WO2002067456A1 - Afc controller - Google Patents

Afc controller Download PDF

Info

Publication number
WO2002067456A1
WO2002067456A1 PCT/JP2001/001148 JP0101148W WO02067456A1 WO 2002067456 A1 WO2002067456 A1 WO 2002067456A1 JP 0101148 W JP0101148 W JP 0101148W WO 02067456 A1 WO02067456 A1 WO 02067456A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
clock frequency
clock
unit
Prior art date
Application number
PCT/JP2001/001148
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuya Kikuchi
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2001/001148 priority Critical patent/WO2002067456A1/en
Publication of WO2002067456A1 publication Critical patent/WO2002067456A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7085Synchronisation aspects using a code tracking loop, e.g. a delay-locked loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control

Definitions

  • the present invention relates to an AFC controller in a CDMA mobile communication terminal in which a known fixed pattern (pilot) is arranged in a lower signal from a base station.
  • AFC control device capable of shortening the initial frequency pull-in time of AFC control at a time and reducing current consumption, and a CDMA mobile communication terminal equipped with the AFC control device.
  • the transmitting side spreads the transmission information using a spreading code string and transmits it, and the receiving side transmits the signal received from the transmitting side.
  • the transmission information is demodulated by despreading using the same despreading code sequence as that of the transmitting side.
  • FIG. 9 is a configuration diagram of a CDMA receiver.
  • the radio unit 1 converts the frequency of the high-frequency signal received by the antenna ATN to a baseband signal (RF ⁇ IF conversion), and the quadrature detector 2 performs quadrature detection of the baseband signal, and outputs in-phase component (I component) data. Outputs quadrature component (Q component) data.
  • 2a is a received carrier generator
  • 2b is a phase shifter that shifts the phase of the received carrier by ⁇ / 2
  • 2c and 2d are multipliers that convert the received carrier to a respread span signal. It multiplies and outputs an I component signal and a Q component signal.
  • the low-pass filters (LPF) 3a and 3b limit the band of the output signal, and the AD converters 4a and 4b convert the I component signal and the Q component signal into digital signals, respectively.
  • the searcher 5 performs a correlation operation using a matched filter (not shown) to detect the multipath, and starts despreading in each path.
  • 3 and delay time adjustment data timing data tau 0 ⁇ Te is input to the finger section 6 i to 6 4.
  • Despreading code generation section 6a of each finger portion 6 i to 6 4 is Te timing data inputting identical code sequence and spreading code sequence on the transmitting side from the searcher 5.
  • the searcher 5 detects the phase of the transmission-side spread code with an accuracy within one chip (synchronous acquisition), and the despread code generator 6a A spreading code sequence for despreading at the receiving side is generated in synchronization with the phase.
  • the DLL (Delayed Locked Loop) circuit 61) detects the time difference between the received signal and the despread code sequence on the receiving side, even if the phase of the received signal changes due to modulation or noise. Control so that it does not happen (synchronous tracking).
  • the despreading Z delay time adjusting unit 6c performs a despreading process on the direct wave or the delayed wave arriving via a predetermined path using the same code as the spreading code to perform dump integration, and then delays according to the path. Performs processing and outputs pilot signal and information signal. At the time of communication, a pilot signal is inserted into a predetermined bit position of each time slot of the lower signal from the base station.
  • the phase compensator 6d performs AFC (Automatic Frequency Control) control and calculates the rotation angle ⁇ 0 on the I-jQ plane of the pilot signal included in the received signal. Output sin component.
  • Synchronous detector 6e is cos A 0, despread information signals using sinA 0, Q; undo phase. That is, the pilot signal undergoes phase rotation during transmission due to the effects of fading, temperature change, multipath, etc., but if the signal point position vector PACT (see Fig. 10) is known on the receiving side, the ideal signal of the Pipit symbol is obtained. Since the point position vector P IDL is known, the phase rotation angle ⁇ ⁇ ⁇ ⁇ of the symbol due to transmission can be obtained. Thus, the phase compensator 6d detects the pilot symbol and calculates the phase rotation angle ⁇ ⁇ , and the synchronous detector 6e uses cos ⁇ ⁇ and sinA ⁇
  • the received information signal ( ⁇ ', Q') is subjected to phase rotation processing to return to the original state, and then the received information signal (1, Q) is demodulated (synchronous detection).
  • RAKE combining section 7 you output error correction decoder as soft decision data string by synthesizing the signals output from each finger portion 6-6 4.
  • the erroneous correction decoder 8 performs erroneous correction processing to decode and output transmission information.
  • Figure 11 is an explanatory diagram of the matched filter that constitutes Searcher 5-5a is a matched filter that performs a correlation operation between the received spread data sequence of the base span and the base station spreading code, and 5b is the timing identification. Section of the correlation value output from the matched filter.
  • the base station identifies the base timing as the base station's spread start timing, that is, the base station's reference timing.
  • 51 b is a base station base station.
  • An N-chip register ( C 1 to C N ) in which a spreading code (for example, a spreading code for timing identification) is set, 51 c is a base-band spreading data sequence and a corresponding bit of a base station spreading code sequence N multipliers (MPi MPw :) for multiplying by, and 51 d are adders for adding the outputs of the respective multipliers.
  • a spreading code for example, a spreading code for timing identification
  • 51 c is a base-band spreading data sequence and a corresponding bit of a base station spreading code sequence N multipliers (MPi MPw :) for multiplying by
  • 51 d are adders for adding the outputs of the respective multipliers.
  • the matched filter 5a outputs one correlation value R (t) per one chip period, and thereafter sequentially outputs correlation values having different phases according to one chip period Tc, and outputs N correlation values in one symbol period. Output different correlation values.
  • the timing identification unit 5b monitors the correlation value R (t) output from the adder 51d and checks whether the correlation value has become larger than the set level. , Ie, the reference timing of the base station. At the beginning of each time slot of the lower signal transmitted from the base station, a timing identification pattern (spread with a timing identification spreading code) is arranged. When the power is turned on or when the mobile station returns to the service area from outside the service area, the spread code for timing identification is set in the register 51b of the matched filter 5a as the base station spread code. As a result, the output R (t) of the adder 51d indicates a peak when the base station sets the spreading code for retiming identification in the shift register 51a.
  • FIG. 12 is an explanatory diagram for explaining such a situation.
  • (1) shows a lower signal frame (broadcast channel frame), and (2) shows a time slot configuration.
  • One frame is 10 msec and consists of 15 time slots.
  • 1 timeslot is 1 0 symposium Le, leading first bit portion timing identification pattern of 1 timeslot, 2 second to sixth bit unit data unit D 0 to D 5, seventh to 3 1 0 bit portion is a fixed pattern portion for data demodulation (the pilot) P 0 to P 4.
  • the spreading factor is 256
  • a signal obtained by spreading and modulating the first bit data of the time slot with the 256 timing identification spreading code becomes a timing identification pattern and arrives at the matched filter 5a for each time slot.
  • the despreading unit 6c will thereafter synchronize with the phase of the spreading code on the receiving side. Generates a despreading code sequence for despreading, and performs despreading. DLL circuit 61) ensures that even if the phase of the received signal changes due to the influence of modulation, noise, etc., the despreading code sequence on the receiving side does not cause a time lag with respect to the received signal once successfully acquired. Control (synchronous tracking).
  • FIG. 13 is a configuration diagram of a DLL circuit, 6a is a despread code generator, and 61) is a DLL circuit.
  • 6a-2 is a voltage controlled oscillator (VC0) that varies the clock frequency (chip frequency) based on the DLL circuit output (DLL correlation value R ( ⁇ )).
  • 6b-1 is a delay circuit that delays the first despread code string by one chip period and outputs a second despread code string A2, and 6b ⁇ is an output from the despread code generator.
  • a despreader freezer that multiplies the first despreading code sequence and the received data sequence B and despreads each chip
  • 61) -3 is the second despreading code sequence A delayed by one chip.
  • a despreader (multiplier) that despreads by multiplying 2 by 2 and the received data sequence B for each chip, and 6b-4 inverts the sign of the output of the despreader 6b-2 and the output of the despreader 6b-3 6b-5 is an integrator (low-pass filter).
  • the despreader 6b-3 and the low-pass filter 6b-5 have a function of calculating the correlation between the second despread code sequence A2 delayed by one chip period and the received data sequence B, and the second despread code sequence A If the phase of 2 and the received data string B match, the maximum The correlation value R ( ⁇ ) shown in Fig. 14 (B) is output.
  • the correlation value R ( ⁇ ) becomes 1 / N.
  • the adder 6b_4 adds the inverted output of the despreader 61) -2 and the output of the despreader 6b_3 with the sign inverted to add the S-curve characteristic shown in Fig. 14 (C) to the phase difference ⁇ .
  • a 1 "raw DLL correlation value signal R ( ⁇ ) is output via the low-pass filter 6b-5.
  • the voltage-controlled oscillator 6a-2 of the despreading code generator 6a controls the clock frequency based on the output of the low-pass filter so that the phase difference becomes zero. For example, if the phase of the despreading code is advanced with respect to the spreading code on the transmitting side included in the received data sequence, the control is performed so that the peak frequency is reduced so that the phase difference becomes zero. If the phase of this signal lags behind the spreading code on the transmitting side, the peak frequency is increased and the phase difference is controlled to be zero.
  • Despreading is performed, the power difference of the despread signal is calculated at each timing, and the sign of the code is used to determine the phase lead / lag of the PN sequence (despread code) and follow the path.
  • FIG. 15 is a block diagram of the phase compensator.
  • the spectrum despread outputs It and Qt of the pilot signal are phase-rotated by the phase detector 6d-l and corrected to I and Qt 7. .
  • the phase difference calculator 6D-2 calculates the phase difference ⁇ between the corrected signal point position vector P ACT (I, Qt ') and the pilot signal ideal signal point position vector P IDL (Fig. 10). If the value of the phase difference ⁇ becomes equal to or less than the set value, the state monitoring / switching unit 6d-3 determines that the state is synchronous, and outputs a switching signal.
  • the clock frequency of the mobile communication terminal does not match the reference clock frequency of the base station.
  • Betatoru P ACT after detection according deviation of the end end of the clock frequency is adapted to the asynchronous state rotated from the ideal position.
  • the switching unit 6d-4 inputs the phase difference signal ⁇ 0 to the phase difference capturing unit 6d-5, and the normal pull-in process is performed until the switching unit 6d-4 becomes the resynchronization state. That is, the phase difference correction unit 6d-5 gradually changes the output phase with time according to the rotation direction (positive or negative) of the phase difference as shown in FIGS.
  • the loop filter 6 d-6 adjusts the response speed of the PLL so that it does not unnecessarily follow sudden changes in the phase
  • the VCO (volume age cont rolled os ci 1 l at or) 6d-7 is the loop filter output voltage.
  • a signal having a frequency corresponding to (a radio signal of a radio section or a baseband master clock signal) is output.
  • the sine wave generator 6 (1-8 generates a sine wave signal corresponding to the phase rotation amount ⁇ ⁇ based on the loop filter output and inputs it to the phase corrector 6d-l, Capture the phase of the vector.
  • the synchronous detector 6e performs the operation of equation (1) to perform a phase rotation process on the information signal (1 ',), and then performs synchronous detection of the received information signal, and passes through a rake combiner (not shown). And outputs it to the error correction decoder 8.
  • the erroneous correction decoder 8 executes erroneous correction decoding processing to decode and output transmission information.
  • the terminal clock frequency of the mobile communication terminal does not match the reference clock frequency of the base station.
  • the orthogonal detector 2 multiplies the reception carrier generated based on the terminal close signal by the reception baseband signal to output the I component signal and the Q component signal, and the matched filter of the searcher 5 outputs the terminal filter.
  • the correlation calculation is performed based on the clock signal, and the base station reference timing is detected based on the peak timing.
  • the despreading unit 6c starts despreading based on the detected base station reference timing, and the phase compensating unit 6d performs the above-described AFC control while scanning the phase, that is, the clock frequency of the terminal.
  • the terminal clock frequency is equal to the reference clock frequency of the base station with the required accuracy, and the error of the reference timing detected by the searcher is also small.
  • the phase of the base station-side spreading code can be detected with an accuracy within one chip (synchronous acquisition state).
  • the synchronous capture state becomes strong, the reference timing detection control by the searcher (matched filter) is stopped, and the AFC control by the DLL circuit 6b is started instead.
  • the synchronous detector 6e starts synchronous detection.
  • the DLL circuit 6b controls the despreading code sequence on the receiving side so that there is no time lag with respect to the received signal once successfully acquired even if the phase of the received signal changes due to modulation or noise. Yes (synchronous tracking).
  • the zero crossing point of the DLL characteristic S-carp
  • the Machito filter is started periodically to restart the AFC control by the phase compensator to reduce the deviation of the zero crossing point.
  • accurate AFC control cannot be performed unless data is demodulated and the pilot signal is recognized.
  • the base station's reference clock is used.
  • the error (frequency deviation) between the frequency and the clock frequency of the terminal must be reduced, and data demodulation cannot be performed if the deviation of the peripheral number is large because synchronous detection is premised. Is large When the rotation speed of the position data vector on the Ij Q plane exceeds the processing capacity, the speed becomes faster, and it becomes impossible to identify the rotation direction position of the position vector on the Ij Q plane. This makes it impossible to demodulate the data.
  • the clock frequency of the terminal is scanned to make the demodulation sensitivity of the pilot signal equal to or higher than a certain level, and the phase difference ⁇ 0 is equal to or lower than the set value. Then, it is necessary to turn on the AFC loop and execute the frequency pull-in operation.
  • the conventional technology has a problem that it takes a very long time to initially pull in the AFC.
  • the AFC control requires a large current consumption because it performs a matrix operation using an arithmetic circuit (DSP: digital signal proc es sor) and a reference timing detection operation using a matched filter.
  • DSP digital signal proc es sor
  • the conventional technology requires a long time for AFC control, which consumes a large amount of energy and increases current.
  • An object of the present invention is to reduce the time required for the initial pull-in of the AFC when the power is turned on or when returning from the outside of the service area to the service area, thereby enabling prompt communication.
  • Another object of the present invention is to reduce the time of AFC control for operating the matched filter and the phase compensator to reduce current consumption.
  • Another object of the present invention is to lengthen the execution cycle of AFC control by a matched filter and a phase compensation unit which needs to be performed periodically during a call under DLL control.
  • a CDMA mobile terminal in which a known pattern (pilot) is regularly arranged in the frame format of the broadcast channel from the base station, when the power is turned on or when returning from outside the service area to the service area, A correlation value between the timing identification spreading code transmitted by the base station and the data sequence received from the base station is calculated, and a base station reference timing is detected based on the peak value of the correlation value. Based on the difference between the calculated reference timing interval and the reference base station reference timing interval, feedback control of the terminal peak frequency is performed, and the terminal peak frequency is promptly obtained from the phase compensation section. It pulls in to a frequency that allows AFC control by the output phase error ⁇ , and reduces the time required for the initial pull-in of AFC (AFC control in the first stage).
  • the AFC control by the phase compensator is started and reception is performed. Control the terminal peak frequency so that the phase error ⁇ ⁇ between the signal point position vector of the pilot symbol on the I-j Q plane and the known signal point position vector of the known pilot symbol becomes zero. (2nd stage AFC control).
  • the terminal clock frequency is set to the reference clock frequency of the base station by the AFC control in the second stage. If the number is equal to the required accuracy, the error in the detected reference timing will be small, and the phase of the base station side spreading code can be detected with an accuracy within one chip (synchronous acquisition state). In such a synchronization capture state, the DLL executes the AFC control. At this time, the DC component of the AFC control voltage of the DLL is detected, and the terminal's peak frequency is controlled so that the DC component becomes zero (the third-stage AFC control). This makes it possible to correct the frequency fluctuations due to changes in the temperature / propagation environment, etc., to keep the frequency deviation small, and to correct the fixed frequency deviation. The interval of AFC control performed by operating the compensator can be increased, and power consumption can be reduced.
  • FIG. 1 is a configuration diagram of a receiving section of a CDMA mobile communication terminal of the present invention.
  • FIG. 2 is an explanatory diagram of the phase error ⁇ between the signal point vector P ACT of the received pilot symbol and the ideal signal point position vector P IDL of the known pilot symbol.
  • FIG. 3 is an explanatory diagram of an error in the detection reference timing due to the frequency deviation at the time of the initial pull-in of the frequency.
  • FIG. 4 is an explanatory diagram of the DC component included in the DLL correlation value R ( ⁇ ) due to the fixed frequency deviation.
  • FIG. 5 is a timing chart for explaining the first-stage AFC control operation of the present invention.
  • FIG. 6 is a second-stage AFC control explanatory diagram.
  • FIG. 7 is an explanatory diagram of the S-carp in the DLL.
  • FIG. 8 is an overall processing flow of the present invention.
  • FIG. 9 is a configuration diagram of a CDMA receiver.
  • FIG. 10 is an explanatory diagram of phase rotation of pilot symbols.
  • FIG. 11 is an explanatory diagram of a configuration of a matched filter and a method of specifying a despread timing.
  • FIG. 12 is a relationship diagram between the reference timing of the terminal and the reference timing of the base station.
  • FIG. 13 is a configuration diagram of a DLL circuit.
  • FIG. 14 is an explanatory diagram of the S curve of the DLL control.
  • FIG. 15 is a configuration diagram of the phase compensation unit.
  • FIG. 16 is an explanatory diagram of a conventional phase difference correction at the time of initial pull-in.
  • FIG. 1 is a configuration diagram of a receiving section of a CDMA mobile communication terminal of the present invention.
  • the radio unit (RF) 101 performs frequency conversion (RF ⁇ IF conversion) of a high-frequency signal received by the antenna ATN into a baseband signal.
  • the IF unit 102 includes a quadrature demodulation unit, a low-pass filter, an AD converter, and the like.
  • the quadrature detector creates a received carrier signal using the local signal of the radio section, multiplies the received carrier by the baseband signal output from the RF section 101 to generate an I component signal and a Q component signal, and the low-pass filter
  • the band of the I-component signal and the Q-component signal is limited, and the AD converter converts the I-component signal and the Q-component signal into digital signals, respectively, and outputs a searcher 103 having a matched filter configuration and a despreading unit 104 of each finger unit. Enter in.
  • the searcher 103 calculates the correlation value between the timing identification spreading code transmitted by the base station and the data string received from the base station when the power is turned on or when the mobile station returns from the service area to the service area, and based on the peak position of the correlation value.
  • the base station detects the reference timing of the base station, and inputs the despreading timing to the despreading unit 104 based on the detected reference timing.
  • the searcher with the matched filter configuration has a large circuit scale and large power consumption.
  • the despreading unit 104 includes a despreading code generating unit 104a, a despreading circuit 104b, and a DLL circuit 104c.
  • the despreading code generating unit 104a transmits a spreading code sequence on the transmission side based on the despreading timing input from the searcher 103.
  • the despreading circuit 104b generates the same despreading code sequence, and the despreading circuit 104b multiplies the I component signal and the Q component signal input from the IF unit 102 by the despreading code and despreads, thereby obtaining pilot symbols and information symbols.
  • the DLL circuit 104c has the configuration shown in Fig.
  • the DLL circuit 104c controls the phase of the despread code sequence by the correlation value signal R ( ⁇ ), and this signal is used for AFC control as described later.
  • the DLL circuit 104c has a smaller circuit size and a smaller current consumption than the match filter.
  • the phase compensation unit 105 calculates the phase error delta 0 signal points vector P AC T of the received pilot symbol (Fig.
  • phase error ⁇ is the sum of the phase error 0 moVe due to temperature / fading / multipath and the phase error 0 error due to the frequency deviation.
  • the synchronous detector 106 uses co s A 0 and sin ⁇ 0 to add the received information symbol, Q f to the following equation (1)
  • the error correction decoder 107 performs an error correction decoding process on the synchronous detection output signal and decodes transmission data.
  • the timing error integrator 111 integrates the difference between the reference timing interval detected by the searcher 103 and the regular reference timing interval, and uses the integrated value as a frequency pull-in control signal to control the clock signal generator (VC-TCX0) 112 Input to the control voltage control unit 110.
  • the matched filter of Searcher 103 calculates the correlation value between the timing identification spreading code (known) transmitted by the base station and the data sequence received from the base station, and calculates the peak position of the correlation value.
  • the reference timing of the base station is detected. When the frequency is initially pulled in, the terminal's peak frequency does not match the base station's reference peak frequency, and there is a frequency deviation. In addition to this frequency deviation, the reference timing detected as shown in FIG.
  • the interval of the frame timing does not coincide with the regular reference timing interval of 10 ms e c and includes a time error Te-MF.
  • the timing error integration section 111 integrates the time error Te-MF, and inputs the integrated value to the control voltage control section 110 as a frequency pull-in control signal.
  • the DLL correlation value integration unit 113 integrates the DLL correlation value R ( ⁇ ), and inputs the integrated value to the control voltage control unit 110 of the clock signal generation unit (VC-TCX0) 112 as an AFC control signal.
  • the DLL circuit 104c is to detect the deviation of the despreading timing of ⁇ 1/2 chip or less due to fading, movement, frequency fluctuation, etc., but if there is a fixed frequency deviation, as shown in FIG. Includes the DC component CNTe-DLL in the DLL correlation value R (). Then, the DLL correlation value integration unit 113 integrates the DLL correlation value R ( ⁇ ) to obtain the DC component CNTe-DLL. Therefore, this DC component is input to the control voltage control unit 110 as an AFC control signal.
  • the VC0 clock signal generator (VC-TCX0) 112 outputs a terminal reference clock signal having a frequency corresponding to the control voltage output from the control voltage controller 110.
  • the PLL unit 114 generates a local frequency signal of the radio unit and outputs a baseband master clock signal CLK.
  • the terminal reference timing generator 115 generates various timing signals based on the baseband master clock signal CLK. Generates a click signal and inputs it to each part of the terminal.
  • the AFC control unit 116 controls the phase compensation unit 105, the timing error integrator 111, and the DLL correlation value integrator 113 to control the frequency of the terminal's peak signal.
  • the searcher 103 matched filter calculates the correlation value between the timing identification spreading code transmitted by the base station and the data string received from the base station when the power is turned on or when the mobile station returns from the outside of the service area to the service area.
  • the base station's reference timing is detected based on the peak position of the value. Initially, the terminal clock frequency and the base station reference clock frequency do not match, and there is a frequency deviation. Due to this frequency deviation, the interval of the detected reference timing does not match the interval of the normal reference timing, and a time error is included.
  • the timing error integrator 111 integrates the time error Te-MF.
  • the AFC control unit 116 inputs the integrated value output from the timing error integration unit 111 to the control voltage control unit 110 as a frequency pull-in control signal at the time of initial frequency pull-in immediately after power-on or immediately after returning from outside the service area to the service area. I do.
  • the control voltage controller 110 controls the frequency of the clock signal output from the clock signal generator 112 based on the integrated value so that the time error Te-MF of the reference timing caused by the frequency deviation becomes zero. According to this feedback control, the clock frequency of the terminal can be quickly drawn to a frequency at which AFC control based on the phase error ⁇ 0 output from the phase compensation section 105 is possible. As mentioned above, the time required for the initial pull-in of the AFC control can be reduced. ⁇ ⁇ ⁇ First stage AFC control
  • the AFC control unit 116 inputs the phase error ⁇ output from the phase compensation unit 105 to the control voltage control unit 110 as an AFC control signal.
  • the phase error ⁇ ⁇ is the signal point position vector of the received pilot symbol on the j j plane and the ideal signal point position of the known pilot symbol.
  • the control voltage control unit 110 controls the frequency of the clock signal output from the clock signal generator 112 so that the phase error ⁇ becomes zero.
  • the phase of the base station side spreading code can be detected with an accuracy within one chip (synchronous acquisition).
  • the AFC control unit 116 stops the operations of the timing error integrator 111 and the phase compensator 105 and sets their outputs to zero, instead of the DLL.
  • the circuit 104c and the DLL correlation value integration unit 113 are activated. As described with reference to FIGS. 13 and 14, the DLL circuit 104c controls the phase of the despreading code based on the DLL correlation value R () (synchronous tracking). Further, the DDL correlation value integration section 113 detects a DC component CNTe-DLL of the DDL correlation value R ( ⁇ ), and inputs the DC component to the control voltage control section 110 as an AFC control signal.
  • the control voltage control unit 110 controls the terminal's peak frequency so that the DC component of the DDL correlation value R ( ⁇ ) becomes zero. As described above, it is possible to correct the frequency fluctuation due to a change in the temperature / propagation environment and the like, thereby suppressing the frequency deviation width to a small extent, and to correct the fixed frequency deviation. As a result, the period of the AFC control (the second-stage AFC control) performed by operating the matched filter and the phase compensation unit can be lengthened, and the number of times can be reduced to reduce power consumption. .
  • the AFC control unit 116 stops the operation of the Dl 1 circuit 104c and the DLL correlation value integration unit 113 after performing the third-stage AFC control for a predetermined time, and starts the operation of the phase compensation unit 105 instead. Performs normal AFC control based on the phase error ⁇ ⁇ (the second-stage AFC control). When the correction of the frequency error in the second-stage AFC control is completed, the third-stage AFC control is performed. Thereafter, the second and third steps of the AFC control are repeated.
  • the AFC control unit 116 monitors the output voltage of the DLL correlation value integration unit 113 in the third-stage AFC control, and immediately executes the second-stage AFC control when the voltage value exceeds the set value. To correct the frequency error. As described above, the frequency error can always be kept within the set value.
  • the rough AFC control based on the error Te-MF of the timing information from the searcher 103 (the first stage) AFC control) to pull in the clock frequency to the level that enables synchronous detection. Then, based on the information of the phase error ⁇ from the phase compensator 105, the clock frequency is drawn with high accuracy so that the click frequency matches the reference clock frequency of the base station (AFC in the second stage). control).
  • the operation of the searcher is stopped, the DLL circuit 104c is started up instead, and the despreading timing correction information (DLL correlation value) output from the DLL circuit is output.
  • R ( ⁇ )) to perform AFC control (AFC control in the third stage).
  • AFC control AFC control in the third stage.
  • it switches to the regular second-stage AFC control periodically or by detecting an alarm state before demodulation is disabled. Thereafter, the second and third stages of AFC control are repeated.
  • FIG. 5 is a timing chart for explaining the first stage AFC control operation of the present invention, and shows a case where reference timings of three base stations are detected.
  • (1) shows the lower signal frame (broadcast channel frame) from the base station, and (2) shows the time slot configuration.
  • (3) is the reference timing (time slot) of the terminal
  • (4) to (6) are the reference timings of base stations A, B, and C detected in the searcher
  • (7) is the base stations A, B, and C.
  • (8) is the detection reference timing of base stations A, B, and C, ⁇ - ⁇ , ⁇ - ⁇ , ⁇ -C, and the delay time from terminal reference timing ⁇ -sA, T-sB , T-s C.
  • (9) shows the error of the terminal reference timing
  • (9-1) shows the absolute reference timing of the base station
  • (9-2) shows the terminal reference timing relative to the absolute reference timing. is there.
  • the searcher 103 with the matched filter configuration in Fig. 1 is implemented in the initial synchronization pull-in, but the detection timing of each base station detected is as shown in (8) and (9) in Fig. 5. Flows over time.
  • the matched filter can instantaneously calculate the correlation value of two code strings at a predetermined timing by one operation, but has the disadvantage of increasing the circuit size and Z power consumption. Even when a matched filter is used, it is necessary to take an average of the correlation values in order to increase the accuracy of the measurement. The time gets longer. As described above, the conventional technology using the matched filter has a problem that the initial synchronization pull-in time is long, the power consumption is large, and the life of the battery is short!
  • the flow of the peak timing (reference timing) of the correlation value calculated by the searcher 103 is quantitatively measured, and rough frequency adjustment is performed using the result.
  • AFC control second-stage AFC control
  • the base station oscillates at the radio carrier frequency and the baseband frequency. Therefore, the frequency error between the terminal clock frequency and the base station reference clock frequency appears as a flow on the time axis of the matched filter detection timing as shown in (9) of FIG.
  • the time difference ⁇ ((8) in Fig. 5) at which the peak of the correlation value is obtained is observed differently from the actual detection interval.
  • Figure 5 shows a state in which three valid pilots are being received.Each of them is affected by Doppler shift due to movement.However, by averaging information from multiple base stations, the effect is reduced. Can be eased.
  • the detection of the timing error which is a problem here, can be easily realized by a counter that operates at a rate of about eight times the chip rate.
  • the count value is smaller by -19 than the case of the frequency error force SO.
  • the timing error integrator 111 detects and integrates the frequency error, and controls the clock signal generator (VC-TC X0) 112 to correct the detected error.
  • the frequency error with respect to the reference cook signal can be reduced.
  • the second stage AFC control can be used to control the terminal clock frequency at high speed to the required accuracy.
  • each symbol is mapped on the i-jQ plane at a position, where 1 corresponds to 1 and 0 corresponds to 1. If the amplitude of the input is constant and the frequencies on the transmitting and receiving sides (carrier frequency / baseband frequency) match, the signal point of each symbol sticks to one point as shown in Fig. 6 (A). If the values of each symbol are known, all points can be collected into one point by matrix operation (phase rotation).
  • Fig. 6 (B) shows an example of collection in the first quadrant. For example, if it is (1, 0), it will be rotated by (- ⁇ / 2). Actually, the vector rotates from the dotted line position as shown in Fig. 6 (C) due to the influence of fogging and frequency error due to movement. After all, the received signal point position vector (Rq, Qi) is calculated using the actual signal point position vector (Dq, Di) as
  • Ri is the I component of the received electric field
  • Rq is the Q component of the received electric field.
  • ⁇ ⁇ is obtained from the output of the memory whose amplitude is the amplitude of the standardized I and Q components.
  • the phase error ⁇ 0 at the measurement interval becomes large, the position on the I-jQ plane cannot be specified, and the calculation itself becomes impossible.
  • the measurement interval is 1 ms
  • the error is 1 ppm
  • the rotation angle exceeds 2 ⁇ , and the calculation cannot be performed, and AFC control cannot be performed.
  • the initial pull-in of the frequency is performed in the first-stage AFC control so that the AFC control using the despread pilot data (the second-stage AFC control) becomes possible.
  • AFC control section 116 activates phase compensation section 105.
  • the phase compensator 105 calculates the phase error ⁇ 0 by the above method and inputs the calculated phase error ⁇ 0 to the control voltage controller 110.
  • the control voltage controller 110 controls the frequency of the clock signal output from the clock signal generator 112 so that the phase error ⁇ ⁇ becomes zero.
  • the reference frequency of the terminal fluctuates due to temperature changes and so on, so it is necessary to continue the second-stage AFC control.
  • complex operations in the AFC control in the second stage are performed by a DSP (digital signal processor), and the reference timing detection operation is performed by a multi-filter, resulting in considerable current consumption. Need. Therefore, it is not efficient to always perform the second-stage AFC control in order to keep processing load and power consumption low. Therefore, it is conceivable to perform AFC control in some way (for example, DLL control) that consumes a small amount of current, and then perform AFC control in the second stage at a predetermined cycle. You. In this case, it is not preferable to perform the second-stage AFC control in a short cycle for the same reason as described above, and it is preferable to perform the AFC control in a long cycle.
  • the phase of the despreading code is controlled by the DLL, and the DLL correlation value R ( ⁇ AFC control is performed using the integrated value of (2), thereby increasing the period for performing the second-stage AFC control.
  • the phase control of the despreading code by the DLL becomes impossible, an alarm is output and the second-stage AFC control is forcibly performed, and the phase control by the DLL becomes impossible. Avoid the situation that becomes.
  • FIG. 7 is an explanatory diagram of the S-carp in the DLL.
  • A shows the case where the frequency deviation is zero
  • B shows the case where the frequency deviation is ten
  • C shows the case where the frequency deviation is one.
  • DLL control corrects the deviation of the despreading timing (caused by fading, movement, frequency fluctuation, etc.) of ⁇ 1/2 chip or less, but the fixed frequency deviation of the terminal clock signal is It becomes visible if the control amount (DLL correlation value) is integrated over a long period. This is because, unlike other factors, the deviation direction is always constant.
  • the output of the DLL correlation value integration unit 113 is the DC component CNTe-DLL of FIG.
  • the DC component is monitored, and when the output signal value reaches a set level and approaches a dangerous state in which the DLL cannot control the phase of the despreading code, an alarm is output and the second-stage AFC control is performed. . Executing AFC control switching based on such an alarm can lengthen the period of the second-stage AFC control that is performed periodically, and reduce power consumption.
  • the AFC control unit 116 stops the operations of the timing error integrator 111 and the phase compensator 105, sets their outputs to zero, and replaces them. Then, the DLL circuit 104c and the DLL correlation value integrator 113 are activated. The DLL circuit 104c controls the phase of the despread code based on the DLL correlation value R ( ⁇ ) (synchronous tracking). Further, the DDL correlation value integration section 113 detects a DC component of the DDL correlation value R (r), and inputs the DC component to the control voltage control section 110 as an AFC control signal. The control voltage control unit 110 controls the clock frequency of the terminal so that the DC component of the DDL correlation value R ( ⁇ ) becomes zero. (D) Overall processing flow
  • FIG. 8 is an overall processing flow of the present invention.
  • the AFC control unit 116 activates the searcher 103 and the timing error integrator 111, and the searcher performs a timing search to specify the reference timing of the base station.
  • the searcher 103 performs a timing search for each of the n paths M times, and finds that the time difference (M-1) -To between the M-th timing 0 and the first timing To and the frequency deviation Time difference when 0 and difference between and [( ⁇ -1) ⁇ ⁇ . -T M — Determine the frequency error by averaging the ⁇ paths of J. Note that ⁇ may be 1.
  • the timing error integrator 111 integrates the average of the time differences, and inputs the integrated value to the control voltage controller 110 as a frequency pull-in control signal.
  • the control voltage controller 110 controls the frequency of the clock signal output from the clock signal generator 112 based on the integrated value so that the time error of the reference timing caused by the frequency deviation becomes zero.
  • rough frequency correction is performed, and the clock frequency of the terminal is drawn to a frequency at which the second-stage AFC control for controlling the terminal based on the phase error ⁇ is possible (Step 203). ... First stage AFC control
  • the AFC control unit 116 activates the inverse diffusion unit 104 and the phase compensation unit 105.
  • Despreading section 104 starts despreading processing based on the reference timing detected by the searcher, and demodulates the I and Q components of the pilot symbol (step 204).
  • the phase compensation unit 105 calculates a phase error ⁇ based on the I and Q components of the pilot symbol, and inputs the phase error ⁇ to the control voltage control unit 110 as an AFC control signal.
  • the control voltage control unit 110 controls the frequency of the clock signal output from the clock signal generator 112 so that the phase error ⁇ becomes zero.
  • This feed-pack control allows the clock frequency of the terminal to be as high as required (less than 0.1 ppm), and the DLL circuit 104c can detect the phase of the base station side spreading code with an accuracy within one chip. (Step 205).
  • AFC control in the second stage With the above control, if the terminal's peak frequency falls within the required accuracy, data can be demodulated.Synchronous detection unit 106 performs synchronous detection. Perform an error correction decoder 107 executes error correction / decoding processing based on the synchronous detection output signal to decode transmission data (step 206). At the time of data demodulation, the AFC control unit 116 stops the operations of the searcher 103 and the phase compensation unit 105 to make their outputs zero, and starts the DLL circuit 104c and the DLL correlation value integration unit 113 instead.
  • the DLL circuit 104c controls the phase of the despreading code based on the DLL correlation value R ( ⁇ ), and inputs the DLL correlation value R (T) to the DDL correlation value integration unit 113.
  • the DDL correlation value integration unit 113 detects the DC component by integrating the DDL correlation value R ( ⁇ ), and outputs the DC component as a fixed frequency deviation (step 207).
  • the control voltage control section 110 uses the integrated output of the DDL correlation value integration section 113 as an AFC control signal, and controls the clock frequency of the terminal so that the integrated output becomes zero (step 208). As described above, the fixed frequency deviation can be corrected. ⁇ ⁇ ⁇ Third-stage AFC control
  • the AFC control unit 116 checks whether the third-stage AFC control has been performed continuously for the set time, in other words, checks whether the second-stage normal AFC control start time has come (step 209). If “Yes”, the process returns to step 205 to restart the normal AFC control of the second stage. If “No”, the integrated output of the DDL correlation value integration unit 113 exceeds the set value and DL L It is checked whether or not the approach to a dangerous state in which the phase control of the despreading code by using is impossible (step 210). If “Yes”, return to step 205 and execute the normal AFC control of the second stage. If “NoJ”, check if the call has ended (step 211). If not, go to step 207 and after. The AFC control of the third stage is continued, and when the call ends, the power save is performed (step 212), and the AFC process ends.
  • the present invention it is possible to greatly reduce the AFC pull-in time at the time of power-on or recovery from out of service area without adding special hardware, and to reduce the number of AFC activations during a call to the minimum required. It is possible to limit to the limit. As a result, the transition to the standby state is quickened, and the power consumption is reduced and the battery life is prolonged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

In a clock frequency controller for CDMA mobile communication terminal, an AFC control section (1) controls the clock frequency by providing a clock signal generating section with a signal corresponding to the time error between a normal reference timing and a reference timing detected based on correlation operation through a matched filter at the time of initial pull-in of the clock frequency after the power switch is turned on or after the mobile station returns to the zone from the outside, (2) controls the clock frequency to agree with a reference clock frequency by operating the phase difference of the rotational angle on the I-jQ plane of a specified symbol contained periodically in the downlink signal from a base station upon finishing initial pull-in of the clock frequency and inputting a phase difference signal to the clock signal generating section, (3) controls the clock frequency so that an average value of DLL correlation value becomes zero when the required accuracy of the clock signal agrees with that of the reference clock frequency by bringing the phase difference signal to zero and inputting the average signal to the clock signal generating section.

Description

明 細 書  Specification
AFC制御装置  AFC controller
技術分野  Technical field
本発明は基地局からの下リ信号に既知の固定パターン (パイロット)が配置され ている CDMA方式の移動通信端末における AFC制御装置に係わリ、 特に、 電源オン 時あるいは圏外から圏内への復帰時における AFC制御の初期周波数引込み時間を 短縮でき、 かつ、 低消費電流化が可能な AFC制御装置及び該 AFC制御装置を備えた CDMA移動通信端末に関する。  The present invention relates to an AFC controller in a CDMA mobile communication terminal in which a known fixed pattern (pilot) is arranged in a lower signal from a base station. AFC control device capable of shortening the initial frequency pull-in time of AFC control at a time and reducing current consumption, and a CDMA mobile communication terminal equipped with the AFC control device.
背景技術  Background art
スぺクトラム拡散方式を用いた CDMA (Code Division Multiple Access)移動通 信システムにおいて、 送信側は送信情報を拡散符号列を用いて拡散して送信し、 受信側は送信側よリ受信した信号を送信側の拡散符号列と同一の逆拡散符号列を 用いて逆拡散して送信情報を復調する。  In a CDMA (Code Division Multiple Access) mobile communication system using the spread spectrum method, the transmitting side spreads the transmission information using a spreading code string and transmits it, and the receiving side transmits the signal received from the transmitting side. The transmission information is demodulated by despreading using the same despreading code sequence as that of the transmitting side.
図 9は CDMA受信機の構成図である。 無線部 1は、 ァンテナ ATNによリ受信した 高周波信号をベースバンド信号に周波数変換し(RF→IF変換)、 直交検波器 2はべ ースバンド信号を直交検波し、 同相成分 (I成分)データと直交成分 (Q成分)デ ータを出力する。 直交検波器 2において、 2 aは受信キャリア発生部、 2 bは受 信キャリアの位相を π/2シフトする位相シフト部、 2 c, 2 dは乗算器であリベ 一スパンド信号に受信キヤリァを乗算して I成分信号及び Q成分信号を出力する ものである。 ローパスフィルタ(LPF) 3 a, 3 bは出力信号の帯域を制限し、 A D変換器 4 a , 4 bは I成分信号、 Q成分信号をそれぞれディジタル信号に変換 し、 マッチトフィルタ構成のサーチャ 5と各フィンガー部 6 i〜 64に入力する。 サーチャ 5はマルチパスの影響を受けた直接拡散信号 (DS信号) が入力すると 、 マッチトフィルタ (図示せず) を用いて相関演算を行ってマルチパスを検出し 、 各パスにおける逆拡散開始のタイミングデータ τ 0〜て 3及び遅延時間調整デー タをフィンガー部 6 i〜 64に入力する。 各フィンガ一部 6 i〜 64の逆拡散コード 発生部 6aは送信側の拡散符号列と同一の符号列をサーチャ 5から入力するタイミ ングデータて。〜て 3に基づいて発生する。 すなわち、 サーチャ 5は送信側拡散符 号の位相を 1チップ以内の精度で検出し (同期捕捉) 、 逆拡散コード発生部 6aは 該位相に同期して受信側における逆拡散のための拡散符号列を発生する。 DLL (Delayed Locked Loop)回路 61)は受信信号が変調や雑音等の影響で位相が変化し ても、 一度同期捕捉に成功した受信信号に対して受信側の逆拡散符号列が時間ず れを起こさないように制御する (同期追跡) 。 FIG. 9 is a configuration diagram of a CDMA receiver. The radio unit 1 converts the frequency of the high-frequency signal received by the antenna ATN to a baseband signal (RF → IF conversion), and the quadrature detector 2 performs quadrature detection of the baseband signal, and outputs in-phase component (I component) data. Outputs quadrature component (Q component) data. In the quadrature detector 2, 2a is a received carrier generator, 2b is a phase shifter that shifts the phase of the received carrier by π / 2, and 2c and 2d are multipliers that convert the received carrier to a respread span signal. It multiplies and outputs an I component signal and a Q component signal. The low-pass filters (LPF) 3a and 3b limit the band of the output signal, and the AD converters 4a and 4b convert the I component signal and the Q component signal into digital signals, respectively. Is input to each finger section 6 i to 6 4 . When the direct spread signal (DS signal) affected by the multipath is input, the searcher 5 performs a correlation operation using a matched filter (not shown) to detect the multipath, and starts despreading in each path. 3 and delay time adjustment data timing data tau 0 ~ Te is input to the finger section 6 i to 6 4. Despreading code generation section 6a of each finger portion 6 i to 6 4 is Te timing data inputting identical code sequence and spreading code sequence on the transmitting side from the searcher 5. Occurs based on ~ 3 . That is, the searcher 5 detects the phase of the transmission-side spread code with an accuracy within one chip (synchronous acquisition), and the despread code generator 6a A spreading code sequence for despreading at the receiving side is generated in synchronization with the phase. The DLL (Delayed Locked Loop) circuit 61) detects the time difference between the received signal and the despread code sequence on the receiving side, even if the phase of the received signal changes due to modulation or noise. Control so that it does not happen (synchronous tracking).
逆拡散 Z遅延時間調整部 6cは、 所定のパスを介して到来する直接波あるいは遅 延波に拡散符号と同じ符号を用いて逆拡散処理を施してダンプ積分し、 しかる後 、 パスに応じた遅延処理を施し、 パイロット信号、 情報信号を出力する。 尚、 通 信時、 基地局からの下リ信号の各タイムスロッ トの所定ビット位置にはパイ口ッ ト信号が揷入されている。  The despreading Z delay time adjusting unit 6c performs a despreading process on the direct wave or the delayed wave arriving via a predetermined path using the same code as the spreading code to perform dump integration, and then delays according to the path. Performs processing and outputs pilot signal and information signal. At the time of communication, a pilot signal is inserted into a predetermined bit position of each time slot of the lower signal from the base station.
位相補償部 (チャネル推定部) 6dは AFC(Automatic Frequency Control)制御を 行うと共に受信信号に含まれるパイ口ット信号の I-jQ平面上での回転角 Δ 0を求 め、 その cos成分、 sin成分を出力する。 同期検波部 6eは cosA 0、 sinA 0を 用いて逆拡散された情報信号 、 Q; の位相を元に戻す。 すなわち、 パイロット 信号は伝送中にフェージング、 温度変化、 マルチパス等の影響で位相回転を受け るが、 受信側においてその信号点位置べクトル PACT (図 10参照) がわかれば パイ口ットシンボルの理想信号点位置べクトル P IDLは既知であるから、 伝送に よるシンボルの位相回転角度 Δ Θが求まる。 そこで、 位相補償部 6dはパイロット シンボルを検出してその位相回転角度 Δ Θを演算し、 同期検波部 6eは cos Δ Θ、 sinA Θを用いて次式 The phase compensator (channel estimator) 6d performs AFC (Automatic Frequency Control) control and calculates the rotation angle Δ0 on the I-jQ plane of the pilot signal included in the received signal. Output sin component. Synchronous detector 6e is cos A 0, despread information signals using sinA 0, Q; undo phase. That is, the pilot signal undergoes phase rotation during transmission due to the effects of fading, temperature change, multipath, etc., but if the signal point position vector PACT (see Fig. 10) is known on the receiving side, the ideal signal of the Pipit symbol is obtained. Since the point position vector P IDL is known, the phase rotation angle Δ シ ン ボ ル of the symbol due to transmission can be obtained. Thus, the phase compensator 6d detects the pilot symbol and calculates the phase rotation angle Δ 、, and the synchronous detector 6e uses cos Δ Θ and sinA 次
I\ /cos Δ Θ -sinA θ\ ( Iハ  I \ / cos Δ Θ -sinA θ \ (
ノ (sinA Θ cos Δ 0ノ へ  No (to sinA Θ cos Δ 0
によリ受信情報信号(Ι' ,Q' )に位相回転処理を施して元に戻し、 しかる後、.受 信情報信号 (1, Q)の復調(同期検波)を行う。 RAKE合成部 7は各フィンガ一部 6 〜 64から出力する信号を合成して軟判定データ列として誤リ訂正復号器 出力す る。 誤リ訂正復号器 8は誤リ訂正処理して送信情報を復号して出力する。 Then, the received information signal (Ι ', Q') is subjected to phase rotation processing to return to the original state, and then the received information signal (1, Q) is demodulated (synchronous detection). RAKE combining section 7 you output error correction decoder as soft decision data string by synthesizing the signals output from each finger portion 6-6 4. The erroneous correction decoder 8 performs erroneous correction processing to decode and output transmission information.
•マッチトフィルタ  • Matched filter
図 1 1はサーチャ 5を構成するマッチトフィルタの説明図で-あリ、 5 aはべ一 スパンドの受信拡散データ列と基地局拡散コードとの相関演算を行うマッチトフ ィルタ、 5 bはタイミング同定部で、 マッチトフィルタから出力する相関値のピ ークタイミングを基地局の拡散開始タイミング、 すなわち、 基地局の基準タイミ ングと同定するものである。 マッチトフィルタ 5 aにおいて、 5 l aはベースバ ンドの受信拡散データ列をチップ周波数で順次シフトする Nチップ (例えば N = 256)のシフトレジスタ (S l〜 s N) 、 5 1 bは基地局の拡散コード(例えば、 タ イミング同定用の拡散コード)がセットされる Nチップのレジスタ (C l〜c N)、 5 1 cはべ^-スバンドの拡散データ列と基地局拡散コード列の対応ビットを乗 算する N個の乗算器 (MPi MPw:)、 5 1 dは各乗算回路の出力を加算する加算回路 である。 Figure 11 is an explanatory diagram of the matched filter that constitutes Searcher 5-5a is a matched filter that performs a correlation operation between the received spread data sequence of the base span and the base station spreading code, and 5b is the timing identification. Section of the correlation value output from the matched filter. The base station identifies the base timing as the base station's spread start timing, that is, the base station's reference timing. In the matched filter 5 a, 5 la is an N-chip (eg, N = 256) shift register ( S 1 to s N ) for sequentially shifting the baseband received spread data sequence at the chip frequency, and 51 b is a base station base station. An N-chip register ( C 1 to C N ) in which a spreading code (for example, a spreading code for timing identification) is set, 51 c is a base-band spreading data sequence and a corresponding bit of a base station spreading code sequence N multipliers (MPi MPw :) for multiplying by, and 51 d are adders for adding the outputs of the respective multipliers.
マッチトフィルタ 5 aは 1チップ期間につき 1個の相関値 R (t)を出力し、 以 後、 1チップ周期 T cづっ位相が異なる相関値を順次出力し、 1シンボル期間で N個の位相の異なる相関値を出力する。 タイミング同定部 5 bは加算器 5 1 dよ リ出力する相関値 R ( t )を監視し、 該相関値が設定レベルよリ大きくなつたかチ エックし、 設定レベル以上になった時点を基地局における拡散開始タイミング、 すなわち、 基地局の基準タイミングと同定する。 基地局よリ送出される下リ信号 の各タイムスロットの先頭にはタイミング同定用パターン (タイミング同定用拡 散コードで拡散されたもの) が配置されている。 電源をオンした時、 あるいは圏 外から圏内に復帰した時、 基地局拡散コードとして該タイミング同定用拡散コー ドがマッチトフィルタ 5 aのレジスタ 5 1 bに設定される。 この結果、 加算器 5 1 dの出力 R (t)は基地局よリタイミング同定用拡散コードがシフトレジスタ 5 1 aに設定された時にピークを示す。  The matched filter 5a outputs one correlation value R (t) per one chip period, and thereafter sequentially outputs correlation values having different phases according to one chip period Tc, and outputs N correlation values in one symbol period. Output different correlation values. The timing identification unit 5b monitors the correlation value R (t) output from the adder 51d and checks whether the correlation value has become larger than the set level. , Ie, the reference timing of the base station. At the beginning of each time slot of the lower signal transmitted from the base station, a timing identification pattern (spread with a timing identification spreading code) is arranged. When the power is turned on or when the mobile station returns to the service area from outside the service area, the spread code for timing identification is set in the register 51b of the matched filter 5a as the base station spread code. As a result, the output R (t) of the adder 51d indicates a peak when the base station sets the spreading code for retiming identification in the shift register 51a.
図 1 2はかかる状況を説明する説明図でぁリ、 (1)は下リ信号フレーム(放送チ ヤンネルフレーム)、 (2)はタイムスロッ トの構成を示している。 1フレームは 10 msecで、 1 5タイムスロッ トで構成されている。 1タイムスロッ トは 1 0シンポ ルであリ、 ①タイムスロットの先頭第 1ビット部はタイミング同定用パターン部 、 ②第 2〜第 6ビット部はデータ部 D 0〜D 5、 ③第 7〜第 1 0ビット部はデータ 復調用固定パターン部 (パイロット) P 0〜P 4である。 拡散率を 256とすれば、 256のタイミング同定用拡散コードでタイムスロットの第 1ビットデータを拡散 変調した信号がタイミング同定用パターンとなリ、 タイムスロット毎にマッチト フィルタ 5 aに ¾J来する。 このため、 (3)を端末のタイムスロット基準タイミン グであるとすると、 伝送遅延その他の理由で端末のタイムスロット基準タイミン グから所定時間遅延した位置でマツチトフィルタ 5 aの出力はピークを示し、 こ のピーク位置が基地局の基準タイミングとなる。 FIG. 12 is an explanatory diagram for explaining such a situation. (1) shows a lower signal frame (broadcast channel frame), and (2) shows a time slot configuration. One frame is 10 msec and consists of 15 time slots. 1 timeslot is 1 0 symposium Le, leading first bit portion timing identification pattern of ① timeslot, ② second to sixth bit unit data unit D 0 to D 5, seventh to ③ 1 0 bit portion is a fixed pattern portion for data demodulation (the pilot) P 0 to P 4. Assuming that the spreading factor is 256, a signal obtained by spreading and modulating the first bit data of the time slot with the 256 timing identification spreading code becomes a timing identification pattern and arrives at the matched filter 5a for each time slot. For this reason, (3) is calculated based on the terminal time slot If the signal is delayed, the output of the Matsuchito filter 5a shows a peak at a position delayed by a predetermined time from the terminal time slot reference timing due to transmission delay or other reasons, and this peak position becomes the base station reference timing. .
• DLL回路  • DLL circuit
サーチャ 5〖こよリ基地局側拡散符号の位相を 1チップ以内の精度で検出できる ようにすれば (同期捕捉) 、 以後、 逆拡散部 6 cは該拡散符号の位相に同期して受 信側における逆拡散のための逆拡散符号列を発生して逆拡散を行う。 DLL回路 61) は、 受信信号が変調や雑音等の影響で位相が変化しても、 一度同期捕捉に成功し た受信信号に対して受信側の逆拡散符号列が時間ずれを起こさないように制御す る (同期追跡) 。  If the phase of the spreader base station side spreading code can be detected within one chip (synchronization acquisition), the despreading unit 6c will thereafter synchronize with the phase of the spreading code on the receiving side. Generates a despreading code sequence for despreading, and performs despreading. DLL circuit 61) ensures that even if the phase of the received signal changes due to the influence of modulation, noise, etc., the despreading code sequence on the receiving side does not cause a time lag with respect to the received signal once successfully acquired. Control (synchronous tracking).
図 1 3は DLL回路の構成図でぁリ、 6aは逆拡散コード発生部、 61)は DLL回路であ る。 逆拡散コード発生部 6aにおいて、 6a- 1は逆拡散符号列 A iを発生する逆拡散 コード発生器で、 Nチップで構成され、 1シンポル期間 T (=NXTC、 Tcはチップ 周期) 毎に循環的に発生するようになっている。 6a- 2は電圧制御発振器 (VC0) で、 DLL回路出力(DLL相関値 R ( τ ) )に基づいてクロック周波数 (チップ周波数 ) を可変するものである。 DLL回路 6bにおいて、 6b- 1は 1チップ周期分第 1の逆 拡散符号列 を遅延して第 2の逆拡散符号列 A2を出力する遅延回路、 6b ^は逆 拡散コード発生器よリ出力ずる第 1の逆拡散符号列 と受信データ列 Bをチッ プ毎に乗算して逆拡散するする逆拡散器凍算器)、 61)-3は 1チップ遅延した第 2 の逆拡散符号列 A 2と受信データ列 Bをチップ毎に乗算して逆拡散する逆拡散器 ( 乗算器)、 6b - 4は逆拡散器 6b- 2の出力と逆拡散器 6b - 3の出力の符号を反転したも のを加算する加算器、 6b- 5は積分回路(ローパスフィルタ)である。 FIG. 13 is a configuration diagram of a DLL circuit, 6a is a despread code generator, and 61) is a DLL circuit. In the despreading code generating section 6a, 6a- 1 is the inverse spreading code generator for generating the despreading code sequence A i, consists of N chips, 1 Shinporu period T (= NXT C, T c is the chip period) per It is designed to occur cyclically. 6a-2 is a voltage controlled oscillator (VC0) that varies the clock frequency (chip frequency) based on the DLL circuit output (DLL correlation value R (τ)). In the DLL circuit 6b, 6b-1 is a delay circuit that delays the first despread code string by one chip period and outputs a second despread code string A2, and 6b ^ is an output from the despread code generator. A despreader freezer that multiplies the first despreading code sequence and the received data sequence B and despreads each chip), 61) -3 is the second despreading code sequence A delayed by one chip. A despreader (multiplier) that despreads by multiplying 2 by 2 and the received data sequence B for each chip, and 6b-4 inverts the sign of the output of the despreader 6b-2 and the output of the despreader 6b-3 6b-5 is an integrator (low-pass filter).
逆拡散器 6b- 2及びローパスフィルタ 6b- 5は第 1の逆拡散符号列 と受信デー タ列 Bの相関を演算する機能を備え、 第 1の逆拡散符号列 A 1と受信データ列 B の位相が一致していれば最大になリ図 1 4 (A) に示すように 1シンボル毎に 1 チップ周期幅の相関値 R ( τ ) = 1を出力し、 位相が 1チップ周期以上ずれると 相関値 R ( τ ) は 1/Nになる。 逆拡散器 6b - 3及びローパスフィルタ 6b- 5は 1チッ プ周期遅延した第 2の逆拡散符号列 A2と受信データ列 Bの相関を演算する機能 を備え、 第 2の逆拡散符号列 A2と受信データ列 Bの位相が一致していれば最大 になリ図 14 (B) に示す相関値 R (τ) を出力し、 位相が 1チップ周期以上ず れると相関値 R (τ) は 1/Nになる。 加算器 6b_4は逆拡散器 61)-2の出力と逆拡散 器 6b_3の出力の符号を反転したものを加算することによリ、 位相差 τに対して図 14 (C) に示す Sカープ特 1"生を有する DLL相関値信号 R (τ) をローパスフィ ルタ 6b- 5を介して出力する。 The despreader 6b-2 and the low-pass filter 6b-5 have a function of calculating the correlation between the first despread code sequence and the received data sequence B. If the phases match, the maximum value is output, as shown in Fig. 14 (A), where the correlation value R (τ) = 1 for one chip period width is output for each symbol. The correlation value R (τ) is 1 / N. The despreader 6b-3 and the low-pass filter 6b-5 have a function of calculating the correlation between the second despread code sequence A2 delayed by one chip period and the received data sequence B, and the second despread code sequence A If the phase of 2 and the received data string B match, the maximum The correlation value R (τ) shown in Fig. 14 (B) is output. If the phase is shifted by one chip period or more, the correlation value R (τ) becomes 1 / N. The adder 6b_4 adds the inverted output of the despreader 61) -2 and the output of the despreader 6b_3 with the sign inverted to add the S-curve characteristic shown in Fig. 14 (C) to the phase difference τ. A 1 "raw DLL correlation value signal R (τ) is output via the low-pass filter 6b-5.
. 逆拡散コード発生部 6aの電圧制御発振器 6a- 2は、 ローパスフィルタ出力に基づ いて位相差てが 0となるようにクロック周波数を制御する。 例えば、 逆拡散符号 の位相が受信データ列に含まれる送信側の拡散符号に対して進めばク口ック周波 数を小さくして位相差が 0となるように制御し、 又、 逆拡散符号の位相が送信側 拡散符号に対して遅れればク口ック周波数を高くして位相差が 0となるように制 御する。 以上よリ、 スペク トラム拡散方式の DLL回路 6bは、 希望信号 (基地局側拡 散符号列)のタイミングに対して、 位相差 τ =±0.5チップ ( = ±Tc/2)のタイミン グで逆拡散を行い、 それぞれのタイミングで逆拡散した信号の電力差を求め、 そ の符号の正負で PN系列 (逆拡散符号) の位相進み遅れを判定してパスの追従を行 う。 The voltage-controlled oscillator 6a-2 of the despreading code generator 6a controls the clock frequency based on the output of the low-pass filter so that the phase difference becomes zero. For example, if the phase of the despreading code is advanced with respect to the spreading code on the transmitting side included in the received data sequence, the control is performed so that the peak frequency is reduced so that the phase difference becomes zero. If the phase of this signal lags behind the spreading code on the transmitting side, the peak frequency is increased and the phase difference is controlled to be zero. As described above, the spread spectrum method DLL circuit 6b uses the phase difference τ = ± 0.5 chip (= ± Tc / 2) with respect to the timing of the desired signal (the base station-side spread code string). Despreading is performed, the power difference of the despread signal is calculated at each timing, and the sign of the code is used to determine the phase lead / lag of the PN sequence (despread code) and follow the path.
•位相補償部による AFC制御  AFC control by phase compensator
図 1 5は位相補償部の構成図でぁリ、 パイロット信号のスぺクトル逆拡散出力 I t, Qtは位相捕正部 6d-lで位相回転が行われ、 I , Qt7 に補正される。 位 相差算出部 6D- 2は補正後の信号点位置ベクトル PACT(I , Qt' )とパイロッ トシンボルの理想信号点位置べクトル PIDL (図 10) の位相差 Δ Θを計算し、 同 期状態監視/切替部 6d- 3は位相差 Δ Θの値が設定値以下となれば同期状態と判断 し、 切替信号を出力する。 Figure 15 is a block diagram of the phase compensator. The spectrum despread outputs It and Qt of the pilot signal are phase-rotated by the phase detector 6d-l and corrected to I and Qt 7. . The phase difference calculator 6D-2 calculates the phase difference Δ between the corrected signal point position vector P ACT (I, Qt ') and the pilot signal ideal signal point position vector P IDL (Fig. 10). If the value of the phase difference ΔΘ becomes equal to or less than the set value, the state monitoring / switching unit 6d-3 determines that the state is synchronous, and outputs a switching signal.
電源オン時、 あるいは圏外から圏内に復帰した時、 移動通信端末のクロック周 波数は基地局の基準クロック周波数に一致していない。 かかる状態において、 端 末のクロック周波数のずれに従い検波後のベタトル PACTは、 理想的な位置から 回転して非同期状態になっている。 切替部 6d- 4は非同期状態時、 位相差信号 Δ 0 を位相差捕正部 6 d- 5に入力し、 これによリ同期状態になるまで通常の引込み処理 が行われる。 すなわち、 位相差補正部 6d- 5は図 16 (A) , (B) に示すように 位相差 の回転方向 (正または負) に応じて出力位相 を時間と共に漸增 あるいは漸減してループフィルタ 6 d- 6に入力する。 ループフィルタ 6 d- 6は位相の 急激な変動に不要に追従しないように PLLの応答速度を調整し、 VCO(vo l t age cont r o l l ed os c i 1 l at o r) 6d-7はループフィルタ出力電圧に応じた周波数を有する 信号(無線部のロー力ル信号やべ一スバンドマスタークロック信号)を出力する。 又、 正弦波発生部 6(1- 8はループフィルタ出力に基づいて位相回転量 Δ· Θに応じた 正弦波信号を発生して位相捕正部 6d-lに入力し、 パイロットの信号点位置べクト ルの位相を捕正する。 When the power is turned on or when the mobile terminal returns to the service area from outside the service area, the clock frequency of the mobile communication terminal does not match the reference clock frequency of the base station. In this state, Betatoru P ACT after detection according deviation of the end end of the clock frequency is adapted to the asynchronous state rotated from the ideal position. When the switching unit 6d-4 is in the asynchronous state, the switching unit 6d-4 inputs the phase difference signal Δ 0 to the phase difference capturing unit 6d-5, and the normal pull-in process is performed until the switching unit 6d-4 becomes the resynchronization state. That is, the phase difference correction unit 6d-5 gradually changes the output phase with time according to the rotation direction (positive or negative) of the phase difference as shown in FIGS. Alternatively, gradually reduce the value and input it to the loop filter 6 d-6. The loop filter 6 d-6 adjusts the response speed of the PLL so that it does not unnecessarily follow sudden changes in the phase, and the VCO (volume age cont rolled os ci 1 l at or) 6d-7 is the loop filter output voltage. A signal having a frequency corresponding to (a radio signal of a radio section or a baseband master clock signal) is output. In addition, the sine wave generator 6 (1-8 generates a sine wave signal corresponding to the phase rotation amount Δ · based on the loop filter output and inputs it to the phase corrector 6d-l, Capture the phase of the vector.
以後、 上記制御を操リ返すと VCO 6d - 7から出力される端末のクロック周波数が 基地局の基準クロッグ周波数に接近し、 信号点位置べクトル P ACTの回転が停止 すると共に位相差 Δ Θが設定値以下になる。 Thereafter, when the above control is repeated, the clock frequency of the terminal output from the VCO 6d-7 approaches the reference clog frequency of the base station, the rotation of the signal point position vector P ACT stops, and the phase difference Δ Θ It becomes less than the set value.
同期状態監視切替部 6d- 3は位相差 Δ Θが設定値以下になれば同期状態になった ものと判定し、 切替部 6d - 4に切替信号を入力する。 これによリ、 切替部 6 d-4は位 相差 Δ 0を直接ループフィルタ 6 d_6に入力して AFCループをオンする。 以後、 Δ Θ =0となるように AFC制御を行なう (周波数引込み) 。  When the phase difference ΔΘ becomes equal to or less than the set value, the synchronization state monitoring switching unit 6d-3 determines that the synchronization state has been established, and inputs a switching signal to the switching unit 6d-4. Accordingly, the switching unit 6d-4 inputs the phase difference Δ0 directly to the loop filter 6d_6 to turn on the AFC loop. Thereafter, AFC control is performed so that ΔΘ = 0 (frequency pull-in).
同期検波部 6 eは(1)式の演算を実行して情報信号(1' , )に位相回転処理を 施し、 しかる後、 受信情報信号の同期検波を行い、 図示しないレーク合成部を介 して誤リ訂正復号器 8に出力する。 誤リ訂正復号器 8は誤リ訂正復号処理を実行し て送信情報を復号して出力する。  The synchronous detector 6e performs the operation of equation (1) to perform a phase rotation process on the information signal (1 ',), and then performs synchronous detection of the received information signal, and passes through a rake combiner (not shown). And outputs it to the error correction decoder 8. The erroneous correction decoder 8 executes erroneous correction decoding processing to decode and output transmission information.
•従来の周波数 Z位相制御  • Conventional frequency Z-phase control
電源オン時あるいは圏外から圏内への復帰時、 移動通信端末の端末クロック周 波数は基地局の基準クロック周波数と一致していない。 かかる状況において、 直 交検波器 2は端末ク口ック信号に基づいて発生した受信キヤリァを受信ベースバ ンド信号に乗算して I成分信号及び Q成分信号を出力し、 サーチャ 5のマッチト フィルタは端末クロック信号に基づレヽて相関演算を行い、 ピークタイミングに基 づいて基地局基準タイミングを検出する。 逆拡散部 6cは検出された基地局基準タ イミングに基づいて逆拡散を開始し、 位相補償部 6dは位相、 すなわち、 端末のク ロック周波数をスキャンしながら前述の AFC制御を行う。 端末のクロック周波数 が基地局の基準ク口ック周波数に接近し位相差 Δ Θが設定値以下になって同期状 態になれば、 位相捕償部 6dは AFCループをオンし、 Δ 0 =0となるように AFC制御を 行なう (周波数引込み) 。 When the power is turned on or when returning from the outside of the service area to the service area, the terminal clock frequency of the mobile communication terminal does not match the reference clock frequency of the base station. In such a situation, the orthogonal detector 2 multiplies the reception carrier generated based on the terminal close signal by the reception baseband signal to output the I component signal and the Q component signal, and the matched filter of the searcher 5 outputs the terminal filter. The correlation calculation is performed based on the clock signal, and the base station reference timing is detected based on the peak timing. The despreading unit 6c starts despreading based on the detected base station reference timing, and the phase compensating unit 6d performs the above-described AFC control while scanning the phase, that is, the clock frequency of the terminal. When the clock frequency of the terminal approaches the base clock frequency of the base station and the phase difference Δ 設定 falls below the set value to be in a synchronous state, the phase compensation unit 6d turns on the AFC loop and Δ 0 = AFC control so that it becomes 0 Perform (frequency pull-in).
以上の AFC制御を繰リ返すことにょリ、 端末ク口ック周波数は基地局の基準ク ロック周波数に要求精度で等しくなリ、 サーチャによリ検出された基準タィミン グの誤差も小さくなリ、 基地局側拡散符号の位相を 1チップ以内の精度で検出可 能になる (同期捕捉状態) 。 力かる同期捕捉状態になると、 サーチャ(マッチト フィルタ)による基準タイミング検出制御を停止し、 替わって DLL回路 6bによる AF C制御を開始する。 又、 同期検波部 6 eは同期検波を開始する。 DLL回路 6bは、 受 信信号が変調や雑音等の影響で位相が変化しても、 一度同期捕捉に成功した受信 信号に対して受信側の逆拡散符号列が時間ずれを起こさないように制御する (同 期追跡) 。 同期追跡において、 DLL特性 (Sカープ)の零クロス点が次第にズレてゆ き、 τ =±Τ(;/2の範囲を越えると DLLによるサーボが不可能になる。 このため、 DL L制御が不可能になる前に周期的にマツチトフィルタを起動して位相補償部によ る AFC制御を再開して零クロス点のズレを小さくする。 以後、 DLLによる AFC制御 とマッチトフィ /レタ Z位相捕償部による AFC制御を交互に行なう。 従来技術では、 データを復調してパイ口ット信号を認識できなければ正確な AF C制御が出来ない。 データを復調するには、 基地局の基準クロック周波数と端末 のクロック周波数間の誤差 (周波数偏差) を小さくしなければならない。 周狭数 偏差が大きいとデータ復調が出来ないのは、 同期検波を前提としているからであ る。 すなわち、 周波数偏差が大きいと受信データ位置ベク トルの I-j Q平面上での 回転速度が演算処理能力を超えるほど高速になリ、 位置べクトルの I- j Q平面上の 回転方向位置を特定することが不可能になリ、 データを復調することが不可能と なる。  By repeating the above AFC control, the terminal clock frequency is equal to the reference clock frequency of the base station with the required accuracy, and the error of the reference timing detected by the searcher is also small. In addition, the phase of the base station-side spreading code can be detected with an accuracy within one chip (synchronous acquisition state). When the synchronous capture state becomes strong, the reference timing detection control by the searcher (matched filter) is stopped, and the AFC control by the DLL circuit 6b is started instead. In addition, the synchronous detector 6e starts synchronous detection. The DLL circuit 6b controls the despreading code sequence on the receiving side so that there is no time lag with respect to the received signal once successfully acquired even if the phase of the received signal changes due to modulation or noise. Yes (synchronous tracking). In synchronous tracking, the zero crossing point of the DLL characteristic (S-carp) gradually shifts, and if it exceeds the range of τ = ± Τ (; / 2, the servo by the DLL becomes impossible. Before it becomes impossible, the Machito filter is started periodically to restart the AFC control by the phase compensator to reduce the deviation of the zero crossing point. In the conventional technology, accurate AFC control cannot be performed unless data is demodulated and the pilot signal is recognized.In order to demodulate data, the base station's reference clock is used. The error (frequency deviation) between the frequency and the clock frequency of the terminal must be reduced, and data demodulation cannot be performed if the deviation of the peripheral number is large because synchronous detection is premised. Is large When the rotation speed of the position data vector on the Ij Q plane exceeds the processing capacity, the speed becomes faster, and it becomes impossible to identify the rotation direction position of the position vector on the Ij Q plane. This makes it impossible to demodulate the data.
このため、 従来技術では、 電源オンによる初期引き込み動作時に、 端末のクロ ック周波数をスキャンしてパイロット信号の復調感度が一定レベル以上になリ、 かつ、 位相差 Δ 0が設定値以下になった時、 AFCループをオンして周波数引込み 動作を実行する必要がある。 し力 し、 従来技術では AFCの初期引込みに非常に長 い時間を要する問題がある。  For this reason, in the prior art, during the initial pull-in operation when the power is turned on, the clock frequency of the terminal is scanned to make the demodulation sensitivity of the pilot signal equal to or higher than a certain level, and the phase difference Δ0 is equal to or lower than the set value. Then, it is necessary to turn on the AFC loop and execute the frequency pull-in operation. However, the conventional technology has a problem that it takes a very long time to initially pull in the AFC.
又、 受信レベルが低下してパイロットの復調が出来なくなると、 データ通信の パスが切断され、 し力も、 AFC制御自体が不可能となる。 このため、 圏外から圏 内への復帰時にも周波数引込み制御が必要になるが、 電源オン時の I込み動作と 同様に長い引込み時間を要していた。 If the pilot signal cannot be demodulated due to the lower reception level, The path is cut, and AFC control itself becomes impossible. For this reason, frequency pull-in control is required when returning from outside the service area to the service area, but a long pull-in time was required as in the case of the I-lock operation when the power was turned on.
さらに、 AFC制御は演算回路(DSP : d i g i t a l s i gna l p roc es so r)による行列演算 やマッチトフィルタによる基準タイミング検出動作を行うものであるため、 大き な消費電流を必要とする。 従来技術では AFC制御に長時間を必要とするため、 大 きなエネルギーを消費し、 電流の増加を招いている。  Furthermore, the AFC control requires a large current consumption because it performs a matrix operation using an arithmetic circuit (DSP: digital signal proc es sor) and a reference timing detection operation using a matched filter. The conventional technology requires a long time for AFC control, which consumes a large amount of energy and increases current.
本発明の目的は、 電源オン時あるいは圏外から圏内への復帰時に AFCの初期引 込みに要する時間を短縮して、 速やかに通話可能にすることである。  An object of the present invention is to reduce the time required for the initial pull-in of the AFC when the power is turned on or when returning from the outside of the service area to the service area, thereby enabling prompt communication.
本発明の別の目的は、 マッチトフィルタと位相補償部を動作させる AFC制御の 時間を短縮して消費電流を小さくすることである。  Another object of the present invention is to reduce the time of AFC control for operating the matched filter and the phase compensator to reduce current consumption.
本発明の別の目的は、 DLL制御による通話中に周期的に行う必要があるマッチ トフィルタと位相捕償部による AFC制御の実行周期を長くすることである。  Another object of the present invention is to lengthen the execution cycle of AFC control by a matched filter and a phase compensation unit which needs to be performed periodically during a call under DLL control.
発明の開示  Disclosure of the invention
基地局からの放送チャネルのフレームフォーマツト中に既知のパターン(パイ ロット)が定期的に配置されている CDMA方式の携帯端末に於いて、 電源投入時あ るいは圏外から圏内への復帰時、 基地局が送信しているタイミング同定用拡散コ ードと基地局から受信したデータ列との相関値を演算し、 相関値のピーク値に基 づいて基地局の基準タイミングを検出し、 該検出した基準タイミングの間隔と正 規の基地局の基準タイミングの間隔との誤差に基づいて端末ク口ック周波数をフ ィ一ドバック制御し、 速やかに端末ク口ック周波数を位相捕償部から出力する位 相誤差 Δ Θによる AFC制御が可能な周波数に引込み、 AFCの初期引込みに要する時 間を短縮する (第 1段階の AFC制御) 。  In a CDMA mobile terminal in which a known pattern (pilot) is regularly arranged in the frame format of the broadcast channel from the base station, when the power is turned on or when returning from outside the service area to the service area, A correlation value between the timing identification spreading code transmitted by the base station and the data sequence received from the base station is calculated, and a base station reference timing is detected based on the peak value of the correlation value. Based on the difference between the calculated reference timing interval and the reference base station reference timing interval, feedback control of the terminal peak frequency is performed, and the terminal peak frequency is promptly obtained from the phase compensation section. It pulls in to a frequency that allows AFC control by the output phase error ΔΘ, and reduces the time required for the initial pull-in of AFC (AFC control in the first stage).
第 1段階の AFC制御によリ、 端末ク口ック周波数と基地局の基準クロック周波 数の周波数偏差をある程度の範囲内に引き込んだ後は、 位相補償部による AFC制 御を開始し、 受信パイロットシンボルの I - j Q平面上での信号点位置べクトルと既 知のパイロットシンボルの理想信号点位置べクトルとの位相誤差 Δ Θが零となる ように端末ク口ック周波数を制御する(第 2段階の AFC制御)。  After the frequency deviation between the terminal clock frequency and the base station reference clock frequency is brought into a certain range by the first stage AFC control, the AFC control by the phase compensator is started and reception is performed. Control the terminal peak frequency so that the phase error Δ Δ between the signal point position vector of the pilot symbol on the I-j Q plane and the known signal point position vector of the known pilot symbol becomes zero. (2nd stage AFC control).
第 2段階の AFC制御によリ、 端末クロック周波数が基地局の基準クロック周波 数と要求精度で等しくなれば検出した基準タイミングの誤差も小さくなリ、 基地 局側拡散符号の位相を 1チップ以内の精度で検出可能になる (同期捕捉状態) 。 かかる同期捕捉状態において、 DLLによリ AFC制御を実行する。 この際、 DLLの AFC 制御電圧の直流分を検出し、 該直流分が零となるように端末のク口ック周波数を 制御する(第 3段階の AFC制御)。 これによリ、 温度/伝播環境の変化等による周波 数変動を補正して周波数のずれ幅を小さく押えることができ、 しかも、 固定的な 周波数偏差を補正でき、 更には、 マッチトフィルタと位相補償部を作動させて行 う AFC制御の間隔を大きくでき、 消費電力の低減を図ることができる。 The terminal clock frequency is set to the reference clock frequency of the base station by the AFC control in the second stage. If the number is equal to the required accuracy, the error in the detected reference timing will be small, and the phase of the base station side spreading code can be detected with an accuracy within one chip (synchronous acquisition state). In such a synchronization capture state, the DLL executes the AFC control. At this time, the DC component of the AFC control voltage of the DLL is detected, and the terminal's peak frequency is controlled so that the DC component becomes zero (the third-stage AFC control). This makes it possible to correct the frequency fluctuations due to changes in the temperature / propagation environment, etc., to keep the frequency deviation small, and to correct the fixed frequency deviation. The interval of AFC control performed by operating the compensator can be increased, and power consumption can be reduced.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の CDMA移動通信端末の受信部の構成図である。  FIG. 1 is a configuration diagram of a receiving section of a CDMA mobile communication terminal of the present invention.
図 2は受信パイロットシンボルの信号点べク トル P ACTと既知のパイロットシ ンポルの理想信号点位置べクトル P I D Lの位相誤差 Δ ø説明図である。 FIG. 2 is an explanatory diagram of the phase error Δø between the signal point vector P ACT of the received pilot symbol and the ideal signal point position vector P IDL of the known pilot symbol.
図 3は周波数の初期引込み時における周波数偏差に起因する検出基準タイミン グの誤差説明図である。  FIG. 3 is an explanatory diagram of an error in the detection reference timing due to the frequency deviation at the time of the initial pull-in of the frequency.
図 4は固定的周波数偏差に起因する、 DLL相関値 R ( τ ) に含まれる直流分の 説明図である。  FIG. 4 is an explanatory diagram of the DC component included in the DLL correlation value R (τ) due to the fixed frequency deviation.
図 5は本発明の第 1段階の AFC制御動作を説明するタイミングチャートである 図 6は第 2段階の AFC制御説明図である。  FIG. 5 is a timing chart for explaining the first-stage AFC control operation of the present invention. FIG. 6 is a second-stage AFC control explanatory diagram.
図 7は DLLにおける Sカープ説明図である。  FIG. 7 is an explanatory diagram of the S-carp in the DLL.
図 8は本発明の全体の処理フローである。  FIG. 8 is an overall processing flow of the present invention.
図 9は CDMA受信機の構成図である。  FIG. 9 is a configuration diagram of a CDMA receiver.
図 1 0はパイロットシンボルの位相回転説明図である。  FIG. 10 is an explanatory diagram of phase rotation of pilot symbols.
図 1 1はマッチトフィルタの構成及び逆拡散タイミング特定法説明図である。 図 1 2は端末の基準タイミングと基地局の基準タイミングの関係図である。 図 1 3は DLL回路の構成図である。  FIG. 11 is an explanatory diagram of a configuration of a matched filter and a method of specifying a despread timing. FIG. 12 is a relationship diagram between the reference timing of the terminal and the reference timing of the base station. FIG. 13 is a configuration diagram of a DLL circuit.
図 1 4は DLL制御の Sカーブ説明図である。  FIG. 14 is an explanatory diagram of the S curve of the DLL control.
図 1 5は位相捕償部の構成図である。 図 1 6は従来の初期引込み時における位相差補正説明図である。 FIG. 15 is a configuration diagram of the phase compensation unit. FIG. 16 is an explanatory diagram of a conventional phase difference correction at the time of initial pull-in.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
(A) CDMA移動通信端末の受信部の構成  (A) Receiver configuration of CDMA mobile communication terminal
図 1は本発明の CDMA移動通信端末の受信部の構成図である。 無線部(RF) 101は 、 アンテナ ATNによリ受信した高周波信号をベースバンド信号に周波数変換 (RF→ I F変換)する。 IF部 102は直交復調部、 ローパスフィルタ、 AD変換器などを備えて いる。 直交検波器は無線部ローカル信号を用いて受信キャリア信号を作成し、 該 受信キャリアを RF部 101から出力するベースバンド信号に乗算して I成分信号及 び Q成分信号を発生し、 ローパスフィルタは該 I成分信号及び Q成分信号の帯域 を制限し、 A D変換器は I成分信号、 Q成分信号をそれぞれディジタル信号に変 換してマッチトフィルタ構成のサーチャ 103と各フィンガー部の逆拡散部 104に入 力する。  FIG. 1 is a configuration diagram of a receiving section of a CDMA mobile communication terminal of the present invention. The radio unit (RF) 101 performs frequency conversion (RF → IF conversion) of a high-frequency signal received by the antenna ATN into a baseband signal. The IF unit 102 includes a quadrature demodulation unit, a low-pass filter, an AD converter, and the like. The quadrature detector creates a received carrier signal using the local signal of the radio section, multiplies the received carrier by the baseband signal output from the RF section 101 to generate an I component signal and a Q component signal, and the low-pass filter The band of the I-component signal and the Q-component signal is limited, and the AD converter converts the I-component signal and the Q-component signal into digital signals, respectively, and outputs a searcher 103 having a matched filter configuration and a despreading unit 104 of each finger unit. Enter in.
サーチャ 103は、 電源投入あるいは圏外から圏内へ復帰した時、 基地局が送信 しているタイミング同定用拡散コードと基地局から受信したデータ列との相関値 を演算し、 相関値のピーク位置に基づいて基地局の基準タイミングを検出し、 該 検出した基準タイミングに基づいて逆拡散タイミングを逆拡散部 104に入力する 。 尚、 マッチトフィルタ構成のサーチャは回路規模及び消費電力共に大きい。 逆拡散部 104は逆拡散コード発生部 104a、 逆拡散回路 104b、 DLL回路 104cを備え ておリ、 逆拡散コード発生部 104aはサーチャ 103から入力する逆拡散タイミング に基づいて送信側の拡散符号列と同一の逆拡散符号列を発生し、 逆拡散回路 104b は IF部 102にから入力する I成分信号及び Q成分信号に該逆拡散コードを乗算し て逆拡散し、 パイロットシンボル及ぴ情報シンポルの I, Q成分 I ,Qt, ; 1' , Q7 をそれぞれ出力する。 DLL回路 104cは図 1 3に示す構成を備え、 送信側拡散符 号の位相が 1チップ以内の精度で検出できるようになった時に (同期捕捉) 制御 を開始し、 受信信号が変調や雑音等の影響で位相が変化しても受信側の逆拡散符 号列が拡散符号列に対して時間ずれを起こさないようにフィードバック制御する (同期追跡)。 DLL回路 104cは相関値信号 R ( τ ) によリ逆拡散符号列の位相を制 御するが、 この信号は後述するように AFC制御に利用される。 DLL回路 104cはマツ チトフィルタに比べて回路規模が小さく、 しかも消費電流が小さい。 位相補償部 105は受信パイロットシンボルの信号点ベク トル P AC T (図 2 ) と既 知のパイ口ットシンボルの理想信号点位置べクトル P I D Lの位相誤差 Δ 0を算出 し、 該位相誤差 Δ 0をクロック信号発生部 (VC-TCX0) 112の制御電圧コントロール 部 110に入力すると共に、 その c o s成分、 s iii成分を出力する。 位相誤差 Δ Θは温 度/フェージング /マルチパスに起因する位相誤差 0 mo V eと周波数偏差による位相 誤差 0 e r r o rの禾口である。 The searcher 103 calculates the correlation value between the timing identification spreading code transmitted by the base station and the data string received from the base station when the power is turned on or when the mobile station returns from the service area to the service area, and based on the peak position of the correlation value. The base station detects the reference timing of the base station, and inputs the despreading timing to the despreading unit 104 based on the detected reference timing. The searcher with the matched filter configuration has a large circuit scale and large power consumption. The despreading unit 104 includes a despreading code generating unit 104a, a despreading circuit 104b, and a DLL circuit 104c. The despreading code generating unit 104a transmits a spreading code sequence on the transmission side based on the despreading timing input from the searcher 103. The despreading circuit 104b generates the same despreading code sequence, and the despreading circuit 104b multiplies the I component signal and the Q component signal input from the IF unit 102 by the despreading code and despreads, thereby obtaining pilot symbols and information symbols. I, Q components I, Qt,; 1 ', and outputs the Q 7, respectively. The DLL circuit 104c has the configuration shown in Fig. 13 and starts control (synchronization acquisition) when the phase of the spread code on the transmitting side can be detected with an accuracy within one chip, and the received signal is modulated or noise The feedback control is performed so that the despreading code sequence on the receiving side does not cause a time lag with respect to the spreading code sequence even if the phase changes due to the influence (synchronous tracking). The DLL circuit 104c controls the phase of the despread code sequence by the correlation value signal R (τ), and this signal is used for AFC control as described later. The DLL circuit 104c has a smaller circuit size and a smaller current consumption than the match filter. The phase compensation unit 105 calculates the phase error delta 0 signal points vector P AC T of the received pilot symbol (Fig. 2) and the base ideal signal point positions of the pi port Ttoshinboru already known vector P IDL, phase error delta 0 Is input to the control voltage control unit 110 of the clock signal generation unit (VC-TCX0) 112, and its cos component and siii component are output. The phase error ΔΘ is the sum of the phase error 0 moVe due to temperature / fading / multipath and the phase error 0 error due to the frequency deviation.
同期検波部 106は co s A 0、 s i n Δ 0を用いて受信情報シンボル , Qf に次式 ( 1)The synchronous detector 106 uses co s A 0 and sin Δ 0 to add the received information symbol, Q f to the following equation (1)
Figure imgf000013_0001
Figure imgf000013_0001
に示すマトリタス演算を施して同期検波を行う。 誤リ訂正復号器 107は同期検波 出力信号に対して誤リ訂正復号処理を実行し、 送信データを復号する。 And performs synchronous detection. The error correction decoder 107 performs an error correction decoding process on the synchronous detection output signal and decodes transmission data.
タイミング誤差積分部 111はサーチャ 103が検出した基準タイミングの間隔と正 規の基準タイミングの間隔の差を積分し、 積分値を周波数引込み用制御信号とし てクロック信号発生部 (VC- TCX0) 112の制御電圧コント口ール部 110に入力する。 前述のように、 サーチャ 103のマッチトフィルタは、 基地局が送信しているタイ ミング同定用拡散コード (既知)と基地局から受信したデータ列との相関値を演算 し、 相関値のピーク位置に基づいて基地局の基準タイミングを検出する。 周波数 の初期引込み時、 端末のク口ック周波数と基地局の基準ク口ック周波数は一致せ ず周波数偏差が存在する。 この周波数偏差にょリ、 図 3に示すように検出した基 準タイミング、 例えばフレームタイミングの間隔は正規の基準タイミングの間隔 10ms e cと一致せず時間誤差 Te - MFが含まれる。 タイミング誤差積分部 111は、 この 時間誤差 Te - MFを積分し、 積分値を周波数引込み用制御信号として制御電圧コン トロール部 110に入力する。  The timing error integrator 111 integrates the difference between the reference timing interval detected by the searcher 103 and the regular reference timing interval, and uses the integrated value as a frequency pull-in control signal to control the clock signal generator (VC-TCX0) 112 Input to the control voltage control unit 110. As described above, the matched filter of Searcher 103 calculates the correlation value between the timing identification spreading code (known) transmitted by the base station and the data sequence received from the base station, and calculates the peak position of the correlation value. , The reference timing of the base station is detected. When the frequency is initially pulled in, the terminal's peak frequency does not match the base station's reference peak frequency, and there is a frequency deviation. In addition to this frequency deviation, the reference timing detected as shown in FIG. 3, for example, the interval of the frame timing does not coincide with the regular reference timing interval of 10 ms e c and includes a time error Te-MF. The timing error integration section 111 integrates the time error Te-MF, and inputs the integrated value to the control voltage control section 110 as a frequency pull-in control signal.
DLL相関値積分部 113は DLL相関値 R ( τ ) を積分し、 積分値を AFC制御信号とし てクロック信号発生部 (VC - TCX0) 112の制御電圧コントロール部 110に入力する。 D LL回路 104cは、 フェージング、 移動、 周波数変動等に起因する ± 1/2チップ以下 の逆拡散タイミングのずれを捕正するものであるが、 固定的な周波数偏差が存在 すると図 4に示すように DLL相関値 R ( て) に直流分 CNTe - DLLが含まれる。 そこ で、 DLL相関値積分部 113は DLL相関値 R ( τ ) を積分して該直流分 CNTe- DLLを求 め、 この直流分を AFC制御信号として制御電圧コントロール部 110に入力する。The DLL correlation value integration unit 113 integrates the DLL correlation value R (τ), and inputs the integrated value to the control voltage control unit 110 of the clock signal generation unit (VC-TCX0) 112 as an AFC control signal. The DLL circuit 104c is to detect the deviation of the despreading timing of ± 1/2 chip or less due to fading, movement, frequency fluctuation, etc., but if there is a fixed frequency deviation, as shown in FIG. Includes the DC component CNTe-DLL in the DLL correlation value R (). Then, the DLL correlation value integration unit 113 integrates the DLL correlation value R (τ) to obtain the DC component CNTe-DLL. Therefore, this DC component is input to the control voltage control unit 110 as an AFC control signal.
VC0構成のクロック信号発生部(VC- TCX0) 112は、 制御電圧コント口ール部 110か ら出力する制御電圧に応じた周波数の端末基準クロック信号を出力する。 PLL部 114は無線部の局部周波数信号を発生すると共に、 ベースバンドマスターク口ッ ク信号 CLKを出力し、 端末基準タイミング発生部 115はベースバンドマスターク口 ック信号 CLKに基づいて各種タイミング信号、 ク口ック信号を発生して端末各部 に入力する。 AFC制御部 116は、 位相捕償部 105、 タイミング誤差積分部 111、 DLL 相関値積分部 113を制御して端末のク口ック信号の周波数を制御する。 The VC0 clock signal generator (VC-TCX0) 112 outputs a terminal reference clock signal having a frequency corresponding to the control voltage output from the control voltage controller 110. The PLL unit 114 generates a local frequency signal of the radio unit and outputs a baseband master clock signal CLK. The terminal reference timing generator 115 generates various timing signals based on the baseband master clock signal CLK. Generates a click signal and inputs it to each part of the terminal. The AFC control unit 116 controls the phase compensation unit 105, the timing error integrator 111, and the DLL correlation value integrator 113 to control the frequency of the terminal's peak signal.
( B ) AFC制御の概略  (B) Outline of AFC control
サーチャ 103のマッチトフィルタは、 電源投入時あるいは圏外から圏内への復 帰時、 基地局が送信しているタイミング同定用拡散コードと基地局から受信した データ列との相関値を演算し、 相関値のピーク位置に基づいて基地局の基準タイ ミングを検出する。 初期時、 端末のクロック周波数と基地局の基準クロック周波 数は一致せず周波数偏差が存在する。 この周波数偏差により、 検出した基準タイ ミングの間隔は正規の基準タイミングの間隔と一致せず時間誤差が含まれる。 タ ィミング誤差積分部 111はこの時間誤差 Te - MFを積分する。  The searcher 103 matched filter calculates the correlation value between the timing identification spreading code transmitted by the base station and the data string received from the base station when the power is turned on or when the mobile station returns from the outside of the service area to the service area. The base station's reference timing is detected based on the peak position of the value. Initially, the terminal clock frequency and the base station reference clock frequency do not match, and there is a frequency deviation. Due to this frequency deviation, the interval of the detected reference timing does not match the interval of the normal reference timing, and a time error is included. The timing error integrator 111 integrates the time error Te-MF.
AFC制御部 116は、 電源投入直後あるいは圏外から圏内への復帰直後の周波数初 期引込み時において、 タイミング誤差積分部 111から出力する積分値を周波数引 込み用制御信号として制御電圧コントロール部 110に入力する。 制御電圧コント ロール部 110は該積分値に基づいて周波数偏差に起因する基準タイミングの時間 誤差 Te - MFが零となるようにクロック信号発生器 112から出力するクロック信号の 周波数を制御する。 このフィードバック制御にょリ、 速やかに端末のクロック周 波数を、 位相捕償部 105から出力する位相誤差 Δ 0に基づいた AFC制御が可能な周 波数に引き込むことができる。 以上にょリ、 AFC制御の初期引込みに要する時間 を短縮することができる。 · · ·第 1段階の AFC制御  The AFC control unit 116 inputs the integrated value output from the timing error integration unit 111 to the control voltage control unit 110 as a frequency pull-in control signal at the time of initial frequency pull-in immediately after power-on or immediately after returning from outside the service area to the service area. I do. The control voltage controller 110 controls the frequency of the clock signal output from the clock signal generator 112 based on the integrated value so that the time error Te-MF of the reference timing caused by the frequency deviation becomes zero. According to this feedback control, the clock frequency of the terminal can be quickly drawn to a frequency at which AFC control based on the phase error Δ0 output from the phase compensation section 105 is possible. As mentioned above, the time required for the initial pull-in of the AFC control can be reduced. · · · First stage AFC control
第 1段階の AFC制御で端末クロック周波数の初期引込みが完了すれば、 AFC制御 部 116は位相補償部 105から出力される位相誤差 Δ Θを AFC制御信号として制御電 圧コントロール部 110に入力する。 位相誤差 Δ Θは受信パイロットシンボルの卜 j Q平面上での信号点位置べクトルと既知のパイロットシンボルの理想信号点位置 べクトル間の位相であリ、 制御電圧コントロール部 110は該位相誤差 Δ Θが零と なるようにクロック信号発生器 112から出力するクロック信号の周波数を制御す る。 このフィードバック制御にょリ、 端末のクロック周波数を基地局の基準クロ ック周波数と要求精度で一致させることができ、 サーチャ 103が参照する基準タ ィミングの精度が上がり(図 3の時間誤差 Te- MF=0となり)、 時間軸上でのタイミ ングの摇れが捕正される。 又、 基地局側拡散符号の位相を 1チップ以内の精度で 検出できるようになる (同期捕捉) 。 · · ·第 2段階の AFC制御 When the initial pull-in of the terminal clock frequency is completed in the first-stage AFC control, the AFC control unit 116 inputs the phase error ΔΘ output from the phase compensation unit 105 to the control voltage control unit 110 as an AFC control signal. The phase error Δ Θ is the signal point position vector of the received pilot symbol on the j j plane and the ideal signal point position of the known pilot symbol. The control voltage control unit 110 controls the frequency of the clock signal output from the clock signal generator 112 so that the phase error ΔΘ becomes zero. This feedback control allows the terminal clock frequency to match the reference clock frequency of the base station with the required accuracy, and the accuracy of the reference timing referenced by the searcher 103 is increased (the time error Te-MF in FIG. 3). = 0), and the timing deviation on the time axis is corrected. In addition, the phase of the base station side spreading code can be detected with an accuracy within one chip (synchronous acquisition). · · · Second stage AFC control
第 2段階の AFC制御によリ同期捕捉状態になれば、 AFC制御部 116はタイミング 誤差積分部 111及ぴ位相捕償部 105の動作を停止してそれらの出力を零とし、 替わ つて、 DLL回路 104cと DLL相関値積分部 113を起動する。 DLL回路 104cは図 1 3、 図 1 4において説明したように、 DLL相関値 R ( て) に基づいて逆拡散コードの位 相を制御する(同期追跡)。 又、 DDL相関値積分部 113は DDL相関値 R ( τ ) の直流 分 CNTe-DLLを検出し、 該直流分を AFC制御信号として制御電圧コントロール部 110 に入力する。 制御電圧コントロール部 110は DDL相関値 R ( τ ) の直流分が零とな るように端末のク口ック周波数を制御する。 以上によリ、 温度/伝播環境の変化 等による周波数変動を補正して周波数のずれ幅を小さく押えることができ、 しか も、 固定的な周波数偏差を補正することができる。 このため、 マッチトフィルタ と位相捕償部を作動させて行う AFC制御 (第 2段階の AFC制御)の周期を長くするこ とができ、 その回数を減らして消費電力の低減を図ることができる。  When the re-synchronization is acquired by the second-stage AFC control, the AFC control unit 116 stops the operations of the timing error integrator 111 and the phase compensator 105 and sets their outputs to zero, instead of the DLL. The circuit 104c and the DLL correlation value integration unit 113 are activated. As described with reference to FIGS. 13 and 14, the DLL circuit 104c controls the phase of the despreading code based on the DLL correlation value R () (synchronous tracking). Further, the DDL correlation value integration section 113 detects a DC component CNTe-DLL of the DDL correlation value R (τ), and inputs the DC component to the control voltage control section 110 as an AFC control signal. The control voltage control unit 110 controls the terminal's peak frequency so that the DC component of the DDL correlation value R (τ) becomes zero. As described above, it is possible to correct the frequency fluctuation due to a change in the temperature / propagation environment and the like, thereby suppressing the frequency deviation width to a small extent, and to correct the fixed frequency deviation. As a result, the period of the AFC control (the second-stage AFC control) performed by operating the matched filter and the phase compensation unit can be lengthened, and the number of times can be reduced to reduce power consumption. .
· · ·第 3段階の AFC制御 · · · Third-stage AFC control
AFC制御部 116は、 第 3段階の AFC制御を所定時間行えば、 Dl 1回路 104cと DLL相 関値積分部 1 13の動作を停止し、 替わって、 位相補償部 105の動作を開始して位相 誤差 Δ øに基づいた正規な AFC制御 (第 2段階の AFC制御)を行う。 第 2段階の AFC 制御にょリ周波数誤差の修正が完了すれば、 第 3段階の AFC制御を行う。 以後、 第 2、 第 3段階の AFC制御を繰リ返す。 The AFC control unit 116 stops the operation of the Dl 1 circuit 104c and the DLL correlation value integration unit 113 after performing the third-stage AFC control for a predetermined time, and starts the operation of the phase compensation unit 105 instead. Performs normal AFC control based on the phase error Δ ø (the second-stage AFC control). When the correction of the frequency error in the second-stage AFC control is completed, the third-stage AFC control is performed. Thereafter, the second and third steps of the AFC control are repeated.
又、 AFC制御部 116は、 第 3段階の AFC制御において、 DLL相関値積分部 113の出 力電圧を監視し、 該電圧値が設定値以上になれば、 直ちに、 第 2段階の AFC制御 を行って周波数誤差を修正する。 以上にょリ、 常に周波数誤差を設定値内に抑え ることができる。 ( C ) AFC制御の詳細 Further, the AFC control unit 116 monitors the output voltage of the DLL correlation value integration unit 113 in the third-stage AFC control, and immediately executes the second-stage AFC control when the voltage value exceeds the set value. To correct the frequency error. As described above, the frequency error can always be kept within the set value. (C) Details of AFC control
AFC制御動作としては電源オン時、 あるいは、 圏外から圏内への復帰時、 同期 検波が可能となる前に、 サーチャ 103からのタイミング情報の誤差 Te - MFに基づい てラフな AFC制御(第 1段階の AFC制御)を行い、 同期検波が可能となる精度までク ロック周波数を引き込む。 その後、 位相補償部 105からの位相誤差 Δ Θの情報に よリク口ック周波数が基地局の基準ク口ック周波数と一致するように高精度でク ロック周波数を引き込む (第 2段階の AFC制御)。 ー且、 基準クロック周波数まで 引き込んだ後は消費電力を押える為に、 サーチャの動作を停止し、 替わって DLL 回路 104cを起動し、 該 DLL回路から出力する逆拡散タイミング捕正情報 (DLL相関 値 R ( τ ) )を使って AFC制御を行わせる (第 3段階の AFC制御) 。 この第 3段階 の AFC制御において、 定期的に、 あるいは、 復調不能になる前のアラーム状態を 検出して正規の第 2段階の AFC制御に切リ替える。 以後、 第 2、 第 3段階の AFC制 御を繰リ返す。  As the AFC control operation, when the power is turned on or when returning from the outside of the service area to the service area, before the synchronous detection becomes possible, the rough AFC control based on the error Te-MF of the timing information from the searcher 103 (the first stage) AFC control) to pull in the clock frequency to the level that enables synchronous detection. Then, based on the information of the phase error ΔΘ from the phase compensator 105, the clock frequency is drawn with high accuracy so that the click frequency matches the reference clock frequency of the base station (AFC in the second stage). control). After the frequency is pulled down to the reference clock frequency, in order to suppress power consumption, the operation of the searcher is stopped, the DLL circuit 104c is started up instead, and the despreading timing correction information (DLL correlation value) output from the DLL circuit is output. R (τ)) to perform AFC control (AFC control in the third stage). In this third-stage AFC control, it switches to the regular second-stage AFC control periodically or by detecting an alarm state before demodulation is disabled. Thereafter, the second and third stages of AFC control are repeated.
(a) 第 1段階の AFC制御  (a) First stage AFC control
図 5は本発明の第 1段階の AFC制御動作を説明するタイミングチャートであリ 、 3つの基地局の基準タイミングを検出した場合を示している。 (1)は基地局か らの下リ信号フレーム(放送チャンネルフレーム)、 (2)はタイムスロットの構成 を示している。 (3)は端末の基準タイミング(タイムスロット)、 (4)〜(6)はサー チヤにょリ検出された基地局 A, B , Cの基準タイミング、 (7)は基地局 A, B , Cの合成基準タイミング、 (8)は基地局 A, B , Cの検出基準タイミングの間 隔 τ - Α, τ -Β, τ - C及ぴ端末基準タイミングからの遅延時間 Τ - sA,T- sB,T - s Cを示し ている。 又、 (9)は端末基準タイミングの誤差を示すもので、 (9-1)は基地局の絶 対基準タイミング、 (9-2)は絶対基準タイミングに対して相対的に示す端末基準 タイミングである。  FIG. 5 is a timing chart for explaining the first stage AFC control operation of the present invention, and shows a case where reference timings of three base stations are detected. (1) shows the lower signal frame (broadcast channel frame) from the base station, and (2) shows the time slot configuration. (3) is the reference timing (time slot) of the terminal, (4) to (6) are the reference timings of base stations A, B, and C detected in the searcher, and (7) is the base stations A, B, and C. (8) is the detection reference timing of base stations A, B, and C, τ-Α, τ-Β, τ-C, and the delay time from terminal reference timing Τ-sA, T-sB , T-s C. (9) shows the error of the terminal reference timing, (9-1) shows the absolute reference timing of the base station, and (9-2) shows the terminal reference timing relative to the absolute reference timing. is there.
CDMA方式の移動通信端末は基地局からのデータを復調するにあたリ、 拡散コー ドの位相を正確に特定する必要がある。 し力 し、 端末と基地局との間で周波数の 同調が取れていないと、 端末の基準周波数は基地局の基準周波数に対して数 p pm ( 2~3ppm)の誤差を持ってしまう。 PDC, PHS等の TDMAシステムでは、 かかる程度の 誤差は同期引込みに関して問題にならないが、 CDMAの場合、 何らかの対策を取る 必要がある。 具体的な数値を上げると、 3. 84MHzのチップレート/フレーム周期(= 10ms)の場合、 3ppmの誤差があると 0. 12チップ/フレームのシフトが発生する。 処 理に 4フレームかかると約 1/2チップの誤差が発生し、 もはや意味の有るデータと しては扱えなくなる。 このため、 初期同期引込みには、 図 1のマッチトフィルタ 構成のサーチャ 103が実装されるが、 それでも検出した各基地局の検出タイミン グは図 5の (8) 、 (9)に示すように時間とともに流れる。 In order to demodulate data from a base station, a CDMA mobile communication terminal needs to accurately specify the phase of a spreading code. However, if the frequency is not synchronized between the terminal and the base station, the reference frequency of the terminal has an error of a few ppm (2 to 3 ppm) with respect to the reference frequency of the base station. In TDMA systems such as PDC and PHS, such errors are not a problem for pull-in, but some measures should be taken for CDMA. There is a need. To increase the specific value, if the chip rate / frame period is 3.84 MHz (= 10 ms), a shift of 0.12 chip / frame will occur if there is an error of 3 ppm. If it takes four frames to process, an error of about 1/2 chip occurs, and it can no longer be treated as meaningful data. For this reason, the searcher 103 with the matched filter configuration in Fig. 1 is implemented in the initial synchronization pull-in, but the detection timing of each base station detected is as shown in (8) and (9) in Fig. 5. Flows over time.
マッチトフィルタは 2つの符号列の所定タイミングにおける相関値を 1回の演 算で瞬時に計算出来るが、 回路規模 Z消費電力が大きくなるという欠点を持って いる。 また、 マッチトフィルタを使用した場合でも測定の精度を上げるために相 関値の平均を取る必要があリ、 周波数誤差によリ基準タイミングが流れていると 測定の精度が落ち、 トータルの処理時間が長くなる。 以上よリ、 マッチトフィル タを用いた従来技術では、 初期同期引込み時間が長くなリ、 消費電力が大きくな つてバッテリ一の寿命が短!ヽ問題がある。  The matched filter can instantaneously calculate the correlation value of two code strings at a predetermined timing by one operation, but has the disadvantage of increasing the circuit size and Z power consumption. Even when a matched filter is used, it is necessary to take an average of the correlation values in order to increase the accuracy of the measurement. The time gets longer. As described above, the conventional technology using the matched filter has a problem that the initial synchronization pull-in time is long, the power consumption is large, and the life of the battery is short!
本発明では、 サーチャ 103が算出した相関値のピークタイミング(基準タイミン グ)の流れを定量的に測定し、 その結果を利用してラフな周波数合わせを行う。 これによリ、 電源オン後または圏内に復帰後、 直ぐに逆拡散後のパイロットデー タを使った AFC制御 (第 2段階の AFC制御)を可能とし、 初期引き込み時間の短縮を 図る。  In the present invention, the flow of the peak timing (reference timing) of the correlation value calculated by the searcher 103 is quantitatively measured, and rough frequency adjustment is performed using the result. This enables AFC control (second-stage AFC control) using the pilot data after despreading immediately after the power is turned on or after returning to the service area, thereby shortening the initial pull-in time.
一般に基地局において無線キヤリァ周波数とベースバンド周波数の発振元は一 致している。 従って、 端末のクロック周波数と基地局の基準クロック周波数間の 周波数誤差は図 5の(9)に示すようにマッチトフィルタ検出タイミングの時間軸 上での流れとして現れる。 つまリ端末の基準時間をベースにすると、 相関値のピ ークが得られる時刻の差分 τ (図 5の(8) )が実際の検出間隔と違つて観測される 。 図 5では 3波の有効なパイロットが受信できている状態を示してぉリ、 それぞ れ移動によるドップラーシフトの影響を受けるが、 複数基地局からの情報の平均 をとることにより、 その影響を緩和することができる。  In general, the base station oscillates at the radio carrier frequency and the baseband frequency. Therefore, the frequency error between the terminal clock frequency and the base station reference clock frequency appears as a flow on the time axis of the matched filter detection timing as shown in (9) of FIG. In other words, based on the reference time of the terminal, the time difference τ ((8) in Fig. 5) at which the peak of the correlation value is obtained is observed differently from the actual detection interval. Figure 5 shows a state in which three valid pilots are being received.Each of them is affected by Doppler shift due to movement.However, by averaging information from multiple base stations, the effect is reduced. Can be eased.
ここで問題にするタイミング誤差の検出は、 チップレートの 8倍程度のク口ッ クで動作するカウンタにより容易に実現できる。 具体的な例を上げると  The detection of the timing error, which is a problem here, can be easily realized by a counter that operates at a rate of about eight times the chip rate. To give a concrete example
チップレート : 4MHz 周波数誤差 : +3ppm Chip rate: 4MHz Frequency error: + 3ppm
8倍オーバサンプルで測定間隔 lms  Measurement interval lms with 8 times oversample
の条件で 200回分 (=0. 2秒) のカウンタ値を比較すると周波数誤差力 SOの場合よリ カウント値が- 19だけ小さくなる。 因みに -3P PD1の場合は +19となる。 実際は、 端 末の基準が変動しているのであるが、 基地局からのパイロットの受信タイミング がずれているように見える。 これは、 基地局の基準クロックで端末の変動分を力 ゥントしている事と等価である。 この手順でタイミング誤差積分部 111で周波数 誤差を検出、 積分し、 検出した誤差を捕正するようにクロック信号発生器 (VC-TC X0) 112を制御すれば、 端末のク口ック信号の基準ク口ック信号に対する周波数誤 差を小さくすることが出来る。  Comparing the counter values for 200 times (= 0.2 seconds) under the condition, the count value is smaller by -19 than the case of the frequency error force SO. By the way, in case of -3P PD1, it is +19. Actually, although the terminal standards fluctuate, the timing of receiving pilots from the base station seems to be shifted. This is equivalent to that the fluctuation of the terminal is counted by the reference clock of the base station. In this procedure, the timing error integrator 111 detects and integrates the frequency error, and controls the clock signal generator (VC-TC X0) 112 to correct the detected error. The frequency error with respect to the reference cook signal can be reduced.
以上の方法で最終的な要求精度 (=0. 1ppm以下) までもっていくことは無理だ が、 複素演算による AFC制御 (第 2段階の AFC制御)が可能なレベルまでクロック周 波数を引き込むことができ、 以後、 第 2段階の AFC制御により高速で要求精度ま で端末のクロック周波数を引き込むように制御できる。  Although it is impossible to achieve the final required accuracy (less than 0.1 ppm) by the above method, it is necessary to pull down the clock frequency to a level that allows AFC control (second stage AFC control) by complex arithmetic. After that, the second stage AFC control can be used to control the terminal clock frequency at high speed to the required accuracy.
(b)第 2段階の AFC制御  (b) Second stage AFC control
図 6に従って第 2段階の AFC制御を説明する。 図 6 (Α) は各シンボルの i - j Q 平面上での位置でぁリ、 1を一 1に、 0を 1に対応させてマッピングしている。 入力の振幅が一定で、 且つ送信側と受信側の周波数 (キャリア周波数/ベースバ ンド周波数) がー致していれば、 各シンボルの信号点は図 6 (A) のように一点 に張り付く。 ここで各シンボルの値がわかっていれば、 行列演算 (位相回転) に ょリすべての点を一点に集めることが出来る。 図 6 ( B ) は第 1象限に集めた例 で、 例えば(1,0)であれば (- π /2)回転させることになる。 実際は移動によるフエ 一ジングの影響や周波数誤差の影響で図 6 ( C ) に示すようにベクトルは点線位 置から 回転する。 結局、 受信信号点位置ベクトル (Rq,Qi)は実際の信号点位 置ベクトル(Dq,Di)を用いて(2)式  The second stage AFC control will be described with reference to FIG. In Fig. 6 (Α), each symbol is mapped on the i-jQ plane at a position, where 1 corresponds to 1 and 0 corresponds to 1. If the amplitude of the input is constant and the frequencies on the transmitting and receiving sides (carrier frequency / baseband frequency) match, the signal point of each symbol sticks to one point as shown in Fig. 6 (A). If the values of each symbol are known, all points can be collected into one point by matrix operation (phase rotation). Fig. 6 (B) shows an example of collection in the first quadrant. For example, if it is (1, 0), it will be rotated by (-π / 2). Actually, the vector rotates from the dotted line position as shown in Fig. 6 (C) due to the influence of fogging and frequency error due to movement. After all, the received signal point position vector (Rq, Qi) is calculated using the actual signal point position vector (Dq, Di) as
ίϋΛ'  ίϋΛ '
.
Figure imgf000018_0001
(Dq (2)
.
Figure imgf000018_0001
(Dq ( 2 )
で表され、 この 求めれば周波数誤差を捕正することができる。 ただし、 位相 誤差 Δ Θは温度/フェージング /マルチパスに起因する位相誤差 0 moveと周波数偏 差による位相誤差 0 errorの和であるが、 周波数誤差成分 0 er rorが支配的なので 収束する。 位相誤差△ Θは(2)式よリ Di=Dqとすれば次式 The frequency error can be corrected by this calculation. However, the phase error ΔΘ is the phase error 0 move due to temperature / fading / multipath and the frequency deviation This is the sum of the phase error 0 error due to the difference, but converges because the frequency error component 0 error is dominant. From equation (2), if Di = Dq, the phase error △ 次 is
ΔΘ =tan_1(Rq-Ri)/(Rq+Ri) (3) ΔΘ = tan _1 (Rq-Ri) / (Rq + Ri) (3)
によリ求めることが出来る。 ここで、 Riは受信電界の I成分、 Rqは受信電界の Q 成分である。 実際には(3)式の計算をするのではなく、 規格化された I成分、 Q 成分の振幅をァドレスとするメモリの出力よリ Δ Θを求める。 Can be obtained by Here, Ri is the I component of the received electric field, and Rq is the Q component of the received electric field. Actually, instead of calculating equation (3), Δ リ is obtained from the output of the memory whose amplitude is the amplitude of the standardized I and Q components.
ところで、 測定間隔での位相誤差△ 0が大きくなると I-jQ平面上の位置の特定 が出来なくなリ、 計算自体が不可能となる。 例えば、 測定間隔が 1 msの場合、 1 ppmの誤差だと回転角が 2 πを超えてしまい演算が出来なくなリ、 AFC制御はでき ない。 このため、 逆拡散後のパイロットデータを使った AFC制御(第 2段階の AFC 制御)が可能となるように、 第 1段階の AFC制御で周波数の初期引き込みを行うの である。  By the way, if the phase error △ 0 at the measurement interval becomes large, the position on the I-jQ plane cannot be specified, and the calculation itself becomes impossible. For example, when the measurement interval is 1 ms, if the error is 1 ppm, the rotation angle exceeds 2π, and the calculation cannot be performed, and AFC control cannot be performed. For this reason, the initial pull-in of the frequency is performed in the first-stage AFC control so that the AFC control using the despread pilot data (the second-stage AFC control) becomes possible.
第 1段階の AFC制御で逆拡散後のパイロットデータを使つた AFC制御が可能とな れば、 AFC制御部 116は位相補償部 105を起動する。 位相補償部 105は上記方法で位 相誤差 Δ 0を算出して制御電圧コントロール部 110に入力する。 制御電圧コント 口ール部 110は該位相誤差 Δ Θが零となるようにクロック信号発生器 112から出力 するクロック信号の周波数を制御する。 このフィードバック制御にょリ、 端末の クロック周波数を要求精度 (=0.1ppm以下) まで持ってゆくことができ、 これに よリ、 DLL回路 104cは基地局側拡散符号の位相を 1チップ以内の精度で検出でき るようになる (同期捕捉) 。  If AFC control using pilot data after despreading becomes possible in the first-stage AFC control, AFC control section 116 activates phase compensation section 105. The phase compensator 105 calculates the phase error Δ0 by the above method and inputs the calculated phase error Δ0 to the control voltage controller 110. The control voltage controller 110 controls the frequency of the clock signal output from the clock signal generator 112 so that the phase error Δ Δ becomes zero. In accordance with this feedback control, the clock frequency of the terminal can be brought to the required accuracy (= 0.1 ppm or less), whereby the DLL circuit 104c can adjust the phase of the base station side spreading code with an accuracy within one chip. Detection becomes possible (synchronous acquisition).
(c)第 3段階の AFC制御  (c) Third stage AFC control
一旦要求精度 (=0.1ppm以下) まで周波数を引き込んだ後でも、 温度変化等に よリ端末の基準周波数は変動するので、 第 2段階の AFC制御を継続する必要があ る。 しかし、 第 2段階の AFC制御における複素演算等は DSP(digital signal processor)によリ実行するものであり、 しかも、 基準タイミングの検出動作はマ ツチトフィルタによリ行うもので、 かなりの消費電流を必要とする。 このため、 第 2段階の AFC制御を常時に実施することは、 処理負荷、 消費電力を低く押える ためにも効率的ではない。 そこで、 消費電流が小さいなんらかの方法 (例えば DL L制御)で AFC制御を行い、 所定の周期で第 2段階の AFC制御をすることが考えられ る。 この場合、 短い周期で第 2段階の AFC制御を実施するのは上記と同じ理由で 好ましくなく、 長い周期で実施するのが好ましい。 Even after the frequency has been pulled down to the required accuracy (= 0.1 ppm or less), the reference frequency of the terminal fluctuates due to temperature changes and so on, so it is necessary to continue the second-stage AFC control. However, complex operations in the AFC control in the second stage are performed by a DSP (digital signal processor), and the reference timing detection operation is performed by a multi-filter, resulting in considerable current consumption. Need. Therefore, it is not efficient to always perform the second-stage AFC control in order to keep processing load and power consumption low. Therefore, it is conceivable to perform AFC control in some way (for example, DLL control) that consumes a small amount of current, and then perform AFC control in the second stage at a predetermined cycle. You. In this case, it is not preferable to perform the second-stage AFC control in a short cycle for the same reason as described above, and it is preferable to perform the AFC control in a long cycle.
以上よリ、 本発明では要求精度 (=0. lppin以下) まで周波数を引き込んだ後は 、 DLLによリ逆拡散コードの位相を制御すると共に、 DLL回路 104cから出力する DLL相関値 R ( τ ) の積分値を用いて AFC制御を行い、 これによリ、 第 2段階の AF C制御を実施する周期を長くする。 又、 本発明では、 DLLによる逆拡散コードの位 相制御が不可能な状態に近づいたときアラームを出力して第 2段階の AFC制御を 強制的に実施し、 DLLによる位相制御が不可能になる事態を回避する。  As described above, in the present invention, after the frequency is pulled down to the required accuracy (= 0. Lppin or less), the phase of the despreading code is controlled by the DLL, and the DLL correlation value R (τ AFC control is performed using the integrated value of (2), thereby increasing the period for performing the second-stage AFC control. Also, in the present invention, when approaching a state where the phase control of the despreading code by the DLL becomes impossible, an alarm is output and the second-stage AFC control is forcibly performed, and the phase control by the DLL becomes impossible. Avoid the situation that becomes.
図 7は DLLにおける Sカープ説明図であリ、 (A) は周波数偏差が零の場合、 ( B ) は周波数偏差が十の場合、 ( C ) は周波数偏差が一の場合である。 DLL制 御は、 ± 1/2チップ以下の逆拡散タイミングのずれ (フェージング、 移動、 周波 数変動等の原因) を補正するものであるが、 端末クロック信号の固定的な周波数 の偏差は、 その制御量 (DLL相関値)を長い周期で積分すれば見えてくる。 これは 他の要因と異なリ、 偏差方向が常に一定であるためである。 周波数偏差が +の場 合、 DLL相関値積分部 113の出力は図 4の直流分 CNTe- DLLとなる。 AFC制御部 116は DLL相関値積分部 113の出力信号を制御電圧コントロール部 110に入力し、 直流分 = 0となるようにクロック周波数を制御する。 そして、 この直流分をモニターし、 出力信号値が設定レベルに達して DLLによる逆拡散コードの位相制御が不可能な 危険状態に近づいたときアラームを出力して第 2段階の AFC制御を実施する。 かるアラームによる AFC制御切替を実行することによリ、 周期的に行う第 2段階 の AFC制御の周期を長くでき、 消費電力を軽減することが可能となる。  FIG. 7 is an explanatory diagram of the S-carp in the DLL. (A) shows the case where the frequency deviation is zero, (B) shows the case where the frequency deviation is ten, and (C) shows the case where the frequency deviation is one. DLL control corrects the deviation of the despreading timing (caused by fading, movement, frequency fluctuation, etc.) of ± 1/2 chip or less, but the fixed frequency deviation of the terminal clock signal is It becomes visible if the control amount (DLL correlation value) is integrated over a long period. This is because, unlike other factors, the deviation direction is always constant. When the frequency deviation is +, the output of the DLL correlation value integration unit 113 is the DC component CNTe-DLL of FIG. The AFC control unit 116 inputs the output signal of the DLL correlation value integration unit 113 to the control voltage control unit 110, and controls the clock frequency so that DC component = 0. The DC component is monitored, and when the output signal value reaches a set level and approaches a dangerous state in which the DLL cannot control the phase of the despreading code, an alarm is output and the second-stage AFC control is performed. . Executing AFC control switching based on such an alarm can lengthen the period of the second-stage AFC control that is performed periodically, and reduce power consumption.
以上にょリ、 第 2段階の AFC制御にょリ同期捕捉状態になれば、 AFC制御部 116 はタイミング誤差積分部 111及び位相捕償部 105の動作を停止してそれらの出力を 零とし、 替わって、 DLL回路 104cと DLL相関値積分部 113を起動する。 DLL回路 104c は DLL相関値 R ( τ ) に基づいて逆拡散コードの位相を制御する(同期追跡)。 又 、 DDL相関値積分部 113は DDL相関値 R ( r ) の直流分を検出し、 該直流分を AFC制 御信号として制御電圧コントロール部 110に入力する。 制御電圧コントロール部 1 10は DDL相関値 R ( τ ) の直流分が零となるように端末のクロック周波数を制御 する。 (D ) 全体の処理フロー As described above, when the second stage AFC control enters the synchronous capture state, the AFC control unit 116 stops the operations of the timing error integrator 111 and the phase compensator 105, sets their outputs to zero, and replaces them. Then, the DLL circuit 104c and the DLL correlation value integrator 113 are activated. The DLL circuit 104c controls the phase of the despread code based on the DLL correlation value R (τ) (synchronous tracking). Further, the DDL correlation value integration section 113 detects a DC component of the DDL correlation value R (r), and inputs the DC component to the control voltage control section 110 as an AFC control signal. The control voltage control unit 110 controls the clock frequency of the terminal so that the DC component of the DDL correlation value R (τ) becomes zero. (D) Overall processing flow
図 8は本発明の全体の処理フローである。 移動通信端末がオンした時、 あるい は圏外から圏内に復帰した時、 AFC制御部 116はサーチャ 103及びタイミング誤差 積分部 111を起動し、 サーチャは基地局の基準タイミングを特定するタイミング サーチを実施する(ステップ 20卜ステップ 202)。 この場合、 サーチャ 103は n個の 各パスについてタイミングサーチを M回実施し、 M回目のタイミング Μ·Τ0と 1回 目のタイミング To間の時間差 (M-1) -Toと、 周波数偏差が 0の場合の時間差 と の差分 [ (Μ- 1) ·Τ。- TM— Jの ηパスの平均をとつて周波数誤差を特定する。 なお、 η = 1であってもよい。 FIG. 8 is an overall processing flow of the present invention. When the mobile communication terminal is turned on or when the mobile communication terminal returns from the service area to the service area, the AFC control unit 116 activates the searcher 103 and the timing error integrator 111, and the searcher performs a timing search to specify the reference timing of the base station. (Step 20 and Step 202). In this case, the searcher 103 performs a timing search for each of the n paths M times, and finds that the time difference (M-1) -To between the M-th timing 0 and the first timing To and the frequency deviation Time difference when 0 and difference between and [(Μ-1) · Τ. -T M — Determine the frequency error by averaging the η paths of J. Note that η may be 1.
タイミング誤差積分部 111は時間差の平均を積分し、 積分値を周波数引込み用 制御信号として制御電圧コント口ール部 110に入力する。 制御電圧コント口ール 部 110は、 該積分値に基づいて周波数偏差に起因する基準タイミングの時間誤差 が零となるようにクロック信号発生器 112から出力するクロック信号の周波数を 制御する。 以上にょリ、 ラフな周波数補正が行われ、 端末のクロック周波数を位 相誤差 Δ Θに基づいて制御する第 2段階の AFC制御が可能な周波数に引き込む(ス テツプ 203)。 …第 1段階の AFC制御  The timing error integrator 111 integrates the average of the time differences, and inputs the integrated value to the control voltage controller 110 as a frequency pull-in control signal. The control voltage controller 110 controls the frequency of the clock signal output from the clock signal generator 112 based on the integrated value so that the time error of the reference timing caused by the frequency deviation becomes zero. As described above, rough frequency correction is performed, and the clock frequency of the terminal is drawn to a frequency at which the second-stage AFC control for controlling the terminal based on the phase error ΔΘ is possible (Step 203). … First stage AFC control
端末のク口ック周波数のラフな周波数補正が完了すれば、 AFC制御部 116は逆拡 散部 104、 位相補償部 105を起動する。 逆拡散部 104はサーチャの検出した基準タ ィミングに基づいて逆拡散処理を開始し、 パイロットシンボルの I,Q成分を復調 する(ステップ 204)。 位相捕償部 105はこのパイロットシンボルの I,Q成分に基づ いて位相誤差 Δ Θを算出し、 該位相誤差 Δ Θを AFC制御信号として制御電圧コン トロール部 110に入力する。 制御電圧コントロール部 110は該位相誤差 Δ Θが零と なるようにクロック信号発生器 112から出力するクロック信号の周波数を制御す る。 このフィードパック制御にょリ端末のクロック周波数を要求精度 (=0. 1ppm 以下) まで持つてゆくことができ、 DLL回路 104cは基地局側拡散符号の位相を 1 チップ以内の精度で検出できるようになる(ステップ 205)。  When the rough frequency correction of the terminal's peak frequency is completed, the AFC control unit 116 activates the inverse diffusion unit 104 and the phase compensation unit 105. Despreading section 104 starts despreading processing based on the reference timing detected by the searcher, and demodulates the I and Q components of the pilot symbol (step 204). The phase compensation unit 105 calculates a phase error ΔΘ based on the I and Q components of the pilot symbol, and inputs the phase error ΔΘ to the control voltage control unit 110 as an AFC control signal. The control voltage control unit 110 controls the frequency of the clock signal output from the clock signal generator 112 so that the phase error ΔΘ becomes zero. This feed-pack control allows the clock frequency of the terminal to be as high as required (less than 0.1 ppm), and the DLL circuit 104c can detect the phase of the base station side spreading code with an accuracy within one chip. (Step 205).
, · · ·第 2段階の AFC制御 以上の制御によリ、 端末のク口ック周波数が要求精度以内の周波数になれば、 データの復調が可能となリ、 同期検波部 106は同期検波を行い、 誤リ訂正復号器 107は同期検波出力信号に基づいて誤リ訂正復号処理を実行して送信データを復 号する(ステップ 206)。 データ復調時、 AFC制御部 116はサーチャ 103、 位相捕償部 105の動作を停止してそれらの出力を零とし、 替わって、 DLL回路 104cと DLL相関 値積分部 113を起動する。 DLL回路 104cは、 DLL相関値 R ( τ ) に基づいて逆拡散 コードの位相を制御すると共に、 該 DLL相関値 R (て) を DDL相関値積分部 113に 入力する。 DDL相関値積分部 113は DDL相関値 R ( τ ) を積分して直流分を検出し 、 該直流分を固定的な周波数偏差として出力する(ステップ 207)。 制御電圧コン トロール部 110は DDL相関値積分部 113の積分出力を AFC制御信号とし、 該積分出力 が零となるように端末のクロック周波数を制御する(ステップ 208)。 以上によリ 固定的な周波数偏差を補正することができる。 · · ·第 3段階の AFC制御 AFC control in the second stage With the above control, if the terminal's peak frequency falls within the required accuracy, data can be demodulated.Synchronous detection unit 106 performs synchronous detection. Perform an error correction decoder 107 executes error correction / decoding processing based on the synchronous detection output signal to decode transmission data (step 206). At the time of data demodulation, the AFC control unit 116 stops the operations of the searcher 103 and the phase compensation unit 105 to make their outputs zero, and starts the DLL circuit 104c and the DLL correlation value integration unit 113 instead. The DLL circuit 104c controls the phase of the despreading code based on the DLL correlation value R (τ), and inputs the DLL correlation value R (T) to the DDL correlation value integration unit 113. The DDL correlation value integration unit 113 detects the DC component by integrating the DDL correlation value R (τ), and outputs the DC component as a fixed frequency deviation (step 207). The control voltage control section 110 uses the integrated output of the DDL correlation value integration section 113 as an AFC control signal, and controls the clock frequency of the terminal so that the integrated output becomes zero (step 208). As described above, the fixed frequency deviation can be corrected. · · · Third-stage AFC control
AFC制御部 116は、 第 3段階の AFC制御が設定時間連続して行われたかチェック し、 換言すれば、 第 2段階の正規な AFC制御開始時刻になったかチェックする(ス テツプ 209)。 「Ye s」であれば、 ステップ 205に戻って第 2段階の正規な AFC制御を 再開し、 「No」であれば、 DDL相関値積分部 113の積分出力が設定値をオーバして DL Lによる逆拡散コードの位相制御が不可能な危険状態に近づいたかチェックする( ステップ 210)。 「Ye s」であればステップ 205に戻って第 2段階の正規な AFC制御を 実行し、 「NoJであれば終話になったかチェックし(ステップ 211)、 終話でなけれ ばステップ 207以降の第 3段階の AFC制御を継続し、 終話になればパワーセーブを 行い(ステ、ンプ 212)、 AFC処理を終了する。  The AFC control unit 116 checks whether the third-stage AFC control has been performed continuously for the set time, in other words, checks whether the second-stage normal AFC control start time has come (step 209). If “Yes”, the process returns to step 205 to restart the normal AFC control of the second stage. If “No”, the integrated output of the DDL correlation value integration unit 113 exceeds the set value and DL L It is checked whether or not the approach to a dangerous state in which the phase control of the despreading code by using is impossible (step 210). If “Yes”, return to step 205 and execute the normal AFC control of the second stage. If “NoJ”, check if the call has ended (step 211). If not, go to step 207 and after. The AFC control of the third stage is continued, and when the call ends, the power save is performed (step 212), and the AFC process ends.
以上本発明によれば、 特別なハードウェアを追加することに無く、 電源投入時 や圏外復帰時の AFC引き込み時間を大幅に短縮することが可能となり、 且つ通話 中の AFC起動回数をを必要最低限に押えることが可能となる。 この結果、 待受け 状態への移行が早くなリ、 しかも、 消費電力が軽減して電池の寿命も長くなる。  As described above, according to the present invention, it is possible to greatly reduce the AFC pull-in time at the time of power-on or recovery from out of service area without adding special hardware, and to reduce the number of AFC activations during a call to the minimum required. It is possible to limit to the limit. As a result, the transition to the standby state is quickened, and the power consumption is reduced and the battery life is prolonged.

Claims

請求の範囲 The scope of the claims
1 . マッチトフィルタによる相関演算にょリ基地局の基準タイミングを検出し 、 該検出した基準タイミングに基づいて逆拡散コードを発生し、 該逆拡散コード を用いて受信信号を逆拡散して送信データを復調する CDMA移動通信端末のクロッ ク周波数制御装置において、  1. The reference timing of the base station is detected by a correlation operation using a matched filter, a despreading code is generated based on the detected reference timing, and the received signal is despread using the despreading code to transmit data. In a clock frequency controller of a CDMA mobile communication terminal that demodulates
CDMA移動通信端末のクロック周波数を基地局の基準クロック周波数に一致させ るように制御する AFC制御部、  An AFC controller that controls the clock frequency of the CDMA mobile communication terminal to match the reference clock frequency of the base station;
前記相関演算によリ検出した基準タイミングと正規な基準タイミング間の時間 誤差に応じた信号を出力する時間誤差監視部、  A time error monitoring unit that outputs a signal corresponding to a time error between the reference timing detected by the correlation operation and the normal reference timing,
CDMA移動通信端末のク口ック信号を発生するクロック信号発生部、  A clock signal generating unit for generating a click signal of a CDMA mobile communication terminal,
を備え、 前記 AFC制御部は、 電源オン後または圏外から圏内への復帰後に行う クロック周波数の初期引込み時、 前記時間誤差監視部から出力する時間誤差信号 をクロック信号発生部に入力してクロック周波数を制御する、  The AFC control unit is configured to input a time error signal output from the time error monitoring unit to the clock signal generation unit when the clock frequency is initially pulled in after power-on or after returning from outside the service area to the service area. Control the
ことを特徴とするクロック周波数制御装置。  A clock frequency control device, characterized in that:
2 . 前記時間誤差監視部は前記時間誤差を積分し、 積分結果を前記クロック信 号発生部に入力する、  2. The time error monitoring unit integrates the time error and inputs the integration result to the clock signal generation unit,
ことを特徴とする請求項 1記载のク口ック周波数制御装置。 .  2. The click frequency control device according to claim 1, wherein: .
3 . 前記クロック周波数の初期引込み時、 前記マッチトフィルタは基地局から の下リ信号に含まれるタイミング同定用拡散コードと受信信号との相関を演算し 、 相関値のピークタイミングに基づいて前記基準タイミングを検出することを特 徴とする請求項 1記載のクロック周波数制御装置。 '  3. At the time of the initial pull-in of the clock frequency, the matched filter calculates a correlation between the received signal and the timing identification spread code included in the lower signal from the base station, and based on the peak timing of the correlation value, 2. The clock frequency control device according to claim 1, wherein timing is detected. '
4 . 基地局からの下リ信号内に周期的に含まれる所定シンボルを逆拡散して求 める逆拡散回路、  4. A despreading circuit for despreading a predetermined symbol periodically included in the lower signal from the base station,
該シンボルの I - j Q平面上での回転角の位相誤差を演算し、 位相誤差に応じた信 号を出力する位相誤差演算部、  A phase error calculator for calculating a phase error of a rotation angle of the symbol on the I-jQ plane and outputting a signal corresponding to the phase error;
を備え、 前記 AFC制御部は、 前記クロック周波数の初期引込みの完了後、 位相 誤差信号を前記ク口ック信号発生部に入力して前記ク口ック周波数を前記基準ク ロック周波数に一致するように制御する、  After the completion of the initial pull-in of the clock frequency, the AFC control unit inputs a phase error signal to the clock signal generation unit, and matches the clock frequency with the reference clock frequency. To control,
ことを特徴とする請求項 1記載のク口ック周波数制御装置。 2. The click frequency control device according to claim 1, wherein:
5 . DLL (De l aye d Lo c k e d Loo p)制御により逆拡散コードの位相を制御する DLL 回路、 5. DLL circuit that controls the phase of the despreading code by DLL (De laye d Loc ke d Loo p) control,
該 DLL回路から出力する DLL相関値の平均値を出力する DLL相関値平均部、 を備え、 前記 AFC制御部は、 前記ク口ック周波数が要求精度で前記基準ク口ッ ク周波数に一致した時、 前記位相誤差演算部から出力する前記位相誤差に応じた 信号を零にし、 替わって前記平均値をクロック信号発生部に入力し、 該平均値が 零となるようにクロック周波数を制御する、  A DLL correlation value averaging unit that outputs an average value of DLL correlation values output from the DLL circuit, wherein the AFC control unit matches the reference frequency with the reference frequency with required accuracy. At this time, a signal corresponding to the phase error output from the phase error calculation unit is set to zero, and instead, the average value is input to a clock signal generation unit, and the clock frequency is controlled so that the average value becomes zero.
ことを特徴とする請求項 4記载のクロック周波数制御装置。  5. The clock frequency control device according to claim 4, wherein:
6 . 前記 DLL相関値の平均値が設定値以上になったか監視する手段、 を備え、 前記 AFC制御部は、 該平均値が設定値以上になったとき、 前記位相誤 差信号を前記クロック信号発生部に入力して前記クロック周波数を前記基準クロ ック周波数に一致するよう.に制御する、  6. A means for monitoring whether or not the average value of the DLL correlation value is equal to or greater than a set value. The AFC control unit is configured to, when the average value is equal to or greater than the set value, change the phase error signal to the clock signal. Input to a generator to control the clock frequency to match the reference clock frequency;
ことを特徴とする請求項 5記載のク口ック周波数制御装置。  6. The click frequency control device according to claim 5, wherein:
7 . 前記 AFC制御部は、 周期的に前記位相誤差信号を前記ク口ック信号発生部 に入力して前記ク口ック周波数を前記基準ク口ック周波数に一致するように制御 し、 しかる後、 前記平均値を前記クロック信号発生部に入力して AFC制御を行う ことを特徴とする請求項 5記載のクロック周波数制御装置。  7. The AFC control section periodically inputs the phase error signal to the peak signal generation section and controls the peak frequency to be equal to the reference peak frequency, The clock frequency control device according to claim 5, wherein the AFC control is performed by inputting the average value to the clock signal generation unit.
8 . CDMA移動通信端末において、  8. In CDMA mobile communication terminals,
マッチトフィルタによる相関演算によリ基地局の基準タイミングを検出する基 準タイミング検出部、  A reference timing detection unit that detects a reference timing of the base station by a correlation operation using a matched filter,
CDMA移動通信端末のク口ック信号を発生し、 該ク口ック信号の周波数を基地局 の基準ク口ック周波数に一致させるクロック周波数制御部、  A clock frequency control unit that generates a peak signal of the CDMA mobile communication terminal and matches a frequency of the peak signal with a reference clock frequency of the base station;
前記検出した基準タイミング、 クロック信号に基づいて逆拡散コードを発生す る逆拡散コード発生部、  A despreading code generator that generates a despreading code based on the detected reference timing and clock signal;
該逆拡散コードを用いて受信信号を逆拡散して送信データを復調する復調部、 を備え、  A demodulation unit that demodulates transmission data by despreading a received signal using the despreading code,
前記ク口ック周波数制御部は、  The mouth frequency control unit,
CDMA移動通信端末のク口ック周波数を基地局の基準ク口ック周波数に一致させ るように制御する AFC制御部、 Match the peak frequency of the CDMA mobile communication terminal with the reference peak frequency of the base station. AFC control section, which controls
前記相関演算によリ検出した基準タイミングと基地局の正規な基準タイミング 間の時間誤差に応じた信号を出力する時間誤差監視部、  A time error monitoring unit that outputs a signal corresponding to a time error between the reference timing detected by the correlation operation and the normal reference timing of the base station,
CDMA移動通信端末のクロック信号を発生するクロック信号発生部、  A clock signal generator for generating a clock signal for a CDMA mobile communication terminal,
を備え、 前記 AFC制御部は、 電源オン後または圏外から圏内への復帰後に行う ク口ック周波数の初期引込み時、 前記時間誤差監視部から出力する時間誤差信号 をクロック信号発生部に入力してクロック周波数を制御する、  The AFC control unit is configured to input a time error signal output from the time error monitoring unit to a clock signal generation unit at an initial pull-in of a clock frequency performed after power-on or after returning from outside the service area to the service area. To control the clock frequency,
ことを特徴とする CDMA移動通信端末。  A CDMA mobile communication terminal.
9 . 前記時間誤差監視部は前記時間誤差を積分し、 積分結果を前記クロック信 号発生部に入力する、  9. The time error monitoring unit integrates the time error, and inputs the integration result to the clock signal generation unit,
ことを特徴とする請求項 8記載の CDMA移動通信端末。  9. The CDMA mobile communication terminal according to claim 8, wherein:
1 0 . 前記クロック周波数の初期引込み時、 前記マッチトフィルタは基地局か らの下リ信号に含まれるタイミング同定用拡散コードと受信信号との相関を演算 し、 相関値のピークタイミングに基づいて前記基準タイミングを検出することを 特徴とする請求項 8記載の CDMA移動通信端末。  10. At the time of the initial pull-in of the clock frequency, the matched filter calculates the correlation between the received signal and the timing identification spread code included in the lower signal from the base station, and based on the peak timing of the correlation value. 9. The CDMA mobile communication terminal according to claim 8, wherein the reference timing is detected.
1 1 . 前記クロック周波数制御部は、  1 1. The clock frequency control unit includes:
基地局からの下リ信号内に周期的に含まれる所定シンボルを逆拡散して求める 逆拡散回路、  A despreading circuit for despreading predetermined symbols periodically included in the lower signal from the base station,
該シンボルの I-j Q平面上での回転角の位相誤差を演算し、 位相誤差に応じた信 号を出力する位相誤差演算部、  A phase error calculator for calculating a phase error of the rotation angle of the symbol on the I-j Q plane and outputting a signal corresponding to the phase error;
をさらに備え、 前記 AFC制御部は、 前記クロック周波数の初期引込みの完了後 、 位相誤差信号を前記ク口ック信号発生部に入力して前記ク口ック周波数を前記 基準クロック周波数に一致するように制御する、  The AFC control unit further comprises: after completion of the initial pull-in of the clock frequency, inputs a phase error signal to the peak signal generation unit, and matches the peak frequency with the reference clock frequency. To control,
ことを特徴とする請求項 8記載の CDMA移動通信端末。  9. The CDMA mobile communication terminal according to claim 8, wherein:
1 2 . 前記クロック周波数制御部は、  1 2. The clock frequency control unit includes:
DLL (De l ayed Loc ke d Loop)制御にょリ逆拡散コードの位相を制御する DLL回路 該 DLL回路から出力する DLL相関値の平均値を出力する DLL相関値平均部、 を備え、 前記 AFC制御部は、 前記ク口ック周波数が要求精度で前記基準ク口ッ ク周波数に一致した時、 前記位相誤差演算部から出力する前記位相誤差に応じた 信号を零にし、 替わって前記平均値をクロック信号発生部に入力し、 該平均値が 零となるようにクロック周波数を制御する、 A DLL circuit for controlling the phase of the despreading code controlled by a DLL (Delayed Locked Loop) control, and a DLL correlation value averaging unit for outputting an average value of DLL correlation values output from the DLL circuit; The reference frequency is determined by the reference frequency with the required accuracy. When the frequency coincides with the clock frequency, a signal corresponding to the phase error output from the phase error calculation unit is set to zero, and the average value is input to a clock signal generation unit instead, and the clock is set so that the average value becomes zero. Control the frequency,
ことを特徴とする請求項 1 1記載の CDMA移動通信端末。  12. The CDMA mobile communication terminal according to claim 11, wherein:
1 3 . 前記クロック周波数制御部は、  1 3. The clock frequency control unit
前記 DLL相関値の平均値が設定値以上になったか監視する手段、  Means for monitoring whether or not the average value of the DLL correlation values has exceeded a set value;
を備え、 前記 AFC制御部は、 該平均値が設定値以上になったとき、 前記位相誤 差信号を前記ク口ック信号発生部に入力して前記ク口ック周波数を前記基準ク口 ック周波数に一致するように制御する、  The AFC control unit, when the average value is equal to or more than a set value, inputs the phase error signal to the peak signal generation unit and converts the peak frequency to the reference threshold. Control to match the clock frequency,
ことを特徴とする請求項 1 2記載の CDMA移動通信端末。  13. The CDMA mobile communication terminal according to claim 12, wherein:
PCT/JP2001/001148 2001-02-19 2001-02-19 Afc controller WO2002067456A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/001148 WO2002067456A1 (en) 2001-02-19 2001-02-19 Afc controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/001148 WO2002067456A1 (en) 2001-02-19 2001-02-19 Afc controller

Publications (1)

Publication Number Publication Date
WO2002067456A1 true WO2002067456A1 (en) 2002-08-29

Family

ID=11737030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001148 WO2002067456A1 (en) 2001-02-19 2001-02-19 Afc controller

Country Status (1)

Country Link
WO (1) WO2002067456A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2391751A (en) * 2002-08-06 2004-02-11 Nec Technologies Clock frequency correction in a mobile communications system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000059266A (en) * 1998-08-11 2000-02-25 Nippon Telegr & Teleph Corp <Ntt> Spectrum spread signal demodulating circuit
JP2000232394A (en) * 1999-02-09 2000-08-22 Matsushita Electric Ind Co Ltd Cdma receiver and cdma receiving method
JP2000341354A (en) * 1999-05-27 2000-12-08 Matsushita Electric Ind Co Ltd Oscillator control circuit and oscillator control method
JP2000349849A (en) * 1999-06-02 2000-12-15 Japan Radio Co Ltd Frequency error detector and automatic frequency controller
JP2001016285A (en) * 1999-06-25 2001-01-19 Nec Corp Afc circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000059266A (en) * 1998-08-11 2000-02-25 Nippon Telegr & Teleph Corp <Ntt> Spectrum spread signal demodulating circuit
JP2000232394A (en) * 1999-02-09 2000-08-22 Matsushita Electric Ind Co Ltd Cdma receiver and cdma receiving method
JP2000341354A (en) * 1999-05-27 2000-12-08 Matsushita Electric Ind Co Ltd Oscillator control circuit and oscillator control method
JP2000349849A (en) * 1999-06-02 2000-12-15 Japan Radio Co Ltd Frequency error detector and automatic frequency controller
JP2001016285A (en) * 1999-06-25 2001-01-19 Nec Corp Afc circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2391751A (en) * 2002-08-06 2004-02-11 Nec Technologies Clock frequency correction in a mobile communications system
GB2391751B (en) * 2002-08-06 2006-01-04 Nec Technologies Improvement to clock frequency correction in mobile communication systems

Similar Documents

Publication Publication Date Title
KR970005598B1 (en) Non-coherent digital apparatus for receiving in spread spectrum
KR100980128B1 (en) Frequency-timing control loop for wireless communication systems
US6650692B2 (en) CDMA receiver
JP5518791B2 (en) Frequency tracking using pilot and non-pilot symbols
JP2001016138A (en) Cdma receiver
WO1996042147A1 (en) Method for synchronizing spreading code and device for synchronizing spreading code
KR0150279B1 (en) Delay-locked loop code tracking loop for receiver of a code spread communication system
JP2000106535A (en) Method and system for automatic frequency control
JP2002076987A (en) Automatic frequency control circuit
US7130329B2 (en) Apparatus and method for radio frequency tracking and acquisition
WO2002007403A1 (en) Channel presuming system and channel presuming method
US7023904B2 (en) Synchronization tracking circuit
WO2002067456A1 (en) Afc controller
JP3090117B2 (en) Spread spectrum signal demodulator
JP2943376B2 (en) Spread spectrum signal demodulator
JP3090116B2 (en) Spread spectrum signal demodulator
JP3683092B2 (en) Synchronous tracking circuit for correlation processing for spread signals
JP2917990B2 (en) Pseudo-noise code generator
JP3581067B2 (en) CDMA receiver with AFC function
KR100347529B1 (en) Synchronous wideband CDMA demodulator structure for wireless packet communication
JP3128992B2 (en) Receiver
JP3058820B2 (en) Demodulation method for spread spectrum communication and demodulation device using the method
JP2770995B2 (en) Receiver for spread spectrum communication
Su et al. Acquisition performance of PN synchronization loop for DS-SS signals with Doppler shift
EP1325564A2 (en) Method and system for estimating frequency offset and phase rotation correction in cdma systems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: JP