WO2002066632A1 - Methode d'amplification d'arnm et d'adnc dans des micro-quantites - Google Patents

Methode d'amplification d'arnm et d'adnc dans des micro-quantites Download PDF

Info

Publication number
WO2002066632A1
WO2002066632A1 PCT/JP2002/001360 JP0201360W WO02066632A1 WO 2002066632 A1 WO2002066632 A1 WO 2002066632A1 JP 0201360 W JP0201360 W JP 0201360W WO 02066632 A1 WO02066632 A1 WO 02066632A1
Authority
WO
WIPO (PCT)
Prior art keywords
cdna
mrna
linker
amplifying
promoter
Prior art date
Application number
PCT/JP2002/001360
Other languages
English (en)
French (fr)
Inventor
Masaki Takiguchi
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Priority to US10/468,510 priority Critical patent/US20040086906A1/en
Priority to EP02712417A priority patent/EP1362912A4/en
Publication of WO2002066632A1 publication Critical patent/WO2002066632A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1096Processes for the isolation, preparation or purification of DNA or RNA cDNA Synthesis; Subtracted cDNA library construction, e.g. RT, RT-PCR

Definitions

  • the present invention relates to a method for amplifying a small amount of mRNA present in a sample, and more particularly, to a method for producing a cDNA library, subtraction cloning, and PCR, which can be applied to a microarray.
  • the present invention relates to a method for amplifying a very small amount of mRNA expressed in the body with high sensitivity. Background art
  • the total number of genes in the genomes of mammals such as mice and humans is conventionally estimated to be about 100,000, and the comprehensive cloning of the corresponding mRNA / cDNA requires the gene code From the viewpoint of protein sequence prediction, gene structure prediction, DNA microarray construction, etc., it is extremely important both practically and in basic research.
  • the United States, Japan, and other global efforts are taking place.
  • about 30,000 types of cDNAs have already been cloned in mice, and these are thought to be mainly derived from mRNAs present in adult or embryos in appropriate amounts or more. It is said that DNA isolation is a future task.
  • genes may be expressed in a limited number of specialized cells, such as pituitary hormone-releasing factor in the hypothalamus. Genes and sugar-regulating hormone genes in island cells are expressed only in a very limited number of cells. One group of genes may be expressed only in a localized region of a particular developmental stage, and another group of genes may be stress- or pathogen-infected. It may be induced only in cells exposed to changes in environmental factors such as. In general, in order to clone more cDNA species, it was pointed out that the usefulness of diversifying environmental conditions for more tissues and cell types at various developmental stages was examined. ing.
  • Another method for quickly and easily detecting a specific nucleic acid sequence in a test sample is a method for producing a double-stranded nucleic acid containing a promoter operably linked to a sequence to be detected, comprising: (B) under the conditions where the primer and the nucleic acid sequence to be detected hybridize with each other, the promoter and the nucleic acid containing the sequence to be detected are obtained.
  • step (C) producing an extension product complementary to the nucleic acid sequence to be detected from the 3 'end of the promoter-primer; (d) transferring the product of step (c) to the 3'-15' Contact with a substance having exonuclease activity; (e) a promoter—complementary to the promoter of the primer A method consisting of synthesizing an extension product from the 3 'end of the sequence to be detected (Japanese Patent Laid-Open No. 11-900600), and synthesizing sense and antisense mRNA and single-stranded cDNA.
  • Polynucleotide-immobilized carriers useful for various methods such as preservation of genes containing the same, methods for preserving genes using the polynucleotide-immobilized carriers, and ss-cDNA, ds-cDNA, sense mRNA or antisense mRN
  • a technique relating to a method for producing A (WO93 / 152228) is known.
  • the method described in the above WO 93/15 228 uses a polynucleotide-immobilized carrier, it uses a restriction enzyme to attach an adapter and to excise cDNA from the immobilized carrier.
  • the synthesis efficiency of the sense strand cRNA on the immobilized carrier is unknown, and such a method cannot synthesize a large amount of sense strand cRNA or cDNA from a trace amount of mRNA without loss.
  • Nerve tissue targeted by neuroscience is often a localized area, and embryos targeted by developmental biology have a small number of cells, and the amount of mRNA and the like obtained therefrom is extremely small. This makes biological analysis difficult.
  • the PCR method is most widely used as a cDNA amplification method, but there is a problem with the typicality of the content of each cDNA, and the number of PCR cycles should be minimized.
  • linear amplification by cDNA synthesis is excellent in representativeness, but there is a problem in application to very small amounts of samples.
  • An object of the present invention is to amplify a very small amount of mRNA expressed in a living body, which is applicable to the production of cDNA libraries, subtraction cloning, and microarrays, and is versatile. It is to provide a method. Disclosure of the invention
  • the present inventors conducted experiments to amplify a trace amount of total mRNA, quantify the fluctuation of a specific mRNA, and easily construct a cDNA library. Tried to develop the technique. After adsorbing mRNA in the sample to the magnetic beads to which the oligo (dT) is bound, double-stranded cDNA is synthesized on the magnetic beads, and has a T7 promoter sequence at the 5 'end. After the addition of the linker, the magnetic beads to which the antisense strand cDNA was bound were removed, and the sense strand cDNA in the supernatant was used as a type II oligo to which the linker having the SP6 promoter sequence was added (Fig.
  • the primers are used to re-assemble the double-stranded cDNA, perform PCR using the known sequence of the linker at both ends of the double-stranded cDNA as a primer to amplify the cDNA hybrid, and then 7 by using the polymerase Zeya SP 6 polymerase, found that the mRNA in a sample can amplify about 1 0 8 times, and have use the amplification method such traces mRNA, the level of mRNA quantitation, and c DN a Live Rally construction is possible, and This has led to the formation.
  • the present invention provides a method for amplifying a small amount of mRNA, which comprises the following steps (1) to (4): a step of adsorbing mRNA in a sample to a carrier to which oligo (dT) is bound; A step of synthesizing the antisense strand cDNA and the sense strand cDNA; 3 adding a linker having the first promoter overnight sequence to at least the 5 'end of the sense strand of the resulting double-stranded cDNA.
  • a step of synthesizing sense strands cRNA and Z or an antisense strand cRNA by an in vitro transcription system (claim 2); and the carrier characterized in that the carrier is magnetic beads.
  • the method for amplifying a small amount of mRNA described in (2) (Claim 3), The linker according to any one of claims 1 to 3, wherein a linker having a non-matching end at the 5 'end and a blunt end at the 3' end is used as the linker having one promoter sequence.
  • a method for amplifying a small amount of mRNA (Claim 4), a linker having a first promoter sequence and a linker having a second promoter sequence and a linker having a second promoter sequence on the 5 ′ side and / or
  • Promote can be specifically transcribed
  • the present invention relates to the method for amplifying a small amount of mRNA according to any one of claims 1 to 9 (claim 10).
  • the present invention provides a method for gene closing (claim 11), which comprises using the method for amplifying a small amount of mRNA according to any one of claims 1 to 10, and any one of claims 1 to 10.
  • a subtraction cloning method characterized in that at least one of a sense strand cDNA, an antisense strand cDNA, a sense strand cRNA or an antisense strand cRNA obtained by the method for amplifying a small amount of mRNA described in the above is labeled and used.
  • a DNA library (claim 14), a carrier to which oligo (dT) is bound, a linker having a first promoter sequence, a linker having a second promoter sequence different from the first promoter sequence
  • a kit for amplifying a small amount of mRNA (claim 15), which comprises an oligo (dT) primer to which a carrier is added (claim 15), or the carrier is a magnetic bead.
  • the present invention relates to a kit for amplifying a small amount of mRNA (claim 16).
  • FIG. 1 is a diagram showing an outline of each step of synthesizing a cDNA hybrid product and a cDNA hybrid product by the microRNA amplification method of the present invention.
  • FIG. 2 is a diagram showing the structure of a linker and a primer used in the method for amplifying a small amount of mRNA of the present invention.
  • FIG. 3 shows the results of amplifying a cDNA hybrid from total RNA by the method for amplifying a small amount of mRNA according to the present invention.
  • the second stage PCR was performed in a 100 x l reaction mixture using the first stage PCR product mixture 5 ⁇ 1. After the reaction of each cycle number, 101 was extracted and subjected to agarose electrophoresis to analyze the amplification of the cDNA hybrid. Lane M moved the DNA molecular weight marker.
  • FIG. 4 is a diagram showing the results of amplifying a cDNA complex from serially diluted total RNA by the method for amplifying a small amount of mRNA of the present invention. The approximate number of cells corresponding to the total amount of RNA used is also shown. PCR was performed in only one stage and was performed for 40 cycles. Lane M migrated the DNA molecular weight marker.
  • FIG. 5 is a view showing a result of synthesizing a sense strand and an antisense strand cRNA hybrid from a cDNA hybrid amplified by the method for amplifying a small amount of mRNA of the present invention. Lane M migrated all RNAs as molecular weight markers.
  • FIG. 6 shows the results of Northern hybridization analysis of the total RNA and the amplified cRNA hybrid.
  • Lanes 1 and 2 show the results of fluorescent staining after electrophoresis of total RNA from rat primary culture hepatocytes and its amplified sense strand cRNA hybrid. After plotting these, arginase mRNA and cRNA were detected (lanes 3 and 4).
  • FIG. 7 is a diagram showing an outline of reverse-Northern hybridization analysis in the present invention.
  • FIG. 8 is a diagram showing the results of reverse-Northern hybridization analysis.
  • FIG. 9 shows the results of preparing a cDNA library using the amplified cDNA hybrid and testing the insert length of each clone. Inserts were observed in all clones except lanes 12. Lane M migrated the DNA molecular weight marker.
  • the method for amplifying a small amount of mRNA according to the present invention includes: (1) a step of adsorbing mRNA in a sample to a carrier to which oligo (dT) is bound; (2) an antisense strand cDNA and a sense strand cDNA on the carrier.
  • the sample in the above step (1) is not particularly limited as long as it contains mRNA of cells and tissues of animals, plants, microorganisms, etc., and a liquid sample containing mRNA such as a cell lysate is used. Is prepared by a conventional method. However, it is preferably performed in a buffer in which the RNase activity is inhibited, such as in the presence of guanidine thiosinate. According to the present invention, for example, after lysing cells with guanidine thiosinate, it is only necessary to isolate about 0.1 ng or more of the total RNA contained in about one cell, and to amplify it. It is sufficient that the target mRNA to be harvested contains about 5 pg or more.
  • the carrier used in step (1) may be any water-insoluble carrier that does not melt during heat denaturation.
  • polyethylene beads, plastic plates, magnetic beads, and the like can be suitably exemplified, and among these, the operation of removing the antisense strand cDNA bound to the carrier together with the carrier in step (2) can be easily performed. Magnetic peas that can be obtained are particularly preferred.
  • steps (1) to (3) on a carrier such as a magnetic bead, the exchange of the reaction solution and the like becomes easy, and the loss of the sample is small.
  • the oligo (dT) in step (1) may be any oligo (dT) synthesized by a conventional method.
  • the degree of polymerization of the oligo (dT) is determined by hybridizing with the poly (A) of the mRNA,
  • the degree of polymerization is not particularly limited as long as it can be adsorbed to a carrier to which oligo (dT) is bound, but is preferably 5 to 200, particularly preferably about 10 to 30.
  • those containing a sequence complementary to the poly (A) of mRNA such as polyU can be used. These uses are also included in the present invention.
  • the method for bonding the oligo (dT) to the carrier such as the magnetic beads is not particularly limited, and examples thereof include a covalent bonding method, an ion bonding method, a physical adsorption method, and a method using a biotin-avidin system. And the like.
  • the oligo (dT) -bound carrier and the poly (A) + RNA-containing sample are incubated in a buffer.
  • the oligo (dT) and mR bound to the carrier It can be carried out by hybridizing NA with poly (A).
  • the incubation for such hybridization is preferably performed at a temperature of 20 to 25 ° C. under gentle stirring for about 5 minutes.
  • a buffer from which the RNase activity has been removed as much as possible is preferable.
  • the carrier-bound oligo (dT) -poly (A) + RNA complex prepared in step (1) is used for the synthesis of antisense strand cDNA and sense strand cDNA on a carrier such as magnetic beads in step (2). Used.
  • the synthesis of the antisense strand cDNA is carried out by using oligo (dT) as a primer, mRNA as type III, and reacting with reverse transcriptase in the presence of deoxynucleotide to obtain poly (A) + RNA-carrier.
  • the binding can be performed by preparing the cDNA complex on a carrier.
  • Synthesis of the sense strand c DNA is a poly (A) + RNA-carrier binding c DN A complex, RN ase poly treated with solution containing (A) + RNA or digesting and removing, rare N a OH solution
  • the poly (A) + RNA is dissociated and removed using a DNA polymerase, and the DNA polymerase is reacted with the carrier-bound antisense strand cDNA in the presence of deoxynucleotides in the form of ⁇ type.
  • This can be performed by preparing a sense-chain cDNA-carrier-bound antisense-strand cDNA complex on a carrier.However, in order to promote ligation of the sense-chain cDNA fragment, a DNA ligase is used. It is preferred that it be present.
  • the 5 ′ end of the obtained double-stranded cDNA is smoothed by treating it with T4 DNA polymerase.
  • a linker having the first promoter sequence is added to at least the 5 'end of the sense strand of the carrier-bound double-stranded cDNA obtained in the step (2) in the step (3).
  • the linker having the first promoter sequence the amount of carrier-bound double-stranded cDNA can be reduced by DNA ligase or the like. Both may be single-stranded or double-stranded as long as they can bind to the 5 'end of the sense strand, but are preferably double-stranded because of the simplicity of operation.
  • a linker having a blunt end at the paired end and the 3 'end can also be used.
  • a linker having a restriction enzyme recognition site (sequence) on the 5 ′ side and / or 3 ′ side of the promoter overnight sequence is used as the linker having the first promoter overnight sequence.
  • a restriction enzyme recognition site sequence
  • the use of a restriction enzyme corresponding to the above recognition site before the step ⁇ ⁇ of amplifying the cDNA hybrid is derived from the sample. c Digestion and degradation of DNA are not preferred.
  • step (3) the 5 ′ end of the antisense strand oligo (dT) of the carrier-bound double-stranded cDNA is fixed on a carrier such as a magnetic bead.
  • a linker having the first promoter sequence can be reliably linked to the 5 ′ end of the sense strand cDNA, and in the subsequent step (2), the linker is added to the 3 ′ end of the sense strand c ′ DNA. It has been devised to be able to specifically ligate an oligo (dT) primer to which a linker having a second motor sequence has been added. Furthermore, if the linker structure having the first promoter sequence is previously incorporated into the structure of the linker directly linked to the mRNA cap site, amplification of full-length cDNA becomes easy.
  • the first promoter sequence is preferably a promoter sequence in which an RNA polymerase capable of specifically transcribing the promoter is present. Particularly, the first promoter sequence and a second promoter sequence described later are preferred. If one sequence is different, for example, if the T7 promoter sequence is used as the first promoter sequence and the SP6 promoter sequence is used as the second promoter sequence, the T7 promoter sequence is By using T7 polymerase, which can be specifically transcribed, The RNA sequence capable of specifically amplifying the antisense strand cRNA in the process ⁇
  • the promoter sequence containing an RNA polymerase capable of specifically transcribing the above promoter includes a T7 promoter sequence (5'— TA ATA C GA CTCAC TATA GG GAGA-3 '; SEQ ID NO: 6), SP6 promoter sequence (5'—A TT TAG GT GA CAC TATA GA AT AC—3'; SEQ ID NO: 7), T3 promoter sequence (5'-A AT TAA CCCTCAC T
  • the carrier-bound double-stranded cDNA to which the linker having the first promoter sequence is added at the 5 ′ end is dissociated in the next step (2), and the antisense strand cDNA is removed together with the carrier.
  • the method for dissociating the double-stranded cDNA is not particularly limited.
  • the double-stranded DNA is heated in a low salt concentration solution at 90 to 100 ° C. for about 1 to 10 minutes. c This is performed by heat denaturing the DNA.
  • Removal of the antisense strand cDNA binding carrier after dissociating the double-stranded cDNA can be performed by a conventional method.
  • the carrier is magnetic beads, a magnetic substance such as a magnet is used. If the carrier is polyethylene beads, it can be removed by centrifugation or filtration.However, magnetic beads can be used as the carrier because the loss of the sense strand cDNA remaining free in the solution can be minimized. It is preferable to use
  • the double-stranded cDNA is re-used by using an oligo (dT) primer to which a linker having a second promoter sequence is added. Synthesized.
  • the solution containing the free sense strand cDNA obtained in the above step (2) is added to the second promoter.
  • An oligo (dT) primer to which a linker having a single sequence is added is added, and the oligo (dT) of the above primer is hybridized to the poly (A) portion at the 3 ′ end of the sense strand cDNA, and the sense strand is A complex of cDNA and the oligo (dT) primer is prepared.
  • the linker having the second promoter sequence in the oligo (dT) primer to which the linker having the second promoter sequence is added the 5 ′ side and / or 3 ′ side of the promoter sequence
  • a linker having a restriction enzyme recognition sequence such as when analyzing cDNA, but it corresponds to a restriction enzyme recognition site before the step of amplifying a cDNA hybrid. It is not preferable to use a restriction enzyme because cDNA derived from the sample may be digested and decomposed.
  • the second promoter sequence is a promoter sequence having an RNA polymerase that can be specifically transcribed, such as a T7 promoter sequence, a $ P6 promoter sequence, and a T3 promoter sequence.
  • the SP6 promoter sequence may be used as the second promoter sequence
  • the first promoter sequence may be used as the second promoter sequence
  • the antisense cRNA can be specifically treated by using SP6 polymerase capable of specifically transcribing the SP6 promoter sequence in step (2).
  • the oligo (dT) primer to which the linker having the second promoter sequence is added can be synthesized by a conventional method using a DNA synthesizer.
  • step (2) PCR is performed using the known sequence of a part of the linker at both ends of the double-stranded cDNA as a primer to amplify the whole cDNA hybrid. PCR can be performed by a conventional method using a thermocycler (manufactured by Perkin-Elmer) or the like.
  • a cDNA hybrid By the process up to the step (1), about 10 g of a cDNA hybrid can be obtained. Use of this cDNA hybrid enables construction of a cDNA library. Alternatively, the total cDNA mixture can be diluted to about several tens of minutes, PCR can be performed, the PCR product can be separated by electrophoresis, etc., and the nucleotide sequence can be directly determined from the cDNA band cut out from the gel. .
  • the sense strands cRNA and Z or antisense strand cRNA can be synthesized in a large amount by an in vitro transcription system using the RNA polymerase.
  • the sense strand cRNA or the antisense strand cRNA can be individually synthesized.
  • step (1) about 100 g of the sense strand and antisense strand (cRNA) hybrid is easily prepared using the cDNA hybrid of about 100 Hg obtained by the steps up to step (1). be able to.
  • This RNA amount of about 100 g is sufficient for ordinary molecular biology experiments.For example, subtraction cloning using a mixture of sense strand cRNA and antisense strand cRNA is performed. It becomes possible.
  • the method for amplifying a small amount of mRNA of the present invention when used, even a very small amount of mRNA that is transiently expressed in a living body can be amplified to an amount sufficient for ordinary molecular biological experiments. Therefore, the method for amplifying a small amount of mRNA of the present invention can be used for gene detection, It can be widely used for the fabrication of microarrays and the manufacture and analysis of microarrays.
  • the method for cloning the gene of the present invention is not particularly limited as long as it is a method using the above-described method for amplifying a small amount of mRNA of the present invention. And gene screening.
  • the cDNA or RNA amplified by the method for amplifying a small amount of mRNA of the present invention is labeled, and the labeled cDNA or RNA is used to perform reverse northern hybridization. Analysis such as determination, subtraction cloning, and DNA array can be performed. In addition, it is also possible to perform normal Southern hybridization / Northern hybridization on the cDNA or cRNA amplified by the present invention. Further, when using the full-length cDNA prepared by the method for amplifying a small amount of mRNA of the present invention, the protein is synthesized by in vitro transcription / translation and analyzed by two-dimensional electrophoresis or the like to express the protein. It is possible to identify the number of genes and expression products with varying amounts.
  • digoxigenin is synthesized from the amplified hybrid double-stranded cDNA obtained by the method for amplifying a small amount of mRNA of the present invention.
  • DIG Digoxigenin
  • a sense strand cDNA hybrid is synthesized in vitro in the presence of a substrate liponucleotide.
  • antisense strand cRNA is synthesized in vitro from the cDNA of a specific gene, which is electrophoresed on a denaturing agarose gel, and then transferred to a nylon membrane or nitrocellulose membrane.
  • An antisense strand cRNA immobilized on the membrane is allowed to react with a sense strand cRNA hybrid labeled with DIG or the like, and then the hybridized cRNA is subjected to, for example, Alfa phosphatase.
  • Anti-DIG antibody and chemiluminescent substrate The detection can be performed by using the method described above. By performing such reverse uno-hybridization separately on mRNA derived from cells under specific conditions and mRNA derived from control cells, and comparing the results, the expression level in vivo during development can be reduced. Changes in mRNA levels of fluctuating genes or genes whose expression level fluctuates in the presence of a specific drug can be detected.
  • the subtraction cloning method of the present invention at least one of a sense strand cDNA, an antisense strand cDNA, a sense strand cRNA or an antisense strand cRNA obtained by the method for amplifying a small amount of mRNA of the present invention is used.
  • any subtraction cloning method is not particularly limited as long as it is a method used after labeling, the following cloning by subtraction can be exemplified.
  • the mRNA derived from cells under specific conditions is amplified by the method for amplifying a small amount of mRNA of the present invention to prepare a large amount of a sense strand cRNA hybrid.
  • mRNA from control cells is amplified by the method for amplifying a small amount of mRNA of the present invention to prepare a large amount of an antisense strand cRNA hybrid.
  • labeling is performed using a biotinylated liponucleotide as a substrate.
  • the sense strand cRNA hybrid and the biotin-labeled antisense strand cRNA hybrid are hybridized, and subsequently, avidin-bound magnetic beads are reacted.After that, hybridization is not performed using a magnetic substance or the like.
  • Antisense strand cRNA and sense strand cRNA-antisense strand cRNA complex are removed out of the system, and non-hybridized sense derived from mRNA expressed only in cells under specific conditions After obtaining the strand cRNA, converting it to type II, synthesizing the antisense strand cDNA, amplifying the cDNA by PCR, and then transforming Escherichia coli using the plasmid into which the cDNA has been inserted. After that, the diff Perform Arenal Hybridization. In such a subtraction cloning method, for example, it is possible to start from an early embryo of one mouse and a small brain nucleus / tissue region of one mouse.
  • microarray of the present invention at least one of a sense strand cDNA, an antisense strand cDNA, a sense strand cRNA or an antisense strand cRNA obtained by the method for amplifying a trace amount of mRNA of the present invention is used.
  • Any type of microarray can be used.
  • Microarrays can be prepared using DNA microarrays and the latest PCR method (Shujunsha, published March 16, 2000) Conventionally known methods, such as the method described on page 34, can be used.
  • genome analysis using such a microarray can also be performed by a conventionally known method such as a method described in a literature (Nature Vol. 407, September 7 (2000) Appendix 9-19).
  • the cDNA library of the present invention may be any library as long as the cDNA hybrid obtained by the method for amplifying a small amount of mRNA of the present invention is introduced into a vector.
  • Conventionally known vectors for preparing a library such as a plasmid vector, a phage vector, and a cosmid vector, can be exemplified.
  • a restriction enzyme for amplifying a small amount of mRNA of the present invention, since it is not necessary to use a restriction enzyme until the amplified cDNA complex is prepared in steps (1) to (4), deletion of a part of cDNA is caused. There is no.
  • a cDNA library can be started from, for example, an early embryo of one mouse and a minute brain nucleus / tissue region of one mouse.
  • a cDNA complex synthesized using the reverse transcriptase from the cDNA complex obtained in step (2) is used as the cDNA complex used in the preparation of the cDNA library.
  • a stump sequence obtained by digestion with a restriction enzyme is used, which results in the loss of a portion of the cDNA, but in the present invention, the restriction enzyme digestion is used.
  • DNA fragment prepared using the 3 ' ⁇ 5' exonuclease activity of DNA polymerase and having specific restriction enzyme cleavage sequences at both ends it can be added to a plasmid vector. It is possible to insert one copy in a directional manner. As described in detail in Examples described later, for example, when a T4 DNA polymerase is allowed to act in a reaction solution containing only dATP and dTTP and not containing dCTP and dGTP. Due to its 3 ' ⁇ 5' exonuclease activity, the nucleotide portion consisting of C and / or G is removed from the 3 'end until A or T appears, forming a 5' protruding end. A cDNA fragment or the like having the enzymes AVaI and AccI stumps can be prepared, and the use of such a cDNA fragment enables the unidirectional insertion of one copy into a plasmid vector.
  • the kit for amplifying a small amount of mRNA according to the present invention includes a carrier such as a magnetic bead to which an oligo (dT) is bound, a linker having a first promoter sequence, and a second promoter different from the first promoter sequence.
  • a carrier such as a magnetic bead to which an oligo (dT) is bound
  • a linker having a first promoter sequence and a second promoter different from the first promoter sequence.
  • the kit for amplifying a small amount of mRNA of the present invention is used, the subtraction cloning, production and analysis of a microarray, and construction of a cDNA library can be easily performed.
  • Example 1 Micro mRNA amplification method (MSMAP); see Fig. 1]
  • RNA sample solution Total RNA was extracted from rat primary cultured hepatocytes by acid, guanidine thiosinate, phenol, and clonal form extraction methods (AGP C method), and an aqueous solution of 101 containing 1 g of total RNA was extracted. Used as starting material. This was serially diluted with sterile water, RNA amount (ng) 1 0 2, 1 0, 1, 1 0 - set to 1, the sample liquid and a negative control containing 1 0 2, 1 0 _ 3 10 X 1 of each sample solution having an RNA amount (ng) of 0 was prepared.
  • RNA 1 II g The aqueous solution 101 containing the above-mentioned RNA 1 II g was kept at 65 ° C for 5 minutes, then rapidly cooled on ice, and 25 g of oligo (dT) magnetic beads (Dynal Dynabeads 01igo (dT) 2 5 ) Suspension was added to 101 2X binding buffer [1X binding buffer composition: 10 mM Tris-HCl (pH 7.5), 0.5 M sodium chloride, 1 mM EDTA] After incubation at room temperature for 5 minutes, the poly (A) + RNA was annealed to the oligo (dT). The poly (A) RNA-adsorbed oligo (dT) beads were washed twice with 501 (0.3X binding buffer) by repeated suction and dispersion using a magnet (MPC-E / E1 manufactured by Dynal). .
  • TE solution TA (hereinafter referred to as TE solution) 501.
  • the beads were mixed with 19 mM Tris-HCl (pH 8.3), 9 I mM potassium chloride, 4.6 mM magnesium chloride, 10 mM ammonium sulfate, 3.8 mM DTT, 0.15 mM NAD, ImM dNTP (dATP, dCTP, dGTP, dTTP), Escherichia coli DNA polymerase I (Gibco BRL) 5 units, E. coli DNA ligase (GibcoBRL) 5 units, E.
  • coli RNase H (manufactured by Gibco BRL) Suspended in a reaction mixture of 201 containing 1 knit, incubated at 16 ° C for 1 hour to synthesize sense strand cDNA, and immobilized double strand with magnetic beads c DNA was obtained. Furthermore, 0.51 of 1 unit ZIT4 DNA polymerase (Roche Diagnpstics) was added, and the mixture was incubated at 16 ° C for 10 minutes to thoroughly smooth the 5 'end. The reaction was stopped by adding 0.5 M EDTA (pH 8.0) 0.81 and the double-stranded cDNA beads were washed three times with TE solution 501.
  • EDTA pH 8.0
  • An upper strand consisting of the 52-mer nucleotide sequence represented by SEQ ID NO: 1 and a lower strand oligonucleotide consisting of the 50-mer nucleotide sequence represented by SEQ ID NO: 2 are synthesized by a conventional method using a DNA synthesizer. Done. The 5 'end of the lower strand was phosphorylated using T4 polynucleotide kinase (Takara Shuzo). Both chains were annealed by a conventional method to form a double chain, and the MSMAP-5′-T7 linker shown in FIG. 2 was obtained.
  • the above double-stranded cDNA beads were purified from 66 mM Tris-HCl (pH 7.5), 5 mM magnesium chloride, 5 mM DTT, ImM ATP, MS MAP-5 '— T7 linker-lg, T4 DNA ligase. (Takara Shuzo Co., Ltd.) Suspend in 20i reaction mixture containing 350 units (final addition of enzyme solution 1H1) Incubation was continued at 4 ° C for 1 ⁇ ⁇ (continuous stirring in a rote overnight), and MSMAP—5′-T7 linker was ligated to the 5 ′ end of the double-stranded cDNA. (Figure 1 step 3).
  • the reaction was stopped by adding 0.5 M EDTA (pH 8.0) 0.8 n 1, and the linker-coupled double-stranded cDNA beads were washed three times with TE solution 501. Subsequently, the beads were suspended in 20 ⁇ 1 TE solution, incubated at 95 ° C. for 5 minutes, and the sense strand cDNA was dissociated by heat melting. The antisense strand cDNA beads were attracted to a magnet, and the supernatant containing the sense strand cDNA was collected (step 4 in Fig. 1).
  • antisense strand cDNA was synthesized to obtain double-stranded cDNA. After completion of the reaction, the mixture was frozen on dry ice and stored at 125 ° C. In this state, it could be stored for at least one year.
  • the cDNA hybrid was amplified by two-step PCR.
  • Primers include the known sequence of the linker portion at both ends of the double-stranded cDNA,
  • the 5 'PCR primer consisting of the nucleotide sequence of 2 Omer represented by SEQ ID NO: 4 ( Figure 2) and the 3' PCR primer consisting of the nucleotide sequence of 20 mer represented by SEQ ID NO: 5 ( Figure 2) was used.
  • the first stage PCR consisted of 20 mM Tris-HCl (pH 8.2), 10 mM potassium chloride, 6 mM ammonium sulfate, 2 mM magnesium chloride, 0.1% Triton III-100, 0.2 mM dNTP (dATP, dCTP, dGTP, dTTP), 10 ⁇ g / m1 BSA, double-stranded cDNA solution 2aI, 5 'PCR primer The reaction was carried out in a 100 1 reaction mixture containing 0.1 nmol, 3 ′ PCR primer, 0.1 nmol, and 3 units of thermotolerant DNA polymerase (Stratagene Pfu DNA polymerase).
  • the PCR conditions were as follows: a cycle of heat denaturation at 94 ° C for 1 minute, annealing at 57 ° C for 2 minutes, and extension reaction at 72 ° C for 2 minutes was repeated 15 times. Done.
  • the 1st-stage PCR product mixture 51 is dispensed into 5 tubes, and the other components in each tube are the same as the 1st-stage reaction mixture of 100 ⁇ 1. Made in.
  • the PCR was performed under the same conditions as in the first step. A mixture of 5 products (corresponding to 1 g 200 of 1 g of total RNA) was collected into one tube, and 0.5 MEDTA (pH 8.0) 101 and 10% SDS 10 ⁇ 1 were combined. In addition, the reaction was stopped.
  • RNA lg When 0 equivalents were applied to the second stage PCR, it was found that usually about lO ⁇ g of amplified cDNA hybrid was obtained.
  • the amplified cDNA in each cycle of the second stage PCR was subjected to electrophoresis on a 1% agarose gel, followed by fluorescent staining with ethidium bromide. As described above, amplification of cDNA having a length of about 400 bp was confirmed. As described above, as the number of cycles of the second stage PCR, about 15 cycles in which the synthesized amount was not saturated were usually used.
  • the total RNA as the starting material could be reduced to 0.1 ng. Assuming mRNA A contained is this a 2 pg, when amplifies the whole amount, will be amplified c DN A theories on 2 mg is obtained, 1 0 9 times the possible amplification up to this stage It became clear that it was.
  • sense strand and antisense strand cRNA were specifically synthesized as follows using T7 and SP6 RNA polymerase, respectively.
  • DNase I (10 units / 1 Roche Diagnostics 3 ⁇ 4S3 ⁇ 4) 21 containing no RNase activity was added, and the type c cDNA was degraded by incubating at 37 ° C for 15 minutes. Finally, the reaction was stopped by adding 0.81 EDTA (pH 8.0), followed by 2/3 volumes of 5 M ammonium acetate (15.2 1) and 2 volumes of ethanol. (76 ⁇ 1) was added and stored on ice for 10 minutes, and the product was recovered by centrifugation. The collected product (precipitate) was washed with 0.1 ml of 70% ethanol, air-dried, and dissolved in 10 n1 of sterile water.
  • RNA fluorescent band was detected and further blotted on a nylon membrane by a conventional method.
  • the arginase cDNA was used as a type II, and a DIG-labeled antisense strand cRNA was synthesized using a kit manufactured by Roche Diagnostics, and the resulting DNA was used as a probe for hybridization.
  • luminescent signals were detected on X-ray film using alkaline phosphatase-conjugated anti-dig antibody and the chemiluminescent substrate CDP-Star. About 1.6 kb of arginase mRNA and sense strand cRNA were detected.
  • cRNA derived from the cloned gene is immobilized on a filter, and the labeled opposite-strand cDNA hybrid from the test sample is hybridized thereto.
  • Fig. 7 shows the principle of the method that makes it possible to measure a constant mRNA level.
  • Fig. 8 shows an experimental example.
  • Antisense strand cRNA was synthesized by an in vitro transcription system using ⁇ -actin, dariceraldehyde-13-phosphate dehydrogenase (G3PDH), and arginase cDNA as type III. 5 g of each cRNA was electrophoresed on 1% agarose / MOPS Z-formaldehyde gel and then blotted onto a nylon membrane by a conventional method.
  • cDNA hybrids before or after amplification by PCR are combined with plasmid vectors such as pUC18 / 19 and pGEM-3Zf (+) / (_) using the special sequences constructed at both ends. It is possible to insert directionally and only one copy.
  • each cDNA can be unidirectionally inserted into the Aval-Accl site of the plasmid. Also each. Since both ends of DNA are not phosphorylated, ligation of cDNAs does not occur and only one copy is inserted.
  • the reaction was stopped by adding 0.5 M EDTA (pH 8.0) 4 it 1.
  • Glycogen as a carrier Add 20 g (11) of (Roche Diagnostics), extract twice with TE-saturated phenol 1001, and extract twice with TE-saturated phenol Z chloroform (50:50) 1001
  • After 2 extractions with 100 ml of chloroform add 3 volumes (67 ml) of 5 M ammonium acetate and 2 volumes (334 ml) of ethanol to the product mixture and store on ice for 10 minutes Later.
  • the product was recovered by centrifugation.
  • the recovered product (precipitate) was washed with 0.5% 70% ethanol, air-dried, and dissolved in TE solution 201.
  • pUC19 was digested with Aval and Accl, and after agarose electrophoresis, a gel containing the band of the vector portion was cut out, and the DNA was purified using Glassmilk (Bio101). Approximately 5 ng of the AvaI / AccI terminal composition cDNA hybrid and approximately 5 ng of the AvaIZAccI digested pUC19 were ligated using T4 DNA ligase, and E. coli JM109 combi Transformed the tent cell. Transformants of about 200 colonies were obtained. Among them, plasmids were extracted from 12 randomly selected clones after liquid culture. This was digested with C1aI and HindIII and analyzed by 1% agarose electrophoresis.
  • Figure 9 shows the results. From this, it was confirmed that the 11 clones contained an insert considered to be derived from cDNA, and it was found that the length was about 200 to 100 Obp. From the above, it was revealed that a cDNA library consisting of about 40,000 clones can be easily constructed using plasmid as a vector when 1 g of the cDNA hybrid was used. . Industrial applicability
  • the method for amplifying a small amount of mRNA of the present invention is a versatile method capable of amplifying a small amount of mRNAZc DNA derived from cells and tissues localized in higher organisms such as humans. And CD on magnetic beads
  • cDNA synthesis with NA synthesis and PCR followed by in vitro RNA synthesis, amplification of mRNA by about 100 million times can be easily achieved.
  • the library preparation can be performed sufficiently, which is extremely useful for isolating various cDNAs from localized cells.
  • using the promoter sequences of T7 and SP6 linked to both ends of the cDNA it is possible to specifically synthesize both sense and antisense strands of cRNA. Specific labeled probes can be prepared.
  • Such a chain-specific labeled probe is extremely useful for highly sensitive analysis such as a DNA microarray.
  • in vitro synthesis of proteins using specifically synthesized sense strand cRNA is also possible.
  • the sequence constituting the potential restriction enzyme recognition site at each end of the cDNA enables one-directional and one-copy insertion into plasmid, which facilitates analysis after cloning.
  • the present invention is highly versatile for isolating cDNA derived from a small amount of a sample and analyzing gene expression thereof, and is extremely useful for discovery and development of gene resources.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

明 細 書 微量 m R N A及び c D N Aの増幅方法 技術分野
本発明は、 試料中に存在する微量の m R N Aの増幅方法、 より詳しく は、 c D N Aライブラリ一の作製、 サブトラクシヨンクローニング、 マ イクロアレイへの適用が可能である、 P C R法を組み合わせた、 生体内 で発現している超微量の m R N Aを感度よく増幅する方法に関する。 背景技術
マウス、 ヒトなどの哺乳類のゲノムの全遺伝子数は従来約 1 0万個程 度と予想されており、 これに対応する m R N A / c D N Aを網羅的にク ローン化することは、 遺伝子のコードするタンパク質の配列予測、 遺伝 子の構造予測、 D N Aマイクロアレイの構築等の観点から、 実用的にも 基礎研究の上でも極めて重要であり、 現在、 米国、 日本をはじめ世界的 な取り組みがなされている。 例えば、 マウスでは既に 3万種類程度の c D N Aがクローン化されているが、 これらは主に、 成体あるいは胚に適 当量以上存在する m R N Aに由来するものであると考えられ、 残された c D N Aの単離が今後の課題であるといわれている。 多細胞高等生物に おいては、 相当部分の遺伝子は、 特化された一部の細胞に限局して発現 している可能性が考えられており、 例えば、 脳視床下部における下垂体 ホルモン放出因子遺伝子や、 塍島細胞における糖調節ホルモン遺伝子等 は、 極めて限られた少数の細胞においてのみ、 その発現が見られる。 あ る一群の遺伝子は特定の発生段階の限局された領域でのみ発現している 可能性があり、 また、 他の一群の遺伝子は各種ストレスや病原体の感染 など環境要因の変動にさらされた細胞でのみ誘導される可能性がある。 そして、一般に、より多くの c D N A種をクロ一ン化するためには、種々 の発生段階にあるより多くの組織、 細胞種について環境条件を多様化さ せて調べることの有用性が指摘されている。
産業上有用な遺伝子は、 その産物である m R N Aあるいはタンパク質 の解析や調製が容易な c D N Aの形で単離されることが望ましく、 c D N Aの単離は m R N Aを出発材料とするが、 上記のように m R N A種の 多くは生体の極く限られた組織、 細胞にのみ発現しており、 得られる m R N Aが微量なため、 c D N Aの調製が困難な場合が多々あり、 現在ま でに多く の微量 m R N A Z c D N Aの増幅法が提案されている ( Dulac'C.&Axel'R. u995)A novel family of genes encoding putative pheromone receptors in mammals. Cell Vol.83, pp.195 -206 > Mackler S.A.,Brooks,B.P.&Eberwine,J.H. (l992)Stimulus -induced coordinate changes in mRNA abundance in single postsynaptic hippocampal CAl nuerons. Neuron Vol.9,pp .539-548 ) が、 それぞれ c D N Aライブラ リーの調製、 ハイプリダイゼ一ションプローブの調製に特化したもので あり、 汎用性を有しないものがほとんどである。
その他、 迅速かつ簡便に被検試料中の特定の核酸配列を検出する方法 として、 検出すべき配列に操作可能に結合したプロモータ一を含む 2本 鎖核酸の製造方法であって、 (a) オリゴヌクレオチドプロモータ一一プ ライマーを得; (b) プロモー夕一—プライマーと検出すべき核酸配列と がハイプリダイズする条件下で、 該プロモ一夕一一プライマーと該検出 すべき配列を含有する核酸とを接触させ、 (c) プロモータ一一プライマ 一の 3 ' 末端から、 検出すべき核酸配列に相補的な伸長産物を製造さ せ; ( d) 工程(c)の産物を 3 ' 一 5 ' ェキソヌクレアーゼ活性を有する物 質と接触させ;(e)プロモータ——プライマーのプロモーターと相補的な 伸長産物を、 検出すべき配列の 3 ' 末端から合成することからなる方法 (特開平 1 1一 8 9 6 0 0号公報) や、 センス及びアンチセンス m R N Aや一本鎖 c D N Aの合成を含む遺伝子の保存等種々の方法に有用なポ リヌクレオチド固定化担体、 そのポリヌクレオチド固定化担体を用いる 遺伝子の保存方法、 並びに、 s s — c DNA、 d s — c DNA、 センス mRN Aもしくはアンチセンス mRN Aの製造方法 (WO 9 3 / 1 5 2 2 8 ) に関する技術が知られている。 上記 WO 9 3 / 1 5 2 2 8に記載 された方法は、 ポリヌクレオチド固定化担体を用いているものの、 ァダ プ夕一の付着や固定化担体からの c D N Aの切出しに制限酵素を用いて おり、また固定化担体上でのセンス鎖 c RN Aの合成効率が不明であり、 かかる方法では微量の mRN Aから大量のセンス鎖 c RNAや c DNA を遺失なく合成することができない。
神経科学が対象とする神経組織は限局された領域であることが多く、 また発生生物学が対象とする初期胚は細胞数が少なく、 そこから得られ る mRN A等は極微量であり、 分子生物学的解析を困難にしている。 現 在、 c DNA増幅法として P C R法が最も広く使われているが、 各 c D N Aの含有率の代表性に問題があり、 P C Rサイクル数は極力少なくす るべきである。 一方、 c DNA合成による線型増幅は、 代表性に優れて いるが、 極微量の試料への適用には問題があった。 本発明の課題は、 c DNAライブリーの作製、 サブトラクシヨンクローニング、 マイクロア レイへの適用が可能で、 かつ汎用性のある、 生体内で発現している超微 量の mRN Aを増幅する方法を提供することにある。 発明の開示
本発明者らは、 今回、 微量全 mRNAを増幅し、 特定の mRNAの変 動を定量化すると共に、 c DN Aライブラリーを容易に構築できる実験 手技の開発を試みた。 そして、 オリゴ(d T)を結合させた磁気ビーズに 試料中の mR N Aを吸着させた後、 磁気ビーズ上で 2重鎖 c D NAを合 成し、 5 ' 末端に T 7プロモーター配列を有するリンカ一を付加した後、 アンチセンス鎖 c DN Aが結合した磁気ビーズを除去し、 上清中のセン ス鎖 c DNAを铸型として、 S P 6プロモータ一配列を有するリンカ一 を付加したオリゴ(d T)プライマ一を用いて、 2重鎖 c DNAを再度合 成し、 この 2重鎖 c D N A両端のリンカ一部分の既知配列をプライマー として P C Rを行って c D N A混成物を増幅し、 次いで T 7ポリメラー ゼゃ S P 6ポリメラーゼを用いることにより、 試料中の mRNAを 1 0 8倍程度増幅しうることを見い出し、 かかる微量 mRNAの増幅法を用 いて、 mRNAのレベルの定量、 及び c DN Aライブラリーの構築が可 能であることを確認し、 本発明を完成するに至った。
すなわち本発明は、 以下の①〜⑥の工程を含むことを特徴とする微量 mRNAの増幅方法①試料中の mRNAを、 オリゴ(d T)を結合させた 担体に吸着させる工程;②担体上でアンチセンス鎖 c DN A及びセンス 鎖 c DN Aを合成する工程;③得られる 2重鎖 c DNAの少なくともセ ンス鎖の 5 ' 末端に第 1のプロモ一夕一配列を有するリンカーを付加す る工程;④ 2重鎖 c DN Aを解離させ、 担体に結合したアンチセンス鎖 c D N Aを担体と共に除去する工程;⑤解離したセンス鎖 c DNAを铸 型として、 第 2のプロモーター配列を有するリンカ一を付加したオリゴ (d T)プライマーを用いて、 2重鎖 c D N Aを合成する工程;⑥ 2重鎖 c DNA両端のリンカ一部分の配列をプライマ一として P CRを行い、 c DN A混成物を増幅する工程;(請求項 1 ) や、 以下の①〜⑦の工程を 含むことを特徴とする微量 mRNAの増幅方法①試料中の mRNAを、 オリゴ(d T)を結合させた担体に吸着させる工程;②担体上でアンチセ ンス鎖 c DNA及びセンス鎖 c DN Aを合成する工程;③得られる 2重 鎖 c DNAの少なくともセンス鎖の 5 ' 末端に第 1のプロモ一夕一配列 を有するリンカーを付加する工程;④ 2重鎖 c DNAを解離させ、 担体 に結合したアンチセンス鎖 c DN Aを担体と共に除去する工程;⑤解離 したセンス鎖 c DN Aを铸型として、 第 2のプロモー夕一配列を有する リンカ一を付加したオリゴ(d T)プライマーを用いて、 2重鎖 c DNA を合成する工程 ;⑥ 2重鎖 c DNA両端のリンカ一部分の配列をプライ マーとして P C Rを行い、 c DN A混成物を増幅する工程;⑦前記第 1 のプロモーター配列及び Z又は第 2のプロモーター配列を利用して、 ィ ンビト口転写系によりセンス鎖 c RN A及び Z又はアンチセンス鎖 c R NAを合成する工程;(請求項 2) や、 担体が磁気ビーズであることを特 徴とする請求項 1又は 2記載の微量 mRNAの増幅方法(請求項 3 )や、 第 1のプロモー夕一配列を有するリンカ一として、 その 5 ' 末端が非対 合末端、 3 ' 末端が平滑末端であるリンカ一を使用することを特徴とす る請求項 1〜 3のいずれか記載の微量 mRNAの増幅方法 (請求項 4) や、 第 1のプロモータ一配列を有するリンカ一及び Z又は第 2のプロモ —夕一配列を有するリンカ一として、 該プロモーター配列の 5 ' 側及び /又は 3 ' 側に制限酵素認識配列を有するリンカ一を使用することを特 徵とする請求項 1〜 4のいずれか記載の微量 mRNAの増幅方法 (請求 項 5 ) や、 第 1のプロモー夕一配列と第 2のプロモーター配列が異なる ことを特徴とする請求項 1〜 5のいずれか記載の微量 mRNAの増幅方 法 (請求項 6 ) や、 第 1のプロモーター及び/又は第 2のプロモーター が、 該プロモ一夕一を特異的に転写することができる RN Aポリメラー ゼが存するプロモ一夕一であることを特徴とする請求項 1〜 6のいずれ か記載の微量 mRNAの増幅方法 (請求項 7 ) や、 プロモー夕一特異的 に転写することができる R N Aポリメラーゼが、 T 7プロモータ一、 S P 6プロモーター、 T 3プロモーターから選ばれることを特徵とする請 求項 7記載の微量 mRNAの増幅方法 (請求項 8) や、 第 1のプロモー ター配列を有するリンカーが、 配列番号 1及び 2で表される塩基配列か らなることを特徴とする請求項 1〜 8のいずれか記載の微量 mR N Aの 増幅方法 (請求項 9) や、 第 2のプロモーター配列を有するリンカ一を 付加したオリゴ(d T)プライマーが、 配列番号 3で表される塩基配列か らなることを特徴とする請求項 1〜 9のいずれか記載の微量 mR N Aの 増幅方法 (請求項 1 0 ) に関する。
また本発明は、 請求項 1〜1 0のいずれか記載の微量 mRNAの増幅 方法を用いることを特徴とする遺伝子のクロ一エング方法(請求項 1 1 ) や、 請求項 1〜 1 0のいずれか記載の微量 mR N Aの増幅方法により得 られるセンス鎖 c DNA、 アンチセンス鎖 c DNA、 センス鎖 c RNA 又はアンチセンス鎖 c RNAの少なくとも 1つを標識化して用いること を特徴とするサブトラクションクローニング方法 (請求項 1 2 ) や、 請 求項 1〜 1 0のいずれか記載の微量 mRNAの増幅方法により得られる センス鎖 c DNA、 アンチセンス鎖 c DNA、 センス鎖 c RNA又はァ ンチセンス鎖 c RN Aの少なくとも 1つを用いることを特徴とするマイ クロアレイ (請求項 1 3) や、 請求項 1〜1 0のいずれか記載の微量 m RN Aの増幅方法により得られる c DN Aがベクターに導入されている ことを特徴とする c DNAライブラリー (請求項 1 4 )や、 オリゴ(d T) を結合させた担体、 第 1のプロモーター配列を有するリンカ一、 前記第 1のプロモーター配列とは異なる第 2のプロモーター配列を有するリン カーを付加したオリゴ(d T)プライマ一を含むことを特徴とする微量 m RN A増幅用キッ ト (請求項 1 5 ) や、 担体が磁気ビーズであることを 特徴とする請求項 1 5記載の微量 mRNA増幅用キッ ト (請求項 1 6 ) に関する。 図面の簡単な説明
第 1図は、 本発明の微量 mRN A増幅法により、 c DNA混成物や c RN A混成物を合成する、 各工程別の概略を示す図である。
第 2図は、 本発明の微量 mRNAの増幅方法に用いられるリンカーや プライマ一の構造を示す図である。
第 3図は、 本発明の微量 mR N Aの増幅方法により、 全 RNAから c DN A混成物を増幅した結果を示す図である。 第 1段階の P C R産物混 合液 5 ^ 1 を用いて、 第 2段階の P C Rを 1 0 0 x l の反応混合液中で 行った。 各サイクル数の反応の後 1 0 1 を抜取り、 ァガロース電気泳 動を行なって c DN A混成物の増幅を解析した。 レーン Mは DNA分子 量マ一カーを?永動した。
第 4図は、 本発明の微量 mRNAの増幅方法により、 段階希釈した全 RNAから c DN A混成物を増幅した結果を示す図である。 用いた全 R N A量に相当する細胞の概数も示した。 P C Rは 1段階のみで、 40サ ィクル行なった。 レーン Mは DNA分子量マーカーを泳動した。
第 5図は、 本発明の微量 mRNAの増幅方法により増幅した c DNA 混成物から、 センス鎖およびアンチセンス鎖 c RNA混成物を合成した 結果を示す図である。 レーン Mは分子量マーカーとして全 RN Aを泳動 した。
第 6図は、 全 RNAおよび増幅 c RNA混成物のノーザンハイブリダ ィゼ一シヨン解析の結果を示す図である。 レーン 1および 2は、 ラッ ト 初代培養肝細胞由来の全 RN Aおよびその増幅センス鎖 c RN A混成物 を電気泳動後、 蛍光染色した結果を示す。 これらをプロッ ト後、 アルギ ナ一ゼ mRNAおよび c RNAを検出した (レーン 3および 4)。
第 7図は、 本発明におけるリバース一ノーザンハイブリダィゼ一ショ ン解析の概要を示す図である。 第 8図は、 リバース一ノーザンハイブリダイゼ一ション解析の結果を 示す図である。
第 9図は、 増幅 c D N A混成物を用いて、 c DNAライブラリーを作 製し、 各クローンのインサートの長さを検定した結果である。 レーン 1 2を除く全てのクローンにインサートが認められた。 レーン Mは DNA 分子量マーカ一を泳動した。 発明を実施するための最良の形態
本発明の微量 mR N Aの増幅方法としては、 ①試料中の mRN Aを、 オリゴ(d T)を結合させた担体に吸着させる工程 ;②担体上でアンチセ ンス鎖 c DNA及びセンス鎖c DN Aを合成する工程;③得られる 2重 鎖 c DNAの少なくともセンス鎖の 5 ' 末端に第 1のプロモータ一配列 を有するリンカーを付加する工程;④ 2重鎖 c DNAを解離させ、 担体 に結合したアンチセンス鎖 c DN Aを担体と共に除去する工程 ;⑤解離 したセンス鎖 c D N Aを铸型として、 第 2のプロモータ一配列を有する リンカ一を付加したオリゴ(d T)プライマーを用いて、 2重鎖 c DNA を合成する工程;⑥ 2重鎖 c DNA両端のリンカ一部分の配列をプライ マ一として P C Rを行い、 c DN A混成物を増幅する工程; を含むこと を特徴とする方法や、 上記①〜⑥の工程に加えて、 ⑦前記第 1のプロモ 一夕一配列及び Z又は第 2のプロモーター配列を利用して、 インビトロ 転写系によりセンス鎖 c R N A及び Z又はアンチセンス鎖 c R N Aを合 成する工程 ; をも含むことを特徴とする方法であれば特に制限されるも のではなく、 その一例が図 1に示されている。
上記工程①における試料としては、 動物、 植物、 微生物等の細胞 ·組 織等の mR N Aを含むものであれば特に制限されるものではなく、 これ ら細胞溶解液等の mR N Aを含む液体サンプルの調製は常法により行う ことができるが、 グァニジンチオシァネートの存在下等の RN a s e活 性が阻害された緩衝液中で行うことが好ましい。 本発明によると、 例え ば、 細胞をグァニジンチオシァネートを用いて溶解した後、 細胞 1個程 度に含まれる全 RNA量 0. 1 n g程度以上を単離すればよく、 その中 に増幅しょうとする標的 mRNAが 5 p g以上程度含まれていればよい, また、 工程①において用いられる担体としては、 水不溶性の担体で、 加 熱変性時に溶融しないものであればどのようなものでもよいが、 ポリエ チレンビーズ、 プラスチックプレート、 磁気ビーズ等を好適に例示する ことができるが、 これらの中でも工程④における担体に結合したアンチ センス鎖 c DN Aを担体と共に除去する操作を簡便に実施することがで きる磁気ピーズが特に好ましい。 また、 工程①〜③を磁気ビ一ズ等の担 体上で行うことにより、 反応液の交換等が容易となり、 試料の逸失が少 ない。
工程①におけるオリゴ(d T)は常法により合成されたものであればど のようなものでもよく、 オリゴ(d T)の重合度としては mRNAのポリ (A)とハイプリダイズして、 mRNAをオリゴ(d T)を結合させた担体に 吸着させうる重合度であれば特に制限されないが、 5〜 2 0 0、 特に 1 0〜 3 0程度が好ましい。 また、 オリゴ(d T)に代えてポリ U等の mR N Aのポリ(A)に相補的な配列を含んでいるものも使用することができ. これらの使用も本発明に含まれる。 かかるオリゴ(d T)と上記磁気ビー ズ等の担体とを結合させる方法としては特に制限されるものではなく、 例えば、 共有結合法、 イオン結合法、 物理吸着法、 ピオチン一アビジン 系を用いる方法等を例示することができる。
工程①のオリゴ(d T)を結合させた担体に試料中の mRNAを吸着さ せる反応は、 オリゴ(d T)結合担体とポリ(A)+RN A含有試料とを緩衝 液中でインキュベーションし、 担体に結合しているオリゴ(d T)と mR N Aのポリ(A)とをハイブリダィズすることにより行うことができる。 かかるハイブリダイゼ一ションのためのィンキュベーションは、 温度 2 0〜 2 5 °Cで 5分程度穏やかな攪拌下で行うことが好ましい。 上記緩衝 液としては、 RN a s e活性が極力除去された緩衝液が好ましい。 また、 インキュベーション後、 上記緩衝液等を用いて、 試料中の担体非結合成 分を不溶性担体から洗浄 ·除去することが好ましい。
上記工程①で調製された担体結合ォリゴ(d T)—ポリ(A)+R N A複 合体は、 工程②の磁気ビーズ等の担体上でのアンチセンス鎖 c DNA及 びセンス鎖 c DNAの合成に用いられる。 アンチセンス鎖 c DNAの合 成は、 オリゴ(d T)をプライマーとし、 mRNAを铸型として、 デォキ シヌクレオチドの存在下、 逆転写酵素を用いて反応させ、 ポリ(A)+RN A—担体結合 c DN A複合体を担体上で調製することにより行うことが できる。 センス鎖 c DNAの合成は、 ポリ(A)+RNA—担体結合 c DN A複合体を、 RN a s e含有液で処理してポリ(A)+RNAを消化 ·除去 するか、 希 N a OH溶液を用いてポリ(A)+RNAを解離 '除去し、 次い であるいは並行して、 担体結合アンチセンス鎖 c DN Aを铸型として、 デォキシヌクレオチドの存在下、 DN Aポリメラーゼを反応させ、 セン ス鎖 c DN A—担体結合アンチセンス鎖 c D N A複合体を担体上で調製 することにより行うことができるが、 センス鎖 c DN A断片の連結を促 進するため、 DNAリガ一ゼを存在させておく ことが好ましい。 また、 得られる 2重鎖 c D N Aの 5 ' 末端を T 4 D N Aポリメラーゼで処理す ることにより平滑化しておくことが好ましい。
次いで、 上記工程②で得られた担体結合 2重鎖 c DNAの少なくとも センス鎖の 5 ' 末端に第 1のプロモータ一配列を有するリンカーが工程 ③において付加される。 かかる第 1のプロモーター配列を有するリンカ ―としては、 D N Aリガーゼ等により担体結合 2重鎖 c D N Aの少なく ともセンス鎖の 5 ' 末端に結合しうるものであれば、 単鎖あるいは 2重 鎖のどちらでもよいが、 操作の簡便性からして 2重鎖が好ましく、 例え ば、 その 5 ' 末端が非対合末端、 3 ' 末端が平滑末端であるリンカ一を 使用することもできる。 また、 上記第 1のプロモ一夕一配列を有するリ ンカーとして、 該プロモ一夕一配列の 5 ' 側及び /又は 3 ' 側に制限酵 素認識部位 (配列) を有するリンカ一を使用することが、 c DNAを解 析するときなど好ましい場合が多いが、 c DN A混成物を増幅する工程 ⑥までの間に、 上記認識部位に相当する制限酵素を使用することは、 試 料に由来する c DNAを消化'分解する可能性があるので好ましくない。 そして、 この工程③においては、 担体結合 2重鎖 c DNAのアンチセン ス鎖のオリゴ(d T)からなる 5 ' 末端は磁気ビーズ等の担体上に固定さ れているため、この断端が遮蔽されており、まずセンス鎖 c D N Aの 5 ' 末端に第 1のプロモータ一配列を有するリンカ一を確実に結合させるこ とができ、 後の工程⑤においてセンス鎖 c'D N Aの 3 ' 末端に第 2のプ 口モーター配列を有するリンカ一を付加したオリゴ(d T)プライマ一を 特異的に連結できるよう工夫されている。 さらに、 上記第 1のプロモー ター配列を有するリンカー構造を、 事前に mRNAのキヤップ部位に直 接連結するリンカーの構造に組み込むと、 完全長 c DNAの増幅が容易 となる。
上記第 1のプロモーター配列としては、 該プロモータ一を特異的に転 写することができる R N Aポリメラーゼが存するプロモーター配列であ ることが好ましく、 特に第 1のプロモーター配列と後述する第 2のプロ モー夕一配列とが異なる場合、 例えば、 第 1のプロモータ一配列として T 7プロモータ一配列を、 第 2のプロモーター配列として S P 6プロモ —ター配列を用いる場合、 工程⑦において、 T 7プロモー夕一配列を特 異的に転写することができる T 7ポリメラ一ゼを用いることにより、 ェ 程⑦においてアンチセンス鎖 c R N Aを特異的に増幅することができる < 上記プロモーター特異的に転写することができる R N Aポリメラーゼが 存するプロモーター配列としては、 T 7プロモーター配列 ( 5 ' — TA ATA C GA C T C A C TATA G G GAGA- 3 ' ;配列番号 6)、 S P 6プロモータ一配列 ( 5 ' — A TT TAG GT GA C A C TATA G A AT A C— 3 ' ;配列番号 7 )、 T 3プロモーター配列 ( 5 ' - A AT TAA C C C T C A C TAAAG G G - 3 ' ;配列番号 8 ) 等を具体的 に例示することができる。 そして、 これら第 1のプロモーター配列を有 するリンカ一は、 D N A合成装置を用いて常法により調製することがで きる。
上記 5 ' 末端に第 1のプロモーター配列を有するリンカーが付加され た担体結合 2重鎖 c D N Aは、 次の工程④において、 2重鎖が解離させ られ、 アンチセンス鎖 c D N Aが担体と共に除去される。 2重鎖 c D N Aを解離する方法としては特に制限されるものではなく、 例えば低塩濃 度溶液中で 9 0〜: L 0 0 °Cにて約 1〜 1 0分間加熱して 2重鎖 c D N A を熱変性することにより行われる。 かかる 2重鎖 c D N Aを解離させた 後のアンチセンス鎖 c D N A結合担体の除去は常法により行うことがで き、 例えば、 担体が磁気ビーズの場合は磁石等の磁性体を用いて、 また 担体がポリエチレンビーズの場合は遠心分離若しくは濾過等により除去 することができるが、 溶液中に遊離状態で残存するセンス鎖 c D NAの 逸失を最少限度に留めることができる点で、 担体として磁気ビーズを用 いることが好ましい。
次の工程⑤において、 工程④で解離したセンス鎖 c D N Aを铸型とし て、 第 2のプロモータ一配列を有するリンカーを付加したオリゴ(d T) プライマーを用いて、 2重鎖 c D N Aが再び合成される。 上記工程④に より得られる遊離状態のセンス鎖 c D N Aを含む溶液に、 第 2のプロモ 一ター配列を有するリンカーを付加したオリゴ(d T)プライマーが加え られ、 センス鎖 c DNAの 3 ' 端のポリ(A)部分に上記プライマーのォ リゴ(d T)をハイプリダイズさせ、センス鎖 c DN Aと前記オリゴ(d T) プライマ一との複合体を作製する。 上記第 2のプロモータ一配列を有す るリンカ一を付加したオリゴ( d T )プライマーにおける第 2のプロモ一 ター配列を有するリンカ一としては、 該プロモーター配列の 5 ' 側及び /又は 3 ' 側に制限酵素認識配列を有するリンカ一を使用することが、 c DN Aを解析するときなど好ましい場合が多いが、 c DNA混成物を 増幅する工程⑥までの間に、 制限酵素認識部位に相当する制限酵素を使 用することは試料に由来する c D N Aを消化 · 分解する可能性があるの で好ましくない。 上記第 2のプロモーター配列としては、 T 7プロモ一 夕一配列、 $ P 6プロモーター配列、 T 3プロモ一ター配列等の特異的 に転写することができる R N Aポリメラ一ゼが存するプロモー夕一配列 であることが好ましく、 特に第 2のプロモーター配列と前述の第 1のプ 口モータ一配列とが異なる場合、 例えば、 第 2のプロモーター配列とし て S P 6プロモ一夕一配列を、 第 1のプロモータ一配列として T 7プロ モ一夕一配列を用いる場合、 工程⑦において、 S P 6プロモータ一配列 を特異的に転写することができる S P 6ポリメラーゼを用いることによ り、 アンチセンス c RNAを特異的に増幅することができる。 そして、 これら第 2のプロモ一夕一配列を有するリンカ一を付加したオリゴ(d T)プライマーは、 DN A合成装置を用いて常法により合成することがで さる。
センス鎖 c D N Aと前記オリゴ(d T)プライマ一との複合体を用い、 センス鎖 c D N Aを铸型として、 デォキシヌクレオチドの存在下、 DN Aポリメラーゼ又は逆転写酵素を反応させることにより、 両 5 ' 端にプ 口モーター配列を有するリンカ一部分が付加された 2重鎖 c D N Aを合 成することができる。 工程⑥では、 この 2重鎖 c DNA両端のリンカ一 部分の既知配列をプライマーとして P C Rを行い、 全 c DNA混成物を 増幅する。 P C Rはサ一マルサイクラ一 (Perkin-Elmer 社製) 等を用 いて常法により行うことができる。 工程⑥までの過程により 1 0 g程 度の c DN A混成物を得ることができる。 この c D N A混成物を用いる と、 c D N Aライブラリ一の構築が可能となる。 また、 全 c DNA混成 物を数十分子種程度に希釈し、 P C Rを行い、 この P C R産物を電気泳 動等により分離し、 ゲルから切り出した c D N Aバンドから塩基配列を 直接決定することもできる。
工程⑥により大量に増幅された、 両端にプロモータ一配列を有するリ ンカ一部分が付加された 2重鎖 c D N Aにおける前記第 1のプロモー夕 一配列及び/又は第 2のプロモ一夕一配列を利用して、 RN Aポリメラ ーゼを用いるインビトロ転写系により、 センス鎖 c RN A及び Z又はァ ンチセンス鎖 c RN Aを大量に合成することができる。 前記のように、 第 1のプロモ一夕一配列と第 2のプロモーター配列が異なる場合、 セン ス鎖 c RNA又はアンチセンス鎖 c RN Aを個別に合成することができ る。 この工程⑦により、 工程⑥までの過程により得られた 1 0 H g程度 の c D N A混成物を用いて、 1 0 0 g程度のセンス鎖及びアンチセン ス鎖 c RN A混成物を容易に調製することができる。 この 1 0 0 g程 度の RNA量は、 通常の分子生物学的実験には十分な量であり、 例えば、 センス鎖 c R N A及びアンチセンス鎖 c RN A混成物を用いてサブトラ クシヨンクロ一ニングが可能となる。
上記のように、 本発明の微量 mRNAの増幅方法を用いると、 生体内 で一過性に発現する超微量の mR N Aであっても、 通常の分子生物学的 実験に十分な量まで増幅することができることから、 本発明の微量 mR N Aの増幅方法は、 遺伝子の検出やクロ一ニング、 c DNAライブラリ 一の作製、 マイクロアレイの作製 ·解析等に幅広く利用することができ る。 本発明の遺伝子のクローニング方法としては、 上記本発明の微量 m RNAの増幅方法を用いる方法であれば特に制限されるものではなく、 かかる遺伝子のクローニング方法により、 遺伝子のクローニングの他、 遺伝子の検出や遺伝子のスクリーニングを行うことができる。 より具体 的には、 本発明の微量 mRN Aの増幅方法により増幅された c D N A又 は RN Aを標識化し、 これら標識化された c DNA又は c RNAを用 いて、 リバ一スーノーザンハイブリダィゼーシヨン、 サブトラクシヨン クローニング、 D N Aアレイ等の解析を行うことができる。 また、 本発 明により増幅された c D N A又は c R N Aに対して、 通常のサザンハイ ブリダイゼーションゃノーザンハイブリダイゼーシヨンを行うことも可 能である。 さらに、 本発明の微量 mRN Aの増幅方法により調製した完 全長 c DN Aを用いる場合には、 インビト口転写 ·翻訳によりタンパク 質を合成し、 2次元電気泳動法等により解析することにより、 発現量の 変動する遺伝子数や発現産物の同定が可能となる。
上記リバース一ノーザンハイプリダイゼーション方法としては、 その 一例が図 7に示されているように、 本発明の微量 mR N Aの増幅方法に より得られる増幅された混成 2重鎖 c DNAから、 まずジゴキシゲニン (Digoxigenin; D I G) 等で標識された基質リポヌクレオチドの存在 下にセンス鎖 c RN A混成物をインビトロで合成する。 他方、 特定の遺 伝子のク口一ン化 c D N Aからアンチセンス鎖 c RNAをインビトロで 合成し、 これを変性ァガロースゲル等を用いて電気泳動後、 ナイロンメ ンブランや二トロセルロース膜に写しとつて膜上に固定し、 この膜上に 固定されたアンチセンス鎖 c RNAに、 前記 D I G等で標識化されたセ ンス鎖 c R N A混成物を反応させ、 次いでハイブリダィズした c RNA を、 例えばアル力リフォスファタ一ゼ結合抗 D I G抗体と化学発光基質 等を用いて検出することにより行うことができる。 かかるリバースーノ 一ザンハイブリダイゼーシヨンを、 特定条件下の細胞由来の mR N Aと 対照細胞由来の mRN Aとに個別に行い、 それらの結果を比較すること により、 発生過程において生体内で発現量の変動する遺伝子や特定の薬 剤の存在下で発現量の変動する遺伝子等の mRN Aレベルの変化を検出 することができる。
本発明のサブトラクションクローニング方法としては、 上記本発明の 微量 mRN Aの増幅方法により得られるセンス鎖 c DNA、 アンチセン ス鎖 c DNA、 センス鎖 c RNA又はアンチセンス鎖 c RNAのうちの 少なくとも 1つを標識化して用いる方法であれば、 どのようなサブトラ クションクロ一ニング方法であっても特に制限されるものではないが、 以下に示すサブトラクションによるクローニングを例示することができ る。 特定条件下の細胞由来の mRN Aを、 本発明の微量 mR N Aの増幅 方法により増幅し、 大量のセンス鎖 c RNA混成物を調製する。 一方、 対照細胞由来の mRN Aを、 本発明の微量 m R N Aの増幅方法により増 幅し、 大量のアンチセンス鎖 c RNA混成物を調製する。 かかるアンチ センス鎖 c RNA混成物の調製に際して、 ピオチン化リポヌクレオチド を基質に用いて標識する。 次に、 前記センス鎖 c RNA混成物とビォチ ン標識アンチセンス鎖 c RNA混成物をハイプリダイゼーションさせ、 続いてアビジン結合磁気ビーズを反応せしめた後、 磁性体等を用いてハ イブリダィズしていないアンチセンス鎖 c RNAや、 センス鎖 c RNA 一アンチセンス鎖 c RN A複合体を系外に除去し、 特定条件下の細胞の みに発現している mRN Aに由来するハイブリダイズしていないセンス 鎖 c RNAを得て、 これを錶型とし、 アンチセンス鎖 c DNAを合成し た後、 P C Rにより c DNAを増幅し、 次いで、 この c DNAが挿入さ れたプラスミ ドを用いて大腸菌を形質転換し、 以後、 常法によりディフ アレンシャル ·ハイブリダイゼーションを行う。 かかるサブトラクショ ンクローニング方法においては、 例えば、 1個のマウスの初期胚、 1匹 のマウスの微小な脳神経核 ·組織領域から出発することが可能である。 本発明のマイクロアレイとしては、 上記本発明の微量 mRN Aの増幅 方法により得られるセンス鎖 c DNA、 アンチセンス鎖 c DNA、 セン ス鎖 c RN A又はアンチセンス鎖 c RNAのうちの少なくとも 1つを用 いて作製されるマイクロアレイであればどのようなものでもよく、 マイ クロアレイの作製は、 「D N Aマイクロアレイと最新 P C R法」 (秀潤社 2 0 0 0年 3月 1 6 日発行) の 2 6〜 34頁に記載された方法など、 従 来公知の方法により行うことができる。 また、 かかるマイクロアレイを 用いたゲノム解析も、 文献 (Nature Vol.407, September 7 (2000) Appendix 9-19) に記載された方法など、 従来公知の方法により行うこ とができる。
本発明の c DNAライブラリ一としては、 上記本発明の微量 mRN A の増幅方法により得られる c DN A混成物がベクターに導入されている ものであればどのようなものでもよく、 上記ベクターとしては、 プラス ミ ドベクター、 ファージベクタ一、 コスミ ドベクターなど従来公知のラ イブラリ一作製用のベクターを例示することができる。 本発明の微量 m RNAの増幅方法によると、 工程①〜⑥により増幅 c DN A混成物を調 製するまで制限酵素を使用する必要がないことから、 一部の c DNAの 欠失を招くことがない。 かかる c DNAライブラリ一の作製は、 例えば、 1個のマウスの初期胚、 1匹のマウスの微小な脳神経核 ·組織領域から 出発することが可能である。 また、 c DN Aライブラリー作製に用いら れる c DN A混成物として、 工程⑦で得られた c RN A混成物から、 さ らに逆転写酵素を用いて合成した c DN A混成物を用いることもできる < また、 先行技術 (W 09 3 1 5 2 2 8 ) では、 c DNAをプラスミ ドベクターに一方向性に挿入するため、 制限酵素消化による断端配列を 利用しており、 これにより一部の c DN Aが失われることになるが、 本 発明においては、 制限酵素消化を用いることなく、 DNAポリメラ一ゼ の 3 ' → 5 ' ェキソヌクレアーゼ活性を利用して調製した、 その両端に 特異的な制限酵素切断端配列を有する c DN A断片を利用してプラスミ ドベクターに一方向性かつ 1コピーの挿入を行うことが可能となる。 後 述する実施例において詳しく説明されているように、 例えば、 d AT P と d TT Pのみ含有し、 d C T Pと d G T Pを含まない反応液中で、 T 4 D N Aポリメラ一ゼを作用させると、その 3 ' → 5 ' ェキソヌクレア —ゼ活性により、 3 ' 端側から C及び/又は Gからなるヌクレオチド部 分が A又は Tが現出するところまで除去されて 5 ' 突出末端が形成され. 制限酵素 A V a I及び A c c I断端を有する c DNA断片等を調製する ことができ、 かかる c DN A断片を利用するとプラスミ ドベクタ一に一 方向性かつ 1コピーの挿入を行うことができる。
本発明の微量 mRN A増幅用キッ トとしては、 オリゴ(d T)を結合さ せた磁気ビーズ等の担体、 第 1のプロモータ一配列を有するリンカ一、 前記第 1のプロモーター配列とは異なる第 2のプロモーター配列を有す るリンカ一を付加したオリゴ(d T)プライマ一を含むものであれば特に 制限されるものではないが、 前記工程①〜⑦で使用する各種緩衝液等を 含むものが好ましい。 本発明の微量 mRNA増幅用キッ トを用いると、 前記サブトラクションクロ一ニングゃ、 マイクロアレイの作製 ·解析や、 c DN Aライブラリ一の構築を簡便に行うことができる。
以下に、 実施例を揚げてこの発明を更に具体的に説明するが、 この発 明の範囲はこれらの例示に限定されるものではない。
実施例 1 [微量 mRNA増幅法 (MSMAP) ; 図 1参照]
[RN Aサンプル液の調製] ラッ ト初代培養肝細胞から酸 · グァニジンチオシァネー卜 · フエノー ル · クロ口ホルム抽出法 (AGP C法) により全 RNAを抽出し、 1 gの全 RN Aを含む 1 0 1 の水溶液を出発材料とした。 これを滅菌水 を用いて段階希釈し、 RNA量 (n g) が 1 02、 1 0、 1、 1 0 - 1、 1 0— 2、 1 0 _ 3を含む各サンプル液及びネガティブコントロールとし て RNA量 (n g) が 0のサンプル液それぞれ 1 0 X 1 を調製した。
[オリゴ(d T)磁気ビーズへのポリ(A)+RN Aの吸着 (図 1ステツプ 1 )]
上記 RN A 1 II gを含む水溶液 1 0 1 を 6 5 °Cにて 5分間保温後氷 上で急冷し、 2 5 gのオリゴ(d T)磁気ビーズ(Dynal社製 Dynabeads 01igo(dT)2 5) を懸濁した 1 0 1 の 2 X結合緩衝液 [ 1 X結合緩衝液 の組成: 1 0 mMトリス塩酸 ( p H 7. 5 )、 0. 5 M塩化ナトリウム、 1 mM EDTA] に加え、 室温で 5分間インキュベートし、 ポリ(A) + RNAをオリゴ(d T)にァニールさせた。 ポリ(A)RNA吸着オリゴ(d T)ビーズを磁石(Dynal社製 MPC-E/E1) による吸引と分散を繰り返す ことにより、 5 0 1の 0. 3 X結合緩衝液にて 2回洗滌した。
[磁気ビーズ上での 2重鎖 c DN Aの合成 (図 1ステップ 2 )] 上記ポリ(A)+RN A吸着オリゴ(d T)磁気ビーズを、 2 0 mMトリス 塩酸 (pH 8. 4)、 5 0mM塩化カリウム、 2. 5 mM塩化マグネシゥ ム、 1 0mM DTT、 1 mM d N T P (d AT P、 d CT P、 d G T P、 d TT P)、 0. 1 mg/m 1 B S A、 M— ML V逆転写酵素(Gibco BRL社製 SuperScriptll) 2 0 0ュニッ トを含む 2 0 1 の反応混合液 に懸濁し、 4 2°Cにて 5 0分間 ( 1 0分ごとに攪拌しビ一ズを浮遊させ ながら) インキュベートして、 アンチセンス鎖 c DN Aを合成した。 0. 5 M ED TA ( p H 8. 0 ) 0. 8 1 を加えて反応を停止し、 mRN AZ c DNAビーズを 1 OmMトリス塩酸 (pH 8. 0 ) / 1 mM ED T A (以下、 TE溶液という) 5 0 1 にて 3回洗滌した。 続いて、 同 ビーズを 1 9 mMトリス塩酸 (pH 8. 3)、 9 I mM塩化カリウム、 4. 6mM塩化マグネシウム、 1 0 mM硫酸アンモニゥム、 3. 8 mM DT T、 0. 1 5 mM NAD, I mM d N T P (dAT P、 d CT P、 d GTP、 d TTP)、 大腸菌 DNAポリメラ一ゼ I (Gibco BRL社製) 5ユニット、 大腸菌 DNAリガーゼ (GibcoBRL社製) 5ユニット、 大 腸菌 R N a s e H (Gibco BRL社製) 1ュニッ トを含む 2 0 1の反応 混合液に懸濁し、 1 6 °Cにて 1時間インキュベートして、 センス鎖 c D NAを合成し、 磁気ビーズ固定 2重鎖 c DNAを得た。 さらに、 1ュニ ッ ト Z I T 4 D N Aポリメラーゼ (Roche Diagnpstics社製) 0. 5 1 を追加し、 1 6 °Cにて 1 0分間インキュベートして、 5 ' 末端の 平滑化を徹底した。 0. 5M E D T A ( p H 8. 0 ) 0. 8 1 を加え て反応を停止し、 2重鎖 c D N Aビーズを T E溶液 5 0 1 にて 3回洗 滌した。
[ c D N A 5 ' 末端へのプロモーター配列の付加とセンス鎖 c D N Aの 分取 (図 1ステップ 3および 4)]
配列番号 1で表される 5 2 m e rの塩基配列からなる upper strand と、 配列番号 2で表される 5 0 m e rの塩基配列からなる lower strand のオリゴヌクレオチドを、 D N Aシンセサイザーを用いて常法により合 成した。 lower strandの 5 ' 末端は T 4ポリヌクレオチドキナーゼ (宝 酒造社製) を用いてリン酸化した。 両鎖を常法によりァニールし、 2重 鎖とし、 図 2に示した M S M A P— 5 ' — T 7リンカ一を得た。 上記の 2重鎖 c DNAビーズを 6 6 mMトリス塩酸 (p H 7. 5 )、 5mM塩化 マグネシウム、 5mM DTT、 I mM AT P, M S MAP - 5 ' — T 7 リンカ一 l g、 T 4 DNAリガーゼ (宝酒造社製) 3 5 0ュニッ ト を含む 2 0 iの反応混合液に懸濁し (最後に酵素液 1 H 1 を加えて反 応開始)、 4 °Cにて 1晚インキュベートし (ローテ一夕一にて持続的に撹 拌)、 MSMAP— 5 ' 一 T 7 リンカ一を 2重鎖 c DNAの 5 ' 末端に連 結した (図 1ステップ 3 )。 0. 5 M ED TA ( p H 8. 0) 0. 8 n 1 を加えて反応を停止し、 リンカ一連結 2重鎖 c DNAビーズを TE溶 液 5 0 1 にて 3回洗滌した。 続いて、 同ビーズを T E溶液 2 0 X 1 に 懸濁し、 9 5 °Cにて 5分間インキュベートして、 熱融解によりセンス鎖 c D N Aを解離させた。アンチセンス鎖 c D N Aビーズを磁石に吸引し、 センス鎖 c D N Aを含む上清を分取した (図 1ステップ 4)。
[ c D N A 3 ' 末端へのプロモーター配列の付加とアンチセンス鎖 c D NAの再合成 (図 1ステップ 5)]
センス鎖 c D N A溶液 4 β I に、 配列番号 3で表される 6 8 m e rの 塩基配列からなる、 S P 6プロモ一夕一配列を付加したオリゴ(d T)プ ライマー MSMAP— 3 ' — S P 6プライマー 5 0 n gを加え、 合計 5 l とした。 9 0 °Cにて 3分間加熱した後、 氷上にて急冷し、 これに各 終濃度 2 0 mMトリス塩酸 (P H 8. 4)、 5 0mM塩化カリウム、 2. 5mM塩化マグネシウム、 1 OmM DTT、 1 mM d NT P ( d AT P、 d CT P、 d GTP、 d TT P)、 0. l mg/m l B S Aを加え、 4 2 °Cにて 5分間プレインキュベ一トした後、 さらに M— ML V逆転写 酵素 (Gibco BRL社製 SuperScriptll) 2 0 0ユニッ ト ( 1 1 ) を加 え 2 0 1 の反応混合液とした。 4 2 °Cにて 1時間ィンキュベートして、 アンチセンス鎖 c D N Aを合成し、 2重鎖 c D N Aとした。反応終了後、 ドライアイス上にて凍結させ、 一 2 5°Cに保管した。 この状態で少なく とも 1年間保存することができた。
[ c D N A混成物の増幅 (図 1ステップ 6 ) ]
2段階の P C Rにより、 c D N A混成物の増幅を行なった。 プライマ —としては、 2重鎖 c DN A両端のリンカ一部分の既知配列、 すなわち 配列番号 4で表される 2 O me rの塩基配列からなる 5 ' P CRプライ マー (図 2 ) と、 配列番号 5で表される 2 0 m e rの塩基配列からなる 3 ' P CRプライマー (図 2) を用いた。 第 1段階の P CRは、 2 0 m M卜リス塩酸 (p H 8. 2)、 l OmM塩化カリウム、 6 mM硫酸アンモ 二ゥム、 2 mM塩化マグネシウム、 0. 1 % Triton Χ-100, 0. 2 mM d NT P (d AT P、 d CT P、 d GT P、 d TT P)、 1 0 ^ g /m 1 B S A、 上記 2重鎖 c D N A溶液 2 a I 、 5 ' P CRプライマー 0. 1 nmo l、 3 ' P C Rプライマ一 0. l nmo l、 熱耐性 DNAポリメ ラーゼ (Stratagene社製 Pfu DNAポリメラ一ゼ) 3ユニッ トを含む 1 0 0 1の反応混合液中で行なった。 なお、 P C Rの条件は、 9 4°Cに て 1分間熱変性、 5 7 °Cにて 2分間アニーリング、 7 2 °Cにて 2分間伸 長反応させるというサイクルを 1 5回繰り返すという条件で行なった。 第 2段階の P C Rは、 第 1段階の P C R産物混合液 5 1ずつを 5本の チューブに分注し、 各チューブの他の組成は第 1段階と同様の 1 0 0 ^ 1 の反応混合液中で行なった。 なお、 P C Rの条件は、 上記第 1段階と 同様の条件で行なった。 5本の産物混合液 (全 RNA 1 gの 1 Z2 0 0に相当) を 1本に集め、 0. 5 M E D T A ( p H 8. 0) 1 0 1 と 1 0 % S D S 1 0 ^ 1 とを加えて反応を停止した。 TE飽和フエノール 5 0 0 /i l による抽出 2回、 T E飽和フエノール Zクロロフオルム ( 5 0 : 5 0) 5 0 0 1 による抽出 2回、 クロロフオルム 5 0 0;½ 1 によ る抽出 2回の後、 残された約 4 5 0 i 1 の産物混合液に、 キャリア一と してグリコーゲン (Roche Diagnostics社製) 2 0 g ( 1 1 ) を加 え、 さらに 5 M酢酸アンモニゥム 2Z 3容 ( 3 0 0 1 )、 ェタノール 2 容 ( 1. 5 m l ) を加え、 氷上に 1時間保管後、 遠心により産物を回収 した。 沈殿を 7 0 %エタノール 1 m 1 にて洗滌した後、 風乾し、 TE溶 液 2 0 1 に溶解した。 以上の方法により、 全 RNA l gの 1ノ 2 0 0相当量を第 2段階の P C Rに適用した場合、 通常、 約 l O ^ gの増幅 c DNA混成物が得られることがわかった。 図 3に示すように、 第 2段 階の P CRの各サイクルにおける増幅 c DNA混成物を 1 %ァガロース ゲルにて電気泳動後、 ェチジゥムブロマイ ドにて蛍光染色すると、 1 2 サイクル以上で約 4 0 0 0 b pの長さに及ぶ c D N Aの増幅が認められ た。 上記のように、 通常、 第 2段階の P C Rのサイクル数としては、 合 成量が飽和していない 1 5サイクル程度を用いた。 また、 図 4に示すよ うに、 出発材料の全 RNAは 0. 1 n gまで少量化が可能であった。 こ れに含まれる mRN Aを 2 p gと仮定し、 この全量を増幅した場合、 理 論上 2 mgの増幅 c DN Aが得られることになり、 この段階までで 1 0 9倍の増幅が可能であることが明らかになった。
[c RNA混成物の合成 (図 1ステップ 7 )]
上記増幅 c DN A混成物を錶型として、 センス鎖およびアンチセンス 鎖 c RNAをそれぞれT 7および S P 6 RNAポリメラーゼを用いて 以下のように特異的に合成した。 40 mMトリス塩酸 ( p H 8. 0 )、 6 mM塩化マグネシウム、 1 0 mM DTT、 2mMスペルミジン、 1 mM NT P (AT P, C T P、 GT P、 UT P)、 RN a s eインヒビ夕一 (Roche Diagnostics社製) 4ユニッ ト、 増幅 c DNA混成物 0. 3 g、 T 7 RNAポリメラ一ゼ (Roche Diagnostics社製) または S P 6 R N Aポリメラーゼ (Roche Diagnostics社製) 40ユニッ トを含む 2 0 a 1 の反応混合液を 3 7 °Cにて 2時間ィンキュベートして、 c RNA を合成した。 続いて、 RN a s e活性を含まない DN a s e I ( 1 0ュ ニッ ト/ 1 Roche Diagnostics ¾S¾) 2 1 を加え、 さらに 3 7 °Cに て 1 5分間インキュベートすることにより铸型 c DNAを分解し、 最後 に 0. E D T A ( p H 8. 0) 0. 8 1 を加えて反応を停止した, 続いて 5 M酢酸アンモニゥム 2/3容 ( 1 5. 2 1 )、 エタノール 2容 ( 7 6 ^ 1 ) を加え、 氷上に 1 0分間保管後、 遠心により産物を回収し た。 回収した産物 (沈殿物) を 7 0 %エタノール 0. 1 m l にて洗滌し た後、 風乾し、 滅菌水 1 0 n 1 に溶解した。 なお、 上記の結果、 増幅 c D N A混成物 0. 3 2 gから、 通常、 約 1 0 ^ gの増幅 c RN A混成物 が得られることがわかった。 以上のことから、 出発材料の の全 R N A (約 2 0 n g mRN A) から起算してルーチンに 1 08倍、 0. 1 n gの全 RNAから出発した場合理論上最大で 1 01 2倍の増幅が可能 であると計算された。 図 5に示すように、 増幅 c RNA混成物を 1 %ァ ガロース ZMO P S酢酸 Zホルムアルデヒドゲルにて電気泳動後、 ェチ ジゥムブロマイ ドにて蛍光染色すると、 約 2 0 0 0 bの長さに及ぶ c R N Aの合成が認められた。
[増幅 c RN A混成物のノーザンハイプリダイゼーション解析 (図 6 )] ラッ ト初代培養肝細胞に由来する全 RN A 2 g、 およびその増幅セ ンス鎖 c RNA混成物 0. 3 gを 1 %ァガロース/ MOP S酢酸/ホ ルムアルデヒドゲルにて電気泳動後、 RN A蛍光バンドを検出し、 さら に常法によりナイロンメンブレンにブロットした。 アルギナーゼ c D N Aを铸型にして Roche Diagnostics社製のキッ トを用いて D I G標識し たアンチセンス鎖 c RNAを合成し、 これをプローブに用いてハイプリ ダイゼ一シヨンを行なった。 同社のプロトコルに従い、 アルカリフォス ファタ一ゼ結合抗 D I G抗体と化学発光基質 CDP-Starを用い、 発光シ グナルを X線フィルムに検出した。 約 1. 6 k bのアルギナーゼ mR N Aおよびセンス鎖 c RN Aが検出された。
[標識 c RN A混成物を用いたリバ一スーノーザンハイプリダイゼーシ ョン解析 (図 7, 8 )]
クローン化遺伝子由来の c RNAをフィルターに固定し、 これに、 検 体試料に由来する標識反対鎖 c RN A混成物をハイブリダィズさせ、 特 定の mRN Aのレベルを測定することを可能にする方法の原理を図 7に. 実験例を図 8に示した。 β—ァクチン、 ダリセルアルデヒド一 3—リン 酸デヒドロゲナーゼ(G 3 P DH)、 およびアルギナーゼの c DN Aを铸 型として、インビトロ転写系によりアンチセンス鎖 c RN Aを合成した。 各 c RNA O. 5 gを 1 %ァガロース/ MO P S酢酸 Zホルムアルデ ヒドゲルにて電気泳動後、 常法によりナイロンメンブレンにブロッ トし た。一方、 1 0 _ 6Mデキサメサゾンおよび 3 X I 0 _8Mグルカゴンにて 2時間処理あるいは無処理のラッ ト初代培養肝細胞の全 RN Aに由来す る増幅 c D N A混成物を铸型として、 Roche Diagnostics社製のキッ ト を用いて D I G標識したセンス鎖 c RNA混成物を合成した。 同社のプ ロトコルに従い、 アンチセンス鎖 c RNAプロッ トに対して、 0. 5 a g/m 1 の D I G標識センス鎖 c RNA混成物を 6 8。Cにて 1晚反応さ せ、 ハイプリダイズした RN Aに由来するシグナルを化学発光として X 線フィルムに検出した。 その結果、 /3—ァクチン、 G 3 P DHの mRN Aレベルに変化が認められないのに対し、 デキサメサゾンおよびグルカ ゴン処理によりアルギナーゼ mR N Aレベルが上昇するのが確認できた, [ c D N A混成物よりの c DNAライブラリーの作製 (図 9 )]
P C Rによる増幅前あるいは増幅後の c D N A混成物は、 その両端に 構築された特殊な配列を利用して、 pUC18/19、 pGEM-3Zf(+)/(_)等のプ ラスミ ドベクターに一方向性に、 かつ 1コピーのみ挿入することが可能 である。 c D N A混成物の 5 ' 末端の配列
5 ' 一 C C GGA - 3 '
3 ' 一 GGC CT - 5 '
に対して、 d AT Pと d TT Pのみが存在し、 (1 < 丁?と(1 &丁?が存 在しない反応液中で、 T 4 D N Aポリメラーゼを作用させると、 その 3 ' → 5 ' ェキソヌクレア一ゼ活性により、 5 ' - C C G G A - 3 '
3 ' - T - 5 '
の 5 ' 突出末端を形成できる。 この末端は、 pUC18/19、 pGEM-3Zf(+)/(-) 等のポリリンカ一部位を Av a I にて消化した際形成される 5 ' 突出末 端と相補的である。 同様にして、 c DNA混成物の 3 ' 末端の配列
5 , - C GA - 3 '
3 , - GCT - 5 '
に対して、
5 ' - C G A - 3 '
3 ' ~ T 一 5 ,
の 5 ' 突出末端を形成できる。 この末端は、 pUC18/19、 pGEM-3Zf(+)/(_) 等のポリリンカ一部位を A c c I にて消化した際形成される 5 ' 突出末 端と相補的である。 この特質を利用して、 各 c DN Aを一方向性にブラ スミ ドの Av a l — A c c l部位に挿入できる。 また、 各。 DN Aの両 端はリン酸化されていないため、 c DNA同士の連結がおこらず、 1コ ピ一のみ挿入される。
以下に、 前記増幅 c D N A混成物を pUC19 に揷入し、 c DNAライ ブラリーを構築した実験例を示す。 5 0 mMトリス塩酸 ( p H 8. 8)、 7mM塩化マグネシウム、 1 5mM硫酸アンモニゥム、 0. 1 mM ED TA、 1 0 mMメルカプトエタノール、 0. 2 mg/m l B S A、 0. 1 mM dATP、 0. 1 mM d TTP、 増幅 c DNA混成物 1. 2 g、 T 4 D N Aポリメラーゼ (Roche Diagnostics社製) 2. 5ュニッ トを含む 1 0 0 1 の反応混合液を 3 7 °Cにて 5分間インキュベートし て、 3 ' → 5 ' ェキソヌクレアーゼ活性により c DNAの両 3 ' 端より Cおよび Gヌクレオチド残基を除去した。 0. 5 M EDTA ( p H 8. 0 ) 4 it 1 を加えて反応を停止した。 キャリア一としてグリコーゲン (Roche Diagnostics社製) 2 0 g ( 1 1 ) を加え、 TE飽和フエ ノール 1 0 0 1 による抽出 2回、 T E飽和フエノール Zクロロフオル ム ( 5 0 : 5 0 ) 1 0 0 1 による抽出 2回、 クロロフオルム 1 0 0 z 1 による抽出 2回の後、産物混合液に 5 M酢酸アンモニゥム 2 Z 3容( 6 7m l )、 エタノール 2容 ( 3 3 4m l ) を加え、 氷上に 1 0分間保管後. 遠心により産物を回収した。 回収した産物 (沈殿物) を 7 0 %ェタノ一 ル 0. 5m l にて洗滌した後、 風乾し、 TE溶液 2 0 1 に溶解した。 一方、 pUC19を A v a lおよび A c c l により消化し、 ァガロース電気 泳動後、 ベクター部分のバン ドを含むゲルを切り出し、 D N Aを Glassmilk (Bio 101社製) を用いて精製した。 A v a I / A c c I末端 構成 c DN A混成物約 5 n gと A v a I ZA c c I消化 pUC19 約 5 n gを、 T 4 DNAリガーゼを用いて連結し、 常法により大腸菌 J M 1 0 9コンビテントセルをトランスフォームした。 約 2 0 0コロニーのトラ ンスフォーマントが得られ、 そのうち無作為に選んだ 1 2クローンにつ いて液体培養後プラスミ ドを抽出した。 これを C 1 a Iおよび H i n d III にて消化し、 1 %ァガロース電気泳動にて解析した。 その結果を図 9に示す。 このことから、 1 1クローンに c D NA由来と考えられるィ ンサ一卜が確認され、 その長さは約 2 0 0〜 1 0 0 O b pであることが わかった。 以上のことから、 c DN A混成物 1 gを用いると、 約 4万 クローンからなる c DNAライブラリ一を、 プラスミ ドをベクターに用 いて容易に構築することが可能であることが明らかになった。 産業上の利用可能性
本発明の微量 mRN Aの増幅方法は、 ヒトなど高等生物の限局された 細胞、 組織に由来する微量の mR N AZ c D N Aを増幅することが可能 な汎用性を有する方法であり、 本発明によると、 磁気ビーズ上での C D NA合成、 P CRによる c D NAの増幅と、 それに続くインビトロ RN A合成を組み合わせることにより、 mRN Aの一億倍程度の増幅が容易 にでき、 c DNAの増幅のみでも、 単一細胞からのライブラリー調製が 十分可能となり、 限局された細胞からの各種 c D N Aの単離にきわめて 有用である。 また、 c DNAの両端に連結した T 7及び S P 6のプロモ 一夕一配列を利用し、 センス鎖及びアンチセンス鎖両方の c RNAを特 異的に合成することができ、 サブトラクションクローニングや各鎖特異 的標識プローブを調製することができる。 かかる各鎖特異的標識プロ一 ブは、 D N Aマイクロアレイ等の高感度解析に極めて有用である。 さら に、 特異的に合成されたセンス鎖 c RNAを用いてタンパク質のインビ トロ合成も可能となる。 そして、 c DN A各端の潜在的制限酵素認識部 位構成配列により、 プラスミ ドへの一方向かつ 1コピーの挿入が可能で あり、 クロ一ン化後の解析が容易となる。 このように本発明は、 微量試 料に由来する c DNAの単離とその遺伝子発現解析に汎用性が高く、 遺 伝子資源の発見、 開発に極めて有用である。

Claims

請 求 の 範 囲
1. 以下の①〜⑥の工程を含むことを特徴とする微量 mRN Aの増幅方 法。
①試料中の mRNAを、 オリゴ(d T)を結合させた担体に吸着させるェ 程;
②担体上でアンチセンス鎖 c DN A及びセンス鎖 c DN Aを合成するェ 程;
③得られる 2重鎖 c DNAの少なくともセンス鎖の 5 ' 末端に第 1のプ 口モーター配列を有するリンカ一を付加する工程;
④ 2重鎖 c DN Aを解離させ、 担体に結合したアンチセンス鎖 c DNA を担体と共に除去する工程;
⑤解離したセンス鎖 c DNAを铸型として、 第 2のプロモーター配列を 有するリンカーを付加したオリゴ(d T)プライマ一を用いて、 2重鎖 c DNAを合成する工程;
⑥ 2重鎖 c DNA両端のリンカ一部分の配列をプライマーとして P C R を行い、 c D N A混成物を増幅する工程;
2. 以下の①〜⑦の工程を含むことを特徴とする微量 mRN Aの増幅方 法。
①試料中の mRNAを、 オリゴ( d T)を結合させた担体に吸着させるェ 程;
②担体上でアンチセンス鎖 c DNA及びセンス鎖c DN Aを合成するェ 程 ;
③得られる 2重鎖 c DNAの少なくともセンス鎖の 5 ' 末端に第 1のプ 口モーター配列を有するリンカ一を付加する工程;
④ 2重鎖 c DN Aを解離させ、 担体に結合したアンチセンス鎖 c D N A を担体と共に除去する工程;
⑤解離したセンス鎖 c DN Aを铸型として、 第 2のプロモーター配列を 有するリンカーを付加したオリゴ(d T)プライマ一を用いて、 2重鎖 c D N Aを合成する工程;
⑥ 2重鎖 c D N A両端のリンカ一部分の配列をプライマーとして P C R を行い、 c D N A混成物を増幅する工程;
⑦前記第 1のプロモーター配列及び Z又は第 2のプロモーター配列を利 用して、 インビトロ転写系によりセンス鎖 c RN A及び/又はアンチセ ンス鎖 c RN Aを合成する工程;
3. 担体が磁気ビーズであることを特徴とする請求項 1又は 2記載の微 量 mR N Aの増幅方法。
4. 第 1のプロモーター配列を有するリンカ一として、 その 5 ' 末端が 非対合末端、 3 ' 末端が平滑末端であるリンカ一を使用することを特徴 とする請求項 1〜 3のいずれか記載の微量 mRN Aの増幅方法。
5. 第 1のプロモータ一配列を有するリンカ一及び/又は第 2のプロモ 一ター配列を有するリンカ一として、 該プロモ一夕一配列の 5 ' 側及び Z又は 3 ' 側に制限酵素認識配列を有するリンカ一を使用することを特 徴とする請求項 1〜 4のいずれか記載の微量 mRN Aの増幅方法。
6. 第 1のプロモータ一配列と第 2のプロモーター配列が異なることを 特徴とする請求項 1〜 5のいずれか記載の微量 mRN Aの増幅方法。
7. 第 1のプロモーター及び 又は第 2のプロモーターが、 該プロモ一 夕一を特異的に転写することができる RN Aポリメラーゼが存するプロ モーターであることを特徴とする請求項 1〜 6のいずれか記載の微量 m
R N Aの増幅方法。
8.プロモ一ター特異的に転写することができる RN Aポリメラーゼが、 T 7プロモーター、 S P 6プロモーター、 T 3プロモーターから選ばれ るごとを特徴とする請求項 7記載の微量 mRN Aの増幅方法。
9. 第 1のプロモーター配列を有するリンカ一が、 配列番号 1及び 2で 表される塩基配列からなることを特徴とする請求項 1〜 8のいずれか記 載の微量 mRN Aの増幅方法。
1 0. 第 2のプロモーター配列を有するリンカ一を付加したオリゴ(d T)プライマ一が、配列番号 3で表される塩基配列からなることを特徴と する請求項 1〜 9のいずれか記載の微量 mRN Aの増幅方法。
1 1. 請求項 1〜 1 0のいずれか記載の微量 mR N Aの増幅方法を用い ることを特徴とする遺伝子のクロ一ニング方法。
1 2. 請求項 1〜 1 0のいずれか記載の微量 mRNAの増幅方法により 得られるセンス鎖 c DNA、 アンチセンス鎖 c DNA、 センス鎖 c RN A又はアンチセンス鎖 c RNAの少なくとも 1つを標識化して用いるこ とを特徴とするサブトラクションクローニング方法。
1 3. 請求項 1〜 1 0のいずれか記載の微量 mRN Aの増幅方法により 得られるセンス鎖 c DNA、 アンチセンス鎖 c DNA、 センス鎖 c RN
A又はアンチセンス鎖 c RNAの少なくとも 1つを用いることを特徴と するマイクロアレイ。
1 4. 請求項 1〜 1 0のいずれか記載の微量 mR N Aの増幅方法により 得られる c DN Aがベクターに導入されていることを特徴とする c DN Aライブラリー。
1 5. オリゴ(d T)を結合させた担体、 第 1のプロモーター配列を有す るリンカ一、 前記第 1のプロモーター配列とは異なる第 2のプロモー夕 —配列を有するリンカーを付加したオリゴ(d T)プライマーを含むこと を特徴とする微量 mRN A増幅用キット。
1 6. 担体が磁気ビーズであることを特徴とする請求項 1 5記載の微量 mRN A増幅用キッ ト。
PCT/JP2002/001360 2001-02-19 2002-02-18 Methode d'amplification d'arnm et d'adnc dans des micro-quantites WO2002066632A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/468,510 US20040086906A1 (en) 2001-02-19 2002-02-18 Method of amplifying mrna and cdna in microquantities
EP02712417A EP1362912A4 (en) 2001-02-19 2002-02-18 METHOD FOR AMPLIFICATING MRNA AND CDNA IN MICRO AMOUNTS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-041428 2001-02-19
JP2001041428A JP3853161B2 (ja) 2001-02-19 2001-02-19 微量mRNA及びcDNAの増幅方法

Publications (1)

Publication Number Publication Date
WO2002066632A1 true WO2002066632A1 (fr) 2002-08-29

Family

ID=18903875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001360 WO2002066632A1 (fr) 2001-02-19 2002-02-18 Methode d'amplification d'arnm et d'adnc dans des micro-quantites

Country Status (4)

Country Link
US (1) US20040086906A1 (ja)
EP (1) EP1362912A4 (ja)
JP (1) JP3853161B2 (ja)
WO (1) WO2002066632A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118791A1 (ja) * 2004-06-03 2005-12-15 National Institute Of Radiological Sciences 微量試料を用いる網羅的遺伝子発現プロフィール解析法
WO2006085616A1 (ja) * 2005-02-10 2006-08-17 Riken 核酸配列増幅方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181453A (ja) * 2005-12-08 2007-07-19 Keio Gijuku 配列データの取得方法ならびにそれを利用したターゲット遺伝子の抽出方法及び蛋白質の設計方法
JP5073967B2 (ja) * 2006-05-30 2012-11-14 株式会社日立製作所 単一細胞の遺伝子発現定量方法
WO2008032574A1 (fr) 2006-09-11 2008-03-20 Osaka University Procédé d'amplification d'arnm à l'état de trace et son utilisation
CN102797044B (zh) * 2012-08-16 2017-11-03 北京诺兰信生化科技有限责任公司 一种快速高效的均一化全长cDNA文库构建方法
KR101922125B1 (ko) 2012-11-29 2018-11-26 삼성전자주식회사 표적 핵산을 표지하는 방법
US20210040472A1 (en) 2019-08-09 2021-02-11 Nutcracker Therapeutics, Inc. Methods and apparatuses for manufacturing for removing material from a therapeutic composition
GB2621159A (en) * 2022-08-04 2024-02-07 Wobble Genomics Ltd Methods of preparing processed nucleic acid samples and detecting nucleic acids and devices therefor
WO2024190788A1 (ja) * 2023-03-13 2024-09-19 国立研究開発法人理化学研究所 Rna鋳型rna増幅を利用したdnaライブラリの作成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989006700A1 (en) * 1988-01-21 1989-07-27 Genentech, Inc. Amplification and detection of nucleic acid sequences
WO1993015228A1 (en) * 1992-01-29 1993-08-05 Hitachi Chemical Co., Ltd. Polynucleotide immobilized support

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5932451A (en) * 1997-11-19 1999-08-03 Incyte Pharmaceuticals, Inc. Method for unbiased mRNA amplification
US6794138B1 (en) * 1999-12-16 2004-09-21 Affymetrix, Inc. Methods of small sample amplification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989006700A1 (en) * 1988-01-21 1989-07-27 Genentech, Inc. Amplification and detection of nucleic acid sequences
WO1993015228A1 (en) * 1992-01-29 1993-08-05 Hitachi Chemical Co., Ltd. Polynucleotide immobilized support

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MELINDA MESZAROS ET AL.: "Substractive hybridization strategy using paramagnetic oligo(dT) beads and PCR", BIOTECHNIQUES, vol. 20, no. 3, 1996, pages 413, 414, 416-419, XP002952428 *
See also references of EP1362912A4 *
UNN HILDE REFSETH ET AL.: "Hybridization capture of microsatellites directly from genomic DNA", ELECTROPHORESIS, vol. 18, no. 9, 1997, pages 1519 - 1523, XP002952426 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118791A1 (ja) * 2004-06-03 2005-12-15 National Institute Of Radiological Sciences 微量試料を用いる網羅的遺伝子発現プロフィール解析法
WO2006085616A1 (ja) * 2005-02-10 2006-08-17 Riken 核酸配列増幅方法
JP5526326B2 (ja) * 2005-02-10 2014-06-18 独立行政法人理化学研究所 核酸配列増幅方法

Also Published As

Publication number Publication date
EP1362912A1 (en) 2003-11-19
JP2002238575A (ja) 2002-08-27
US20040086906A1 (en) 2004-05-06
EP1362912A4 (en) 2004-09-15
JP3853161B2 (ja) 2006-12-06

Similar Documents

Publication Publication Date Title
CN113166797B (zh) 基于核酸酶的rna耗尽
US6897023B2 (en) Method for determining relative abundance of nucleic acid sequences
Lagerström et al. Capture PCR: efficient amplification of DNA fragments adjacent to a known sequence in human and YAC DNA.
US6235503B1 (en) Procedure for subtractive hybridization and difference analysis
AU2020274774B2 (en) Array and method for detecting spatial information of nucleic acids
WO2013192292A1 (en) Massively-parallel multiplex locus-specific nucleic acid sequence analysis
US20090023151A1 (en) Method For The Labeling And Detection Of Small Polynucleotides
JP2010521142A (ja) 遺伝子発現アッセイ
CN110612354A (zh) 用于分离靶核酸的组合物和方法
JP2002262882A (ja) Rnaの増幅法
JP2012165755A (ja) サブトラクション・ポリヌクレオチドの取得方法
JP3853161B2 (ja) 微量mRNA及びcDNAの増幅方法
WO2005079357A9 (en) Nucleic acid representations utilizing type iib restriction endonuclease cleavage products
EP1627074A1 (en) Use of a type iii restriction enzyme to isolate sequence tags comprising more than 25 nucleotides
US20060240431A1 (en) Oligonucletide guided analysis of gene expression
JP5048915B2 (ja) 整長cDNA由来両鎖cRNAサブトラクション方法
CN110546275A (zh) 用于去除不需要的核酸的方法和试剂盒
JP2022552155A (ja) 新規方法
US20050244831A1 (en) Target dna
EP1371726A1 (en) Method for amplifying RNA
Tarasov et al. Serial analysis of gene expression (SAGE)
CN113454235A (zh) 经改进的核酸靶标富集和相关方法
Lagerström et al. Capture PCR: efficient amplification of DNA fragments adjacent to
Parik et al. Capture PCR: Efficient amplification of DNA fragments adjacent to a known sequence in human and YAC DNA
JP2004147501A (ja) Dnaの高感度検出法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002712417

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10468510

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002712417

Country of ref document: EP