WO2002059483A1 - Turbomolekularvakuumpumpe mit rotor- und statorschaufeln - Google Patents

Turbomolekularvakuumpumpe mit rotor- und statorschaufeln Download PDF

Info

Publication number
WO2002059483A1
WO2002059483A1 PCT/EP2001/013204 EP0113204W WO02059483A1 WO 2002059483 A1 WO2002059483 A1 WO 2002059483A1 EP 0113204 W EP0113204 W EP 0113204W WO 02059483 A1 WO02059483 A1 WO 02059483A1
Authority
WO
WIPO (PCT)
Prior art keywords
blades
rotor
convex
inlet
outlet
Prior art date
Application number
PCT/EP2001/013204
Other languages
English (en)
French (fr)
Inventor
Christian Beyer
Heinz ENGLÄNDER
Peter Klingner
Martin Laerbusch
Original Assignee
Leybold Vakuum Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Vakuum Gmbh filed Critical Leybold Vakuum Gmbh
Priority to DE50114317T priority Critical patent/DE50114317D1/de
Priority to US10/466,343 priority patent/US6910861B2/en
Priority to EP01994664A priority patent/EP1354138B1/de
Priority to JP2002559954A priority patent/JP3974529B2/ja
Publication of WO2002059483A1 publication Critical patent/WO2002059483A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Definitions

  • the invention relates to a turbomolecular vacuum pump with the features of the preamble of patent claim 1.
  • Turbomolecular vacuum pumps are constructed like a turbine with stator and rotor blades. A significant pumping effect is only achieved in the molecular flow range (p ⁇ 10 ⁇ 3 bar). In the subsequent area of the Knudsen flow, the delivery rates decrease more and more with increasing pressure.
  • the pumping principle of a turbomolecular vacuum pump is based on the fact that the gas molecules to be pumped receive an impulse in the conveying direction through collisions with the rotor and stator blades. This effect is only achieved if the peripheral speeds of the rotor blades are in the order of magnitude of the average thermal speed of the gas molecules to be pumped.
  • the average thermal velocity of gas molecules depends on their molar mass. It is approx. 1760 m / s for H 2 (mass 2) and approx. 470 m / s for N 2 (mass 28).
  • the compression ratio of a known turbomolecular vacuum pump increases between the masses of the aforementioned gases H 2 and N from about 10 3 to 10 8 .
  • the usual design of the blades of a turbomolecular pump is known from DE-U 72 37 362. They have flat boundary surfaces. Their angle of attack (angle between the plane of the blades and a plane perpendicular to the axis of rotation) decreases from the suction side of the pump to the pressure side.
  • the object is achieved by the invention, i.e. the conveyance of light gases is improved.
  • the advantage is achieved that the measures according to the invention do not impair the compression and delivery performance of the pump (compression, pumping speed, throughput) for gases with a higher molar mass.
  • the blades designed according to the invention retain their improved conveying properties well into the Kundsen area, so that the fore-vacuum resistance of a turbomolecular pump equipped therewith is considerably cheaper in comparison with the prior art or the outlay for the fore-vacuum pumps can be significantly reduced.
  • FIG. 1 shows schematically a turbomolecular vacuum pump
  • Figures 2 and 3 designs of rotor blades designed according to the invention, in which either the rear or the front has convex and concave areas
  • the turbomolecular vacuum pump 1 shown in FIG. 1 comprises a housing / stator 2, an inlet 3, an outlet 4, stator blades 5 and rotor blades 6.
  • the stator blades 5 are components of rows of stator blades, which are connected to the housing / stator 2.
  • the rotor blades 6 are components of rows of rotor blades which are attached to the rotating body 7, e.g. a shaft, attached or formed in one piece.
  • the rows of rotor and stator blades alternate with one another at opposite angles of attack and cause the gases to be conveyed from inlet 3 to outlet 4.
  • FIGS. 2 to 5 show different versions of blades designed according to the invention (unwound). Its upper edge 8 in the figures faces the suction side of the pump 1, its lower edge 9 the pressure side. In each case, sections through the blades 5, 6 are shown, approximately perpendicular to the essentially radially directed longitudinal axes of the blades. As shown in each case, the convex and / or concave regions of the front and rear sides extend parallel to these longitudinal axes of the blades. The direction of rotation of the blades 5, 6 is identified by an arrow 10.
  • FIGS. 2 and 3 show exemplary embodiments for rotor blades 6, the front sides of which are designated by 11 and the rear sides of which are designated by 12. In the embodiment according to FIG.
  • the rear sides 12 of the blades 6 have a convex region 13 on the suction side and a concave region 14 on the pressure side.
  • the front side 11 is flat in the area 15 of its suction side (inflow, inflow), and convex in the area 16 of its pressure side (outflow).
  • the front sides 11 of the blades 6 have concave (suction side) and convex (pressure side) regions 15 and 16, respectively, while the rear sides 12 are of convex (region 13) and flat (region 14) pressure side.
  • the front and rear boundary surfaces run towards one another at the suction side and the pressure side at acute angles, as a result of which the edges 8, 9 of the blades are formed.
  • FIG. 4 shows - likewise developed - an embodiment with three rows of rotor blades, which are components of the rotor system 7, and two rows of stator blades, which are components of the stator 2.
  • the rotor blades 6 are all designed in such a way that they each have concave and convex regions on their front and rear sides (cf. also FIG. 5).
  • the stator blades 5 of the upper row of stator blades have flat front and rear sides in a known manner, while the stator blades 5 of the lower row of blades are designed according to the invention.
  • the cross section of the stator blades 5 is to be designed such that they are essentially mirror images of the neighboring rotor blades, ie they have opposite angles of attack.
  • a blade 6 is shown enlarged in FIG. Some tangents ti to t 5 are shown. This shows that each wing 6 has practically a large number of angles of attack. In contrast, the angle of attack in the prior art changes from level to level. The radii of the concave and convex areas are chosen so that the tangents always have positive angles of attack.
  • the tangent t 2 is a tangent through the inflection point
  • the tangent t 2 has the angle of attack ⁇ , which - as in the prior art - can decrease from the suction side to the pressure side.
  • the stator blades 5 are also expediently formed in a mirror image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

Turbomolekularvakuumpumpe (1) mit einem Einlass (3) und einem Auslass (4) sowie mit zwischen Einlass und Auslass befindlichen Rotor- und Statorschaufeln (5 bzw. 6), wobei die Rotorschaufeln (6) in Bezug auf ihre Drehrichtung Vorderseiten (11) und Rückseiten (12) aufweisen; um die Fördereigenschaften der Pumpe zu verbessern, wird vorgeschlagen, dass zumindest ein Teil der Rotorschaufeln (6) eine Rückseite (12) aufweist, die saugseitig konvex und druckseitig konkav gestaltet ist, oder dass zumindest ein Teil der Rotorschaufeln (6) eine Vorderseite (11) aufweist, die saugseitig konkav und druckseitig konvex gestaltet ist.

Description

Turbomolekularvakuumpumpe mit Rotor- und Statorschau- feln
Die Erfindung bezieht sich auf eine Turbomolekularvakuumpumpe mit den Merkmalen des Oberbegriffs des Patentanspruchs 1.
Turbomolekularvakuumpumpen sind nach Art einer Turbine mit Stator- und Rotorschaufeln aufgebaut. Eine maßgebliche Pumpwirkung wird nur im Bereich der Molekularströmung erreicht (p < 10~3 bar) . Im sich anschließenden Bereich der Knudsen-Strömung lassen die Förderleistungen mit zunehmendem Druck mehr und mehr nach.
Das Pumpprinzip einer Turbomolekularvakuumpumpe beruht darauf, dass die abzupumpenden Gasmoleküle durch Zusammenstöße mit den Rotor- und Statorschaufeln einen Impuls in Förderrichtung erhalten. Diese Wirkung wird nur dann erreicht, wenn die Umfangsgeschwindigkeiten der Rotorschaufeln in der Größenordnung der mittleren thermischen Geschwindigkeit der zu pumpenden Gasmoleküle liegen. Die mittlere thermische Geschwindigkeit von Gasmolekülen ist abhängig von ihrer molaren Masse. Sie beträgt für H2 (Masse 2) ca. 1760 m/s und für N2 (Masse 28) ca. 470 m/s. Diese Zahlen lassen erkennen, dass die Fördereigenschaften einer Turbomolekularvakuumpumpe gas- artabhängig sind. Dieses gilt weniger für das Saugvermögen, aber um so mehr für das Kompressionsverhältnis (Verhältnis zwischen dem Partialdruck einer Gaskomponente auf der Druckseite der Turbomolekularvakuumpumpe zum Partialdruck dieser Gaskomponente auf der Hochvakuumseite dieser Pumpe) . Das Kompressionsverhältnis einer bekannten Turbomolekularvakuumpumpe steigt zwischen den Massen der vorgenannten Gase H2 und N von etwa 103 bis 108 an.
Die übliche Ausbildung der Schaufeln einer Turbomolekularpumpe ist aus der DE-U 72 37 362 bekannt. Sie weisen ebene Begrenzungsflächen auf. Ihr Anstellwinkel (Winkel zwischen der Ebene der Schaufeln und einer zur Rotationsachse senkrechten Ebene) nimmt von der Saugseite der Pumpe zur Druckseite ab.
Aus der EP-A-829 645 ist es bekannt, Rotorschaufeln einzusetzen, deren Begrenzungsflächen nicht mehr eben sind. Es wird vorgeschlagen, die Rückseite (in Bezug auf ihre Drehrichtung) der Rotorschaufeln gewölbt zu gestalten. Dadurch sollen die bei Rotorschaufeln mit ebenen Begrenzungsflächen auf ihrer Rückseite auftretenden, den Antriebsmotor belastenden Turbulenzen vermieden werden. Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die Fördereigenschaften einer Turbomolekularvakuumpumpe für Gase mit geringer spezifischer Masse zu verbessern.
Erfindungsgemäß wird diese Aufgabe durch die kennzeichnenden Merkmale der Patentansprüche gelöst.
Durch die Erfindung wird die gestellte Aufgabe gelöst, d.h., die Förderung leichter Gase wird verbessert. Da- rüberhinaus wird der Vorteil erreicht, dass die Mass- nahmen nach der Erfindung die Verdichtungs- und Förderleistungen der Pumpe (Kompression, Saugvermögen, Durchsatz) für Gase mit höherer molarer Masse nicht beeinträchtigen. Schließlich behalten die erfindungsgemäß gestalteten Schaufeln ihre verbesserten Fördereigenschaften bis weit in den Kundsen-Bereich hinein, so dass die Vorvakuu beständigkeit einer damit ausgerüsteten Turbomolekularpumpe im Vergleich zum Stand der Technik wesentlich günstiger ist bzw. der Aufwand für die Vorvakuumpumpen maßgeblich reduziert werden kann.
Weitere Vorteile und Einzelheiten der Erfindung sollen anhand von in den Figuren dargestellten Ausführungsbei- spielen erläutert werden. Es zeigen
Figur 1 Schematisch eine Turbomolekularvakuumpumpe,
Figuren 2 und 3 Ausführungen von erfindungsgemäß gestalteten Rotorschaufeln, bei denen entweder die Rückseite oder die Vorderseite konvexe und konkave Bereiche aufweist, sowie Figuren 4 und 5 Ausführungen von erfindungsgemäß gestalteten Schaufeln, bei denen beide Seiten konvexe und konkave Bereiche aufweisen.
Die in Figur 1 dargestellte Turbomolekularvakuumpumpe 1 umfaßt ein Gehäuse/Stator 2, einen Einlass 3, einen Auslass 4, Statorschaufeln 5 und Rotorschaufeln 6 auf. In bekannter, nicht im einzelnen dargestellter Weise sind die Statorschaufeln 5 Bestandteile von Statorschaufelreihen, die mit dem Gehäuse/Stator 2 in Verbindung stehen. Die Rotorschaufeln 6 sind Bestandteile von Rotorschaufelreihen, die am Rotationskörper 7, z.B. einer Welle, befestigt oder damit einteilig ausgebildet sind. Die Rotor- und Statorschaufelreihen greifen abwechselnd mit entgegengesetzt gerichteten Anstellwinkeln ineinander und bewirken die Förderung der Gase vom Einlass 3 zum Auslass 4.
Die Figuren 2 bis 5 zeigen verschiedene Ausführungen von erfindungsgemäß gestalteten Schaufeln (abgewickelt) . Ihre in den Figuren jeweils obere Kante 8 ist der Saugseite der Pumpe 1 zugewandt, ihre jeweils untere Kante 9 der Druckseite. Dargestellt sind jeweils Schnitte durch die Schaufeln 5,6 und zwar etwa senkrecht zu den im wesentlichen radial gerichteten Längsachsen der Schaufeln. Parallel zu diesen Längsachsen der Schaufeln erstrecken sich - wie jeweils dargestellt - die konvex und/oder konkav gestalteten Bereiche der Vorder- und Rückseiten. Die Drehrichtung der Schaufeln 5,6 ist jeweils durch einen Pfeil 10 gekennzeichnet. Die Figuren 2 und 3 zeigen Ausführungsbeispiele für Rotorschaufeln 6, deren Vorderseiten mit 11 und deren Rückseiten mit 12 bezeichnet sind. Bei der Ausführung nach Figur 2 weisen die Rückseiten 12 der Schaufeln 6 saugseitig einen konvexen Bereich 13 und druckseitig einen konkaven Bereich 14 auf. Die Vorderseite 11 ist im Bereich 15 ihrer Saugseite (Anströmung, Zuströmung) eben, im Bereich 16 ihrer Druckseite (Abströmung) konvex gestaltet.
Bei der Ausführung nach Figur 3 weisen die Vorderseiten 11 der Schaufeln 6 konkave (saugseitig) und konvexe (druckseitig) Bereiche 15 bzw. 16 auf, während die Rückseiten 12 saugseitig konvex (Bereich 13) und druckseitig eben (Bereich 14) ausgebildet sind. Die vorderseitigen und rückseitigen Begrenzungsflächen laufen saugseitig und druckseitig mit spitzen Winkeln aufeinander zu, wodurch die Kanten 8, 9 der Schaufeln gebildet werden.
Figur 4 zeigt - ebenfalls abgewickelt - eine Ausführung mit drei Rotorschaufelreihen, die Bestandteile des Rotorsystems 7 sind, sowie zwei Statorschaufelreihen, die Bestandteile des Stators 2 sind. Die Rotorschaufeln 6 sind sämtlich in der Weise ausgebildet, dass sie auf ihren Vorder- und Rückseiten jeweils konkave und konvexe Bereiche aufweisen (vgl. auch Figur 5). Die Statorschaufeln 5 der oberen Statorschaufelreihe weisen in bekannter Weise ebene Vorder- und Rückseiten auf, während die Statorschaufeln 5 der unteren Schaufelreihe erfindungsgemäß gestaltet sind. Dabei ist der Querschnitt der Statorschaufeln 5 derart zu gestalten, dass sie zu den benachbarten Rotorschaufeln im wesentlichen spiegelbildlich sind, d.h. , entgegensetzt gerichtete Anstellwinkel aufweisen.
In Figur 5 ist eine Schaufel 6 vergrößert dargestellt. Einige Tangenten ti bis t5 sind eingezeichnet. Daraus geht hervor, dass bereits jeder Flügel 6 praktisch eine Vielzahl von Anstellwinkeln hat. Demgegenüber ändert sich- der Anstellwinkel beim Stand der Technik von Stufe zu Stufe. Die Radien der konkaven und konvexen Bereiche sind so gewählt, dass die Tangenten stets positive Anstellwinkel haben.
Die Tangente t2 ist eine Tangente durch den Wendepunkt
18 der rückseitigen Begrenzungsfläche der Schaufel 6. Eingezeichnet ist weiterhin die (axiale) Höhe h der Schaufel 6. Der Wendepunkt 18 - und auch der Wendepunkt
19 der vorlaufenden Begrenzungsfläche 11 - liegen auf der halben Höhe h der Schaufel 6. Die Tangente t2 hat den Anstellwinkel α, der - wie beim Stand der Technik - von der Saugseite zur Druckseite abnehmen kann. Entsprechend spiegelbildlich sind zweckmäßig auch die Statorschaufeln 5 ausgebildet.

Claims

PATENTANSPRUCHE
1. Turbomolekularvakuumpumpe (1) mit einem Einlass
(3) und einem Auslass (4) sowie mit zwischen Einlass und Auslass befindlichen Rotor- und Statorschaufeln (5 bzw. 6) , wobei die Rotorschaufeln (6) in Bezug auf ihre Drehrichtung Vorderseiten (11) und Rückseiten (12) aufweisen, dadurch gekennzeichnet, dass . zumindest ein Teil der Rotorschaufeln (6) eine Rückseite (12) aufweist, die saugseitig konvex und druckseitig konkav gestaltet ist.
2. Turbomolekularpumpe nach Anspruch 1 , dadurch gekennzeichnet, dass die Vorderseite (11) der Rotorschaufeln (6) saugseitig eben und druckseitig konvex gestaltet ist.
3. Turbomolekularvakuumpumpe (1) mit einem Einlass
(3) und einem Auslass (4) sowie mit zwischen Einlass und Auslass befindlichen Rotor- und Statorschaufeln (5 bzw. 6) , wobei die Rotorschaufeln (6) in Bezug auf ihre Drehrichtung Vorderseiten (11) und Rückseiten (12) aufweisen, dadurch gekennzeichnet, dass zumindest ein Teil der Rotorschaufeln (6) eine Vorderseite (11) aufweist, die saugseitig konkav und druckseitig konvex gestaltet ist.
Turbomolekularpumpe nach Anspruch 3 , dadurch gekennzeichnet, dass die Rückseite (12) der Rotorschaufeln (6) saugseitig konvex und druckseitig e- ben ausgebildet ist.
Turbomolekularvakuumpumpe (1) mit einem Einlass (3) und einem Auslass (4) sowie mit zwischen Einlass und Auslass befindlichen Rotor- und Statorschaufeln (5 bzw. 6) , wobei die Rotorschaufeln (6) in Bezug auf ihre Drehrichtung Vorderseiten (11) und Rückseiten (12) aufweisen, dadurch gekennzeichnet, dass zumindest ein Teil der Rotorschaufeln (6) eine Rückseite (12) nach Anspruch 1 und eine Vorderseite (11) nach Anspruch 3 aufweist.
Turbomolekularpumpe nach einem der Ansprüche 1 bis
5, dadurch gekennzeichnet, dass die vorderseitigen und die rückseitigen Begrenzungsflächen der Schaufeln im Bereich der seitlichen Kanten der Schaufeln spitz zulaufen.
Turbomolekularpumpe nach einem der Ansprüche 1 bis
6, dadurch gekennzeichnet, dass die Radien der konkaven und konvexen Bereiche so gewählt sind, dass die Tangenten (ti bis t5) im Bereich der kon- kaven und konvexen Bereiche positive Anstellwinkel haben.
8. Turbomolekularpumpe nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Wendpunkte (18, 19) der Begrenzungsflächen auf der halben Höhe (h) der Schaufeln (5, 6) liegen.
9. Turbomolekularpumpe nach Anspruch 8, dadurch gekennzeichnet, dass die Tangente (t2) durch den/die
Wendepunkte (18, 19) einen Anstellwinkel ( ) haben, der von der Saugseite zur Druckseite abnimmt.
PCT/EP2001/013204 2001-01-25 2001-11-15 Turbomolekularvakuumpumpe mit rotor- und statorschaufeln WO2002059483A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE50114317T DE50114317D1 (de) 2001-01-25 2001-11-15 Turbomolekularvakuumpumpe mit rotor- und statorschaufeln
US10/466,343 US6910861B2 (en) 2001-01-25 2001-11-15 Turbomolecular vacuum pump with the rotor and stator vanes
EP01994664A EP1354138B1 (de) 2001-01-25 2001-11-15 Turbomolekularvakuumpumpe mit rotor- und statorschaufeln
JP2002559954A JP3974529B2 (ja) 2001-01-25 2001-11-15 ロータ羽根とステータ羽根とを備えたターボ分子真空ポンプ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10103230A DE10103230A1 (de) 2001-01-25 2001-01-25 Turbomolekularvakuumpumpe mit Rotor-und Statorschaufeln
DE10103230.7 2001-01-25

Publications (1)

Publication Number Publication Date
WO2002059483A1 true WO2002059483A1 (de) 2002-08-01

Family

ID=7671659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/013204 WO2002059483A1 (de) 2001-01-25 2001-11-15 Turbomolekularvakuumpumpe mit rotor- und statorschaufeln

Country Status (5)

Country Link
US (1) US6910861B2 (de)
EP (1) EP1354138B1 (de)
JP (1) JP3974529B2 (de)
DE (2) DE10103230A1 (de)
WO (1) WO2002059483A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004012713A1 (de) * 2004-03-16 2005-10-06 Pfeiffer Vacuum Gmbh Turbomolekularpumpe
DE102006020081A1 (de) * 2006-04-29 2007-10-31 Pfeiffer Vacuum Gmbh Rotor- oder Statorscheibe für eine Molekularpumpe
JP4519185B2 (ja) * 2008-07-22 2010-08-04 株式会社大阪真空機器製作所 ターボ分子ポンプ
US8221098B2 (en) * 2009-03-09 2012-07-17 Honeywell International Inc. Radial turbomolecular pump with electrostatically levitated rotor
DE102013219050B3 (de) * 2013-09-23 2015-01-22 Oerlikon Leybold Vacuum Gmbh Hochleistungsrotoren einer Turbomolekularpumpe
DE102013219043A1 (de) 2013-09-23 2015-03-26 Oerlikon Leybold Vacuum Gmbh Legierungen von Rotoren einer Turbomolekularpumpe
EP3093496B1 (de) * 2015-05-15 2019-03-06 Pfeiffer Vacuum Gmbh Rotor einer vakuumpumpe
GB2592043A (en) 2020-02-13 2021-08-18 Edwards Ltd Axial flow vacuum pump
GB2612781B (en) * 2021-11-10 2024-04-10 Edwards Ltd Turbomolecular pump bladed disc

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1019272A (en) * 1961-08-04 1966-02-02 Snecma Improvements in rotary molecular vacuum pumps
DE7237362U (de) * 1972-10-12 1973-01-11 Leybold Heraeus Gmbh & Co Kg Turbomolekularvakuumpumpe
EP0829645A2 (de) * 1996-09-12 1998-03-18 Seiko Seiki Kabushiki Kaisha Turbomolekularpumpe
EP1004775A2 (de) * 1998-11-24 2000-05-31 Seiko Seiki Kabushiki Kaisha Turbomolekularpumpen und Vakuumvorrichtung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3128939A (en) * 1964-04-14 Szydlowski
US2484554A (en) * 1945-12-20 1949-10-11 Gen Electric Centrifugal impeller
US4227855A (en) * 1978-08-25 1980-10-14 Cummins Engine Company, Inc. Turbomachine
US4653976A (en) * 1982-09-30 1987-03-31 General Electric Company Method of compressing a fluid flow in a multi stage centrifugal impeller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1019272A (en) * 1961-08-04 1966-02-02 Snecma Improvements in rotary molecular vacuum pumps
DE7237362U (de) * 1972-10-12 1973-01-11 Leybold Heraeus Gmbh & Co Kg Turbomolekularvakuumpumpe
EP0829645A2 (de) * 1996-09-12 1998-03-18 Seiko Seiki Kabushiki Kaisha Turbomolekularpumpe
EP1004775A2 (de) * 1998-11-24 2000-05-31 Seiko Seiki Kabushiki Kaisha Turbomolekularpumpen und Vakuumvorrichtung

Also Published As

Publication number Publication date
US20040037695A1 (en) 2004-02-26
EP1354138B1 (de) 2008-09-10
DE50114317D1 (de) 2008-10-23
DE10103230A1 (de) 2002-08-01
EP1354138A1 (de) 2003-10-22
JP3974529B2 (ja) 2007-09-12
US6910861B2 (en) 2005-06-28
JP2004536989A (ja) 2004-12-09

Similar Documents

Publication Publication Date Title
DE69915283T2 (de) Kreiselrad für turbomaschinen
EP2275643B1 (de) Triebwerkschaufel mit überhöhter Vorderkantenbelastung
EP0874159A3 (de) Reibungsvakuumpumpe mit einer Gaedepumpenstufe
EP1632662A2 (de) Strömungsarbeitsmaschine mit Fluidentnahme
EP1717414A1 (de) Turbinenrad
EP1354138B1 (de) Turbomolekularvakuumpumpe mit rotor- und statorschaufeln
EP1760321A2 (de) Schaufel einer Strömungsarbeitsmaschine
DE19722353A1 (de) Kreiselpumpe mit einer Einlaufleiteinrichtung
DE69104749T2 (de) Verbesserte Turbomolekularpumpe.
CH678352A5 (de)
WO2007022648A1 (de) Kreiselverdichter
WO2021140142A1 (de) Abströmbereich eines verdichters, verdichter mit einem solchen abströmbereich, und turbolader mit dem verdichter
EP0733805A1 (de) Faserabweisende Wandflächengestaltung
DE2113514B2 (de) Überschall-Axialverdichter mit einem zylindrischen oder konischen divergierenden die Einlauföffnung hinten verlängernden Körper
EP0874161A1 (de) Kreiselpumpe
EP0918938B1 (de) Reibungsvakuumpumpe
DE1428273A1 (de) Axialventilator
DE102008040698A1 (de) Lüfter mit Vorflügeln an den Lüfterschaufeln
DE202018106513U1 (de) Diagonalventilator mit optimiertem Diagonallaufrad
EP3853483A1 (de) Turboverdichter mit angepasster meridiankontur der schaufeln und verdichterwand
DE2258737A1 (de) Seitenkanalverdichter
DE60311165T2 (de) Kreiselpumpe für niedrige Flussraten mit verbesserter Ansaughöhe
EP1556616B1 (de) Laufrad für eine kreiselpumpe
DE10124339B4 (de) Rotorscheiben mit Schaufeln für eine Turbomolekularpumpe
DE19912314A1 (de) Förderpumpe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001994664

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10466343

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002559954

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2001994664

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001994664

Country of ref document: EP