WO2002058652A1 - Nouveaux copulants pour colorants d'oxydation - Google Patents

Nouveaux copulants pour colorants d'oxydation Download PDF

Info

Publication number
WO2002058652A1
WO2002058652A1 PCT/EP2002/000470 EP0200470W WO02058652A1 WO 2002058652 A1 WO2002058652 A1 WO 2002058652A1 EP 0200470 W EP0200470 W EP 0200470W WO 02058652 A1 WO02058652 A1 WO 02058652A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
amino
alkyl
bis
hydroxy
Prior art date
Application number
PCT/EP2002/000470
Other languages
German (de)
English (en)
Inventor
David Rose
Horst Höffkes
Bernd Meinigke
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to EP02715451A priority Critical patent/EP1353640A1/fr
Publication of WO2002058652A1 publication Critical patent/WO2002058652A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/10Preparations for permanently dyeing the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4906Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom
    • A61K8/4926Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom having six membered rings

Definitions

  • the invention relates to agents for dyeing keratin fibers which contain special derivatives of 1,2,3,4-tetrahydroquinoline as a coupler component in combination with at least one developer component, a process for dyeing keratin fibers with these agents and the use of 1,2,3 , 4-tetrahydroquinoline derivatives as a coupler component in oxidation colorants for coloring keratin fibers.
  • Keratin fibers are understood according to the invention to mean furs, wool, feathers and in particular human hair.
  • Today human hair is treated in a variety of ways with hair cosmetic preparations. These include cleaning the hair with shampoos, care and regeneration with rinses and cures, as well as bleaching, dyeing and shaping the hair with colorants, tinting agents, waving agents and styling preparations. Means for changing or shading the color of the head hair play an outstanding role.
  • Coloring agents or tinting agents which contain so-called direct draws as the coloring component are usually used for temporary dyeings. These are dye molecules that attach directly to the hair and do not require an oxidative process to form the color. These dyes include, for example, henna, which is known from antiquity for coloring body and hair. These dyeings are generally sensitive to shampooing, so that a frequently undesirable shift in shades or even a visible “discoloration" can occur.
  • oxidation dyes play a special role in dyeing keratin fibers, especially hair, because of their intense colors and good fastness properties, which are achieved at a relatively low dyeing temperature and in short dyeing times.
  • colorants contain a developer component in a suitable, usually aqueous carrier, which, under the influence of atmospheric oxygen or Oxidizing agents form the dye by oxidative coupling.
  • This dye can be intensified by coupling with another developer component or with so-called coupler components, which cannot form any dyes themselves, and the shade can be modified.
  • Good oxidation dye precursors are primarily intended to meet the following requirements: They have to develop the desired color shades with sufficient intensity and authenticity in the oxidative coupling. They must also have a good ability to draw onto the fiber, with no noticeable differences between stressed and freshly regrown hair, especially with human hair (leveling ability). They should be resistant to light, heat, friction and the influence of chemical reducing agents, e.g. Perm liquids. After all, if they are used as a hair dye, they should not stain the scalp too much, and above all they should be harmless from a toxicological and dermatological point of view. Furthermore, the coloration obtained should be easily removed from the hair again by bleaching, if it does not correspond to the individual wishes of the individual and should be reversed.
  • the color shades in the red and brown areas are of particular importance, since they are absolutely necessary to produce natural-looking hair colors.
  • Oxidation colorants in the red and brown areas such as those e.g. with the combination of 2,4,5,6-tetraaminopyrimidine with 2-methylresorcinol are not yet optimal with regard to the uniformity of the color coating.
  • Direct dyes are usually less washfast and therefore not so well suited for combination with oxidation dyes.
  • a first object of the invention is therefore an agent for dyeing keratin fibers, in particular human hair, which contains at least one developer component and at least one coupler component in a carrier suitable for dyeing, characterized in that it contains at least one compound of the formula I or the like as a coupler component contains appropriate physiologically compatible salt,
  • R 1 represents hydrogen, a C 1 -C 4 alkyl group, a C ⁇ -C 4 perfluoroalkyl group, a C 2 -C 4 monohydroxyalkyl group, a C 2 -C 5 polyhydroxyalkyl group, a C 2 -
  • R 2 , R 3 , R 4 and R 5 independently of one another represent hydrogen or a -C-C -
  • R 6 and R 8 independently of one another represent hydrogen, halogen, a C 1 -C 4 -
  • Alkoxy group a C 1 -C 4 - alkyl or perfluoroalkyl group, a C 1 -C -
  • R 7 represents hydrogen, halogen or a C 1 -C 4 alkoxy group
  • A stands for a hydroxy group or a -NR 9 R 10 group, where R 9 and R 10 independently of one another represent hydrogen, a C 1 -C 4 alkyl group, a C 2 -C 4 -
  • Monohydroxyalkyl group or a C 2 -C 5 polyhydroxyalkyl group are methyl, ethyl, n-propyl, isopropyl, n-butyl and tert-butyl.
  • Preferred alkyl groups are methyl and ethyl, methyl is a particularly preferred alkyl group.
  • Preferred C 2 -C 4 alkenyl groups are vinyl, allyl and butenyl, vinyl and allyl being particularly preferred.
  • Preferred C 2 -C 4 monohydroxyalkyl groups are the 2-hydroxyethyl, 3-hydroxypropyl or 4-hydroxybutyl groups; 2-Hydroxyethyl is a particularly preferred hydroxy alkyl group.
  • Preferred C 2 -C 4 polyhydroxyalkyl groups are ⁇ , ⁇ -dihydroxyethyl, ⁇ , ⁇ -dihydroxypropyl.
  • fluorine, chlorine and bromine are preferred as halogen substituents. Chlorine and bromine are particularly preferred.
  • Physiologically acceptable salts include salts of inorganic or organic acids, e.g. B. hydrochlorides, sulfates or hydrobromides understood.
  • Preferred compounds of the formula I are those in which A is an NH 2 group or a hydroxyl group.
  • R 1 represents hydrogen, a - C 4 alkyl group, a benzyl group, a C -C 4 alkenyl group or a C 2 -C 4 monohydroxyalkyl group.
  • R 6 , R 7 and R 8 represent hydrogen, a halogen or a - -alkoxy radical. Hydrogen, chlorine, bromine, a methoxy and ethoxy radical are particularly preferred.
  • Particularly preferred tetrahydroquinoline derivatives of the formula I are 7-hydroxy-1,2,3,4-tetrahydroquinoline and 7-amino-l, 2,3,4-tetrahydroquinoline.
  • tetrahydroquinoline derivative derivatives of the formula I for example 7-hydroxy-l, 2,3,4-tetrahydroquinoline or 7-amino-l, 2,3,4-tetrahydroquinoline, are prepared by a method known from US Pat. No. 5,283,336 Method.
  • the synthesis of N- Alkyl-7-amino-l, 2,3,4-tetrahydroquininaldine derivatives are known from the literature (Buchmann et al., J. Prakt. Chem. (1962), 4 vol. 16, 55.).
  • the trivial name chinaldin means a 1,2,3,4-tetrahydro-2-methyl-quinoline.
  • Further compounds of the formula (I) according to the invention are 7-amino-l, 2,3,4-tetrahydro-3-methyl-quinoline, 7-amino-l, 2,3,4-tetrahydro-4-methyl-quinoline , the 7-amino-l, 2,3,4-tetrahydro-l-methyl-quinoline and the 7-amino-1-ethyl-1, 2,3, 4-tetrahydroquinoline.
  • the agents according to the invention further contain at least one developer component.
  • Primary aromatic amines with a further, in the para or ortho position, free or substituted hydroxy or amino group, diaminopyridine derivatives, heterocyclic hydrazones, 4-aminopyrazolone derivatives and 2,4,5,6-tetraaminopyrimidine and their derivatives are usually used as developer components ,
  • P-Phenylenediamine derivatives of the formula (E1) are particularly preferred
  • G 1 represents a hydrogen atom, a C 1 -C 4 alkyl group, a C ⁇ -C 4 - monohydroxyalkyl radical, a C 2 -C 4 polyhydroxyalkyl radical, a (C ⁇ -C) alkoxy (C -C 4! alkyl radical, a 4'-aminophenyl radical or a C 1 -C 4 -alkyl radical which is substituted by a nitrogen-containing group, a phenyl or a 4'-aminophenyl radical,
  • G 2 represents a hydrogen atom, a dC 4 -alkyl radical, a Cj-C 4 - monohydroxyalkyl radical, a C 2 -C 4 -polyhydroxyalkyl radical, a (C! -C 4 ) alkoxy- (C ⁇ -C 4 ) - alkyl radical or a Cj-C 4 -alkyl radical which is substituted by a nitrogen-containing group,
  • - G 3 represents a hydrogen atom, a halogen atom, such as a chlorine, bromine, iodine or fluorine atom, a C 1 -C 4 alkyl radical, a C 1 -C 4 monohydroxy alkyl radical, a C2-C4 polyhydroxyalkyl radical, a CrC / i-hydroxyalkoxy, a CrC 4 - acetylaminoalkoxy, a C ⁇ -C 4 mesylaminoalkoxy or a C ⁇ -C 4 - carbamoylaminoalkoxy,
  • a halogen atom such as a chlorine, bromine, iodine or fluorine atom
  • a C 1 -C 4 alkyl radical such as a chlorine, bromine, iodine or fluorine atom
  • a C 1 -C 4 alkyl radical such as a chlorine, bromine, iodine or fluorine atom
  • - G 4 represents a hydrogen atom, a halogen atom or a Cj-C 4 alkyl radical or
  • G 3 and G 4 are ortho to each other, they can together form a bridging ⁇ , ⁇ -alkylenedioxo group, such as an ethylenedioxy group.
  • Examples of the C 1 -C 4 -alkyl radicals mentioned as substituents in the compounds according to the invention are the groups methyl, ethyl, propyl, isopropyl and butyl. Ethyl and methyl are preferred alkyl radicals.
  • Preferred C 1 -C 4 alkoxy radicals according to the invention are, for example, a methoxy or an ethoxy group.
  • Further preferred examples of a C 1 -C 4 monohydroxyalkyl group are a hydroxymethyl, a 2-hydroxyethyl, a 3-hydroxypropyl or a 4-hydroxybutyl group. A 2-hydroxyethyl group is particularly preferred.
  • An example of a preferred C 2 -C 4 polyhydroxyalkyl group is the ⁇ , ⁇ -dihydroxyethyl group.
  • halogen atoms according to the invention are F, Cl or Br atoms, Cl atoms are very particularly preferred.
  • the other terms used are derived from the definitions given here.
  • nitrogen-containing groups of formula (II) are especially the amino groups, C ⁇ -C4 monoalkylamino, C ⁇ -C 4 dialkylamino, C ⁇ -C 4 - trialkylammonium, C ⁇ -C 4 -Monohydroxyalkylamino phenomenon, imidazolinium and ammonium.
  • Particularly preferred p-phenylenediamines of the formula (E1) are selected from p-phenylenediamine, p-toluenediamine, 2-chloro-p-phenylenediamine, 2,3-dimethyl-p-phenylenediamine, 2,6-dimethyl-p-phenylenediamine, 2 , 6-diethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, N, N-dimethyl-p-phenylenediamine, N, N-diethyl-p-phenylenediamine, N, N-dipropyl-p-phenylenediamine, 4 amino-3-methyl- (N, N-diethyl) -aniline, N, N-bis (ß-hydroxyethyl) -p-phenylenediamine, 4-N, N-bis (ß-hydroxyethyl) amino-2-methylaniline, 4-N, N-bis (ß-hydroxy
  • particularly preferred p-phenylenediamine derivatives of the formula (E1) are p-phenylenediamine, p-toluenediamine, 2- ( ⁇ -hydroxyethyl) -p-phenylenediamine and N, N-bis ( ⁇ -hydroxyethyl) -p-phenylenediamine.
  • developer component compounds which contain at least two aromatic nuclei which are substituted with amino and / or hydroxyl groups.
  • binuclear developer components which can be used in the coloring compositions according to the invention, one can name in particular the compounds which correspond to the following formula (E2) and their physiologically tolerable salts:
  • - Z and Z independently of one another represent a hydroxyl or NH 2 radical which is optionally substituted by a dC 4 alkyl radical, by a C 1 -C 4 monohydroxyalkyl radical and / or by a bridging Y or which is optionally part of a bridging ring system is
  • the bridge Y stands for an alkylene group with 1 to 14 carbon atoms, such as a linear or branched alkylene chain or an alkylene ring which is interrupted or terminated by one or more nitrogen-containing groups and / or one or more heteroatoms such as oxygen, sulfur or nitrogen atoms may be and may be substituted by one or more hydroxyl or -CC 8 alkoxy groups, or a direct bond,
  • G 5 and G 6 are each independently a hydrogen or halogen atom, a C ⁇ -C 4 - alkyl group, a C ⁇ -C alkyl 4 -Monohydroxy, a C 2 -C 4 - polyhydroxy alkyl group, a C ⁇ -C 4 -aminoalkyl or a direct connection to bridge Y,
  • G 7 , G 8 , G 9 , G 10 , G ⁇ and G 12 independently of one another represent a hydrogen atom, a direct bond to the bridge Y or a Cj-C 4 alkyl radical, with the provisos that the compounds of the formula ( E2) contain only one bridging Y per molecule and the compounds of the formula (E2) contain at least one amino group which carries at least one hydrogen atom.
  • Preferred dinuclear developer components of the formula (E2) are in particular: N, N'-bis- ( ⁇ -hydroxyethyl) -N, N'-bis- (4'-aminophenyl) -l, 3-diamino-propan-2-ol, N, N'-bis (ß-hydroxyethyl) -N, N'-bis- (4'-aminophenyl) -ethylenediamine, N, N'-bis- (4-aminophenyl) -tetra-methylenediamine, N, N ' -Bis- (ß-hydroxyethyl) -N, N'-bis- (4-aminophenyl) tetramethylene diamine, N, N'-bis (4-methyl-aminophenyl) tetramethylene diamine, N, N'-bis (ethyl) ) -N, N'-bis- (4'-amino-3'-methylphenyl) -ethylenediamine
  • Very particularly preferred dinuclear developer components of the formula (E2) are N, N'-bis ( ⁇ -hydroxyethyl) -N, N'-bis (4'-aminophenyl) -l, 3-diamino-propan-2-ol, Bis (2-hydroxy-5-aminophenyl) methane, N, N'-bis (4'-aminophenyl) -l, 4-diazacycloheptane and l, 10-bis (2 ', 5'-diaminophenyl) - l, 4,7,10-tetraoxadecane or one of its physiologically acceptable salts.
  • P-Aminophenol derivatives of the formula (E3) are particularly preferred
  • - G 13 represents a hydrogen atom, a halogen atom, a dC alkyl radical, a C 1 -C 4 monohydroxyalkyl radical, a (C 1 -C 4 ) alkoxy (C 1 -C 4 ) alkyl radical, a C 1 -C 4 - Aminoalkyl radical, a hydroxy (C 1 -C 4 ) alkylamino radical, a - hydroxy alkoxy radical, a C 1 -C 4 hydroxyalkyl (C 1 -C) aminoalkyl radical or a (di-dG t -alkylamino) - (C ! -C 4 ) alkyl radical, and
  • - G 14 represents a hydrogen or halogen atom, a dC 4 - alkyl group, a C ⁇ -C 4 - monohydroxyalkyl radical, a C 2 -C 4 polyhydroxyalkyl radical, a (C ⁇ -C4) alkoxy- (C ⁇ -C 4) - alkyl radical, a -C-aminoalkyl radical or a d- C 4 cyanoalkyl radical,
  • - G 15 stands for hydrogen, a dC 4 alkyl radical, a C 4 -C 4 monohydroxy alkyl radical, a C 2 -C 4 polyhydroxyalkyl radical, a phenyl radical or a benzyl radical, and
  • - G 16 represents hydrogen or a halogen atom.
  • Preferred p-aminophenols of the formula (E3) are in particular p-aminophenol, N-methyl-p-aminophenol, 4-amino-3-methylphenol, 4-amino-3-fluorophenol, 2-hydroxymethylamino-4-aminophenol, 4 -Amino-3-hydroxymethylphenol, 4-amino-2- (2-hydroxyethoxy) phenol, 4-amino-2-methylphenol, 4-amino-2-hydroxymethylphenol, 4-amino-2-methoxymethylphenol, 4-amino-2- aminomethylphenol, 4-amino-2- (ß-hydroxyethyl-aminomethyl) phenol, 4-amino-2-fluorophenol, 4-amino-2-chlorophenol, 2,6-dichloro-4-aminophenol, 4-amino-2- ( (diethylamino) methyl) phenol and their physiologically tolerable salts.
  • Very particularly preferred compounds of the formula (E3) are p-aminophenol, 4-amino-3-methylphenol, 4-amino-2-aminomethylphenol and 4-amino-2-
  • the developer component can be selected from o-aminophenol and its derivatives, such as, for example, 2-amino-4-methylphenol or 2-amino-4-chlorophenol.
  • the developer component can be selected from heterocyclic developer components, such as, for example, the pyridine, pyrimidine, pyrazole, pyrazole-pyrimidine derivatives and their physiologically tolerable salts.
  • heterocyclic developer components such as, for example, the pyridine, pyrimidine, pyrazole, pyrazole-pyrimidine derivatives and their physiologically tolerable salts.
  • pyrimidine or pyrazole derivatives are preferred.
  • Preferred pyrimidine derivatives are, in particular, the compounds described in German patent DE 2 359 399, Japanese laid-open patent publication JP 02019576 A2 or in laid-open publication WO 96/15765, such as 2,4,5,6-tetraaminopyrimidine, 4-hydroxy- 2,5,6-triaminopyrimidine, 2-hydroxy-4,5,6-triaminopyrimidine, 2-dimethylamino-4,5,6-triaminopyrimidine, 2,4-dihydroxy-5,6-diaminopyrimidine and 2,5,6- triaminopyrimidine.
  • Preferred pyrazole derivatives are, in particular, the compounds described in patents DE 3 843 892, DE 4 133 957 and patent applications WO 94/08969, WO 94/08970, EP-740931 and DE 195 43 988, such as 4,5- Diamino-l-methylpyrazole, 4,5-diamino-l- ( ⁇ -hydroxyethyl) pyrazole, 3,4-diaminopyrazole, 4,5-diamino-l - (4'-chlorobenzyl) pyrazole, 4,5-diamino -l, 3-dimethylpyrazole, 4,5-diamino-3-methyl-l-phenylpyrazole, 4,5-diamino-l- methyl-3-phenylpyrazole, 4-amino-l, 3-dimethyl-5-hydrazinopyrazole, l-benzyl-4,5-diamino-3-methylpyrazole, 4,5-
  • Preferred pyridine derivatives are, in particular, the compounds described in patents GB 1 026 978 and GB 1 153 196, such as 2,5-diamino-pyridine, 2- (4-methoxyphenyl) amino-3-amino-pyridine, 2 , 3 -Diamino-6-methoxy-pyridine, 2- (ß-
  • Methoxyethyl amino-3-amino-6-methoxy-pyridine and 3,4-diamino-pyridine.
  • Preferred pyrazole-pyrimidine derivatives are, in particular, the derivatives of pyrazole- [1,5-a] pyrimidine of the following formula (E4) and its tautomeric forms, provided that there is a tautomeric equilibrium:
  • G 17 , G 18 , G 19 and G 20 independently of one another represent a hydrogen atom, a d- C - alkyl radical, an aryl radical, a dC monohydroxy alkyl radical, a C 2 -C 4 - polyhydroxyalkyl radical a (-C-C 4 ) alkoxy (dC 4 ) alkyl group.
  • a Cj-C 4 - aminoalkyl radical which can optionally be protected by an acetyl-ureide or sulfonyl radical, a (-C-C 4 ) alkylamino (dC 4 ) alkyl radical, a di - [(dC 4 ) - alkyl] - (dC 4 ) aminoalkyl radical, where the dialkyl radicals optionally form a carbon cycle or a heterocycle with 5 or 6 chain links, a d- C 4 -monohydroxyalkyl- or a di- (-C-C 4 ) - [hydroxyalkyl] - (C 1 -C 4 ) aminoalkyl radical, the X radicals are each independently a hydrogen atom, a dC 4 - alkyl group, an aryl group, a C ⁇ -C 4 monohydroxyalkyl radical, a C 2 -C 4 - polyhydroxyalkyl group, a C ⁇ -C 4 aminoalkyl radical
  • dialkyl radicals optionally having a carbon cycle or a heterocycle with 5 or Form 6 chain links, a C 1 -C 4 monohydroxyalkyl or a di (C) -C 4 - hydroxyalkyl) aminoalkyl radical, an amino radical, a C ! -C 4 - alkyl or di (dC 4 - hydroxyalkyl) amino radical, a halogen atom, a carboxylic acid group or a sulfonic acid group, i has the value 0, 1, 2 or 3,
  • - n has the value 0 or 1, with the proviso that
  • n has the value 0, and the groups NG 17 G 18 and NG 19 G 20 occupy positions (2,3); (5,6); (6,7); (3.5) or (3.7);
  • pyrazole [1,5-a] pyrimidines of the above formula (E4) can be prepared as described in the literature by cyclization starting from an aminopyrazole or from hydrazine.
  • Preferred developer components are pyrimidine derivatives, pyrazole derivatives, p-aminophenol derivatives and p-diaminobenzene derivatives.
  • Particularly preferred developer components are p-phenylenediamine, p-toluenediamine, 2- (ß-hydroxyethyl) -p-phenylenediamine, N, N-bis- (ß-hydroxyethyl) -p-phenylenediamine, N, N'-bis- (ß- hydroxyethyl) -N, N'-bis- (4'-aminophenyl) -l, 3-diamino-propan-2-ol, bis- (2-hydroxy-5-aminophenyl) -methane, N, N'-bis- (4'-aminophenyl) - 1, 4-diazacycloheptane, 1, 10-bis (2 ', 5'-diaminophenyl) -l, 4,7,10-tetra
  • m-phenylenediamine derivatives naphthols, resorcinol and resorcinol derivatives, pyrazolones and m-aminophenols are used in particular as further coupler components.
  • m-aminophenol and its derivatives such as 5-amino-2-methylphenol, N-cyclopentyl-3-aminophenol, 3-amino-2-chloro-6-methylphenol, 2-hydroxy-4-aminophenoxyethanol, 2 , 6-Dimethyl-3-aminophenol, 3-trifluoroacetylamino-2-chloro-6-methylphenol, 5-amino-4-chloro-2-methylphenol, 5-amino-4-methoxy-2-methylphenol, 5- (2 ' -Hydroxyethyl) amino-2-methylphenol, 3- (diethylamino) phenol, N-cyclopentyl-3-aminophenol, 1,3-dihydroxy-5- (methylamino) benzene, 3-ethylamino-4-methylphenol and 2, 4-dichloro-3-aminophenol, o-aminophenol and its derivatives, m-diaminobenzene and its derivatives such as
  • Di- or trihydroxybenzene derivatives such as resorcinol, resorcinol monomethyl ether, 2-methylresorcinol, 5-methylresorcinol, 2,5-dimethylresorcinol, 2-chlororesorcinol, 4-chlororesorcinol, pyrogallol and 1, 2,4-trihydroxybenzene, pyridine derivatives such as 2,6-dihydroxypyridine , 2-amino-3-hydroxypyridine, 2-amino-5-chloro-3-hydroxypyridine, 3-amino-2-methylamino-6-methoxypyridine, 2,6-dihydroxy-3,4-dimethylpyridine, 2,6-dihydroxy -4-methylpyridine, 2,6-diaminopyridine, 2,3-diamino-6-methoxypyridine and 3,5-diamino-2,6-dimethoxypyridine, naphthalene derivatives such as 1-naphthol, 2-methyl-l-naphthol
  • Morpholine derivatives such as 6-hydroxybenzomorpholine and 6-aminobenzomorpholine,
  • Quinoxaline derivatives such as 6-methyl-l, 2,3,4-tetrahydroquinoxaline, pyrazole derivatives such as l-phenyl-3-methylpyrazol-5-one, indole derivatives such as 4-hydroxyindole, 6-hydroxyindole and 7-hydroxyindole, pyrimidine derivatives such as for example 4,6-diaminopyrimidine, 4-amino-2,6-dihydroxypyrimidine, 2,4-diamino-6-hydroxypyrimidine, 2,4,6-trihydroxypyrimidine, 2-amino-4-methylpyrimidine, 2-amino-4-hydroxy -6-methylpyrimidine and 4,6-dihydroxy-2-methylpyrimidine, or
  • Methylenedioxybenzene derivatives such as l-hydroxy-3,4-methylenedioxybenzene, 1-amino-3,4-methylenedioxybenzene and l- (2'-hydroxyethyl) amino-3,4-methylenedioxybenzene,
  • coupler components are 2-amino-3-hydroxypyridine, 2-amino-3-hydroxy-5-chloropyridine, 3-amino-2-methylamino-6-methoxy-pyridine, 3,5-diamino-2,6-dimethoxypyridine, 2,6-dihydroxy-3,4-dimethylpyridine, m-phenylenediamine, 2,6-bis (2-hydroxyethylamino) toluene, 3-amino-2,4-dichlorophenol, 3-amino-2-chloro-6-methylphenol , 5-amino-4-chloro-2-methylphenol, 5- (ß-hydroxyethyl) amino-2-methylphenol, 5-amino-2-methylphenol, 2-methylresorcinol, 2- (2 ', 4'-diaminophenoxy) ethanol, l, 3-bis- (2 ', 4'-diamino- phenoxy) propane, resorcinol, 4-chlororesorcinol, resorcino
  • the hair colorants according to the invention preferably contain both the developer components and the coupler components in an amount of 0.005 to 10% by weight, preferably 0.1 to 5% by weight, in each case based on the total oxidation colorant.
  • Developer components and coupler components are generally used in approximately molar amounts to one another. If molar use has also proven to be expedient, a certain excess of individual oxidation dye precursors is not disadvantageous, so that developer components and coupler components in a molar ratio of 1: 0.5 to 1: 3, in particular 1: 1 to 1: 2 , can be included.
  • the hair colorants according to the invention contain, in addition to the oxidation dye precursors, customary direct dyes for further modification of the color shades.
  • Direct dyes are usually nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinones or indophenols.
  • Preferred substantive dyes are those with the international names or trade names HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, HC Yellow 12, HC Orange 1, Disperse Orange 3, HC Red 1, HC Red 3, HC Red 10, HC Red 11, HC Red 13, HC Red BN, HC Blue 2, HC Blue 12, Disperse Blue 3, HC Violet 1, Disperse Violet 1, Disperse Violet 4, Acid Violet 43, Disperse Black 9 and Acid Black 52
  • the agents according to the invention can contain a cationic direct dye. Are particularly preferred
  • aromatic systems which are substituted with a quaternary nitrogen group, such as, for example, Basic Yellow 57, Basic Red 76, Basic Blue 99, Basic Brown 16 and Basic Brown 17, and
  • Preferred cationic direct dyes of group (c) are in particular the following compounds:
  • the compounds of the formulas (DZl), (DZ3) and (DZ5) are very particularly preferred cationic direct dyes of group (c).
  • the cationic direct dyes which are sold under the trademark Arianor ® , are particularly preferred direct dyes.
  • the agents according to the invention in accordance with this embodiment preferably contain the substantive dyes in an amount of 0.01 to 20% by weight, based on the total colorant.
  • the preparations according to the invention can also contain dyes that occur in nature, such as those contained in henna red, henna neutral, henna black, chamomile flowers, sandalwood, black tea, sapwood, sage, blue wood, madder root, catechu, sedre and alkanna root.
  • the agents according to the invention can furthermore contain precursors of nature-analogous dyes.
  • Such indoles and. are preferred as precursors of nature-analogous dyes
  • Indolines are used in the agents according to the invention which have at least one hydroxyl or amino group, preferably as a substituent on the six-membered ring. These groups can carry further substituents, e.g. B. in the form of etherification or esterification of the hydroxy group or an alkylation of the amino group.
  • Derivatives of 5,6-dihydroxyindoline of the formula (Ha) are particularly suitable as precursors of nature-analogous hair dyes,
  • R 1 represents hydrogen, a dC 4 alkyl group, a C 3 -C 6 cycloalkyl group, a Ci
  • R 2 represents hydrogen or a -COOH group, the -COOH group also as
  • Salt with a physiologically compatible cation can be present,
  • R 3 represents hydrogen or a C 1 -C 4 alkyl group
  • R 4 represents hydrogen, a dC 4 alkyl group or a group -CO-R 6 , in which
  • R 6 represents a dC 4 alkyl group
  • R 5 stands for one of the groups mentioned under R 4 , as well as physiologically tolerable salts of these compounds with an organic or inorganic acid.
  • Particularly preferred derivatives of indoline are 5,6-dihydroxyindoline, N-methyl-5,6-dihydroxyindoline, N-ethyl-5,6-dihydroxyindoline, N-propyl-5,6-dihydroxyindoline, N-butyl-5,6 dihydroxyindoline, 5,6-dihydroxyindoline-2-carboxylic acid and 6-hydroxyindoline, 6-aminoindoline and 4-aminoindoline.
  • N-methyl-5,6-dihydroxyindoline N-ethyl-5,6-dihydroxyindoline, N-propyl-5,6-dihydroxyindoline, N-butyl-5,6-dihydroxyindoline and in particular the 5 6-Dihydroxyindolin.
  • R 1 represents hydrogen, a dC 4 alkyl group, a C 3 -C 6 cycloalkyl group, a Ci
  • R 2 represents hydrogen or a -COOH group, the -COOH group also as
  • Salt with a physiologically compatible cation can be present,
  • R 3 represents hydrogen or a -CC alkyl group
  • R 4 represents hydrogen, a dC 4 alkyl group or a group -CO-R 6 , in which
  • R 6 represents a dC 4 alkyl group
  • R 5 stands for one of the groups mentioned under R 4 , as well as physiologically tolerable salts of these compounds with an organic or inorganic acid.
  • Particularly preferred derivatives of indole are 5,6-dihydroxyindole, N-methyl-5,6-dihydroxyindole, N-ethyl-5,6-dihydroxyindole, N-propyl-5,6-dihydroxyindole, N-butyl-5, 6-dihydroxyindole, 5,6-dihydroxyindole-2-carboxylic acid, 6-hydroxyindole, 6-aminoindole and 4-aminoindole.
  • N-methyl-5,6-dihydroxyindole N-ethyl-5,6-dihydroxyindole, N-propyl-5,6-dihydroxyindole, N-butyl-5,6-dihydroxyindole and in particular 5.6 -Dihydroxyindol.
  • the indoline and indole derivatives can be used in the colorants according to the invention both as free bases and in the form of their physiologically tolerable salts with inorganic or organic acids, for.
  • the indole or indoline derivatives are usually contained in these in amounts of 0.05-10% by weight, preferably 0.2-5% by weight.
  • the agents according to the invention preferably contain dye precursors in a suitable aqueous, alcoholic or aqueous-alcoholic carrier.
  • a suitable aqueous, alcoholic or aqueous-alcoholic carrier are, for example, creams, emulsions, gels or also surfactant-containing foaming solutions, such as shampoos, aerosols or other preparations which are suitable for use on the hair.
  • surfactant-containing foaming solutions such as shampoos, aerosols or other preparations which are suitable for use on the hair.
  • aqueous-alcoholic solutions are to be understood as meaning aqueous solutions containing 3 to 70% by weight of a dC 4 alcohol, in particular ethanol or isopropanol.
  • the agents according to the invention can additionally contain other organic solvents, such as methoxy butanol, benzyl alcohol, ethyl diglycol or 1,2-propylene glycol. All water-soluble organic solvents are preferred.
  • the oxidative development of the coloring can take place with atmospheric oxygen.
  • a chemical oxidizing agent is preferably used, especially when in addition to the coloring, a lightening effect on human hair is desired.
  • Persulfates, chlorites and in particular hydrogen peroxide or their adducts with urea, melamine and sodium borate are suitable as oxidizing agents.
  • the oxidation coloring agent can also be applied to the hair together with a catalyst which activates the oxidation of the dye precursors, for example by atmospheric oxygen.
  • catalysts are, for example, transition metal compounds, iodides, quinones or certain enzymes.
  • Suitable enzymes are, for example, peroxidases, which can significantly increase the effect of small amounts of hydrogen peroxide.
  • enzymes are suitable according to the invention which directly oxidize the oxidation dye precursors with the help of atmospheric oxygen, such as for example the laccases, or generate small amounts of hydrogen peroxide in situ and in this way activate the oxidation of the dye precursors biocatalytically.
  • suitable catalysts for the oxidation of the dye precursors are the so-called 2-electron oxidoreductases in combination with the substrates specific for this, for example
  • Lactate oxidase and lactic acid and their salts Lactate oxidase and lactic acid and their salts
  • agents according to the invention can furthermore contain all active substances, additives and auxiliary substances known for such preparations.
  • these agents contain at least one surfactant, in principle both anionic and zwitterionic, ampholytic, nonionic and cationic surfactants are suitable. In many cases, however, it has proven advantageous to select the surfactants from anionic, zwitterionic or nonionic surfactants.
  • Suitable anionic surfactants in preparations according to the invention are all anionic surface-active substances suitable for use on the human body. These are characterized by a water-solubilizing, anionic group such as. B. a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group with about 10 to 22 carbon atoms.
  • anionic group such as. B. a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group with about 10 to 22 carbon atoms.
  • the molecule can contain glycol or polyglycol ether groups, ester, ether and amide groups and hydroxyl groups.
  • anionic surfactants are, in each case in the form of the sodium, potassium and ammonium and the mono-, di- and trialkanolammonium salts with 2 or 3 carbon atoms in the alkanol group, linear fatty acids with 10 to 22 carbon atoms (soaps )
  • Ether carboxylic acids of the formula RO- (CH 2 -CH 2 O) x -CH 2 -COOH, in which R is a linear one
  • Alkyl group with 10 to 22 carbon atoms and x 0 or 1 to 16,
  • Alkyl group and 1 to 6 oxyethyl groups linear alkane sulfonates with 12 to 18 C atoms, linear alpha olefin sulfonates with 12 to 18 C atoms,
  • Esters of tartaric acid and citric acid with alcohols which are adducts of about 2-15 molecules of ethylene oxide and or propylene oxide with fatty alcohols with 8 to 22 carbon atoms.
  • Preferred anionic surfactants are alkyl sulfates, alkyl polyglycol ether sulfates and ether carboxylic acids with 10 to 18 carbon atoms in the alkyl group and up to 12 glycol ether groups in the molecule, and in particular salts of saturated and in particular unsaturated C 8 -C 22 carboxylic acids, such as oleic acid, stearic acid, isostearic acid and palmitic acid.
  • Non-ionic surfactants contain z.
  • B a polyol group, a polyalkylene glycol ether group or a combination of polyol and polyglycol ether group.
  • Such connections are, for example
  • Preferred nonionic surfactants are alkyl polyglycosides of the general formula RO- (Z) ⁇ . These connections are characterized by the following parameters.
  • the alkyl radical R contains 6 to 22 carbon atoms and can be either linear or branched. Primary linear and methyl-branched aliphatic radicals in the 2-position are preferred. Examples of such alkyl residues are 1-octyl, 1-decyl, 1-lauryl, 1-myristyl, 1-cetyl and 1- Stearyl. 1-Octyl, 1-decyl, 1-lauryl, 1-myristyl are particularly preferred. When using so-called "oxo alcohols" as starting materials, compounds with an odd number of carbon atoms in the alkyl chain predominate.
  • the alkyl polyglycosides which can be used according to the invention can contain, for example, only a certain alkyl radical R 1 .
  • these compounds are made from natural fats and oils or mineral oils.
  • the alkyl radicals R are mixtures corresponding to the starting compounds or corresponding to the respective working up of these compounds.
  • R essentially consists of C 8 and C 10 alkyl groups, essentially C 12 and C 14 alkyl groups, essentially C 8 -C 6 alkyl groups or essentially C 2 - C ⁇ 6 alkyl groups.
  • Any mono- or oligosaccharides can be used as sugar building block Z.
  • Sugar with 5 or 6 carbon atoms and the corresponding oligosaccharides are usually used.
  • sugars are glucose, fructose, galactose, arabinose, ribose, xylose, lyxose, allose, old rose, mannose, gulose, idose, talose and sucrose.
  • Preferred sugar units are glucose, fructose, galactose, arabinose and sucrose; Glucose is particularly preferred.
  • alkyl polyglycosides which can be used according to the invention contain an average of 1.1 to 5 sugar units. Alkyl polyglycosides with x values from 1.1 to 1.6 are preferred. Alkyl glycosides in which x is 1.1 to 1.4 are very particularly preferred.
  • the alkyl glycosides can also serve to improve the fixation of fragrance components on the hair.
  • the person skilled in the art will preferably resort to this substance class as a further ingredient of the preparations according to the invention.
  • the alkoxylated homologs of the alkyl polyglycosides mentioned can also be used according to the invention. These homologues can contain an average of up to 10 ethylene oxide and / or propylene oxide units per alkyl glycoside unit.
  • zwitterionic surfactants can be used, in particular as co-surfactants.
  • Zwitterionic surfactants are those surface-active compounds which carry at least one quaternary ammonium group and at least one -COCOA or -SO ⁇ group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example the coconut alkyl dimethylammonium glycinate, N-acyl-aminopropyl-N, N-dimethylammonium glycinate, for example the coconut acylaminopropyl-dimethylammonium glycinate, and 2-alkyl-3-carboxy imethy 1-3-hydroxyethyl imidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group, and the cocoacylaminoethyl hydroxyethyl carboxymethyl glycinate.
  • a preferred zwitterionic surfactant is the fatty acid amide derivative known under the INCI name Cocamidopropyl Betaine.
  • Ampholytic surfactants are also particularly suitable as co-surfactants.
  • Ampholytic surfactants are surface-active compounds which, in addition to a C 8 -C 8 alkyl or acyl group, contain at least one free amino group and at least one -COOH or -SO 3 H group in the molecule and are capable of forming internal salts are.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each with about 8 to 18 carbon atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are the N-coconut alkylaminopropionate, the coconut acylaminoethylaminopropionate and the C 2-2 8 -acyl sarcosine.
  • the cationic surfactants used are, in particular, those of the quaternary ammonium compound, esterquat and amidoamine type.
  • Preferred quaternary ammonium compounds are ammonium halides, in particular chlorides and bromides, such as alkyltrimethylammonium chlorides, dialkyldimethylammonium chlorides and trialkylmethylammonium chlorides, e.g. B.
  • cetyltrimethylammonium chloride stearyltrimethylammonium chloride, distearyldimethylammonium chloride, lauryldimethylammonium chloride, lauryldimethylbenzylammonium chloride and tricetylmethylammonium chloride, as well as the compounds known under the INCI names Quaternium-27 and Quaternium-83 Imidazol.
  • the long alkyl chains of the above-mentioned surfactants preferably have 10 to 18 carbon atoms.
  • Esterquats are known substances which contain both at least one ester function and at least one quaternary ammonium group as a structural element.
  • Preferred ester quats are quaternized ester salts of fatty acids with triethanolamine, quaternized ester salts of fatty acids with diethanolalkylamines and quaternized ester salts of fatty acids with 1,2-dihydroxypropyldialkylamines.
  • Such products are sold, for example, under the trademarks Stepantex ® , Dehyquart ® and Armocare ® .
  • alkylamidoamines are usually produced by amidation of natural or synthetic fatty acids and fatty acid cuts with dialkylaminoamines.
  • An inventively particularly suitable compound from this group is that available under the name Tegoamid ® S 18 commercially stearamidopropyl dimethylamine.
  • the quaternized protein hydrolyzates are further cationic surfactants which can be used according to the invention.
  • cationic silicone oils such as, for example, the commercially available products Q2-7224 (manufacturer: Dow Corning; a stabilized trimethylsilylamodimethicone), Dow Corning 929 emulsion (containing a hydroxylamino-modified silicone, which is also referred to as amodimethicone) , SM-2059 (manufacturer: General Electric), SLM-55067 (manufacturer: Wacker) and Abil ® -Quat 3270 and 3272 (manufacturer: Th. Goldschmidt; diquaternary polydimethylsiloxanes, Quaternium-80).
  • a suitable cationic surfactant quaternary sugar derivative is the commercial product Glucquat ® 100, according to INCI nomenclature a "lauryl methyl Gluceth-10 Hydroxypropyl Dimonium Chloride”.
  • the compounds with alkyl groups used as surfactant can each be uniform substances. However, it is generally preferred to start from natural vegetable or animal raw materials in the production of these substances, so that substance mixtures with different alkyl chain lengths depending on the respective raw material are obtained.
  • both products with a "normal” homolog distribution and those with a narrowed homolog distribution can be used.
  • “Normal” homolog distribution is understood to mean mixtures of homologs which are obtained as catalysts from the reaction of fatty alcohol and alkylene oxide using alkali metals, alkali metal hydroxides or alkali metal alcoholates.
  • narrow homolog distributions are obtained if, for example, hydrotalcites, alkaline earth metal salts of ether carboxylic acids, alkaline earth metal oxides, hydroxides or alcoholates are used as catalysts. The use of products with a narrow homolog distribution can be preferred.
  • the agents according to the invention can preferably also contain a conditioning active ingredient selected from the group formed by cationic surfactants, cationic polymers, alkylamidoamines, paraffin oils, vegetable oils and synthetic oils.
  • Cationic polymers can be preferred as conditioning agents. These are usually polymers that contain a quaternary nitrogen atom, for example in the form of an ammonium group.
  • Preferred cationic polymers are, for example, quaternized cellulose derivatives, such as are available under the names of Celquat ® and Polymer JR ® commercially. The compounds Celquat ® H 100, Celquat ® L 200 and Polymer JR ® 400 are preferred quaternized cellulose derivatives.
  • Copolymers of vinylpyrrolidone with quaternized derivatives of dialkylaminoacrylate and methacrylate such as, for example, vinylpyrrolidone-dimethylaminomethacrylate copolymers quaternized with diethyl sulfate.
  • vinylpyrrolidone-dimethylaminomethacrylate copolymers quaternized with diethyl sulfate Such compounds are commercially available under the names Gafquat ® 734 and Gafquat ® 755.
  • Vinylpyrrolidone methoimidazolinium chloride copolymers such as those sold under the name Luviquat ®, quaternized polyvinyl alcohol and under the designations Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 and
  • Polyquatium 27 known polymers with quaternary nitrogen atoms in the main polymer chain.
  • Cationic polymers of the first four groups are particularly preferred; polyquaternium-2, polyquaternium-10 and polyquaternium-22 are very particularly preferred.
  • conditioning agents are silicone oils, in particular dialkyl and alkylarylsiloxanes, such as, for example, dimethylpolysiloxane and methylphenylpolysiloxane, and their alkoxylated and quaternized analogs.
  • silicones examples include the products sold by Dow Coming under the names DC 190, DC 200, DC 344, DC 345 and DC 1401 as well as the commercial products Q2-7224 (manufacturer: Dow Coming; a stabilized trimethylsilylamodimethicone), Dow Coming® 929 emulsion (containing a hydroxyl-amino-modified silicone, which is also referred to as amodimethicone), SM-2059 (manufacturer: General Electric), SLM-55067 (manufacturer: Wacker) and Abil ® -Quat 3270 and 3272 (manufacturer: Th. Goldschmidt ; diquaternary polydimethylsiloxanes, Quaternium-80).
  • Paraffin oils synthetically produced oligomeric alkenes and vegetable oils such as jojoba oil, sunflower oil, orange oil, almond oil, wheat germ oil and peach seed oil can also be used as conditioning agents.
  • hair-conditioning compounds are phospholipids, for example soy lecithin, egg lecithin and cephalins.
  • nonionic polymers such as, for example, vinylpyrrolidone / vinyl acrylate copolymers, polyvinylpyrrolidone and vinylpyrrolidone / vinyl acetate copolymers and polysiloxanes
  • zwitterionic and amphoteric polymers such as, for example, acrylamidopropyltrimethylammonium chloride / acrylate acrylamide copolymers methacrylate / tert-butylaminoethyl methacrylate / 2-hydroxypropyl methacrylate copolymers
  • anionic polymers such as polyacrylic acids, crosslinked polyacrylic acids, vinyl acetate crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers,
  • Thickeners such as agar agar, guar gum, alginates, xanthan gum, gum arabic, karaya gum, locust bean gum, linseed gums, dextrans, cellulose derivatives, e.g. B. methyl cellulose, hydroxyalkyl cellulose and carboxymethyl cellulose, Starch fractions and derivatives such as amylose, amylopectin and dextrins, clays such as e.g. B. bentonite or fully synthetic hydrocolloids such as polyvinyl alcohol, structurants such as maleic acid and lactic acid, hair conditioning compounds such as phospholipids, for example soy lecithin, egg lecithin and cephalins,
  • cellulose derivatives e.g. B. methyl cellulose, hydroxyalkyl cellulose and carboxymethyl cellulose
  • Starch fractions and derivatives such as amylose, amylopectin and dextrins
  • clays such as e.g
  • Protein hydrolyzates in particular elastin, collagen, keratin, milk protein, soy protein and wheat protein hydrolyzates, their condensation products with fatty acids and quaternized protein hydrolyzates, perfume oils, dimethyl isosorbide and cyclodextrins,
  • Solvents and mediators such as ethanol, isopropanol, ethylene glycol, propylene glycol, glycerin and diethylene glycol, active substances which improve the fiber structure, in particular mono-, di- and oligosaccharides such as, for example, glucose, galactose, fructose, fructose and lactose, quaternized amines such as methyl-l-alkylamidoethyl-2 alkylimidazolinium methosulfate defoamers such as silicones, dyes for coloring the agent,
  • Anti-dandruff agents such as piroctone olamine, zinc omadine and climbazole, light stabilizers, in particular derivatized benzophenones, cinnamic acid derivatives and triazines.
  • Substances for adjusting the pH such as, for example, customary acids, in particular edible acids and bases,
  • Active ingredients such as allantoin, pyrrolidone carboxylic acids and their salts as well as bisabolol, vitamins, provitamins and vitamin precursors, in particular those from groups A, B 3 , B 5 , B 6 , C, E, F and H,
  • Plant extracts such as the extracts from green tea, oak bark, nettle, witch hazel, hops, chamomile, burdock root, horsetail, white dome, linden flowers, almond, aloe vera, spruce needle, horse chestnut, sandalwood, juniper, coconut, mango, apricot, lime, wheat, kiwi , Melon, orange, grapefruit, sage, rosemary, birch, mallow, cuckoo flower, quendel, yarrow, thyme, lemon balm, squirrel, coltsfoot, marshmallow, meristem, ginseng and ginger root.
  • Cholesterol, consistency enhancers such as sugar esters, polyol esters or polyol alkyl ethers, Fats and waxes such as walrus, beeswax, montan wax and paraffins, fatty acid alkanolamides,
  • Complexing agents such as EDTA, NTA, ß-alaninediacetic acid and phosphonic acids, swelling and penetration substances such as glycerol, propylene glycol monoethyl ether, carbonates, hydrogen carbonates, guanidines, ureas and primary, secondary and tertiary phosphates,
  • Opacifiers such as latex, styrene / PVP and styrene / acrylamide copolymers pearlescent agents such as ethylene glycol mono- and distearate and PEG-3 distearate, pigments,
  • Stabilizing agent for hydrogen peroxide and other oxidizing agents blowing agents such as propane-butane mixtures, NO, dimethyl ether, CO 2 and air, antioxidants.
  • a second subject of the invention is a process for dyeing keratin fibers, in particular hair, using an oxidation dye according to the invention.
  • the actual hair dye is expediently prepared immediately before use by mixing the preparation of the oxidizing agent with the preparation containing the dye precursors.
  • the resulting ready-to-use hair dye preparation should preferably have a pH in the range from 6 to 12. It is particularly preferred to use the hair dye in a weakly alkaline environment.
  • the application temperatures can range between 15 and 40 ° C.
  • the hair dye is rinsed off from the hair to be colored. Washing with a shampoo is not necessary if a carrier with a high tenside content, such as a coloring shampoo, has been used.
  • a third object of the invention is also the use of compounds of the formula (I) as a coupler component in oxidation colorants for coloring keratin fibers, in particular hair.
  • C 16 -C 18 fatty alcohol (INCI name: Cetearyl alcohol) (COGNIS) C ⁇ 2 -C ⁇ 8 fatty alcohol (INCI name: Coconut alcohol) (COGNIS) Cetylstearyl alcohol with approx. 20 EO units (INCI name: Ceteareth -20) (COGNIS)
  • N, N-Dimethyl-N- (C 8 -C 18 cocosamidopropyl) ammonium acetobetaine (approx. 30% active substance; INCI name: Aqua (Water), Cocamidopropyl Betaine) (COGNIS)
  • the dye precursors were dissolved in the water at 50 ° C. with the addition of sodium sulfite, ammonium sulfite and ammonia.
  • the coloring cream obtained after 1 was mixed in a ratio of 2: 1 with a 3% H 2 O 2 solution and applied to 5 cm long strands of standardized, 80% gray, but not specially pretreated human hair (Kerling). After an exposure time of 30 minutes at 32 ° C., the hair was rinsed, washed out with a customary shampoo and then dried.
  • Table I Table I:
  • Coupler components Kl 7-hydroxy-l, 2,3,4-tetrahydroquinoline K2 7- amino-1, 2,3, 4-tetrahydroquinoline
  • the coloring cream obtained after 1 was used without additional oxidizing agent (air oxidation) or the coloring cream obtained after 1 was mixed in a ratio of 2: 1 with a 1% or 9% H 2 O 2 solution and was 5 cm long Strands of standardized, 80% gray, but not specially pretreated human hair (Kerling) applied. After an exposure time of 30 minutes at 32 ° C., the hair was rinsed, washed out with a customary shampoo and then dried.
  • Table II speak received received received received speak
  • Coupler components K3 2-amino-3-hydroxypyridine

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Cosmetics (AREA)

Abstract

L'invention concerne des dérivés de 1,2,3,4-tétrahydroquinoléine de formule (I) dans laquelle R1 représente hydrogène, un groupe alkyle C¿1?-C4, un groupe perfluoralkyle C1-C4, un groupe monohydroxyalkyle C2-C4, un groupe polyhydroxyalkyle C2-C5, un groupe alcényle C2-C4, un groupe aminoalkyle C2-C4, un groupe benzyle, un groupe pipéridinoalkyle ou un groupe morpholinoalkyle ; R?2, R3, R4 et R5¿ représentent indépendamment les uns des autres hydrogène ou un groupe C¿1?-C4-alkyle ou perfluoralkyle ; R?6 et R8¿ représentent indépendamment l'un de l'autre hydrogène, halogène, un groupe alcoxy C¿1?-C4, un groupe C1-C4-alkyle ou perfluoralkyle, un groupe C2-C4-monohydroxyalkyle ou un groupe C1-C5 Polyhydroxyalkyle ; R?7¿ représente hydrogène, halogène ou un groupe alcoxy C¿1?-C4, A un groupe hydroxy, un groupe NR?9R10¿, formule dans laquelle R?9 et R10¿ représentent indépendamment l'un de l'autre hydrogène, un groupe alkyle C¿1?-C4 ou un groupe monohydroxyalkyle C2-C4. Ces dérivés de 1,2,3,4-tétrahydroquinoléine et leurs sels physiologiquement acceptables sont utilisés comme copulants dans la production de colorants d'oxydation à teneur en révélateurs ou copulants classique dans un support approprié à la coloration. Pour la coloration, p. ex. de cheveux, on obtient des nuances de couleur résistantes au lavage et à la lumière intensive, dans la gamme du rouge au bleu.
PCT/EP2002/000470 2001-01-27 2002-01-18 Nouveaux copulants pour colorants d'oxydation WO2002058652A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02715451A EP1353640A1 (fr) 2001-01-27 2002-01-18 Nouveaux copulants pour colorants d'oxydation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2001103657 DE10103657A1 (de) 2001-01-27 2001-01-27 Neue Kupplerkomponente für Oxidationsmittel
DE10103657.4 2001-01-27

Publications (1)

Publication Number Publication Date
WO2002058652A1 true WO2002058652A1 (fr) 2002-08-01

Family

ID=7671924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/000470 WO2002058652A1 (fr) 2001-01-27 2002-01-18 Nouveaux copulants pour colorants d'oxydation

Country Status (3)

Country Link
EP (1) EP1353640A1 (fr)
DE (1) DE10103657A1 (fr)
WO (1) WO2002058652A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211672B2 (en) 2002-10-04 2007-05-01 Millennium Pharmaceuticals, Inc. PGD2 receptor antagonists for the treatment of inflammatory diseases
WO2008025240A1 (fr) * 2006-08-23 2008-03-06 Jianhua Su Composition comprenant un composé hétérocyclique aminé pour la teinture des cheveux et procédé de teinture
US7504508B2 (en) 2002-10-04 2009-03-17 Millennium Pharmaceuticals, Inc. PGD2 receptor antagonists for the treatment of inflammatory diseases
US7951950B2 (en) 2005-02-24 2011-05-31 Millennium Pharmaceuticals, Inc. PGD2 receptor antagonists for the treatment of inflammatory diseases
JP2015501826A (ja) * 2011-12-16 2015-01-19 ロレアル 7−アミノ−1,2,3,4−テトラヒドロキノリン構造を有するカプラー、それを含む染色組成物、方法及び使用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2957346B1 (fr) * 2010-03-12 2012-06-15 Oreal Nouvelles 7-amino-1,2,3,4-tetrahydroquinoleines cationiques, composition tinctoriale comprenantune 7-amino-1,2,3,4- tetrahydroquinoleine cationique, procedes et utilisations
FR2984318B1 (fr) 2011-12-16 2014-06-27 Oreal Coupleur de structure 7 amino-1,2,3,4-tetrahydroquinoleines cationiques, composition tinctoriale en comprenant, procedes et utilisations

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2441895A1 (de) * 1974-09-02 1976-03-11 Henkel & Cie Gmbh Haarfaerbemittel
DE2714955A1 (de) * 1977-04-02 1978-10-12 Henkel Kgaa Haarfaerbemittel
DE4314317A1 (de) * 1993-04-30 1994-11-03 Henkel Kgaa Isatinhaltige Mittel zum Färben von keratinhaltigen Fasern
DE4319646A1 (de) * 1993-06-14 1994-12-15 Henkel Kgaa 8-Amino-1,2,3,4-tetrahydrochinoline als Kuppler in Färbemitteln

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2441895A1 (de) * 1974-09-02 1976-03-11 Henkel & Cie Gmbh Haarfaerbemittel
DE2714955A1 (de) * 1977-04-02 1978-10-12 Henkel Kgaa Haarfaerbemittel
DE4314317A1 (de) * 1993-04-30 1994-11-03 Henkel Kgaa Isatinhaltige Mittel zum Färben von keratinhaltigen Fasern
DE4319646A1 (de) * 1993-06-14 1994-12-15 Henkel Kgaa 8-Amino-1,2,3,4-tetrahydrochinoline als Kuppler in Färbemitteln

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211672B2 (en) 2002-10-04 2007-05-01 Millennium Pharmaceuticals, Inc. PGD2 receptor antagonists for the treatment of inflammatory diseases
US7504508B2 (en) 2002-10-04 2009-03-17 Millennium Pharmaceuticals, Inc. PGD2 receptor antagonists for the treatment of inflammatory diseases
US7951950B2 (en) 2005-02-24 2011-05-31 Millennium Pharmaceuticals, Inc. PGD2 receptor antagonists for the treatment of inflammatory diseases
WO2008025240A1 (fr) * 2006-08-23 2008-03-06 Jianhua Su Composition comprenant un composé hétérocyclique aminé pour la teinture des cheveux et procédé de teinture
JP2015501826A (ja) * 2011-12-16 2015-01-19 ロレアル 7−アミノ−1,2,3,4−テトラヒドロキノリン構造を有するカプラー、それを含む染色組成物、方法及び使用

Also Published As

Publication number Publication date
EP1353640A1 (fr) 2003-10-22
DE10103657A1 (de) 2002-08-01

Similar Documents

Publication Publication Date Title
WO2002032379A2 (fr) Colorants d'oxydation contenant 2-chloro-4-aminophenol
EP1304994B1 (fr) Nitrophenols substitues pyrrolyle en tant que colorants directs
WO2002083090A2 (fr) Nouveaux composants copulants destines a la coloration d'oxydation des cheveux
WO2002058652A1 (fr) Nouveaux copulants pour colorants d'oxydation
EP1292578B1 (fr) Derives de para-aminophenol et leur utilisation comme revelateurs pour la production de teintures d'oxydation
WO2003041671A2 (fr) Colorants d'oxydation contenant du bis-(5-amino-2-hydroxyphenyl)-methane
EP1292272B1 (fr) Colorant d'oxydation pour les cheveux
EP1301496A2 (fr) Nouveaux copulants pour colorants d'oxydation
WO2002096382A1 (fr) Composants revelateurs pour coloration capillaire d'oxydation
DE10103160A1 (de) Neue Kupplerkomponente für Oxidationsfärbemittel
EP1453477A1 (fr) Nouvelle combinaison revelateurs-copulants contenant du 2,4-dichloro-3-aminophenol
EP1309540B1 (fr) Colorants d'oxydation
WO2002026200A1 (fr) Colorant d'oxydation contenant du 2-amino-5-methylphenol
WO2002026201A2 (fr) Colorants d'oxydation contenant 2-amino-5-methylphenol
EP1301163B1 (fr) Colorants d'oxydation capillaires renfermant comme coupleur au moins un 2,4-diaminophenylether disubstitue
EP1292270B1 (fr) Agent de teinture d'oxidation comprenant 2-hydroxy-5-aminobenzyl-pipérazine comme base d'oxydation
WO2002100364A1 (fr) Nouveaux composants de copulation destines a la coloration par oxydation des cheveux
WO2002032385A1 (fr) Agents colorants d'oxydation contenant 2-chloro-p-aminophenol
WO2003053385A1 (fr) Nouveaux colorants d'oxydation contenant du 2,4-dichloro-3-aminophenol
WO2002038533A1 (fr) Nouveaux composants copulants pour colorants d'oxydation
WO2002026202A2 (fr) Colorants d'oxydation contenant 2-amino-5-methylphenol
EP1443889A1 (fr) Colorants d'oxydation a base de revelateurs bicycliques
WO2005117817A1 (fr) Constituants copulants m-phenylenediamine
DE10237932A1 (de) Neue Entwicklerkomponenten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ HU JP NO PL RU SK US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002715451

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002715451

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2002715451

Country of ref document: EP