WO2002061421A2 - Screening-verfahren zur identifikation von arzneimitteln - Google Patents

Screening-verfahren zur identifikation von arzneimitteln Download PDF

Info

Publication number
WO2002061421A2
WO2002061421A2 PCT/EP2002/001097 EP0201097W WO02061421A2 WO 2002061421 A2 WO2002061421 A2 WO 2002061421A2 EP 0201097 W EP0201097 W EP 0201097W WO 02061421 A2 WO02061421 A2 WO 02061421A2
Authority
WO
WIPO (PCT)
Prior art keywords
cells
treatment
prophylaxis
erythrocytes
intracellular pathogens
Prior art date
Application number
PCT/EP2002/001097
Other languages
English (en)
French (fr)
Other versions
WO2002061421A3 (de
Inventor
Florian Lang
Stefan Huber
Original Assignee
Florian Lang
Stefan Huber
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Florian Lang, Stefan Huber filed Critical Florian Lang
Priority to AU2002235892A priority Critical patent/AU2002235892A1/en
Publication of WO2002061421A2 publication Critical patent/WO2002061421A2/de
Publication of WO2002061421A3 publication Critical patent/WO2002061421A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5094Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for blood cell populations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/44Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from protozoa
    • G01N2333/445Plasmodium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention relates to a screening method for the identification of medicaments for the treatment and prophylaxis of diseases which are triggered by intracellular pathogens, with the following steps:
  • the invention further relates to the use of antioxidants or NADPH oxidase inhibitors, such as, in particular, diphenylene iodonium chloride, another of its salts or one of its derivatives for the production of a medicament for the treatment and or prophylaxis of malaria.
  • antioxidants or NADPH oxidase inhibitors such as, in particular, diphenylene iodonium chloride, another of its salts or one of its derivatives for the production of a medicament for the treatment and or prophylaxis of malaria.
  • P. falciparum Plasmodium falciparum
  • the NPP transports a variety of anionic, cationic and neutral substances such as sorbitol (H. Ginsburg, K. Kirk, in Malaria: Parasite biology, pathogenesis, and protection, IW Sherman, Ed, (American Society for Microbiology, Washington, DC, 1998), pp. 219-232). Due to the sorbitol permeability of their plasma membrane, infected erythrocytes are hemolyzed in solutions in which NaCl has been replaced by sorbitol. Hemolysis is caused by the influx of water, since sorbitol can penetrate the erythrocytes and osmotically entrains water.
  • the NPP is much more permeable to Cl " than to K + , and is inhibited by several anion channel blockers (K. Kirk, HA Horner, BC Elford, JC Ellory, CL Newbold, J. Biol. Chem. 269, 3339 (1994); WV Breuer, S. Kutner, J. Sylphen, H. Ginsburg, ZI Cabantchik, J. Cell Physiol. 133, 55 (1987); K. Kirk, HA Horner, DJ. Spillett, BC Elford, FEBS Lett . 323, 123 (1993); K. Kirk, HA Horner, Biochem. J. 311, 761 (1995); S. Kutner, WV Breuer, H.
  • the object of the invention is therefore to provide a screening method for identifying medicinal products which is based on new knowledge about the identity of the channels contributing to the NPP, and about the induction mechanism of the NPP in Plasmodium falciparum-infected erythrocytes.
  • a screening method according to the invention should comprise such simple individual steps that it can also be used on a large scale, i.e. for screening complex substance libraries, is practical.
  • the channels contributing to the NPP in the erythrocyte membrane are oxidized. This oxidation activates the channels contributing to the NPP and can then supply the intracellular pathogen, in this case the malaria pathogen Plasmodium falciparum;, with nutrients and the disposal of waste products from the pathogen.
  • this mechanism according to the invention for activating endogenous cell channels by oxidation as a result of infection of the cell with intracellular pathogens is not restricted to the malaria pathogen Plasmodium falciparum. It it is rather to be expected that, in the case of other diseases which, like malaria, are triggered by the infection of human cells with intracellular pathogens, the channels contributing to the NPP or also other constituents, in particular other channels, in the membrane as a result of the infection of the cell be oxidized. Such an infection-dependent oxidation enables these channels to be activated, ultimately contributing to the supply of nutrients to the intracellular pathogen and to the disposal of its waste products from the infected cell.
  • the object according to the invention was achieved in such a way that a screening method for the identification of medicaments for the treatment and prophylaxis of diseases which are triggered by intracellular pathogens was provided with the following individual steps: a) treatment of non-infected cells with an oxidizing agent; b) treatment of at least a portion of the treated cells from step a) with at least one potential drug in each case, while a portion of the treated cells from step a) remains untreated; c) quantitative determination of the hemolysis fraction of the proportions of cells in isosmotic sorbitol solution which have been treated with at least one potential drug in step b), in comparison to the hemolysis fraction of the proportion of cells in isosmotic sorbitol solution, which in step b) remained untreated.
  • both channels are inhibited by reducing substances.
  • similar channel activities could also be generated in poorly infected erythrocytes by oxidation (see example 2 and FIGS. 3 and 4).
  • these channels responsible for the NPP are endogenous erythrocyte channels and not Plasmodium falciparum-encoded proteins.
  • the activity of these endogenous erythrocyte channels is most likely only induced by the oxidation of the erytlirocyte membrane or in particular by the oxidation of the channels contributing to the NPP.
  • the actual activity-inducing event for the channels contributing to the NPP lies in the oxidation of cell membrane components.
  • the endogenous erythrocyte channels that contribute to the NPP are probably opened by oxidative stress, which is a result of infection with Plasmodium falciparum, and closed by inhibiting the oxidation.
  • the activity of the endogenous erythrocyte channels contributing to the NPP correlates directly with the extent of hemolysis of the erythrocytes to be observed in isosmotic sorbitol solution. If the endogenous erythrocyte channels that contribute to the NPP are active, the sorbitol is transported from the extracellular space into the erythrocytes. Since sorbitol is an osmotically active substance, the transport of sorbitol into the cell also leads to the absorption of water by osmosis, which ultimately causes the erythrocyte to be hemolyzed.
  • the activity of the channels contributing to the NPP in the erythrocyte membrane should be linearly dependent on the hemolysis of the erythrocytes to be observed in isosmotic sorbitol solution. This finding could be used in the context of the present invention to develop a simple, quantitatively evaluable cell hemolysis assay which quantitatively reflects the activity of the channels contributing to the NPP and is therefore suitable for use in high-throughput screening processes.
  • a particularly preferred embodiment of the method according to the invention relates to a screening method for the identification of antimalarial agents, in which non-infected erythrocytes, preferably human non-infected erythrocytes, are used in method steps a) to c).
  • An alternative, likewise preferred embodiment of the method according to the invention relates to a screening method for the identification of medicaments for the treatment and prophylaxis of diseases selected from the group of tuberculosis, chicken pest, legionellosis and gonorrhea.
  • this alternative embodiment of the screening method according to the invention instead of non-infected erythrocytes, other cells, in particular those cells which are infected by the respective pathogen in the disease in question, are generally used in method steps a) to c). It is also generally possible to use suitable cell lines in the screening process.
  • the individual steps of the screening method a) to c) are explained in more detail in the following explanations using the example of a screening method for identifying antimalarial agents for the treatment and / or prophylaxis of malaria, but are not limited to these explanations. If the alternative embodiment of the screening method for identifying drugs for the treatment and / or prophylaxis of diseases from the group of tuberculosis is carried out, Chicken fever, legionellosis and gonorrhea, the individual steps are carried out on the relevant disease-relevant cells analogously to the following explanations.
  • non-infected, preferably human erythrocytes are treated with an oxidizing agent.
  • the erythrocytes used here are optionally washed by centrifugation and resuspension steps and resuspended in a sodium chloride-containing solution.
  • the sodium chloride-containing solution is preferably a solution containing 140 mM NaCl; 10 mM HEPES / NaOH pH 7.4; 5 mM KC1; 2.5 mM CaCl 2 ; ImM MgCl 2 and is preferably added in such a volume that a cell suspension with a hematocrit results in 1% to 20%, preferably 4% to 10%, in particular 5%.
  • the cell suspension obtained in this way can optionally be at 8 ° C for 1 can be stored for up to 7 days.
  • any known oxidative substance can generally be used as the oxidizing agent.
  • Hydrogen peroxide is preferably used, more preferably the substance t-butylhydroxyperoxide as the oxidizing agent.
  • t-butylhydroxyperoxide is added to the erythrocyte suspension in a final concentration of 100 ⁇ M to 3 mM, in particular in a final concentration of 1 mM.
  • the incubation time of the oxidizing agent is 5 minutes to 0.5 hours, preferably 10 minutes to 20 minutes, more preferably 15 minutes, depending on the concentration, and is optionally stopped by centrifugation and subsequent removal of the supernatant.
  • step b) at least a portion of the erythrocytes from step a) treated with an oxidizing agent is treated with at least one potential medicinal or antimalarial agent, while a portion of the erythrocytes from step a) treated with an oxidizing agent remains untreated, i.e. is not treated with a potential antimalarial drug and thus serves as a reference.
  • Any chemical compound or mixture of chemical compounds preferably chemical compounds with oxidation-inhibiting or reducing action or with the action of an amon channel blocker, can be used here as a potential medicament or antimalarial agent.
  • the individual components of a substance library in high throughput are particularly preferred as potential antimalarial agents.
  • screening used ie in this particularly preferred embodiment of the screening method, equally large proportions of erythrocytes from step a) are divided into numerous individual reaction batches, each of which is treated with a single or with several components of the substance library.
  • Treatment in the sense of step b) means only the addition of the potential medicinal or antimalarial agent in suitable amounts to the erythrocytes treated after step a).
  • the potential antimalarial agent can be removed or inactivated after a certain incubation period before step c) or can also remain in the suspension.
  • step c) the hemolysis portion of the portions of erythrocytes, which were each treated with at least one potential medicinal or antimalarial agent after step b), is compared to the hemolysis portion of the erythrocytes in isosmotic sorbitol solution in isosmotic sorbitol solution that remained untreated in step b).
  • the cells from step b) optionally pelleted by centrifugation are first suspended in isosmotic sorbitol solution.
  • the cells from step b) are particularly preferably in an isosmotic sorbitol solution containing 290 mM sorbitol; 5 mM HEPES / NaOH pH 7.4 suspended.
  • the incubation time and conditions for hemolysis at 37 ° C. are between 30 minutes and 4 hours, preferably between 60 minutes and 3 hours, in particular between 2 hours and 2.5 hours. The long incubation times are necessary for the slow induction / activation of the ion channels.
  • the transport of the osmotically active sorbitol into the erythrocytes and the subsequent hemolysis take place with a time constant of t ⁇ 5 min.
  • the hemolysis is then preferably stopped by centrifugation and the hemoglobin concentrations in the supernatants of the individual reaction batches are determined. The more erythrocytes were hemolyzed in a reaction mixture, the more hemoglobin should be in the respective supernatant - i.e. outside of the erythrocytes.
  • the reaction mixture which remained untreated in step b) can serve as a reference.
  • the use of other suitable reaction approaches as references is possible if necessary.
  • the invention further relates to an antioxidant agent containing diphenylene iodonium as one of its salts or as a salt of one of its derivatives for the manufacture of a medicament for the treatment and / or prophylaxis of diseases which are triggered by intracellular pathogens, in particular for the treatment and / or prophylaxis of malaria ,
  • Another object of the invention is the use of an antioxidative substance, in particular the use of diphenylene iodonium as one of its salts or as a salt of one of its derivatives, for the manufacture of a medicament for the treatment and / or prophylaxis of diseases which are triggered by intracellular pathogens, especially for the treatment and / or prophylaxis of malaria.
  • an antioxidative substance in particular the use of diphenylene iodonium as one of its salts or as a salt of one of its derivatives, for the manufacture of a medicament for the treatment and / or prophylaxis of diseases which are triggered by intracellular pathogens, especially for the treatment and / or prophylaxis of malaria.
  • a NADPH oxidase inhibitor as an antioxidative substance is also preferred.
  • the derivatives of diphenylene iodonium chloride include those compounds of the general basic formula of diphenylene iodonium ion ((l, l-biphenyl) -2,2'-diyl iodonium),
  • inhibitors of the channels contributing to the NPP are also suitable for the production of a medicament for the treatment and / or prophylaxis of diseases which are triggered by intracellular pathogens.
  • Their use for the production of a medicament for the treatment and / or prophylaxis of such diseases, in particular for the treatment and / or prophylaxis of malaria, is therefore also an object of the present invention.
  • the present invention further relates to the use of cells which have been previously treated with an oxidizing agent for the identification of medicaments for the treatment and / or for the prophylaxis of diseases which are triggered by intracellular pathogens. It is preferred here to use erythrocytes, which have previously been treated with an oxidizing agent, for the identification of medicaments for the treatment and / or prophylaxis of malaria.
  • the invention also relates to the use of a hemolysis assay in cells in isosmotic sorbitol solution for determining and / or quantifying the activity of channels in the membrane of these cells, in particular for determining and / or quantifying the activity of the channels contributing to the NPP.
  • Fig. 1 shows whole cell patch clamp derivatives of P. falciparum infected erythrocytes.
  • FIG. 1A shows the light micrograph of a trophozoite-infected erythrocyte during whole-cell derivation.
  • the laboratory strain P. falciparum BINH VQ Binh, AJ Luty, PG Kremsner, Am. J. Trop. Med. Hyg. 57, 594 (1997)) was used for the infections.
  • the cultivation of the parasites, the synchronization of the parasite development stage and the enrichment of infected erythrocytes were carried out as described in Cranmer, C. Magowan, J. Liang, RL Coppel, BM Cooke, Trans. R. Soc. Trop. Med. Hyg. 91, 363 (1997); W.
  • 1B shows the original current traces recorded in non-infected human erythrocytes (control; left) and in two trophozoite-infected cells which show currents rectifying inwards (middle) and outwards (right).
  • the full-line currents were evoked by successive voltage pulses from the -30 mV holding potential to potentials between -100 mV and +100 mV.
  • the individual voltage pulses are shown superimposed in the original tracks.
  • Figure 2 shows that the whole cell streams of infected erythrocytes are anion selective.
  • FIG. 2A and 2C show the original current traces of an infected cell with inward (FIG. 2A) and outward rectifying currents (FIG. 2C) before (control), during (NPPB), and after (wash-out) application of NPPB (100 ⁇ M) in the bathroom.
  • 2B shows the original current traces of an infected cell, which showed both phenotypes (outward and inward rectifying currents), recorded before (control; left) and after adding DIDS (100 ⁇ M) to the bath solution (DIDS; middle).
  • the DIDS-sensitive current fraction is rectifying outwards, while the DIDS-insensitive fraction rectifies inwards.
  • This DIDS-insensitive fraction shows the I / V curve (right).
  • FIGS. 3A-D shows the original traces of inward (FIG. 3A) and outward rectifying streams (FIG. 3C) before (left) and after incubation with the reducing substance dithioerythrol (DTE) (100 ⁇ M; right).
  • DTE dithioerythrol
  • FIGS. 3E-H show the "run-down" of infection-induced currents in erythrocytes by means of reduced glutathione (GSH; 10 mM) added to the pipette solution.
  • FIGS. 3E and 3G show the original traces from inwards (FIG. 3E) and outward rectifying streams (Fig. 3G), during continuous whole cell derivation. The incubation times are given in each case.
  • Fig. 3 IJ shows that the reduction, as well as the treatment of infected erythrocytes with Cl " channel blockers inhibits hemolysis in isosmostic sorbitol solution.
  • Enriched trophozoite-infected erythrocytes were in isosmotic sorbitol solution (5%) or Control suspended in NaCl solution and hemolyzed for 5-10 min at 37 ° C. in the presence or absence of DIDS, NPPB, furosemide, glibenclamide or DTE (100 ⁇ M in each case). After centrifugation, the hemoglobin concentration of the supernatant was determined photometrically ( shown in Fig. 31 in an experiment in duplicates. In Fig.
  • Control erythrocytes were resuspended to a hematocrit of 0.05 in NaCl wrestler (140 mM NaCl, 10 mM HEPES / NaOH pH 7.4, 5 mM KC1, 1 mM MgCl 2 ; 2.5 mM CaCl 2 ) and in 500 ⁇ l reaction batches Aliquoted 1 ml of NaCl wrestler with or without 1.5 mM t-butylhydroxyperoxide was added to the reaction batches, and the cells were incubated for 10 min and then centrifuged down at 1500 rpm for 5 min.
  • the cell pellets were resuspended in 400 ⁇ l 5% sorbitol / 5 mM HEPES / NaOH pH 7.4 or in the same volume of NaCl wrestler.
  • the cells were incubated at 37 ° C. in the presence or absence of NPPB, furosemide or glibenclamide (every 100 ⁇ M). After incubation for 120 minutes, the samples were centrifuged for 5 minutes at 1500 rpm and the hemoglobin concentration in 200 ⁇ l of the supernatant was determined photometrically.
  • FIG. 4A shows the hemoglobin in the supernatant of untreated (top rows) and oxidized control erythrocytes (rows 3 and 4) after 2 hours of incubation in sorbitol solution (or for control in NaCl solution) in Ab- (control, NaCl) and Presence of different blockers (an individual experiment is shown in duplicates).
  • the box in Figure 4C shows single channel events that have been zoomed out of the full line tracks (left).
  • 4E shows outward rectifying currents in non-infected control erythrocytes, in particular the original current traces in NaCl (left) and in Na gukonate (right) bath solution of a cell with spontaneous currents.
  • FIG. 5 demonstrates the inhibition of intaerythrocytic parasite growth by the channel blockers furosemide, NPPB, glibenclamide and the oxidation inhibitor diphenylene iodium chloride.
  • the erythrocytes were derived in the voltage clamp in full-line mode during constant superfusion at room temperature as described earlier (S.M. Huber,
  • Erythrocytes infected and uninfected with trophozoite were derived (Fig. 1) with a bath solution consisting of 115 mM NaCl, 20 mM HEPES / NaOH pH 7.4, 5 mM CaCl 2 , 10 mM MgCl 2 .
  • the pipette solution was 115 mM NaCl, 0.5 mM EGTA, 10 mM MgCl 2 , and 20 mM HEPES / NaOH pH 7.4.
  • the whole-cell streams were characterized by exchanging the NaCl bath solution with solutions consisting of 140 mM Na-X, 20 mM HEPES / NaOH pH 7.4, where X represented the anions SCN “ , I " , Br “ , lactate or gluconate. The data were corrected for the "Liquid junction potentials".
  • whole cell currents from P. falciparum-infected erythrocytes (FIG. 1A) consistently showed currents in the range of 10 nS.
  • the reducing substance dithioerythrol (DTE, 100 ⁇ M) was added to the bath. This irreversibly inhibited the inward and outward rectifying currents within 5 minutes (FIGS. 3A-D).
  • the currents were inhibited by reduced glutathione (GSH; 10 mM) in the pipette solution, but not by oxidized glutathione (GSSG; 10 mM) (Fig. 3E-H).
  • Example 3 Effect of an oxidation inhibitor or known anion inhibitors on parasite growth
  • Erythrocytes (laboratory strain BINH) infected with Plasmodium falciparum were cultured with a hematocrit of 1% and a parasitaemia of 1% and incubated with different concentrations of the specified blockers. After 48 hours, the cultures were harvested, stained with ethidium bromide and the survival of the parasites was analyzed using FACS (Becton Dickinson Fluorometer).
  • the intraerythrocytic growth of the malaria pathogen could be completely inhibited by the flavin protein inhibitor diphenylene iodonium (DPI), an oxidation inhibitor (FIG. 5) compared to the untreated control at a concentration of 10 ⁇ M, and from a concentration of 50 ⁇ M.
  • DPI flavin protein inhibitor diphenylene iodonium
  • FOG. 5 an oxidation inhibitor
  • FIG. 5 also shows that the anion channel blockers furosemide, NPPB and glibenclamide also specifically inhibit parasite growth.
  • Previously data from Cabantchik ZI Cabantchik, S. Kutner, M. Krugliak, H. Ginsburg, Mol. Pharmacol. 23, 92 (1983)) and thereby verify the sorbitol hemolysis system used for screening for possible inhibitors of P. falciparum as the basis for the development of new chemotherapy for malaria.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Ecology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Die Erfindung betrifft ein Screening-Verfahren zur Identifikation von Arzneimitteln zur Behandlung und/oder zur Prophylaxe von Erkrankungen, die durch intrazelluläre Erreger ausgelöst werden, mit den folgenden Schritten: a) Behandlung von nicht-infizierten Zellen mit einem Oxidationsmittel; b) Behandlung mindestens eines Anteils der behandelten Zellen aus Schritt a) mit jeweils mindestens einem potentiellen Arzneimittel, während ein Anteil der behandelten Zellen aus Schritt a) unbehandelt bleibt; c) Quantitative Bestimmung des Hämolyse-Anteils der Anteile an Zellen in isosmotischer Sorbitol-Lösung, die mit mindestens einem potentiellen Arzneimittel in Schritt b) behandelt wurden, im Vergleich zum Hämolyse-Anteil des Anteils an Zellen in isosmotischer Sorbitol-Lösung, der in Schritt b) unbehandelt blieb. Weiterhin betrifft die Erfindung die Verwendung einer antioxidativ wirksamen Substanz, insbesondere Diphenyleneiodonium als eines seiner Salze oder eines Salzes seiner Derivate, zur Herstellung eines Arzneimittels zur Behandlung und/oder zur Prophylaxe von Erkrankungen, die durch intrazelluläre Erreger ausgelöst werden, insbesondere zur Behandlung und/oder zur Prophylaxe von Malaria.

Description

Screening -Verfahren zur Identifikation von Arzneimitteln zur Behandlung oder zur Prophylaxe von Erkrankungen, die durch mtrazelluläre Erreger ausgelöst werden
Die Erfindung betrifft ein Screening- Verfahren zur Identifikation von Arzneimitteln zur Behandlung und Prophylaxe von Erkrankungen, welche durch intrazelluläre Erreger ausgelöst werden, mit den folgenden Schritten:
a) Behandlung von mcht-infizierten Zellen mit einem Oxidationsmittel; b) Behandlung mindestens eines Anteils der behandelten Zellen aus Schritt a) mit jeweils mindestens einem potentiellen Arzneimittel, während ein Anteil der behandelten Zellen aus Schritt a) unbehandelt bleibt; c) quantitative Bestimmung des Hämolyse-Anteils des Anteils an Zellen in isosmotischer Sorbitol-Losung, die mit mindestens einem potentiellen Arzneimittel in Schritt b) behandelt wurden, im Vergleich zum Hämolyse- Anteil des Anteils an Zellen in isosmotischer Sorbitol-Losung, der in Schritt b) unbehandelt blieb.
Weiterhin betrifft die Erfindung die Verwendung von Antioxidantien oder NADPH-Oxidase- Hemmer, wie insbesondere Diphenyleneiodoniumchlorid, einem anderen seiner Salze oder eines seiner Derivate zur Herstellung eines Arzneimittels zur Behandlung und oder zur Prophylaxe von Malaria.
Im Blutstadium seines Lebenszyklus vermehrt sich der Malariaerreger Plasmodium falciparum (P. falciparum) asexuell in humanen Erythrozyten und vergrößert dabei innerhalb von 48h seine Körpermasse vielfach. Das schnelle Wachstum erfordert die Zulieferung von Nähr- und Aufbaustoffen für P. falciparum in den befallenen Erythrocyten, sowie die Entsorgung von Abfallprodukten des Malariaerregers aus der Zelle. Beides wird durch eine infektionsinduzierte Zunahme des Transportes über die Wirtszellmembran erreicht. Tracer- flux-Untersuchungen und isosmotische Hämolyse-Experimente an Erythrozyten zeigen, daß die Infektion mit P. falciparum ein Transportsystem mit breiter Spezifität induziert, den sogenannten new permeability pathway (NPP). Der NPP transportiert eine Vielzahl von anionischen, kationischen und neutralen Substanzen wie etwa Sorbitol (H. Ginsburg, K. Kirk, in Malaria: Parasite biology, pathogenesis, and protection, I.W. Sherman, Ed, (American Society for Microbiology, Washington, DC, 1998), pp. 219-232). Aufgrund der Sorbitol- Durchlässigkeit ihrer Plasmamembran werden infizierte Erythrozyten in Lösungen hämolysiert, in denen NaCl durch Sorbitol ersetzt wurde. Dabei wird die Hämolyse durch Wassereinstrom hervorgerufen, da Sorbitol in die Erythrozyten eindringen kann und osmotisch Wasser mitzieht. Der NPP ist für Cl" sehr viel besser durchlässig als für K+, und er wird durch mehrere Anionenkanal-Blocker gehemmt (K. Kirk, H.A. Horner, B.C. Elford, J.C. Ellory, CL Newbold, J. Biol. Chem. 269, 3339 (1994); W.V. Breuer, S. Kutner, J. Sylphen, H. Ginsburg, Z.I. Cabantchik, J. Cell Physiol. 133, 55 (1987); K. Kirk, H.A. Horner, DJ. Spillett, B.C. Elford, FEBS Lett. 323, 123 (1993); K. Kirk, H.A. Horner, Biochem. J. 311, 761 (1995); S. Kutner, W.V. Breuer, H. Ginsburg, Z.I. Cabantchik, Biochem. Pharmacol. 36,123 (1987)). Jüngste Patch-clamp Experimente zeigten tatsächlich die Existenz eines einwärts- rektifizierenden Anionenkanales in P. falciparum infizierten Erythrozyten (A. S. Desai, S. G. Bezrukov, J. A. Zimmerberg, Nature 406, 1001 (2000)). Bisher war unklar, ob der NPP durch Plasmodium-kodierte Xenoproteine gebildet wird, die der Erreger in die Wirtszellmembran einbaut oder ob der NPP aus endogenen Erythrozytenproteinen besteht, die durch P. falciparum aktiviert werden. Weiterhin stellte sich die Frage, über welchen Mechanismus der NPP in Plasmodium-infizierten Erythrocyten induziert wird.
Es ist anzunehmen, daß außer dem Malaria-Erreger auch andere intrazelluläre Krankheitserreger, so insbesondere die Erreger der Tuberkulose, der Hühnerpest, der Legionellose oder der Gonorrhoe, von der Versorgung und Entsorgung durch Kanäle in der Zellmembran abhängen, wobei die Aktivität dieser Kanäle wahrscheinlich durch einen Infektions- vermittelten Mechanismus beeinflußt wird. Aufgabe der Erfindung ist es daher, ein Screening- Verfahren zur Identifikation von Arzneimitteln bereitzustellen, das auf neuen Erkenntnissen über die Identität der zum NPP beitragenden Kanäle, sowie über den Induktionsmechanismus des NPP in Plasmodium falciparum-infizierten Erythrocyten basiert.
Es ist weiterhin Aufgabe der vorliegenden Erfindung, die oben genannten Erkennisse über den Induktionsmechanismus des NPP in Plasmodium-infizierten Erythrocyten bei Malaria auf bisher unbekannte Induktionsmechanismen bei ähnlichen Erkrankungen, die wie Malaria durch intrazelluläre Erreger verursacht werden, zu übertragen, so insbesondere auf die Erkrankungen Tuberkulose, Hühnerpest, Legionellose und Gonorrhoe. Dadurch könnte ein Screening- Verfahren zur Identifikation von Arzneimitteln zur Behandlung und zur Prophylaxe von Erkrankungen bereitgestellt werden, die durch intrazelluläre Erreger verursacht werden. Weiterhin sollte ein solches erfmdungsgemäßes Screening-Verfahren so einfache Einzelschritte umfassen, daß es auch in großem Maßstab, d.h. zum Screenen komplexer Substanz-Bibliotheken, praktikabel ist.
Darüberhinaus ist es Aufgabe der Erfindung durch Einsatz des Screening- Verfahrens neue Substanzen oder auch neue Verwendungen von Substanzen zu ermitteln, die zur Herstellung eines Arzneimittels zur Behandlung und/oder zur Prophylaxe von Erkrankungen, die durch intrazelluläre Erreger ausgelöst werden, geeignet sind, insbesondere zur Behandlung und/oder zur Prophylaxe von Malaria.
Im Rahmen der vorliegenden Erfindung konnte gezeigt werden, daß als Folge der Infektion der Erythrocyten mit dem Malaria-Erreger Plasmodium falciparum die zum NPP beitragenden Kanäle in der Erythrocytenmembran oxidiert werden. Durch diese Oxidation werden die zum NPP beitragenden Kanäle aktiviert und können daraufhin zur Versorgung des intrazellulären Erregers, in diesem Fall des Malaria-Erregers Plasmodium falciparum;, mit Nährstoffen und zur Entsorgung von Abfallprodukten des Erregers beitragen.
Es ist weiterhin anzunehmen, daß dieser erfindungsgemäße Mechanismus zur Aktivierung endogener Zellkanäle durch Oxidation infolge der Infektion der Zelle mit intrazellulären Krankheitserregern nicht auf den Malaria-Erreger Plasmodium falciparum beschränkt ist. Es ist vielmehr zu erwarten, daß auch bei weiteren Krankheiten, die ähnlich wie Malaria durch die Infektion von humanen Zellen mit intrazellulären Erregern ausgelöst werden, die zum NPP beitragenden Kanäle oder auch andere Bestandteile, insbesondere andere Kanäle, in der Membran als Folge der Infektion der Zelle oxidiert werden. Durch eine solche Infektions- abhängige Oxidation können diese Kanäle aktiviert werden, um so letztlich zur Versorgung des intrazellulären Krankheitserregers mit Nährstoffen, sowie zur Entsorgung seiner Abfallprodukte aus der infizierten Zelle beizutragen.
Die erfindungsgemäße Aufgabe konnte so gelöst werden, daß ein Screening- Verfahren zur Identifikation von Arzneimitteln zur Behandlung und Prophylaxe von Erkrankungen, welche durch intrazelluläre Erreger ausgelöst werden, mit den folgenden Einzelschritten bereitgestellt wurde: a) Behandlung von nicht-infizierten Zellen mit einem Oxidationsmittel; b) Behandlung mindestens eines Anteils der behandelten Zellen aus Schritt a) mit jeweils mindestens einem potentiellen Arzneimittel, während ein Anteil der behandelten Zellen aus Schritt a) unbehandelt bleibt; c) quantitative Bestimmung des Hämolyse-Anteils der Anteile an Zellen in isosmotischer Sorbitol-Losung, die mit mindestens einem potentiellen Arzneimittel in Schritt b) behandelt wurden, im Vergleich zum Hämolyse- Anteil des Anteils an Zellen in isosmotischer Sorbitol-Losung, der in Schritt b) unbehandelt blieb.
Im Rahmen der vorliegenden Erfindung wurden die Eigenschaften des NPP durch Ganzzell-
Patch-clamp und Hämolyse-Experimente analysiert. Insbesondere konnte der Mechanismus aufgeklärt werden, über den bei Plasmodium-infizierten Erythrozyten der NPP induziert wird.
So konnte gezeigt werden, daß Parasiten-infizierte, nicht aber nicht infizierte Erythrozyten die Aktivität einwärts- rektifizierender und auswärts- rektifizierender Anionenkanäle mit unterschiedlichen Hemmstoff- und Anionenselektivitäten aufweisen. Diese beobachteten Leitfähigkeiten wurden durch Cι"-Kanal-Blocker wie 5-Nitto-2-(3-phenylpropylamino)- benzoesäure (NPPB), 4,4'-Diisothiocyano-stilben-2,2'-disulfonsäure DIDS, zum Teil auch durch Glibenclamid, und Furosemid gehemmt. Eine solche Abhängigkeit der Kanalaktivität in Erythrocyten von der Infektion mit Plasmodium falciparum wäre auch von Kanälen zu erwarten, die zum NPP beitragen. Es ist daher anzunehmen, daß diese durch Parasiten- Infektion induzierbaren Aktivitäten eines einwärts- und eines auswärts- rektifizierenden Anionenkanals zum NPP beitragen (siehe Beispiel 1 und Fig. 1 und 2).
Weiterhin konnte gezeigt werden, daß beide Kanäle durch reduzierende Substanzen gehemmt werden. Umgekehrt konnten ähnliche Kanal-Aktivitäten auch in mcht-infizierten Erythrozyten durch Oxidation erzeugt werden (siehe Beispiel 2 und Fig. 3 und 4). Diese Beobachtung spricht deutlich dafür, daß es sich bei diesen für den NPP verantwortlichen Kanälen um endogene Erythrocyten-Kanäle und nicht um Plasmodium falciparum-kodierte Proteine handelt. Die Aktivität dieser endogenen Erythrocyten-Kanäle wird mit großer Wahrscheinlichkeit lediglich durch die Oxidation der Erytlirocyten-Membran bzw. insbesondere durch die Oxidation der zum NPP beitragenden Kanäle induziert. Weiterhin läßt sich aus den erfindungsgemäßen Daten schließen, daß das eigentliche aktivitäts-induzierende Ereignis für die zum NPP beitragenden Kanäle in der Oxidation von Zellmembrankomponenten liegt. So werden vermutlich die zum NPP beitragenden endogenen Erythrocytenkanäle durch oxidativen Streß, der eine Folge der Infektion mit Plasmodium falciparum ist, geöffnet und durch Hemmung der Oxidation geschlossen.
Weiterhin konnte im Rahmen der vorliegenden Erfindung gezeigt werden, daß die Aktivität der endogenen, zum NPP beitragenden Erythrocyten-Kanäle mit dem zu beobachtenden Ausmaß an Hämolyse der Erythrocyten in isosmotischer Sorbitol-Losung direkt korreliert. Sind die endogenen, zum NPP beitragenden Erythrocyten-Kanäle aktiv, so wird das Sorbitol aus dem extrazellulären Raum in die Erythrocyten transportiert. Da Sorbitol eine osmotisch aktive Substanz ist, führt der Transport von Sorbitol in die Zelle zusätzlich zur Aufnahme von Wasser durch Osmose, wodurch der Erythrocyt letztlich hämolysiert wird. Die Aktivität der zum NPP beitragenden Kanäle in der Erythrocytenmembran sollte hierbei linear abhängig von der zu beobachtenden Hämolyse der Erythrocyten in isosmotischer Sorbitol-Losung sein. Diese Erkenntnis konnte im Rahmen der vorliegenden Erfindung dazu verwendet werden, einen einfachen, quantitativ auswertbaren Zell-Hämolyse-Assay zu entwickeln, der die Aktivität der zum NPP beitragenden Kanäle quantitativ wiederspiegelt und sich daher zum Einsatz in high-throughput-screening- Verfahren eignet.
Diese erfindungsgemäßen Erkenntnisse über die Identität der zum NPP beitragenden Kanäle, und deren mfektions-vermittelte Induktion durch Oxidation führten letzlich zur Entwicklung des oben genannten Screening-Verfahrens zur Identifikation von Arzneimitteln zur Behandlung und/oder Prophylaxe von Erkrankungen, die von intrazellulären Erregern ausgelöst werden, mit den Schritten a) bis c).
Eine besonders bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens betrifft ein Screemng-Verfahren zur Identifikation von Antimalariamitteln, bei dem in den Verfahrensschritten a) bis c) nicht infizierte Erythrocyten, vorzugsweise humane nicht infizierte Erythrocyten, verwendet werden.
Eine alternative, ebenfalls bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens betrifft ein Screemng-Verfahren zur Identifikation von Arzneimitteln zur Behandlung und Prophylaxe von Erkrankungen ausgewählt aus der Gruppe Tuberkulose, Hühnerpest, Legionellose und Gonorrhoe. Bei dieser alternativen Ausführungsform des erfindungsgemäßen Screening-Verfahrens werden statt nicht infizierter Erythrocyten in der Regel andere Zellen, insbesondere solche Zellen, die bei der betreffenden Erkrankung von dem jeweiligen Erreger infiziert werden, in den Verfahrensschritten a) bis c) eingesetzt. Auch die Verwendung von geeigneten Zellinien im Screening- Verfahren ist hierbei generell möglich.
Die einzelnen Schritte des Screening-Verfahrens a) bis c) werden in den folgenden Ausführungen am Beispiel eines Screening-Verfahrens zur Identifikation von Antimalariamitteln zur Behandlung und/oder Prophylaxe von Malaria näher erläutert, ohne jedoch auf diese Ausführungen beschränkt zu sein. Bei DurcMuhrung der alternativen Ausführungsform des Screening-Verfahrens zur Identifikation von Arzneimitteln zur Behandlung und/oder zur Prophylaxe von Erkrankungen aus der Gruppe Tuberkulose, Hühnerpest, Legionellose und Gonorrhoe werden die einzelnen Schritte an den betreffenden Krankheits-relevanten Zellen analog den folgenden Ausführungen durchgeführt.
In Schritt a) werden nicht infizierte, bevorzugt humane Erythrocyten, mit einem Oxidationsmittel behandelt.
Die hierbei eingesetzten Erythrocyten werden gegebenenfalls durch Zentrifugations- und Resuspensionsschritte gewaschen und in einer Natriumchlorid-haltigen Lösung resuspendiert. Die Natriumchlorid-haltige Lösung ist vorzugsweise eine Lösung enthaltend 140 mM NaCl; 10 mM HEPES/NaOH pH 7,4; 5 mM KC1; 2,5 mM CaCl2; ImM MgCl2 und wird vorzugsweise in einem solchen Volumen zugegeben, daß sich eine Zellsuspension mit einem Hämatokrit 1 % bis 20 %, vorzugsweise von 4% bis 10 %, insbesondere von 5% ergibt Die so erhaltene Zellsuspension kann gegebenenfalls bei 8°C für 1 bis 7 Tage gelagert werden.
Als Oxidationsmittel kann generell jede bekannte oxidativ wirkende Substanz eingesetzt werden. Bevorzugt wird Wasserstoffperoxid, stärker bevorzugt die Substanz t- Butylhydroxyperoxid als Oxidationsmittel eingesetzt. Hierbei wird t-Butylhydroxyperoxid in einer Endkonzentration von 100 μM bis 3 mM, insbesondere in einer Endkonzentration von 1 mM zu der Erythrocyten-Suspension zugegeben. Die Inkubationszeit des Oxidationsmittels beträgt je nach Konzentration 5 min bis 0,5 Stunden, bevorzugt 10 min bis 20 min, stärker bevorzugt 15 Minuten und wird gegebenenfalls durch Zentrifugation und anschließende Entfernung des Überstands abgestoppt. In Schritt b) wird mindestens ein Anteil der mit einem Oxidationsmittel behandelten Erythrocyten aus Schritt a) mit jeweils mindestens einem potentiellen Arznei- bzw. Antimalariamittel behandelt, während ein Anteil der mit einem Oxidationsmittel behandelten Erythrocyten aus Schritt a) unbehandelt bleibt, d.h. nicht mit einem potentiellen Antimalariamittel behandelt wird und somit als Referenz dient.
Als potentielles Arznei- bzw. Antimalariamittel kann hier jede chemische Verbindung bzw. jede Mischung chemischer Verbindungen, vorzugsweise chemische Verbindungen mit oxidationsinhibierender bzw. reduzierender Wirkung oder mit der Wirkung eines Amonenkanalblockers eingesetzt werden. Besonders bevorzugt werden als potentielle Antimalariamittel die Einzelkomponenten einer Substanz-Bibliothek im high-throughput- screening eingesetzt, d.h. in dieser besonders bevorzugten Ausführungsform des Screening-Verfahrens werden gleich große Anteile an Erythrocyten aus Schritt a) in zahlreiche einzelne Reaktionsansätze aufgeteilt, die jeweils mit einer einzelnen oder mit mehreren Komponenten der Substanz-Bibliothek behandelt werden.
Unter "Behandlung" im Sinne des Schritts b) ist lediglich die Zugabe des potentiellen Arznei- bzw. Antimalariamittels in geeigneten Mengen zu den nach Schritt a) behandelten Erythrocyten zu verstehen. Das potentielle Antimalariamittel kann hierbei nach einer bestimmten Inkubationszeit vor Schritt c) wieder entfernt oder inaktiviert werden oder auch in der Suspension verbleiben.
In Schritt c) wird in isosmotischer Sorbitol-Losung der Hämolyse-Anteil der Anteile an Erythrocyten, die jeweils mit mindestens einem potentiellen Arznei- bzw. Antimalariamittel nach Schritt b) behandelt wurden, im Vergleich zum Hämolyse-Anteil der Erythrocyten in isosmotischer Sorbitol-Losung, die in Schritt b) unbehandelt blieben, bestimmt.
Hierbei werden zunächst die gegebenenfalls durch Zentrifugation pelletierten Zellen aus Schritt b) in isosmotischer Sorbitol-Losung suspendiert. Besonders bevorzugt werden die Zellen aus Schritt b) in einer isosmotischen Sorbitol-Losung enthaltend 290 mM Sorbitol; 5 mM HEPES/NaOH pH 7,4 suspendiert. Die Inkubationszeit und -bedingungen für die Hämolyse betragen bei 37 °C zwischen 30 min und 4 Stunden, vorzugsweise zwischen 60 min bis zu 3 Stunden, insbesondere zwischen 2 Stunden und 2,5 Stunden. Dabei sind die langen Inkubationszeiten notwendig für die langsame Induktion/Aktivierung der Ionenkanäle. Sind die Ionenkanäle einmal aktiviert, erfolgt der Transport des osmotisch aktiven Sorbitols in die Erythrocyten und die anschließende Hämolyse mit einer Zeitkonstante von t < 5 min. Anschließend wird die Hämolyse vorzugsweise durch Zentrifugation abgebrochen und die Hämoglobin-Konzentrationen in den Überständen der einzelnen Reaktionsansätze werden bestimmt. Je mehr Erythrocyten in einem Reaktionsansatz hämolysiert wurden, desto mehr Hämoglobin sollte sich im jeweiligen Überstand - also außerhalb der Erythrocyten -befinden. Die Hämoglobin-Konzentration im Überstand kann entweder qualitativ durch Aufnahme der Farbmuster (rot = Hämolyse; farblos = keine Hämolyse; "image scanning") oder quantitativ photometrisch durch die Absorption bei 546 nm nach Oxidation zu Cyanomet-Härnoglobin bestimmt werden. Bei dieser Bestimmung der Hämoglobin-Konzentration im Überstand kann der Reaktionsansatz, der in Schritt b) unbehandelt geblieben ist, als Referenz dienen. Die Verwendung weiterer geeigneter Reaktionsansätze als Referenzen ist gegebenenfalls möglich.
Die Erfindung betrifft weiterhin ein antioxidativ wirkenden Mittel enthaltend Diphenyleneiodonium als eines seiner Salze oder als Salz eines seiner Derivate zur Herstellung eines Arzneimittels zur Behandlung und/oder zur Prophylaxe von Erkrankungen, die durch intrazelluläre Erreger ausgelöst werden, insbesondere zur Behandlung und/oder Prophylaxe von Malaria.
Ein weiterer Gegenstand der Erfindung ist die Verwendung einer antioxidativ wirksamen Substanz, insbesondere die Verwendung von Diphenyleneiodonium als eines seiner Salze oder als Salz eines seiner Derivate, zur Herstellung eines Arzneimittels zur Behandlung und/oder zur Prophylaxe von Erkrankungen, die von intrazellulären Erregern ausgelöst werden, insbesondere zur Behandlung und/oder zur Prophylaxe von Malaria. Die Verwendung eines NADPH-Oxidase-Hemmers als antioxidativ wirksame Substanz ist hierbei ebenfalls bevorzugt.
Zu den Derivaten des Diphenyleneiodoniumchlorids zählen solche Verbindungen der allgemeinen Grundformel des Diphenyleneiodonium-Ions ((l,l-Biphenyl)-2,2'- diyliodonium),
Figure imgf000011_0001
die an einem oder an beiden Phenylringen mindestens eine oder mehrere gleiche oder verschiedene funktionelle Gruppen besitzen, so beispielsweise 4-Acetylamino- diphenyleneiodonium etc.. Auch Inhibitoren der zum NPP beitragenden Kanäle eignen sich nach den erfindungsgemäßen Erkenntnissen zur Herstellung eines Arzneimittels zur Behandlung und/oder zur Prophylaxe von Erkrankungen, die durch intrazelluläre Erreger ausgelöst werden. Ihre Verwendung zur Herstellung eines Arzneimittels zur Behandlung und/oder zur Prophylaxe solcher Erkrankungen, insbesondere zur Behandlung und/oder zur Prophylaxe von Malaria ist daher ebenfalls Gegenstand der vorliegenden Erfindung.
Die vorliegende Erfindung betrifft weiterhin die Verwendung von Zellen, die zuvor mit einem Oxidationsmittel behandelt wurden, zur Identifizierung von Arzneimitteln zur Behandlung und/oder zur Prophylaxe von Erkrankungen, die durch intrazelluläre Erreger ausgelöst werden. Bevorzugt ist hierbei die Verwendung von Erythrocyten, die zuvor mit einem Oxidationsmittel behandelt wurden, zur Identifizierung von Arzneimitteln zur Behandlung und/oder zur Prophylaxe von Malaria.
Gegenstand der Erfindung ist außerdem die Verwendung eines Hämolyse-Assays bei Zellen in isosmotischer Sorbitol-Losung zur Bestimmung und/oder Quantifizierung der Aktivität von Kanälen in der Membran dieser Zellen, insbesondere zur Bestimmung und/oder Quantifizierung der Aktivität der zum NPP beitragenden Kanäle.
In der anliegenden Zeichnung sind in den einzelnen Figuren die folgenden Sachverhalte, die sich im wesentlichen auf die Beispiele beziehen, im Detail dargestellt.
Fig. 1 zeigt Ganzzell-Patch-clamp Ableitungen von P. falciparum infizierten Erythrozyten.
Fig 1A zeigt die lichtmikroskopische Aufnahme eines Trophozoit-infizierten Erythrozyten während Ganzzell- Ableitung. Für die Infektionen wurde der Laborstamm P. falciparum BINH (V.Q. Binh, A.J. Luty, P.G. Kremsner, Am. J. Trop. Med. Hyg. 57, 594 (1997)) verwendet. Die Kultivierung der Parasiten, die Synchronisation des Parasitenentwicklungsstadiums und die Anreicherung von infizierten Erythrozyten erfolgte wie beschrieben in Cranmer, C. Magowan, J. Liang, R.L. Coppel, B.M. Cooke, Trans. R. Soc. Trop. Med. Hyg. 91, 363 (1997); W. Trager, J.B. Jensen, Science 193, 673 (1976) und in C. Lambros, J.P. Vanderberg, J. Parasitology 65, 418 (1979); J.B. Jensen, Am. J. Tro.p Med. Hyg. 27, 1274 (1978).
Fig. 1B zeigt die Original Stromspuren aufgenommen in nicht-infizierten humanen Erythrozyten (control; links) und in zwei Trophozoit-infizierten Zellen, die einwärts- (Mitte) bzw. auswärts rektifizierende Ströme zeigen (rechts). Die Ganzzeil-Ströme wurden evoziert durch aufeinanderfolgende Spannungspulse vom -30 mV Haltepotential auf Potentiale zwischen -100 mV and +100 mV. In den OriginalstiOmspuren sind die individuellen Spannungspulse übereinandergelagert abgebildet.
Fig. IC stellt die Strom/Spannungs- (I/V)- Beziehung dar aufgenommen wie in Fig. 1B von nicht-infizierten (n=22; links) and Trophozoit-infizierten Zellen mit einwärts- (n=7; Mitte) und auswärts rektifizierenden Strömen (n=35; rechts).
Fig.2 zeigt, daß die Ganzzell-Ströme von infizierten Erythrocyten anionenselektiv sind.
Fig. 2A und 2C zeigen die Originalstromspuren von jeweils einer infizierten Zelle mit einwärts- (Fig. 2A) und auswärts rektifizierenden Strömen (Fig. 2C) vor (control), während (NPPB), und nach (wash-out) Applikation von NPPB ( 100 μM) im Bad.
Fig. 2B zeigt die Originalstromspuren einer infizierten Zelle, die beide Phänotypen zeigte (auswärts- und einwärts-rektifizierende Ströme), aufgenommen vor (control; links) und nach Zugabe von DIDS (100 μM) zur Badlösung (DIDS; Mitte). Die DIDS-sensitive Stromfraktion ist auswärts rektifizierend, während die DIDS-insensitive Fraktion einwärts rektifiziert. Diese DIDS-insensitive Fraktion zeigt die I/V-Kurve (rechts).
Fig. 2D stellt die gemittelten I/V-Kurven der DIDS- (100 μM; Dreiecke; n=7) und NPPB- (100 μM; Kreise; n=6) sensitiven Fraktionen des auswärts rektifizierenden Stroms dar.
Fig. 2E zeigt den Prozentsatz der Auswärts-Leitfähigkeit, der durch NPPB, DIDS, Furosemid oder Glibenclamid (jeweils 100 μM; n=3-5) in infizierten Erythrozyten mit auswärts rektifizierenden Strömen gehemmt wurde. Fig. 2F stellt die gemittelten I/V-Beziehungen von auswärts rektifizierenden Strömen dar, die in gepaarten Experimenten in NaCl-haltiger Lösung (Kreise) bzw. in Na-Glukonat- haltiger Lösung (Dreiecke; n=6) aufgenommen wurden.
Fig. 2G demonstriert die mittlere Verschiebung des Umkehrpotentials dieser Ströme verursacht durch Substitution von Cl" im Bad durch die angegebenen Anionen (n=4-9; p = 0.05).
Aus Fig. 3 ist ersichtlich, daß Reduktion die Infektions-induzierten Ströme in Erythrocyten und die Hämolyse der Erythrocyten in isosmostischer Sorbitol-Losung hemmt.
Fig. 3A-D zeigt die Originalspuren von einwärts- (Fig. 3A) und auswärts rektifizierenden Strömen (Fig. 3C) vor (links) und nach Inkubation mit der reduzierenden Substanz Dithioerythrol (DTE) (100 μM; rechts). In Fig. 3B und 3D sind die entsprechenden DTE- sensitiven Stromfraktionen (n=l bzw. n=6) gegen die Spannung aufgetragen.
Fig. 3E-H stellt den "Run-down" von Infektion-induzierten Strömen in Erythrocyten durch reduziertes Glutathion (GSH; 10 mM) zugegeben zur Pipettenlösung dar. Hierbei zeigen die Fig. 3 E und 3G die Originalspuren von einwärts- (Fig. 3E) und auswärts rektifizierenden Strömen (Fig. 3G), während kontinuierlicher Ganzzell-Ableitung. Die Inkubationszeiten sind jeweils angegeben. In Fig.3F (n=l) und in Fig. 3H (Dreiecke; n=5) sind die I/V-Kurven der entsprechenden GSH-sensitiven Stromfraktionen dargestellt. Zusätzlich zeigt der N-Plot in Fig. 3H, daß die Zugabe der oxidierten Form von Glutathion (GSSG; 10 mM) zur Pipettenlösung in ungepaarten Kontrollexperimenten die auswärts rektifizierenden Ströme nicht inhibiert (schwarze Kreise; n=4).
Fig. 3 I-J zeigt, daß die Reduktion, sowie auch die Behandlung von infizierten Erythrocyten mit Cl"-Kanal-Blockern die Hämolyse in isosmostischer Sorbitol-Losung hemmt. Angereicherte Trophozoit-infizierte Erythrozyten wurden in isosmotischer Sorbitol-Losung (5 %) oder zur Kontrolle in NaCl-Lösung suspendiert und für 5-10 min bei 37 °C in An- bzw. Abwesenheit von DIDS, NPPB, Furosemid, Glibenclamid bzw. DTE (jeweils 100 μM) hämolysiert. Nach Zentrifugation wurde die Hämoglobinkonzentration des Überstands photometrisch bestimmt (gezeigt in Fig. 31, in einem Experiment in Duplikaten). In Fig. 3J ist die durch 100 μM DTE inhibierte Fraktion als Prozentsatz der gesamten Hämolyse, die durch NPPB blockiert werden konnte, dargestellt (n=8-13; P = 0.01). Die Reduktion hemmt somit die Infektions-induzierten Ströme und die Hämolyse der Erythrocyten in isosmotischer Sorbitol-Losung.
Fig. 4 zeigt das Ergebnis der Oxidations-induzierten Hämolyse nicht infizierter Erythrocyten in isosmotischer Sorbitol-Losung. Kontroll-Erythrozyten wurden hierbei bis zu einem Hämatokrit von 0.05 in NaCl-Ringer (140 mM NaCl, 10 mM HEPES/NaOH pH 7.4, 5 mM KC1, 1 mM MgCl2; 2,5 mM CaCl2) resuspendiert und in 500μl- Reaktionsansätzen aliquotiert Zu den Reaktionsansätzen wurde jeweils 1 ml NaCl-Ringer mit bzw. ohne 1.5 mM t-Butylhydroxyperoxid zugegeben, und die Zellen wurden für 10 min inkubiert und dann 5 min bei 1500 rpm herunterzentrifiigiert. Die Zellpellets wurden resuspendiert in 400 μl 5% Sorbitol/5 mM HEPES/NaOH pH 7.4 oder im gleichen Volumen von NaCl-Ringer. Die Zellen wurden bei 37 °C in An- bzw. Abwesenheit von NPPB, Furosemid, bzw. Glibenclamid (alle 100 μM) inkubiert. Nach 120 minütiger Inkubation wurden die Proben 5 min bei 1500 rpm abzentrifugiert und die Hämoglobinkonzentration in 200 μl des Überstands photometrisch bestimmt.
Fig. 4A zeigt das Hämoglobin im Überstand von unbehandelten (obere Reihen) und oxidierten Kontroll-Erythrozyten (Reihen 3 und 4) nach 2stündiger Inkubation in Sorbitol- Losung (oder zur Kontrolle in NaCl-Lösung) in Ab- (control, NaCl) und Anwesenheit von verschiedenen Blockern (gezeigt ist ein individuelles Experiment in Duplikaten).
Fig. 4B stellt die mittlere Oxidations-induzierte Hämolyse in Sorbitol- (schwarze Säulen; n=6-8) und NaCl-Lösung (n=4; weiße Säule) in Ab- (control, NaCl) und Anwesenheit der angegebenen Blocker (alle 100 μM) dar.
Fig. 4C-D zeigt die einwärts rektifizierenden Ströme in nicht-infizierten Erythrozyten, insbesondere die Originalstromspuren (Fig. 4C, links) und die gemittelte I/V-Kurve (Fig. 4D) aufgenommen in unbehandelten (n=l) oder oxidierten Zellen (n=9). Der Kasten in Fig. 4C zeigt Einzelkanalereignisse, die aus den Ganzzeil-Spuren (links) herausvergrößert wurden. Fig. 4E zeigt auswärts rektifizierende Ströme in nicht-infizierten Kontroll-Erythrozyten, insbesondere die Original Stromspuren in NaCl- (links) und in Na-Gukonat- (rechts) Badlösung einer Zelle mit spontanen Strömen.
Fig. 4F zeigt die IAA-Beziehungen von auswärts rektifizierenden Strömen in unbehandelten (n=4) und oxidierten Kontroll-Erythrozyten (n=7) aufgenommen in NaCl- Badlösung.
Fig. 5 demonstriert die Inhibition des intaerythrozytären Parasiten- Wachstums durch die Kanal-Blocker Furosemid, NPPB, Glibenclamid und den Oxidationsinhibitor Diphenyleniodiumchlorid.
Hierbei wurden mit Plasmodium falciparum infizierte Erythrozyten (Laborstamm BINH) bei einem Hämatokrit von 1% und einer Parasitaemie von 1% kultiviert und mit verschiedenen Konzentrationen der angegebenen Blocker inkubiert. Nach 48 h wurden die Kulturen geerntet, mit Ethidiumbromid angefärbt und das Überleben der Parasiten mittels FACS analysiert (Becton Dickinson Fluorometer). Dargestellt ist die Parasitämie (Prozentsatz der infizierten Erythrozyten) in Mittelwerten (± SE; n = 6; c: Kontrolle) von zwei unabhängigen Experimenten, jeweils bestimmt in Triplikaten.
Die folgenden Beispiele, durch die die Erfindung näher erläutert wird, beziehen sich auf die in den Figuren 1 bis 5 dargestellten Ergebnisse, sowie auf die vorangegangenen Figuren- Beschreibungen.
Beispiel 1 : Identifizierung der zum NPP beitragende Kanäle
Die Erythrozyten wurden in der Spannungsklemme im Ganzzeil-Modus während konstanter Superfusion bei Raumtemperatur abgeleitet wie früher beschrieben (S.M. Huber,
N. Gamper, F. Lang, Pflügers Arch., in Druck). Abgeleitet wurden Trophozoitstadium- infizierte und nichtinfizierte Erythrozyten (Fig. 1) mit einer Badlösung bestehend aus 115 mM NaCl, 20 mM HEPES/NaOH pH 7.4, 5 mM CaCl2, 10 mM MgCl2. Die Pipettenlösung war 115 mM NaCl, 0.5 mM EGTA, 10 mM MgCl2, and 20 mM HEPES/NaOH pH 7.4. Die Ganzzell-Ströme wurden charakterisiert durch Austausch der NaCl-Badlösung mit Lösungen bestehend aus 140 mM Na-X, 20 mM HEPES/NaOH pH 7.4, wobei X die Anionen SCN", I", Br", Laktat, bzw. Glukonat repräsentierte. Die Daten wurden für die "Liquid junction potentials" korrigiert.
Kontrollerythrozyten (22 aus 27 Zellen; Fig. 1 A) zeigten Ganzzellströme von weniger als 100 pS (70 ± 11 pS (Datenanalyse und Statistik: Die Daten sind Mittelwerte ± SE; n = Zahl der Zellen/Experimente, die Unterschiede zwischen den Mittelwerten wurden mittels ungepaartem t-Test (zweiseitig) abgeschätzt.); Fig. 1B-C, links). Im Gegensatz dazu zeigten Ganzzellströme von P. falciparum-infizierten Erythrozyten (Fig. 1A) durchwegs Ströme im Bereich von 10 nS. Zwei verschiedene Typen von Leitfähigkeiten konnten unterschieden werden: Sieben von 42 Zellen zeigten ausschließlich einwärts rektifizierende Ströme (Fig IB, Mitte) mit einer mittleren Leitfähigkeit Gejnwärts von 7 ± 1 nS (Fig. IC, Mitte). Diese Ströme wurden durch den Cl"-Kanalblocker 5-Nitro-2-(3-phenylpropylamino)-benzoesäure NPPB (100 μM; Fig 2A) fast völlig, durch 4,4,-Diisothiocyano-stilben-2,2,-disulfonsäure DIDS (100 μM; Fig 2B) nur wenig gehemmt. Ahnliche Befunde hatten zuvor Desai et al erhoben.
Die meisten infizierten Zellen (35 aus 42 Zellen) exprimierten hingegen eine auswärts rektifizierende Leitfähigkeit (Fig. IB, rechts). Diese Leitfähigkeit (Gauswärts^lδ ± 1 nS, Fig IC; rechts) wurde irreversibel durch den Cr-Kanalblocker DIDS und reversibel durch NPPB, Glibenclamid, und Furosemid (jeweils 100 μM) gehemmt (Fig. 2B-E).
Der Austausch von Chlorid in der Badflüssigkeit durch Glukonat minderte den Auswärtsstrom und verschob das Umkehrpotential der auswärts rektifizierenden Leitfähigkeit parallel zur Änderung des Gleichgewichtspotentiales für Cl" (Eci), ein Hinweis auf eine Anionenselektivität des Kanales (Fig. 2F). Die aus dem Umkehrpotential unter bionischen Bedingungen errechnete Permselektivität des auswärts- rektifizierenden Stromes war I" (= Br" - Cϊ) > SCN" > Lactat > Glukonat (Fig. 2G). Beispiel 2: Induktion der zum NPP beitragenden Kanäle durch Oxidation bzw. Hemmung der Induktion durch Reduktion
Um zu überprüfen, ob die beobachteten Leitfähigkeiten auf eine Oxidation der Erythrozytenmembran durch den Erreger zurückzuführen sind, wurde die reduzierende Substanz Dithioerythrol (DTE, 100 μM) im Bad zugesetzt. Diese hemmte binnen 5 min irreversibel die einwärts- und auswärts- rektifizierenden Ströme (Fig. 3A-D). Darüber hinaus wurden die Ströme durch reduziertes Glutathion (GSH; 10 mM) in der Pipettenlösung gehemmt, nicht aber durch oxidiertes Glutathion (GSSG; 10 mM) (Fig. 3E-H).
Die Hämolyse infizierter Erythrozyten in isosmotischer Sorbitol-Losung wurde durch die Anionenkanalblocker NPPB, Furosemid und Glybenclamid, sowie auch durch das Reduktionsmittel DTE (jeweils 100 μM) gehemmt (Fig. 31- J). Dies ist ein Hinweis, daß beide Infektions-induzierten Ströme das elektrophysiologische Korrelat des NPP sind und durch Oxidation verursacht werden.
Um weiter zu untersuchen, ob die Oxidation der Erythrozyten-Zellmembran für die Induktion des NPP eine Rolle spielt, wurden nicht-infizierte Zellen mit t-Butylhydroxyperoxid vorbehandelt und dann in isosmotische Sorbitol-Losung eingebracht. Fast 40 % der Erythrozyten wurden binnen 2 h in isosomotischer Sorbitol-Losung, nicht aber in isosmotischer Kochsalz-Lösung hämolysiert. Die Hämolyse wurde durch NPPB, Furosemid, oder Glybenclamid (jeweils 100 μM) abgeschwächt oder gänzlich unterdrückt (Fig. 4A-B). Darüberhinaus wurden die einwärts und auswärts rektifizierenden Ströme in einigen nicht- infizierten Erythrozyten und in den meisten t-Butylhydroxyperoxid-behandelten Erythrozyten beobachtet (Fig. 4C-E). Die durch oxidativen Streß hervorgerufenen Leitfähigkeiten sind somit den durch Infektion mit P. falciparum ausgelösten Leitfähigkeiten ähnlich.
Hinweise für die Existenz von Cl"-Kanälen in nicht infizierten humanen Erythrozyten wurden bereits zuvor berichtet (J.C. Freedman, C. Miller, Ann. NY Acad. Sei. 435, 541 (1984); W. Schwarz, R. Grygorczyk, D. Hof, Methods Enzymol.173, 112 (1989); J.C. Freedman, T.S. Novak, J.D. Bisognano, P.R. Pratap, J. Gen. Physiol. 104, 961 (1994); J.C. Freedman, T.S. Novak, J. Gen. Physiol. 109, 201 (1997); S.M. Huber, N. Gamper, F. Lang, Pflügers Arch., im Druck) . Die erfindungsgemäßen Befunde zeigen, daß diese Chlorid-Kanäle praktisch identisch zu den durch P. falciparum induzierten Kanälen sind und daß diese durch Oxidation als Folge der Infektion mit Plasmodium falciparum aktiviert werden. In der Abwesenheit von oxidativem Streß ist die Ganzzell-Leitfähigkeit im Bereich von wenigen pS (J.F. Hoffman, in Progress in Cell Research. The Band 3 proteins: anion transporters, binding proteins, and senescent antigens, E. Bamberg, H. Passow, eds. (Elsevier, Amsterdam, New York, 1992) vol.2, pp. 173-178). Die durch Oxidation bzw. durch Plasmodium aktivierten Kanäle sind also normalerweise inaktiv und ihre Leitfähigkeit entsprechend gering. Daher ist auch Hämolyse von unbehandelten Erythrozyten in isosmotischer Sorbitol-Losung minimal.
Beispiel 3: Wirkung eines Oxidationsinhibitors oder bekannter Anioneninhibitoren auf das Parasiten- Wachstum
Nach der elektrophysiologischen Charakterisierung des NPP wurde die Auswirkung eines Oxidationsinhibitors, sowie auch die Auswirkung bekannter Anioneninhibitoren auf das Wachstum von P. falciparum untersucht.
Hierbei wurden mit Plasmodium falciparum infizierte Erythrozyten (Laborstamm BINH) bei einem Hämatokrit von 1% und einer Parasitaemie von 1% kultiviert und mit verschiedenen Konzentrationen der angegebenen Blocker inkubiert. Nach 48 h wurden die Kulturen geerntet, mit Ethidiumbromid angefärbt und das Überleben der Parasiten mittels FACS analysiert (Becton Dickinson Fluorometer).
Das intraerythrozytäre Wachstum der Malaria-Erreger konnte durch den Flavinproteininhibitor Diphenyleneiodonium (DPI), einen Oxidationsinhibitor (Fig. 5) im Vergleich zur unbehandelten Kontrolle bei einer Konzentration von 10 μM moderat, sowie ab einer Konzentration von 50 μM komplett inhibiert werden.
Fig. 5 zeigt außerdem, daß auch die Anionenkanal-Blocker Furosemid, NPPB und Glibenclamid das Parasitien- Wachstum spezifisch hemmen. Dabei bestätigten sich frühere Daten von Cabantchik (Z.I. Cabantchik, S. Kutner, M. Krugliak, H. Ginsburg, Mol. Pharmacol. 23, 92 (1983)) und verifizieren damit das eingesetzte Sorbitol-Hämolysesystem zum Screening für mögüche Inhibitoren von P. falciparum als Grundlage für die Entwicklung neuer Chemotherapie gegen die Malaria.
Darüberhinaus hemmen hohe extrazelluläre Laktatkonzentrationen ebenfalls das Parasitenwachstum. Der Erreger ist daher ganz offensichtlich auf die Leitfähigkeit der durch Oxidation geöffneten Kanäle angewiesen, um z.B. das von ihm generierte Laktat entsorgen zu können.

Claims

Patentansprüche
1. Screening- erfahren zur Identifikation von Arzneimitteln zur Behandlung und/oder zur Prophylaxe von Erkrankungen, die durch intrazelluläre Erreger ausgelöst werden, mit den folgenden Schritten: a) Behandlung von nicht-infizierten Zellen mit einem Oxidationsmittel; b) Behandlung mindestens eines Anteils der behandelten Zellen aus Schritt a) mit jeweils mindestens einem potentiellen Arzneimittel, während ein Anteil der behandelten Zellen aus Schritt a) unbehandelt bleibt; c) quantitative Bestimmung des Hämolyse-Anteils der Anteile an Zellen in isosmotischer Sorbitol-Losung, die mit mindestens einem potentiellen Arzneimittel in Schritt b) behandelt wurden, im Vergleich zum Hämolyse- Anteil des Anteils an Zellen in isosmotischer Sorbitol-Losung, der in Schritt b) unbehandelt blieb.
2. Screening- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Erkrankung Malaria ist und als Zellen nicht infizierte Erythrocyten eingesetzt werden.
3. Screening- Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die nicht infizierten Erythrocyten humanen Ursprungs sind.
4. Screening- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Erkrankung aus der Gruppe Tuberkulose, Hühnerpest, Legionellose und Gonorrhoe ausgewählt ist.
5. Screemng-Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als potentielles Arzneimittel in Schritt b) die jeweiligen Einzelkomponenten einer Substanz-Bibliotliek eingesetzt werden.
6. Screemng-Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß in Schritt a) als Oxidationsmittel t-Butylhydroxyperoxid eingesetzt wird.
7. Antioxidativ wirksames Mittel zur Behandlung und/oder zur Prophylaxe von Erkrankungen, die durch intrazelluläre Erreger ausgelöst werden, enthaltend Diphenyleneiodonium als eines seiner Salze oder als Salz eines seiner Derivate.
8. Antioxidativ wirksames Mittel nach Anspruch 7, dadurch gekennzeichnet, daß die Erkrankung, die durch intrazelluläre Erreger ausgelöst wird, Malaria ist.
9. Antioxidativ wirksames Mittel nach Anspruch 7, dadurch gekennzeichnet, daß die Erkrankung, die durch intrazelluläre Erreger ausgelöst wird, ausgewählt aus der Gruppe Tuberkulose, Hühnerpest, Legionellose und Gonorrhoe ist.
10. Verwendung einer antioxidativ wirksamen Substanz zur Herstellung eines Arzneimittels zur Behandlung und/oder zur Prophylaxe einer Erkrankung, die durch intrazelluläre Erreger ausgelöst wird.
11. Verwendung nach Anspruch 10, dadurch gekennzeichnet, daß die Erkrankung, die durch intrazelluläre Erreger ausgelöst wird, Malaria ist.
12. Verwendung nach Anspruch 10, dadurch gekennzeichnet, daß die Erkrankung, die durch intrazelluläre Erreger ausgelöst wird, ausgewählt aus der Gruppe Tuberkulose, Hühnerpest, Legionellose und Gonorrhoe ist.
13. Verwendung nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß die antioxidativ wirksame Substanz Diphenyleniodonium, eines seiner Salze oder Derivate ist.
14. Verwendung eines Inhibitors der zum NPP beitragenden Kanäle zur Herstellung eines Arzneimittels zur Behandlung und/oder zur Prophylaxe von Erkrankungen, die von intrazellulären Erregern ausgelöst werden.
15. Verwendung von Zellen, die zuvor mit einem Oxidationsmittel behandelt wurden, zur Identifizierung von Arzneimitteln zur Behandlung und/oder zur Prophylaxe von von Erkrankungen, die von intrazellulären Erregern ausgelöst werden.
16. Verwendung nach Anspruch 15, dadurch gekennzeichnet, daß die verwendeten Zellen Erythrocyten sind.
17. Verwendung eines Hämolyse- Assays in isosmotischer Sorbitol-Losung zur Bestimmung und/oder Quantifizierung der Aktivität von Kanälen in der Zellmembran.
18. Verwendung nach Anspruch 17, dadurch gekennzeichnet, daß es sich bei den Kanälen in der Zellmembran um die zum NPP beitragenden Kanäle handelt.
PCT/EP2002/001097 2001-02-01 2002-02-01 Screening-verfahren zur identifikation von arzneimitteln WO2002061421A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002235892A AU2002235892A1 (en) 2001-02-01 2002-02-01 Screening method for identifying medicaments

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10104825.4 2001-02-01
DE10104825A DE10104825A1 (de) 2001-02-01 2001-02-01 Screening von Antimalariamitteln

Publications (2)

Publication Number Publication Date
WO2002061421A2 true WO2002061421A2 (de) 2002-08-08
WO2002061421A3 WO2002061421A3 (de) 2003-10-30

Family

ID=7672698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/001097 WO2002061421A2 (de) 2001-02-01 2002-02-01 Screening-verfahren zur identifikation von arzneimitteln

Country Status (3)

Country Link
AU (1) AU2002235892A1 (de)
DE (1) DE10104825A1 (de)
WO (1) WO2002061421A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ305247B6 (cs) * 2013-09-20 2015-07-01 Ústav molekulární genetiky AV ČR, v.v.i. Farmaceutický přípravek obsahující difenylenjodonium pro léčení onemocnění vyvolaných parazity čeledi Trypanosomatidae

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018108A1 (fr) * 1993-12-24 1995-07-06 Bioxytech Utilisation de derives 2-mercapto-imidazole substitues en position 4 (ou 5) comme agents antioxydants, leur procede de preparation et leurs applications en pharmacie, cosmetique ou alimentaire
WO1998003178A2 (en) * 1996-07-19 1998-01-29 Smithkline Beecham Plc Pharmaceutical compositions containing p2y purinergic receptor antagonists
US5902831A (en) * 1995-11-27 1999-05-11 The Research Foundation Of State University Of New York Prevention of atherosclerosis using NADPH oxidase inhibitors

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987196A (ja) * 1995-09-25 1997-03-31 Masatoshi Nakano 寄生虫駆除・駆虫剤
JPH09255589A (ja) * 1996-03-28 1997-09-30 Shiseido Co Ltd ストレス抑制剤

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018108A1 (fr) * 1993-12-24 1995-07-06 Bioxytech Utilisation de derives 2-mercapto-imidazole substitues en position 4 (ou 5) comme agents antioxydants, leur procede de preparation et leurs applications en pharmacie, cosmetique ou alimentaire
US5902831A (en) * 1995-11-27 1999-05-11 The Research Foundation Of State University Of New York Prevention of atherosclerosis using NADPH oxidase inhibitors
WO1998003178A2 (en) * 1996-07-19 1998-01-29 Smithkline Beecham Plc Pharmaceutical compositions containing p2y purinergic receptor antagonists

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LANG F ET AL: "The diversity of volume regulatory mechanisms." CELLULAR PHYSIOLOGY AND BIOCHEMISTRY: INTERNATIONAL JOURNAL OF EXPERIMENTAL CELLULAR PHYSIOLOGY, BIOCHEMISTRY, AND PHARMACOLOGY. SWITZERLAND 1998, Bd. 8, Nr. 1-2, 1998, Seiten 1-45, XP001106286 ISSN: 1015-8987 *
LEW V L ET AL: "The effects of transport perturbations on the homeostasis of erythrocytes." NOVARTIS FOUNDATION SYMPOSIUM. ENGLAND 1999, Bd. 226, 1999, Seiten 37-50; discussion 50 - 54, XP002215893 *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 07, 31. Juli 1997 (1997-07-31) & JP 09 087196 A (NAKANO MASATOSHI), 31. März 1997 (1997-03-31) & DATABASE WPI 23, 1997 Derwent Publications Ltd., London, GB; AN 255469 *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 01, 30. Januar 1998 (1998-01-30) & JP 09 255589 A (SHISEIDO CO LTD), 30. September 1997 (1997-09-30) & DATABASE WPI 49, 1997 Derwent Publications Ltd., London, GB; AN 532707 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ305247B6 (cs) * 2013-09-20 2015-07-01 Ústav molekulární genetiky AV ČR, v.v.i. Farmaceutický přípravek obsahující difenylenjodonium pro léčení onemocnění vyvolaných parazity čeledi Trypanosomatidae

Also Published As

Publication number Publication date
DE10104825A1 (de) 2002-08-08
WO2002061421A3 (de) 2003-10-30
AU2002235892A1 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
Brand et al. Dependence of Plasmodium falciparum in vitro growth on the cation permeability of the human host erythrocyte
Siri et al. Calcium channels coupled to neurotransmitter release at neonatal rat neuromuscular junctions
Ellis et al. The chemotherapy of rodent malaria, XXXIX: Ultrastructural changes following treatment with artemisinine of Plasmodium berghei infection in mice, with observations of the localization of [3H]-dihydroartemisinine in P. falciparum in vitro
DE2832204A1 (de) Mittel zur behandlung von nervenerkrankungen, verfahren zu seiner herstellung und seine verwendung
Miyasato et al. Molluscicidal activity of some marine substances against the snail Biomphalaria glabrata (Mollusca, Planorbidae)
Zaid et al. Andrographolide effect on both Plasmodium falciparum infected and non infected RBCs membranes
EP1200831A1 (de) Modulatorische bindungsstelle an kaliumkanälen zum screening
DE68921413T2 (de) Verbindungen und Zusammensetzungen zur Anwendung bei Methoden zur Behandlung und Prophylaxe von Pneumocystis Carinii Pneumonia und anderen Krankheiten.
Aguwa et al. Comparing the effect of methods of rat euthanasia on the brain of Wistar rats: Cervical dislocation, chloroform inhalation, diethyl ether inhalation and formalin inhalation
WO2002061421A2 (de) Screening-verfahren zur identifikation von arzneimitteln
EP0537427B1 (de) Verfahren zur Herstellung von Huminaten
Sitges Effect of Organic and Inorganic Calcium Channel Blockers on γ‐Amino‐n‐Butyiic Acid Release Induced by Monensin and Veratrine in the Absence of External Calcium
Drimyli et al. Differential electrophysiological responses to odorant isotopologues in drosophilid antennae
Lezzi In vitro effects of juvenile hormone on puffing in Chironomys salivary glands
Ozacmak et al. N-acetyl neuraminic acid (NANA) activates L-type calcium channels on isolated tentacle supporting cells of the sea anemone (Aiptasia pallida)
ERASLAN et al. Infected with Eimeria tenella
WO2010003528A1 (de) Dimethylfumarat enthaltendes arzneimittel zur behandlung einer durch parasiten verursachten krankheit
Xiong et al. Effect of lamotrigine on the Ca2+-sensing cation current in cultured hippocampal neurons
Keith et al. Comparative actions of synthetic co-grammotoxin SIA and synthetic ω-Aga-IVA on neuronal calcium entry and evoked release of neurotransmitters in vitro and in vivo
Holte et al. The effect of water soluble cyanotoxin (s) produced by two species of Anabaena on the release of acetylcholine from the peripheral cholinergic nervous system of the rat airway
Georgewill et al. Plasmodium berghei
Ruenwongsa et al. Stimulation of Ca2+ uptake in the human liver fluke Opisthorchis viverrini by praziquantel
DE69931182T2 (de) Verwendung von triclosan als antimalariamittel
Tao et al. Significance of higher drug concentration in erythrocytes of mice infected with Schistosoma japonicum and treated orally with mefloquine at single doses
Okubo et al. Calcium-ions are involved in erythrocyte invasion by equine Babesia parasites

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP