WO2002057695A1 - Refrigerating cycle - Google Patents
Refrigerating cycle Download PDFInfo
- Publication number
- WO2002057695A1 WO2002057695A1 PCT/JP2001/010045 JP0110045W WO02057695A1 WO 2002057695 A1 WO2002057695 A1 WO 2002057695A1 JP 0110045 W JP0110045 W JP 0110045W WO 02057695 A1 WO02057695 A1 WO 02057695A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- low
- refrigerant
- valve
- pressure line
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K17/00—Safety valves; Equalising valves, e.g. pressure relief valves
- F16K17/02—Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
- F16K17/04—Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
- F16K17/08—Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with special arrangements for providing a large discharge passage
- F16K17/087—Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with special arrangements for providing a large discharge passage with bellows
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
- F25B41/325—Expansion valves having two or more valve members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
- F25B41/33—Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
- F25B41/33—Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
- F25B41/335—Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/385—Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2341/00—Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
- F25B2341/06—Details of flow restrictors or expansion valves
- F25B2341/063—Feed forward expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0411—Refrigeration circuit bypassing means for the expansion valve or capillary tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2513—Expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
Definitions
- the present invention relates to a refrigeration cycle in which carbon dioxide (co 2 ) or the like is used as a refrigerant, and a pressure in a high-pressure line can exceed a critical pressure of the refrigerant.
- the refrigerant at the radiator outlet bypasses the pressure control valve and is transferred to the evaporator (low-pressure line).
- a relief valve that opens when the refrigerant pressure in the high-pressure line exceeds a predetermined pressure is provided in the bypass passage.
- the publication also discloses a configuration in which the relief valve is opened when the pressure on the radiator outlet side is equal to or higher than a predetermined pressure, a configuration in which the relief valve is opened and closed by temperature instead of pressure, and a configuration in which the radiator outlet side is closed.
- the relief valve is opened and closed by a predetermined pressure, temperature, or pressure difference that is set in advance, so that an abnormal pressure rise at the start of the cycle If the valve opening set value is set low to suppress the pressure, the cycle must be operated with the valve opening set value lowered even during steady operation. Therefore, it is not possible to increase the pressure difference between the refrigeration cycle and the refrigeration cycle. Conversely, if the valve opening setting is set high with emphasis on the capacity of the refrigeration cycle, the abnormal pressure rise at the start of the cycle cannot be suppressed, and the components of the cycle may be damaged. There is.
- a refrigeration cycle includes a compressor that compresses a refrigerant to set a high-pressure line in a supercritical state according to operating conditions, and a radiator that cools the refrigerant compressed by the compressor.
- An expansion device for decompressing the refrigerant cooled by the radiator; an evaporator for evaporating the refrigerant decompressed by the expansion device; and a passage from the high-pressure line to the low-pressure line according to the refrigerant pressure of the high-pressure line.
- a high pressure sensing element that controls the movement of the valve body in response to the refrigerant pressure in the high pressure line; and a valve opening pressure adjustment that reduces the valve opening pressure of the valve body as the pressure in the low pressure line increases. And means are provided. Therefore, when the refrigeration cycle is stopped and the pressure in the low-pressure line rises (when the pressure in the high-pressure line and the pressure in the low-pressure line are close to each other), the relief device is opened by the valve-opening pressure adjusting means. Since the valve pressure is reduced, high-pressure refrigerant can be relieved to the low-pressure line at an early stage when the pressure in the high-pressure line rises.
- valve opening pressure of the relief device is changed to a large value by the valve opening pressure adjusting means.
- the pressure difference between the high pressure line and the low pressure line can be kept large.
- the valve opening pressure of the relief device can be varied by the pressure in the low-pressure line, so that sudden abnormal increase in pressure at startup can be avoided, and the required performance during steady-state operation is secured. It becomes possible.
- valve-opening pressure adjusting means expands and contracts in response to the refrigerant pressure in the low-pressure line, and increases the urging force in the opening direction of the valve body that urges the high-pressure sensing element with the increase in the pressure in the low-pressure line.
- a support for supporting the high-pressure sensing element is provided so as to be displaceable in the moving direction of the valve body, and the support for the high-pressure sensing element is supported on this support.
- the pressure receiving surface for receiving the pressure of the low pressure line may be provided on the side opposite to the side.
- the low pressure sensing element constituting the former valve opening pressure adjusting means is constituted by a bellows which can expand and contract in the expansion and contraction direction of the high pressure sensing element in accordance with the refrigerant pressure of the low pressure line, It may be constituted by a diaphragm that can expand and contract in the expansion and contraction direction of the high-pressure sensing element according to the refrigerant pressure.
- the means for reducing the valve opening pressure of the valve element is added as the pressure in the low-pressure line increases, but without adding any special means.
- a configuration having the same valve opening pressure characteristics may be adopted.
- a compressor that compresses the refrigerant to increase the pressure of the high-pressure line above the critical pressure of the refrigerant according to operating conditions; a radiator that cools the refrigerant compressed by the compressor; and a refrigerant that is cooled by the radiator.
- the relief device includes: a through hole that communicates the high pressure line side with the low pressure line side; a valve body that changes an opening degree of the through hole; A high-pressure pressure-sensitive element that controls the movement of the valve element in response to the refrigerant pressure, and the cross-sectional area of the through-hole and the valve element are attached to the high-pressure element.
- the ratio of the effective area of the portion receiving the force may be set so as to reduce the valve opening pressure of the valve body with an increase in pressure in the low pressure line c
- the valve The opening is adjusted by the body.By adjusting the ratio between the area of the through hole and the effective area of the part where the valve is attached and receives the force from the high pressure sensing element, the biasing force that the valve itself receives from the low pressure side
- the valve opening pressure can be changed according to the However, the valve opening pressure decreases, and the high-pressure refrigerant can be relieved to the low-pressure line at the initial stage when the pressure in the high-pressure line increases.
- valve opening pressure When the cycle starts and the pressure in the low pressure line drops below the pressure when the cycle is stopped, the valve opening pressure is changed to a large value. The difference can be kept large. In other words, since the valve opening pressure of the relief device can be varied by the pressure of the low pressure line, it is possible to avoid a sudden abnormal increase in pressure at the time of startup, and to secure the required performance during steady operation. Becomes possible.
- the high-pressure sensing element may be formed by bellows.
- a refrigeration cycle having such a relief device is suitable for a vapor compression refrigeration cycle in which the pressure in a high-pressure line can exceed the critical pressure of a refrigerant, for example, a refrigeration cycle using carbon dioxide as a refrigerant.
- FIG. 1 is a diagram showing a configuration example of a refrigeration cycle according to the present invention
- FIG. 2 is a cross-sectional view showing a specific configuration example of an expansion device and a relief device of the refrigeration cycle according to FIG.
- FIG. 3 is a diagram showing an example of the valve opening pressure characteristic of the relief device with respect to the expansion device outlet pressure P y
- FIG. 4 is a diagram showing the expansion device and the relief device shown in FIG.
- FIG. 5 is a cross-sectional view showing a modified configuration example of the relief device shown in FIG. 2 with respect to the configuration shown in FIG. 2
- FIG. Fig. 7 is a cross-sectional view showing an example of a configuration in which the inflation device and the relief device are integrated as shown in Fig. 7.
- FIG. 7 is an example in which the relief device is replaced with another configuration in the configuration shown in Fig. 2.
- FIG. 8 is a cross-sectional view showing a configuration example in which the expansion device and the relief device shown in FIG. 7 are integrated.
- FIG. 9 is a cross-sectional view showing an example in which the relief device is further replaced by another configuration with respect to the configuration shown in FIG. 2, and
- FIG. 10 is a sectional view showing the expansion device and the relief device shown in FIG.
- FIG. 4 is a cross-sectional view showing a configuration example in which a leaf device is integrated.
- a refrigeration cycle 1 includes a compressor 2 for compressing the refrigerant, a radiator 3 for cooling the refrigerant, an internal heat exchanger 4 for exchanging heat between the high-pressure line and the low-pressure line, and an expansion for decompressing the refrigerant.
- Device 5 evaporator 6 for evaporating and evaporating refrigerant, refrigerant flowing out of evaporator 6 It has an accumulator 7 for gas-liquid separation.
- the discharge side (D) of the compressor 2 is connected to the high-pressure passage 4a of the internal heat exchanger 4 via the radiator 3, and the outlet side of the high-pressure passage 4a is connected to the expansion device 5.
- the path to the expansion device 5 from the discharge side of the compressor 2 also c is a high pressure line 8, the low pressure of the internal heat exchanger 4 to the outflow side of the expansion device 5 via the evaporator 6 and an accumulator 7
- the path from the outlet side of the expansion device 5 to the compressor 2 is formed as a low-pressure line 9.
- the refrigerant is provided in parallel with the expansion device 5 and bypasses the expansion device 5 to transfer the refrigerant in the high pressure line 8 to the low pressure line 9 when the refrigerant pressure in the high pressure line 8 rises abnormally.
- a relief device 11 for helicopter relief is provided.
- a refrigerant having a low critical point for example, carbon dioxide (co 2 ) is used.
- the refrigerant compressed by the compressor 2 enters the radiator 3 as a high-temperature and high-pressure refrigerant, and radiates heat there. After cooling, the heat is exchanged with the low-temperature refrigerant flowing out of the evaporator 6 in the internal heat exchanger 4 to be cooled and sent to the expansion device 5 without being liquefied.
- the refrigerant that has reached the expansion device 5 is decompressed here to become low-temperature and low-pressure wet steam, exchanges heat with the air passing therethrough in the evaporator 6, and becomes gaseous.
- the heat is returned to the compressor 2. Further, when the refrigerant pressure in the high-pressure line 8 rises abnormally, the relief device 11 operates to guide the refrigerant in the high-pressure line 8 to the low-pressure line 9 bypassing the expansion device 5. I have.
- FIG. 2 shows a specific configuration example of the inflation device 5 and the relief device 11.
- the inflation device 5 and the relief device 11 are formed separately from each other.
- the device 5 has a high-pressure space 16 and a low-pressure space 1 ⁇ in a housing 15 configured by assembling housing members 15a and 15b.
- the pressure reducing valve 18 is disposed in the high-pressure space 15.
- the low-pressure space 17 is formed in one housing member 15b
- the high-pressure space 16 is formed by assembling one housing member 15b with the other housing member 15a.
- the high-pressure space 16 and the low-pressure space 17 are communicated with each other through a through hole 20 of a partition wall 19 provided in one housing member 15b.
- the pressure-reducing control valve 18 provided in the high-pressure space 16 includes a valve body 23 seated on a valve seat 22 formed on the peripheral portion of the through hole 20, and a rod 24 on the valve body 23. And a bellows 25 fixed to the top of the housing member 15a and joined together via a bellows 25, and according to the refrigerant environment (refrigerant pressure, refrigerant temperature) in the high-pressure space.
- the lift amount of the valve body 23 (the state of communication between the high-pressure space 16 and the low-pressure space 17) is adjusted.
- the relief device 11 includes a high-pressure space 27 inside a housing 26 configured by assembling the nozing members 26 a, 26 b, 26 c, and one of the high-pressure space 27. And a second low-pressure space 29 formed on the other side of the high-pressure space 27, and a pressure regulating valve 30 is arranged in the high-pressure space 27.
- the second low-pressure space 29 is provided with an urging force adjusting member 31.
- the first low-pressure space 28 is formed in the housing member 26a
- the high-pressure space 27 is formed by assembling the housing member 26a to the housing member 26b
- the low-pressure space 29 is formed by assembling a housing member 26c at the bottom of the housing member 26b
- the high-pressure space 27 and the first low-pressure space 28 are The high-pressure space 27 and the second low-pressure space 29 are separated from each other by the bottom of the housing member 26 b without communication. ing.
- the pressure control valve 30 disposed in the high-pressure space 27 is formed at the periphery of the through hole 33. And a bellows 3 ⁇ joined to the valve body 35 via a rod 36 and fixed to the bottom of the housing member 26 b.
- the valve body 35 is lifted to move the high-pressure refrigerant from the high-pressure space 27 to the first low-pressure space. 2 to 8 heli reliefs.
- the urging force adjusting member 31 arranged in the second low-pressure space 29 is fixed to the bottom of the housing member 26c, and the working medium is sealed therein to form the second low-pressure space 29.
- the bellows 38 contracts in the direction of expansion and contraction of the bellows 37 with the increase in pressure (expands in the direction of expansion and contraction of the bellows 37 with a decrease in pressure), and is fixed to the free end of the bellows 38.
- a biasing port 39 that enters the high-pressure space 2 through the bottom of the housing member 26b.
- the biasing port 39 abuts against the bellows 37 of the high-pressure space 27 from the valve body 35 side, and biases the bellows 37 in a direction to contract, that is, the valve body 35
- a biasing force can be supplied in the direction to decrease the valve opening pressure (valve opening direction).
- the high-pressure space 16 of the expansion device 5 is connected to the high-pressure passage 4 a of the internal heat exchanger 4 via a pipe 40 connected to the housing 15, and the first space of the relief device 1 1
- the low-pressure space 28 and the second low-pressure space 29 are connected to the evaporator 6 via a pipe 41.
- the high-pressure space 16 of the expansion device 5 and the high-pressure space 27 of the relief device 11 communicate with each other through a communication passage 42, and the low-pressure space 17 of the expansion device 5 and the second The low-pressure space 29 is communicated with the low-pressure space 29 by a communication passage 43.
- the valve opening pressure of the relief device 11 can be changed by the bellows 3 8 which expands and contracts according to the low pressure, so that the valve opening pressure of the relief device 11 at the start of the cycle or during the steady operation of the cycle.
- the opening pressure of the relief device 11, which is required during steady-state operation when the expansion device outlet pressure Py decreases to P1 Since the relationship with the valve pressure Pa can be changed approximately linearly, for example, as shown in FIG.
- the valve of the relief device 11 is opened when the cycle starts when the low pressure increases. Reducing the pressure PX to allow the refrigerant to escape from the high-pressure line 8 to the low-pressure line 9 at the initial stage when the high-pressure pressure starts to rise, mitigating the sudden rise in high-pressure pressure at the start of the cycle. It can be activated.
- expansion device 5 and the relief device 11 are configured separately, but they may be integrated as shown in FIG. No. That is, a high-pressure space 16 and a low-pressure space 17 forming the expansion device 5 are provided in the housing block 45, and a high-pressure space 27 and the first and second low-pressure spaces 2 forming the relief device 11 are provided.
- the high-pressure space 16 of 5 is connected to the high-pressure passage 4 a of the internal heat exchanger 4 via a pipe 40 connected to the housing block 45, and the first low-pressure space of the relief device 11 is connected.
- 28 and the second low-pressure space 29 are connected to the evaporator 6 via a passage 46 formed in the housing block 45 and a pipe 41 connected to the housing block 45, and an expansion device.
- the high-pressure space 16 of 5 and the high-pressure space 27 of the relief device 11 are connected by a communication passage 4 7 formed in the housing block 45.
- FIG. 5 shows an example of a configuration in which the above-described relief device 11 is modified. In this modified example, an urging force adjusting member 31 arranged in the second low-pressure space 29 of the relief device 11 is shown.
- valve opening pressure of the relief device 11 can be changed by the diaphragm 50 that expands and contracts in accordance with the low pressure, so that the relief at the start of the cycle or during the steady operation of the cycle is possible.
- the valve opening pressure of the device 11 can be set appropriately. That is, by appropriately adjusting the type and amount of the working medium sealed in the bellows 37 and the diaphragm 50, the relief device 1 required when the cycle is stopped when the expansion device outlet pressure Py rises to P2.
- valve-opening pressure Pb of (1) and the valve-opening pressure Pa of the relief device 11 required during steady-state operation in which the outlet pressure Py of the expansion device is reduced to P1 is, for example, As shown in the figure, the pressure can be changed approximately linearly, so at the start of the cycle when the low pressure increases, the valve opening pressure of the relief device is reduced and the high pressure starts to increase at the initial stage. Refrigerant is released from the high-pressure line 8 to the low-pressure line 9 to mitigate a rapid rise in high-pressure pressure at the start of a cycle, and it is possible to start the sidal safely.
- the expansion device 5 and the relief device 11 may be integrated as shown in FIG. That is, a high-pressure space 16 and a low-pressure space 17 that constitute the expansion device 5 are provided in the housing block, and a high-pressure space 27 and the first and second low-pressure spaces 28 and 28 that constitute the relief device 11 are provided. 2 and 9; a pressure reducing valve 18 in the high-pressure space 16 of the expansion device 5; a pressure control valve 30 in the high-pressure space 27 of the relief device 11;
- the high pressure space 16 of the internal heat exchanger 4 is connected to the high pressure passage 4a of the internal heat exchanger 4 via a pipe 40 connected to the housing block 45, and the first low pressure space 28 and the second low pressure space 28 of the relief device 11 are connected.
- the low pressure space 29 is connected to the evaporator 6 via a passage 46 formed in the housing block 45 and a pipe 41 connected to the housing block 45, and the expansion device 5
- the high-pressure space 15 and the high-pressure space 27 of the relief device 11 communicate with each other by a communication passage 47 formed in a housing block 45.
- a second low-pressure space 2 9 of the low-pressure space 1 7 Zhang apparatus 5 - relief device 1 may be communicated by the formation of.
- Communicating passage 4 8 was the housing Proc 4 5. Since the other configuration is the same as the configuration shown in FIG. 5, the same portions are denoted by the same reference numerals and description thereof is omitted.
- FIG. 7 shows a configuration showing another example of the relief device 11 c.
- the relief device 11 is configured by assembling the nodging members 55 a and 55 b.
- the bellows 56 is supported in a housing 55 formed as described above, and a movable body 57 movable in the expansion and contraction direction of the bellows 56 is housed.
- the housing 55 includes a housing member 55a on which the movable body 57 slides, and a housing member 55b assembled to the housing member 55a.
- a cylindrical member 58 provided integrally inside 55 b, and is formed integrally with a pedestal 57 a supporting the bellows 56 and this pedestal 57 a Being cylindrical member 5 It has a ring-shaped part 57 b slidingly contacting the outer peripheral surface of the housing 8 and the inner peripheral surface of the housing member 55 a.
- An annular low-pressure space 60 is formed by the space surrounded by a, 55b and the ring-shaped portion 57b, and the portion of the ring-shaped portion 57b facing the low-pressure space 60 is the low-pressure space.
- the pressure receiving surface 61 receives the internal pressure.
- a high-pressure space 62 is formed by a space surrounded by the movable body 57 and the housing member 55a, and the high-pressure space 62 should be supported by the pedestal portion 57a.
- a rose 56 is fixed and received at the top of the housing member 55a.
- the inside of the cylindrical member 58 communicates with the high-pressure space 62 through a communication hole 63 formed in the ring-shaped portion 57 b, and the movable member 57 inside the cylindrical member 58
- a valve body 64 fixed to the pedestal portion 57 a of the valve body is suspended from the cylindrical member when the ring-shaped portion 57 b abuts against the stopper 59 a.
- the inside of 58 is squeezed to be seated on a valve seat 65 formed with a valve port.
- the pressure regulating valve 66 is constituted by the movable body 57, the bellows 56, and the valve body 64 described above, and when the movable body 57 is in contact with the stopper 59a, When the refrigerant pressure in the high pressure space 62 becomes equal to or higher than a predetermined valve opening pressure of the bellows 56 itself, the valve element 64 is lifted to move the high pressure refrigerant from the high pressure space 62 to the cylindrical member 58. It is designed to be relieved through the inside. Further, the lift of the valve body 64 is limited to a range until the pedestal portion 57a comes into contact with the stopper 59b, and the movable member 57 is moved from the cylindrical member 58 by the stopper 59b. It is secure. Since the inflation device 5 has the same configuration as the configuration shown in FIG. 2, the same portions are denoted by the same reference numerals and description thereof will be omitted.
- the high-pressure space 16 of the expansion device 5 is connected to a pipe connected to the housing 15. It is connected to the high-pressure passage 4a of the internal heat exchanger 4 through 40, and the portion downstream of the valve seat 65 inside the cylindrical member 58 is connected to the evaporator 6 through piping 68. It is connected.
- the high-pressure space 16 of the expansion device 5 communicates with the high-pressure space 62 of the relief device 11 by a communication passage 69, and the low-pressure space 60 of the relief device 11 communicates with the low-pressure space of the expansion device 5. It is connected to the space 17 via the communication passage 67, and has a communication hole 9 9 formed in the cylindrical member 58 at a position downstream of the valve seat 65 inside the cylindrical member 58. Are communicated through.
- the relationship between the expansion device outlet pressure (low pressure pressure) P y and the valve opening pressure P x of the relief device 11 is represented by the pressure at the outlet side of the expansion device 5 (the expansion device).
- (Pressure at the outlet) Py rises to P2 Relief device required when the cycle is stopped 11
- the valve opening pressure of Pb is set to Pb, and the expansion device outlet pressure Py is reduced to P1 for steady operation
- the valve opening pressure of the relief device 11 required at that time is assumed to be Pa (Pa> Pb)
- the linearity changes between the pressures as shown in Fig. 3 the expansion valve outlet side
- the valve opening pressure of the relief device 11 is reduced at the start of a cycle in which the low-pressure pressure increases, and the high-pressure line 8 changes to the low-pressure line 9 at an initial stage where the high-pressure pressure starts to increase. Since the refrigerant can be relieved, it is possible to alleviate a sudden increase in high pressure at the start of the cycle, and to start the cycle safely. Also, after a short period of operation of the cycle, the pressure difference between the high-pressure line 8 and the low-pressure line 9 increases, and the low-pressure pressure decreases, so the valve-opening pressure of the relief device 11 increases and the cycle operation starts. Unnecessary relief can be avoided in the air, and during the steady operation of the cycle, the pressure difference between the high-pressure line 8 and the low-pressure line 9 can be kept large to secure sufficient capacity of the refrigeration cycle 1. Become like
- a high-pressure space 16 and a low-pressure space 17 forming the expansion device 5 are provided in the housing block 70, and a high-pressure space 62 and a low-pressure space 60 forming the relief device 11 are housing-blocked.
- Cylindrical member provided at 70 The pressure reducing valve 18 is disposed in the high-pressure space 16 of the expansion device 5 and is defined by the movable member 57 attached to the cylindrical member 58.
- a bellows 56 is disposed in the space, and a valve body 6 is provided inside the cylindrical member 58, which is seated on a valve seat portion 65 protruding from the inner wall and moves integrally with the movable body 57.
- the high-pressure space 16 of the expansion device 5 communicates with the high-pressure space 62 of the relief device 11 via a communication passage 71, and the low-pressure space 17 of the expansion device 5 and the low-pressure space 60 of the relief device 11 and the cylinder.
- a portion of the housing member 58 on the downstream side of the valve seat portion 65 communicates with a passage 72 formed in the housing block 70 to connect the high-pressure space 16 of the expansion device 5 to the housing block 70. Via a pipe 40 connected to the high-pressure passage 4a of the internal heat exchanger 4, and a valve seat inside the cylindrical member 58.
- a portion downstream from 65 may be connected to the evaporator 6 via a pipe 68.
- the configuration is the same as that shown in FIG. 7, and therefore, the same portions are denoted by the same reference numerals and description thereof will be omitted.
- the configuration shown in FIG. 7 described above is suitable for a case where the urging force received from the low pressure side of the valve body 64 is negligibly small, but as the bellows 56 becomes smaller, However, the urging force received from the low pressure side of the valve element 64 cannot be ignored. Therefore, in the configuration shown in FIG. 7, in order to obtain a substantially linear characteristic shown in FIG.
- the relief device 11 shown in FIG. 9 has basically the same configuration as that of the inflation device 5, and includes a housing 7 formed by assembling the housing members 75 a and 75 b. High pressure space 7 6 and low pressure space 7 7 are provided in 5
- the pressure space 76 is provided with a pressure control valve 78.
- the low-pressure space 77 is formed in one housing member 75b
- the high-pressure space 76 is formed by assembling one housing member 75b with the other housing member 75a.
- the high-pressure space 76 and the low-pressure space 77 are connected to each other through a through hole 80 of a partition wall 79 provided in one housing member 75b.
- a pressure reducing valve 78 arranged in the high-pressure space 76 includes a valve element 83 seated on a valve seat 82 formed on the periphery of the through hole 80, and a rod 84 connected to the valve element 83. And a bellows 85 fixed to the top of the housing member 75a.
- the refrigerant pressure in the high-pressure space 76 is higher than a predetermined valve opening pressure of the bellows itself. When this happens, the valve element 83 is lifted so that the high-pressure refrigerant is relieved from the high-pressure space 76 to the low-pressure space 77.
- the expansion device 5 has the same configuration as that shown in FIG. 2, and the high pressure space 16 of the expansion device 5 is connected to the high pressure space of the internal heat exchanger 4 through a pipe 40 connected to the housing 15.
- the low pressure space 77 of the relief device 11 is connected to the evaporator 6 via a pipe 68.
- the high-pressure space 16 of the expansion device 5 and the high-pressure space 76 of the relief device 11 are connected via a pipe 69, and the low-pressure space 17 of the expansion device 5 and the low-pressure space 7 of the relief device 11 are connected. 7 is connected via piping 87.
- the valve opening pressure of the relief device 11 is reduced at the start of the cycle in which the low pressure increases, and the refrigerant flows from the high pressure line 8 to the low pressure line 9 in the initial stage where the high pressure starts to increase. Can be easily escaped, so that a rapid rise in high-pressure pressure at the start of the cycle can be mitigated, and the cycle can be started safely. Also, after a short period of operation of the cycle, the pressure difference between the high-pressure line 8 and the low-pressure line 9 increases, and the low-pressure pressure decreases, so the valve-opening pressure of the relief device 11 increases and the cycle operation starts.
- FIG. 10 An example is shown in which the expansion device 5 and the relief device 11 are configured separately, but they may be integrated as shown in FIG. 10.
- a high-pressure space 16 and a low-pressure space 17 that constitute the expansion device 5 are provided in 0, and a high-pressure space 76 and a low-pressure space 77 that constitute the relief device 11 are provided.
- a pressure reducing valve 18 was arranged in 16 and a pressure adjusting valve 78 was arranged in the high-pressure space 76 of the relief device 11, and a high-pressure space 16 of the expansion device 5 was connected to the housing block 90.
- the high-pressure space 16 communicates with the high-pressure space 76 of the relief device 11 by a communication passage 93 formed in the housing block 90, and the low-pressure space 17 of the expansion device 5 and the low-pressure space of the relief device 11 are connected. It is also possible to communicate with the housing block 90 by a communication passage 94 formed in the housing block 90.
- Other configurations are the same as those shown in FIG. 9, and therefore, the same portions are denoted by the same reference numerals and description thereof is omitted.
- the relief device of the vapor compression refrigeration cycle in which the pressure of the high pressure line can exceed the critical pressure of the refrigerant changes the communication state between the high pressure line and the low pressure line.
- Valve element a high-pressure sensing element that controls the movement of the valve element in response to the refrigerant pressure in the high-pressure line, and valve-opening pressure adjusting means that reduces the valve opening pressure of the valve element as the pressure in the low-pressure line increases.
- the ratio of the area of the through hole whose opening is adjusted by the valve element to the effective area of the portion to which the valve element is attached and receives the force from the high-pressure pressure-sensitive element is set.
- valve opening pressure of the valve body was reduced as the pressure in the low pressure line increased, so if the refrigeration cycle stopped and the pressure in the low pressure line increased (the pressure in the high pressure line and the low pressure line Close to the pressure of In this case, the valve opening pressure of the relief device can be reduced, and the sudden increase in pressure at the start of the cycle can be mitigated to allow the cycle to operate safely.
- valve-opening pressure adjusting means As a specific mode of the valve-opening pressure adjusting means, it expands and contracts in response to the refrigerant pressure in the low-pressure line, and increases the urging force in the valve-opening direction, which urges the high-pressure pressure-sensitive element as the pressure in the low-pressure line increases.
- a support for supporting the high-pressure sensing element is provided so as to be displaceable in the moving direction of the valve body, and a high-pressure sensing element is provided for this support.
- a pressure-receiving surface for receiving the pressure of the low-pressure line may be provided on the side opposite to the support side of the pressure element.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- Safety Valves (AREA)
- Fluid-Driven Valves (AREA)
Abstract
A refrigerating cycle using a refrigerant with low critical point such as carbon dioxide, comprising a relief device (11) for relieving the refrigerant from a high pressure line to a low pressure line according to a refrigerant pressure in the high pressure line having a valve element (35) for varying the state of communication between the high pressure line and the low pressure line, a high pressure sensitive element (bellows (37)) for controlling the movement of the valve element (35) in response to the refrigerant pressure in the high pressure line, and a valve opening pressure regulating means (energizing force adjusting means (31) for reducing an opening pressure for the valve element (35) with an increase in pressure in the low pressure line, whereby the valve opening pressure of the relief valve (11) can be set lower when the refrigerating cycle is stopped and set larger in stationary operation by varying the valve opening pressure of the relief device (11) with the pressure in the low pressure line, the cycle can be operated safely by relieving an abrupt pressure rise at the start of the cycle, and the capacity of the cycle in stationery operation can be assured.
Description
冷凍 frozen
技術分野 Technical field
この発明は、 冷媒として二酸化炭素 (c o2 ) 等が用いられ、 高圧ライン の圧力が冷媒の臨界圧力を超える状態となり得る冷凍サイクルに関する。 The present invention relates to a refrigeration cycle in which carbon dioxide (co 2 ) or the like is used as a refrigerant, and a pressure in a high-pressure line can exceed a critical pressure of the refrigerant.
明 背景技術 Akira Background technology
書 book
二酸化炭素を冷媒とする冷凍サイクルにおいては、 サイクルが停止すると、 高圧ラインの圧力と低圧ラインの圧力とが徐々に近接し、 平衡圧が 8〜 1 0 M P aにも及ぶことがあり、 この状態からサイクルを起動させると、 コンプ レッサの吐出開始時期と膨張装置の作動時期とのタイムラグにより高圧ライ ンの圧力が突発的に異常上昇し、 1 5 M P a以上にも達する不都合がある。 このため、 このような圧力の異常上昇時に対応するために、 特開平 1 1 _ 2 4 8 2 7 2号公報に示されるようなリ リーフ弁を設けることが考えられてい る。 これは、 圧縮機、 放熱器、 圧力制御弁 (膨張弁) 、 蒸発器を有する冷凍 サイクルにおいて、 圧力制御弁を迂回して放熱器出口側 (高圧ライン) の冷 媒を蒸発器側 (低圧ライン) へ導くバイパス通路を設け、 このバイパス通路 に高圧ラインの冷媒圧力が所定圧以上となった場合に開となるリ リーフ弁を 設けるようにしたものである。 In a refrigeration cycle using carbon dioxide as a refrigerant, when the cycle is stopped, the pressure in the high-pressure line and the pressure in the low-pressure line gradually approach each other, and the equilibrium pressure may reach 8 to 10 MPa. When the cycle is started from, the pressure of the high pressure line suddenly rises abnormally due to the time lag between the compressor discharge start timing and the expansion device operation timing, and there is a problem that the pressure reaches 15 MPa or more. For this reason, in order to cope with such an abnormal rise in pressure, it has been considered to provide a relief valve as disclosed in Japanese Patent Application Laid-Open No. 11-248272. This is because, in a refrigeration cycle having a compressor, a radiator, a pressure control valve (expansion valve), and an evaporator, the refrigerant at the radiator outlet (high-pressure line) bypasses the pressure control valve and is transferred to the evaporator (low-pressure line). ) Is provided, and a relief valve that opens when the refrigerant pressure in the high-pressure line exceeds a predetermined pressure is provided in the bypass passage.
また、 同公報には、 放熱器出口側の圧力が所定圧力以上となったときにリ リーフ弁を開とする構成、 圧力に代えて温度により リリーフ弁を開閉する構 成、 放熱器出口側と蒸発器入口側との圧力差が所定値以上となった場合にリ リーフ弁を開とする構成、 放熱器出口側の圧力と大気圧との差圧に基づいて リリーフ弁を開閉する構成なども開示されている。
しかしながら、 上述のいずれの構成においても、 予め設定された所定の圧 力、 所定の温度、 又は所定の圧力差によってリ リーフ弁が開閉されるように なっているので、 サイクル起動時の異常圧力上昇を抑えるために開弁設定値 を低く設定しておくと、 定常運転時においても、 開弁設定値を下げた状態で サイクルを運転しなければならなくなるので、 定常運転時に高圧ラインど低 圧ラインとの圧力差を大きくすることができなくなり、 所定の冷房能力が得 られなくなるなど冷凍サイクルとしての能力に影響を及ぼすこととなる。 ま た、 逆に、 冷凍サイクルの能力を重視して開弁設定値を高めに設定しておく と、 サイクル起動時での異常圧力上昇を抑えきれなくなり、 サイクルの構成 部品が破損してしまう恐れがある。 The publication also discloses a configuration in which the relief valve is opened when the pressure on the radiator outlet side is equal to or higher than a predetermined pressure, a configuration in which the relief valve is opened and closed by temperature instead of pressure, and a configuration in which the radiator outlet side is closed. A configuration in which the relief valve is opened when the pressure difference from the evaporator inlet side exceeds a predetermined value, and a configuration in which the relief valve is opened and closed based on the pressure difference between the radiator outlet side pressure and the atmospheric pressure, etc. It has been disclosed. However, in any of the above-described configurations, the relief valve is opened and closed by a predetermined pressure, temperature, or pressure difference that is set in advance, so that an abnormal pressure rise at the start of the cycle If the valve opening set value is set low to suppress the pressure, the cycle must be operated with the valve opening set value lowered even during steady operation. Therefore, it is not possible to increase the pressure difference between the refrigeration cycle and the refrigeration cycle. Conversely, if the valve opening setting is set high with emphasis on the capacity of the refrigeration cycle, the abnormal pressure rise at the start of the cycle cannot be suppressed, and the components of the cycle may be damaged. There is.
そこで、 この発明においては、 二酸化炭素 (c o 2 ) 等の臨界点の低い冷 媒を用いた冷凍サイクルにおいて、 サイクル起動時に要求されるリ リーフ装 置の開弁圧と冷凍サイクルの能力を重視した場合に要求されるリ リーフ装置 の開弁圧とが異なることから、 リ リーフ装置の開弁圧を可変できるようにし、 サイクル起動時における急激な圧力上昇を緩和して安全にサイクルを稼動さ せることができ、 また、 サイクルの定常運転時における能力の確保を図るこ とができる冷凍サイクルを提供することを課題としている。 発明の開示 Therefore, in the present invention, in a refrigeration cycle using a refrigerant having a low critical point such as carbon dioxide (co 2 ), emphasis was placed on the valve opening pressure of the relief device required at the start of the cycle and the capacity of the refrigeration cycle. Since the valve opening pressure of the relief device is different from the required pressure, the valve opening pressure of the relief device can be changed, and the sudden pressure rise at the start of the cycle can be mitigated to operate the cycle safely. It is another object of the present invention to provide a refrigeration cycle capable of securing a capacity during a steady operation of the cycle. Disclosure of the invention
上記課題を達成するために、 この発明に係る冷凍サイクルは、 冷媒を圧縮 して運転条件により高圧ラインを超臨界状態とする圧縮機と、 前記圧縮機に よつて圧縮された冷媒を冷却する放熱器と、 前記放熱器で冷却された冷媒を 減圧する膨張装置と、 前記膨張装置によって減圧された冷媒を蒸発させる蒸 発器と、 前記高圧ラィンの冷媒圧力に応じて前記高圧ラインから低圧ライン へ冷媒をリリーフさせるリ リーフ装置とを少なくとも備え、 前記リ リーフ装 置を、 前記高圧ラインと前記低圧ラインとの間の連通状態を変化させる弁体
と、 前記高圧ラインの冷媒圧力に反応して前記弁体の動きを制御する高圧感 圧素子と、 前記低圧ラインの圧力の増加に伴い前記弁体の開弁圧を小さくす る開弁圧調整手段とを具備して構成するようにしたことを特徴としている。 したがって、 リ リーフ装置は、 冷凍サイクルが停止して低圧ラインの圧力 が高くなる場合 (高圧ラインの圧力と低圧ラインの圧力とが近接する場合) には、 開弁圧調整手段により リリーフ装置の開弁圧が小さくなるので、 高圧 ラインの圧力が上昇する初期の段階で高圧冷媒を低圧ラインヘリリーフする ことができるようになる。 また、 サイクルが起動して低圧ラインの圧力がサ イタル停止時の圧力よりも低下してくると、 リ リーフ装置の開弁圧は開弁圧 調節手段によって大きな値に変更されるので、 定常運転時においては高圧ラ インと低圧ラインの圧力差を大きく保つことができるようになる。 つまり、 リリーフ装置の開弁圧を低圧ラインの圧力によって可変することができるの で、 起動時の突発的な圧力の異常上昇を回避できると共に、 定常運転時にお いて要請される能力をも確保することが可能となる。 In order to achieve the above object, a refrigeration cycle according to the present invention includes a compressor that compresses a refrigerant to set a high-pressure line in a supercritical state according to operating conditions, and a radiator that cools the refrigerant compressed by the compressor. An expansion device for decompressing the refrigerant cooled by the radiator; an evaporator for evaporating the refrigerant decompressed by the expansion device; and a passage from the high-pressure line to the low-pressure line according to the refrigerant pressure of the high-pressure line. A valve for changing the communication between the high-pressure line and the low-pressure line. A high pressure sensing element that controls the movement of the valve body in response to the refrigerant pressure in the high pressure line; and a valve opening pressure adjustment that reduces the valve opening pressure of the valve body as the pressure in the low pressure line increases. And means are provided. Therefore, when the refrigeration cycle is stopped and the pressure in the low-pressure line rises (when the pressure in the high-pressure line and the pressure in the low-pressure line are close to each other), the relief device is opened by the valve-opening pressure adjusting means. Since the valve pressure is reduced, high-pressure refrigerant can be relieved to the low-pressure line at an early stage when the pressure in the high-pressure line rises. Also, when the cycle starts and the pressure in the low pressure line falls below the pressure at the time of the stoppage of the site, the valve opening pressure of the relief device is changed to a large value by the valve opening pressure adjusting means. At times, the pressure difference between the high pressure line and the low pressure line can be kept large. In other words, the valve opening pressure of the relief device can be varied by the pressure in the low-pressure line, so that sudden abnormal increase in pressure at startup can be avoided, and the required performance during steady-state operation is secured. It becomes possible.
ここで、 開弁圧調整手段は、 前記低圧ラインの冷媒圧力に反応して伸縮し、 低圧ラインの圧力の増加に伴い高圧感圧素子に付勢する弁体の開方向への付 勢力を大きくする低圧感圧素子を有して構成するようにしても、 高圧感圧素 子を支持する支持体を弁体の移動方向に変位可能に設け、 この支持体に対し て高圧感圧素子の支持側と反対側に低圧ラインの圧力を受ける受圧面を設け て構成するようにしてもよレ、。 Here, the valve-opening pressure adjusting means expands and contracts in response to the refrigerant pressure in the low-pressure line, and increases the urging force in the opening direction of the valve body that urges the high-pressure sensing element with the increase in the pressure in the low-pressure line. However, even if it is configured to have a low-pressure sensing element, a support for supporting the high-pressure sensing element is provided so as to be displaceable in the moving direction of the valve body, and the support for the high-pressure sensing element is supported on this support. The pressure receiving surface for receiving the pressure of the low pressure line may be provided on the side opposite to the side.
特に、 前者の開弁圧調整手段を構成する低圧感圧素子は、 低圧ラインの冷 媒圧力に応じて高圧感圧素子の伸縮方向に伸縮可能なベローズによって構成 するようにしても、 低圧ラインの冷媒圧力に応じて高圧感圧素子の伸縮方向 に伸縮可能なダイヤフラムによって構成するようにしてもよい。 In particular, even if the low pressure sensing element constituting the former valve opening pressure adjusting means is constituted by a bellows which can expand and contract in the expansion and contraction direction of the high pressure sensing element in accordance with the refrigerant pressure of the low pressure line, It may be constituted by a diaphragm that can expand and contract in the expansion and contraction direction of the high-pressure sensing element according to the refrigerant pressure.
以上の構成は、 低圧ラインの圧力の増加に伴い弁体の開弁圧を小さくする 手段を付加するようにした構成であるが、 格別の手段を付加することなく同
様の開弁圧特性を有する構成としてもよい。 即ち、 冷媒を圧縮して運転条件 により高圧ラインの圧力を前記冷媒の臨界圧力より高くする圧縮機と、 前記 圧縮機によって圧縮された冷媒を冷却する放熱器と、 前記放熱器で冷却され た冷媒を減圧する膨張装置と、 前記膨張装置によつて減圧された冷媒を蒸発 させる蒸発器と、 前記高圧ラインの冷媒圧力に応じて前記高圧ラインから低 圧ラインへ冷媒をリリーフさせるリリーフ装置とを少なく とも備えて構成さ れる冷凍サイクルにおいて、 前記リ リーフ装置を、 前記高圧ライン側と前記 低圧ライン側とを連通させる通孔と、 前記通孔の開度を変化させる弁体と、 前記高圧ラインの冷媒圧力に反応して前記弁体の動きを制御する高圧感圧素 子とを有して構成し、 前記通孔の断面積と前記弁体が取り付けられて前記高 圧感圧素子から力を受ける部分の有効面積との比を前記低圧ラインの圧力の 増加に伴い前記弁体の開弁圧を小さくするように設定するようにしてもよい c したがって、 このような構成においては、 弁体によって開度が調整される 通孔の面積と弁体が取り付けられて高圧感圧素子から力を受ける部分の有効 面積との比を調節することによって、 弁体自体が低圧側から受ける付勢力に 応じて開弁圧を変更することができるようになるので、 冷凍サイクルが停止 して低圧ラインの圧力が高くなる場合 (高圧ラインの圧力と低圧ラインの圧 力とが近接する場合) には、 開弁圧が小さくなり、 高圧ラインの圧力が上昇 する初期の段階で高圧冷媒を低圧ラインへリリーフすることができるように なる。 また、 サイクルが起動して低圧ラインの圧力がサイクル停止時の圧力 よりも低下してくると、 開弁圧が大きな値に変更されるので、 定常運転時に おいては高圧ラインと低圧ラインの圧力差を大きく保つことができるように なる。 つまり、 リ リーフ装置の開弁圧を低圧ラインの圧力によって可変する ことができるので、 起動時の突発的な圧力の異常上昇を回避できると共に、 定常運転時において要請される能力をも確保することが可能となる。 In the above configuration, the means for reducing the valve opening pressure of the valve element is added as the pressure in the low-pressure line increases, but without adding any special means. A configuration having the same valve opening pressure characteristics may be adopted. A compressor that compresses the refrigerant to increase the pressure of the high-pressure line above the critical pressure of the refrigerant according to operating conditions; a radiator that cools the refrigerant compressed by the compressor; and a refrigerant that is cooled by the radiator. An evaporator for evaporating the refrigerant decompressed by the expansion device, and a relief device for relieving the refrigerant from the high-pressure line to the low-pressure line according to the refrigerant pressure of the high-pressure line. In the refrigeration cycle, the relief device includes: a through hole that communicates the high pressure line side with the low pressure line side; a valve body that changes an opening degree of the through hole; A high-pressure pressure-sensitive element that controls the movement of the valve element in response to the refrigerant pressure, and the cross-sectional area of the through-hole and the valve element are attached to the high-pressure element. The ratio of the effective area of the portion receiving the force may be set so as to reduce the valve opening pressure of the valve body with an increase in pressure in the low pressure line c Thus, in this configuration, the valve The opening is adjusted by the body.By adjusting the ratio between the area of the through hole and the effective area of the part where the valve is attached and receives the force from the high pressure sensing element, the biasing force that the valve itself receives from the low pressure side When the refrigeration cycle stops and the pressure in the low pressure line rises (when the pressure in the high pressure line and the pressure in the low pressure line are close), the valve opening pressure can be changed according to the However, the valve opening pressure decreases, and the high-pressure refrigerant can be relieved to the low-pressure line at the initial stage when the pressure in the high-pressure line increases. When the cycle starts and the pressure in the low pressure line drops below the pressure when the cycle is stopped, the valve opening pressure is changed to a large value. The difference can be kept large. In other words, since the valve opening pressure of the relief device can be varied by the pressure of the low pressure line, it is possible to avoid a sudden abnormal increase in pressure at the time of startup, and to secure the required performance during steady operation. Becomes possible.
上述した構成において、 膨張装置とリ リーフ装置とは、 別体に構成される
ものであっても、 一体化されるものであってもよく、 高圧感圧素子は、 ベロ ーズによって構成されるものであってもよい。 In the above configuration, the expansion device and the relief device are configured separately. The high-pressure sensing element may be formed by bellows.
このようなリ リーフ装置を有する冷凍サイクルは、 高圧ラインの圧力が冷 媒の臨界圧力を超える状態となり得る蒸気圧縮式冷凍サイクル、 例えば、 冷 媒として二酸化炭素を用いた冷凍サイクルに適したものとなる。 図面の簡単な説明 A refrigeration cycle having such a relief device is suitable for a vapor compression refrigeration cycle in which the pressure in a high-pressure line can exceed the critical pressure of a refrigerant, for example, a refrigeration cycle using carbon dioxide as a refrigerant. Become. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明に係る冷凍サイクルの構成例を示す図であり、 第 2図は、 第 1図に係る冷凍サイクルの膨張装置とリ リーフ装置の具体的構成例を示す 断面図であり、 第 3図は、 膨張装置出口圧力 P yに対するリ リーフ装置の開 弁圧特性の一例を示す線図であり、 第 4図は、 第 2図で示す膨張装置とリリ ーフ装置とを一体化した構成例を示す断面図であり、 第 5図は、 第 2図で示 す構成に対して、 リリーフ装置を変形レた構成例を示す断面図であり、 第 6 図は、 第 5図で示す膨張装置とリリーフ装置とを一体化した構成例を示す断 面図であり、 第 7図は、 第 2図で示す構成に対して、 リ リーフ装置を他の構 成で置き換えた例を示す断面図であり、 第 8図は、 第 7図で示す膨張装置と リ リーフ装置とを一体化した構成例を示す断面図であり、 第 9図は、 第 2図 で示す構成に対して、 リリーフ装置をさらに他の構成で置き換えた例を示す 断面図であり、 第 1 0図は、 第 9図で示す膨張装置とリ リーフ装置とを一体 化した構成例を示す断面図である。 発明を実施するための最良の形態 FIG. 1 is a diagram showing a configuration example of a refrigeration cycle according to the present invention, and FIG. 2 is a cross-sectional view showing a specific configuration example of an expansion device and a relief device of the refrigeration cycle according to FIG. FIG. 3 is a diagram showing an example of the valve opening pressure characteristic of the relief device with respect to the expansion device outlet pressure P y, and FIG. 4 is a diagram showing the expansion device and the relief device shown in FIG. FIG. 5 is a cross-sectional view showing a modified configuration example of the relief device shown in FIG. 2 with respect to the configuration shown in FIG. 2, and FIG. Fig. 7 is a cross-sectional view showing an example of a configuration in which the inflation device and the relief device are integrated as shown in Fig. 7. Fig. 7 is an example in which the relief device is replaced with another configuration in the configuration shown in Fig. 2. FIG. 8 is a cross-sectional view showing a configuration example in which the expansion device and the relief device shown in FIG. 7 are integrated. FIG. 9 is a cross-sectional view showing an example in which the relief device is further replaced by another configuration with respect to the configuration shown in FIG. 2, and FIG. 10 is a sectional view showing the expansion device and the relief device shown in FIG. FIG. 4 is a cross-sectional view showing a configuration example in which a leaf device is integrated. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施の形態を図面 より説明する。 第 1図において、 冷 凍サイクル 1は、 冷媒を圧縮する圧縮機 2、 冷媒を冷却する放熱器 3、 高圧 ラインと低圧ラインとの冷媒を熱交換する内部熱交換器 4、 冷媒を減圧する 膨張装置 5、 冷媒を蒸発気化する蒸発器 6、 蒸発器 6から流出された冷媒を
気液分離するアキュムレータ 7を有して構成されている。 このサイクルにお いては、 圧縮機 2の吐出側 (D ) を放熱器 3を介して内部熱交換器 4の高圧 通路 4 aに接続し、 この高圧通路 4 aの流出側を膨張装置 5に接続すること で、 圧縮機 2の吐出側から膨張装置 5に至る経路を高圧ライン 8としている c また、 膨張装置 5の流出側を蒸発器 6及びアキュムレータ 7を介して内部熱 交換器 4の低圧通路 4 bに接続し、 この低圧通路 4 bの流出側を圧縮機 2の 吸入側 (S ) に接続することで、 膨張装置 5の流出側から圧縮機 2に至る経 路を低圧ライン 9としている。 さらに、 このサイクルには、 膨張装置 5に対 して並列的に設けられ、 高圧ライン 8の冷媒圧力が異常に上昇した場合に膨 張装置 5を迂回して高圧ライン 8の冷媒を低圧ライン 9ヘリリーフさせるリ リーフ装置 1 1が設けられている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, a refrigeration cycle 1 includes a compressor 2 for compressing the refrigerant, a radiator 3 for cooling the refrigerant, an internal heat exchanger 4 for exchanging heat between the high-pressure line and the low-pressure line, and an expansion for decompressing the refrigerant. Device 5, evaporator 6 for evaporating and evaporating refrigerant, refrigerant flowing out of evaporator 6 It has an accumulator 7 for gas-liquid separation. In this cycle, the discharge side (D) of the compressor 2 is connected to the high-pressure passage 4a of the internal heat exchanger 4 via the radiator 3, and the outlet side of the high-pressure passage 4a is connected to the expansion device 5. by connecting, the path to the expansion device 5 from the discharge side of the compressor 2 also c is a high pressure line 8, the low pressure of the internal heat exchanger 4 to the outflow side of the expansion device 5 via the evaporator 6 and an accumulator 7 By connecting the outlet side of the low-pressure passage 4 b to the suction side (S) of the compressor 2, the path from the outlet side of the expansion device 5 to the compressor 2 is formed as a low-pressure line 9. I have. Further, in this cycle, the refrigerant is provided in parallel with the expansion device 5 and bypasses the expansion device 5 to transfer the refrigerant in the high pressure line 8 to the low pressure line 9 when the refrigerant pressure in the high pressure line 8 rises abnormally. A relief device 11 for helicopter relief is provided.
冷媒としては、 臨界点の低い冷媒、 例えば、 二酸化炭素 (c o2 ) が用い られており、 圧縮機 2で圧縮された冷媒は、 高温高圧の冷媒として放熱器 3 に入り、 ここで放熱して冷却し、 さらに、 内部熱交換器 4において蒸発器 6 から流出する低温冷媒と熱交換して冷やされ、 液化されることなく膨張装置 5へ送られることとなる。 そして、 膨張装置 5に至った冷媒は、 ここで減圧 して低温低圧の湿り蒸気となり、 蒸発器 6においてここを通過する空気と熱 交換してガス状となり、 しかる後に内部熱交換器 4において高圧ライン 8の 高温冷媒と熱交換した後に圧縮機 2へ戻されることとなる。 また、 高圧ライ ン 8の冷媒圧力が異常に上昇した場合には、 リ リーフ装置 1 1が作動して、 高圧ライン 8の冷媒を膨張装置 5を迂回して低圧ライン 9へ導くようになつ ている。 As the refrigerant, a refrigerant having a low critical point, for example, carbon dioxide (co 2 ) is used. The refrigerant compressed by the compressor 2 enters the radiator 3 as a high-temperature and high-pressure refrigerant, and radiates heat there. After cooling, the heat is exchanged with the low-temperature refrigerant flowing out of the evaporator 6 in the internal heat exchanger 4 to be cooled and sent to the expansion device 5 without being liquefied. The refrigerant that has reached the expansion device 5 is decompressed here to become low-temperature and low-pressure wet steam, exchanges heat with the air passing therethrough in the evaporator 6, and becomes gaseous. After the heat exchange with the high-temperature refrigerant in the line 8, the heat is returned to the compressor 2. Further, when the refrigerant pressure in the high-pressure line 8 rises abnormally, the relief device 11 operates to guide the refrigerant in the high-pressure line 8 to the low-pressure line 9 bypassing the expansion device 5. I have.
第 2図において、 前記膨張装置 5とリ リーフ装置 1 1の具体的構成例が示 されており、 この例において膨張装置 5とリリーフ装置 1 1とは別体のもの として形成されており、 膨張装置 5は、 ハウジング部材 1 5 a , 1 5 bを組 み付けて構成されたハウジング 1 5内に高圧空間 1 6と低圧空間 1 Ίとを設
け、 高圧空間 1 5に減圧調節弁 1 8を配して構成されている。 この例におい て低圧空間 1 7は、 一方のハウジング部材 1 5 bに形成され、 高圧空間 1 6 は、 一方のハウジング部材 1 5 bに他方のハゥジング部材 1 5 aを組付ける ことによって形成されており、 高圧空間 1 6と低圧空間 1 7とは、 一方のハ ウジング部材 1 5 bに設けられた隔壁 1 9の通孔 2 0を介して連通されてい る。 FIG. 2 shows a specific configuration example of the inflation device 5 and the relief device 11. In this example, the inflation device 5 and the relief device 11 are formed separately from each other. The device 5 has a high-pressure space 16 and a low-pressure space 1Ί in a housing 15 configured by assembling housing members 15a and 15b. The pressure reducing valve 18 is disposed in the high-pressure space 15. In this example, the low-pressure space 17 is formed in one housing member 15b, and the high-pressure space 16 is formed by assembling one housing member 15b with the other housing member 15a. In addition, the high-pressure space 16 and the low-pressure space 17 are communicated with each other through a through hole 20 of a partition wall 19 provided in one housing member 15b.
高圧空間 1 6に配されている減圧調節弁 1 8は、 通孔 2 0の周縁部に形成 された弁座 2 2に着座する弁体 2 3と、 この弁体 2 3にロッド 2 4を介して 接合されると共にハウジング部材 1 5 aの頂部に固定されたべローズ 2 5と から構成されてたそれ自体周知のものであり、 高圧空間内の冷媒環境 (冷媒 圧力、 冷媒温度) に応じて弁体 2 3のリフト量 (高圧空間 1 6と低圧空間 1 7との連通状態) が調節されるようになっている。 The pressure-reducing control valve 18 provided in the high-pressure space 16 includes a valve body 23 seated on a valve seat 22 formed on the peripheral portion of the through hole 20, and a rod 24 on the valve body 23. And a bellows 25 fixed to the top of the housing member 15a and joined together via a bellows 25, and according to the refrigerant environment (refrigerant pressure, refrigerant temperature) in the high-pressure space. The lift amount of the valve body 23 (the state of communication between the high-pressure space 16 and the low-pressure space 17) is adjusted.
これに対してリ リーフ装置 1 1は、 ノヽゥジング部材 2 6 a, 2 6 b , 2 6 cを組み付けて構成されたハウジング 2 6内に高圧空間 2 7と、 この高圧空 間 2 7の一方の側に形成された第 1の低圧空間 2 8と、 高圧空間 2 7の他方 の側に形成された第 2の低圧空間 2 9とを設け、 高圧空間 2 7に圧力調節弁 3 0を配し、 第 2の低圧空間 2 9に付勢力調整部材 3 1を配して構成されて いる。 この例において第 1の低圧空間 2 8は、 ハウジング部材 2 6 aに形成 され、 高圧空間 2 7は、 ハウジング部材 2 6 bにハウジング部材 2 6 aを組 付けることによつて形成され、 第 2の低圧空間 2 9は、 ハゥジング部材 2 6 bの底部にハウジング部材 2 6 cを組付けることによつて形成されており、 高圧空間 2 7と第 1の低圧空間 2 8とは、 ハウジング部材 2 6 aに設けられ た隔壁 3 2の通孔 3 3を介して連通され、 高圧空間 2 7と第 2の低圧空間 2 9とは、 連通されることなくハウジング部材 2 6 bの底部によって隔てられ ている。 On the other hand, the relief device 11 includes a high-pressure space 27 inside a housing 26 configured by assembling the nozing members 26 a, 26 b, 26 c, and one of the high-pressure space 27. And a second low-pressure space 29 formed on the other side of the high-pressure space 27, and a pressure regulating valve 30 is arranged in the high-pressure space 27. The second low-pressure space 29 is provided with an urging force adjusting member 31. In this example, the first low-pressure space 28 is formed in the housing member 26a, the high-pressure space 27 is formed by assembling the housing member 26a to the housing member 26b, The low-pressure space 29 is formed by assembling a housing member 26c at the bottom of the housing member 26b, and the high-pressure space 27 and the first low-pressure space 28 are The high-pressure space 27 and the second low-pressure space 29 are separated from each other by the bottom of the housing member 26 b without communication. ing.
高圧空間 2 7に配されている圧力調節弁 3 0は、 通孔 3 3の周縁部に形成
された弁座 3 4に着座する弁体 3 5と、 この弁体 3 5にロッド 3 6を介して 接合されると共にハウジング部材 2 6 bの底部に固定されてたベローズ 3 Ί とから構成されているもので、 高圧空間 2 7内の冷媒圧力がベローズ自身が 有する所定の開弁圧以上となった場合に弁体 3 5をリフトさせて高圧冷媒を 高圧空間 2 7から第 1の低圧空間 2 8ヘリリーフさせるようになつている。 また、 第 2の低圧空間 2 9に配されている付勢力調整部材 3 1は、 ハウジ ング部材 2 6 cの底部に固定され、 内部に作動媒体が封入されて第 2の低圧 空間 2 9の圧力の增加にともなつてべローズ 3 7の伸縮方向に収縮 (圧力の 低下に伴ってベローズ 3 7の伸縮方向に伸張) するベローズ 3 8と、 このべ ローズ 3 8の自由端に固定され、 ハウジング部材 2 6 bの底部を介して高圧 空間 2 に揷入する付勢口ッド 3 9とによって構成されている。 この付勢口 ッド 3 9は、 高圧空間 2 7のべローズ 3 7に対し、 弁体 3 5の側から当接し、 ベローズ 3 7を収縮する方向への付勢力、 即ち、 弁体 3 5の開弁圧を低減す る方向 (開弁方向) への付勢力を供給できるようになつている。 The pressure control valve 30 disposed in the high-pressure space 27 is formed at the periphery of the through hole 33. And a bellows 3 接合 joined to the valve body 35 via a rod 36 and fixed to the bottom of the housing member 26 b. When the refrigerant pressure in the high-pressure space 27 exceeds a predetermined valve opening pressure of the bellows itself, the valve body 35 is lifted to move the high-pressure refrigerant from the high-pressure space 27 to the first low-pressure space. 2 to 8 heli reliefs. Further, the urging force adjusting member 31 arranged in the second low-pressure space 29 is fixed to the bottom of the housing member 26c, and the working medium is sealed therein to form the second low-pressure space 29. The bellows 38 contracts in the direction of expansion and contraction of the bellows 37 with the increase in pressure (expands in the direction of expansion and contraction of the bellows 37 with a decrease in pressure), and is fixed to the free end of the bellows 38. And a biasing port 39 that enters the high-pressure space 2 through the bottom of the housing member 26b. The biasing port 39 abuts against the bellows 37 of the high-pressure space 27 from the valve body 35 side, and biases the bellows 37 in a direction to contract, that is, the valve body 35 A biasing force can be supplied in the direction to decrease the valve opening pressure (valve opening direction).
そして、 膨張装置 5の高圧空間 1 6は、 ハウジング 1 5に接続される配管 4 0を介して内部熱交換器 4の高圧通路 4 aに接続されており、 リリーフ装 置 1 1の第 1の低圧空間 2 8と第 2の低圧空間 2 9とは、 配管 4 1を介して 蒸発器 6に接続されている。 また、 膨張装置 5の高圧空間 1 6とリリーフ装 置 1 1の高圧空間 2 7とは、 連通路 4 2によって連通し、 膨張装置 5の低圧 空間 1 7とリ リーフ装置 1 1の第 2の低圧空間 2 9とは、 連通路 4 3によつ て連通されている。 The high-pressure space 16 of the expansion device 5 is connected to the high-pressure passage 4 a of the internal heat exchanger 4 via a pipe 40 connected to the housing 15, and the first space of the relief device 1 1 The low-pressure space 28 and the second low-pressure space 29 are connected to the evaporator 6 via a pipe 41. The high-pressure space 16 of the expansion device 5 and the high-pressure space 27 of the relief device 11 communicate with each other through a communication passage 42, and the low-pressure space 17 of the expansion device 5 and the second The low-pressure space 29 is communicated with the low-pressure space 29 by a communication passage 43.
したがって、 上述の構成において、 低圧ライン 9の圧力 (低圧圧力) が上 昇してくると、 リ リーフ装置 1 1の第 2の低圧空間 2 9に配されたべローズ 3 8は、 低圧圧力の上昇に伴って収縮し、 高圧空間 2 7に配されたべローズ 3 7を収縮させようとする付勢力、 即ち、 弁体 3 5の開方向への付勢力は大 きくなり、 リ リーフ装置 1 1の開弁圧は小さくなつてくる。 これに対し、 低
圧ライン 9の圧力が低下してくると、 リ リーフ装置 1 1の第 2の低圧空間 2 9に配されたべローズ 3 8は、 低圧圧力の低下に伴って伸張し、 高圧空間 2 7に配されたべローズ 3 7を収縮させようとする付勢力、 即ち、 弁体 3 5の 開方向への付勢力は小さくなり、 リリーフ装置 1 1の開弁圧はべローズ 3 7 が本来有している固有の開弁圧に至るまで大きくなってくる。 Therefore, in the above-described configuration, when the pressure (low pressure) of the low pressure line 9 rises, the bellows 38 arranged in the second low pressure space 29 of the relief device 11 increase the low pressure pressure. And the urging force for contracting the bellows 37 arranged in the high-pressure space 27, that is, the urging force in the opening direction of the valve body 35 becomes large, and the relief device 11 The valve opening pressure decreases. On the other hand, low When the pressure in the pressure line 9 decreases, the bellows 38 disposed in the second low-pressure space 29 of the relief device 11 expands as the low-pressure pressure decreases, and moves to the high-pressure space 27. The urging force for contracting the bellows 37, that is, the urging force in the opening direction of the valve body 35 becomes small, and the bellows 37 originally has the valve opening pressure of the relief device 11. It increases up to the specific valve opening pressure.
よって、 低圧圧力に応じて伸縮するべローズ 3 8によってリリーフ装置 1 1の開弁圧を変更することができるので、 サイクル起動時やサイクルの定常 運転時でのリ リーフ装置 1 1の開弁圧を適切に設定することが可能となる。 即ち、 各べローズ 3 7 , 3 8に封入される作動媒体の種類や量を適宜調節す ることによって、 膨張装置 5の出口側の圧力 (膨張装置出口圧力) P yが上 昇して P 2となるサイクル停止時で要求されるリリーフ装置 1 1の開弁圧 P bと、 膨張装置出口圧力 P yが低下して P 1となる定常運転時において要求 されるリ リーフ装置 1 1の開弁圧 P aとの関係を、 例えば、 第 3図で示され るように略線形的に変化させることができるので、 低圧圧力が高くなるサイ クル起動時においては、 リリーフ装置 1 1の開弁圧 P Xを小さく して高圧圧 力が上昇し始める初期の段階で高圧ライン 8から低圧ライン 9へ冷媒を逃し、 サイクル起動時の高圧圧力の急激な上昇を緩和することができ、 サイクルを 安全に起動させることが可能となる。 Therefore, the valve opening pressure of the relief device 11 can be changed by the bellows 3 8 which expands and contracts according to the low pressure, so that the valve opening pressure of the relief device 11 at the start of the cycle or during the steady operation of the cycle. Can be set appropriately. That is, by appropriately adjusting the type and amount of the working medium sealed in each of the bellows 37 and 38, the pressure at the outlet side of the expansion device 5 (expansion device outlet pressure) P y rises and P The required opening pressure of the relief device 11 when the cycle is stopped, which is 2, and the opening pressure of the relief device 11, which is required during steady-state operation when the expansion device outlet pressure Py decreases to P1 Since the relationship with the valve pressure Pa can be changed approximately linearly, for example, as shown in FIG. 3, the valve of the relief device 11 is opened when the cycle starts when the low pressure increases. Reducing the pressure PX to allow the refrigerant to escape from the high-pressure line 8 to the low-pressure line 9 at the initial stage when the high-pressure pressure starts to rise, mitigating the sudden rise in high-pressure pressure at the start of the cycle. It can be activated.
また、 サイクルが稼動してしばらくすると、 高圧ライン 8と低圧ライン 9 の圧力差が大きくなり、 低圧圧力が低下してくるので、 リ リーフ装置 1 1の 開弁圧 P xは大きくなり、 サイクル稼動中での不必要なリ リーフを避けるこ とができ、 サイクルの定常運転時においては、 高圧ライン 8と低圧ライン 9 の圧力差を大きく保って冷凍サイクル 1の十分な能力を確保することができ るようになる。 Also, shortly after the operation of the cycle, the pressure difference between the high pressure line 8 and the low pressure line 9 increases, and the low pressure decreases.Therefore, the valve opening pressure P x of the relief device 11 increases, and the cycle operation starts. Unnecessary relief in the refrigeration cycle can be avoided, and during the steady-state operation of the cycle, the pressure difference between the high-pressure line 8 and the low-pressure line 9 can be kept large to secure sufficient capacity of the refrigeration cycle 1. Become so.
尚、 上述した構成においては、 膨張装置 5とリ リーフ装置 1 1とを別体に 構成した例を示したが、 第 4図に示されるように一体化するようにしてもよ
い。 即ち、 ハウジングブロック 4 5内に膨張装置 5を構成する高圧空間 1 6 と低圧空間 1 7とを設けると共に、 リ リーフ装置 1 1を構成する高圧空間 2 7と第 1及び第 2の低圧空間 2 8 , 2 9とを設け、 膨張装置 5の高圧空間 1 6内に減圧調節弁 1 8を配し、 リリーフ装置 1 1の高圧空間 2 7内に圧力調 節弁 3 0を配し、 膨張装置 5の高圧空間 1 6をハウジングプロック 4 5に接 続された配管 4 0を介して内部熱交換器 4の高圧通路 4 aに接続し、 、 リ リ ーフ装置 1 1の第 1の低圧空間 2 8と第 2の低圧空間 2 9とを、 ハウジング ブロック 4 5に形成された通路 4 6及びハウジングブロック 4 5に接続され た配管 4 1を介して蒸発器 6に接続し、 また、 膨張装置 5の高圧空間 1 6と リ リーフ装置 1 1の高圧空間 2 7とをハウジングブロック 4 5に形成された 連通路 4 7によって連通し、 膨張装置 5の低圧空間 1 7とリリーフ装置 1 1 の第 2の低圧空間 2 9とをハウジングプロック 4 5に形成された連通路 4 8 によって連通するようにしてもよい。 尚、 他の構成においては、 第 2図で示 される構成と同様であるので、 同一箇所に同一番号を付して説明を省略する。 第 5図に上述したリ リーフ装置 1 1を変形した構成例が示され、 この変形 例においては、 リ リーフ装置 1 1の第 2の低圧空間 2 9に配される付勢力調 整部材 3 1が、 ハウジング部材 2 6 cの底部に固定され、 内部に作動媒体が 封入されて第 2の低圧空間の圧力の增加に伴ってベローズ 3 7の伸縮方向に 収縮 (圧力の低下に伴ってベローズ 3 7の伸縮方向に伸張) するダイヤフラ ム 5 0と、 このダイヤフラム 5 0の自由端に固定され、 ハウジング部材 2 6 bの底部を介して高圧空間 2 7に揷入する付勢ロッド 3 9とによって構成さ れている。 その他の構成は、 第 2図に示す構成と同様であるので、 同一箇所 に同一番号を付して説明を省略する。 In the above-described configuration, an example is shown in which the expansion device 5 and the relief device 11 are configured separately, but they may be integrated as shown in FIG. No. That is, a high-pressure space 16 and a low-pressure space 17 forming the expansion device 5 are provided in the housing block 45, and a high-pressure space 27 and the first and second low-pressure spaces 2 forming the relief device 11 are provided. 8 and 29; a pressure reducing valve 18 in the high pressure space 16 of the expansion device 5; a pressure regulating valve 30 in the high pressure space 27 of the relief device 11; The high-pressure space 16 of 5 is connected to the high-pressure passage 4 a of the internal heat exchanger 4 via a pipe 40 connected to the housing block 45, and the first low-pressure space of the relief device 11 is connected. 28 and the second low-pressure space 29 are connected to the evaporator 6 via a passage 46 formed in the housing block 45 and a pipe 41 connected to the housing block 45, and an expansion device. The high-pressure space 16 of 5 and the high-pressure space 27 of the relief device 11 are connected by a communication passage 4 7 formed in the housing block 45. And it may be communicated by the low-pressure space 1 7 and a relief device 1 1 of the second communicating passage 4 8 a low-pressure space 2 9 formed in the housing proc 4 5 expansion device 5. In other respects, the configuration is the same as that shown in FIG. 2, and therefore, the same portions are denoted by the same reference numerals and description thereof will be omitted. FIG. 5 shows an example of a configuration in which the above-described relief device 11 is modified. In this modified example, an urging force adjusting member 31 arranged in the second low-pressure space 29 of the relief device 11 is shown. Is fixed to the bottom of the housing member 26c, and the working medium is sealed therein, and contracts in the expansion and contraction direction of the bellows 37 as the pressure in the second low-pressure space is increased. 7) and an urging rod 39 fixed to the free end of the diaphragm 50 and entering the high-pressure space 27 through the bottom of the housing member 26b. It is configured. Other configurations are the same as those shown in FIG. 2, and therefore, the same portions are denoted by the same reference numerals and description thereof will be omitted.
したがって、 このような構成においても、 低圧ライン 9の圧力 (低圧圧 力) が上昇してくると、 リリーフ装置 1 1の第 2の低圧空間 2 9に配された ダイヤフラム 5 0は低圧圧力の上昇に伴って収縮するので、 高圧空間 2 7に
配されたべローズ 3 7を収縮させようとする付勢力、 即ち、 弁体 3 5の開方 向への付勢力が大きくなり、 リ リーフ装置 1 1の開弁圧が小さくなってくる c これに対し、 低圧ラインの圧力が低下してくると、 リ リーフ装置 1 1の第 2 の低圧空間 2 9に配されたダイヤフラム 5 0は、 低圧圧力の低下に伴って伸 張し、 高圧空間 2 7に収納されたべローズ 3 7を収縮させようとする付勢力、 即ち、 弁体 3 5の開方向への付勢力が小さくなり、 リ リーフ装置 1 1の開弁 圧はべローズ 3 7が本来有している固有の開弁圧に至るまで大きくなつてく る。 Therefore, even in such a configuration, when the pressure (low pressure pressure) of the low pressure line 9 increases, the diaphragm 50 arranged in the second low pressure space 29 of the relief device 11 increases the low pressure pressure. To the high pressure space 27 Biasing force to try to arranged the base contracted rose 3 7, that is, the valve body 3 biasing force to open Direction of 5 increases, c in which the valve opening pressure of the re-leaf device 1 1 becomes smaller On the other hand, when the pressure of the low-pressure line decreases, the diaphragm 50 arranged in the second low-pressure space 29 of the relief device 11 expands as the low-pressure pressure decreases, and the high-pressure space 27 The urging force for contracting the bellows 37 housed in the valve body, i.e., the urging force in the opening direction of the valve body 35 becomes small, and the bellows 37 originally has the valve opening pressure of the relief device 11. To the specific valve opening pressure.
よって、 このような構成においても、 低圧圧力に応じて伸縮するダイヤフ ラム 5 0によってリリーフ装置 1 1の開弁圧を変更することができるので、 サイクル起動時やサイクルの定常運転時でのリ リーフ装置 1 1の開弁圧を適 切に設定することが可能となる。 即ち、 ベローズ 3 7やダイヤフラム 5 0に 封入される作動媒体の種類や量を適宜調節することによって、 膨張装置出口 圧力 P yが上昇して P 2となるサイクル停止時で要求されるリリーフ装置 1 1の開弁圧 P bと、 膨張装置出口圧力 P yが低下して P 1となる定常運転時 において要求されるリ リーフ装置 1 1の開弁圧 P aとの関係を、 例えば、 第 3図で示されるように略線形的に変化させることができるので、 低圧圧力が 高くなるサイクル起動時においては、 リ リーフ装置の開弁圧を小さく して高 圧圧力が上昇し始める初期の段階で高圧ライン 8から低圧ライン 9へ冷媒を 逃し、 サイクル起動時の高圧圧力の急激な上昇を緩和することができ、 サイ ダルを安全に起動させることが可能となる。 Therefore, even in such a configuration, the valve opening pressure of the relief device 11 can be changed by the diaphragm 50 that expands and contracts in accordance with the low pressure, so that the relief at the start of the cycle or during the steady operation of the cycle is possible. The valve opening pressure of the device 11 can be set appropriately. That is, by appropriately adjusting the type and amount of the working medium sealed in the bellows 37 and the diaphragm 50, the relief device 1 required when the cycle is stopped when the expansion device outlet pressure Py rises to P2. The relationship between the valve-opening pressure Pb of (1) and the valve-opening pressure Pa of the relief device 11 required during steady-state operation in which the outlet pressure Py of the expansion device is reduced to P1 is, for example, As shown in the figure, the pressure can be changed approximately linearly, so at the start of the cycle when the low pressure increases, the valve opening pressure of the relief device is reduced and the high pressure starts to increase at the initial stage. Refrigerant is released from the high-pressure line 8 to the low-pressure line 9 to mitigate a rapid rise in high-pressure pressure at the start of a cycle, and it is possible to start the sidal safely.
また、 サイクルが稼動してしばらくたっと、 高圧ライン 8と低圧ライン 9 の圧力差が大きくなり、 低圧圧力が低下してくるので、 リ リーフ装置 1 1の 開弁圧は大きくなり、.サイクル稼動中での不必要なリ リーフを避けることが でき、 サイクルの定常運転時においては、 高圧ライン 8と低圧ライン 9の圧 力差を大きく保って冷凍サイクル 1の十分な能力を確保することができるよ
うになる。 Also, shortly after the operation of the cycle, the pressure difference between the high-pressure line 8 and the low-pressure line 9 increases, and the low-pressure pressure decreases, so the valve-opening pressure of the relief device 11 increases. Unnecessary relief can be avoided during normal operation of the cycle, and the pressure difference between the high-pressure line 8 and the low-pressure line 9 can be kept large to ensure sufficient capacity of the refrigeration cycle 1. Swell.
このような構成においても、 第 6図に示されるように膨張装置 5とリ リー フ装置 1 1とを一体化するようにしてもよい。 即ち、 ハウジングブロック内 に膨張装置 5を構成する高圧空間 1 6と低圧空間 1 7とを設けると共に、 リ リーフ装置 1 1を構成する高圧空間 2 7と第 1及び第 2の低圧空間 2 8, 2 9とを設け、 膨張装置 5の高圧空間 1 6内に減圧調節弁 1 8を配し、 リ リー フ装置 1 1の高圧空間 2 7内に圧力調節弁 3 0を配し、 膨張装置 5の高圧空 間 1 6をハウジングブロック 4 5に接続された配管 4 0を介して内部熱交換 器 4の高圧通路 4 aに接続し、 リリーフ装置 1 1の第 1の低圧空間 2 8と第 2の低圧空間 2 9とをハウジングプロック 4 5に形成された通路 4 6及びハ ウジングブ口ック 4 5に接続された配管 4 1を介して蒸発器 6に接続し、 ま た、 膨張装置 5の高圧空間 1 5とリリーフ装置 1 1の高圧空間 2 7とを、 ハ ウジングプロック 4 5に形成された連通路 4 7によって連通し、 膨張装置 5 の低圧空間 1 7とリ リーフ装置 1 1の第 2の低圧空間 2 9とを、 ハウジング プロック 4 5に形成さ.れた連通路 4 8によって連通するようにしてもよい。 尚、 他の構成においては、 第 5図で示される構成と同様であるので、 同一箇 所に同一番号を付して説明を省略する。 In such a configuration, the expansion device 5 and the relief device 11 may be integrated as shown in FIG. That is, a high-pressure space 16 and a low-pressure space 17 that constitute the expansion device 5 are provided in the housing block, and a high-pressure space 27 and the first and second low-pressure spaces 28 and 28 that constitute the relief device 11 are provided. 2 and 9; a pressure reducing valve 18 in the high-pressure space 16 of the expansion device 5; a pressure control valve 30 in the high-pressure space 27 of the relief device 11; The high pressure space 16 of the internal heat exchanger 4 is connected to the high pressure passage 4a of the internal heat exchanger 4 via a pipe 40 connected to the housing block 45, and the first low pressure space 28 and the second low pressure space 28 of the relief device 11 are connected. The low pressure space 29 is connected to the evaporator 6 via a passage 46 formed in the housing block 45 and a pipe 41 connected to the housing block 45, and the expansion device 5 The high-pressure space 15 and the high-pressure space 27 of the relief device 11 communicate with each other by a communication passage 47 formed in a housing block 45. A second low-pressure space 2 9 of the low-pressure space 1 7 Zhang apparatus 5 - relief device 1 1, may be communicated by the formation of. Communicating passage 4 8 was the housing Proc 4 5. Since the other configuration is the same as the configuration shown in FIG. 5, the same portions are denoted by the same reference numerals and description thereof is omitted.
第 7図において、 リ リーフ装置 1 1の他の例を示した構成が示されている c この構成例において、 リ リーフ装置 1 1は、 ノヽゥジング部材 5 5 a, 5 5 b を組み付けて構成されたハウジング 5 5内にベローズ 5 6を支持すると共に、 このべローズ 5 6の伸縮方向に移動可能な可動体 5 7を収納して構成されて いる。 この例においてハウジング 5 5は、 可動体 5 7が摺動するハウジング 部材 5 5 aと、 このハウジング部材 5 5 aに組付けるハウジング部材 5 5 b とによって構成され、 可動体は 5 7、 ハウジング部材 5 5 bの内側に一体に 設けられた筒状部材 5 8に摺動可能に取り付けられており'、 ベローズ 5 6を 支持する台座部 5 7 aと、 この台座部 5 7 aと一体に形成されて筒状部材 5
8の外周面とハウジング部材 5 5 aの内周面とに摺接するリング状部 5 7 b とを有して構成されている。 FIG. 7 shows a configuration showing another example of the relief device 11 c. In this configuration example, the relief device 11 is configured by assembling the nodging members 55 a and 55 b. The bellows 56 is supported in a housing 55 formed as described above, and a movable body 57 movable in the expansion and contraction direction of the bellows 56 is housed. In this example, the housing 55 includes a housing member 55a on which the movable body 57 slides, and a housing member 55b assembled to the housing member 55a. It is slidably mounted on a cylindrical member 58 provided integrally inside 55 b, and is formed integrally with a pedestal 57 a supporting the bellows 56 and this pedestal 57 a Being cylindrical member 5 It has a ring-shaped part 57 b slidingly contacting the outer peripheral surface of the housing 8 and the inner peripheral surface of the housing member 55 a.
ハウジング部材 5 5 aの内面には、 リング状部 5 7 bが当接するストッパ 5 9 aと台座部 5 7 aが当接するストツパ 5 9 bが形成され、 筒状部材 5 8、 ハウジング部材 5 5 a, 5 5 b、 及びリング状部 5 7 bによって囲まれた空 間により環状の低圧空間 6 0が形成され、 また、 リング状部 5 7 bの低圧空 間 6 0に臨む部分が低圧空間内の圧力を受ける受圧面 6 1を構成している。 また、 可動体 5 7とハウジング部材 5 5 aとによって囲まれた空間により高 圧空間 6 2が形成されており、 この高圧空間 6 2に、 前記台座部 5 7 aによ つて支持されるべローズ 5 6がハウジング部材 5 5 aの頂部に固定されて収 納されている。 The inner surface of the housing member 5 5 a, ring-shaped portion 5 7 b abuts against the stopper 5 9 a and the pedestal portion 5 7 a abuts a stop 5 9 b is formed, the tubular member 5 8, the housing member 5 5 An annular low-pressure space 60 is formed by the space surrounded by a, 55b and the ring-shaped portion 57b, and the portion of the ring-shaped portion 57b facing the low-pressure space 60 is the low-pressure space. The pressure receiving surface 61 receives the internal pressure. A high-pressure space 62 is formed by a space surrounded by the movable body 57 and the housing member 55a, and the high-pressure space 62 should be supported by the pedestal portion 57a. A rose 56 is fixed and received at the top of the housing member 55a.
筒状部材 5 8の内側は、 リング状部 5 7 bに形成された連通孔 6 3を介し て高圧空間 6 2と連通しており、 筒状部材 5 8の内側には、 可動体 5 7の台 座部 5 7 aに固定された弁体 6 4が垂設されており、 この弁体 6 4は、 リン グ状部 5 7 bがストッパ 5 9 aに当接した時点で筒状部材 5 8の内側を絞つ て弁口を形成した弁座部 6 5に着座するようになっている。 上述した可動体 5 7、 ベローズ 5 6、 及び弁体 6 4によって圧力調節弁 6 6が構成されてお り、 可動体 5 7がストッパ 5 9 aに当接されている状態にあっては、 高圧空 間 6 2内の冷媒圧力がベローズ 5 6自身が有する所定の開弁圧以上となった 場合に、 弁体 6 4をリフトさせて高圧冷媒を高圧空間 6 2から筒状部材 5 8 の内側を経てリリーフさせるようになっている。 また、 弁体 6 4のリフトは、 台座部 5 7 aがストツパ 5 9 bに当接するまでの範囲に制限されており、 こ のストツパ 5 9 bによって可動体 5 7が筒状部材 5 8から外れないようにな つている。 尚、 膨張装置 5は、 前記第 2図に示す構成と同様の構成を有する ので、 同一箇所に同一番号を付して説明を省略する。 The inside of the cylindrical member 58 communicates with the high-pressure space 62 through a communication hole 63 formed in the ring-shaped portion 57 b, and the movable member 57 inside the cylindrical member 58 A valve body 64 fixed to the pedestal portion 57 a of the valve body is suspended from the cylindrical member when the ring-shaped portion 57 b abuts against the stopper 59 a. The inside of 58 is squeezed to be seated on a valve seat 65 formed with a valve port. The pressure regulating valve 66 is constituted by the movable body 57, the bellows 56, and the valve body 64 described above, and when the movable body 57 is in contact with the stopper 59a, When the refrigerant pressure in the high pressure space 62 becomes equal to or higher than a predetermined valve opening pressure of the bellows 56 itself, the valve element 64 is lifted to move the high pressure refrigerant from the high pressure space 62 to the cylindrical member 58. It is designed to be relieved through the inside. Further, the lift of the valve body 64 is limited to a range until the pedestal portion 57a comes into contact with the stopper 59b, and the movable member 57 is moved from the cylindrical member 58 by the stopper 59b. It is secure. Since the inflation device 5 has the same configuration as the configuration shown in FIG. 2, the same portions are denoted by the same reference numerals and description thereof will be omitted.
そして、 膨張装置 5の高圧空間 1 6は、 ハウジング 1 5に接続された配管
4 0を介して内部熱交換器 4の高圧通路 4 aに接続されており、 筒状部材 5 8内側の弁座部 6 5よりも下流側の部位は配管 6 8を介して蒸発器 6に接続 されている。 また、 膨張装置 5の高圧空間 1 6とリ リーフ装置 1 1の高圧空 間 6 2とは、 連通路 6 9によって連通され、 リ リーフ装置 1 1の低圧空間 6 0は、 膨張装置 5の低圧空間 1 7と連通路 6 7を介して接続されると共に、 筒状部材 5 8内側の弁座部 6 5よりも下流側の部位に対して筒状部材 5 8に 形成された連通孔 9 9を介して連通されている。 The high-pressure space 16 of the expansion device 5 is connected to a pipe connected to the housing 15. It is connected to the high-pressure passage 4a of the internal heat exchanger 4 through 40, and the portion downstream of the valve seat 65 inside the cylindrical member 58 is connected to the evaporator 6 through piping 68. It is connected. The high-pressure space 16 of the expansion device 5 communicates with the high-pressure space 62 of the relief device 11 by a communication passage 69, and the low-pressure space 60 of the relief device 11 communicates with the low-pressure space of the expansion device 5. It is connected to the space 17 via the communication passage 67, and has a communication hole 9 9 formed in the cylindrical member 58 at a position downstream of the valve seat 65 inside the cylindrical member 58. Are communicated through.
したがって、 上述の構成においては、 膨張装置出口側圧力 (低圧圧力) P yが高くなると、 リング状部 5 7 aの受圧面 6 1にかかる圧力は大きくなり、 ベローズ 5 6を圧縮する方向への付勢力が大きくなって弁体 6 4の開弁圧 P Xは小さくなる。 逆に、 膨張装置出口側圧力 (低圧圧力) P yが低くなると、 リング状部 5 7 aの受圧面 6 1にかかる圧力は小さくなり、 ベローズを圧縮 する方向への付勢力が小さくなって弁体 6 4の開弁圧は大きくなる。 このた め、 リ リーフ装置 1 1の開弁圧は、 低圧圧力が高くなるほど小さくなる特性 を有することとなる。 Therefore, in the above-described configuration, when the pressure at the outlet of the expansion device (low pressure) Py increases, the pressure applied to the pressure receiving surface 61 of the ring-shaped portion 57 a increases, and the pressure in the direction of compressing the bellows 56 increases. The urging force increases and the valve opening pressure PX of the valve body 64 decreases. Conversely, when the pressure at the outlet of the expansion device (low pressure) P y decreases, the pressure applied to the pressure receiving surface 61 of the ring-shaped portion 57 a decreases, and the urging force in the direction of compressing the bellows decreases, thereby reducing the valve pressure. The valve opening pressure of the body 64 increases. For this reason, the valve opening pressure of the relief device 11 has a characteristic that it decreases as the low pressure increases.
例えば、 膨張装置出口圧力 (低圧圧力) P yとリ リーフ装置 1 1の開弁圧 P xとの関係が、 第 3図で示されるように、 膨張装置 5の出口側の圧力 (膨 張装置出口圧力) P yが上昇して P 2となるサイクル停止時で要求されるリ リーフ装置 1 1の開弁圧を P b、 膨張装置出口圧力 P yが低下して P 1とな る定常運転時において要求されるリ リーフ装置 1 1の開弁圧を P a ( P a > P b ) とし、 その間を第 3図に示されるように線形的が変化するものとすれ ば、 膨張弁出口側圧力 P yとリ リーフ装置の開弁圧 P Xとの関係を P X + ひ P y = K (定数) で表わすことができる。 よって、 リング状部 5 7 bの低圧 室 6 0に臨む受圧面 6 1の面積を S r 、 ベロ一ズ 5 7から力を受け 台座部 5 7 aの部分の有効面積を S bとすると、 膨張装置出口側の冷媒圧力 P yに より、 低圧空間 6 0から可動体 5 7が受ける付勢力 F yは、 P y · S r とな
り、 弁体 6 4が低圧側から受ける付勢力は無視できるほど小さいものである とすると、 およそ P y · S r / S bの分だけ開弁圧が低下することとなり、 上述の線形特性を得るためには、 Q! = S r / S bとなるように設計すればよ いこととなる。 For example, as shown in FIG. 3, the relationship between the expansion device outlet pressure (low pressure pressure) P y and the valve opening pressure P x of the relief device 11 is represented by the pressure at the outlet side of the expansion device 5 (the expansion device). (Pressure at the outlet) Py rises to P2 Relief device required when the cycle is stopped 11 The valve opening pressure of Pb is set to Pb, and the expansion device outlet pressure Py is reduced to P1 for steady operation If the valve opening pressure of the relief device 11 required at that time is assumed to be Pa (Pa> Pb), and the linearity changes between the pressures as shown in Fig. 3, the expansion valve outlet side The relationship between the pressure P y and the valve opening pressure PX of the relief device can be expressed as PX + Py = K (constant). Therefore, assuming that the area of the pressure receiving surface 61 facing the low-pressure chamber 60 of the ring-shaped portion 57 b is Sr, and the effective area of the pedestal portion 57 a receiving the force from the bellows 57 is Sb, Due to the refrigerant pressure Py at the outlet of the expansion device, the urging force Fy received by the movable body 57 from the low-pressure space 60 becomes PySr. Assuming that the urging force received by the valve element 64 from the low pressure side is negligibly small, the valve opening pressure is reduced by approximately PySr / Sb, and the linear characteristic described above is reduced. In order to obtain it, it suffices to design so that Q! = Sr / Sb.
このように、 この構成によれば、 得たい特性を S rと S bの面積比をもつ て決定すればよいこととなり、 例えば、 サイクル定常運転時の P yが 3 M P aのときに開弁圧 P Xを 1 4 M P aとし、 サイクル停止時の P yが 9 M P a のときに開弁圧 P Xを 1 2 M P aとする特性を得たいのであれば、 α = 1ノ 3, = 1 5 (M P a ) となり、 S rを 1 Z 3 S bとなるように設定するこ とで、 サイクル起動時やサイクル定常運転時でのリ リーフ装置の開弁圧を適 切に設定することが可能となる。 As described above, according to this configuration, it is only necessary to determine the characteristic to be obtained with the area ratio of Sr to Sb. For example, the valve is opened when Py in the steady cycle operation is 3 MPa. If the pressure PX is set to 14 MPa and the valve opening pressure PX is set to 12 MPa when Py at the cycle stop is 9 MPa, α = 1 3 = 1 5 (MPa), and by setting Sr to be 1Z3Sb, it is possible to set the valve opening pressure of the relief device at cycle start-up or during steady-state cycle operation properly. Becomes
よって、 このような構成においても、 低圧圧力が高くなるサイクル起動時 にリ リーフ装置 1 1の開弁圧を小さく して高圧圧力が上昇し始める初期の段 階で高圧ライン 8から低圧ライン 9へ冷媒を逃しゃすくすることができるの で、 サイクル起動時の高圧圧力の急激な上昇を緩和することができ、 サイク ルを安全に起動させることが可能となる。 また、 サイクルが稼動してしばら くたつと、 高圧ライン 8と低圧ライン 9の圧力差が大きくなり、 低圧圧力が 低下してくるので、 リ リーフ装置 1 1の開弁圧は大きくなり、 サイクル稼動 中での不必要なリ リーフを避けることができ、 サイクルの定常運転時におい ては、 高圧ライン 8と低圧ライン 9の圧力差を大きく保って冷凍サイクル 1 の十分な能力を確保することができるようになる。 Therefore, even in such a configuration, the valve opening pressure of the relief device 11 is reduced at the start of a cycle in which the low-pressure pressure increases, and the high-pressure line 8 changes to the low-pressure line 9 at an initial stage where the high-pressure pressure starts to increase. Since the refrigerant can be relieved, it is possible to alleviate a sudden increase in high pressure at the start of the cycle, and to start the cycle safely. Also, after a short period of operation of the cycle, the pressure difference between the high-pressure line 8 and the low-pressure line 9 increases, and the low-pressure pressure decreases, so the valve-opening pressure of the relief device 11 increases and the cycle operation starts. Unnecessary relief can be avoided in the air, and during the steady operation of the cycle, the pressure difference between the high-pressure line 8 and the low-pressure line 9 can be kept large to secure sufficient capacity of the refrigeration cycle 1. Become like
上述の第 7図で示す構成においては、 膨張装置 5とリ リーフ装置 1 1とを 別体に構成した例を示したが、 第 8図に示されるように一体化するようにし てもよい。 即ち、 ハウジングブロック 7 0内に膨張装置 5を構成する高圧空 間 1 6と低圧空間 1 7とを設けると共に、 リ リーフ装置 1 1を構成する高圧 空間 6 2と低圧空間 6 0とをハウジングプロック 7 0に設けられた筒状部材
5 8とこの筒状部材 5 8に取り付けられる可動体 5 7とによって画成し、 膨 張装置 5の高圧空間 1 6内に減圧調節弁 1 8を配し、 リ リーフ装置 1 1の高 圧空間内にベローズ 5 6を配し、 筒状部材 5 8の内側に内壁から突出形成さ れた弁座部 6 5に着座すると共に可動体 5 7と一体をなして動く弁体 6 を 設け、 膨張装置 5の高圧空間 1 6とリ リーフ装置 1 1の高圧空間 6 2とを連 通路 7 1によって連通し、 膨張装置 5の低圧空間 1 7とリ リーフ装置 1 1の 低圧空間 6 0及び筒状部材 5 8の内側の弁座部 6 5よりも下流側の部位とを ハウジングプロック 7 0に形成された通路 7 2によって連通し、 膨張装置 5 の高圧空間 1 6をハウジングプロック 7 0に接続された配管 4 0を介して内 部熱交換器 4の高圧通路 4 aに接続し、 また、 筒状部材 5 8の内側の弁座部In the configuration shown in FIG. 7 described above, an example is shown in which the inflation device 5 and the relief device 11 are configured separately, but they may be integrated as shown in FIG. That is, a high-pressure space 16 and a low-pressure space 17 forming the expansion device 5 are provided in the housing block 70, and a high-pressure space 62 and a low-pressure space 60 forming the relief device 11 are housing-blocked. Cylindrical member provided at 70 The pressure reducing valve 18 is disposed in the high-pressure space 16 of the expansion device 5 and is defined by the movable member 57 attached to the cylindrical member 58. A bellows 56 is disposed in the space, and a valve body 6 is provided inside the cylindrical member 58, which is seated on a valve seat portion 65 protruding from the inner wall and moves integrally with the movable body 57. The high-pressure space 16 of the expansion device 5 communicates with the high-pressure space 62 of the relief device 11 via a communication passage 71, and the low-pressure space 17 of the expansion device 5 and the low-pressure space 60 of the relief device 11 and the cylinder. A portion of the housing member 58 on the downstream side of the valve seat portion 65 communicates with a passage 72 formed in the housing block 70 to connect the high-pressure space 16 of the expansion device 5 to the housing block 70. Via a pipe 40 connected to the high-pressure passage 4a of the internal heat exchanger 4, and a valve seat inside the cylindrical member 58.
6 5よりも下流側の部位を配管 6 8を介して蒸発器 6に接続するようにして もよい。 尚、 他の構成においては、 第 7図で示される構成と同様であるので、 同一箇所に同一番号を付して説明を省略する。 A portion downstream from 65 may be connected to the evaporator 6 via a pipe 68. In other respects, the configuration is the same as that shown in FIG. 7, and therefore, the same portions are denoted by the same reference numerals and description thereof will be omitted.
上述した第 7図で示す構成は、 弁体 6 4の低圧側から受ける付勢力が無視 できるほど小さい場合に適した構成であるが、 ベローズ 5 6の小型化が図ら れるようになってくると、 弁体 6 4の低圧側から受ける付勢力を無視するこ とができなくなってくる。 このため、 第 7図で示す構成においては、 第 3図 で示す略線形的な特性、 即ち、 P X + o; P y = K (定数) を満たす特性を得 るために、 αを S rと S bとの比 (S r Z S b ) として適切に設定すればよ いものであつたが、 弁体が低圧側から受ける付勢力を無視することができな いような場合であれば、 弁体が低圧側から受ける付勢力との関係で aを決定 することが望ましいこととなる。 そこで、 このような場合には、 第 9図に示 されるようなリリーフ装置 1 1を用いることが好ましい。 The configuration shown in FIG. 7 described above is suitable for a case where the urging force received from the low pressure side of the valve body 64 is negligibly small, but as the bellows 56 becomes smaller, However, the urging force received from the low pressure side of the valve element 64 cannot be ignored. Therefore, in the configuration shown in FIG. 7, in order to obtain a substantially linear characteristic shown in FIG. 3, that is, a characteristic satisfying P X + o; P y = K (constant), α is set to S r Should be set appropriately as the ratio between Sb and Sb (SrZSb), but if it is not possible to ignore the biasing force that the valve element receives from the low pressure side, the valve It is desirable to determine a in relation to the biasing force that the body receives from the low pressure side. Therefore, in such a case, it is preferable to use a relief device 11 as shown in FIG.
即ち、 第 9図に示されるリリーフ装置 1 1は、 前記膨張装置 5と基本的に 同様の構成を有しているもので、 ハウジング部材 7 5 a, 7 5 bを組み付け て構成されたハウジング 7 5内に高圧空間 7 6と低圧空間 7 7とを設け、 高
圧空間 7 6に圧力調節弁 7 8を配して構成されている。 この例において低圧 空間 7 7は、 一方のハウジング部材 7 5 bに形成され、 高圧空間 7 6は、 一 方のハウジング部材 7 5 bに他方のハウジング部材 7 5 aを組付けることに よって形成されており、 高圧空間 7 6と低圧空間 7 7とは、 一方のハウジン グ部材 7 5 bに設けられた隔壁 7 9の通孔 8 0を介して連通されている。 That is, the relief device 11 shown in FIG. 9 has basically the same configuration as that of the inflation device 5, and includes a housing 7 formed by assembling the housing members 75 a and 75 b. High pressure space 7 6 and low pressure space 7 7 are provided in 5 The pressure space 76 is provided with a pressure control valve 78. In this example, the low-pressure space 77 is formed in one housing member 75b, and the high-pressure space 76 is formed by assembling one housing member 75b with the other housing member 75a. The high-pressure space 76 and the low-pressure space 77 are connected to each other through a through hole 80 of a partition wall 79 provided in one housing member 75b.
高圧空間 7 6に配されている減圧調節弁 7 8は、 通孔 8 0の周縁部に形成 された弁座 8 2に着座する弁体 8 3と、 この弁体 8 3にロッド 8 4を介して 接合されると共にハウジング部材 7 5 aの頂部に固定されたべローズ 8 5と から構成されているもので、 高圧空間 7 6内の冷媒圧力がベローズ自身が有 する所定の開弁圧以上となった場合に弁体 8 3をリフトさせて高圧冷媒を高 圧空間 7 6から低圧空間 7 7ヘリリーフさせるようになっている。 A pressure reducing valve 78 arranged in the high-pressure space 76 includes a valve element 83 seated on a valve seat 82 formed on the periphery of the through hole 80, and a rod 84 connected to the valve element 83. And a bellows 85 fixed to the top of the housing member 75a.The refrigerant pressure in the high-pressure space 76 is higher than a predetermined valve opening pressure of the bellows itself. When this happens, the valve element 83 is lifted so that the high-pressure refrigerant is relieved from the high-pressure space 76 to the low-pressure space 77.
そして、 通孔 8 0の断面積 S 1 と、 弁体 8 3が取り付けられてべローズ 8 5から力を受ける部分の有効面積 S 2との比 (S 1 Z S 2 ) を前述したひと して適切に設定することで、 第 3図で示されるように、 低圧ライン (膨張装 置出口) の圧力の増加に伴い開弁圧を小さくする略線形的な特性、 即ち、 P x + a P y = K (定数) となる特性を得るようにしている。 The ratio (S 1 ZS 2) of the cross-sectional area S 1 of the through hole 80 to the effective area S 2 of the portion where the valve element 83 is attached and receives the force from the bellows 85 is described above. By setting it appropriately, as shown in Fig. 3, a substantially linear characteristic of reducing the valve opening pressure with an increase in the pressure in the low pressure line (outlet of the expansion device), that is, P x + a P y = K (constant).
尚、 膨張装置 5は、 前記第 2図に示す構成と同様であり、 膨張装置 5の高 圧空間 1 6は、 ハウジング 1 5に接続された配管 4 0を介して内部熱交換器 4の高圧通路 4 aに接続されており、 リ リーフ装置 1 1の低圧空間 7 7は、 配管 6 8を介して蒸発器 6に接続されている。 また、 膨張装置 5の高圧空間 1 6とリ リーフ装置 1 1の高圧空間 7 6とは、 配管 6 9を介して接続され、 膨張装置 5の低圧空間 1 7とリリーフ装置 1 1の低圧空間 7 7とは、 配管 8 7を介して接続されている。 したがって、 上述の構成において、 膨張装置 出口側圧力 (低圧圧力) P yが高くなると、 弁体 8 3自体にかかる圧力は大 きくなり、 ベローズ 8 5を圧縮する方向への付勢力が大きくなつて弁体 8 3 の開弁圧 P Xは小さくなる。 逆に、 膨張装置出口側圧力 (低圧圧力) P yが
低くなると、 弁体 8 3自体にかかる圧力は小さくなり、 ベローズ 8 5を圧縮 する方向への付勢力が小さくなって弁体 8 3の開弁圧は大きくなる。 このた め、 リ リーフ装置 1 1の開弁圧は、 低圧圧力が高くなるほど小さくなる特性 を有することとなる。 The expansion device 5 has the same configuration as that shown in FIG. 2, and the high pressure space 16 of the expansion device 5 is connected to the high pressure space of the internal heat exchanger 4 through a pipe 40 connected to the housing 15. The low pressure space 77 of the relief device 11 is connected to the evaporator 6 via a pipe 68. The high-pressure space 16 of the expansion device 5 and the high-pressure space 76 of the relief device 11 are connected via a pipe 69, and the low-pressure space 17 of the expansion device 5 and the low-pressure space 7 of the relief device 11 are connected. 7 is connected via piping 87. Therefore, in the above-described configuration, when the pressure at the outlet of the expansion device (low pressure) Py increases, the pressure applied to the valve body 83 itself increases, and the urging force in the direction of compressing the bellows 85 increases. The valve opening pressure P X of the valve element 83 decreases. Conversely, the pressure at the outlet of the expansion device (low pressure) P y When the pressure decreases, the pressure applied to the valve body 83 itself decreases, the urging force in the direction of compressing the bellows 85 decreases, and the valve opening pressure of the valve body 83 increases. For this reason, the valve opening pressure of the relief device 11 has a characteristic that it decreases as the low pressure increases.
よって、 このような構成においても、 低圧圧力が高くなるサイクル起動時 にリリーフ装置 1 1の開弁圧を小さく し、 高圧圧力が上昇し始める初期の段 階で高圧ライン 8から低圧ライン 9へ冷媒を逃しやすくすることができるの で、 サイクル起動時の高圧圧力の急激な上昇を緩和することができ、 サイク ルを安全に起動させることが可能となる。 また、 サイクルが稼動してしばら くたつと、 高圧ライン 8と低圧ライン 9の圧力差が大きくなり、 低圧圧力が 低下してくるので、 リ リーフ装置 1 1の開弁圧は大きくなり、 サイクル稼動 中での不必要なリ リーフを避けることができ、 サイクルの定常運転時におい ては、 高圧ライン 8と低圧ライン 9の圧力差を大きく保って冷凍サイクル 1 の十分な能力を確保することができるようになる。 また、 このような構成に よれば、 リ リーフ装置 1 1の開弁圧を可変させるために格別な機構を設ける 必要がなくなり、 構造の複雑化を避けることができるようになる。 Therefore, even in such a configuration, the valve opening pressure of the relief device 11 is reduced at the start of the cycle in which the low pressure increases, and the refrigerant flows from the high pressure line 8 to the low pressure line 9 in the initial stage where the high pressure starts to increase. Can be easily escaped, so that a rapid rise in high-pressure pressure at the start of the cycle can be mitigated, and the cycle can be started safely. Also, after a short period of operation of the cycle, the pressure difference between the high-pressure line 8 and the low-pressure line 9 increases, and the low-pressure pressure decreases, so the valve-opening pressure of the relief device 11 increases and the cycle operation starts. Unnecessary relief can be avoided in the air, and during the steady operation of the cycle, the pressure difference between the high-pressure line 8 and the low-pressure line 9 can be kept large to secure sufficient capacity of the refrigeration cycle 1. Become like Further, according to such a configuration, it is not necessary to provide a special mechanism for varying the valve opening pressure of the relief device 11, so that the structure can be prevented from becoming complicated.
上述した構成においては、 膨張装置 5とリ リーフ装置 1 1とを別体に構成 した例を示したが、 第 1 0図に示されるように一体化するようにしてもよい 即ち、 ハウジングプロック 9 0内に膨張装置 5を構成する高圧空間 1 6と低 圧空間 1 7とを設けると共に、 リリーフ装置 1 1を構成する高圧空間 7 6と 低圧空間 7 7とを設け、 膨張装置 5の高圧空間 1 6内に減圧調節弁 1 8を配 し、 リリーフ装置 1 1の高圧空間 7 6内に圧力調節弁 7 8を配し、 膨張装置 5の高圧空間 1 6をハウジングブロック 9 0に接続された配管 4 0を介して 内部熱交換器 4の高圧通路 4 aに接続し、 リ リーフ装置 1 1の低圧空間 7 7 を、 ハウジングブロック 9 0に形成された通路 9 2及びハウジングブロック 9 0に接続された配管 6 8を介して蒸発器 6に接続し、 また、 膨張装置 5の
高圧空間 1 6とリ リーフ装置 1 1の高圧空間 7 6とをハウジングプロック 9 0に形成された連通路 9 3によって連通し、 膨張装置 5の低圧空間 1 7とリ リーフ装置 1 1の低圧空間 7 7とをハウジングプロック 9 0に形成された連 通路 9 4によって連通するようにしてもよい。 他の構成においては、 第 9図 で示される構成と同様であるので、 同一箇所に同一番号を付して説明を省略 する。 In the above-described configuration, an example is shown in which the expansion device 5 and the relief device 11 are configured separately, but they may be integrated as shown in FIG. 10. A high-pressure space 16 and a low-pressure space 17 that constitute the expansion device 5 are provided in 0, and a high-pressure space 76 and a low-pressure space 77 that constitute the relief device 11 are provided. A pressure reducing valve 18 was arranged in 16 and a pressure adjusting valve 78 was arranged in the high-pressure space 76 of the relief device 11, and a high-pressure space 16 of the expansion device 5 was connected to the housing block 90. Connected to the high-pressure passage 4a of the internal heat exchanger 4 via the pipe 40, and connected the low-pressure space 77 of the relief device 11 to the passage 92 and the housing block 90 formed in the housing block 90. Connected to the evaporator 6 via the connected piping 6 8 and the expansion device 5 The high-pressure space 16 communicates with the high-pressure space 76 of the relief device 11 by a communication passage 93 formed in the housing block 90, and the low-pressure space 17 of the expansion device 5 and the low-pressure space of the relief device 11 are connected. It is also possible to communicate with the housing block 90 by a communication passage 94 formed in the housing block 90. Other configurations are the same as those shown in FIG. 9, and therefore, the same portions are denoted by the same reference numerals and description thereof is omitted.
尚、 以上の各構成例においては、 リ リーフ装置 1 1としてべローズ式の圧 力調節弁を用いた例を示したが、 ダイヤフラム式の圧力調節弁を用いるよう にしてもよい。 また、 各構成例においては、 リ リーフ装置 1 1の低圧室 2 9, 6 0, 7 7に対し、 膨張装置出口側からの圧力を直接導入する場合を示した 力 低圧ライン 9の任意の箇所から低圧圧力を導くようにしてもよい。 産業上の利用可能性 Note that, in each of the above configuration examples, an example in which a bellows-type pressure control valve is used as the relief device 11 has been described, but a diaphragm-type pressure control valve may be used. In addition, in each configuration example, an arbitrary point of the low-pressure line 9 where the pressure from the expansion device outlet side is directly introduced into the low-pressure chambers 29, 60, and 77 of the relief device 11 is shown. The low pressure may be derived from the pressure. Industrial applicability
以上述べたように、 この発明によれば、 高圧ラインの圧力が冷媒の臨界圧 力を超える状態となり得る蒸気圧縮式冷凍サイクルのリリーフ装置を、 高圧 ラインと低圧ラインとの間の連通状態を変化させる弁体と、 高圧ラインの冷 媒圧力に反応して弁体の動きを制御する高圧感圧素子と、 低圧ラインの圧力 の増加に伴い弁体の開弁圧を小さくする開弁圧調整手段とを有して構成する ようにしたので、 又は、 弁体によって開度が調整される通孔の面積と弁体が 取り付けられて高圧感圧素子から力を受ける部分の有効面積との比を調節す ることにより、 低圧ラインの圧力の増加に伴い弁体の開弁圧を小さくするよ うにしたので、 冷凍サイクルが停止して低圧ラインの圧力が高くなる場合 (高圧ラインの圧力と低圧ラインの圧力とが近接する場合) には、 リリーフ 装置の開弁圧を小さくすることができ、 サイクル起動時における急激な圧力 上昇を緩和して安全にサイクルを稼動させることができるようになる。 As described above, according to the present invention, the relief device of the vapor compression refrigeration cycle in which the pressure of the high pressure line can exceed the critical pressure of the refrigerant changes the communication state between the high pressure line and the low pressure line. Valve element, a high-pressure sensing element that controls the movement of the valve element in response to the refrigerant pressure in the high-pressure line, and valve-opening pressure adjusting means that reduces the valve opening pressure of the valve element as the pressure in the low-pressure line increases. Or the ratio of the area of the through hole whose opening is adjusted by the valve element to the effective area of the portion to which the valve element is attached and receives the force from the high-pressure pressure-sensitive element is set. By adjusting the pressure, the valve opening pressure of the valve body was reduced as the pressure in the low pressure line increased, so if the refrigeration cycle stopped and the pressure in the low pressure line increased (the pressure in the high pressure line and the low pressure line Close to the pressure of In this case, the valve opening pressure of the relief device can be reduced, and the sudden increase in pressure at the start of the cycle can be mitigated to allow the cycle to operate safely.
また、 サイクルが起動して低圧ラインの圧力が低下してくると、 リリーフ
装置の開弁圧を大きな値に変更することができるので、 高圧ラインと低圧ラ インの圧力差を大きく保つことができるようになり、 サイクルの定常運転時 における冷房能力の確保を図ることができるようになる。 Also, when the cycle starts and the pressure in the low pressure line decreases, the relief Since the valve opening pressure of the device can be changed to a large value, the pressure difference between the high pressure line and the low pressure line can be kept large, and the cooling capacity can be secured during the steady operation of the cycle Become like
開弁圧調整手段の具体的な態様としては、 低圧ラインの冷媒圧力に反応し て伸縮し、 低圧ラインの圧力の増加に伴い高圧感圧素子に付勢する開弁方向 への付勢力を大きくするベローズやダイヤフラムなどの低圧感圧素子を有し て構成するようにしても、 高圧感圧素子を支持する支持体を弁体の移動方向 に変位可能に設け、 この支持体に対して高圧感圧素子の支持側と反対側に低 圧ラインの圧力を受ける受圧面を設けて構成するようにしてもよく、 このよ うな構成とすれば、 高圧感圧素子自体が本来有する開弁圧をこの高圧感圧素 子に付勢する付勢力を変更することによって容易に変更することが可能とな る。
As a specific mode of the valve-opening pressure adjusting means, it expands and contracts in response to the refrigerant pressure in the low-pressure line, and increases the urging force in the valve-opening direction, which urges the high-pressure pressure-sensitive element as the pressure in the low-pressure line increases. However, even if it is configured to have a low-pressure sensing element such as a bellows or a diaphragm, a support for supporting the high-pressure sensing element is provided so as to be displaceable in the moving direction of the valve body, and a high-pressure sensing element is provided for this support. A pressure-receiving surface for receiving the pressure of the low-pressure line may be provided on the side opposite to the support side of the pressure element. With such a configuration, the valve-opening pressure originally possessed by the high-pressure pressure-sensitive element itself can be adjusted to this value. It can be easily changed by changing the urging force applied to the high-pressure pressure-sensitive element.
Claims
1 . 冷媒を圧縮して運転条件により高圧ラインの圧力を前記冷媒の臨界圧 力より高くする圧縮機と、 前記圧縮機によって圧縮された冷媒を冷却する放 熱器と、 前記放熱器で冷却された冷媒を減圧する膨張装置と、 前記膨張装置 によって減圧された冷媒を蒸発させる蒸発器と、 前記高圧ラィンの冷媒圧力 に応じて前記高圧ラインから低圧ラインへ冷媒をリ リーフさせるリリーフ装 置とを少なくとも備えて構成される冷凍サイクルにおいて、 1. A compressor that compresses the refrigerant to increase the pressure of the high-pressure line above the critical pressure of the refrigerant according to operating conditions, a radiator that cools the refrigerant compressed by the compressor, and a radiator that cools the refrigerant. An expansion device for reducing the pressure of the refrigerant, an evaporator for evaporating the refrigerant reduced in pressure by the expansion device, and a relief device for relieving the refrigerant from the high-pressure line to the low-pressure line in accordance with the refrigerant pressure of the high-pressure line. In a refrigeration cycle configured at least,
前記リリーフ装置は、 The relief device,
前記高圧ラインと前記低圧ラインとの間の連通状態を変化させる弁体と、 前記高圧ラインの冷媒圧力に反応して前記弁体の動きを制御する高圧感圧 素子と、 A valve body that changes a communication state between the high-pressure line and the low-pressure line; a high-pressure pressure-sensitive element that controls movement of the valve body in response to a refrigerant pressure of the high-pressure line;
前記低圧ラインの圧力の増加に伴い前記弁体の開弁圧を小さくする開弁圧 調整手段とを有して構成されていることを特徴とする冷凍サイクル。 A refrigeration cycle comprising: valve opening pressure adjusting means for reducing the valve opening pressure of the valve element in accordance with an increase in the pressure of the low pressure line.
2 . 前記開弁圧調整手段は、 前記低圧ラインの冷媒圧力に反応して伸縮し、 前記低圧ラインの圧力の增加に伴い前記高圧感圧素子に付勢する前記弁体の 開方向への付勢力を大きくする低圧感圧素子を有して構成されていることを 特徴とする請求項 1記載の冷凍サイクル。 2. The valve-opening pressure adjusting means expands and contracts in response to the refrigerant pressure in the low-pressure line, and applies a pressure in the opening direction of the valve body that urges the high-pressure sensing element as the pressure in the low-pressure line increases. 2. The refrigeration cycle according to claim 1, wherein the refrigeration cycle is configured to include a low-pressure pressure-sensitive element for increasing power.
3 . 前記低圧感圧素子は、 前記低圧ラインの冷媒圧力に応じて前記高圧感 圧素子の伸縮方向に伸縮可能なベローズによって構成されていることを特徴 とする請求項 2記載の冷凍サイクル。 3. The refrigeration cycle according to claim 2, wherein the low-pressure sensing element is constituted by a bellows that can expand and contract in a direction in which the high-pressure sensing element expands and contracts in accordance with the refrigerant pressure in the low-pressure line.
4 . 前記低圧感圧素子は、 前記低圧ラインの冷媒圧力に応じて前記高圧感 圧素子の伸縮方向に伸縮可能なダイヤフラムによって構成されていることを 特徴とする請求項 2記載の冷凍サイクル。 3. The refrigeration cycle according to claim 2, wherein the low-pressure sensing element is constituted by a diaphragm that can expand and contract in a direction in which the high-pressure sensing element expands and contracts in accordance with the refrigerant pressure in the low-pressure line.
5 . 前記開弁圧調整手段は、 前記高圧感圧素子を支持する可動体を前記弁 体の移動方向に変位可能に設け、 この可動体に対して前記高圧感圧素子の支
持側と反対側に前記低圧ラインの圧力を受ける受圧面を設けて構成されてい ることを特徴とする請求項 1記載の冷凍サイクル。 5. The valve opening pressure adjusting means includes: a movable body that supports the high-pressure sensing element is provided so as to be displaceable in a moving direction of the valve body; 2. The refrigeration cycle according to claim 1, wherein a pressure receiving surface for receiving the pressure of the low pressure line is provided on a side opposite to a holding side.
6 . 冷媒を圧縮して運転条件により高圧ラインの圧力を前記冷媒の臨界圧 力より高くする圧縮機と、 前記圧縮機によって圧縮された冷媒を冷却する放 熱器と、 前記放熱器で冷却された冷媒を減圧する膨張装置と、 前記膨張装置 によって減圧された冷媒を蒸発させる蒸発器と、 前記高圧ラインの冷媒圧力 に応じて前記高圧ラインから低圧ラインへ冷媒をリ リーフさせるリリーフ装 置とを少なくとも備えて構成される冷凍サイクルにおいて、 6. A compressor that compresses the refrigerant to increase the pressure of the high-pressure line above the critical pressure of the refrigerant according to operating conditions, a radiator that cools the refrigerant compressed by the compressor, and a radiator that cools the refrigerant. An expansion device for reducing the pressure of the refrigerant, an evaporator for evaporating the refrigerant reduced in pressure by the expansion device, and a relief device for relieving the refrigerant from the high-pressure line to the low-pressure line according to the refrigerant pressure in the high-pressure line. In a refrigeration cycle configured at least,
前記リリーフ装置は、 The relief device,
前記高圧ラィン側と前記低圧ライン側とを連通させる通孔と、 A through-hole communicating the high-pressure line side and the low-pressure line side,
前記通孔の開度を変化させる弁体と、 A valve element for changing the opening of the through hole;
前記高圧ラインの冷媒圧力に反応して前記弁体の動きを制御する高圧感圧 素子とを有し、 A high-pressure pressure-sensitive element that controls the movement of the valve body in response to the refrigerant pressure in the high-pressure line,
前記通孔の断面積と前記弁体が取り付けられて前記高圧感圧素子から力を 受ける部分の有効面積との比を前記低圧ラインの圧力の増加に伴い前記弁体 の開弁圧を小さくするように設定したことを特徴とする冷凍サイクル。 The ratio of the cross-sectional area of the through hole to the effective area of the portion where the valve element is attached and receives the force from the high pressure sensing element is reduced as the pressure in the low pressure line increases. A refrigeration cycle characterized in that:
7 . 前記膨張装置と前記リリーフ装置とは、 別体に構成されている請求項 1又は 6記載の冷凍サイクル。 7. The refrigeration cycle according to claim 1, wherein the expansion device and the relief device are configured separately.
8 . 前記膨張装置と前記リ リーフ装置とは、 一体化されている請求項 1又 は 6記載の冷凍サイクル。 8. The refrigeration cycle according to claim 1, wherein the expansion device and the relief device are integrated.
9 . 前記高圧感圧素子は、 ベローズによって構成されている請求項 1又は 6記載の冷凍サイクル。 9. The refrigeration cycle according to claim 1, wherein the high-pressure pressure-sensitive element is constituted by a bellows.
1 0 . 前記冷媒は、 二酸化炭素である請求項 1又は 6記載の冷凍サイクル c
10. The refrigeration cycle c according to claim 1 or 6, wherein the refrigerant is carbon dioxide.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001013725A JP2002221376A (en) | 2001-01-22 | 2001-01-22 | Refrigerating cycle |
JP2001-13725 | 2001-01-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002057695A1 true WO2002057695A1 (en) | 2002-07-25 |
Family
ID=18880541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/010045 WO2002057695A1 (en) | 2001-01-22 | 2001-11-16 | Refrigerating cycle |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2002221376A (en) |
WO (1) | WO2002057695A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005080889A1 (en) * | 2004-02-19 | 2005-09-01 | Robert Bosch Gmbh | Expansion module for a coolant |
WO2006015820A1 (en) * | 2004-08-09 | 2006-02-16 | Linde Kältetechnik Gmbh | Refrigeration cycle and method for operating such a refrigeration cycle |
CN106090363A (en) * | 2016-08-31 | 2016-11-09 | 常德翔宇设备制造有限公司 | Two-stage gas pressure reducing valve |
WO2018121416A1 (en) * | 2016-12-29 | 2018-07-05 | 比亚迪股份有限公司 | Expansion switching valve |
WO2018121415A1 (en) * | 2016-12-29 | 2018-07-05 | 比亚迪股份有限公司 | Expansion switch valve |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1180599A1 (en) * | 2000-08-16 | 2002-02-20 | Siemens Building Technologies AG | Safeguarding device for a pump, which can be used in a fluid transmission |
US7422422B2 (en) | 2004-08-24 | 2008-09-09 | Tecumseh Products Company | Compressor assembly with pressure relief valve fittings |
US7299817B2 (en) * | 2004-09-01 | 2007-11-27 | Honeywell International, Inc. | Passive, double acting, vacuum actuated vent valve |
DE102006021327A1 (en) * | 2006-05-05 | 2007-11-08 | Otto Egelhof Gmbh & Co. Kg | Control method for expansion valves in car air conditioning systems uses bellows filled with inert gas which pushes rods against spring attached to the valve stem so as to open valve when threshold pressure or temperature is exceeded |
JP5292537B2 (en) * | 2006-08-25 | 2013-09-18 | 株式会社テージーケー | Expansion device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10288411A (en) * | 1997-01-09 | 1998-10-27 | Nippon Soken Inc | Vapor pressure compression type refrigerating cycle |
JPH11248272A (en) * | 1998-01-05 | 1999-09-14 | Denso Corp | Supercritical refrigeration cycle |
JP2000205671A (en) * | 1999-01-18 | 2000-07-28 | Zexel Corp | Refrigeration cycle |
-
2001
- 2001-01-22 JP JP2001013725A patent/JP2002221376A/en active Pending
- 2001-11-16 WO PCT/JP2001/010045 patent/WO2002057695A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10288411A (en) * | 1997-01-09 | 1998-10-27 | Nippon Soken Inc | Vapor pressure compression type refrigerating cycle |
JPH11248272A (en) * | 1998-01-05 | 1999-09-14 | Denso Corp | Supercritical refrigeration cycle |
JP2000205671A (en) * | 1999-01-18 | 2000-07-28 | Zexel Corp | Refrigeration cycle |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005080889A1 (en) * | 2004-02-19 | 2005-09-01 | Robert Bosch Gmbh | Expansion module for a coolant |
WO2006015820A1 (en) * | 2004-08-09 | 2006-02-16 | Linde Kältetechnik Gmbh | Refrigeration cycle and method for operating such a refrigeration cycle |
CN106090363A (en) * | 2016-08-31 | 2016-11-09 | 常德翔宇设备制造有限公司 | Two-stage gas pressure reducing valve |
WO2018121416A1 (en) * | 2016-12-29 | 2018-07-05 | 比亚迪股份有限公司 | Expansion switching valve |
WO2018121415A1 (en) * | 2016-12-29 | 2018-07-05 | 比亚迪股份有限公司 | Expansion switch valve |
Also Published As
Publication number | Publication date |
---|---|
JP2002221376A (en) | 2002-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2818707B1 (en) | Control valve for a variable displacement compressor | |
JP5292537B2 (en) | Expansion device | |
WO2002057695A1 (en) | Refrigerating cycle | |
KR20060056255A (en) | Expansion device | |
US20080011363A1 (en) | Pressure Control Valve | |
JP2006220407A (en) | Expansion valve for refrigeration cycle | |
KR20070051693A (en) | High pressure control valve | |
WO2001006183A1 (en) | Refrigerating cycle | |
US8596552B2 (en) | Valve for use in a refrigeration system | |
JP4348571B2 (en) | Refrigeration cycle | |
JP2007278616A (en) | Expansion device | |
JP2008139013A (en) | Thermostat expansion valve for refrigerating circuit or heat pump circuit having thermal control safety function | |
JP2000241048A (en) | Temperature-sensitive expansion valve | |
JPS6170355A (en) | Expansion valve for refrigerator | |
JP3750397B2 (en) | Capacity control valve for variable capacity compressor | |
JP4445090B2 (en) | High-pressure control valve for supercritical vapor compression refrigeration cycle equipment | |
JP2009250590A (en) | Expansion valve | |
JP2006292185A (en) | Expansion device and refrigerating cycle | |
JP2002162133A (en) | Freezing cycle | |
JP2001116399A (en) | Refrigeration cycle | |
JP2002349732A (en) | Relief valve, high pressure control valve with relief valve, and supercritical vapor compression refrigeration cycle system | |
JP2001116400A (en) | Refrigeration cycle | |
JP2001116398A (en) | Refrigeration cycle | |
JP2004232533A (en) | Displacement control valve for variable displacement compressor | |
JPH05118711A (en) | Expansion valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |