JP4679870B2 - Kinase activity detection method - Google Patents

Kinase activity detection method Download PDF

Info

Publication number
JP4679870B2
JP4679870B2 JP2004293084A JP2004293084A JP4679870B2 JP 4679870 B2 JP4679870 B2 JP 4679870B2 JP 2004293084 A JP2004293084 A JP 2004293084A JP 2004293084 A JP2004293084 A JP 2004293084A JP 4679870 B2 JP4679870 B2 JP 4679870B2
Authority
JP
Japan
Prior art keywords
kinase
reaction
detection method
peptide
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004293084A
Other languages
Japanese (ja)
Other versions
JP2006101767A (en
Inventor
直樹 梅澤
昌二 秋田
恒彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya City University
Original Assignee
Nagoya City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya City University filed Critical Nagoya City University
Priority to JP2004293084A priority Critical patent/JP4679870B2/en
Publication of JP2006101767A publication Critical patent/JP2006101767A/en
Application granted granted Critical
Publication of JP4679870B2 publication Critical patent/JP4679870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明はキナーゼ活性を検出する方法に関する。   The present invention relates to a method for detecting kinase activity.

蛋白質のリン酸化、脱リン酸化は、生体内のシグナル伝達において、最も重要なものの一つであり、細胞の分化、増殖、細胞死に至るまで様々な生命活動に関与している。例えば、細胞の腫瘍化に、SrcやRafといったキナーゼが関与していることはよく知られている。このように、多くのキナーゼが重要な役割を果たしていることが明らかにされているが、すでに同定されたキナーゼでさえ、どの蛋白質を基質とするか、どのようなアミノ酸配列を認識してリン酸化するのか、といった基礎的知見を欠くものが少なくない。全遺伝子の2〜3パーセントがキナーゼをコードしているというヒトゲノム計画の結果からも明らかなように、「リン酸化」という翻訳後修飾の持つ一般性と重要性は非常に大きい。
キナーゼ活性の検出法は多数報告されているが、原理的に2種類に分類できる。放射性同位元素(RI)でラベルされたATP([γ-32P]ATP)を用いる方法と、リン酸化アミノ酸を認識する抗体を用いる方法である。前者は、キナーゼによる基質蛋白質/ペプチドのリン酸化反応後、基質に取り込まれた32Pの放射能を測定してキナーゼ活性を定量化する。この方法は、広範に用いられているが、RIを用いるため危険性が高い上に、相応の施設を必要とするという問題点がある。後者は、リン酸化されたペプチドを抗体で認識する方法である。この方法は、安全かつハイスループットスクリーニング(HTS)に応用可能であるが、“リン酸化された”アミノ酸を“特異的”に認識する抗体を作成する必要があり、汎用性、コスト面に問題があると考えられる。
最近、細胞内でリン酸化される蛋白質を一斉検出する目的で、リン酸基の反応性に着目した手法が報告された。細胞抽出物に化学的処理を施して、リン酸化蛋白質を化学変換、分離後、質量分析法でリン酸化部位を推測するというものである(非特許文献1及び2)。この方法の有用性を現時点で判断することは出来ないが、リン酸化以外の多様な翻訳後修飾を含む、多種類の蛋白質を対象としているため、結果の解釈に注意を要すると思われる。また浜地らは近年、シンプルな亜鉛錯体がリン酸基を認識し、蛍光性に変化することを見出している(非特許文献3)。だが、その蛍光プローブは、キナーゼの基質の1つであるATPにも強く応答したり、リン酸化されるペプチドの配列により感度が大きく異なる等、実用化に向けて解決すべき問題点がいくつかある。これらは、リン酸基の化学的性質に着目した数少ない例であるが、いずれもキナーゼ活性の検出を目標としたものではない。
ごく最近、Molecular Probe社より、“Pro-Q Diamond”なるリン酸化アミノ酸検出蛍光試薬が発売された(非特許文献4)。文献等を参照する限り、非常に優れたプローブと考えられるが、その構造、検出原理等は、一切秘匿されているため、その有用性の正確な評価は現時点では難しい。
Protein phosphorylation and dephosphorylation are one of the most important in signal transduction in vivo, and are involved in various life activities from cell differentiation to proliferation to cell death. For example, it is well known that kinases such as Src and Raf are involved in cell tumorigenesis. In this way, it has been clarified that many kinases play an important role, but even an already identified kinase recognizes which protein is a substrate and what amino acid sequence is recognized and phosphorylated. There are many things that lack basic knowledge. The generality and importance of post-translational modification called “phosphorylation” is enormous, as evidenced by the results of the Human Genome Project that 2-3 percent of all genes encode kinases.
Many methods for detecting kinase activity have been reported, but can be classified into two types in principle. A method using ATP ([γ- 32 P] ATP) labeled with a radioisotope (RI) and a method using an antibody that recognizes phosphorylated amino acids. In the former, the kinase activity is quantified by measuring the radioactivity of 32 P incorporated into the substrate after phosphorylation of the substrate protein / peptide by the kinase. Although this method is widely used, there is a problem in that it uses a RI and requires a corresponding facility. The latter is a method for recognizing a phosphorylated peptide with an antibody. Although this method can be applied to safe and high-throughput screening (HTS), it is necessary to create an antibody that “specifically” recognizes “phosphorylated” amino acids, which causes problems in versatility and cost. It is believed that there is.
Recently, a method focusing on the reactivity of phosphate groups has been reported for the purpose of simultaneous detection of proteins phosphorylated in cells. The cell extract is chemically treated to chemically convert and separate the phosphorylated protein, and the phosphorylated site is estimated by mass spectrometry (Non-patent Documents 1 and 2). Although the usefulness of this method cannot be determined at this time, it is likely to require careful interpretation of the results because it targets a wide variety of proteins including various post-translational modifications other than phosphorylation. In addition, Hamachi et al. Recently found that a simple zinc complex recognizes a phosphate group and changes to fluorescence (Non-patent Document 3). However, the fluorescent probe responds strongly to ATP, which is one of the kinase substrates, and the sensitivity varies greatly depending on the peptide sequence to be phosphorylated. is there. These are few examples that focus on the chemical properties of phosphate groups, but none of them are aimed at detecting kinase activity.
Most recently, a fluorescent reagent for detecting a phosphorylated amino acid called “Pro-Q Diamond” was released by Molecular Probe (Non-patent Document 4). As long as the literature is referred to, it is considered to be a very excellent probe, but its structure, detection principle, etc. are all kept secret, so accurate evaluation of its usefulness is difficult at present.

H. Zhou, J. D. Watts, R. Aebersold, Nat. Biotechnol. 2001, 19, 375-378.H. Zhou, J. D. Watts, R. Aebersold, Nat. Biotechnol. 2001, 19, 375-378. Y. Oda, T. Nagasu, B. T. Chait, Nat. Biotechnol. 2001, 19, 379-382.Y. Oda, T. Nagasu, B. T. Chait, Nat. Biotechnol. 2001, 19, 379-382. A. Ojida, Y. Mito-oka, K. Sada, I. Hamachi, J. Am. Chem. Soc. 2004, 126, 2454-2463.A. Ojida, Y. Mito-oka, K. Sada, I. Hamachi, J. Am. Chem. Soc. 2004, 126, 2454-2463. K. Martin, T. H. Steinberg, L. A. Cooley, K. R. Gee, J. M. Beechem, W. F. Patton, Proteomics 2003, 3, 1244-1255.K. Martin, T. H. Steinberg, L. A. Cooley, K. R. Gee, J. M. Beechem, W. F. Patton, Proteomics 2003, 3, 1244-1255. M. E. M. Noble, J. A. Endicott, L. N. Johnson, Science 2004, 303, 1800-1805.M. E. M. Noble, J. A. Endicott, L. N. Johnson, Science 2004, 303, 1800-1805.

以上の背景の下、本発明は新たなキナーゼ活性検出法を提供することを目的とする。   Under the above background, an object of the present invention is to provide a new method for detecting kinase activity.

上記目的を達成するために、本発明者らは検討を重ねた。まず、今まであまり注目されていなかった、リン酸化アミノ酸の化学的性質に着目した。一般に、リン酸化を受けるアミノ酸は、セリン、スレオニン、チロシンの3種であるが、セリンースレオニンキナーゼが、その大多数を占めることが知られている。そこで、セリンースレオニンキナーゼを対象としたキナーゼ活性検出方法の開発を試みた。その結果、新たな原理に基づく検出方法を完成するに至った。本発明は、この成果に基づくものであって、以下の構成を提供する。
以下の各ステップを含んでなるキナーゼ活性検出法:
キナーゼをペプチドに作用させるステップ;
導入されたリン酸基をβ脱離させるステップ;
前記リン酸基がβ脱離して生成した二重結合部分に、マイケル付加反応によって標識物質を導入するステップ;及び
導入された標識物質を検出するステップ。
本発明の一態様では、前記キナーゼが、セリン−スレオニンキナーゼであることを特徴とする。
また、本発明の一態様では、前記標識物質が蛍光性物質であることを特徴とする。
更に、本発明の一態様では、前記標識物質がSH基等の求核性官能基を有することを特徴とする。
更に、本発明の一態様では、前記ペプチドが不溶性支持体に固定されていることを特徴とする。
In order to achieve the above object, the present inventors have repeatedly studied. First, we focused on the chemical properties of phosphorylated amino acids, which have not received much attention until now. In general, there are three types of amino acids that undergo phosphorylation: serine, threonine, and tyrosine, and it is known that serine threonine kinase accounts for the majority. Therefore, an attempt was made to develop a kinase activity detection method targeting serine threonine kinase. As a result, a detection method based on a new principle has been completed. The present invention is based on this result and provides the following configuration.
A method for detecting kinase activity comprising the following steps:
Allowing a kinase to act on a peptide;
Β-eliminating the introduced phosphate group;
Introducing a labeling substance into the double bond formed by β-elimination of the phosphate group by a Michael addition reaction; and detecting the introduced labeling substance.
In one aspect of the present invention, the kinase is a serine-threonine kinase.
In one embodiment of the present invention, the labeling substance is a fluorescent substance.
Furthermore, one embodiment of the present invention is characterized in that the labeling substance has a nucleophilic functional group such as an SH group.
Furthermore, one embodiment of the present invention is characterized in that the peptide is immobilized on an insoluble support.

本発明の検出方法は、リン酸化アミノ酸そのものを検出するので汎用性が高いという利点を持つ。そのため、例えば、各種キナーゼの特異的基質の同定や、特異的阻害剤のハイスループットスクリーニングなど、広範囲な用途への適用が期待される。また、既存のキナーゼ活性検出法と併用することで、目的とするキナーゼがセリンースレオニンキナーゼか、チロシンキナーゼであるか判定することも可能である。さらに、現存するキナーゼ活性の検出法と比し、本発明の検出方法は簡便な検出を可能し、低コスト化も図られる。   The detection method of the present invention has the advantage of high versatility because it detects the phosphorylated amino acid itself. Therefore, application to a wide range of uses such as identification of specific substrates of various kinases and high-throughput screening of specific inhibitors is expected. Moreover, it can also be determined whether the target kinase is serine threonine kinase or tyrosine kinase by using in combination with the existing kinase activity detection method. Furthermore, compared with existing methods for detecting kinase activity, the detection method of the present invention enables simple detection and reduces costs.

以下、本発明の実施例(実験例を含む)を説明する。   Examples of the present invention (including experimental examples) will be described below.

<実験方法>
1.蛍光性化合物の合成
用いた試薬の多くはTCI、WAKO、nacalaiから市販さられているものを、DIPEAについてはWatanabe Chemから市販されているものを使用し、特に精製を行うことなく使用した。反応や再結晶には蒸留した溶媒を用いた。
<Experiment method>
1. Synthesis of fluorescent compounds Most of the reagents used were commercially available from TCI, WAKO, and nacalai, and DIPEA was commercially available from Watanabe Chem without any particular purification. A distilled solvent was used for the reaction and recrystallization.

1−1.化合物1の合成
1-1. Synthesis of compound 1

Resorcinol (1.00 g; 9.1 mmol) を50 mL二頚ナスフラスコにいれ、conc. H2SO4 (10 mL)、4-chloroacetoacetic acid ethyl ester (1.65 g; 10.0 mmol)を加えて、室温で、一晩、遮光して撹拌した。氷冷した水(55 mL)に反応混合物を滴下し、析出物をろ取、減圧乾燥し、0.88 gの白色固体を得た。Y. 46 %
1H NMR (DMSO-d6): d 4.96 (s, 2H); 6.43 (s, 1H); 6.76 (d, 1H, J = 2.3 Hz); 6.84 (dd, 1H, J = 2.3, 8.8 Hz); 7.68 (d, 1H, J = 8.8 Hz).
MS FAB (NBA): 211 (M + 1)
Resorcinol (1.00 g; 9.1 mmol) was placed in a 50 mL double-necked eggplant flask, and conc.H 2 SO 4 (10 mL) and 4-chloroacetoacetic acid ethyl ester (1.65 g; 10.0 mmol) were added. In the evening, it was stirred in the dark. The reaction mixture was added dropwise to ice-cooled water (55 mL), and the precipitate was collected by filtration and dried under reduced pressure to obtain 0.88 g of a white solid. Y. 46%
1 H NMR (DMSO-d 6 ): d 4.96 (s, 2H); 6.43 (s, 1H); 6.76 (d, 1H, J = 2.3 Hz); 6.84 (dd, 1H, J = 2.3, 8.8 Hz) ; 7.68 (d, 1H, J = 8.8 Hz).
MS FAB (NBA): 211 (M + 1)

原料 (200 mg; 0.95 mmol)を50 mL二頚ナスフラスコにいれ、Ar置換後、freshly dist. THF (8 mL)、thioacetic acid (86 mg; 1.13 mmol)、DIPEA (146 mg; 1.13 mmol)を加えて、室温で遮光し、90 min撹拌した。溶媒を濃縮し、残渣をCH2Cl2に溶解し、カラムクロマトグラフィー (EtOAc/n-hexane = 2/3)により精製した。230 mgの白色固体を得た。Y. 97 %
1H NMR (DMSO-d6): d 2.40 (s, 3H); 4.26 (s, 2H); 6.24 (s, 1H); 6.74 (d, 1H, J = 2.4 Hz); 6.81 (dd, 1H, J = 2.4, 8.8 Hz); 7.60 (d, 1H, J = 8.8 Hz); 10.64 (s, 1H).
MS FAB (NBA): 251 (M + 1)
一部CH3CNで再結晶
Anal. Calcd for C12H10O4S: C, 57.59; H, 4.03; N, 0.00. Found: C, 57.78; H, 4.09; N, 0.00.
Raw material (200 mg; 0.95 mmol) was placed in a 50 mL double-necked eggplant flask, and after Ar substitution, freshly dist.THF (8 mL), thioacetic acid (86 mg; 1.13 mmol), DIPEA (146 mg; 1.13 mmol) In addition, the mixture was shielded from light at room temperature and stirred for 90 min. The solvent was concentrated and the residue was dissolved in CH 2 Cl 2 and purified by column chromatography (EtOAc / n-hexane = 2/3). 230 mg of a white solid was obtained. Y. 97%
1 H NMR (DMSO-d 6 ): d 2.40 (s, 3H); 4.26 (s, 2H); 6.24 (s, 1H); 6.74 (d, 1H, J = 2.4 Hz); 6.81 (dd, 1H, J = 2.4, 8.8 Hz); 7.60 (d, 1H, J = 8.8 Hz); 10.64 (s, 1H).
MS FAB (NBA): 251 (M + 1)
Partial recrystallization with CH 3 CN
Anal. Calcd for C 12 H 10 O 4 S: C, 57.59; H, 4.03; N, 0.00. Found: C, 57.78; H, 4.09; N, 0.00.

原料 (1.19 g; 4.75 mmol)を300 mL三頚ナスフラスコにいれ、methanol (120 mL)に溶解し、脱気、 Ar置換後、0.25 g/mL NaOH水溶液 (2.2 mL; 13.75 mmol)を加えて、室温で遮光し、50 min撹拌した。氷冷下1N HClを加えて反応溶液を酸性とした。Methanolを濃縮し、EtOAcで抽出(40, 30, 30 mL)後、brine wash (30 mL×1)、EtOAcを無水MgSO4で乾燥後、濃縮した。残渣をmethanolに溶解後、シリカゲルにまぶし、カラムクロマトグラフィー (5 % methanol/CH2Cl2)により精製した。0.84 gの白色固体を得た。Y. 85 %
1H NMR (DMSO-d6): d 3.19 (t, 1H, J = 7.9 Hz); 3.87 (d, 2H, J = 7.9 Hz); 6.28 (s, 1H); 6.73 (d, 1H, J = 2.2 Hz); 6.81 (dd, 1H, J = 2.2, 8.7 Hz); 7.71 (d, 1H, J = 8.7 Hz); 10.60 (s, 1H).
MS FAB (M + 1): 209 (M + 1)
一部EtOAcで再結晶
Anal. Calcd for C10H8O3S: C, 57.68; H, 3.87; N, 0.00. Found: C, 57.43; H, 3.99; N, 0.00.
Add the raw material (1.19 g; 4.75 mmol) to a 300 mL three-necked eggplant flask, dissolve in methanol (120 mL), degas, replace with Ar, add 0.25 g / mL NaOH aqueous solution (2.2 mL; 13.75 mmol). , Protected from light at room temperature and stirred for 50 min. Under ice cooling, 1N HCl was added to acidify the reaction solution. Methanol was concentrated, extracted with EtOAc (40, 30, 30 mL), brine wash (30 mL × 1), EtOAc was dried over anhydrous MgSO 4 and concentrated. The residue was dissolved in methanol, applied to silica gel, and purified by column chromatography (5% methanol / CH 2 Cl 2 ). 0.84 g of a white solid was obtained. Y. 85%
1 H NMR (DMSO-d 6 ): d 3.19 (t, 1H, J = 7.9 Hz); 3.87 (d, 2H, J = 7.9 Hz); 6.28 (s, 1H); 6.73 (d, 1H, J = 2.2 Hz); 6.81 (dd, 1H, J = 2.2, 8.7 Hz); 7.71 (d, 1H, J = 8.7 Hz); 10.60 (s, 1H).
MS FAB (M + 1): 209 (M + 1)
Partial recrystallization with EtOAc
Anal.Calcd for C 10 H 8 O 3 S: C, 57.68; H, 3.87; N, 0.00. Found: C, 57.43; H, 3.99; N, 0.00.

1−2.化合物2の合成
1-2. Synthesis of compound 2

3-Aminophenol (2.18 g; 20 mmol)を100mL二頚ナスフラスコにいれ、EtOAc (30 mL) を加えて30 min 還流した。Phenyl chloroformate (1.72 g; 11 mmol)を20 minかけて滴下して加え、さらに1h還流した。反応中生じた白色沈殿をろ去し、ろ液を濃縮した。減圧乾燥し、2.30 g の白色固体を得た。Y. quant
1H NMR (DMSO-d6): d 10.10 (s, 1H); 9.43 (s, 1H); 7.45-7.40 (m, 2H); 7.28-7.20 (m, 3H); 7.10-7.04 (m, 2H); 6.91 (d, 1H, J = 4.23 Hz); 6.44 (d, 1H, J = 4.23 Hz)
MS FAB (NBA): 230 (M + 1)
3-Aminophenol (2.18 g; 20 mmol) was placed in a 100 mL double neck eggplant flask, and EtOAc (30 mL) was added and refluxed for 30 min. Phenyl chloroformate (1.72 g; 11 mmol) was added dropwise over 20 min, and the mixture was further refluxed for 1 h. The white precipitate generated during the reaction was removed by filtration, and the filtrate was concentrated. Drying under reduced pressure gave 2.30 g of a white solid. Y. quant
1H NMR (DMSO-d 6 ): d 10.10 (s, 1H); 9.43 (s, 1H); 7.45-7.40 (m, 2H); 7.28-7.20 (m, 3H); 7.10-7.04 (m, 2H) ; 6.91 (d, 1H, J = 4.23 Hz); 6.44 (d, 1H, J = 4.23 Hz)
MS FAB (NBA): 230 (M + 1)

原料 (3.00 g; 13.1 mmol)を100 mL二頚ナスフラスコにいれ、80 % H2SO4 (40 mL)、4-chloroacetoacetic acid ethyl ester (2.37 g; 14.4 mmol)を加えて、室温で、6.5h遮光して撹拌した。氷冷したした水(50 mL)に反応混合物を滴下し、析出物をろ取した。これをethanolで再結晶し、白色固体1.92 gを得た。Y. 45 %
1H NMR (DMSO-d6): d 4.99 (s, 2H); 6.55 (s, 1H); 7.25-7.30 (m, 3H); 7.42-7.49 (m, 3H); 7.61 (d, 1H, J = 2.0 Hz); 7.81 (d, 1H, J = 8.8 Hz); 10.80 (s, 1H).
MS FAB (NBA): 330 (M + 1)
Anal. Calcd for C17H12ClNO4: C, 61.92; H, 3.67; N, 4.25. Found: C, 61.67; H, 3.75; N, 4.38.
The raw material (3.00 g; 13.1 mmol) was placed in a 100 mL double-necked eggplant flask, 80% H 2 SO 4 (40 mL), 4-chloroacetoacetic acid ethyl ester (2.37 g; 14.4 mmol) was added, and 6.5 mL at room temperature. h Stir in the dark. The reaction mixture was added dropwise to ice-cooled water (50 mL), and the precipitate was collected by filtration. This was recrystallized from ethanol to obtain 1.92 g of a white solid. Y. 45%
1 H NMR (DMSO-d 6 ): d 4.99 (s, 2H); 6.55 (s, 1H); 7.25-7.30 (m, 3H); 7.42-7.49 (m, 3H); 7.61 (d, 1H, J = 2.0 Hz); 7.81 (d, 1H, J = 8.8 Hz); 10.80 (s, 1H).
MS FAB (NBA): 330 (M + 1)
Anal. Calcd for C 17 H 12 ClNO 4 : C, 61.92; H, 3.67; N, 4.25. Found: C, 61.67; H, 3.75; N, 4.38.

原料 (330 mg; 1.00 mmol)を50 mL二頚ナスフラスコにいれ、Ar置換後、freshly dist. THF (10 mL)、thioacetic acid (84 mg; 1.1 mmol)、DIPEA (142 mg; 1.1 mmol)を加えて、室温で遮光し、2 h撹拌した。溶媒を濃縮し、残渣をCH2Cl2に溶解し、カラムクロマトグラフィー (EtOAc/n-hexane = 2/3)により精製した。354 mgの白色固体を得た。Y. 96 %
1H NMR (DMSO-d6): d 2.39 (s, 3H); 4.29 (s, 2H); 6.35 (s, 1H); 7.25-7.30 (m, 3H); 7.42-7.46 (m, 3H); 7.59 (d, 1H, J = 2.0 Hz); 7.68 (d, 1H, J = 8.8 Hz); 10.77 (s, 1H).
MS FAB (NBA): 370 (M + 1)
一部CH3CNで再結晶
Anal. Calcd for C19H15NO5S: C, 61.78; H, 4.09; N, 3.79. Found: C, 61.55; H, 4.05; N, 4.03.
Raw material (330 mg; 1.00 mmol) was placed in a 50 mL double necked eggplant flask, and after Ar substitution, freshly dist.THF (10 mL), thioacetic acid (84 mg; 1.1 mmol), DIPEA (142 mg; 1.1 mmol) were added. In addition, it was protected from light at room temperature and stirred for 2 h. The solvent was concentrated and the residue was dissolved in CH 2 Cl 2 and purified by column chromatography (EtOAc / n-hexane = 2/3). 354 mg of white solid was obtained. Y. 96%
1 H NMR (DMSO-d 6 ): d 2.39 (s, 3H); 4.29 (s, 2H); 6.35 (s, 1H); 7.25-7.30 (m, 3H); 7.42-7.46 (m, 3H); 7.59 (d, 1H, J = 2.0 Hz); 7.68 (d, 1H, J = 8.8 Hz); 10.77 (s, 1H).
MS FAB (NBA): 370 (M + 1)
Partial recrystallization with CH 3 CN
Anal. Calcd for C 19 H 15 NO 5 S: C, 61.78; H, 4.09; N, 3.79. Found: C, 61.55; H, 4.05; N, 4.03.

原料 (790 mg; 2.14 mmol)を50 mL二頚ナスフラスコにいれ、Ar置換後、freshly dist.THF (50 mL)、10 M NaOH水溶液 (860 μL; 8.6 mmol)を加えて、室温で遮光し、45 min撹拌した。氷冷下1N HClを加えて反応溶液を酸性とした(pH4-5)。THFを濃縮し、0.2 M pH7 sodium phosphate bufferを加えて中性とした。EtOAcで抽出(70 mL×3)後、brine wash (50 mL×1)、EtOAcを無水MgSO4で乾燥後、濃縮した。残渣をmethanol/EtOAcの混合溶媒に溶解後、シリカゲルにまぶし、カラムクロマトグラフィー (5 % methanol/CH2Cl2)より精製した。240 mgの黄色固体を得た。Y. 54 %
1H NMR (DMSO-d6): d 3.11 (t, 1H, J = 8.2 Hz); 3.79 (d, 2H, J = 8.2 Hz); 6.05 (s, 1H); 6.17 (bs, 2H); 6.42 (d, 1H, J = 2.0 Hz); 6.56 (dd, 1H, J = 2.0, 8.7 Hz); 7.50 (d, 1H, J = 8.7 Hz).
MS FAB (NBA): 208 (M + 1)
Add the raw material (790 mg; 2.14 mmol) to a 50 mL double-necked eggplant flask, add Ar, and then add freshly dist.THF (50 mL) and 10 M NaOH aqueous solution (860 μL; 8.6 mmol). And stirred for 45 min. Under ice cooling, 1N HCl was added to acidify the reaction solution (pH 4-5). THF was concentrated and neutralized with 0.2 M pH7 sodium phosphate buffer. After extraction with EtOAc (70 mL × 3), brine wash (50 mL × 1), EtOAc was dried over anhydrous MgSO 4 and concentrated. The residue was dissolved in a mixed solvent of methanol / EtOAc, then applied to silica gel and purified by column chromatography (5% methanol / CH 2 Cl 2 ). 240 mg of a yellow solid was obtained. Y. 54%
1 H NMR (DMSO-d 6 ): d 3.11 (t, 1H, J = 8.2 Hz); 3.79 (d, 2H, J = 8.2 Hz); 6.05 (s, 1H); 6.17 (bs, 2H); 6.42 (d, 1H, J = 2.0 Hz); 6.56 (dd, 1H, J = 2.0, 8.7 Hz); 7.50 (d, 1H, J = 8.7 Hz).
MS FAB (NBA): 208 (M + 1)

1−3.化合物3の合成
1-3. Synthesis of compound 3

原料 (500 mg; 2.40 mmol)を100 mL二頚ナスフラスコにいれ、Ar置換後、freshly dist. THF (50 mL)、methyl vinyl ketone (190 mg; 2.76 mmol) 、0.25 M NaOH / methanol (0.95 mL; 0.24mmol)を加えて、室温で遮光し、4 h撹拌した。氷冷下1N HClを加えて反応溶液を酸性とした。溶液を濃縮し、残渣をEtOAc (200 mL)に溶解後、brine wash (40 mL×1)、EtOAcを無水MgSO4で乾燥後、濃縮した。残渣をmethanol/EtOAcの混合溶媒に溶解後、シリカゲルにまぶし、カラムクロマトグラフィー (5 % methanol / CH2Cl2)により精製した。521 mgの白色固体を得た。Y. 78 %
1H NMR (DMSO-d6): d 2.07 (s, 3H); 2.61 (t, 2H, J = 7.0 Hz); 2.76 (t, 2H, J = 7.0 Hz); 3.89 (s, 2H); 6.25 (s, 1H); 6.72 (d, 1H, J = 2.3 Hz); 6.80 (dd, 1H, J = 2.3, 8.8 Hz); 7.68 (d, 1H, J = 8.8 Hz); 10.58 (s, 1H)
MS FAB (NBA): 279 (M + 1)
Raw material (500 mg; 2.40 mmol) was placed in a 100 mL double necked eggplant flask.After Ar substitution, freshly dist.THF (50 mL), methyl vinyl ketone (190 mg; 2.76 mmol), 0.25 M NaOH / methanol (0.95 mL) 0.24 mmol) was added, protected from light at room temperature, and stirred for 4 h. Under ice cooling, 1N HCl was added to acidify the reaction solution. The solution was concentrated, the residue was dissolved in EtOAc (200 mL), brine wash (40 mL × 1), EtOAc was dried over anhydrous MgSO 4 and concentrated. The residue was dissolved in a mixed solvent of methanol / EtOAc, applied to silica gel, and purified by column chromatography (5% methanol / CH 2 Cl 2 ). 521 mg of a white solid was obtained. Y. 78%
1 H NMR (DMSO-d 6 ): d 2.07 (s, 3H); 2.61 (t, 2H, J = 7.0 Hz); 2.76 (t, 2H, J = 7.0 Hz); 3.89 (s, 2H); 6.25 (s, 1H); 6.72 (d, 1H, J = 2.3 Hz); 6.80 (dd, 1H, J = 2.3, 8.8 Hz); 7.68 (d, 1H, J = 8.8 Hz); 10.58 (s, 1H)
MS FAB (NBA): 279 (M + 1)

1−4.化合物4の合成
1-4. Synthesis of compound 4

原料 (30 mg; 0.14 mmol)、potassium tert-butoxide (1.6 mg; 0.014mmol)を50 mL二頚ナスフラスコにいれ、Ar置換後、THF (5 mL)、methyl vinyl ketone (11 mg; 0.15 mmol)を加えて、室温で遮光し、17 h撹拌した。氷冷下0.2 M pH7 sodium phosphate buffer (10 mL)を加え、反応溶液を中性とした(約pH7-8)。THFを濃縮し、EtOAcで抽出(30, 20, 20 mL)後、brine wash (20 mL×1)、EtOAcを無水MgSO4で乾燥後、濃縮した。残渣をmethanol/EtOAcの混合溶媒に溶解後、シリカゲルにまぶし、カラムクロマトグラフィー (EtOAc/n-hexane = 1/1)より精製した。25 mgの黄色固体を得た。Y. 64 %
1H NMR (DMSO-d6): d 3.11 (t, 1H, J = 8.2 Hz); 3.79 (d, 2H, J = 8.2 Hz); 6.05 (s, 1H); 6.17 (bs, 2H); 6.42 (d, 1H, J = 2.0 Hz); 6.56 (dd, 1H, J = 2.0, 8.7 Hz); 7.50 (d, 1H, J = 8.7 Hz).
MS FAB (NBA): 278 (M + 1)
Raw materials (30 mg; 0.14 mmol) and potassium tert-butoxide (1.6 mg; 0.014 mmol) are placed in a 50 mL double-necked eggplant flask.After Ar substitution, THF (5 mL), methyl vinyl ketone (11 mg; 0.15 mmol) Was shielded from light at room temperature and stirred for 17 h. Under ice cooling, 0.2 M pH 7 sodium phosphate buffer (10 mL) was added to neutralize the reaction solution (about pH 7-8). The THF was concentrated, extracted with EtOAc (30, 20, 20 mL), brine wash (20 mL × 1), and the EtOAc was dried over anhydrous MgSO 4 and concentrated. The residue was dissolved in a mixed solvent of methanol / EtOAc, then applied to silica gel, and purified by column chromatography (EtOAc / n-hexane = 1/1). 25 mg of a yellow solid was obtained. Y. 64%
1 H NMR (DMSO-d 6 ): d 3.11 (t, 1H, J = 8.2 Hz); 3.79 (d, 2H, J = 8.2 Hz); 6.05 (s, 1H); 6.17 (bs, 2H); 6.42 (d, 1H, J = 2.0 Hz); 6.56 (dd, 1H, J = 2.0, 8.7 Hz); 7.50 (d, 1H, J = 8.7 Hz).
MS FAB (NBA): 278 (M + 1)

2.蛍光測定
合成した化合物群の蛍光は、日立F4500蛍光度計を用いて測定した。各化合物の5 mM DMSO溶液を調製し、glycine/NaOH緩衝液(pH 9.4)或いはナトリウムリン酸バッファー(pH 2-12)に希釈して測定に供した。励起波長は、360 nm、蛍光波長は465 nmで、室温下測定した。
2. Fluorescence measurement The fluorescence of the synthesized compounds was measured using a Hitachi F4500 fluorometer. A 5 mM DMSO solution of each compound was prepared, diluted in glycine / NaOH buffer (pH 9.4) or sodium phosphate buffer (pH 2-12) and used for measurement. The excitation wavelength was 360 nm, the fluorescence wavelength was 465 nm, and measurements were performed at room temperature.

3.ペプチド合成
実験に用いたペプチドは一般的なFmocペプチド固相合成法に従い、以下のスキームのように合成した。Fmocアミノ酸のカップリングが完全に進行したか否かをカイザーテストで確認し、不完全な場合はカップリング時間の延長、或いは試薬の再添加を行った。
3. Peptide synthesis The peptides used in the experiments were synthesized according to the general Fmoc peptide solid phase synthesis method as shown in the following scheme. Whether or not the coupling of Fmoc amino acid completely progressed was confirmed by a Kaiser test. If it was incomplete, the coupling time was extended or the reagent was added again.

Fmocアミノ酸類(Fmoc-Gly-OH, Fmoc-Ala-OH, Fmoc-Leu-OH, Fmoc-Ile-OH, Fmoc-Ser(tBu)-OH, Fmoc-Ser{OP(OBzl)OH}-OH, Fmoc-Thr(tBu)-OH, Fmoc-Arg(pbf)-OH, Fmoc-Asn(Trt)-OH)及びペプチド合成用試薬は特に記さない限り、Watanabe Chem、WAKOで市販されているものを用いた。アッセイに用いたPKAはSigmaのcAMP dependent protein kinase catalytic subunit from bovine heartを、その他の試薬はWAKOで市販されているものを用いた。 Fmoc amino acids (Fmoc-Gly-OH, Fmoc-Ala-OH, Fmoc-Leu-OH, Fmoc-Ile-OH, Fmoc-Ser ( t Bu) -OH, Fmoc-Ser {OP (OBzl) OH} -OH , Fmoc-Thr ( t Bu) -OH, Fmoc-Arg (pbf) -OH, Fmoc-Asn (Trt) -OH) and peptide synthesis reagents are commercially available from Watanabe Chem, WAKO unless otherwise specified. Was used. The PKA used in the assay was Sigma's cAMP dependent protein kinase catalytic subunit from bovine heart, and the other reagents were commercially available from WAKO.

ペプチド合成には、目的に応じて以下のレジンを用いた。
C末端をアミド化してビーズから切り離したペプチド調製用レジン;
TentaGel S RAM (0.3 mmol/g); Advanced ChemTech
ビーズ上固定化ペプチド合成に用いたレジン
TentaGel S NH2 (0.3 mmol/g); Advanced ChemTech
Amino PEGA Resin (PEGA800; 0.4 mmol/g); Novabiochem
PL-PEGA Resin (PEGA1900; 0.2 mmol/g, 300-500 mm, 30-50 mesh); Polymer Laboratories
The following resins were used for peptide synthesis depending on the purpose.
Peptide preparation resin cleaved from the bead by amidating the C-terminus;
TentaGel S RAM (0.3 mmol / g); Advanced ChemTech
Resin used for synthesis of peptide immobilized on beads
TentaGel S NH 2 (0.3 mmol / g); Advanced ChemTech
Amino PEGA Resin (PEGA 800 ; 0.4 mmol / g); Novabiochem
PL-PEGA Resin (PEGA 1900 ; 0.2 mmol / g, 300-500 mm, 30-50 mesh); Polymer Laboratories

4.溶液条件でのβ脱離条件検討
固相合成したAc-LRRASLG-NH2、Ac-LRRApSLG-NH2を用いて条件検討を行った。加える塩基の種類、濃度あるいは緩衝液によりpHを制御する等、塩基条件を変化させ、酢酸で反応を終了させた後にHPLCで分析した。HPLCの分析条件は以下の通りである。
使用カラム; Inertsil ODS-3
展開溶媒1; 0.1 % TFA水溶液 展開溶媒2; 0.1 % TFAアセトニトリル溶液
グラジエント; 展開溶媒1/展開溶媒2 [90 / 10→65 / 35 (25 min)]
流速; 1mL/min
4). Investigation of β-elimination conditions under solution conditions Conditions were examined using solid-phase synthesized Ac-LRRASLG-NH 2 and Ac-LRRApSLG-NH 2 . The analysis was performed by HPLC after changing the base conditions such as controlling the pH with the type, concentration or buffer of the base to be added and terminating the reaction with acetic acid. The analysis conditions of HPLC are as follows.
Column used: Inertsil ODS-3
Developing solvent 1; 0.1% TFA aqueous solution Developing solvent 2; 0.1% TFA acetonitrile solution
Gradient; Developing solvent 1 / Developing solvent 2 [90/10 → 65/35 (25 min)]
Flow rate; 1mL / min

5.ビーズ担持ペプチドを用いた検討
5−1.酵素反応
1.5 mLエッペンドルフチューブにAc-LRRASLGペプチドを固相合成したビーズをとり、水(10 min×3)、キナーゼ反応緩衝液(KB; pH 6.8, 30 mM MES, 10 or 15 mM MgCl2, 0.4 mg/mL BSA)(10 min×3)で洗浄後、KB中、室温で12 hプレインキュベーションした。KB (10 min×2)で洗浄後、ATP及びPKAの最終濃度が、それぞれ200 or 300 μM、30, 50 or 70 units/mLとなるように調製し、室温(25 ℃)で10 hシェーカー上で振盪した。阻害剤を添加する場合、所定の濃度の阻害剤を反応液に添加し、同様に室温で10 h振盪した。反応終了後、洗浄用緩衝液(WB; 50 mM pH 7.2 PBS, 0.68 M NaCl, 13 mM KCl, 0.05 % Tween20)でビーズを洗浄(10 min×2、1 h×2、5 min×2)した後、さらに水で洗浄(10 min×2、1 h×2、5 min×2)した。
5. 5. Examination using bead-carrying peptide 5-1. Enzymatic reaction
Take beads prepared by solid-phase synthesis of Ac-LRRASLG peptide in a 1.5 mL Eppendorf tube, water (10 min × 3), kinase reaction buffer (KB; pH 6.8, 30 mM MES, 10 or 15 mM MgCl 2 , 0.4 mg / After washing with (mL BSA) (10 min × 3), it was preincubated in KB for 12 h at room temperature. After washing with KB (10 min × 2), adjust the final concentrations of ATP and PKA to 200 or 300 μM, 30, 50 or 70 units / mL, respectively, and shake on a shaker for 10 h at room temperature (25 ° C). Shake with. In the case of adding an inhibitor, a predetermined concentration of the inhibitor was added to the reaction solution, and similarly shaken at room temperature for 10 hours. After completion of the reaction, the beads were washed (10 min × 2, 1 h × 2, 5 min × 2) with a washing buffer (WB; 50 mM pH 7.2 PBS, 0.68 M NaCl, 13 mM KCl, 0.05% Tween20). Thereafter, it was further washed with water (10 min × 2, 1 h × 2, 5 min × 2).

5−2.β脱離
洗浄後のビーズをH2O/DMSO/EtOH = 4/3/1溶液中NaOH 濃度0.1 Mで室温(25℃)、1 hシェーカー上で振盪した。反応溶液を除去後、氷冷した10 % AcOH/H2Oを加えて反応を終了した。その後、水で洗浄(1 min×5)した。
5-2. β Desorption Washed beads were shaken in a H 2 O / DMSO / EtOH = 4/3/1 solution at a NaOH concentration of 0.1 M at room temperature (25 ° C.) for 1 h on a shaker. After removing the reaction solution, ice-cooled 10% AcOH / H 2 O was added to terminate the reaction. Thereafter, it was washed with water (1 min × 5).

5−3.マイケル付加反応
β脱離反応後、洗浄したビーズにH2O/DMSO/EtOH = 4/3/1溶液中NaOH を濃度25 mM、化合物1を濃度0.5〜3.0 mMとなるように加え、室温(25℃)、1 hシェーカー上で振盪した。反応溶液を除去し、氷冷した10 % AcOH/DMFを加えて反応を終了した。その後、ビーズをDMF(10 min×2、2 h×1、10 min×2)、methanol (5 min×1、1 h×1、5 min×1)、H2O (10 min×3)、6 N塩酸グアニジン(1 h×1、10 h×1)、H2O (5 min×2)で洗浄した。pH 9.4 Glycine / NaOH緩衝液中、蛍光顕微鏡(浜松ホトニクスARGUS/HiSCA;励起波長360 nm、蛍光波長425 nm〜)で観察した。
5-3. Michael addition reaction After β-elimination reaction, NaOH in H 2 O / DMSO / EtOH = 4/3/1 solution was added to the washed beads to a concentration of 25 mM and Compound 1 to a concentration of 0.5 to 3.0 mM. And shaken on a shaker for 1 h. The reaction solution was removed, and ice-cooled 10% AcOH / DMF was added to terminate the reaction. After that, the beads were DMF (10 min × 2, 2 h × 1, 10 min × 2), methanol (5 min × 1, 1 h × 1, 5 min × 1), H 2 O (10 min × 3), Washed with 6 N guanidine hydrochloride (1 h × 1, 10 h × 1), H 2 O (5 min × 2). The sample was observed in a pH 9.4 Glycine / NaOH buffer solution with a fluorescence microscope (Hamamatsu Photonics ARGUS / HiSCA; excitation wavelength 360 nm, fluorescence wavelength 425 nm).

<実験結果>
リン酸化を受ける3種のアミノ酸のうち、リン酸化されたセリンとスレオニンは、化学的性質が類似している。そこで、以下のようなキナーゼ活性検出法を計画した。
リン酸化されたセリン及びスレオニンは類似した化学的性質を有しており、塩基性条件下で容易にリン酸基がβ脱離することが知られている。この現象は、リン酸化ペプチドを化学合成する際に大きな問題となっていた。合成上の問題点は、新規保護基の開発により解決したが、申請者は、逆に、この化学的性質をキナーゼ活性の検出に応用できるのではないかと考えた。図1に示すように、リン酸基がβ脱離して生成した二重結合は、マイケル反応受容体となり、SH基等を有する求核剤と速やかに反応すると考えられる。そこで求核剤に蛍光性分子を用いれば、リン酸基を持つアミノ酸残基選択的に蛍光団を導入することが可能であると考えた(図1)。
まず、本検出法に必須の蛍光性分子の合成に着手した。SH基を有する蛍光物質として化合物1、2をデザイン、合成した(図2)。合成は、以下に示すスキームに従って行った。
続いて、これらの化合物が、作業仮説通り、マイケル反応受容体と反応するか、反応後も蛍光を有するかを検討することとした。マイケル反応受容体のモデル化合物としてmethyl vinyl ketoneと反応させたところ、速やかに反応が進行して目的化合物3、4を与えた。これら化合物3、4は、反応前の化合物1、2と比較して蛍光強度の増大がみられた(スキーム2、図3)。
反応後に蛍光強度が増大するという性質は、蛍光物質のビーズ上への非特異的吸着に起因する蛍光を相対的に低減させることにつながり、アッセイ系の信頼性向上が期待できる。すなわち、いずれの化合物も本アッセイに適した性質を有していることが明らかとなった。
本検出法は図1に示すように、1)β脱離と2)マイケル付加の二つのステップからなる。いずれもペプチドが不安定な塩基性条件下での反応であり、特に最近になってβ脱離条件下での副反応が幾つか報告されているため、各ステップの反応条件を最適化することとした。この際、ビーズ上にペプチドを担持した固相条件では、機器分析が困難であるため、ビーズを用いた固相ではなく、ペプチド溶液としてそれぞれの反応を行い、反応の進行をHPLC、MS (MALDI)を用いて追跡した。ペプチドとして、Ac-LRRASLG-NH2、Ac-LRRApSLG-NH2を用いた。0.1 M Caps緩衝液を用いてpH10, 11の環境でpSのリン酸基のβ脱離を試みたが、温度を上昇させても効率よくβ脱離を進行させることはできなかった。β脱離を効率よく(室温で反応時間として1〜2 h以内に)進行させるには、NaOHやLiOHをある程度の濃度(50 mM 〜)で加えることが必要であった。LiOHとNaOHを比較すると反応効率に大きな差異は認められなかった。また、リン酸基のβ脱離を促進することで知られるBa2+を少量加えたが、Ba2+の存在よりも塩基そのものの濃度の方が反応効率に大きく影響した。次に、リン酸基のβ脱離を効率よく進行させた100 mM NaOH条件で、リン酸化されていないAc-LRRASLG-NH2の安定性をHPLCを用いて分析した。その結果100 mM NaOHという条件ではAc-LRRASLG-NH2は不安定であり何らかの反応を起こしていた。反応溶媒をH2OからH2O/DMSO/EtOH(4:3:1)へと変更することで、副反応を抑制することができた。このように反応条件を種々検討し、効率的にβ脱離及びマイケル付加が進行する条件、すなわち
ステップ1)β脱離
溶媒:0.1 M NaOH/DMSO/EtOH = 4/3/1
反応温度:25 ℃
ステップ2)マイケル付加
溶媒:25 mM NaOH/DMSO/EtOH = 4/3/1
蛍光化合物濃度:1 mM
反応温度:25 ℃
を見いだすことに成功した。
次に、リン酸化セリンを配列中に含むペプチド(LRRApSLG)を担持させたビーズと、リン酸化されていないセリンを含むペプチド(LRRASLG)を担持させたビーズ、二種類のビーズに対し、最適化した反応条件でβ脱離、マイケル付加反応を行った。ビーズとして、酵素反応に適しているとされ、実際に非常に良く用いられているTentaGel及びPEGA800の2種類のビーズを用いた。蛍光顕微鏡(励起波長:360 nm, 蛍光波長:425 nm〜)を用いてビーズを観察したところ、二種のビーズ間で蛍光に有意な差がみられ、リン酸基を有するペプチド選択的に蛍光団が導入されたことが示唆された。合成した1、2のいずれの分子を用いた場合でも同様の結果が得られたが、1を用いた場合の方が、僅かに二種のビーズ間で蛍光の差が大きかったため、今後1を用いることとした(図4)。化合物3の蛍光のpH依存性を検討したところ、pH9-10にかけて安定かつ強い蛍光を与えた(図5)。そこで、蛍光を測定する際には、pH 9.4のバッファーを用いることとした。続いて、蛍光化合物の濃度を検討した結果、低濃度ではポジティブビーズと蛍光性化合物との反応性が低く、高濃度では蛍光性物質のネガティブビーズに対する非特異的吸着が見られた。図6に示すように、1 mM前後(0.5〜3 mM程度)で最も明確な差が見られた。
続いて、実際にキナーゼを用い、図1に従ってアッセイを行った。キナーゼにはよく研究されている市販のプロテインキナーゼA(PKA)を選択し、その特異的基質ペプチド(Kemptide; LRRASLG)を上述の2種類のビーズ上に固相合成した。その結果、図7に示すように、蛍光強度に全く差が見られず、酵素反応が進行していないことが示唆された。酵素やATP濃度、反応温度等様々な条件を検討しても改善は見られなかったが、より巨大な分子をも透過するビーズPEGA1900を用いたところ、化学合成したリン酸化セリン含有ペプチド(LRRApSLG)を用いた場合と同程度の蛍光の差がみられた(図8)。さらに、酵素反応時間依存的な蛍光強度の増大が見られ、ビーズ上でセリン・スレオニンキナーゼ活性を検出できる可能性が示唆された。PEGA1900に担持したペプチドを用いて、酵素反応条件を最適化したところ、以下に示す条件が最適であることが明らかとなった。
・酵素反応:
PKA 30 units/mL, ATP 300 μM in KB, 25 ℃, 10-12 h
(注:キナーゼ濃度を100 units/mLに上げると、反応は3-4 hで終了した。また、反応温度は、30-35 ℃が最適であったが、実験環境上加温することが困難であったため、室温条件を選択した)
・β脱離:
0.1 M NaOH/DMSO/EtOH = 4/3/1, 25 ℃, 1 h
・マイケル付加:
3 mM 化合物1, 25 mM NaOH/DMSO/EtOH = 4/3/1, 25 ℃, 1 h
本検出法の蛍光強度の差が、酵素活性を反映しているかを確認する目的で、PKAの強力な阻害剤ペプチド(IP: Ac-GRTGRRNAI-NH2)を用いて、蛍光強度に変化が見られるか否か検討した。その結果、図9に示すように、阻害剤濃度依存的に蛍光強度の減弱が見られ、本検出法が、キナーゼ阻害剤のアッセイに適用可能であることが示された。今後、マイケル反応後に蛍光波長が変化する蛍光性分子を用いれば、更なる信頼性、定量性の向上が期待できると考えられる。
<Experimental result>
Of the three amino acids that are phosphorylated, phosphorylated serine and threonine have similar chemical properties. Therefore, the following kinase activity detection method was planned.
Phosphorylated serine and threonine have similar chemical properties, and it is known that the phosphate group is easily β-eliminated under basic conditions. This phenomenon has been a big problem when chemically synthesizing phosphorylated peptides. The synthetic problem was solved by the development of a new protecting group, but the applicant thought that this chemical property could be applied to the detection of kinase activity. As shown in FIG. 1, it is considered that a double bond formed by β-elimination of a phosphate group becomes a Michael reaction acceptor and reacts quickly with a nucleophile having an SH group or the like. Therefore, we thought that if a fluorescent molecule is used as a nucleophile, it is possible to introduce a fluorophore selectively with an amino acid residue having a phosphate group (FIG. 1).
First, we started to synthesize fluorescent molecules essential for this detection method. Compounds 1 and 2 were designed and synthesized as fluorescent substances having SH groups (Fig. 2). The synthesis was performed according to the scheme shown below.
Subsequently, it was decided whether these compounds would react with the Michael reaction acceptor or remain fluorescent after the reaction, as per the working hypothesis. When reacted with methyl vinyl ketone as a model compound of the Michael reaction acceptor, the reaction proceeded rapidly to give the target compounds 3 and 4. These compounds 3 and 4 showed an increase in fluorescence intensity as compared to compounds 1 and 2 before the reaction (Scheme 2, FIG. 3).
The property that the fluorescence intensity increases after the reaction leads to a relative decrease in fluorescence caused by non-specific adsorption of the fluorescent substance on the beads, and an improvement in the reliability of the assay system can be expected. That is, it became clear that all the compounds have properties suitable for this assay.
As shown in FIG. 1, this detection method consists of two steps: 1) β elimination and 2) Michael addition. All of these are reactions under basic conditions where the peptide is unstable. Especially recently, several side reactions under β-elimination conditions have been reported, so the reaction conditions for each step should be optimized. It was. At this time, since it is difficult to perform instrumental analysis under the solid phase conditions where the peptide is supported on the beads, each reaction is performed as a peptide solution, not a solid phase using beads, and the progress of the reaction is determined by HPLC, MS (MALDI ). Ac-LRRASLG-NH 2 and Ac-LRRApSLG-NH 2 were used as peptides. Β-elimination of the phosphate group of pS was attempted using 0.1 M Caps buffer in an environment of pH 10 and 11, but β-elimination could not proceed efficiently even when the temperature was raised. In order to allow β-elimination to proceed efficiently (within 1 to 2 hours as the reaction time at room temperature), it was necessary to add NaOH or LiOH at a certain concentration (50 mM or more). When LiOH and NaOH were compared, there was no significant difference in reaction efficiency. In addition, a small amount of Ba 2+ , which is known to promote β-elimination of phosphate groups, was added, but the concentration of the base itself had a greater effect on the reaction efficiency than the presence of Ba 2+ . Next, the stability of non-phosphorylated Ac-LRRASLG-NH 2 was analyzed using HPLC under conditions of 100 mM NaOH in which β elimination of the phosphate group proceeded efficiently. As a result, under the condition of 100 mM NaOH, Ac-LRRASLG-NH 2 was unstable and caused some reaction. By changing the reaction solvent from H 2 O to H 2 O / DMSO / EtOH (4: 3: 1), side reactions could be suppressed. In this way, various reaction conditions are studied, and conditions under which β elimination and Michael addition proceed efficiently, ie, Step 1) β elimination Solvent: 0.1 M NaOH / DMSO / EtOH = 4/3/1
Reaction temperature: 25 ° C
Step 2) Michael addition Solvent: 25 mM NaOH / DMSO / EtOH = 4/3/1
Fluorescent compound concentration: 1 mM
Reaction temperature: 25 ° C
Succeeded in finding out.
Next, optimization was performed for two types of beads: beads carrying a peptide containing phosphorylated serine (LRRApSLG) in the sequence and beads carrying a peptide containing serine not phosphorylated (LRRASLG). Β-elimination and Michael addition reaction were performed under the reaction conditions. As beads, two types of beads, TentaGel and PEGA 800 , which are considered to be suitable for enzyme reaction and are actually very well used, were used. When the beads were observed using a fluorescence microscope (excitation wavelength: 360 nm, fluorescence wavelength: 425 nm), a significant difference in fluorescence was observed between the two types of beads, and the peptide having a phosphate group was selectively fluorescent. It was suggested that a team was introduced. Similar results were obtained using either synthesized molecules 1 or 2, but the difference in fluorescence between the two types of beads was slightly greater when 1 was used. It was decided to use (FIG. 4). When the pH dependence of the fluorescence of compound 3 was examined, stable and strong fluorescence was given over pH 9-10 (FIG. 5). Therefore, a pH 9.4 buffer was used when measuring fluorescence. Subsequently, as a result of examining the concentration of the fluorescent compound, the reactivity between the positive beads and the fluorescent compound was low at a low concentration, and nonspecific adsorption of the fluorescent substance to the negative beads was observed at a high concentration. As shown in FIG. 6, the clearest difference was observed around 1 mM (about 0.5 to 3 mM).
Subsequently, the assay was performed according to FIG. The well-studied commercially available protein kinase A (PKA) was selected as the kinase, and its specific substrate peptide (Kemptide; LRRASLG) was solid-phase synthesized on the two kinds of beads described above. As a result, as shown in FIG. 7, no difference was observed in the fluorescence intensity, suggesting that the enzyme reaction did not proceed. Even though various conditions such as enzyme, ATP concentration, reaction temperature, etc. were examined, improvement was not seen, but when using beads PEGA 1900 that permeates even larger molecules, chemically synthesized phosphorylated serine-containing peptide (LRRApSLG ), The same fluorescence difference was observed (FIG. 8). Furthermore, an increase in fluorescence intensity depending on the enzyme reaction time was observed, suggesting the possibility of detecting serine / threonine kinase activity on the beads. When the enzyme reaction conditions were optimized using peptides carried on PEGA 1900 , it was found that the conditions shown below were optimal.
・ Enzyme reaction:
PKA 30 units / mL, ATP 300 μM in KB, 25 ℃, 10-12 h
(Note: When the kinase concentration was increased to 100 units / mL, the reaction was completed in 3-4 h. The optimal reaction temperature was 30-35 ° C, but it was difficult to warm in the experimental environment. Therefore, room temperature conditions were selected)
Β desorption:
0.1 M NaOH / DMSO / EtOH = 4/3/1, 25 ℃, 1 h
・ Michael addition:
3 mM compound 1, 25 mM NaOH / DMSO / EtOH = 4/3/1, 25 ℃, 1 h
For the purpose of confirming whether the difference in fluorescence intensity of this detection method reflects the enzyme activity, a change in fluorescence intensity was observed using a strong inhibitor peptide of PKA (IP: Ac-GRTGRRNAI-NH 2 ). We examined whether it was possible. As a result, as shown in FIG. 9, the fluorescence intensity decreased depending on the inhibitor concentration, indicating that this detection method can be applied to the kinase inhibitor assay. In the future, it is considered that further improvement in reliability and quantitativeness can be expected by using fluorescent molecules whose fluorescence wavelength changes after the Michael reaction.

<まとめ>
本検出系は、キナーゼ活性を簡便に蛍光検出できること、阻害剤のアッセイに用いうることが明らかとなった。本検出法は、以下のような応用が考えられる。
1.ビーズに担持したペプチドを用いたキナーゼ認識配列の決定
キナーゼの中には、その認識配列が明らかになっていないものも多い。多様性に富むビーズ担持ペプチドの合成法はすでに確立されているため、様々な配列のペプチドを含むビーズ担持ペプチドを用いて、目的キナーゼの認識配列の一斉スクリーニングが可能となると考えられる。
<Summary>
It was revealed that this detection system can easily detect fluorescence of a kinase activity and can be used for an inhibitor assay. This detection method can be applied as follows.
1. Determination of Kinase Recognition Sequence Using Peptides Supported on Beads Many kinases have no known recognition sequence. Since methods for synthesizing a variety of bead-carrying peptides have already been established, it is considered that simultaneous screening of target kinase recognition sequences can be performed using bead-carrying peptides containing peptides of various sequences.

2.ビーズに担持したペプチドを用いたキナーゼ阻害剤のスクリーニング
今回示したように、本検出法はキナーゼ阻害剤のアッセイに用いうる。蛍光を検出原理とする簡便なアッセイであるため、汎用性が高く多様なキナーゼに対して適用できる。多くのキナーゼ阻害剤が医薬品のターゲットとなっている現在、HTSに適用可能な本法の利用価値は高いと考えられる。
2. Screening for Kinase Inhibitors Using Peptides Loaded on Beads As shown here, this detection method can be used for kinase inhibitor assays. Since it is a simple assay based on the detection principle of fluorescence, it is highly versatile and applicable to various kinases. Since many kinase inhibitors have been targeted for pharmaceuticals, the utility value of this method applicable to HTS is considered to be high.

3.マイクロアレイを用いたキナーゼ認識配列の決定及び阻害剤のスクリーニング
ビーズアッセイに比べ、幾分特殊な装置を要するが、ペプチドはマイクロアレイ上に担持することが可能である。より長波長の励起波長、蛍光波長を持つ蛍光色素を用いれば、DNA用に開発された市販のマイクロアレイリーダーの使用が期待できる。マイクロアレイを用いれば、高度な情報の集積化が可能であり、上述のようなキナーゼ認識配列の決定や、阻害剤のスクリーニングをより小スケールで行うことが出来る可能性がある。
また、特定のキナーゼ活性の亢進や低下が特徴的に見られる疾患の場合、本法を用いれば、キナーゼ活性に関する情報を簡便に得ることが出来、病態の診断などへの応用も期待できる。近年、多くの酵素が、その活性を様々な翻訳後修飾により複雑かつ厳密に制御していることが明らかとなっている。酵素活性自体を簡便に検出できる本法は信頼性が高いと考えられ、応用範囲は広いと期待される。
3. Determination of Kinase Recognition Sequence and Screening for Inhibitors Using Microarray Peptides can be carried on the microarray, although somewhat specialized equipment is required compared to bead assays. If a fluorescent dye having a longer excitation wavelength and fluorescence wavelength is used, use of a commercially available microarray reader developed for DNA can be expected. By using a microarray, it is possible to integrate a high level of information, and there is a possibility that determination of a kinase recognition sequence as described above and screening of an inhibitor can be performed on a smaller scale.
In addition, in the case of diseases in which specific kinase activity is characteristically increased or decreased, information relating to kinase activity can be easily obtained by using this method, and application to diagnosis of disease states can be expected. In recent years, it has become clear that many enzymes control their activity in a complex and strict manner by various post-translational modifications. This method, which can easily detect the enzyme activity itself, is considered to be highly reliable and is expected to have a wide range of applications.

4.ゲル中のリン酸化蛋白質の蛍光誘導化
近年、プロテオミクス研究が活発になされている。その中心的役割を果たしているのが蛋白質の2次元電気泳動と、質量分析による同定である。本検出原理を用いれば、電気泳動後のゲル中に含まれるリン酸化を受けた蛋白質を選択的に蛍光誘導化できる可能性があり、細胞内の情報伝達で重要な役割を果たすリン酸化、脱リン酸化に関して多くの情報が得られると期待される。また、リン酸基を持つ蛋白質やペプチドは、一般的に質量分析に対する感度が非常に悪いことが知られているが、これはリン酸基の持つマイナスチャージに起因すると考えられている。本検出法で誘導化すると、リン酸化アミノ酸はマイナスチャージを持たなくなるため、大きな感度の上昇が期待される。
以上、本検出系は生化学的、医学的に重要なキナーゼの活性を簡便に検出できる一般的原理を供するものであり、高い汎用性と幅広い応用性を有しているといえる。
4). Induction of fluorescence of phosphorylated proteins in gels In recent years, proteomics research has been actively conducted. The central role is played by two-dimensional electrophoresis of proteins and identification by mass spectrometry. If this detection principle is used, there is a possibility that the phosphorylated protein contained in the gel after electrophoresis may be selectively fluorescence-induced, and phosphorylation and desorption that play an important role in intracellular signal transduction. It is expected that much information can be obtained regarding phosphorylation. In addition, it is known that proteins and peptides having a phosphate group are generally very insensitive to mass spectrometry, but this is thought to be due to the negative charge of the phosphate group. When derivatized by this detection method, phosphorylated amino acids do not have a negative charge, and thus a large increase in sensitivity is expected.
As described above, this detection system provides a general principle that can easily detect biochemically and medically important kinase activity, and can be said to have high versatility and wide applicability.

前述のように、既存のキナーゼ活性検出方法は、RI法と抗体法とに大別されるが、いずれも既存の生化学的手法をキナーゼに適用したものといえる。リン酸化アミノ酸の持つ化学的性質を利用したキナーゼアッセイ法はほとんど存在しない。本検出法は、危険性や汎用性に問題がある生化学的手法ではなく、シンプルな化学的手法を適用した点で、独創的であるといえよう。
本検出法は、リン酸化セリン及びスレオニンを検出する基本原理を供するものであり、非常に汎用性が高いという特色を持つ。ビーズ上に担持したペプチドを用いて、エッペンドルフチューブやマイクロプレート内でアッセイすることも可能であるし、メンブレンやガラスプレート上にペプチドを担持させたペプチドアレイにも適用しうる。さらに、蛋白質に応用できる可能性もある。SDS-PAGEにかけた後のゲル中のリン酸化蛋白質を、蛍光性に誘導化することが出来れば、本検出法の利用価値は極めて大きいものとなろう。
特異的キナーゼ阻害剤は、抗ガン剤をはじめ、各種医薬品として期待されており、開発研究が進んでいる(非特許文献5を参照)。現在主流となりつつあるコンビナトリアルケミストリーを用いた医薬品開発には、HTSが必要不可欠であるが、本アッセイ系の持つ特色は、まさにその要求を満たすものである。
As described above, existing methods for detecting kinase activity are roughly classified into RI methods and antibody methods, and any of them can be said to apply existing biochemical methods to kinases. There are few kinase assay methods that utilize the chemical properties of phosphorylated amino acids. This detection method is unique in that it uses a simple chemical method rather than a biochemical method that is problematic in terms of danger and versatility.
This detection method provides the basic principle of detecting phosphorylated serine and threonine, and has the feature that it is very versatile. Assays can be performed in Eppendorf tubes or microplates using peptides supported on beads, and can also be applied to peptide arrays in which peptides are supported on membranes or glass plates. Furthermore, it may be applicable to proteins. If the phosphorylated protein in the gel after being subjected to SDS-PAGE can be derivatized to fluorescence, the utility value of this detection method will be extremely high.
Specific kinase inhibitors are expected as various pharmaceuticals including anticancer agents, and development research is progressing (see Non-Patent Document 5). HTS is indispensable for drug development using combinatorial chemistry, which is now becoming the mainstream, but the characteristics of this assay system exactly meet that requirement.

この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。
The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.
The contents of papers, published patent gazettes, patent gazettes, and the like specified in this specification are incorporated by reference in their entirety.

図1は本アッセイの原理を示す。FIG. 1 shows the principle of this assay. 図2は、実施例においてデザイン、合成した蛍光物質(1、2)を示す。FIG. 2 shows fluorescent materials (1, 2) designed and synthesized in the examples. 図3は、化合物1、3の蛍光スペクトルを示すグラフ(5μM (0.1%DMSO)in glycine/NaOH buffer(pH 9.4)、Ex:360 nm)である。FIG. 3 is a graph showing the fluorescence spectra of compounds 1 and 3 (5 μM (0.1% DMSO) in glycine / NaOH buffer (pH 9.4), Ex: 360 nm). 図4は、ビーズ担持ペプチドを用いた検討結果を示す。FIG. 4 shows the results of studies using bead-carrying peptides. 図5は、化合物3の蛍光のpH依存性を示すグラフである。FIG. 5 is a graph showing the pH dependence of the fluorescence of compound 3. 図6は、化合物1の濃度に関する検討結果を示す。FIG. 6 shows the results of studies on the concentration of Compound 1. 図7は、固相に担持したペプチドを用いたキナーゼ活性の検出方法及び結果(1)である。FIG. 7 shows a method for detecting kinase activity using a peptide carried on a solid phase and the result (1). 図8は、固相に担持したペプチドを用いたキナーゼ活性の検出方法及び結果(2)である。FIG. 8 shows a method for detecting kinase activity using a peptide carried on a solid phase and the result (2). 図9は、本アッセイ系に対するキナーゼ阻害剤の効果を示す。FIG. 9 shows the effect of kinase inhibitors on this assay system.

Claims (4)

以下の各ステップ:
キナーゼをペプチドに作用させるステップ;
導入されたリン酸基をβ脱離させるステップ;
前記リン酸基がβ脱離して生成した二重結合部分に、マイケル付加反応によって蛍光性物質を導入するステップ;及び
導入された蛍光性物質を検出するステップ、
を含んでなり、NaOHの存在下且つ溶媒がH2O/DMSO/EtOH(4:3:1)の条件下で前記β脱離及び前記マイケル付加反応を行
前記β脱離の際のNaOH濃度が0.1Mであり、
前記マイケル付加反応の際のNaOH濃度が25mMである、
キナーゼ活性検出法。
Each of the following steps:
Allowing a kinase to act on a peptide;
Β-eliminating the introduced phosphate group;
The double bond moiety of the phosphate group is generated apart β removal step to introduce fluorescent substance by Michael addition reaction; detecting a and introduced fluorescent material,
Comprise becomes, the presence and solvent NaO H is H 2 O / DMSO / EtOH ( 4: 3: 1) have a row the β elimination and the Michael addition reaction under the conditions of,
NaOH concentration at the time of β desorption is 0.1M,
NaOH concentration in the Michael addition reaction is 25 mM,
Kinase activity detection method.
前記キナーゼが、セリン−スレオニンキナーゼである、請求項1に記載の検出法。 The detection method according to claim 1, wherein the kinase is a serine-threonine kinase. 前記標識物質がSH基等の求核性官能基を有する、請求項1又は2に記載の検出法。 The detection method according to claim 1 or 2 , wherein the labeling substance has a nucleophilic functional group such as an SH group. 前記ペプチドが不溶性支持体に固定されている、請求項1〜のいずれか一項に記載の検出法。 The detection method according to any one of claims 1 to 3 , wherein the peptide is immobilized on an insoluble support.
JP2004293084A 2004-10-05 2004-10-05 Kinase activity detection method Expired - Fee Related JP4679870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004293084A JP4679870B2 (en) 2004-10-05 2004-10-05 Kinase activity detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004293084A JP4679870B2 (en) 2004-10-05 2004-10-05 Kinase activity detection method

Publications (2)

Publication Number Publication Date
JP2006101767A JP2006101767A (en) 2006-04-20
JP4679870B2 true JP4679870B2 (en) 2011-05-11

Family

ID=36372174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004293084A Expired - Fee Related JP4679870B2 (en) 2004-10-05 2004-10-05 Kinase activity detection method

Country Status (1)

Country Link
JP (1) JP4679870B2 (en)

Also Published As

Publication number Publication date
JP2006101767A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
AU2024203694B2 (en) Single-molecule protein and peptide sequencing
US20240302380A1 (en) Single molecule peptide sequencing
EP2405272B1 (en) Detectable nucleic acid tag
EP2310855A1 (en) Multi-ligand capture agents and related compositions, methods and systems
US11435358B2 (en) Single molecule peptide sequencing
US20230104998A1 (en) Single-molecule protein and peptide sequencing
Kunys et al. Specificity Profiling of Protein‐Binding Domains Using One‐Bead‐One‐Compound Peptide Libraries
JP4679870B2 (en) Kinase activity detection method
JP2002253240A (en) Analysis of intermolecular interaction
JP2002257832A (en) Protein labeling reagent
JP2009019002A (en) Method for detecting on-chip phosphorylation by michael reaction
JP2007228905A (en) Method for detecting protein phosphatase activity on chip
WO2024076928A1 (en) Fluorophore-polymer conjugates and uses thereof
WO2023130098A2 (en) High efficiency labels for biomolecular analysis
HAIBIN Developing High-Throughput Chemical Approaches For Proteomic Profiling Of Aspartic Proteases And Protein Kinases
JP2007178331A (en) New detection method of phosphorylation on chip
JP2007195431A (en) New method for analyzing protein kinase activity

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20061226

Free format text: JAPANESE INTERMEDIATE CODE: A711

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

RD04 Notification of resignation of power of attorney

Effective date: 20090123

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

A131 Notification of reasons for refusal

Effective date: 20101124

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20110125

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110202

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees