WO2002071507A2 - Element d'accumulateur non aqueux rechargeable comportant un systeme electrolytique a base de so¿2? - Google Patents

Element d'accumulateur non aqueux rechargeable comportant un systeme electrolytique a base de so¿2? Download PDF

Info

Publication number
WO2002071507A2
WO2002071507A2 PCT/DE2002/000789 DE0200789W WO02071507A2 WO 2002071507 A2 WO2002071507 A2 WO 2002071507A2 DE 0200789 W DE0200789 W DE 0200789W WO 02071507 A2 WO02071507 A2 WO 02071507A2
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
cell according
electrolyte system
viscosity
solid particles
Prior art date
Application number
PCT/DE2002/000789
Other languages
German (de)
English (en)
Other versions
WO2002071507A3 (fr
Inventor
Günther Hambitzer
Christiane Ripp
Ulrike Doerflinger
Ingo Stassen
Tobias SCHÜLER
Original Assignee
Fortu Bat Batterien Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fortu Bat Batterien Gmbh filed Critical Fortu Bat Batterien Gmbh
Priority to AU2002257518A priority Critical patent/AU2002257518A1/en
Priority to DE10290878T priority patent/DE10290878D2/de
Publication of WO2002071507A2 publication Critical patent/WO2002071507A2/fr
Publication of WO2002071507A3 publication Critical patent/WO2002071507A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a rechargeable non-aqueous battery cell.
  • Such cells are of great practical importance because numerous types of rechargeable batteries (secondary cells) have electrochemical cells with a non-aqueous electrolyte system.
  • the electrolyte system usually contains a salt, the ions of which form the charge carriers of the electrolytic line (conductive salt) and a transport medium which ensures the required mobility of the ions of the conductive salt in the electrolyte system.
  • the invention is particularly directed to cells whose electrolyte system is based on sulfur dioxide. “Systems based on SO 2 (SO-based electrolyte system)” are systems in which the mobility of the ions of the conductive salt is at least partially guaranteed by the SO, so SO 2 is a functionally essential component of the transport medium of the electrolyte system.
  • Electrolyte systems based on SO are particularly important in cells in which the active metal of the negative electrode is an alkali metal, in particular lithium or sodium.
  • the conductive salt is preferably a tetrachloroaluminate of the alkali metal, for example LiAlCl.
  • preferred active metals in the context of the invention are calcium and zinc.
  • Graphite electrodes in which the discharge and charging process is linked to a redox complex formation of the conductive salt with the carbon.
  • Electrodes based on metal halide compounds for example CuCl
  • Electrodes based on a metal oxide in particular in the form of an intercalation compound, in which the active metal is stored in the positive electrode by the fact that its ions are embedded in or removed from the host lattice of the metal oxide.
  • rechargeable cells have a separator which separates the electrodes from one another and prevents a short circuit if the volume of an electrode increases during charging or discharging.
  • the invention is also suitable for separator-free cell constructions (possible in exceptional cases).
  • the present invention relates to any electrochemical battery cells with an SO 2-based electrolyte system, regardless of the material and construction of the electrodes. Without restricting generality, Li
  • Rechargeable electrochemical cells with an electrolyte based on SO 2 have significant advantages.
  • "the Handbook of Batteries” by David Linden, second edition, 1994, McGraw Hill states that this cell type can be operated with high charge and discharge currents because of the high ionic conductivity of the electrolyte.
  • High energy density, a low self-discharge rate, good overcharge and deep discharge behavior and a high cell voltage are mentioned as further advantages.
  • these advantages are considered largely unsuitable for general use in the cited literature reference, inter alia because of potential security risks.
  • the conductive salt for example LiAlCl 4
  • the sulfur dioxide in the form of a water-clear liquid, which is referred to below as conductive salt SO liquid.
  • conductive salt SO liquid Either stoichiometric proportions of the starting components of the conductive salt AlCl and LiCl (US Pat. No. 4,891,281) or an excess of LiCl can be used. If the cell housing leaks during operation (due to a malfunction), the liquid electrolyte solution can easily escape to the outside, and the sulfur dioxide evaporates. It is perceived as a malodorous substance even at very low concentrations. If the electrolytic solution If it comes into contact with water, a violent reaction occurs, in which electrolyte components can splash and white mist clouds form.
  • Battery manufacturers use electronic, mechanical or chemical measures to control the charging or discharging circuit in such a way that the current flow is interrupted below a critical temperature, so that no "thermal runaway” can occur.
  • pressure or temperature sensitive switches are integrated into the battery circuit. It has also been proposed to irreversibly interrupt the current transport as a result of chemical reactions in the electrolyte or mechanical changes in the separator as soon as a critical temperature threshold is reached. After all it is It is common to prescribe the use of precisely specified electronic chargers which strictly limit the charging currents and end-of-charge voltages. Despite these measures, the safety standard of conventional non-aqueous cells, especially with SO-based electrolyte systems, is not fully satisfactory.
  • a solid salt in particular an alkali metal halide, is arranged in the immediate vicinity of the negative electrode.
  • This salt has both physicochemical and chemical effects that delay safety-relevant reactions and thereby significantly reduce the risks.
  • a layered composite of two layers is attached to the electronically conductive substrate of the negative electrode.
  • the first layer is so porous that active mass formed on the surface of the substrate penetrates into its pores and is further deposited there.
  • the second layer is one for the active mass impermeable but ion permeable barrier layer.
  • the present invention has a particularly advantageous effect in combination with the measures known from these patent applications. Their content is made the content of the present application by reference.
  • the proportion of the conductive salt in the electrolyte system, based on the sulfur dioxide corresponds to at least a molar ratio of 1:12 and that the electrolyte system contains a viscosity-increasing addition of inorganic solid particles.
  • the conductive salt is designated K + A "
  • its minimum concentration corresponds to the formula K + A " x 12 S0 2 .
  • a minimum concentration of K + A " x 6 SO 2 is particularly advantageous, with minimum concentrations of the conductive salt of K + A " x 3 SO 2 or even K + A " x 1.8 SO 2 being particularly preferred.
  • the invention ensures safety even when the cell is heated to a temperature at which the active metal melts.
  • a charged lithium cell with viscosity-increasing solid particles made of SiO 2 was heated to approx. 250 ° C. No safety-critical reaction was observed as with a cell designed according to the state of the art. This behavior is very surprising because the safety instructions for handling lithium indicate that burning lithium must not be extinguished with sand, i.e. silicon dioxide, because lithium normally reacts exothermically with SiO 2 to form lithium oxide and silicon.
  • Another advantage of the invention is that the loss of sulfur dioxide when the cell housing is damaged and the resulting leakage is substantially reduced.
  • An inorganic thickened SO electrolyte was produced as follows:
  • LiAlCl 4 lithium tetrachloroaluminate
  • Gaseous SO was passed over the cooled melt until a liquid, water-clear electrolyte solution of the composition LiAlCl 4 x 1.5 SO2 was formed.
  • Figure 1 shows the conductivity as a function of the temperature for the following electrolyte systems: a) liquid SO electrolyte system according to Example 1, but without AEROSIL R and LiF. b) SO gel electrolyte with a proportion of 30% by weight AEROSIL R , based on the SO. c) SO gel electrolyte with a proportion of 63% by weight AEROSIL R , based on the SO
  • the measured average conductivity at 25 ° C is in the range between approx. 40 and 50 mS / cm and is very high compared to other electrolytes.
  • organic lithium electrolyte solutions with aprotic solvents such as those used in lithium ion batteries, generally have a conductivity of 5 to 20 mS / cm.
  • the conventional electrolyte solution according to curve a) has lost 35% of its SO 2 after 24 hours. Even after that, the SO content continues to decrease. After ten days, over 50% of the SO 2 has evaporated.
  • melts which contain reaction-reducing constituents are shown in FIG. 3 for the following compositions as a function of the percentage of additives (% by weight based on the total weight of the electrolyte system):
  • a cell of the Ty - 1 p ⁇ s Li II LiAlCl4 1 I LiCoO2 with a nickel metal abbeamite and a separator was produced with an inorganically thickened SO electrolyte according to Example 1 and an AEROSIL R content of 63% and with a capacity charged from 400 mAh. It was then heated to 250 ° C, the SO evaporating from about 100 ° C. No reaction of lithium with the components of the electrolyte system was registered during the entire heating process. The cell could even at 250 ° C still be unloaded. As a result, electrochemically active lithium was still present even at this high temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne un élément d'accumulateur non aqueux rechargeable qui comporte un boîtier, une électrode négative, une électrode positive et un système électrolytique à base de dioxyde de soufre, contenant un sel conducteur. L'objectif de l'invention est d'accroître la sécurité de fonctionnement de cet élément d'accumulateur. A cet effet, le système électrolytique contient une proportion minimale de sel conducteur, par rapport au dioxyde de soufre, équivalente à un rapport molaire de 1:12, ainsi que des particules solides inorganiques augmentant la viscosité.
PCT/DE2002/000789 2001-03-07 2002-03-04 Element d'accumulateur non aqueux rechargeable comportant un systeme electrolytique a base de so¿2? WO2002071507A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002257518A AU2002257518A1 (en) 2001-03-07 2002-03-04 Rechargeable non-aqueous battery cell comprising an electrolyte system based on so2
DE10290878T DE10290878D2 (de) 2001-03-07 2002-03-04 Wiederaufladbare nichtwässrige Batteriezelle mit auf SO¶2¶ basierendem Elektrolytsystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10110716.1 2001-03-07
DE10110716A DE10110716A1 (de) 2001-03-07 2001-03-07 Wiederaufladbare nichtwässrige Batteriezelle

Publications (2)

Publication Number Publication Date
WO2002071507A2 true WO2002071507A2 (fr) 2002-09-12
WO2002071507A3 WO2002071507A3 (fr) 2003-02-06

Family

ID=7676458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/000789 WO2002071507A2 (fr) 2001-03-07 2002-03-04 Element d'accumulateur non aqueux rechargeable comportant un systeme electrolytique a base de so¿2?

Country Status (3)

Country Link
AU (1) AU2002257518A1 (fr)
DE (2) DE10110716A1 (fr)
WO (1) WO2002071507A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244530B2 (en) 2001-06-15 2007-07-17 Guenther Hambitzer Rechargeable battery cell that is operated at normal temperatures
EP2071658A1 (fr) 2007-12-14 2009-06-17 Fortu Intellectual Property AG Electrolyte pour une cellule de batterie électrochimique
RU2560717C2 (ru) * 2010-02-12 2015-08-20 Алево Рисерч АГ Перезаряжаемый электрохимический элемент
RU2713912C1 (ru) * 2016-11-28 2020-02-11 Тойота Дзидося Кабусики Кайся Жидкий электролит для литий-ионных аккумуляторных батарей, способ получения жидкого электролита и литий-ионная аккумуляторная батарея

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1898833B (zh) * 2003-09-23 2010-04-14 冈瑟·汉比特泽 电化学电池
US20210194096A1 (en) * 2019-12-20 2021-06-24 The Board Of Trustees Of The Leland Stanford Junior University Ionic compound-based electrocatalyst for the electrochemical oxidation of hypophosphite

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2124821A (en) * 1982-08-09 1984-02-22 Duracell Int Electrochemical cells having low vapor pressure complexed SO2 electrolytes
US4482616A (en) * 1983-06-27 1984-11-13 Standard Oil Company (Indiana) Controlling solubility of lithium salts in liquid sulfur dioxide
EP0296589A2 (fr) * 1987-06-24 1988-12-28 Hitachi Maxell Ltd. Pile électrochimique non aqueuse
US5246794A (en) * 1991-03-19 1993-09-21 Eveready Battery Company, Inc. Cathode collector made from carbon fibrils
DE19911800C1 (de) * 1999-03-17 2000-11-02 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Befüllen einer elektrochemischen Zelle mit einem aus in wenigstens einem bei Raumtemperatur gasförmigen Lösungsmittel solvatisierten Salzen bestehenden Elektrolyten

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1258498A (fr) * 1968-06-11 1971-12-30
DE3633265A1 (de) * 1985-04-18 1988-03-31 Barthel Rudolf Dr Elektrische batterie
DE3539834C3 (de) * 1985-11-09 1993-12-02 Deta Akkumulatoren Verfahren zur Herstellung eines Akkumulators, bei dem einem wäßrigen Elektrolyten ein Gelbildner zugesetzt wird, sowie nach diesem Verfahren hergestellter Akkumulator
DE4238353A1 (de) * 1992-11-13 1994-05-19 Varta Batterie Bleiakkumulator mit einem thixotropen Gel als Elektrolyt
DE50002582D1 (de) * 1999-01-23 2003-07-24 Fortu Bat Batterien Gmbh Nichtwässrige elektrochemische zelle
EP1201004B1 (fr) * 1999-06-18 2004-12-01 Hambitzer, Günther, Dr. Cellule electrochimique rechargeable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2124821A (en) * 1982-08-09 1984-02-22 Duracell Int Electrochemical cells having low vapor pressure complexed SO2 electrolytes
US4482616A (en) * 1983-06-27 1984-11-13 Standard Oil Company (Indiana) Controlling solubility of lithium salts in liquid sulfur dioxide
EP0296589A2 (fr) * 1987-06-24 1988-12-28 Hitachi Maxell Ltd. Pile électrochimique non aqueuse
US5246794A (en) * 1991-03-19 1993-09-21 Eveready Battery Company, Inc. Cathode collector made from carbon fibrils
DE19911800C1 (de) * 1999-03-17 2000-11-02 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Befüllen einer elektrochemischen Zelle mit einem aus in wenigstens einem bei Raumtemperatur gasförmigen Lösungsmittel solvatisierten Salzen bestehenden Elektrolyten

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244530B2 (en) 2001-06-15 2007-07-17 Guenther Hambitzer Rechargeable battery cell that is operated at normal temperatures
EP2071658A1 (fr) 2007-12-14 2009-06-17 Fortu Intellectual Property AG Electrolyte pour une cellule de batterie électrochimique
WO2009077140A1 (fr) * 2007-12-14 2009-06-25 Fortu Intellectual Property Ag Électrolyte pour un élément de batterie électrochimique
US8410759B2 (en) 2007-12-14 2013-04-02 Fortu Intellectual Property Ag Electrolyte for an electrochemical battery cell
RU2496188C2 (ru) * 2007-12-14 2013-10-20 Форту Интеллектуал Пропети Аг Электролит для батареи гальванических элементов
RU2560717C2 (ru) * 2010-02-12 2015-08-20 Алево Рисерч АГ Перезаряжаемый электрохимический элемент
RU2713912C1 (ru) * 2016-11-28 2020-02-11 Тойота Дзидося Кабусики Кайся Жидкий электролит для литий-ионных аккумуляторных батарей, способ получения жидкого электролита и литий-ионная аккумуляторная батарея

Also Published As

Publication number Publication date
DE10110716A1 (de) 2002-09-12
DE10290878D2 (de) 2004-07-01
WO2002071507A3 (fr) 2003-02-06
AU2002257518A1 (en) 2002-09-19

Similar Documents

Publication Publication Date Title
EP3794663B1 (fr) Cellule de batterie rechargeable
EP1201004B1 (fr) Cellule electrochimique rechargeable
EP2227838B1 (fr) Électrolyte pour un élément de batterie électrochimique
WO2011098232A1 (fr) Élément électrochimique rechargeable
EP1149429B1 (fr) Cellule electrochimique non aqueuse
DE102015208197B3 (de) Elektrolyt für eine Alkali-Schwefel-Batterie, Alkali-Schwefel-Batterie enthaltend den Elektrolyten und Verwendungen ihrer Bestandteile
EP3443606B1 (fr) Électrolyte pour batterie électrochimique rechargeable
WO2002071507A2 (fr) Element d'accumulateur non aqueux rechargeable comportant un systeme electrolytique a base de so¿2?
WO2016202969A1 (fr) Batterie natrium/souffre, son procédé de fonctionnement et utilisation de polysulfure de phosphore en tant d'additif d'électrolyte dans des batteries natrium/soufre
EP3762988A1 (fr) Conducteurs d'ions fixe pour éléments de batterie électrochimiques rechargeables
WO2008040698A1 (fr) Électrolyte pour batteries lithium-ion
EP4037036A1 (fr) Élément de batterie rechargeable
EP4037051A1 (fr) Élément de batterie rechargeable

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

122 Ep: pct application non-entry in european phase
REF Corresponds to

Ref document number: 10290878

Country of ref document: DE

Date of ref document: 20040701

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10290878

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP