジンオレンジ などが挙げられる。また、標識物質としては化学発光物質(例えば、ルミノール、 アタリジニゥムー Iなど) を使用してもよい。 The labeling substance is usually selected from non-radioactive labeling substances such as fluorescent substances. Examples of the fluorescent substance include various fluorescent dyes having a free functional group (for example, a carboxyl group, a hydroxyl group, an amino group, etc.) and capable of being linked to the above-mentioned target substances such as proteins and nucleic acids. For example, it may be any one of the fluorescein series, rhodamine series, eosin series, NBD series and the like. In addition, as long as the compound can be labeled, such as a dye, the type and size of the compound are not limited. Specific examples of the fluorescent substance include Cy5 (Amersham), Cy3 (Amersham), IC5 (Dojindo Chemical), IC3 (Dojindo Chemical), Honorable Resin, Tetramethylrhodamine, Texas Red, Atalidine orange and the like. Further, a chemiluminescent substance (for example, luminol, ataridinium I, etc.) may be used as the labeling substance.
上記標識物質の標的分子への結合は、 それ自体既知の適当な方法を用いて行う ことができる。 具体的には、 例えば、 標的分子がタンパク質の場合、 上記 ( 1 ) に記載した C末端を標織化する方法等を用いることができる。 また標的分子が核 酸の場合は、 予め標識物質を共有結合などで結合させたオリゴ D NAプライマー を用いた P C Rを行う方法などによって簡便に標識化することができる。  The binding of the labeling substance to the target molecule can be carried out using an appropriate method known per se. Specifically, for example, when the target molecule is a protein, the method of forming a C-terminal as described in (1) above can be used. When the target molecule is a nucleic acid, labeling can be easily performed by a method of performing PCR using an oligo DNA primer to which a labeling substance is previously bound by a covalent bond or the like.
上記した分析方法では、 上記工程 (a ) に先立って、 固相に固定化されたタン パク質の量を y .ェパーネッセント光を用いて、 当該第 1の標識物質のシグナルを 指標として定量する工程を含むことが好ましい。 また、 当該分析方法では、 工程In the above-described analysis method, prior to the step (a), a step of quantifying the amount of the protein immobilized on the solid phase by using the signal of the first labeling substance as an index using y . It is preferable to include In the analysis method, the process
( b ) で検出された第 2の標識のシグナル強度と、 予め定量化しておいた固相に 固定化されたタンパク質の量とを用いて、 エバーネッセント光を用いて当該固定 化タンパク質の単位量当たりのシグナル強度を測^することにより、 分子間の相 互作用の強度を定量化する工程を含むごとが好ましい。 このような好ましい態様 においては、 タンパク質と標的分子との間の分子間相互作用を比較的簡単に定量 化することが可能になる。 Using the signal intensity of the second label detected in (b) and the amount of the protein immobilized on the solid phase previously quantified, the unit of the immobilized protein using evanescent light It is preferable to include a step of quantifying the strength of interaction between molecules by measuring the signal intensity per amount. In such a preferred embodiment, it becomes possible to relatively easily quantify the intermolecular interaction between the protein and the target molecule.
このような分析方法では、 標的分子に標識されている第 2の標識物質の検出方 法は特に限定されないが、 例えば、 蛍光イメージングアナライザ一法を用いて検 出することができる。  In such an analysis method, the method for detecting the second labeling substance labeled on the target molecule is not particularly limited, but for example, it can be detected using a fluorescence imaging analyzer.
蛍光イメージングアナライザ一法は、 固相化された分子に、 標識化分子を接触 せしめ、 両分子の相互作用により、 固相化された分子上にとどまった標識化分子 から発せられる蛍光を、 市販の蛍光イメージングアナライザーを用いて測定又は 解析する方法である。 The fluorescence imaging analyzer method involves contacting a labeled molecule with a solid-phased molecule, and the interaction between the two molecules causes the fluorescence emitted from the labeled molecule remaining on the solid-phased molecule to be converted to a commercially available fluorescence. Measured using a fluorescence imaging analyzer or It is a method of analysis.
この方法を用いてタンパク質一分子間相互作用の測定又は解析を行う場合、 C 末端ラベル化タンパク質又はラベル化核酸を固相化しておき、 標識物質で標識し た標的分子をそれに接触させる。 C末端ラベル化タンパク質又はラベル化核酸を 固相化するための基盤としては、 通常タンパク質や核酸等を固定化するのに用い られる二トロセルロースメンブレンやナイロンメンブレン、 あるいはプラスチッ ク製のマイクロプレート等も用いることができる。  When measuring or analyzing protein-molecule interaction using this method, a C-terminal labeled protein or a labeled nucleic acid is immobilized, and a target molecule labeled with a labeling substance is brought into contact therewith. As a base for immobilizing a C-terminal labeled protein or labeled nucleic acid on a solid phase, a dinitrocellulose membrane or a nylon membrane, which is usually used for immobilizing a protein or nucleic acid, or a plastic microplate, etc. Can be used.
標識した標的分子を固相化分子へ接触せしめる方法としては、 両分子が相互作 用するに十分な程度に接触する方法であればいかなるものであってもよいが、 好 ましくは標織した標的分子を生ィ匕学的に通 *使用される緩衝液に適当な濃度で溶 解した溶液を作成し、 これを固相表面に接触させる方法が好ましい。 両分子を接 触せしめた後、 好ましくは過剰に存在する標識した標的分子を同緩衝液等により 洗浄する工程を行い、 固相上にとどまった標的分子の標識物質から発せられる信 号 (蛍光信号) を、 市販のイメージングアナライザーを用いて測定あるいは解析 することにより、固相化された分子と相互作用する分子を同定することができる。 この方法において、 同時に多数の解析を行う方法としては、 例えば上記固相表 面に、 複数の C末端ラベル化タンパク質を番地付けして固相化する方法、 あるい は 1種類の C末端ラベル化タンパク質に複数種の標識化標的分子を接触させる方 法等が用いられる。  As a method for bringing the labeled target molecule into contact with the solid-phased molecule, any method may be used as long as the two molecules come into contact with each other to an extent sufficient to interact with each other. It is preferable to prepare a solution in which the target molecule is dissolved in a buffer solution to be used at an appropriate concentration and then contact the solution with the surface of the solid phase. After the two molecules are brought into contact with each other, a step of washing excess labeled target molecules, preferably with the same buffer, is performed, and a signal (fluorescent signal) emitted from the target molecule labeled substance remaining on the solid phase is used. ) Can be measured or analyzed using a commercially available imaging analyzer to identify molecules that interact with the immobilized molecule. In this method, for example, a method of performing a large number of analyzes at the same time is a method of addressing a plurality of C-terminal labeled proteins on the solid phase surface and immobilizing the same, or a method of labeling one type of C-terminal. A method of contacting a protein with a plurality of types of labeled target molecules is used.
上記方法により、 C末端ラベル化タンパク質と相互作用することが認められた 標的分子は、該分子の一次構造が未知の場合、それ自体既知の ϋ当な方法により、 その一次構造を解析することができる。 具体的には、 相互作用を認められた標的 分子がタンパク質の場合、 アミノ酸分析装置等によりアミノ酸配列を解析し、 一 次構造を特定することができる。 また、 標的分子が核酸の場合には、 塩基配列決 定方法により、 オート D NAシーケンサーなどを用いれば塩基配列を決定するこ とができる。 これにより標的分子を同定することができる。  When the primary structure of a target molecule that has been found to interact with a C-terminal labeled protein by the above method is unknown, its primary structure can be analyzed by a method known per se if the primary structure of the target molecule is unknown. it can. Specifically, when the target molecule in which the interaction is recognized is a protein, the primary structure can be identified by analyzing the amino acid sequence using an amino acid analyzer or the like. When the target molecule is a nucleic acid, the nucleotide sequence can be determined by a nucleotide sequence determination method using an automatic DNA sequencer or the like. Thereby, the target molecule can be identified.
本出願の優先権主張の基礎となる出願である特願 2 0 0 1 - 5 2 8 4 0号の明 細書に開示した內容は全て引用により本明細書に開示した'ものとする。 Clarification of Japanese Patent Application No. 2000-1500, which is the application on which the priority claim of the present application is based All contents disclosed in the specification are 'disclosed herein by reference.'
以下の実施例により本発明をさらに具体的に説明するが、 本発明は実施例によ つて限定されることはない。 実施例 .  The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to the examples. Example .
実施例 1 : 1分子ラベル法と 1分子ィメ一ジング法を用いたキネシン分子と微小 管分子の相互作用解析 Example 1: Interaction analysis between kinesin molecule and microtubule molecule using single molecule labeling method and single molecule imaging method
( 1 ) Cy 5—puroの合成  (1) Synthesis of Cy 5-puro
ピューロマイシン 2塩酸塩 (和光純薬工業) 250 mgを 30 mlの 0. 3 M炭酸ナト リゥム- 0. 2 M炭酸水素ナトリゥム- 2. 0 M塩化ナトリウム水溶液 (水溶液 A) と 20 mlの塩ィ匕メチレンに溶かし、撹拌したのち有機層を分離した。水層に塩化メチレ ン (20 ml) を加えて再度分液し、 有機層を合わせてェパポレーターで濃縮したの ち、 少量のピリジンを加えて濃縮する操作を 2回繰り返し、 得られた固体をァセ トニトリル (5 ml) とピリジン (2. 5 ml) に溶解した。 無水トリフルォロ酢酸 1. 0 gを加えて室温で 30分撹拌したのち氷冷して水 5 mlを加え、 さらに 20 mlの水 溶液 Aを徐々に加えた。 塩ィ匕メチレン (20 ml) で 2回抽出し、得られた有機層を 濃縮してからピリジンを加えて濃縮する操作を 2回繰り返し、 粗. -trif luoroacetyl-puromycm (250 mg) を た。  Puromycin dihydrochloride (Wako Pure Chemical Industries, Ltd.) 250 mg of 30 ml of 0.3 M sodium carbonate-0.2 M sodium hydrogencarbonate-2.0 M sodium chloride aqueous solution (aqueous solution A) and 20 ml of sodium chloride After dissolving in dani methylene and stirring, the organic layer was separated. Methylene chloride (20 ml) was added to the aqueous layer, and the mixture was separated again. The organic layers were combined, concentrated with an evaporator, and then a small amount of pyridine was added and concentrated twice. It was dissolved in cetonitrile (5 ml) and pyridine (2.5 ml). Trifluoroacetic anhydride (1.0 g) was added, the mixture was stirred at room temperature for 30 minutes, cooled with ice, water (5 ml) was added, and further 20 ml of aqueous solution A was gradually added. The operation of extracting twice with methylene chloride (20 ml), concentrating the obtained organic layer, adding pyridine and concentrating the mixture was repeated twice to obtain crude -trifluoacetyl-puromycm (250 mg).
粗 Ν α - trif luoroacetyl- puromycin (250 mg) をピリジン 5 ml中で 1. 5等量の 塩化ジメトキシトリチルと室温で 1時間反応させ、 水と塩ィヒメチレンで分液して 有機層を濃縮し、 シリカゲルカラムクロマトグラフィー (移動層;酢酸ェチル / へキサン/ピリジン 90 : 10 : 0. 5) " N a -trif luoroacetyl-5' -dimethoxytrityl puromycinを精製した (収量 360 mg)Q The crude α-trifluoroacetyl-puromycin (250 mg) was reacted with 1.5 equivalents of dimethoxytrityl chloride in 5 ml of pyridine for 1 hour at room temperature, separated with water and dimethylene chloride, and the organic layer was concentrated. Silica gel column chromatography (mobile layer; ethyl acetate / hexane / pyridine 90: 10: 0.5) "Purified Na-trif luoroacetyl-5'-dimethoxytrityl puromycin (Yield 360 mg) Q
この全量をピリジン 3 mlに溶かし、 3等量の無水コハク酸と 10 mgのジメチル アミノビリジン (DMAP) を加えて室温で 2日間撹拌したのち水と酢酸ェチ で分 液して有機層を濃縮し、酢酸ェチルを移動相として 12 gのシリカゲルに通して目 的物のコハク酸エステルを精製した (収量 380 mg)。 コハク酸エステルと 1. 1等 量の N-ヒドロキシコハク酸をジメチルホルムアミド (DMF) に溶かし、 氷浴中で 1. 1等量のジシク口へキシルカルボジィミドの DMF溶液を加え、 室温に戻しつつ 1 6時間撹拌した。'生じた沈殿物を濾去したのち濾液を NovaSyn TG. amino resin (novabiochem) と触媒量の DMAPを加えた DMF懸濁液に加えて室温で 1 6時間撹拌 した。 グラスフィルターでレジンを集め、 DMF、 メタノール、酢酸ェチルで洗って から真空ポンプで乾燥したのち、 未反応のレジンのアミノ基を DNA合成における 通常のキヤッピング法でァセチルイ匕した。 得られたピューロマイシンレジンの 1 部から通常の脱保護法によりピューロマイシンを遊離させて定量したところ、 67 μ mol/ gram resinと tf算された。 Dissolve the whole amount in 3 ml of pyridine, add 3 equivalents of succinic anhydride and 10 mg of dimethylaminoviridine (DMAP), stir at room temperature for 2 days, then separate with water and ethyl acetate and concentrate the organic layer. Then, the target product was purified through 12 g of silica gel using ethyl acetate as a mobile phase (yield: 380 mg). Succinate and 1.1 mag An amount of N-hydroxysuccinic acid was dissolved in dimethylformamide (DMF), and a DMF solution of 1.1 equivalents of hexylcarbodimide was added in an ice bath, and the mixture was stirred for 16 hours while returning to room temperature. 'The resulting precipitate was filtered off, and the filtrate was added to a DMF suspension containing NovaSyn TG. Amino resin (novabiochem) and a catalytic amount of DMAP, followed by stirring at room temperature for 16 hours. The resin was collected with a glass filter, washed with DMF, methanol, and ethyl acetate, dried with a vacuum pump, and the amino groups of the unreacted resin were acetylated by a normal capping method in DNA synthesis. Puromycin was released from a part of the obtained puromycin resin by a conventional deprotection method and quantified. The tf was calculated to be 67 μmol / gram resin.
調製したピューロマイシンレジン 10 mol相当を固相合成用の反応容器に入れ、 ホスホアミダイト法により Ac- dC_CE ホスホアミダイト (25等量)、 5,-アミノ修 飾 5 (10等量) (共にダレンリサーチ) を順次結合させた。 キャップ反応を省略 した他は通常のホスホアミダイト法の合成サイクルに従い、 デブ口ック液、 ァク チベータ一溶液、 酸化溶液はすべてダレンリサーチ社製のものを用いた。 5'末端 のモノメトキシトリチル基を外してから濃アンモニア水を加え室温で' 6時間放置 して脱保護した。 抽出した溶液を濃縮し、水で希釈してから氷浴中で 30%酢酸を 徐々に加えて中和したあと凍結乾燥し、 得られた固体を逆相高速液体クロマトグ ラフィー (HPLC) で精製した。 カラムは C0SM0SIL 0DS AR-300 (20醒 x 250 腿) Put the prepared puromycin resin equivalent to 10 mol into a reaction vessel for solid phase synthesis, and use the phosphoramidite method to obtain Ac-dC_CE phosphoramidite (25 equivalents), 5-amino-modified 5 (10 equivalents) (both are Darren Research) ) Were sequentially combined. Except for omitting the cap reaction, the synthesis cycle of the usual phosphoramidite method was followed, and all of the solution for fat, the solution of the activator, and the oxidation solution were those manufactured by Darren Research. After removing the monomethoxytrityl group at the 5 'end, concentrated ammonia water was added, and the mixture was left at room temperature for 6 hours for deprotection. The extracted solution was concentrated, diluted with water, neutralized by gradually adding 30% acetic acid in an ice bath, and then freeze-dried. The resulting solid was purified by reversed-phase high-performance liquid chromatography (HPLC). . Column is C0SM0SIL 0DS AR-300 (20 awake x 250 thighs)
(ナカライ) を用い、 0. 1 M トリェチルァミン水溶液と 80%ァセトニトリル - 0. 02 M トリェチルァミン水溶液のリニアグラジェントで溶出した。 目的物であるアミ ノリンク- dC -ピューロマイシンが約 6 micromol得られた。 (Nacalai) and eluted with a linear gradient of 0.1 M aqueous triethylamine solution and 80% acetonitrile-0.02 M aqueous solution of triethylamine. About 6 micromol of the desired product, aminolink-dC-puromycin, was obtained.
(MS ; ESI 927. 6 [M - H] ) (MS; ESI 927.6 [M-H])
Cy5 Monofunctional Dye (アマシャムファノレマシァノヽィォテク) 1チューブに 50 β 1の DMFを加え、 その直後にァミノリンク- dC-ピューロマイシン 80 nmolを 0. 15 M炭酸ナトリゥム緩衝液 (pH 9. 0) 100 μ 1に溶かした溶液を加え、 時々撹 拌しつつ室温で 1時間放置した。 Shim- Pack CLC-ODS (4. 6 mm x 250 mm) (島津製 作所) と前記の溶媒系を用いた逆相 HPLCで Cy5- Puroを精製した。 ラベルは 5,末 端のアミノ基で優先的に進行したと考えられ、 位のァミノ基がラベルされた生 成物は検出されなかった。 Cy5 Monofunctional Dye (Amersham Fanolemasianotech) Add 50 β1 DMF to one tube, and immediately add 80 nmol of Aminolink-dC-puromycin 0.15 M sodium carbonate buffer (pH 9.0) 100 μl The solution dissolved in 1 was added and left at room temperature for 1 hour with occasional stirring. Cy5-Puro was purified by reverse phase HPLC using Shim-Pack CLC-ODS (4.6 mm x 250 mm) (Shimadzu Corporation) and the solvent system described above. Label is 5, end It was presumed that the processing proceeded preferentially at the terminal amino group, and no product labeled with the amino group at the position was detected.
( 2 ) Kinesin DNAの調製  (2) Kinesin DNA preparation
Nco Iと Sac Iの制限酵素部位を両端にもつ Kinesin断片は、 C末端側を欠いた kinesinをコードした pUC8ベクター (phskinZ) を鎳型として、 配列番号 1に記 载の塩基配列を有するブライマ一と配列番号 2に記載の塩基配列を有するプライ マーとを用いて PCRを行った。得られた PCR産物を精製後、制限酵素 Nco Iと Sac A Kinesin fragment having Nco I and Sac I restriction enzyme sites at both ends was obtained by using a pUC8 vector (phskinZ) encoding kinesin lacking the C-terminal side as a 鎳 type and having a base sequence having the nucleotide sequence of 载 in SEQ ID NO: 1. PCR was performed using a primer having the nucleotide sequence shown in SEQ ID NO: 2. After purifying the obtained PCR product, the restriction enzymes Nco I and Sac
Iで 3 7でで 1 6時間反応後、 短い断片を Primer Remover (Edge BioSysytem Co. ) で除去し精製した。 一方、 pCITE-2a-c (+) (Clonetech Co)を制限酵素 Nco Iと SacAfter reaction with I at 37 for 16 hours, the short fragment was removed with a Primer Remover (Edge BioSysytem Co.) and purified. On the other hand, pCITE-2a-c (+) (Clonetech Co) was replaced with restriction enzymes Nco I and Sac
Iで同じ条件下で切断し、 精製した。 これらを Ligation High (T0Y0B0. Co)を用 いて、 16°Cで 1. 5時間ライゲーシヨン反応させたものをサプクローンして、 シー ケンスにより確認した。 -Cleavage under the same conditions as in I and purification. These were subjected to a ligation reaction at 16 ° C for 1.5 hours using Ligation High (T0Y0B0. Co), and the clones were subcloned and confirmed by sequencing. -
( 3 ) 転写および翻訳 (3) Transcription and translation
直鎖状化した Kinesin DNAplasmidを最終濃度 10 nMになるように Transription Mix (Invitrogene) に力 t!え, 15 分間 30 °Cで反応した。 Translation Mix (Invitrogene) 30 μ 1と Cy5 - puro (最終濃度 30 M) を加え、 1時間反応するこ とで翻訳されるとともに、 C 末端に特異的に一分子の Cy5 - puro を結合された kinesin (Cy5 - puro - kinesin)力 S得られる。翻訳されたサンプルを 7. 5¥%ァクリルァ ミ ドゲルで SDS- PAGE により分離し、 染色せずに Fluorlmager (BioRad Co)の 530DF30 band-pass filterでパンドを可視化した。  The linearized Kinesin DNAplasmid was applied to Transription Mix (Invitrogene) to a final concentration of 10 nM and reacted at 30 ° C for 15 minutes. Translation Mix (Invitrogene) 30 μl and Cy5-puro (final concentration: 30 M) are added and reacted for 1 hour.The kinesin is translated by reacting with one molecule of Cy5-puro specifically at the C-terminal. (Cy5-puro-kinesin) force S obtained. The translated sample was separated by SDS-PAGE using 7.5% acrylamide gel, and the band was visualized with a 530DF30 band-pass filter of Fluorlmager (BioRad Co) without staining.
( 4 ) Cy5- puroキネシンの精製  (4) Purification of Cy5-puro kinesin
NAP5 (フアルマシア)(30mM KC1, 80mM PIPES, 2mM MgCl 2, ImM EGTA, ImM DTT のバッファ一で平衡化)でゲルろ過し、 Sample内のフリ一の Cy5- puroを取り除い た- . Gel filtration was performed using NAP5 (Pharmacia) (equilibrated with 30 mM KC1, 80 mM PIPES, 2 mM MgCl 2 , ImM EGTA, ImM DTT buffer) to remove free Cy5-puro in the sample.
( 5 ) 1分子イメージング  (5) Single molecule imaging
石英ガラスに、 Biotin化 BSAを介して Streptavidinを固定し,そこに部分的に Biotin化した Microtubule (豚脳から抽出し TMR - SEで染色したもの)を結合させ る。 Cy5-puro- kinesin の非特異的な吸着を防ぐため、 ガラス面を lmg/ml Casein (Sigma)でコートした後、 NAP5 でゲノレろ過した Kinesin sample を AssayBuffer (80mM PIPES, 2mM MgC12, ImM EGTA) で 1/200に薄め、 酵素系 (10mM DTT, Catarase, Glucose, Glucose Oxidase) Methy丄 cellcose (f inel 0. 3¥%) , 2mM ATP, 2mM MgCl 2のもとで全反射顕微鏡 (TIRF)を用いて Kinesinと微小管の相互作 用を直接観察した (23〜25°C)。 画像はビデオに録画し、 後に、 画像ボードでパ ソコンにとりこみ Halcon5. 2で、 微小管上を動く輝点の速度および蛍光強度を計 測した。 Streptavidin was immobilized on silica glass via Biotinylated BSA, and a partially biotinylated Microtubule (extracted from pig brain and stained with TMR-SE) was bound thereto. You. In order to prevent non-specific adsorption of Cy5-puro-kinesin, coat the glass surface with lmg / ml Casein (Sigma), and filter the Kinesin sample that has been genole-filtered with NAP5 with AssayBuffer (80 mM PIPES, 2 mM MgC12, ImM EGTA). diluted 1/200, enzyme systems (10mM DTT, Catarase, Glucose, Glucose Oxidase) methy丄cellcose (f inel 0. 3 ¥% ), using total internal reflection fluorescence microscope (TIRF) 2 mM ATP, under 2 mM MgCl 2 The interaction between Kinesin and microtubules was observed directly (23-25 ° C). The images were recorded on video, and later incorporated into a personal computer with an image board. The speed of fluorescent spots moving on the microtubules and the fluorescence intensity were measured using Halcon 5.2.
( 6 ) 相互作用観察  (6) Interaction observation
Gelろ過したサンプルを bufferで 200倍にうすめ、 TIRF顕微鏡で観察した。結 果を図 3に示す。図 3において、一分子の Cy5-puro- kinesinは輝点として明確に 見分けることができる。 2mM AMP-PNP存在下では、 微小管に沿って一定方向に運 動する Cy5 - puro - kinesinの輝点が観察された (図 3 )。 実施例 2 :蛍光色素 Cy5 とビォチンを有するピューロマイシン誘導体 (Cy5-biotin-puro) の合成とそれによるタンパク質のラベル化  Gel filtered samples were diluted 200 times with buffer and observed with TIRF microscope. The results are shown in Figure 3. In FIG. 3, one molecule of Cy5-purokinesin can be clearly identified as a bright spot. In the presence of 2 mM AMP-PNP, bright spots of Cy5-puro-kinesin that move in a certain direction along the microtubules were observed (Fig. 3). Example 2: Synthesis of puromycin derivative (Cy5-biotin-puro) containing fluorescent dye Cy5 and biotin and labeling of protein with it
( 1 ) 化学合成  (1) Chemical synthesis
実施例 1と同様の方法でピューロマイシンレジン(7· 5 ηιο1相当)に Ac- dC - CE ホスホアミダイト (ピューロマイシンに対し 30等量使用)、 ビォチン TEGホスホ アミダイト (同 6等量)、 5,-ァミノ修飾 C6 (40等量) (3つともグレンリサーチ 社製) を順次反応させた。 5'末端のモノメトキシトリチル基を残したまま室温で 濃アンモニア水による脱保護を行い、 エバポレーターで濃縮したのち氷浴中で 80%酢酸を徐々に加えて最終脱保護をした。 実施例 1のァミノリンク- dC-ピュー ロマイシンとほぼ同じ条件で精製してァミノリンクービォチン一 dC—ピューロマ -イシンを得た。  Ac-dC-CE phosphoramidite (30 equivalents used for puromycin), biotin TEG phosphoamidite (same as 6 equivalents) to puromycin resin (equivalent to 7.5 ηιο1) and 5,5 -Amino-modified C6 (40 equivalents) (all three manufactured by Glen Research) were sequentially reacted. Deprotection with concentrated aqueous ammonia was carried out at room temperature while leaving the monomethoxytrityl group at the 5 'end, and after concentration with an evaporator, 80% acetic acid was gradually added in an ice bath for final deprotection. Purification was performed under almost the same conditions as in Example 1 to obtain amino-link-biotin-dC-puroma-isine.
MS ; MALDI 1509. 2 [M+H] + MS; MALDI 150.2 [M + H] +
実施例 1の Cy5- Puro の合成の場合と同様の方法で、 Cy5 Monofunctional Dye (アマシャムフアルマシァパイォテク) による蛍光ラベルと精製を行なつた。 得られた蛍光色素 Cy5 とピオチンを有するピューロマイシン誘導体 (Cy5-biotin-puro) の構造式を図 4に示す。 In the same manner as in the synthesis of Cy5-Puro in Example 1, Cy5 Monofunctional Dye (Amersham Armassia Pyotech) for fluorescent labeling and purification. FIG. 4 shows the structural formula of the obtained puromycin derivative (Cy5-biotin-puro) having the fluorescent dye Cy5 and biotin.
( 2 ) GFP mRNAの調製  (2) Preparation of GFP mRNA
上記で合成した Cy5 - biotin-puroが無細胞翻訳系において実際にタンパク質に 取り込まれるかどうかを確認するために, タンパク質として分子量約 27, 000 の Green Fluorescent Protein (GFP)を選んで取り込みの試験を行った。  In order to confirm whether Cy5-biotin-puro synthesized above was actually incorporated into the protein in a cell-free translation system, a green Fluorescent Protein (GFP) with a molecular weight of about 27,000 was selected as a protein and an uptake test was performed. went.
GFP としては伊藤らが見い出した GFPuv4 と称されるもの (Ito, Y. et al., Biochemical and Biophysical Research Communication 264, 556 - 560, (1999) ) を用い、 488nm のレーザー光でも容易に励起されてイメージアナライザーで確認 できるようにした。 この GFPの上流に T' 7プロモーター領域及び Kozak配列を有 する D NA構築物を以下の通り作成した。 T' 7プロモーター領域及ぴ Kozak配列 をもった D NA (配列番号 3 ) を铸型 D N Aとする。 この鎵型の 5,側の配列を含 むプライマー (配列番号 4 ) と 3, 側の相補鎖の一部と GFPの 5, 側の相補鎖配 列を含むプライマー(配列番号 5 )とを用いて P C Rを行った。 P C Rの条件は、 95°Cで 20秒、 68°Cで 20秒及ぴ 72°Cで 20秒のサイクルを 2 5サイクルとし、 EX Taq ポリメラーゼ (Takara) を用いて行った。  The GFP used was GFPuv4 discovered by Ito et al. (Ito, Y. et al., Biochemical and Biophysical Research Communication 264, 556-560, (1999)), and was easily excited even by a 488 nm laser beam. To check it with an image analyzer. A DNA construct having a T'7 promoter region and Kozak sequence upstream of this GFP was prepared as follows. A DNA (SEQ ID NO: 3) having a T'7 promoter region and a Kozak sequence is referred to as type I DNA. A primer containing the sequence on the 5th side of this type II (SEQ ID NO: 4) and a primer containing a part of the complementary strand on the 3rd side and GFP on the 5th side (SEQ ID NO: 5) were used. PCR was performed. The conditions of PCR were 25 cycles of 20 seconds at 95 ° C, 20 seconds at 68 ° C and 20 seconds at 72 ° C, and were performed using EX Taq polymerase (Takara).
次に、 GFPuv4をコードするプラスミドを铸型として、配列番号 6に記載の塩基 配列を有するブライマ一と配列番号 7に記載の塩基配列を有するプライマーとを 用いて P C Rを行つた。 P C Rの条件は 95°Cで 20秒、 68°Cで 20秒及び 72°Cで 30秒のサイクルを 3 0サイクルとし、 EX Taqポリメラーゼ (Takara) を用いて行 つ 7こ。  Next, PCR was performed using the plasmid encoding GFPuv4 as type I, using a primer having the nucleotide sequence of SEQ ID NO: 6 and a primer having the nucleotide sequence of SEQ ID NO: 7. The PCR conditions are 30 cycles of 20 seconds at 95 ° C, 20 seconds at 68 ° C, and 30 seconds at 72 ° C, using EX Taq polymerase (Takara).
これらの: P C R産物はフエノール抽出後、 プライマーリム一パー (Edge Biosystem)を用いてエタノール沈澱を行い精製した。 これらの D NAテンプレー トを各々等モル加えて、 配列番号 4の塩基配列を有するプライマー及び配列番号 7の塩基配列を有するプライマ一を用いて P C Rを行った。 P C Rの条件は、 95°C で 20秒、 68°Cで 20秒及び 72°Cで 40秒のサイクルを 3 0サイクルとし、 EX Taq ポリメラーゼ (Takara) を用いて行った。 これらの P C R産物はフエノール抽出 後、 プライマーリムーパー (Edge Biosystem) を用いてエタノール沈澱を行い精 製した。 精製した DNAは RiboMAX (Promega) を用いて転写し翻訳用の mRNAとし た。 These PCR products were purified by phenol extraction followed by ethanol precipitation using Primer Rimpar (Edge Biosystem). Equimolar amounts of each of these DNA templates were added, and PCR was carried out using a primer having the nucleotide sequence of SEQ ID NO: 4 and a primer having the nucleotide sequence of SEQ ID NO: 7. PCR conditions were 30 cycles of 20 seconds at 95 ° C, 20 seconds at 68 ° C and 40 seconds at 72 ° C, and EX Taq Performed using polymerase (Takara). After phenol extraction, these PCR products were purified by ethanol precipitation using a primer remover (Edge Biosystem). The purified DNA was transcribed using RiboMAX (Promega) to obtain mRNA for translation.
( 3 ) 無細胞翻訳系を用いたラベルイ匕  (3) Label-I-Dani using cell-free translation system
T7プロモーターをもつ GFPの mRNAと、上記の方法で合成した Cy5- biotin- puro とを最終濃度がそれぞれ 2 0 M と 4 0 ¾1 になるように小麦胚芽無細胞翻訳系 に加え、 2 6 °Cで 1時間反応させた。 比較用として、 Cy5- biotin- puro の代わり に Cy5- dC - Puroを用いた実験も行った。これらの反応物を 1 5 %SDS—ァクリルァ ミ ド電気泳動で分離した後, 蛍光イメージアナライザー Molecular Imager (Bio- Rad社)で確認した。 結果を図 5に示す (図 5中では、 Cy5- dC- Puro を用いて得た結果を Cy5- Puro と記す)。 図 5に示す通り、 Cy5- dC- Puroを用いた 場合に比べ、 Cy5- biotin-puro を用いた場合には極めて効率よくラベルできるこ とが確認された。 実施例 3 : Cy5-biotin-puro の支持体 (ストレプトアビジンメンブレン又はスト レプトアビジンスライドガラス) への固定ィ匕  The GFP mRNA having the T7 promoter and Cy5-biotin-puro synthesized by the above method were added to the wheat germ cell-free translation system at a final concentration of 20 M and 40 ¾1, respectively. For 1 hour. For comparison, experiments were also performed using Cy5-dC-Puro instead of Cy5-biotin-puro. These reaction products were separated by 15% SDS-acrylamide electrophoresis and confirmed by a fluorescence image analyzer, Molecular Imager (Bio-Rad). The results are shown in FIG. 5 (in FIG. 5, the results obtained using Cy5-dC-Puro are denoted as Cy5-Puro). As shown in FIG. 5, it was confirmed that labeling can be performed extremely efficiently when Cy5-biotin-puro is used, as compared with the case where Cy5-dC-Puro is used. Example 3: Cy5-biotin-puro immobilization on a support (streptavidin membrane or streptavidin slide glass)
( 1 ) 固定化の比較  (1) Comparison of immobilization
実施例 2で合成した Cy5 - biotin - puro、 又は比較用としてビォチンを有さない Cy5 - puroを各々、 2 O mM (pH 8. 0)のトリスパッファーに溶解し、 5 0 0 M、 100 μ Μ、及び 10 の濃度に調整した。 各溶液 5 0 1をストレプトアビジンメンプ レン (プロメガ社) 上にスポットし、 2 0分静置した。 次いで、 2 O mM (pH 8. 0) のトリスパッファーで 1 0回ほど洗浄し、 その後、 蛍光イメージアナライザー Molecular Imager (Bio-Rad社)で確認した。 結果を図 6に示す。  Cy5-biotin-puro synthesized in Example 2 or Cy5-puro having no biotin for comparison were each dissolved in a 2 O mM (pH 8.0) tris puffer, and 500 M, 100 M The concentrations were adjusted to μΜ and 10. Each solution 501 was spotted on streptavidin membrane (Promega) and allowed to stand for 20 minutes. Next, it was washed about 10 times with a 2 O mM (pH 8.0) tris buffer, and then confirmed with a fluorescence image analyzer, Molecular Imager (Bio-Rad). Fig. 6 shows the results.
同様に、 ストレプトァビジシスライドガラス (グライナ一社) にも の Cy5-biotin-puroと Cy5- puroをそれぞれ 5 0 μ 1スポットし、 1時間静置した。 次いで、 洗浄した後、 蛍光イメージアナライザー Molecular Imager (Bio-Rad社) で確認した。 結果を図 6に示す。 Similarly, 50 μl of Cy5-biotin-puro and 50 μl of Cy5-puro were spotted on a Streptavidin slide glass (Grainer) and allowed to stand for 1 hour. Then, after washing, fluorescence image analyzer Molecular Imager (Bio-Rad) Confirmed. Fig. 6 shows the results.
その結果、 Cy5-puroよりも Cy5- biotin- puroの方が、 ストレプトアビジンメン プレン又はストレプトアビジンスライドガラスに特異的に結合できることが確認 できた。  As a result, it was confirmed that Cy5-biotin-puro can bind more specifically to streptavidin membrane or streptavidin slide glass than to Cy5-puro.
例えば, 図 6における Fluorpuroと Fluor- biot in-pur oのストレプトァビジン メ ンプレンへの固定化率は、 2 回の洗浄後, Fluorpuro は 1 5 %に対し Fluor-biotin-puroは 8 8 % Cあつに。  For example, the immobilization rate of Fluorpuro and Fluor-biotin-puro on streptavidin-membrene in Fig. 6 shows that after two washes, Fluorpuro was 15% and Fluor-biotin-puro was 88% C To hot.
また、 スライドガラスへの固定ィ匕量は, Fluor- biotin-puroは Fluorpuroの約 3 . 5倍であった。 即ち、 Fluor- biotin- puro のスライドガラスへの固定化は、 非特異的な吸着を考慮しても十分に特異的結合であることがわかる。  The amount of Fluor-biotin-puro fixed to the slide glass was about 3.5 times that of Fluorpuro. That is, it can be seen that the immobilization of Fluor-biotin-puro on the slide glass is a sufficiently specific binding even in consideration of non-specific adsorption.
従つて上記のようなコント口ールを取得することにより、 実施例 2で調製した ような Cy5- biotin-puroで C末端をラベル化したタンパク質をストレプトァビジ ンでコートした支持体に固定ィ匕した場合でも、 固定ィ匕された該タンパク質の個数 を定量的に測定することが可能になる。 実施例 4 :エバーネッセント光によるピオチン結合蛍光分子 (ピオチン及び蛍光 物質で標識した D NA) の定量化  Therefore, by obtaining the control as described above, the protein labeled with the C5-terminal with Cy5-biotin-puro as prepared in Example 2 was immobilized on a support coated with streptavidin. Even in the case of a dani, it becomes possible to quantitatively measure the number of the immobilized proteins. Example 4: Quantification of Piotin-Binding Fluorescent Molecules (DNA Labeled with Piotin and Fluorescent Substance) by Evanescent Light
( 1 ) ビォチン及ぴ蛍光物質で標識した D N Aの合成  (1) Synthesis of DNA labeled with biotin and fluorescent substance
Octlの Pou— specif ic domain (Nature vol. 362 852-855, 1993)と相互作用す る D NA配列を含み, かつ 5, 側をビォチン化した一本鎖 D N A (配列番号 8 ) と、 その相補配列を有し、 力つ 5 ' 側を TAMRA (5-carbox rtetramethylrhodamine) で標識化した一本鎖 D NA (配列番号 9 ) を各々、 D NA合成機を用いて 3 ' 側 から日本製粉に依頼して合成した。 逆相簡易カラムで精製したものを用いた。 こ れを pH6. 8 (80mM Pipes, 2mM MgCl 2, ImM EGTA) のバッファーに溶解後, 6 0 °C でァニーリングし, 2本鎖 D N Aにして以下の実験に用いた。 Octl's Pou—Single-stranded DNA (SEQ ID NO: 8) containing a DNA sequence that interacts with the specific domain (Nature vol. 362 852-855, 1993) and biotinylated on the 5 and 5 sides Single-stranded DNA (SEQ ID NO: 9), which has a sequence and is labeled on the 5 'side with TAMRA (5-carbox rtetramethylrhodamine), was ordered to Nippon Milling from the 3' side using a DNA synthesizer. And synthesized. Purified with a reversed-phase simple column was used. This was dissolved in a buffer of pH 6.8 (80 mM Pipes, 2 mM MgCl 2 , ImM EGTA) and then annealed at 60 ° C to obtain double-stranded DNA, which was used in the following experiments.
( 2 ) ビォチン及ぴ蛍光物質で標識した D N Aの石英ガラスへの固定ィヒと定量 ビォチン及び蛍光物質で標識した D N Aの濃度が低濃度(50〜300pM)の場合と、 高濃度(1. 5〜: L5nM)の場合の各々についてガラスに固定化される程度を観察した。 Biotin BSA、 Streptavidin, Oct 1結合 D N Aの順で石英ガラスに流し、 ェパ一ネ ッセント光で観察した。 (2) Immobilization and quantification of DNA labeled with biotin and fluorescent substance on quartz glass, and the case where the concentration of DNA labeled with biotin and fluorescent substance is low (50-300 pM) The degree of immobilization on glass was observed for each of the high concentrations (1.5 to L5nM). Biotin BSA, Streptavidin, and Oct1-conjugated DNA were flowed on quartz glass in this order, and observed with an epoxy light.
測定の具体的方法は, 以下の通りである。  The specific method of measurement is as follows.
(低濃度の場合)  (Low concentration)
図 7の ( 1 ) の 5枚の図はそれぞれ 150 X 150Pix (約 2 3 X 2 3 μ m) を 6 0 フレーム (約 2秒間) にわたつて平均化した。 非特異的なピオチン及び蛍光物質 で標識した D N Aの結合は Streptavidinがない条件下で調べた。  In each of the five figures in (1) of FIG. 7, 150 × 150 pixels (about 23 × 23 μm) were averaged over 60 frames (about 2 seconds). The binding of non-specific biotin and DNA labeled with a fluorescent substance was examined in the absence of Streptavidin.
(高濃度の場合)  (For high concentration)
—分子が観察できる条件で見るとビォチン及び蛍光物質で標識した D N Aが 3 0 O pM以上では画面が真っ白になるので、 ゲージを下げて観察した。 ダイナミツ クレンジが狭いため同じ観察条件では、濃度を 1 0倍までしかあげられなかった。 それでも、 濃度が高くなるに従 、画面が明るくなる様子が観察された。  -Under the condition where molecules can be observed, when the DNA labeled with biotin and fluorescent substance is more than 30 OpM, the screen becomes white, so the gauge was observed with the gauge lowered. Due to the narrow dynamic range, the concentration could be increased only up to 10 times under the same observation conditions. Nevertheless, it was observed that the screen became brighter as the density increased.
上記した測定の結果から、 次のことが確認できた。  From the above measurement results, the followings were confirmed.
流したビォチン及び蛍光物質で標識した D N Aの濃度に従ってガラス面に吸着 するビォチン及び蛍光物質で標識した D NAの数も増える。 5 Ο ρΜ、 ΙΟΟρΜ及び 300pM とビォチン及ぴ蛍光物質で標識した D NAの濃度が濃いものをガラス面上 に流すと輝点の数 (固定された分子数) も約 3 0、 約 6 0、 約 1 8 0と比例して 増加することが確認できた。.一方、 コントロールとして streptavidinをガラス面 上に固定していない場合は、 そのような増加は確認できなかった。  The number of biotin and fluorescent substance-labeled DNA adsorbed on the glass surface increases with the concentration of the flowed biotin and fluorescent substance-labeled DNA. 5 When ΟρΜ, ΙΟΟρΜ and 300 pM and DNA with high concentration of biotin and fluorescent substance are applied to the glass surface, the number of bright spots (the number of fixed molecules) is about 30, about 60, It was confirmed that it increased in proportion to about 180. On the other hand, when streptavidin was not immobilized on the glass surface as a control, no such increase was observed.
従って、 ビォチン及び蛍光物質で標識した D N Aについた一分子の TAMRAの蛍 光が観察出来ることが分かる。 産業上の利用の可能性  Therefore, it can be seen that the fluorescence of one molecule of TAMRA attached to DNA and labeled with biotin and a fluorescent substance can be observed. Industrial applicability
本発明により、 標識すべき標的タンパク質一分子に対して一分子の標識物質と 一分子の親和性物質又は共有結合形成性反応基を導入することを可能にするタン パク質のラベル化試薬を提供することが可能になった。 本発明のラベル化試薬を 利用して C末端を標識したタンパク質を用いて標的分子との分子間相互作用を解 析することにより、当該相互作用を迅速かつ定量的に測定することが可能になる。 According to the present invention, there is provided a protein labeling reagent capable of introducing one molecule of a labeling substance and one molecule of an affinity substance or a covalent bond-forming reactive group into one molecule of a target protein to be labeled. It became possible to do. The labeling reagent of the present invention By analyzing the intermolecular interaction with the target molecule using a protein having a C-terminal labeled using the protein, it becomes possible to measure the interaction quickly and quantitatively.

Claims

請求の範囲 The scope of the claims
1 . タンパク質の C末端に結合する能力を有する物質一分子に対して一分子の 標識物質と一分子の親和性物質又は共有結合'形成性反応基とが結合して成る、 タ ンパク質のラベル化試薬。 1. A protein label consisting of one molecule of a substance capable of binding to the C-terminus of a protein and one molecule of a labeling substance bound to one molecule of an affinity substance or a covalent bond-forming reactive group. Chemical reagent.
2 . 標識物質と親和性物質又は共有結合形成性反応基がそれぞれスぺーサーを 介して、 タンパク質の C末端に結合する能力を有する物質に結合している、 請求 項 1に記載のラベル化試薬。  2. The labeling reagent according to claim 1, wherein the labeling substance and the affinity substance or the covalent bond-forming reactive group are respectively bound to a substance capable of binding to the C-terminus of the protein via a spacer. .
3 . —般式: X— ( L 1) m- A- ( L 2) n -Y 3. —General formula: X— (L 1 ) m -A- (L 2 ) n -Y
(式中、 Xは標識物質の残基を示し、 Υは親和性物質の残基又は共有結合形成性 反応基を示し、. L 1および L 2はそれぞれ独立に 2価のスぺーサ基を示し、 mおよ ぴ nはそれぞれ独立に 0又は 1の整数を示し、 Aは ンパク質の C末端に結合す る能力を有する物質の残基を示す) (In the formula, X represents a residue of a labeling substance, Υ represents a residue of an affinity substance or a reactive group capable of forming a covalent bond, and L 1 and L 2 each independently represent a divalent spacer group. And m and ぴ n each independently represent an integer of 0 or 1, and A represents a residue of a substance capable of binding to the C-terminus of the protein)
で表される化合物から成る請求項 1又は 2に記載のラベル化試薬。 3. The labeling reagent according to claim 1, comprising a compound represented by the formula:
4 . 標識物質が蛍光物質である、 請求項 1から 3の何れかに記載のラベルイ匕試  4. The labeling dani test according to any one of claims 1 to 3, wherein the labeling substance is a fluorescent substance.
5 . 親和性物質が、 ビォチン、 マルトース、 グァニンヌクレオチド、 金属ィォ ン、 グルタチオン、 タンパク質結合性 D N A、 抗原分子、 カルモジュリン結合べ プチド、 A T P、 及ぴエストラジオールからなる群より選ばれる物質であり、 共 有結合形成性反応基がケトン基、 ジォーノレ基、 アジド基又はソラレンである、 請 求項 1カゝら 4の何れか 1項に記載のラベル化試薬。 5. The affinity substance is a substance selected from the group consisting of biotin, maltose, guanine nucleotide, metal ion, glutathione, protein binding DNA, antigen molecule, calmodulin binding peptide, ATP, and estradiol, 5. The labeling reagent according to claim 1, wherein the covalent bond-forming reactive group is a ketone group, a dionole group, an azide group, or a psoralen.
6 . タンパク質の C末端に結合する能力を有する物質力 ピューロマイシン、 3, 一 N—アミノアシルピューロマイシンアミノヌクレオシド、 又は 3, 一 N—アミ ノァシルアデノシンアミノヌクレオシドのいずれかの化学構造骨格を含む化合物 又はそれらの類縁体である、請求項 1から 5の何れか 1項に記載のラベルイ匕試薬。  6. A substance that has the ability to bind to the C-terminus of a protein. A compound containing any of the chemical structural skeletons of puromycin, 3,1-N-aminoacylpuromycin aminonucleoside, and 3,1-N-aminoaminosyladenosine aminonucleoside. 6. The labeling reagent according to any one of claims 1 to 5, wherein the reagent is an analog thereof.
7 . 請求項 1カゝら 6の何れか 1項に記載のタンパク質のラベルィヒ試薬の存在下 においてタンパク質をコードする核酸を用いて転写 ·翻訳系においてタンパク質 合成を行う工程を含む、 タンパク質の c末端を標識する方法。 7. A protein in a transcription / translation system using a nucleic acid encoding the protein in the presence of the protein label reagent according to any one of claims 1 to 6. A method for labeling the c-terminal of a protein, comprising a step of performing synthesis.
8 . —般式: X— ( L 1) m-A- (L 2) n -Y 8. —General formula: X— (L 1 ) m -A- (L 2 ) n -Y
(式中、 Xは標識物質の残基を示し、 Υは親和性物質の残基又は共有結合形成性 反応基を示し、 L 1および L 2はそれぞれ独立に 2価のスぺーサ基を示し、 mおよ ぴ nはそれぞれ独立に 0又は 1の整数を示し、 Aはタンパク質の C末端に結合す る能力を有する物質の残基を示す) (In the formula, X represents a residue of a labeling substance, Υ represents a residue of an affinity substance or a reactive group capable of forming a covalent bond, and L 1 and L 2 each independently represent a divalent spacer group. , M and ぴ n each independently represent an integer of 0 or 1, and A represents a residue of a substance capable of binding to the C-terminus of the protein)
で表される化合物又はその塩。 Or a salt thereof.
9 . 標識物質が蛍光物質である、 請求項 8に記載の化合物又はその塩。  9. The compound or a salt thereof according to claim 8, wherein the labeling substance is a fluorescent substance.
1 0 . 親和性物質が、 ビォチン、 マルトース、 グァニンヌクレオチド、 金属ィ オン、 ダルタチオン、 タンパク質結合性 D NA、 抗原分子、 カルモジュリン結合 ペプチド、 AT P、 及びエストラジオールからなる群より選ばれる物質であり、 共有結合形成性反応基がケトン基、 ジオール基、 アジド基又はソラレンである、 請求項 8又は 9に記載の化合物又はその塩。  10. The affinity substance is a substance selected from the group consisting of biotin, maltose, guanine nucleotide, metal ion, daltathione, protein-binding DNA, antigen molecule, calmodulin-binding peptide, ATP, and estradiol; 10. The compound according to claim 8 or 9, wherein the covalent bond-forming reactive group is a ketone group, a diol group, an azide group or a psoralen.
1 1 . タンパク質の C末端に結合する能力を有する物質が、ピューロマイシン、 3, 一 N—アミノアシノレビューロマイシンアミノヌクレオシド、 又は 3, 一 N—ァ ミノァシルアデノシンアミノヌクレオシドのいずれかの化学構造骨格を含む化合 物又はそれらの類縁体である、 請求項 8から 1 0の何れか 1項に記載の化合物又 はその塩。  11. The substance capable of binding to the C-terminus of the protein is any of puromycin, 3,1-N-aminoacino-reviewomycin aminonucleoside, or 3,1-N-aminoaminosyladenosine aminonucleoside. 10. The compound or a salt thereof according to any one of claims 8 to 10, which is a compound having a structural skeleton or an analog thereof.
PCT/JP2002/001718 2001-02-27 2002-02-26 Reagents for labeling protein WO2002073201A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001052840A JP2002257832A (en) 2001-02-27 2001-02-27 Protein labeling reagent
JP2001-52840 2001-02-27

Publications (1)

Publication Number Publication Date
WO2002073201A1 true WO2002073201A1 (en) 2002-09-19

Family

ID=18913408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001718 WO2002073201A1 (en) 2001-02-27 2002-02-26 Reagents for labeling protein

Country Status (2)

Country Link
JP (1) JP2002257832A (en)
WO (1) WO2002073201A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051270A2 (en) * 2002-12-05 2004-06-17 Novartis Ag Labeling methodology comprising oligopeptides

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004113530A1 (en) * 2003-06-18 2006-08-03 三菱化学株式会社 Polynucleotide for labeling protein synthesis
CA2552520A1 (en) * 2004-01-07 2005-07-28 The Research Foundation Of State University Of New York Protein imprinted polymers with integrated emission sites
JP2011122957A (en) * 2009-12-11 2011-06-23 Tosoh Corp Method of detecting protein with high specificity and high sensitivity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198594A (en) * 1991-06-07 1995-08-01 Ciba Corning Diagnostics Corp Multiplex-output reference device for evanescent wave sensor and method of analysis
WO1998016636A1 (en) * 1996-10-17 1998-04-23 Mitsubishi Chemical Corporation Molecule that homologizes genotype and phenotype and utilization thereof
JPH11322781A (en) * 1998-05-15 1999-11-24 Mitsubishi Chemical Corp Compound for labeling protein and labeling of protein with the compound
JP2000139468A (en) * 1998-11-11 2000-05-23 Mitsubishi Chemicals Corp Production of protein with labeled c-terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198594A (en) * 1991-06-07 1995-08-01 Ciba Corning Diagnostics Corp Multiplex-output reference device for evanescent wave sensor and method of analysis
WO1998016636A1 (en) * 1996-10-17 1998-04-23 Mitsubishi Chemical Corporation Molecule that homologizes genotype and phenotype and utilization thereof
JPH11322781A (en) * 1998-05-15 1999-11-24 Mitsubishi Chemical Corp Compound for labeling protein and labeling of protein with the compound
JP2000139468A (en) * 1998-11-11 2000-05-23 Mitsubishi Chemicals Corp Production of protein with labeled c-terminal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUNATSU ET AL.: "Imaging of single fluorescent molecules and indivisual ATP turnovers by single myosin molecules in aqueous solution", NATURE, vol. 374, 1995, pages 555 - 559, XP000876872 *
NEMOTO ET AL.: "Fluorescence labeling of the C-terminus of proteins with a puromycin analogue in cell-free translation systems", FEBS LETTERS, vol. 462, 1999, pages 43 - 46, XP004260584 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051270A2 (en) * 2002-12-05 2004-06-17 Novartis Ag Labeling methodology comprising oligopeptides
WO2004051270A3 (en) * 2002-12-05 2004-12-29 Novartis Ag Labeling methodology comprising oligopeptides

Also Published As

Publication number Publication date
JP2002257832A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
EP1816192B1 (en) LINKER FOR CONSTRUCTING mRNA-PUROMYCIN-PROTEIN CONJUGATE
JP5647113B2 (en) Multi-ligand capture agents and related compositions, methods and systems
US7150978B2 (en) Recombinant template used for producing a carboxy-terminal modified protien and a method of producing a carboxy-terminal modified protein
JP3942431B2 (en) Protein-molecule interaction analysis method
JP4801445B2 (en) Biomolecule detection method and labeling dye and labeling kit used therefor
KR20050049513A (en) Protein labelling with o6-alkylguanine-dna alkyltransferase
JPWO2004009709A1 (en) Non-naturally labeled amino acid and method for producing the amino acid-tRNA conjugate
WO2002074950A1 (en) Method of analyzing intermolecular interaction
JP6020865B2 (en) Nucleic acid linker
WO2002073201A1 (en) Reagents for labeling protein
JPWO2005001086A1 (en) Immobilized mRNA-puromycin conjugate and uses thereof
JP5049136B2 (en) Efficient synthesis method of protein labeled with N-terminal amino acid
WO2007046520A1 (en) Method for screening of protein using immobilized puromycin linker
JPWO2003048363A1 (en) Complex of mapping molecule and C-terminal labeled protein, complex of mapping molecule, and protein-protein interaction analysis method using the complex
JP2004053416A (en) Method for analyzing protein-intermolecular interaction using c-terminus labeled protein
JP4747292B2 (en) Translation templates and libraries thereof, proteins and protein libraries synthesized from them, elements constituting them, and methods for producing and using them
US20040265921A1 (en) Intein-mediated attachment of ligands to proteins for immobilization onto a support
JPWO2005050518A1 (en) Method of creating interaction map using gene and / or protein database, and software and apparatus for realizing the method
JPH0682451A (en) Measuring method for ligand pr receptor
JP4679870B2 (en) Kinase activity detection method
Stindl Evaluation of ligation methods and the synthesis of a specific PNA-encoded peptide library
JP2002107364A (en) Biological reagent array for detecting non-label and its preparing method
WO2014072492A2 (en) Phosphorescent dye and phosphorescence immunoassay by peptide displacement
JP2002286715A (en) Non-label sensing method for protein, lipid, or nucleic acid capable of making interaction with specific peptide using peptide array
WO2004053121A1 (en) PROTEIN FORMING COMPLEX WITH c-Fos PROTEIN, NUCLEIC ACID ENCODING THE SAME AND METHOD OF USING THE SAME

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase