WO2002058203A1 - Bürstenlose gleichstrommaschine - Google Patents

Bürstenlose gleichstrommaschine Download PDF

Info

Publication number
WO2002058203A1
WO2002058203A1 PCT/DE2001/004862 DE0104862W WO02058203A1 WO 2002058203 A1 WO2002058203 A1 WO 2002058203A1 DE 0104862 W DE0104862 W DE 0104862W WO 02058203 A1 WO02058203 A1 WO 02058203A1
Authority
WO
WIPO (PCT)
Prior art keywords
machine according
heating
wire
fuse
stator winding
Prior art date
Application number
PCT/DE2001/004862
Other languages
English (en)
French (fr)
Inventor
Martin-Peter Bolz
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP01985328A priority Critical patent/EP1356563A1/de
Priority to US10/203,766 priority patent/US6788015B2/en
Priority to JP2002558581A priority patent/JP2004517596A/ja
Publication of WO2002058203A1 publication Critical patent/WO2002058203A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0833Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements
    • H02H7/0844Fail safe control, e.g. by comparing control signal and controlled current, isolating motor on commutation error

Definitions

  • the invention is based on a brushless, electrically commutated DC machine, in particular a DC motor, according to the preamble of patent claim 1.
  • the electronic circuit breakers designed as transistors are in each winding phase. arranged in series with this on the high-voltage side of the winding phase.
  • the circuit breakers are made up of one control stage for generating switching signals and one
  • Logic stage for the logical application of the switching signals to the control unit comprising the circuit breakers successively connected to the mains DC voltage.
  • Circuit breaker blocks fully or the circuit breaker becomes conductive and carries continuous current with or without residual resistance In the first case, the function of the DC machine is limited or no longer available, but this is not critical.
  • the second case can create a dangerous situation insofar as the stator winding of the machine and the circuit breakers heat up and a fire can occur due to continuous current.
  • the temperature-sensitive fuses sometimes present in the supply line to the machine cannot solve this problem, since these must be designed for a current that can also be greater than this continuous current.
  • fuses due to their series scatter r, allow up to seven times their nominal current, so that there is a risk that the stator winding and / or the electrical
  • the brushless DC machine according to the invention with the features of claim 1 has the advantage that the heating melts through the heating much faster than if it is only heated by the machine or motor current flowing through it. Another advantage is that in normal Operation of the fuse does not represent any additional resistance in the circuit due to the extremely low ohmic resistance of the fuse wire, which adversely affects the efficiency of the machine or motor.
  • the heating current for the electrical heating of the fuse is conducted via the fuse wire itself.
  • the current flow through the fuse wire increases by the pickling current required for heating, so that the melting temperature is reached much more quickly.
  • the heating current is automatically switched off when the welding wire melts.
  • a heating wire or a heating cartridge extends along the melting wire, which in series with an electronic switch which closes in the event of a fault
  • Stator winding is connected in parallel.
  • the electronic switch is advantageously controlled by the control unit for the electronic circuit breakers in the stator winding.
  • the time from the occurrence of the fault to the activation of the fuse is further reduced by the fact that the control unit is designed so that in the event of a fault it sends a control signal to all circuit breakers which triggers their closing. As a result, the current flowing through the fuse wire is extremely increased and the melting temperature is reached in an extremely short time.
  • a pyrotechnic detonator which can be ignited by heating and which is connected in a heat-conducting manner to the hot wire can be arranged on or near the fuse wire.
  • the fuse wire is torn open and the machine is shut down.
  • the heating current required for the detonator to respond can be designed to be much lower than the heating current for heating the fuse wire of the fuse.
  • the power supply for the control unit between the fuse and the stator winding preferably before a smoothing capacitor, is tapped. This has the advantage that the power supply for the control unit is also switched off when the stator winding is separated from the DC voltage network by the appealing fuse.
  • 1 is a circuit diagram of an electronically commutated, brushless DC motor
  • Fig. 2 shows a section of a fuse in
  • Fig. 3 is the same representation as in Fig. 2 according to another embodiment of the
  • Fig. 4 is a view of a ceramic body of the
  • the electronically commutated, brushless DC motor shown in FIG. 1, as an exemplary embodiment for a general DC machine, is operated by means of a control unit 11 for electronic commutation on a DC voltage source 10.
  • the DC motor shown here only with its stator winding 12 has one in a known manner Stator winding 12 receiving stator or stator and a rotating rotor or rotor in the stator with permanent magnet poles or, in the case of a so-called SR (Switch Reluctance) motor, with a slot-tooth geometry.
  • the three-phase stator winding 12 in the exemplary embodiment has three winding phases 13 connected in a star, which are connected to the positive potential of the DC voltage network 10 via a lead 31.
  • An electronic circuit breaker 15 is arranged between each winding phase 13 and the star point 14, which is connected via a return line 21 to the negative potential of the DC voltage network 10, that is to say on the low-voltage side of the stator winding 12.
  • the circuit breakers 15 are preferably designed as field effect transistors, in particular as a MOS-FET, and are controlled by the control unit 11 in such a way that the winding phases 13 are consequently and successively connected to the DC voltage network 10.
  • a smoothing capacitor 32 is connected in parallel with the series circuits comprising the phase of development 13 and the circuit breaker 15.
  • a fault protection device in the form of an electrically heatable fuse 16 is arranged in the feed line 31 to the stator winding 12.
  • the fuse 16 is ' designed so that in the event of a fault, for example in the event of a failure of one of the circuit breakers 15 arranged in the stator winding 12 on the "low side" or when the smoothing capacitor 32 breaks down, it is heated with a heating current which is the current in the feed line 31 leading fusible wire 17 quickly warms to its melting temperature.
  • a heating wire 18 in the fuse 16 Provided, which extends along the fuse wire 17 and is preferably designed as a heating coil 19. The heating wire
  • the heating coil 19 is connected in series with an electronic switch 20 at the output of the fuse 16 between the feed line 31 and the return line 21 and thus connected in parallel with the stator winding 12 with the line switch 15, so that when the electronic switch 20 closes the through the heating wire 18 or the heating coil
  • the fuse wire 18 is additionally heated and thus reaches its melting temperature in a shorter time.
  • a heating cartridge (not shown here) can also be used. Heating the fuse wire 17 can be used.
  • the electronic switch 20 which is designed as a transistor, has to switch the high heating current, but is relatively cold at the switching moment and only needs to carry out the circuit once, so that it does not have to be designed as a power transistor.
  • the electronic switch 20 is controlled by the control unit 11 in such a way that it receives a control signal causing it to close in the event of a fault.
  • the control unit 11, whose power supply between the fuse 16 and the stator winding 12, preferably before the smoothing capacitor 32, is removed, monitors the winding phases 13 of the stator winding 12 for continuous current and detects a fault in the case of continuous current in one of the winding phases 13, after which the corresponding control signal to the electronic switch 20 is placed.
  • the control unit can handle such a continuous current
  • the control unit 11 recognize, for example, that the current in the return line 21 is monitored by the stator winding 12. A continuous current in one of the winding phases 13 is present when a current flows in the return line 21, although the control unit 11 controls all the circuit breakers 15 in the sense of a switch opening. A current flow through the defective smoothing capacitor 32 can also be recognized by the current monitoring in the return line 21. Furthermore, the control unit 11 is designed so that when the fault is detected, it sends a closing signal to all the circuit breakers 15, so that the current flowing through the fuse wire L7 becomes maximum and, by increasing it, contributes to additional heating of the contact wire 17. •
  • Structural exemplary embodiments for the heatable fuse 16 are each shown schematically in section in FIGS. 2 and 3.
  • the fuse wire 17 is embedded in a ceramic tube 22 and the heating wire 18 as a heating coil 19 on the
  • the heating coil 19 is enclosed by a protective or insulating housing 25.
  • the fuse wire 17 is clamped between two terminals 23, 24 which protrude from the protective housing 25.
  • the positive potential of the DC voltage network 10 is to be connected to the connecting terminal 23, while the connecting terminal 24 with the stator winding
  • the heating coil 19 is on the one hand electrically connected within the protective housing 25 to the connecting terminal 24 and, on the other hand, has a connecting lug 26 which is led out of the protective housing 25 and which is to be connected to the electronic switch 20.
  • fuse wire 17 and heating coil 19 are each arranged in a bore 27 or 28 within a ceramic body 29.
  • the two parallel bores 27, 28 are arranged closely adjacent in the ceramic body 29, so that only a thin partition 291 made of ceramic material remains between them.
  • 4 shows the end view of the ceramic body 29 which is egg-shaped in cross section.
  • the bores 27, 28 arranged close to one another have different diameters.
  • the fuse wire 17 also connects the two connecting terminals 23, 24 led out of the ceramic body 29, and the heating coil 19 is connected on the one hand to the connecting terminal 24 and on the other hand via the connecting lug 26 led out of the ceramic body 29 to connect the electronic switch 20 in FIG. 1.
  • a pvrotechnical detonator 30 can be arranged within the heating coil 19, which is ignited by heating.
  • the p rotechnische explosive capsule 30 is designed so that upon explosion ⁇ the partition wall 291 reliably destroyed between the bores 27, 28 and extending in the bore 27 fuse wire 17th

Abstract

Bei einer bürstenlosen, elektronisch kommutierten Gleichstrommaschine, insbesondere einen Gleichstrommotor, mit einer mehrphasigen Statorwicklung (12) und in Reihe mit den Wicklungsphasen (13) angeordneten elektronischen Leistungsschaltern (15) ist zur schnellen Abschaltung der Gleichstrommaschine bei mindestens einem defekten Leistungsschalter (15) eine Fehlerschutzvorrichtung vorgesehen, die eine im Fehlerfall elektrisch beheizte Schmelzsicherung (16) mit einem maschinenstromführenden Schmelzdraht (17) aufweist (Fig.1).

Description

Bürstenlose Gleichstrommaschine
Stand der Technik
Die Erfindung geht aus von einer burstenlosen, elektrisch kommutierten Gleichstrommaschine, insbesondere einem Gleichstrommotor, nach dem Oberbegriff des Patentanspruchs 1.
Bei einer solchen bürstenlosen Gleichstrommaschine, wie sie beispielsweise als Gleichstrommotor in der DE 37 09 168 AI beschrieben ist, sind die als Transitoren ausgeführten elektronischen Leistungsschalter in jeder Wicklungspha.se. auf der Oberspannungsseite der Wicklungsphase in Reihe mit dieser angeordnet. Die Leistungsschalter werden von der eine Steuerstufe zur Erzeugung von Schaltsignalen und eine
Logikstufe zum folgerichtigen Anlegen der Schaltsignale an die Leistungsschalter umfassenden Steuereinheit sukzessive an die Netzgleichspannung angeschlossen.
Bei Verwendung von Feldeffekttransistoren, insbesondere MOS- FET, als kostengünstige elektronische Leistungsschalter werden diese auf -der Niederspannungsseite der Wicklungsphasen als sog. Low-Side-Schalter angeordnet.
Fällt bei einer solchen Gleichstrommaschine ein Leistungsschalter aus, so gibt es zwei Fehlerfälle: der
Leistungsschalter sperrt voll oder der Leistungsschalter wird leitend und führt mit oder ohne Restwiderstand Dauerstrom. Im ersten Fall ist die Funktion der Gleichstrommaschine eingeschränkt oder nicht mehr gegeben, was aber unkritisch ist. Der zweite Fall kann eine gefährliche Situation insoweit heraufbeschwören, als sich die Statorwicklung der Maschine und die Leistungsschalter aufheizen und so durch Dauerrstrom • ein Brand entstehen kann. Die in der Zuleitung zur Maschine manchmal vorhandenen te peraturempfindlichen Schmelzsicherungen können dieses Problem nicht lösen, da diese auf einen Strom ausgelegt sein müssen, der auch größer als dieser Dauerstrom sein kann. Außerdem lassen Schmelzsicherungen, bedingt durch ihre Ξerienstreuungr bis zum Siebenfachen ihres Nennstrom durch, so daß die Gefahr besteht, daß die Statorwicklung und/oder die elektrische
Schaltung zu brennen anfängt, noch bevor die Schmelzsicherung anspricht.
"Vorteile der Erfindung
Die erfindungsgemäße bürstenlose Gleichstrommaschine mit den Merkmalen des Patentanspruchs 1 hat den Vorteil, daß durch die Beheizung der Schmelzdraht sehr viel schneller durchschmilzt als wenn er nur von dem durch ihn hindurchfließenden Maschinen- oder Motorstrom aufgeheizt wird. Ein weiterer Vorteil liegt darin, daß im normalen Betrieb die Schmelzsicherung aufgrund des extrem niedrigen ohmschen Widerstands des Schmelzdrahts keinen zusätzlichen weiteren Widerstand im Stromkreis darstellt, der den Wirkungsgrad der Maschine bzw. des Motors nachteilig beeinflußt.
Durch die in den weiteren Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebene Gleichstrommaschine möglich.
Gemäß einer bevorzugten Ausführungsform der Erfindung ist der Heizstrom für die elektrische Beheizung der Schmelzsicherung über den Schmelzdraht selbst geführt. Durch diese Maßnahme erhöht sich noch zusätzlich zur Beheizung des Schrnelzdrahts der Ξtromfluß -durch den Schmelzdraht um den zur Beheizung erforderlichen Beizstrom, so daß die Schmelztemperatur sehr viel schneller erreicht werden. Zusätzlich ergibt sich der Vorteil, daß mit Durchmelzen des Schrnelzdrahts automatisch der Heizstrom abgeschaltet wird.
Gemäß einer vorteilhaften Ausführungsform der Erfindung erstreckt sich zur elektrischen Beheizung der Schmelzsicherung längs 'des Schmelzdraht ein Heizdraht oder eine Heizpatrone, der oder die in Reihe mit einem im Fehlerfall schließenden elektronischen Schalter der
Statorwicklung parallelgeschaltet ist. Der elektronische Schalter wird dabei vorteilhaft von der Steuereinheit für die elektronischen Leistungsschalter in der Statorwicklung gesteuert . Gemäß einer vorteilhaften Ausführungsform der Erfindung wird die Zeit vom Auftreten des Fehlerfalls bis zum Ansprechen der Schmelzsicherung noch dadurch weiter verkürzt, daß die Steuereinheit so ausgelegt ist, daß sie im Fehlerfall ein Steuersignal an alle Leistungsschalter legt, das deren Schließen auslöst. Dadurch wird der über den Schmelzdraht fließende Strom extrem erhöht und die Schmelztemperatur in extrem kurzer Zeit erreicht.
Gemäß einer vorteilhaften Ausführungsform der Erfindung kann alternativ oder zusätzlich an oder nahe dem Schmelzdraht eine durch Erhitzen zündbare pyrotechnische Sprengkapsel angeordnet sein, die mit dem Hei∑draht wärmeleitend verbunden ist. Mit Zünden der Sprengkapsel "wird der Schmelzdraht aufgerissen und die Maschine stillgesetzt. Der für das Ansprechen der Sprengkapsel erforderliche Heizstrom kann dabei sehr viel niedriger ausgelegt werden als der Heizstrom für das Beheizen des Schmelzdrahts der Schmelzsicherung.
Gemäß einer vorteilhaften Ausführungsform der Erfindung ist die Stromversorgung für die Steuereinheit zwischen Schmelzsicherung und Statorwicklung, vorzugsweise vor einem der Glättung dienenden Kondensator, abgegriffen. Dies hat den Vorteil, daß mit Trennen der Statorwicklung vom Gleichspannungsnetz durch die ansprechende Schmelzsicherung auch die Stromversorgung für die Steuereinheit abgeschaltet ist . Zeichnung
Die Erfindung ist anhand von in der Zeichnung dargestellten Ausführungsbeispielen in der nachfolgenden Beschreibung näher -erläutert. Es zeigen:
Fig. 1 ein Schaltbild eines elektronisch kommutierten, bürstenlosen Gleichstrommotors,
Fig. 2 einen Schnitt einer Schmelzsicherung im
Stromkreis des Gleichstrommotors gemäß Fig. 1, schematisch dargestellt,
Fig. 3 eine gleiche Darstellung wie in Fig. 2 gemäß einem weiteren Ausführungsbeispiel der
Schmelzsicherung,
Fig. 4 eine Ansicht eines Keramikkörpers der
Schmelzsicherung in Richtung Pfeil IV in Fig. 3.
Beschreibung der Ausführungsbeispiele
Der in Fig. 1 im Schaltbild dargestellte elektronisch kommutierte, bürstenlose Gleichstrommotor, als Ausführungsbeispiel für eine allgemeine Gleichstrommaschine, wird mittels einer Steuereinheit 11 zum elektronischen Kommutieren an einer Gleichspannungsquelle 10 betrieben. Der hier nur mit seiner Statorwicklung 12 dargestellte Gleichstrommotor weist in bekannter Weise einen die Statorwicklung 12 aufnehmenden Stator oder Ständer und einen im Stator drehenden Rotor oder Läufer mit Permanentmagnetpolen oder, im Falle eines sog. SR (Switch Reluctance) -Motors, mit einer Nut-Zähn-Geometrie auf. Die im Ausführungsbeispiel dreiphasige Statorwicklung 12 weist drei in Stern geschaltete Wicklungsphasen 13 auf, die über eine Zuleilung 31 an dem Pluspolential des Gleichspannungsnetzes 10 angeschlossen sind. Zwischen jeder Wicklungsphase 13 und dem über eine Rückleitung 21 mit dem Minuspotential des Gleichspannungsnetzes 10 verbundenen Sternpunkt 14, also auf der Niederspannungsseite der Statorwicklung 12, ist jeweils ein elektronischer Leistungsschalter 15 angeordnet. Die leistungsschalter 15 sind vorzugsweise als ■ ■ Feldeffekttransistoren, insbesondere als MOS-FET, ausgeführt und von der Steuereinheit 11 so gesteuert, daß die licklungsphasen 13 folgerichtig und sukzessiv an das Gleichspannungsnetz 10 angeschlossen werden. Ein Glättungskondensator 32 ist den Reihenschaltungen aus licklungsphase 13 und Leistungsschalter 15 parallelgeschaltet.
In der Zuleitung 31 zur Statorwicklung 12 ist eine Fehlerschutzvorrichtung in Form einer elektrisch beheizbaren Schmelzsicherung 16 angeordnet. Die Schmelzsicherung 16 ist dabei 'so ausgelegt, daß sie im Fehlerfall, z.B. bei Ausfall einer der in der Statorwicklung 12 auf der "Low-Side" angeordneten Leistungsschalter 15 oder beim Durchschlagen des Glättungskondensators 32, mit einem Heizstrom beheizt wird, der einen den Strom in der Zuleitung 31 führenden Schmelzdraht 17 schnell auf dessen Schmelztemperatur horingt. Hierzu ist in der Schmelzsicherung 16 noch ein Heizdraht 18 vorgesehen, der sich längs des Schmelzdrahts 17 erstreckt und vorzugsweise als Heizwendel 19 ausgeführt ist. Der Heizdraht
18 bzw. die Heizwendel 19 ist in Reihe mit einem elektronischen Schalter 20 am Ausgang der Schmelzsicherung 16 zwischen Zuleitung 31 und Rückleitung 21 angeschlossen und damit parallel zur Statorwicklung 12 mit Leitungsschalter 15 geschaltet, so daß beim Schließen des elektronischen Schalters 20 der durch den Heizdraht 18 bzw. die Heizwendel
19 fließende Heizstrom zusätzlich über den Ξchmelzdraht 17 fließt. Dadurch wird der Schmelzdraht 17 mit einem höheren
Strom beaufschlagt, wodurch der Schmelzdraht 18 zusätzlich erwärmt wird und so in verkürzter Zeit seine Schmelztemperatur erreicht. Anstelle des Heizdrahts 18 bzw. der Heizwendel 19 kann auch eine hier nicht dargestellte Heizpatrone zum. Aufheizen des Schmelzdrahts 17 verwendet werden .
Der als Transistor ausgebildete elektronische Schalter 20 muß den hohen Heizstrom schalten, ist aber im Schaltmoment verhältnismäßig kalt und braucht die Schaltung nur einmal auszuführen, so daß er nicht als Leistungstransistor ausgelegt werden muß. Der elektronische Schalter 20 ist von der Steuereinheit 11 gesteuert und zwar derart, daß er im Fehlerfall ein sein Schließen bewirkendes Steuersignal erhält. Die Steuereinheit 11, deren Stromversorgung zwischen der Schmelzsicherung 16 und der Statorwicklung 12, vorzugsweise vor dem Glättungskondensator 32, abgenommen ist, überwacht die Wicklungsphasen 13 der Statorwicklung 12 auf Dauerstrom und erkennt bei Dauerstrom in einer der Wicklungsphasen 13 auf Fehlerfall, wonach dann das entsprechende Steuersignal an den elektronischen Schalter 20 gelegt wird. Einen solchen Dauerstrom kann die Steuereinheit
11 beispielsweise dadurch erkennen, daß der Strom in der Rückleitung 21 von der Statorwicklung 12 überwacht wird. Ein Dauerstrom in einer der Wicklungsphasen 13 liegt dann vor, wenn ein Strom in der Rückleitung 21 fließt, obwohl von der Steuereinheit 11 alle Leistungsschalter 15 im Sinne einer Schalteröffnung angesteuert sind. Auch ein Stromfluß über den defekten Glättuήgskondensator 32 kann durch die Stromüberwachung in der Rückleitung 21 erkannt werden. Des weiteren ist die Steuereinheit 11 so ausgelegt, daß sie bei Erkennen des Fehlerfalls an alle Leistungsschalter 15 ein Schließsignal legt, so daß der über den Schmelzdraht L7 fließende Strom maximal wird und durch seine Erhöhung zu einer zusätzlichen Erwärmung des Sch elzdrahts 17 beiträgt.
Konstruktive Ausführungsbeispiele für die beheizbare Schmelzsicherung 16 sind in Fig. 2 und 3 jeweils im Schnitt schematisch dargestellt. In dem Ausführungsbeispiel der Fig. 2 ist der Schmelzdraht 17 in einem Keramikrohr 22 eingebettet und der Heizdraht 18 als Heizwendel 19 auf das
Keramikrohr 22 aufgewickelt. Die Heizwendel 19 ist von einem Schutz- oder Isoliergehäuse 25 umschlossen. Der Schmelzdraht 17 ist zwischen zwei Anschlußklemmen 23, 24 eingespannt, die aus dem Schutzgehäuse 25 herausragen. An die Anschlußklemme 23 ist das Pluspotential des Gleichspannungsnetzes 10 zu legen, während die Anschlußklemme 24 mit der Statorwicklung
12 verbunden wird. Die Heizwendel 19 ist einerseits innerhalb des Schutzgehäuses 25 mit der Anschlußklemme 24 elektrisch leitend verbunden und 'weist andererseits eine aus dem Schutzgehäuse 25 herausgeführte Anschlußfahne 26 auf, die mit dem elektronischen Schalter 20 zu verbinden ist. Im Ausführungsbeispiel der Fig. 3 sind Schmelzdraht 17 und Heizwendel 19 in jeweils einer Bohrung 27 bzw. 28 innerhalb eines Keramikkörpers 29 angeordnet. Die beiden parallelen Bohrungen 27, 28 sind in den Keramikkörper 29 dicht benachbart angeordnet, so daß zwischen ihnen 'nur eine dünne Trennwand 291 aus Keramikmaterial verbleibt. In Fig. 4 ist die Stirnansicht des im Querschnitt eiförmigen Keramikkörpers 29 dargestellt. Die dicht nebeneinander angeordneten Bohrungen 27, 28 weisen unterschiedliche Durchmesser auf. Wie bei der Schmelzsicherung 16 gemäß Fig. 2 verbindet auch hier der Schmelzdraht 17 die beiden aus dem Keramikkörper 29 herausgeführten Anschlußklemmen 23, 24, und die Heizwendel 19 ist einerseits mit der Anschlußklemme 24 verbunden und andererseits über die aus dem Keramikkörper 29 herausgeführte Anschlußfahne 26 an den elektronischen Schalter 20 in Fig. 1 anzuschließen.
Wie in Fig. 3 strichliniert dargestellt ist, kann innerhalb der Heizwendel 19 noch eine pvrotechnische Sprengkapsel 30 angeordnet sein, die durch Erhitzen gezündet wird. Die p rotechnische Sprengkapsel 30 ist dabei so ausgelegt^ daß sie bei Explosion die Trennwand 291 zwischen den Bohrungen 27, 28 und den in der Bohrung 27 verlaufenden Schmelzdraht 17 zuverlässig zerstört.

Claims

Ansprüche
1. Bürstenlose, elektronisch kommutierte
Gleichstrommaschine, insbesondere Gleichstrommotor, mit einer mehrphasigen Statorwicklung (12) und in Reihe mit den Wicklungsphasen (13) der Statorwicklung (12) angeordneten, elektronischen Leistungsschaltern (15) und mit einer die Leistungsschalter (15) steuernden Steuereinheit (11), gekennzeichnet durch eine' Fehlerschutzvorrichtung, die eine im Fehlerfall mittels eines elektrischen Heizstroms beheizte Schmelzsicherung (16) mit einem maschinenstromführenden Schmelzdraht (17) aufweist.
2. Maschine nach Anspruch 1, dadurch gekennzeichnetr daß der Schmelzdraht (17) der Schmelzsicherung (16) in einer am Pluspotential eines Gleichspannungsnetzes (10) anschließbaren Zuleitung (31) zur Statorwicklung (12) liegt.
3. Maschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Heizstrom für die elektrischen Beheizung über den Schmelzdraht (17) der Schmelzsicherung (16) geführt ist.
4. Maschine nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß zur elektrischen Beheizung sich längs des Schmelzdrahts (17) ein in wärmeleitender Verbindung mit diesem stehender Heizdraht (18) erstreckt .
5. Maschine nach Anspruch 4, dadurch gekennzeichnet r daß der Heizdraht (18) in Reihe mit einem im Fehlerfall schließenden elektronischen Schalter (20) liegt und diese Reihenschaltung der Statorwicklung (12) parallel geschaltet ist.
6. Maschine nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der Schmelzdraht (17) in einem Keramikrohr (22) eingebettet und der Heizdraht (18) als Heizwendel (19). auf das Keramikrohr (22) aufgewickelt ist.
7. Maschine nach Anspruch 6, .dadurch gekennzeichnet^ daß das Keramikrohr (22) mit aufgewickelter Heizwendel (19) von einem Schutzgehäuse (25) umschlossen ist.
8. ' Maschine nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der Schmelzdraht (17) und der vorzugsweise als Heizweήdel (19) ausgeführte Heizdraht (18) in dicht aneinanderliegenden Bohrungen (27, 28) in einem Keramikkörper (29) angeordnet sind.
9. Maschine nach einem der Ansprüche 1 - 8, dadurch gekennzeichnet, daß an oder nahe dem Schmelzdraht (17) eine durch Erhitzen zündbare, pvrotechnische Sprengkapsel (30) angeordnet ist, die mit dem Heizdraht (18) wärmeleitend verbunden ist.
10. Maschine nach Anspruch 8 und 9, dadurch gekennzeichnet, 5 daß die Sprengkapsel (30) in der die Heizwendel (19) aufnehmenden Bohrung (28) des Keramikkörpers (29) angeordnet und so ausgelegt ist, daß sie zumindest die die Bohrungen (27, 28) trennende Trennwand (291) im Keramikkörper (29) und den Schmelzdraht (17) zu 10 zerstören vermag.
11. Maschine nach einem der Ansprüche 5 - 10, dadurch gekennzeichnet, daß der elektronischen Schalter (20) von der Steuereinheit (11) gesteuert ist.
15
12. Maschine nach Anspruch 11, dadurch gekennzeichnet, daß zur Erkennung des Fehlerfalls die Steuereinheit (11) jede Wicklungsphase (13) der Statorwicklung (12) auf Dauerstrom überwacht und bei Auftreten von Dauerstrom in
20 einer der Wicklungsphasen (13) ein das Schließen des elektronischen Schalters (20) auslösendes Steuersignal generiert.
13. Maschine nach Anspruch 11 oder 12, dadurch
25 gekennzeichnet, daß im Fehlerfall die Steuereinheit (11) an alle Leistungsschalter (15) ein deren Schließen auslösendes Steuersignal legt.
4. Maschine nach einem der Ansprüche 1 - 13, dadurch gekennzeichnet, daß die Stromversorgung für die Steuereinheit (11) zwischen Schmelzsicherung (16) und Statorwicklung (12) abgegriffen ist.
PCT/DE2001/004862 2001-01-19 2001-12-21 Bürstenlose gleichstrommaschine WO2002058203A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01985328A EP1356563A1 (de) 2001-01-19 2001-12-21 Bürstenlose gleichstrommaschine
US10/203,766 US6788015B2 (en) 2001-01-19 2001-12-21 Brushless dc machine
JP2002558581A JP2004517596A (ja) 2001-01-19 2001-12-21 ブラシレス直流機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10102235A DE10102235A1 (de) 2001-01-19 2001-01-19 Bürstenlose Gleichstrommaschine
DE10102235.2 2001-01-19

Publications (1)

Publication Number Publication Date
WO2002058203A1 true WO2002058203A1 (de) 2002-07-25

Family

ID=7671030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/004862 WO2002058203A1 (de) 2001-01-19 2001-12-21 Bürstenlose gleichstrommaschine

Country Status (5)

Country Link
US (1) US6788015B2 (de)
EP (1) EP1356563A1 (de)
JP (1) JP2004517596A (de)
DE (1) DE10102235A1 (de)
WO (1) WO2002058203A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708310B2 (ja) * 2006-06-19 2011-06-22 三菱電機株式会社 回路遮断装置
US8212062B2 (en) * 2007-04-02 2012-07-03 Inventure Chemical, Inc. Production of biodiesel, cellulosic sugars, and peptides from the simultaneous esterification and alcoholysis/hydrolysis of oil-containing materials with cellulosic and peptidic content
US9670895B2 (en) 2012-05-07 2017-06-06 Magna Electronics, Inc. Control device for a vehicle
DE102012220123B4 (de) * 2012-11-05 2014-07-24 Magna Electronics Europe Gmbh & Co. Kg Motorsteuerung
US9476398B2 (en) 2013-06-03 2016-10-25 Magna Electronics Inc. Control device for a vehicle
US9890760B2 (en) 2014-07-29 2018-02-13 Magna Electronics Inc. Control device for a vehicle
NL2016214B1 (en) 2016-02-03 2017-08-11 Intell Properties B V Cooker hood and power supply arrangement thereof.
DE102016101963A1 (de) 2016-02-04 2017-08-10 Bühler Motor GmbH Elektromotor für eine Fluidpumpe, modulare Motorfamilie zur Bildung unterschiedlicher Fluidpumpen mit mehreren solcher Elektromotoren und Herstellungsverfahren
US10151292B2 (en) 2016-03-23 2018-12-11 Magna Electronics Inc. Control device with thermal fuse having removable pre-tension element
JP2018015866A (ja) * 2016-07-29 2018-02-01 株式会社マキタ 電動作業機
US10637229B2 (en) 2016-09-02 2020-04-28 Magna Electronics Inc. Electronic fuse module with built in microcontroller and centralized power management bus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4242713A (en) * 1979-10-25 1980-12-30 Goodrich Edward W Triac output asymmetry detector
DE3144742A1 (de) * 1981-11-11 1983-05-19 Black & Decker, Inc., 19711 Newark, Del. "drehzahl-sicherungsschaltung fuer drehzahlgeregelte hauptschluss-elektromotoren von handwerkzeugen"
DE19901351A1 (de) * 1999-01-15 2000-07-27 Bosch Gmbh Robert Schaltungsanordnung zum Schutz gegen Spannungsverpolung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535275A (en) * 1981-12-23 1985-08-13 Papst-Motoren Gmbh & Co., Kg Brushless D-C motor system with improved commutation circuit
US4687977A (en) * 1984-10-22 1987-08-18 General Electric Company Electronically controlled motor and methods of operating same
DE3709168A1 (de) 1987-03-20 1988-09-29 Bosch Gmbh Robert Schaltungsanordnung zum betreiben eines mehrphasigen synchronmotors an einem gleichspannungsnetz
US5418516A (en) * 1993-11-09 1995-05-23 Littlefuse, Inc. Surge resistor fuse

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4242713A (en) * 1979-10-25 1980-12-30 Goodrich Edward W Triac output asymmetry detector
DE3144742A1 (de) * 1981-11-11 1983-05-19 Black & Decker, Inc., 19711 Newark, Del. "drehzahl-sicherungsschaltung fuer drehzahlgeregelte hauptschluss-elektromotoren von handwerkzeugen"
DE19901351A1 (de) * 1999-01-15 2000-07-27 Bosch Gmbh Robert Schaltungsanordnung zum Schutz gegen Spannungsverpolung

Also Published As

Publication number Publication date
US20030011335A1 (en) 2003-01-16
US6788015B2 (en) 2004-09-07
JP2004517596A (ja) 2004-06-10
EP1356563A1 (de) 2003-10-29
DE10102235A1 (de) 2002-08-14

Similar Documents

Publication Publication Date Title
DE102011014023B4 (de) Startstrombegrenzungssystem, Verfahren zum Begrenzen eines Startstroms sowie Verwendung eines Startstrombegrenzungssystems
EP0981849B1 (de) Anordnung zum schutz von elektrischen einrichtungen
EP2686928B1 (de) Elektrische vorrichtung für den kurzschlussschutz einer drehstromlast in einem drehstromsystem
DE19739780B4 (de) Drehstrommotor
EP1356563A1 (de) Bürstenlose gleichstrommaschine
DE69715296T2 (de) Schaltung zur geschützten Versorgung einer elektrischen Last
DE102006021256A1 (de) Motorstartschaltkreis
EP1177609B1 (de) Fail-safe für bürstenlose gleichstromantriebe
EP3084950B1 (de) Schaltungsanordnung für einen notlauf eines mehrphasigen spannungswandlers mittels speziellen betriebsverfahren
EP3915127B1 (de) Gleichstrom-schutzschaltgerät
EP2727238B1 (de) Elektrische maschine mit sicherheitsschaltung
DE2718798A1 (de) Schutzschaltung fuer gleichstrom- hauptstromkreis
DE10100159A1 (de) Bürstenloser Gleichstromantrieb
DE4201005C2 (de) Schaltungsanordnung zum netzunabhängigen, aussetzerfreien Bremsen eines Reihenschlußmotors
EP1308978B1 (de) Sicherungsgehäuse
DE19651298C2 (de) Reihenschlußmotor mit Kommutator und Bremswicklung
DE19702904C2 (de) Überwachungsschaltung bei einem Durchlauferhitzer
DE2555786A1 (de) Anzeigelampen-schaltkreis
WO1999060595A1 (de) Elektrische sicherung mit ansteuerbarer trennvorrichtung
WO2007134605A1 (de) Verfahren zum starten eines elektrischen motors und startschaltung für einen elektrischen motor
DE19951095A1 (de) Vorrichtung zur Sicherung eines elektrischen Netzes
EP1577906A2 (de) Sicherung mit einem seinen elektrischen Widerstand bei einer Temperaturerhöhung vergrössernden Bauelement
EP2690282B1 (de) Startstrombegrenzungssystem, Verfahren zum Begrenzen eines Startstroms sowie Verwendung eines Startstrombegrenzungssystems
DE3341947A1 (de) Elektronisch-mechanischer schalter
EP2173016A1 (de) Schaltung für einen elektrischen Verbraucher mit einer Lastschaltvorrichtung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2001985328

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 10203766

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 558581

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2001985328

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001985328

Country of ref document: EP