WO2002057484A2 - Verfahren und testsystem zum auffinden von nervenzell-schützenden substanzen - Google Patents

Verfahren und testsystem zum auffinden von nervenzell-schützenden substanzen Download PDF

Info

Publication number
WO2002057484A2
WO2002057484A2 PCT/EP2002/000590 EP0200590W WO02057484A2 WO 2002057484 A2 WO2002057484 A2 WO 2002057484A2 EP 0200590 W EP0200590 W EP 0200590W WO 02057484 A2 WO02057484 A2 WO 02057484A2
Authority
WO
WIPO (PCT)
Prior art keywords
raf
cells
cell
iap
activity
Prior art date
Application number
PCT/EP2002/000590
Other languages
English (en)
French (fr)
Other versions
WO2002057484A3 (de
Inventor
Michael Sendtner
Ulf Rüdiger RAPP
Stefan Wiese
Original Assignee
MedInnova Gesellschaft für medizinische Innovationen aus akademischer Forschung mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MedInnova Gesellschaft für medizinische Innovationen aus akademischer Forschung mbH filed Critical MedInnova Gesellschaft für medizinische Innovationen aus akademischer Forschung mbH
Priority to EP02710808A priority Critical patent/EP1368494A2/de
Priority to US10/470,068 priority patent/US20040082014A1/en
Priority to JP2002558536A priority patent/JP2004527231A/ja
Publication of WO2002057484A2 publication Critical patent/WO2002057484A2/de
Publication of WO2002057484A3 publication Critical patent/WO2002057484A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5091Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6809Methods for determination or identification of nucleic acids involving differential detection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6897Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5058Neurological cells

Definitions

  • the subject of the present invention is a method for finding pharmacologically active substances which influence the function of cells of the central nervous system, which comprises the following steps: a) contacting a sample with at least one potential active substance, and b) determining the activity of Raf , especially B-Raf, in the sample.
  • nerve cells like all other cells, are known to need trophic support to survive.
  • neurotrophic factors represent members of different families. They include the neurotrophins, such as, for example, the brain derived neurotrophic factor (BDNF), the ciliary neurotrophic factor (CNTF), neurotrophin-3 (NT-3) and the nerve growth factor (NGF) (Kaplan and Miller, Curr. Opin. Neurobiol. 10: 381-291, 2000), the hepatocyte growth factor (HGF) (Maina and Klein, Nat. Neurosci. 2: 213-217, 1999) and the Gliacell Derived Neurotrophic Factor (GDNF) (Balok et al, Curr. Opin. Neurobiol. 10: 103-110, 2000).
  • BDNF brain derived neurotrophic factor
  • CNTF ciliary neurotrophic factor
  • NT-3 neurotrophin-3
  • NGF nerve growth factor
  • HGF hepatocyte growth factor
  • GDNF Gliacell Derived Neurotrophic Factor
  • Such neurotrophic factors act by binding to and activating tyrosine phosphokinase receptors.
  • the activation signal is transmitted from these receptors into the cell nucleus via signal-transducing proteins present in the cytoplasm.
  • Several signal transmission paths are known in neurons. They include the PI-3K-AKT signal transmission path and the Ras-Raf transmission path. Both activation pathways are cross-linked by activated RAS, a protein that plays a key role in the Raf transmission path (Yuan and Yankner, Nature 407: 802-809, 2000).
  • Raf-dependent signal transmission paths are the Bag-1-C-Raf signaling path (Wang et al., PNAS USA 93: 7063-7068, 1996) and the Rap-1-B-Raf-AMP signaling path (Grewal et al, J. Biol. Chem. 275: 3722-3728, 2000).
  • Proteins of the IAP also inhibit / ITA family the function of the activated caspases-3, -6 and -7 and can also thereby inhibit the apoptosis caused by these enzymes (Devereaux et al, Nature 388: 300-304, 1997; Roy et al, EMBO J. 16: 6914-6925, 1997).
  • Akt has three cellular isomers, of which Akt-3 is particularly expressed in neurons (Datta et al, Genes Dev. 13: 2905-2927, 1999).
  • C-Raf also called Raf-1
  • A-Raf A-Raf
  • B-Raf B-Raf
  • B-Raf B-Raf protein
  • B-Raf and C-Raf can be detected not only in neurons but also in glial cells (Mikaly et al, Brain Res. 27: 225-238, 1993; Mikaly and Rapp, Acta Histochem. 96: 155-164, 1994).
  • the invention therefore relates to a method for finding pharmacologically active substances which influence the function of cells of the central nervous system, which comprises the following steps: a) bringing a sample into contact with at least one potential active substance, and b) determining the Raf activity, particularly B-Raf, in the sample.
  • the "functions" of cells of the central nervous system include, for example, the stimulus conduction and all the biochemical and / or electrochemical mixing processes understood. Furthermore, the term cell function also includes cell survival. The death of cells in the central nervous system can be observed, for example, by test methods that detect apoptosis. Such test methods are, for example, "tunnel assay” (Gavrielli et al, J. Cell BioL, 119: 493-501. 1992, Gold et al, Lab.Invest. 71: 219-225, 1994), chromatin fragmentation (Götz et al. , Hum. Mol. Genet.
  • Cells of the central nervous system in the sense of the present invention are glial cells or neuronal cells, for example sensory and sympathetic neuronal cells, motor neuronal cells, cholinergic neurons of the basal forebrain, dopaminergic nerve cells of the midbrain (substantia nigra), granule cells and Purkinje cells of the cerebellum and Hippocampus, retinal ganglion cells and photoreceptors as well as neuronal stem cells.
  • glial cells or neuronal cells for example sensory and sympathetic neuronal cells, motor neuronal cells, cholinergic neurons of the basal forebrain, dopaminergic nerve cells of the midbrain (substantia nigra), granule cells and Purkinje cells of the cerebellum and Hippocampus, retinal ganglion cells and photoreceptors as well as neuronal stem cells.
  • the contacting of a sample with at least one potential active ingredient comprises, for example, any form of mixing, wherein both the sample can be added to the potential active ingredient and the potential active ingredient to the sample.
  • the sample and / or the potential active ingredient can each be present as a solid, solution, suspension, slurry or bound to a solid phase. If the sample with which the potential active ingredient (s) are in contact is a cell, the contacting step also includes methods known in the art which allow substances to be introduced into intact cells, such as Infection, transfection and / or transformation.
  • the potential active substance is naked DNA, viruses, viroids, virosomes and / or liposomes, the liposomes or virosomes also being suitable, in addition to a potentially active nucleic acid molecule, further potential active substances with the sample to bring in contact.
  • a number of further methods are known to the person skilled in the art which serve to introduce potential active substances into cells.
  • a potential active substance in the sense of the present invention can be any molecular species, such as a peptide (between 1 to 50 amino acids), a protein (more than 50 amino acids), a peptoid, an oligo- or polysaccharide, a nucleic acid, a monomer such as for example a homocycle or heterocycle, a lipid, a steroid and the like.
  • any chemical substance or mixture of substances can be a potential active ingredient that is used in the method according to the invention.
  • the concentration of the potential active ingredient must be selected such that the influencing of the activity of Raf, in particular B-Raf, in the sample is not simply based on the lysis of the cells if the sample is a cell or on the denaturation of Raf, especially B-Raf, is based when the sample is a protein or a protein mixture. Accordingly, guanidine-HCl solution, urea solution and strong detergents, for example, in concentrations in which they lyse cells and / or denature proteins, are not potential active substances in the sense of this invention.
  • a sample in the sense of this invention is, for example, at least one cell, at least one cell extract, at least one protein mixture and / or at least one mixture containing Raf protein, in particular B-Raf or activated B-Raf, or a part thereof.
  • the cells include, for example, pro- and eukaryotic cells, in particular cells which express Raf, in particular B-Raf, as wild-type cells.
  • Raf protein can be expressed by methods known to the person skilled in the art. Such methods include wise infection, transfection or transformation of cells with vectors containing nucleic acids coding for Raf, in particular B-Raf, or parts thereof.
  • a preferred sample which can be used in the method according to the invention is a cell which has reduced or no Raf activity, in particular B-Raf activity.
  • a cell can be obtained, for example, from heterozygous or homozygous Raf knock-out mice. Such cells are then, for example, for a-raf, b-raf or c-raf (-l-) or (+/-).
  • Cells preferred in the context of the method according to the invention are neurons or neuronal stem cells obtained from heterozygous or homozygous Raf knock-out mice or mouse embryos. Such cells can be obtained, for example, from b-raf ' (- / -) deficient mice (Wojnowski et al, Nature Genetics 16: 293-297, 1997).
  • sample also includes cell extracts that can be obtained, for example, from one of the cells listed above using standard methods known to the person skilled in the art, but include, but are not limited to, suitable methods of “freeze thawing”, “sonification” or “French pressing” Such a cell extract can be worked up or purified in further steps. Preferred steps include, for example, precipitation, filtration and chromatographic process steps.
  • Suitable chromatographic processes are known to the person skilled in the art and include, for example, anion or cation exchange chromatography, affinity chromatography and / or size exclusion chromatography
  • the sample can also be a mixture of purified or recombinant proteins containing Raf, in particular B-Raf, and / or a protein mixture which additionally contains further components, for example components which are intended for di e
  • Determination of the activity of B-Raf can be used, such as substrates from Raf, buffers, detergents, protease inhibitors, NTPs and / or suitable metal ions.
  • the Raf protein contained in the sample can be B-Raf protein, C-Raf protein and optionally also A-Raf protein, but in particular B-Raf protein.
  • the Raf protein contained in the sample is preferably an activated Raf protein, ie it has one compared to the wt Raf protein increased serine / threonine phosphokinase activity.
  • Raf protein is activated, for example, by reversible phosphorylation.
  • constitutive activation is also possible by introducing mutations; suitable mutations affect, for example, the N-terminal region of the enzyme, in particular in C-Raf-1 the mutations from 259 Ser to 259 Ala and the mutation of the analog positions in B-Raf or mutations within the CR2 region, insertion of linker structures into this area or deletion of the complete N-terminus of Raf-1 (Daum et al. TIBS 19, 474-480, 1994; Morrison and Cutler, Curr. Op. Cell. Biol 9, 174-179, 1997).
  • the activity of Raf in the sample can be determined using a number of direct and indirect detection methods. The appropriate methods depend on the nature of the sample. In cells, the activity of Raf is determined on the one hand by the amount of Rafs expressed in the cell and on the other hand by the amount of Rafs activated.
  • the transcription of the genes coding for Raf protein, in particular B-Raf protein, can be activated, for example, by determining the amount of Raf mRNA. Standard methods known in the prior art for determining the Raf mRNA amount include, for example, DNA chip hybridization, RT-PCR, “primer” extension and “RNA protection”.
  • the Raf activity which is based on the induction or repression of the transcription of the respective Raf gene (s) can also be determined by coupling the Raf promoter to suitable reporter gene constructs.
  • suitable reporter genes are the chloramphenicol transferase gene, the “green fluorescent protein” (GFP) and variants thereof, the luciferase gene and the renilla gene.
  • the detection of the expression of Raf proteins can also be detected at the protein level
  • the amount of the protein is detected, for example, by antibodies directed against Raf protein, but the change in the activity of the Raf protein can also be attributed to increased or decreased phosphoryl rank or dephosphorylation of the protein B-Raf kinase regulated by phosphorylation of the 598 Thr and 601 Ser residues (Zhang BH and Guan KL EMBO J. 19: 5429, 2000)
  • the phosphorylation of B-Raf proteins can be detected, for example, by antibodies which are directed against phosphorylated threonine or serine.
  • Raf proteins are serine / threonine kinases
  • the activity of the Raf proteins can also be determined via their enzymatic activity.
  • the MEK protein is a substrate of B-Raf and the degree of phosphorylation of MEK allows the determination of B-Raf activity in the sample.
  • the phosphorylation of other substrates such as MBP and peptides that are specifically phosphilized by Raf (Salh et al, Anticancer Res. 19, 731-740, 1999, Bondzi et al, Oncogene 19, 5030-5033, 2000)
  • Raf proteins can be used to determine the respective activity.
  • Raf is part of a signal cascade in which a number of kinases are phosphorylated and activated by a parent kinase
  • the activity of Raf can also be determined by determining the degree of phosphorylation of each Raf downstream kinase.
  • This so-called "map kinase pathway” leads, among other things, to the targeted activation of transcription factors and thus to the transcriptional activation of genes, so that the activity of Raf can be determined indirectly by measuring the activation of these target genes.
  • target genes include, for example, the genes which code for the family of IAP / ITA proteins.
  • the determination of the activity of Raf can also be determined by determining the activation of IAP / ITA proteins, in particular the activation of IAP-1, IAP-2.
  • x-IAP and The methods listed above are suitable for determining the activation of the target genes.
  • the determination of the activity is mainly aimed at determining the modification of the Raf protein itself and the resulting change in the enzymatic activity of the Raf protein using the methods previously described.
  • Preferred methods include the Determination of the phosphorylation of the immediate substrates of Raf, such as MEK, for example incorporating 32 P into MEK or phosphorylation using an activation-specific MEK antibody that only recognizes phosphorylated MEK (Bondzi C. et al. Oncogene 19 : 5030-5033, 2000)) can be done.
  • Another possibility is, for example, the use of a coupled assay which uses the signal transduction cascade already described above and measures the activity of Raf on the basis of the phosphorylation of substrates downstream of Raf, such as, for example, basic myelin (Bondzi et al., Oncogene 19, 5030-5033 , 2000).
  • a coupled assay which uses the signal transduction cascade already described above and measures the activity of Raf on the basis of the phosphorylation of substrates downstream of Raf, such as, for example, basic myelin (Bondzi et al., Oncogene 19, 5030-5033 , 2000).
  • potential active substances which increase or inhibit the activity of Raf, in particular B-Raf, in the sample compared to the untreated sample (control) are considered pharmacologically active substances which influence the function of cells of the central nervous system.
  • a pharmacologically active agent which affects the function of cells of the central nervous system changes the activity of Raf compared to the control by more than 10%, but preferably by at least 50%, by at least 100%, more preferably by at least 500%.
  • step a) can be followed by an incubation period, which can vary in length depending on the sample.
  • the activity becomes after about one hour to 100 days, preferably after about 1 day to 50 days, more preferably after about 3 days to 10 days, especially after 3 days certainly.
  • the activity can be determined, for example, in a period of about 0 seconds (measurement of the activity immediately when it comes into contact) to 20 days.
  • the time period for the incubation after the sample has been brought into contact with the potential active ingredient is approximately 5, 10, 20, 30, 40, 50, 60, 90, 120, 150 or 180 min.
  • the sample contains at least one cell, at least one cell extract, at least one protein mixture and / or a mixture containing Raf, in particular activated Raf or a part thereof.
  • a portion of a Raf protein suitable for carrying out the method according to the invention can also be phosphorylated and / or can still act on the respective substrates, such as MEK, as a series and / or threonine kinase.
  • a suitable portion of Raf can be determined using, for example, MEK as the Raf substrate or Raf kinase kinase (Kinuya M et al. (2000) Biol. Pharm Bull. 23: 1158-62) for the phosphorylation of Raf using standard methods ,
  • the cell is a glial cell or a neuronal cell, in particular a sensory neuronal cell, a motor neuronal cell, a neuronal stem cell or a neuron, a neuron which can be used in the method according to the invention, for example can be differentiated from neuronal stem cells in cell culture (Vescovi and Snyder, Brain Pathol. 9, 569-598, 1999).
  • the activity of Raf in the cell is determined via a change in the survival rate of the cell.
  • This is of particular interest for cells which, for example, have a reduced or no Raf activity due to a mutation and which therefore have a reduced survival rate in the presence or absence of neurotrophic factors in comparison with the respective wt cells.
  • cells that are for b-raf (- / -) have a significantly shortened survival rate compared to wt cells even in the presence of neurotrophic factors.
  • An extension of the survival rate of these cells after incubation with at least one potential active ingredient serves as an indirect means of determining the activity of Raf.
  • sensory and / or spinal, motor neuronal cells are made as samples b-raf (-l ⁇ ) or c-raf (-l-) deficient mouse embryos, each from the pairing of b-raf or c-raf heterozygous mice.
  • neural stem cells from the brain and spinal cord can be isolated from these mouse embryos, propagated in cell culture and differentiated into nerve cells.
  • suitable neurotrophic factors for example GDNF, BDNF, CNTF to motor neurons and NGF to sensory neurons
  • Nerve cells are carried out, which were isolated from neural stem cells from b-raf ' (- / -) and / or c-raf (- / -) mice.
  • the same potential active ingredient (s) become deficient cells with c-raf (- / -) and cells with b-raf (- / -) deficient Cells contacted and determined whether deficient nerve cells survive in the presence of this test substance (s) b-raf (- / -).
  • This indirect determination also makes it possible to find pharmacological active substances which, in cells with reduced Raf activity or without detectable Raf activity, intervene in a signal transmission reaction downstream of the Raf kinase.
  • the activity of Raf in the sample is determined directly or indirectly by the amount of Raf protein, the amount of nucleic acids coding for Raf and / or the enzymatic activity of Raf. Suitable methods have already been described above.
  • the same potential active ingredient (s) are used with a cell extract or with a protein mixture containing C-Raf or with purified or with recombinant C-Raf and the other with a cell extract or one Protein mixture containing B-Raf or brought into contact with purified or with recombinant B-Raf and the activity of C-Raf and B-Raf is determined in each case.
  • a preferred pharmacological agent affects the activity of B-Raf more than the activity of C-Raf. There is a greater influence if the effect on the activity on B-Raf is at least about 2 times, more preferably about 4 times, in particular about 10 times greater than the effect on the activity of C-Raf ,
  • Another object of the method according to the invention is a method in which the activity and / or amount of IAP-1, IAP-2, x-IAP and / or survivin in the sample is determined in a further step.
  • the sample is preferably a cell.
  • the activity and / or amount of IAP-1, IAP-2, x-IAP and / or survivin can be determined at the protein level by means of antibodies and / or at the nucleic acid level, as described above.
  • the sample is compartmentalized, for example on a microtiter plate with 96, 348 or 1552 wells.
  • a microtiter plate with 96, 348 or 1552 wells.
  • Such microtiter plates are already routinely used in fully automated, massively parallel test procedures that allow hundreds of thousands of different potential active substances to be tested in a short time.
  • any compartmentalization is suitable which makes it possible to spatially restrict the effect of the potential active substance brought into contact with the sample, so that the effect of the potential active substance used in each case on the activity of Raf, in particular B-Raf, in the sample is determined can.
  • the sample can be covalently or non-covalently linked to the surface of the sample carrier, such as a microtiter plate, or be in solution, suspension or slurry.
  • microtiter plate formats known in the prior art which are suitable for carrying out the method according to the invention, however, they are also planar or, for example, through depressions or channels structured sample carrier suitable.
  • the sample carrier can be made of glass, silicon, metal or plastic, for example.
  • At least one potential active substance is linked covalently or non-covalently to a sample carrier, the surface of the sample carrier preferably being structured in the form of a depression, channels or also planar.
  • the sample is then brought into contact with the immobilized potential active substance and the activity of Raf, in particular of B-Raf, in the sample is determined at the respective immobilization point of the potential active substance (s).
  • protein chips produced according to standard processes which are known, for example, from WO 89/10977, WO 90/15070, WO 95/35505 and US 5,744,305, can be used to produce a protein chip which contains different peptide fragments on the surface, the influence of which on the activity of for example Raf protein, preferably purified B-Raf protein, can be tested.
  • Raf protein preferably purified B-Raf protein
  • a multitude of different chemical substances can also be generated on a surface by combinatorial-chemical methods known in the prior art, the effect of which on the activity of Raf, in particular B-Raf, can be investigated by the method according to the invention.
  • Another embodiment of the method according to the invention is a method in which one or more further steps are added to the determination of the activity of B-Raf in the sample, in which the pharmacologically active substance is isolated.
  • the potential active ingredient is a mixture of active ingredients, such as those found in plant extracts or extracts from microorganisms.
  • the further step (s) which can be used to isolate a pharmacologically active substance from a complex substance mixture are known in the prior art. These methods include, for example, precipitation, crystallization, chromatographic and separation methods, which are based on differential solubility, for example Individual components are based in different solvents. After each isolation step, the effectiveness of the active ingredient can be repeated by contacting a sample and determining the activity of Raf in the sample.
  • the pharmacologically active ingredient is packaged in a further step.
  • this pharmacologically active ingredient can be modified with methods known to the person skilled in the art, which include, for example, modification with halogens, in particular with fluorine or chlorine, and / or combinatorial chemical approaches and examined again in the method according to the invention, the activity of Raf in the sample of the modified pharmacologically active ingredient being compared with the activity of Raf in the sample when using the starting active ingredient.
  • Another object of the present invention is therefore also a pharmacologically active substance which is found by one of the methods described above.
  • Pharmacologically active substances which increase the activity of Raf, in particular B-Raf are particularly preferred, a change in the survival rate of the cells of the central nervous system being a particularly preferred action of the pharmacologically active substance (s).
  • the pharmacologically active agents found by the method of the present invention enhance or inhibit the activity of B-Raf, but not of C-Raf or A-Raf.
  • C-Raf cells that lack the c-raf gene can be used for control purposes.
  • Such cells can be obtained, for example, from c-raf (- / -) deficient mice (Wojnowski et al., Mech. Dev. 76: 11-149, 1998).
  • Another object of the present invention is a method for in vitro analysis of the function of cells of the central nervous system, which is characterized in that the activity of Raf, in particular of B-Raf, IAP-1, IAP-2, x-IAP and / or survivin is determined in the cells and / or cell extracts.
  • Raf activity of Raf
  • IAP-1 activity of B-Raf
  • IAP-2 activity of IAP-2
  • x-IAP and / or survivin is determined in the cells and / or cell extracts.
  • cells of the central nervous system are removed from the patient. These cells can now be tested directly for the activity of the proteins described above, either one of the methods described above being applied to the cell itself or to cell extracts obtained from the cell.
  • it is possible to cultivate the cells isolated from the patient it being possible to use methods known in the art for cultivating cells of the central nervous system.
  • the cultivation allows the activity of the aforementioned proteins to be determined either directly in the cells and / or cell extracts at any later point in time.
  • Another object of the present invention is a diagnostic for the in vitro analysis of the function of cells of the central nervous system, which has at least one agent for detecting the activity of Raf, in particular of B-Raf, I AP-1, IAP-2, x-IAP and / or survivin.
  • a diagnostic agent according to the invention contains, for example, one or more pairs of DNA-oligonucleotides which are used for the amplification (PCR) of DNA fragments, in particular cDNA fragments, for the proteins Raf, in particular B-Raf, IAP-1, IAP-2, x-IAP and / or encode survivin, allow.
  • a preferred diagnostic agent according to the invention contains a pair of DNA probes for detecting the activity of B-Raf and a further pair of probes for Detection of the activity of A-Raf, C-Raf, IAP-1, IAP-2, x-IAP and / or Survivin.
  • Further diagnostics according to the invention of the present invention include, for example, antibodies which are active against Raf, in particular B-Raf, IAP-1, IAP-2, x-IAP, Survivin, activated Raf, in particular activated B-Raf and / or a protein that directly or is indirectly activated by Raf, such as MEK.
  • a preferred object of the diagnostic agent according to the invention consists of at least two antibodies selected from the aforementioned antibodies. Preferred combinations here are an antibody against B-Raf and against activated B-Raf, against activated B-Raf and IAP-1, IAP-2, x-IAP and / or survivin.
  • test system for finding pharmacologically active substances which influence the function of cells of the central nervous system.
  • the test system contains: a) at least one sample, in particular at least one cell, at least one cell extract, at least one protein mixture and / or at least one mixture containing Raf, preferably activated Raf, or a part thereof; and b) at least one means for detecting the Raf activity, in particular the B-Raf activity.
  • the sample is compartmentalized, for example on a microtiter plate with 96, 348 or 1552 wells.
  • a microtiter plate with 96, 348 or 1552 wells.
  • Such microtiter plates are already routinely used in fully automatic, massively parallel test procedures.
  • any compartmentalization is suitable which makes it possible to spatially restrict the effect of the potential active substance brought into contact with the sample, so that the effect of the potential active substance used in each case on the activity of Raf in the sample can be determined.
  • the sample can be covalently or non-covalently linked to the surface of the sample carrier, such as a microtiter plate, or be in solution, suspension or slurry.
  • the present invention further provides a medicament for the treatment of diseases which are associated with a disturbance in the function of cells of the central nervous system, the medicament containing Raf, in particular B-Raf, and, if appropriate, suitable auxiliaries and additives.
  • the medicament can contain, for example, Raf protein and / or DNA segments coding for Raf protein.
  • auxiliaries and additives are, for example, protease inhibitors, detergents, buffers, viral vectors, such as, for example, recombinant adenoviruses (Gravel et al, Nature Med. 3: 765-770, 1997), transfection reagents, such as, for example, lipofectamines and substances with a comparable mode of action ( Götz et al, Hum. Mol. Genet. 9: 2479-2489, 2000) or buffer reagents for the transfer of expression vectors into cells with transient membrane permeability (Wiese et al., Nature Neurosci. 2: 978-983, 1999).
  • the medicament of the present invention is preferably used in disorders of the function of cells of the central nervous system which are characterized by a reduction in the survival rate of the cells, such as cerebral ischemia (stroke), amylotrophic lateral sclerosis (ALS), Alsheimer's disease, nerve lesions, Multiple sclerosis, Parkinson's disease, diabetic neuropathy, spinal muscular atrophy, prion diseases, such as Creutzfeld-Jakob Desease (CJD).
  • stroke cerebral ischemia
  • ALS amylotrophic lateral sclerosis
  • Alsheimer's disease nerve lesions
  • Multiple sclerosis Parkinson's disease
  • Parkinson's disease diabetic neuropathy
  • spinal muscular atrophy prion diseases, such as Creutzfeld-Jakob Desease (CJD).
  • a preferred drug of the present invention contains Raf, particularly B-Raf, in a vector.
  • the term vector in the sense of the present invention relates to plasmid vectors, in particular episomal replicating plasmid vectors, viral vectors, suitable viral vectors being, for example, herpes viruses, adenoviruses, adeno-associated viruses, papilloma viruses or HIV1 or being derived from these viruses.
  • Raf protein in particular B-Raf proteins and / or for the transfer of nucleic acids which code for Raf protein, in particular for B-Raf, such as, for example Liposomes, virosomes, fusion proteins with e.g. Antennapedia (Thoren et al., FEBS Lett. 482: 265-268, 2000) or HIV-TAT (Arese et al., J. Immunol. 166: 1380-1388, 2001).
  • Antennapedia Thioren et al., FEBS Lett. 482: 265-268, 2000
  • HIV-TAT Rese et al., J. Immunol. 166: 1380-1388, 2001.
  • ventrolateral parts of the lumbar spinal cord were mechanically crushed, transferred into hepespuffer solution (containing 10 ⁇ M 2-mercaptoethanol) and incubated with trypsin (0.05%, 10 min).
  • trypsin 0.05%, 10 min.
  • the single cell suspension in the supernatant was transferred to a culture dish coated with the anti p75 antibody and at room temperature for 30 min. incubated.
  • the individual culture dishes were then washed, and then the adhering cells were removed from the culture plate by 0.8% saline solution containing 35 mM KC1 and 1 ⁇ M 2-mercaptoethanol.
  • the cells obtained in this way were sown at a density of 2000 cells / cm 2 in culture plates (Greiner, Nuertingen, Germany) which were precoated with polyornithine and laminin.
  • the cells were in at 37 ° C Neurobasal medium (Life Technologies, supplemented with B27 supplement, 10% horse serum, 500 ⁇ M glutamax and 50 ⁇ g / ml apotransferrin) and kept in a 5% CO atmosphere. 50% of the cell culture medium was replaced on day 1 and every other day thereafter.
  • the primer sequences for the amplification of IAP-1, IAP-2, x-IAP and t-IAP were as follows: IAP-lf: 5'- TACTACATAGGACCTGGAGA-3 ', IAP-lr: 5' -CCCACCATCACAGCAAAA- ⁇ annealing temperature: 55 ° C; IAP-2f: 5 '-GGAGAAGAAAATGCTGACCC- 3', IAP-2r: 5 '-GCTTGTAAGGGTATCTGTGT-3' annealing temperature 55 ° C; x-IAPf: 5'-TGCAAGAGCTGGATTTTATG-3 ', x-IAPr: 5'-CCCGATCTGGCA GCTGTACC-3' annealing temperature 55 ° C; t-IAP (SURVIVIN), tIAPf: 5'-CCA GAT CTG GCA GCT GTA CC-3 'and tIAPr: 5'-GCC AGC
  • part of the ⁇ -actin mRNA was amplified with the following primers: ⁇ -actinf: 5'-GTGGGCCGCCCTAGGCACCAG-3 ', ⁇ -actinr 5'-CTCTTTAATGT CACGCACGATTTC-3', attachment temperature 64 ° C.
  • the RT-PCR was carried out according to the manufacturer's protocol with random hexamer primers. The PCR amplification was carried out as follows: 94 ° C, 30 sec, indicated annealing temperature, 1 min, 72 ° C, 1 min.
  • IAP-1 and t-IAP were used for 33 and 35 cycles, IAP-2 and x-IAP for 28 and 30 cycles and ß-actin for 26 and 28 cycles.
  • RT-PCR on RNA from E12.5 brains of b-raf and c-raf +/- mating showed a significant reduction of an average of 60% and 55% for IAP-1 in b-raf ' and c-raf- / - Embryos compared to the wild-type control, of 52% for IAP-2 for b-raf - / - and 46% for x-IAP for b-raf - / - embryos compared to the wild-type control.
  • Embryos aged 12.5 days as well as unborn mice that were homozygous for b-raf (- / -) or c-raf (- / -) were also sensory neurons isolated.
  • dorsal root ganglia were isolated, in PBS and with trypsin (0.05% in hepespuffer) for 30 min. incubated. The trypsin digestion was stopped by adding L15 medium containing 10% horse serum and then the cells were plated in culture plates for 3-4 hours. Cells in the supernatant were centrifuged (10 min. 400 g) and the cell sediment was kept in the neurobasal medium as described for spinal motoneurons.
  • Neural stem cells are isolated from the brain from normal, b-raf ' (- / -) or c-raf (- / -) deficient mouse embryos as well as from newborn mice.
  • the area of the forebrain is removed under a dissecting microscope, and in more developed embryos also the area of the hippocampus and the periventricular zone.
  • HBSS Hybrid balanced salt solution
  • trypsin inhibitor from egg yolk sack (Sigma, Deisenhofen)
  • stock solution 1% in HBSS / 25 mM HEPES
  • the cells 10X are triturated with a 200 ⁇ l pipette and placed in medium [ (Neurobasal medium (Life Technologies), B27 Supplement (Life Technologies Stock 50x, EK lx) Glutamax II (Life Technologies Stock lOOx, EK lx), basicFGF (20ng / ml), EGF (20 ng / ml) l] in one Volume of 5 ml transferred.
  • the dissociated cells are cultivated in Sarstedt dishes (50 ml) (incubator, 37 C, 5% CO moisture-saturated atmosphere), the medium is changed every two days.
  • the cells grow as embroid bodies and do not attach, therefore transfer the cells to a Falcon tube to change the medium and 5 m centrifuged at 400 g. The supernatant is suctioned off and the cell sediment is triturated and taken up in f medium.
  • large embroid bodies are formed which are trypsinized (see above) and in low cell density (max. 10000 cells / plate) on 10 cm dishes (Sarstedt) can be plated.
  • Individual cells are then picked and expanded first in 96-well plates, later in 24-well and 12-well plates. These single cell clones of neural stem cells can then be examined for their differentiation capacity and then used in test procedures.
  • the cells are also established as lines and frozen and stored for later experiments.
  • the neural stem cells are frozen according to the standard protocol, ie after centrifugation the cells are taken up in medium with 10% DMSO and first cooled to -86 C at 1 C / min (in MrFrosti) and then stored in liquid N 2 at -186 C to become.
  • GDNF, BDNF and CNTF were added to motor neurons and NGF (1 ng / ml) to sensory neurons.
  • NGF (1 ng / ml)
  • nerve cells obtained, for example, with the above-mentioned method can be used to search for substances which protect nerve cells from cell death.
  • b-raf (- / -), b-raf (+/-), c-raf (- / -) deficient and normal motor neurons and sensory neurons are obtained as described above, sown in cell cultures and mixed with the test substance.
  • Neuron protective substances are able to prevent the death of b-raf (- / -) neurons without affecting the survival of b-raf (+/-), c-raf (- / -) or normal neurons ,
  • the substances were in concentrations of 0.1; 1.0; 10 and 100 ⁇ M were added to the motor neurons in culture with and without CNTF (1 ng / ml) and the number of apoptotic and surviving cells counted after 24 hours. While the B-Raf inhibitor caused a strong apoptosis of the motor neurons both with and without CNTF, the same number of cells survived in the cell cultures treated with C-Raf inhibitors as in the respective control groups in which no inhibitor had been added. These experiments show that specific inhibition of B-Raf leads to apoptosis of neurons, whereas, in contrast, inhibition of C-Raf does not affect neuron survival.
  • the facial nerve was cut under ketanest / rompun anesthesia (100mg / kg) and locally applied to the severed nerves GW 5074 and EMD400073 in amounts of 20 ⁇ M each, applied to a piece of gel foam and attached to the distal nerve stump.
  • a control group had the nerve cut and the gel foam piece with the solvent (100% DMSO) was applied.
  • An examination of the animals after 14 days will result in a survival of over 90% in the control group, since the motor neurons of the facial nerve regenerate in the adult mouse after severing the axons.
  • GW 5084 should not be a disadvantage for the regeneration ability of the motor neurons, while the application of EMD400073 should lead to a significant loss of motor neurons. (Saturating amounts of the respective substances were used, since titration of the substances is not possible in vivo due to the unclear absorption by the surrounding tissue.)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)

Abstract

Der Gegenstand der vorliegenden Erfindung ist ein Verfahren zum Auffinden von pharmakologisch aktiven Wirkstoffen, welche die Funktion von Zellen des zentralen Nervensystems beeinflussen, das die folgenden Schritte umfaßt: a) Inkontaktbringen einer Probe mit mindestens einem potenziellen Wirkstoff, und b) Bestimmen der Aktivität von Raf, insbesondere B-Raf, in der Probe.

Description

Verfahren und Testsystem zum Auffinden von Nervenzell-schützenden
Substanzen
Hintergrund der Erfindung
Der Gegenstand der vorliegenden Erfindung ist ein Verfahren zum Auffinden von pharmakologisch aktiven Wirkstoffen, welche die Funktion von Zellen des zentralen Nervensystems beeinflussen, das die folgenden Schritte umfaßt: a) Inkontaktbringen einer Probe mit mindestens einem potentiellen Wirkstoff, und b) Bestimmen der Aktivität von Raf, insbesondere B-Raf, in der Probe.
Obwohl ausdifferenzierte Neuronen zu den am längsten lebenden Zelltypen in Säugern gehören, sterben undifferenzierte Nervenzellen in großer Zahl während der Entwicklung des Nervensystems. Des weiteren ist das Absterben von neuronalen Zellen ein wesentliches Charakteristikum von akuten und chronischen neurodegenerativen Erkrankungen. Die Frage, wie Nervenzellen sterben, ist in allen Einzelheiten bislang noch nicht ausreichend verstanden.
Jedoch ist bekannt, daß Nervenzellen, ähnlich wie alle anderen Zellen, für ihr Überleben eine trophische Unterstützung benötigen.
Es ist auch bekannt, daß Nervenzellen, gleichgültig ob sie sensorische oder motorische Funktion haben, nur in Anwesenheit einer Anzahl von sogenannter neurotropher Faktoren überleben können. Diese neurotrophen Faktoren stellen Mitglieder unterschiedlicher Familien dar. Zu ihnen gehören die Neurotrophine, wie beispielsweise der brain derived neurotrophic factor (BDNF), der ciliary neurotrophic factor (CNTF), neurotrophin-3 (NT-3) und der nerve growth factor (NGF) (Kaplan und Miller, Curr. Opin. Neurobiol. 10: 381-291, 2000), der Hepatozytenwachstumsfaktor (HGF) (Maina und Klein, Nat. Neurosci. 2: 213- 217, 1999) und der Gliacell Derived Neurotrophic Factor (GDNF) (Balok et al, Curr. Opin. Neurobiol. 10: 103-110, 2000).
Derartige neurotrophe Faktoren wirken durch Bindung an und Aktivierung von Tyrosinphosphokinaserezeptoren. Von diesen Rezeptoren wird das Aktivierungssignal über im Zytoplasma vorhandene signaltransduzierende Proteine in den Zellkern übertragen. Mehrere Signalübertragungswege sind hierbei in Neuronen bekannt. Zu ihnen gehört der PI-3K-AKT-Signalübertragungsweg und der Ras- Raf-Übertragungsweg. Beide Aktivierungswege sind vernetzt durch aktiviertes RAS, ein Protein, welches in dem Raf-Übertragungsweg eine Schlüsselrolle einnimmt (Yuan und Yankner, Nature 407: 802-809, 2000). Zusätzliche Raf- abhängige Signalübertragungswege sind der Bag-1-C-Raf Signalweg (Wang et al., PNAS USA 93: 7063-7068, 1996) und der Rap-1-B-Raf-AMP Signalweg (Grewal et al, J. Biol. Chem. 275: 3722-3728, 2000).
Ein wesentliches Ergebnis der Aktivierung von neuronalen Zellen und Gliazellen durch neurotrophe Faktoren ist die verstärkte Expression von intrazellulären Proteinen, welche die Zellen vor dem kontrollierten Zelltod schützen (Newmeyer und Green, Neuron 21: 653-655, 1998; Wiese et al., Nature Neurosci. 2: 978-893, 1999). Zu diesen Proteinen zählen die Inhibitoren der IAP/ITA Familie, insbesondere IAP-1, IAP-2, x-IAP und Survivin. Proteine der IAP/ITA Familie hemmen die Aktivierung von Procaspase-9 (Deveraux et al., EMBO J. 17: 2215- 2223 (1998), die ihrerseits aktiviert wird durch Cytochrome-C und Apaf-1. Des weiteren hemmen Proteine der IAP/ITA Familie die Funktion der aktivierten Caspasen-3, -6 und -7 und können auch hierdurch die durch diese Enzyme bewirkte Apoptose inhibieren (Devereaux et al, Nature 388: 300-304, 1997; Roy et al, EMBO J. 16: 6914-6925, 1997).
Akt hat drei zelluläre Isomere, von denen Akt-3 besonders in Neuronen exprimiert ist (Datta et al, Genes Dev. 13: 2905-2927, 1999). Für den Raf- Signalübertragungsweg in Säugerzellen spielen drei unterschiedliche Raf-Proteine eine besondere Rolle: C-Raf (auch Raf-1 genannt), A-Raf und B-Raf. Von B-Raf existieren mehrere durch unterschiedliches Splicen entstandenen Formen. In Zellen des zentralen Nervensystems kann vorwiegend B-Raf- und C-Raf-Protein nachgewiesen werden, weniger A-Raf-Protein (Morice et al, Eur. J. Neurosci. 11 : 1995-2006, 1999).
B-Raf und C-Raf sind nicht nur in Neuronen, sondern auch in Gliazellen nachzuweisen (Mikaly et al, Brain Res. 27: 225-238, 1993; Mikaly und Rapp, Acta Histochem. 96: 155-164, 1994).
Obwohl relativ gut geklärt ist, wie Neurotrophine und/oder Membrandepolarisati- on Signaltransduktionswege aktivieren, die das Überleben von Nervenzellen sichern, ist weitgehend fraglich, welche Mechanismen bei neurodegenerativen Erkrankungen zum Sterben von Nervenzellen führen. Experimentelle Untersuchungen (Übersicht bei Yuan und Yankner, Nature 407: 802-809, 2000) geben Anhaltspunkte, daß das Sterben von Nervenzellen ausgelöst werden kann durch
- die relative Aktivierung von proapoptotischen Faktoren innerhalb der Nervenzelle, beispielsweise durch mangelnde Phosphorylierung und Inaktivie- rung von proapoptotischen Proteinen (Bad, besonders jedoch von Bax) im Rahmen der AKT- und/oder Raf-Signaltransduktionswege
- die mangelnde Aktivierung (beispielsweise im Rahmen des Raf- Signaltransduktionsweges) von Transkriptionsfaktoren, welche die Transkrip- tion von Genen aktivieren, welche antiapoptotische Proteine (z.B. Bcl-2, besonders jedoch Bcl-XL) exprimieren
- die Schädigung von Mitochondrien mit der Freisetzung von Cytochrome C und der Aktivierung von proapoptotischen Enzymen (Caspasen) beispielsweise durch abnormale Proteinstrukturen oder Aggregate - durch Aktivierung von proapoptotischen Signalkaskaden durch Neurotrophine beispielsweise über den Neurotrophin-Rezeptor p75 NTR durch oxidative Schädigungen, NO-Überproduktion oder durch enzymatische Fehlfunktionen, z.B. durch Mutationen der Superoxiddismutase (SOD).
In Anbetracht dieser vielfältigen Möglichkeiten für das Sterben von Nervenzellen war es bislang äußerst schwierig, Modellsysteme zu etablieren, mit Hilfe derer Substanzen gezielt gesucht und geprüft werden konnten, welche den Sterbeprozeß von Nervenzellen hemmen.
Allgemeine Beschreibung der Erfindung
Überraschend wurde nun gefunden, daß das durch neurotrophe Faktoren bewirkte Überleben von sensorischen und motorischen Neuronen von der intrazellulären Anwesenheit des Signalproteins B-Raf abhängt. Nervenzellen ohne B-Raf sterben trotz Anwesenheit von neurotrophen Faktoren. Dagegen überleben Nervenzellen, welche B-Raf aber nicht C- Raf exprimieren, in Anwesenheit von neurotrophen Faktoren gleichgut wie Nervenzellen, die sowohl B-Raf wie auch C-Raf besitzen (sogenannte normale (= Wildtyp) Nervenzellen). Grundlage dieser Erfindung ist somit der überraschende Befund, daß ein funktionsfähiges (d.h. enzymatisch aktives) B-Raf für das Überleben von Nervenzellen notwendig ist. Des weiteren ist ein überraschender Befund, daß in Nervenzellen mit fehlender B-Raf-Aktivität die Expression der antiapoptotischen Proteine der IAP/ITA Familie, beispielsweise von IAP-1, IAP-2 und x-IAP, deutlich vermindert ist.
Gegenstand der Erfindung ist daher ein Verfahren zum Auffinden von pharma- kologisch aktiven Wirkstoffen, welche die Funktion von Zellen des zentralen Nervensystems beeinflussen, das die folgenden Schritte umfaßt: a) Inkontaktbrin- gen einer Probe mit mindestens einem potentiellen Wirkstoff, und b) Bestimmen der Aktivität von Raf, insbesondere B-Raf, in der Probe.
Unter „Funktionen" von Zellen des zentralen Nervensystems wird beispielsweise die Reizleitung sowie alle daran beteiligten biochemischen und/oder elektroche- mischen Prozesse verstanden. Des weiteren umfasst der Begriff Funktion von Zellen auch das Überleben der Zellen. Das Absterben von Zellen des zentralen Nervensystems kann beispielsweise durch Testverfahren, die Apoptose nachweisen, beobachtet werden. Solche Testverfahren sind beispielsweise „Tunnel- Assay" (Gavrielli et al, J. Cell BioL, 119:493-501. 1992, Gold et al, Lab.Invest. 71 :219-225, 1994), Chromatinfragmentierung (Götz et al., Hum. Mol. Genet. 9:2479-2489, 2000), Zählung von überlebenden und absterbenden Nervenzellen (Arakawa et al., J. Neurosci. 10, 3507-3515, 1990), die Verwendung von Testsubstanzen zur Quantifizierung des Zelltods in Zellkultur (Uliasz und Hewett, J. Neurosci. Methods 100, 157-163, 2000), Quantifizierung der Expression von Zelltod-assoziierten Genen in Nervenzellen, wie beispielsweise Cyline (Timsit et al., Eur. J. Neurosci. 11, .263-278, 1999) und Bestimmung des neuronalen Zelltods nach Zugabe von Aß (Iwasaki et al., Mol. Psych. 1, 65-71, 1996) oder nach Induktion von oxidativem Stress (Manev et al., Exp. Neurol. 133, 198-206, 1995).
Zellen des zentralen Nervensystems im Sinne der vorliegenden Erfindung sind Gliazellen oder neuronale Zellen, beispielsweise sensorische und sympathische neuronale Zellen, motorische neuronale Zellen, cholinerge Neurone des basalen Vorderhirns, dopaminerge Nervenzellen des Mittelhirns (Substantia nigra), Körnerzellen und Purkinje-Zellen des Kleinhirns und des Hippocampus, retinale Ganglienzellen und Photorezeptoren sowie neuronale Stammzellen .
Das Inkontaktbringen einer Probe mit mindestens einem potentiellen Wirkstoff umfaßt beispielsweise jede Form des Mischens, wobei sowohl die Probe zu dem potentiellen Wirkstoff hinzugefügt werden kann als auch der potentielle Wirkstoff zur Probe. Die Probe und/oder der potentielle Wirkstoff können dabei jeweils als Feststoff, Lösung, Suspension, Aufschlemmung oder an eine feste Phase gebunden vorliegen. Wenn es sich bei der Probe mit der (die) potentiellen Wirkstoffen) in Kontakt gebracht werden, um Zellen handelt, umfaßt der Schritt des Inkontaktbringens auch im Stand der Technik bekannte Verfahren, die das Einfuhren von Substanzen in intakte Zellen erlauben, wie beispielsweise Infektion, Transfektion und/oder Transformation. Diese Verfahren sind besonders bevorzugt, wenn es sich bei dem potentiellen Wirkstoff um nackte DNA, Viren, Viroide, Virosomen und/oder Liposomen handelt, wobei die Liposomen oder Virosomen auch geeignet sind, neben einem potentiell wirksamen Nukleinsäure- molekül weitere potentielle Wirkstoffe mit der Probe in Kontakt zu bringen. Dem Fachmann sind eine Reihe weiterer Methoden bekannt, die dazu dienen, potentielle Wirkstoffe in Zellen einzufuhren.
Ein potentieller Wirkstoff im Sinne der vorliegenden Erfindung kann jede molekulare Spezies sein, wie beispielsweise ein Peptid (zwischen 1 bis 50 Aminosäuren), ein Protein (mehr als 50 Aminosäuren), ein Peptoid, ein Oligo- oder Polysaccharid, eine Nukleinsäure, ein Monomer wie beispielsweise ein Homo- oder Heterozyklus, ein Lipid, ein Steroid und ähnliches. Grundsätzlich kann jede chemische Substanz oder Substanzmischung ein potentieller Wirkstoff sein, der in dem erfindungsgemäßen Verfahren eingesetzt wird. Die Konzentration des potentiellen Wirkstoffs muß jedoch so gewählt sein, daß die Beeinflussung der Aktivität von Raf, insbesondere B-Raf, in der Probe nicht einfach auf der Lyse der Zellen beruht, wenn die Probe eine Zelle ist, oder auf der Denaturierung von Raf, insbesondere B-Raf, beruht, wenn die Probe ein Protein oder eine Proteinmischung ist. Dementsprechend sind beispielsweise Guanidin-HCl- Lösung, Harnstofflösung und starke Detergenzien, in Konzentrationen in denen sie Zellen lysieren und/oder Proteine denaturieren, keine potentiellen Wirkstoffe im Sinne dieser Erfindung.
Eine Probe im Sinne dieser Erfindung ist beispielsweise mindestens eine Zellen, mindestens ein Zellextrakte, mindestens eine Proteinmischungen und/oder mindestens eine Mischungen enthalten Raf Protein, insbesondere B-Raf oder aktiviertes B-Raf, oder einen Teil davon. Die Zellen umfassen beispielsweise pro- und eukaryotische Zellen, insbesondere Zellen, die als Wildtyp-Zellen Raf, insbesondere B-Raf exprimieren. In Zellen, die als Wildtyp-Zellen nicht oder nur in geringerem Maße Raf exprimieren, kann durch dem Fachmann bekannte Methoden Raf-Protein exprimiert werden. Solche Methode umfassen beispiels- weise Infektion, Transfektion oder Transformation von Zellen mit Vektoren, die Nukleinsäuren enthalten, die für Raf, insbesondere B-Raf, oder Teile davon kodieren. Eine bevorzugte Probe, die in dem erfindungsgemäßen Verfahren verwendet werden kann, ist eine Zelle, die eine reduzierte oder keine Raf- Aktivität, insbesondere B-Raf-Aktivität hat. Eine solche Zeil kann beispielsweise aus heterozygoten oder homozygoten Raf-Knock-out-Mäusen gewonnen werden. Solche Zellen sind dann beispielsweise für a-raf b-raf oder c-raf(-l-) oder (+/-). Im Rahmen des erfindungsgemäßen Verfahren bevorzugte Zellen sind aus heterozygoten oder homozygoten Raf-Knock-out-Mäusen bzw. Mäuseembryonen gewonnene Neuronen oder neuronale Stammzellen. Derartige Zellen können beispielsweise aus b-raf '(-/-) defizienten Mäusen gewonnen werden (Wojnowski et al, Nature Genetics 16: 293-297, 1997).
Desweiteren umfaßt der Begriff Probe auch Zellextrakte, die beispielsweise aus einer der vorangehend aufgeführten Zellen mit dem Fachmann bekannten Standardverfahren gewonnen werden können, geeignete Verfahren umfassen sind aber nicht beschränkt auf „freeze thawing", „sonification" oder „French- pressing". Gegebenenfalls kann ein solcher Zellextrakt in weiteren Schritten aufgearbeitet bzw. aufgereinigt werden. Bevorzugte Schritte umfassen beispiels- weise Präzipitations-, Filtrations- und chromatographische Verfahrensschritte. Geeignete chromatographische Verfahren sind dem Fachmann bekannt und umfassen beispielsweise Anionen- bzw. Kationenaustauschchromatographie, Affinitätschromoatographie und/oder Größenausschlußchromatographie. Desweiteren kann die Probe auch eine Mischung gereinigter oder rekombinanter Proteine enthaltend Raf, insbesondere B-Raf, und/oder eine Proteinmischung sein, die zusätzlich weitere Komponenten enthält, beispielsweise Komponenten, die für die Bestimmung der Aktivität von B-Raf verwendet werden können, wie beispielsweise Substrate von Raf, Puffer, Detergentien, Proteaseinhibitoren NTPs und/oder geeignete Metallionen. Das in der Probe enthaltene Raf-Protein kann B- Raf-Protein, C-Raf-Protein und gegebenenfalls auch A-Raf-Protein, insbesondere jedoch B-Raf-Protein, sein. Vorzugsweise ist das in der Probe enthaltene Raf- Protein ein aktiviertes Raf-Protein, d.h. es hat gegenüber dem wt Raf-Protein eine erhöhte Serin-/Threoninphosphokinaseaktivität. Raf-Protein wird beispielsweise durch reversible Phosphorylierung aktiviert. Eine konstitutive Aktivierung ist jedoch auch durch die Einführung von Mutationen möglich, geeignete Mutationen betreffen beispielsweise den N-terminalen Bereich des Enzyms, insbesondere in C-Raf- 1 die Mutationen von 259Ser zu 259Ala und die Mutation der analogen Positionen in B-Raf bzw. Mutationen innerhalb der CR2 Region, Insertion von Linkerstrukturen in diesen Bereich oder Deletion des kompletten N-Terminus von Raf-1 (Daum et al. TIBS 19, 474-480, 1994; Morrison und Cutler, Curr. Op. Cell. Biol. 9, 174-179, 1997).
Das Bestimmen der Aktivität von Raf in der Probe ist durch eine Reihe direkter und indirekter Nachweisverfahren möglich. Die jeweils geeigneten Verfahren hängen von der Natur der Probe ab. In Zellen wird die Aktivität von Raf zum einem durch die Menge des in der Zelle exprimierten Rafs bestimmt und zum anderen durch die Menge des aktivierten Rafs. Die Aktivierung der Transkription der für Raf-Protein, insbesondere B-Raf-Protein, kodierenden Gene kann beispielsweise durch die Bestimmung der Menge der Raf-mRNA erfolgen. Im Stand der Technik bekannte Standardverfahren zur Bestimmung der Raf-mRNA Menge umfassen beispielsweise DNA-Chip-Hybridisierung, RT-PCR, „Primer"- Extension und „RNA-Protection". Des weiteren kann die Bestimmung der Raf- Aktivität, die auf der Induktion oder Repression der Transkription des (der) jeweiligen Raf-Gens(e) beruht auch durch die Kopplung des Raf-Promotors an geeignete Reportergenkonstrukte erfolgen. Beispiele für geeignete Reportergene sind das Chloramphenicol-Transferasegen, das „Green-fluorescent-protein" (GFP) und Varianten davon, das Luciferase-Gen und das Renilla-Gen. Der Nachweis der Steigerung der Expression von Raf-Proteinen kann jedoch auch auf Proteinebene erfolgen, wobei in diesem Fall die Menge des Proteins beispielsweise durch gegen Raf-Protein gerichtete Antikörper nachgewiesen wird. Die Änderung der Aktivität des Raf-Proteins kann jedoch auch auf verstärkte oder erniedrigte Phosphorylie- rang bzw. Dephosphorylierung des Proteins zurückgeführt werden. Beispielsweise wird die B-Raf-Kinase durch Phosphorylierung der 598Thr- und 601Ser-Reste reguliert (Zhang B.H. und Guan K.L. EMBO J. 19: 5429, 2000). Die Änderung der Phosphorylierung von B-Raf-Proteinen kann beispielsweise durch Antikörper nachgewiesen werden, die gegen phosphoryliertes Threonin bzw. Serin gerichtet sind.
Da Raf-Proteine Serin-/Threoninkinasen sind, kann die Aktivität der Raf-Proteine auch über ihre enzymatische Aktivität bestimmt werden. Das Protein MEK ist beispielsweise ein Substrat von B-Raf und der Grad der Phosphorylierung von MEK erlaubt die Bestimmung der B-Raf- Aktivität in der Probe. Gleichermaßen kann die Phosphorylierung anderer Substrate (wie z.B. MBP und Peptide, die durch Raf spezifisch phosphoriliert werden (Salh et al, Anticancer Res. 19, 731- 740, 1999, Bondzi et al, Oncogene 19, 5030-5033, 2000)) der Raf-Proteine zur Bestimmung der jeweiligen Aktivität herangezogen werden. Da Raf Teil einer Signalkaskade ist, in der eine Reihe von Kinasen jeweils durch eine übergeordnete Kinase phosphoryliert und aktiviert werden, läßt sich die Aktivität von Raf auch durch die Bestimmung des Phosphorylierungsgrades jeder Raf nachgeordneten Kinase bestimmen. Dieser sogenannten „map kinase-pathway" fuhrt unter anderem auch zur gezielten Aktivierung von Transkriptionsfaktoren und dadurch zur transkriptioneilen Aktivierung von Genen, so daß sich die Aktivität von Raf indirekt durch die Messung der Aktivierung dieser Zielgene bestimmen läßt. Zu diesen Zielgenen gehören beispielsweise die Gene, die für die Familie der IAP/ITA-Proteine kodieren. Somit kann die Bestimmung der Aktivität von Raf auch durch die Bestimmung der Aktivierung von IAP/ITA-Proteinen, insbesondere der Aktivierung von IAP-1, IAP-2. x-IAP und Survivin erfolgen. Für die Bestimmung der Aktivierung der Zielgene eignen sich die vorangehend aufgeführten Verfahren.
Handelt es sich bei der Probe beispielsweise um ein Zellextrakt, eine Proteinmischung und/oder eine Mischung enthaltend Raf, insbesondere B-Raf, oder ein Teil davon, richtet sich die Bestimmung der Aktivität hauptsächlich auf die Bestim- mung der Modifikation des Raf-Proteins selbst und der sich daraus ergebenden Änderung der enzymatischen Aktivität des Raf-Proteins, unter Verwendung der vorangehend bereits beschrieben Methoden. Bevorzugte Methoden umfassen die Bestimmung der Phosphorylierung der unmittelbaren Substrate von Raf, wie beispielsweise MEK, wobei hier beispielsweise der Einbau von 32P in MEK oder die Phosphorylierung über ein Aktivierungs-spezifischen MEK-Antikörper, der nur phosphoryliertes MEK erkennt, (Bondzi C. et al. Oncogene 19: 5030-5033, 2000)) erfolgen kann. Eine weitere Möglichkeit besteht beispielsweise in der Verwendung eines gekoppelten Assays, der die bereits vorangehend beschriebene Signaltransduktionskaskade nutzt und die Aktivität von Raf anhand der Phosphorylierung von Raf nachgeordneten Substraten, wie beispielsweise basischem Myelin, mißt (Bondzi et al., Oncogene 19, 5030-5033, 2000).
Potentielle Wirkstoffe, die die Aktivität von Raf, insbesondere B-Raf, in der Probe im Vergleich zu der unbehandelten Probe (Kontrolle) verstärken oder hemmen, gelten gemäß dieser Erfindung als pharmakologisch aktive Wirkstoffe, die die Funktion von Zellen des zentralen Nervensystems beeinflussen. Ein pharmakologisch aktiver Wirkstoffe, der die Funktion von Zellen des zentralen Nervensystems beeinflußt, verändert die Aktivität von Raf gegenüber der Kontrolle um mehr als 10%, vorzugsweise jedoch um mindestens 50%, um mindestens 100%, noch bevorzugter um mindestens 500%.
In einer weiteren Ausführungsform kann sich an den Schritt a) eine Inkubationsperiode anschließen, die abhängig von der Probe unterschiedlich lang sein kann. Wenn es sich bei der Probe um Zellen handelt, wird die Aktivität (Schritt b) nach ca. einer Stunde bis 100 Tagen, vorzugsweise nach ca. 1 Tag bis 50 Tage noch bevorzugter nach ca. 3 Tagen bis 10 Tagen, insbesondere nach 3 Tagen bestimmt. Wenn es sich bei der Probe nicht um Zellen handelt, kann die Aktivität beispielsweise in einem Zeitraum von ca. 0 Sekunden (Messung der Aktivität unmittelbar beim Inkontaktbringen) bis 20 Tage bestimmt werden. Vorzugsweise beträgt der Zeitraum für die Inkubation nach dem Inkontaktbringen der Probe mit dem potentiellen Wirkstoff jedoch ca. 5, 10, 20, 30, 40, 50, 60, 90, 120, 150 oder 180 min. (McDonald et al., Analyt. Biochem. 268, 318-329, 1999). In einer bevorzugten Ausfuhrungsform des erfindungsgemäßen Verfahrens, enthält die Probe mindestens eine Zelle, mindestens ein Zellextrakt, mindestens eine Protein-Mischung und/oder eine Mischung enthaltend Raf, insbesondere aktiviertes Raf oder ein Teil davon. Ein für die Durchführung des erfindungsge- mäßen Verfahrens geeigneter Teil eines Raf-Proteins, kann noch phosphoryliert werden und/oder kann noch auf des jeweilige Substrate, wie beispielsweise MEK, als Serien- und/oder Threoninkinase wirken kann. Die Bestimmung eines geeigneten Teils von Raf ist unter Verwendung von beispielsweise MEK als Raf Substrat oder von Raf-Kinase-Kinase (Kinuya M et al. (2000) Biol. Pharm Bull. 23: 1158-62) zur Phosphorylierung von Raf mit Standardverfahren möglich.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist die Zelle eine Gliazelle oder eine neuronale Zelle, insbesondere ein sensorische neuronale Zelle, eine motorische neuronale Zelle, eine neuronale Stammzelle oder ein Neuron ist, wobei ein Neuron, das in dem erfindungsgemäßen Verfahren verwendet werden kann, beispielsweise aus neuronalen Stammzellen in Zellkultur differenziert werden kann (Vescovi und Snyder, Brain Pathol. 9, 569-598, 1999).
In einer Ausführungsform des erfindungsgemäßen Verfahrens wird die Aktivität von Raf in der Zelle über eine Veränderung der Überlebensrate der Zelle bestimmt. Dies ist von besonderen Interesse bei Zellen, die beispielsweise auf Grund einer Mutation eine reduzierte oder keine Raf-Aktivität besitzen und die deshalb in Anwesenheit oder Abwesenheit von neurotrophen Faktoren eine verringerte Überlebensrate im Vergleich den jeweiligen wt-Zellen besitzen. Insbesondere Zellen, die für b-raf (-/-) sind, haben selbst in Anwesenheit neurotropher Faktoren eine deutlich verkürzte Überlebensrate gegenüber wt- Zellen. Eine Verlängerung der Überlebensrate dieser Zellen nach Inkubation mit mindestens einem potentiellen Wirkstoff dient dabei als indirektes Mittel der Bestimmung der Aktivität von Raf.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden als Probe sensorische und/oder spinale, motorische neuronale Zellen aus b-raf (-l~) oder c-raf (-l-) defϊzienten Mäuseembryonen jeweils aus der Paarung von b-raf oder c-raf heterozygoten Mäusen eingesetzt. Darüber hinaus können von diesen Mäuseembryonen neurale Stammzellen aus Gehirn und Rückenmark isoliert, in Zellkultur propagiert und zu Nervenzellen differenziert werden. Die Zugabe von geeigneten neurotrophen Faktoren (beispielsweise GDNF, BDNF, CNTF zu motorischen Neuronen und NGF zu sensorischen Neuronen) führt zum Überleben von c-ra/" defizienten Nervenzellen, jedoch nicht zum Überleben von b- ra - defizienten Nervenzellen. Ähnliche Untersuchungen können mit Nervenzellen durchgeführt werden, die von neuralen Stammzellen aus b-raf '(-/-) und/oder c-raf (-/-) Mäusen isoliert wurden.
In einer Ausführungsform des erfindungsgemäßen Verfahrens, werden jeweils der (die) gleiche(n) potentielle^) Wirkstoff(e) zum einen mit c-raf (-/-) defizienten Zellen und zum anderen mit b-raf (-/-) defizienten Zellen in Kontakt gebracht und bestimmt, ob in Anwesenheit dieses(er) Prüfsubstanz(en) b-raf (-/-) defiziente Nervenzellen überleben.
Diese indirekte Bestimmung erlaubt es auch, pharmakologische Wirkstoffe aufzufinden, die in Zellen mit verringerter Raf-Aktivität oder ohne nachweisbare Raf-Aktivität, in eine der Raf-Kinase nachgeordnete Signalübertragungsreaktionen eingreifen.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens, wird die Aktivität von Raf in der Probe durch die Menge des Raf-Proteins, die Menge der für Raf kodierende Nukleinsäuren und/oder die enzymatische Aktivität von Raf direkt oder indirekt bestimmt. Geeignete Verfahren sind bereits im vorangehenden beschrieben worden.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens, werden jeweils der (die) gleiche(n) potentielle^) Wirkstoff(e) zum mit einem Zellextrakt oder mit einer Proteinmischung enthaltend C-Raf oder mit gereinigtem oder mit rekombinanten C-Raf und zum anderen mit einem Zellextrakt oder einer Proteinmischung enthaltend B-Raf oder mit gereinigtem oder mit rekombinanten B-Raf in Kontakt gebracht und jeweils die Aktivität von C-Raf und B-Raf bestimmt. Ein bevorzugter pharmakologischer Wirkstoff beeinflußt die Aktivität von B-Raf stärker als die Aktivität von C-Raf. Eine stärkere Beeinflussung liegt dann vor, wenn der Effekt auf die Aktivität auf B-Raf mindestens ca. 2-fach, mehr bevorzugt ca. 4-fach, insbesondere ca. 10-fach größer ist als der Effekt auf die Aktivität von C-Raf.
Ein weiterer Gegenstand des erfindungsgemäßen Verfahrens ist ein Verfahren, in dem in einem weiteren Schritt die Aktivität und/oder Menge von IAP-1, IAP-2, x- IAP und/oder Survivin in der Probe bestimmt wird. Vorzugsweise ist in diesem Verfahren die Probe eine Zelle. Die Bestimmung der Aktivität und/oder Menge von IAP-1, IAP-2, x-IAP und/oder Survivin kann auf Proteinebene durch Antikörper und/oder auf Nukleinsäureebene, wie vorangehend beschrieben, erfolgen.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens ist die Probe kompartimentalisiert, beispielsweise auf einer Mikrotiterplatte mit 96, 348 oder 1552 Vertiefungen. Solche Mikrotiterplatten werden bereits routinemäßig in vollautomatischen, massivparallelen Testverfahren eingesetzt, die es erlauben in kurzer Zeit hunderttausende verschiedene potentielle Wirkstoffe zu testen. Grundsätzlich ist jede Kompartimentalisierung geeignet, die es ermöglicht, die Wirkung des mit der Probe in Kontakt gebrachten potentiellen Wirkstoffs räumlich zu beschränken, so daß die Auswirkung des jeweilig verwendeten potentiellen Wirkstoffs auf die Aktivität von Raf, insbesondere B-Raf, in der Probe bestimmt werden kann. Die Probe kann kovalent oder nicht-kovalent mit der Oberfläche des Probenträgers, wie beispielsweise einer Mikrotiterplatte, verknüpft sein oder in Lösung, Suspension oder Aufschlämmung vorliegen. Neben den im Stand der Technik bekannten verschiedenen Mikrotiterplattenfor- maten, die für die Durchführung des erfindungsgemäßen Verfahrens geeignet sind jedoch auch planare oder beispielsweise durch Vertiefungen oder Kanäle strukturierte Probenträger geeignet. Der Probenträger kann beispielsweise aus Glas, Silizium, Metall oder Kunststoff sein.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens ist mindestens ein potentieller Wirkstoff kovalent oder nicht-kovalent mit einem Probenträger verknüpft, wobei die Oberfläche des Probenträgers vorzugsweise in Form von Vertiefung, Kanälen oder auch planar strukturiert ist. Die Probe wird dann mit dem immobilisierten potentiellen Wirkstoff in Kontakt gebracht und die Aktivität von Raf, insbesondere von B-Raf, in der Probe an der jeweiligen Immobilisierungsstelle des (der) potentiellen Wirkstoff(e) bestimmt. Beispielsweise kann mit nach Standardverfahren hergestellten Proteinchips, die beispielsweise aus WO 89/10977, WO 90/15070, WO 95/35505 und US 5,744,305 bekannt sind, ein Proteinchip hergestellt werden, der an der Oberfläche unterschiedliche Peptidfragmente enthält, deren Einfluß auf die Aktivität von beispielsweise Raf-Protein, vorzugsweise gereinigtes B-Raf-Protein, getestet werden kann. Gleichermaßen können auch auf einer Oberfläche durch im Stand der Technik bekannte kombinatorisch-chemische Verfahren eine Vielzahl verschiedener chemische Substanzen erzeugt werden, deren Wirkung auf die Aktivität von Raf, insbesondere B-Raf, durch das erfindungsgemäße Verfahren untersucht werden kann.
Eine weitere Ausführungsform des erfindungsgemäßen Verfahrens ist ein Verfahren, bei dem sich an die Bestimmung der Aktivität von B-Raf in der Probe ein oder mehrere weitere Schritte anfügen, in denen der pharmakologisch aktive Wirkstoff isoliert wird. Dies ist insbesondere dann von Interesse, wenn es sich bei dem potentiellen Wirkstoff um eine Mischung von Wirkstoffen handelt, wie sie beispielsweise in Pflanzenextrakten oder Extrakten aus Mikroorganismen gefunden werden. Der (die) weitere(n) Schritt(e), die verwendet werden können, um aus einer komplexen Substanzmischung einen pharmakologisch aktiven Wirkstoff zu isolieren, sind im Stand der Technik bekannt. Diese Verfahren umfassen beispielsweise Präzipitations-, Kristallisations-, chromatographische und Separationsverfahren, die beispielsweise auf differenzieller Löslichkeit der Einzelkomponenten in unterschiedlichen Lösungsmitteln beruhen. Nach jedem Isolationsschritt kann erneut die Wirksamkeit des Wirkstoffs durch Inkontaktbringen mit einer Probe und das Bestimmen der Aktivität von Raf in der Probe erfolgen.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird der pharmakologisch aktiver Wirkstoff in einem weiteren Schritt konfektioniert.
Nachdem gemäß dem erfindungsgemäßen Verfahren ein pharmakologisch aktiver Wirkstoff bestimmt und/oder isoliert worden ist, kann dieser pharmakologisch aktive Wirkstoff mit dem Fachmann bekannten Methoden, die beispielsweise Modifikation mit Halogenen, insbesondere mit Fluor oder Chlor, und/oder kombinatorisch chemische Ansätze umfassen, modifiziert werden und erneut in dem erfindungsgemäßen Verfahren untersucht werden, wobei die Aktivität von Raf in der Probe des modifizierten pharmakologisch aktiven Wirkstoffes mit der Aktivität von Raf in der Probe bei Verwendung des Ausgangswirkstoffes verglichen wird.
Ein weiterer Gegenstand der vorliegenden Erfindung ist somit auch ein pharma- kologisch aktiver Wirkstoff, der durch eines der vorangehend beschriebenen Verfahren aufgefunden wird. Besonders bevorzugt sind pharmakologische aktive Wirkstoffe, die die Aktivität von Raf, insbesondere B-Raf, verstärken, wobei eine Veränderung der Überlebensrate der Zellen des zentralen Nervensystems eine besonders bevorzugte Wirkung des (der) pharmakologisch aktiven Wirkstoffs(en) ist. Vorzugsweise verstärken oder hemmen die pharmakologisch aktiven Wirkstoffe, die durch das Verfahren der vorliegenden Erfindung aufgefunden worden sind, die Aktivität von B-Raf, nicht jedoch von C-Raf oder A-Raf.
Zur Auffindung von pharmakologisch aktiven Wirkstoffen, die die Aktivität von B-Raf beeinflussen, vorzugsweise verstärken oder hemmen, nicht jedoch die von
C-Raf, können zur Kontrolle Zellen eingesetzt werden, denen das c-raf-Gen fehlt. Derartige Zellen können beispielsweise aus c-raf (-/-) defizienten Mäusen gewonnen werden (Wojnowski et al., Mech. Dev. 76: 11-149, 1998).
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur in vitro Analyse der Funktion von Zellen des zentralen Nervensystems, das dadurch gekennzeichnet ist, daß die Aktivität von Raf, insbesondere von B-Raf, IAP-1, IAP-2, x-IAP und/oder Survivin in den Zellen und/oder Zellextrakten bestimmt wird. Zu diesem Zweck werden Zellen des zentralen Nervensystems aus dem Patienten entnommen. Diese Zellen können nun unmittelbar auf die Aktivität der vorangehend beschriebenen Proteine getestet werden, wobei entweder eines der vorangehend beschriebenen Verfahren auf die Zelle selbst oder auf aus der Zelle gewonnene Zellextrakte angewendet wird. Desweiteren ist es möglich, die aus dem Patienten isolierten Zellen zu kultivieren, wobei im Stande der Technik bekannte Verfahren zur Kultivierung von Zellen des zentralen Nervensystems angewendet werden können. Dies ist beispielsweise wünschenswert, wenn die Zahl der isolierten Zellen des zentralen Nervensystems gering ist und/oder die Analyse nicht umnittelbar nach der Entnahme der Zellen stattfinden kann. Die Kultivierung erlaubt es zu einem beliebigen späteren Zeitpunkt die Aktivität der vorangenannten Proteine entweder direkt in den Zellen und/oder Zellextrakten zu bestimmen.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Diagnostikum zur in vitro Analyse der Funktion von Zellen des zentralen Nervensystems, das mindestens ein Mittel zum Nachweis der Aktivität von Raf, insbesondere von B- Raf, I AP- 1 , IAP-2, x-IAP und/oder Survivin enthält.
Ein erfindungsgemäßes Diagnostikum enthält beispielsweise ein oder mehrere DNA-Oligonukleotidpaare, die die Vervielfältigung (PCR) von DNA- Fragmenten, insbesondere cDNA-Fragmenten, die für die Proteine Raf, insbesondere B-Raf, IAP-1, IAP-2, x-IAP und/oder Survivin kodieren, erlauben. Ein bevorzugtes erfindungsgemäßes Diagnostikum enthält ein DNA-Sondenpaar zum Nachweis der Aktivität von B-Raf und ein weiteres Sondenpaar zum Nachweis der Aktivität von A-Raf, C-Raf, IAP-1, IAP-2, x-IAP und/oder Survivin. Weitere erfindungsgemäße Diagnostika der vorliegenden Erfindung umfassen beispielsweise Antikörper, die gegen Raf, insbesondere B-Raf, IAP-1, IAP-2, x-IAP, Survivin, aktiviertes Raf, insbesondere aktiviertes B-Raf und/oder ein Protein, daß direkt oder indirekt von Raf aktiviert wird, wie beispielsweise MEK, gerichtet ist. Ein bevorzugter Gegenstand des erfindungsgemäßen Diagnostikums besteht aus mindestens zwei Antikörpern, ausgewählt aus den vorgenannten Antikörpern. Bevorzugte Kombinationen sind hierbei ein Antikörper gegen B-Raf und gegen aktiviertes B-Raf, gegen aktiviertes B-Raf und IAP- 1 , IAP-2, x-IAP und/oder Survivin.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Testsystem zum Auffinden von pharmakologisch aktiven Wirkstoffen, die die Funktion von Zellen des zentralen Nervensystems beeinflussen. Das Testsystem enthält: a) mindestens eine Probe, insbesondere mindestens eine Zelle, mindestens einen Zellextrakt, mindestens eine Proteinmischung und/oder mindestens eine Mischung enthaltend Raf, vorzugsweise aktiviertes Raf, oder einen Teil davon; und b) mindestens ein Mittel zum Nachweis der Raf-Aktivität, insbesondere der B-Raf-Aktivität.
In einer bevorzugten Ausführungsform des Testsystems ist die Probe komparti- mentalisiert, beispielsweise auf einer Mikrotiterplatte mit 96, 348 oder 1552 Vertiefungen. Solche Mikrotiterplatten werden bereits routinemäßig in vollauto- matischen, massivparallelen Testverfahren eingesetzt. Grundsätzlich ist jede Kompartimentalisierung geeignet, die es ermöglicht, die Wirkung des mit der Probe in Kontakt gebrachten potentiellen Wirkstoffs räumlich zu beschränken, so daß die Auswirkung des jeweilig verwendeten potentiellen Wirkstoffs auf die Aktivität von Raf in der Probe bestimmt werden kann. Die Probe kann kovalent oder nicht-kovalent mit der Oberfläche des Probenträgers, wie beispielsweise einer Mikrotiterplatte, verknüpft sein oder in Lösung, Suspension oder Auf- schlämmung vorliegen. Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Arzneimittel zur Behandlung von Erkrankung, die mit einer Störung der Funktion von Zellen des zentralen Nervensystems einhergehen, wobei das Arzneimittel Raf, insbesondere B-Raf, und gegebenenfalls geeignete Hilfs- und Zusatzstoffe enthält. Das Arzneimittel kann beispielsweise Raf-Protein und/oder für Raf-Protein kodierende DNA-Abschnitte enthalten. Geeignete Hilfs- und Zusatzstoffe sind beispielsweise Proteaseinhibitoren, Detergenzien, Puffer, virale Vektoren, wie z.B. rekombinante Adenoviren (Gravel et al, Nature Med. 3: 765-770, 1997), Transfektionsreagen- zien, wie z.B. Lipofektamine und Substanzen mit vergleichbarer Wirkungsweise (Götz et al, Hum. Mol. Genet. 9: 2479-2489, 2000) oder Pufferreagenzien für den Transfer von Expressionsvektoren in Zellen mit transienter Membranpermeabili- sierang (Wiese et al., Nature Neurosci. 2: 978-983, 1999).
Das Arzneimittel der vorliegenden Erfindung wird vorzugsweise bei Störungen der Funktion von Zellen des zentralen Nervensystems verwendet, die durch eine Verringerung der Überlebensrate der Zellen charakterisiert sind, wie beispielsweise Cerebrale Ischemie (Schlaganfall), Amylotrophe Lateralsklerose (ALS), Alsheimer Erkrankung, Nerv-Läsionen, Multiple Sklerose, Morbus Parkinson, Diabetische Neuropathie, Spinale Muskelatrophie Prionenerkrankungen, wie z.B. Creutzfeld- Jakob Desease (CJD).
Ein bevorzugtes Arzneimittel der vorliegenden Erfindung enthält Raf, insbesondere B-Raf, in einem Vektor. Der Begriff Vektor im Sinne der vorliegenden Erfindung betrifft Plasmidvektoren, insbesondere episomalreplizierende Plasmidvektoren, virale Vektoren, wobei geeignete virale Vektoren beispielsweise Herpesviren, Adenoviren, adeno-assoziierte Viren, Papilloma Viren oder HIV1 sind oder von diesen Viren abgeleitet sind. Dem Fachmann sind eine Reihe weiterer Vektoren bekannt, die gleichermaßen zum Transfer von Raf-Protein, insbesondere B-Raf-Proteinen und/oder zum Transfer von Nukleinsäuren, die für Raf-Protein kodieren, insbesondere für B-Raf, geeignet sind, wie beispielsweise Liposomen, Virosomen, Fusionsproteine mit z.B. Antennapedia (Thoren et al., FEBS Lett. 482: 265-268, 2000) oder HIV-TAT (Arese et al., J. Immunol. 166: 1380-1388, 2001).
Die folgenden Beispiele sollen die Erfindung nur näher beschreiben, ohne sie zu beschränken.
Beispiele
Isolierung und Kultivierung von Neuronen
b-raf (+/-) heterozygote oder c-raf (+/-) heterozygote Elterntiere wurden rückgekreuzt (Wojnowski et al., Mech. Dev. 76: 141-149, 1998; Nature Genet. 16: 293-297, 1997). Von Embryonen im Alter von 12,5 Tagen, wie auch von neugeborenen Mäusen, die homozygot waren für b-raf (-/-) oder c-raf (-/-), wurden spinale Motoneurone mit Hilfe der Panningtechnik (Metzger et al., J. Neurosci. 18: 1735-1742, 1998) unter Verwendung eines monoklonalen Ratte-anti p75-Antikörpers (Chemicon, Hofheim, Deutschland) isoliert. Hierzu wurden die ventrolateralen Teile des lumbalen Rückenmarks mechanisch zerkleinert, in Hepespuffer-Lösung (enthaltend 10 μM 2-Mercaptoethanol) übertragen und mit Trypsin (0,05%, 10 min) inkubiert. Die Einzelzellsuspension im Überstand wurde in eine mit dem anti p75-Antikörper beschichteten Kulturschale überführt und bei Raumtemperatur für 30 min. inkubiert.
Nachfolgend wurden die einzelnen Kulturschalen gewaschen, anschließend die anhaftenden Zellen von der Kulturplatte durch 0,8% Kochsalzlösung enthaltend 35 mM KC1 und 1 μM 2-Mercaptoethanol abgelöst.
Die so gewonnen Zellen wurden in einer Dichte von 2000 Zellen/cm2 in Kulturplatten (Greiner, Nürtingen, Deutschland), die mit Polyornithin und Laminin vorbeschichtet waren, ausgesät. Die Zellen wurden bei 37° C in Neurobasalmedium (Life Technologies, ergänzt mit B27-Supplement, 10% Pferdeserum, 500 μM Glutamax und 50 μg/ml Apotransferrin) und in einer 5% CO Atmosphäre gehalten. 50% des Zellkulturmediums wurden am Tag 1 und nachfolgend jeden 2. Tag ersetzt.
Die Analyse der mRNA für IAP-1, IAP-2, x-IAP und t-IAP (Survivin) wurde mit Hilfe der RT-PCR durchgeführt. RNA wurde mittels Trizol-Reagenz (Life- Technologies, Karlsruhe) isoliert und je 10 ng Gesamt-RNA wurde für eine RT- PCR Reaktion eingesetzt. Die Primer-Sequenzen zur Amplifikation von IAP-1, IAP-2, x-IAP und t-IAP (Survivin) waren wie folgt: IAP-lf: 5'- TACTACATAGGACCTGGAGA-3', IAP-lr: 5 '-CCCACCATCACAGCAAAA- Υ Anlagerungstemperatur: 55°C; IAP-2f: 5 '-GGAGAAGAAAATGCTGACCC- 3', IAP-2r: 5 '-GCTTGTAAGGGTATCTGTGT-3 ' Anlagerungstemperatur 55°C; x-IAPf: 5'-TGCAAGAGCTGGATTTTATG-3', x-IAPr: 5'-CCCGATCTGGCA GCTGTACC-3 ' Anlagerungstemperatur 55°C; t-IAP (SURVIVIN), tIAPf: 5 '-CCA GAT CTG GCA GCT GTA CC-3' und tIAPr: 5'-GCC AGC TGC TCA ATT GAC TG-3', Anlagerungstemperatur 64°C. Als Kontrolle für die Integrität der RNA wurde ein Teil der ß-Actin mRNA mit folgenden Primern amplifiziert: ß- actinf: 5'-GTGGGCCGCCCTAGGCACCAG-3', ß-actinr 5'-CTCTTTAATGT CACGCACGATTTC-3', Anlagerungstemperatur 64°C. Die RT-PCR wurde entsprechend dem Protokoll des Herstellers mit Random-Hexamer Primern durchgeführt. Die PCR- Amplifikation wurde wie folgt durchgeführt: 94°C, 30 sec, indizierte Anlagerungstemperatur, 1 min, 72°C, 1 min. IAP-1 und t-IAP (Survivin) wurden für 33 and 35 Zyklen, IAP-2 und x-IAP für 28 und 30 Zyklen und ß-actin für 26 und 28 Zyklen. Die RT-PCR an RNA von E12.5-Gehirnen von b-raf und c-raf +/- Verpaarungen ergab eine deutliche Verminderung um durchschnittlich 60 % bzw. 55 % für IAP-1 bei b-raf 'und c-raf-/- Embryonen im Vergleich zur Wildtyp Kontrolle, von 52 % für IAP-2 bei b-raf-/- und 46 % für x-IAP bei b-raf-/- Embryonen im Vergleich zur Wildtyp Kontrolle.
Von Embryonen im Alter von 12,5 Tagen, wie auch von ungeborenen Mäusen, die homozygot waren für b-raf (-/-) oder c-raf (-/-), wurden des weiteren sensorische Neurone isoliert. Hierzu wurden dorsale Wurzelganglien isoliert, in PBS und mit Trypsin (0,05% in Hepespuffer) für 30 min. inkubiert. Die Trypsinverdauung wurde durch Zugabe von L15-Medium enthaltend 10% Pferdeserum gestoppt und nachfolgend die Zellen in Kulturplatten für 3-4 Stunden ausplattiert. Zellen im Überstand wurden zentrifügiert (10 min. 400 g) und das Zellsediment genauso wie bereits für spinale Motoneurone beschrieben im Neurobasalmedium gehalten.
2. Isolierung und Kultivierung von neuronalen Stammzellen
Neurale Stammzellen werden aus dem Gehirn von normalen, b-raf '(-/-) oder c-raf (-/-) defizienten Mausembryonen wie auch von neugeborenen Mäusen isoliert. Der Bereich des Vorderhirns wird unter einem Präparationsmikroskop entnom- men, in weiter entwickelten Embryonen auch der Bereich des Hippocampus und der periventrikulären Zone. Diese Gehirnareale werden dann in 200 μl HBSS (Hanks balanced salt solution (HBSS, Life Technologies, Karlsruhe), transferiert , mit 0,1% Trypsin (Endkonzentration in HBSS) für 10 min bei 37°C, inkubiert, die Reaktion mit 0,1% Trypsin-Inhibitor (Trypsin-Inhibitor aus egg yolk sack (Sigma, Deisenhofen), Stammlösung: 1% in HBSS/25 mM HEPES) Endkonzentration in HBSS abgestoppt. Dann werden die Zellen lOx mit einer 200 μl Pipette trituriert und in Medium [(Neurobasal-Medium (Life Technologies), B27 Supplement (Life Technologies Stock 50x, EK lx) Glutamax II (Life Technologies Stock lOOx, EK lx), basicFGF (20ng/ml), EGF (20 ng/ml)l] in ein Volumen von 5 ml überführt. Die dissoziierten Zellen werden in Sarstedt Schalen (50 ml) kultiviert (Brutschrank, 37 C, 5% CO feuchtigkeitsgesättigte Atmosphäre), das Medium alle zwei Tage gewechselt. Die Zellen wachsen als Embroid Bodies und attachieren nicht, daher werden die Zellen zum Mediumwechsel in ein Falcon-Röhrchen überführt und 5 min bei 400 g zentrifügiert. Der Überstand wird abgesaugt und das Zellsediment trituriert und in f isches Medium aufgenommen. Spätestens nach 3 Passagen bilden sich große Embroid Bodies, die trypsiniert (s.o.) und in niedriger Zelldichte (max. 10000 Zellen/Platte) auf 10 cm Schalen (Sarstedt) plattiert werden können. Einzelzellen werden dann gepickt und zunächst in 96er Platten, später in 24er und 12 well Platten expandiert. Diese Einzelzellklone neuraler Stammzellen können dann auf ihre Differenzierungskapazität hin untersucht werden und anschließend in Testverfahren eingesetzt werden.
Um reproduzierbare Ergebnisse zu erhalten, werden die Zellen auch als Linien etabliert und für spätere Experimente eingefroren und gelagert.
Das Einfrieren der neuralen Stammzellen erfolgt nach Standardprotokoll, d.h. nach der Zentrifugation werden die Zellen in Medium mit 10 % DMSO aufgenommen und mit 1 C/min zunächst auf -86 C abgekühlt (im MrFrosti) um dann im flüssigen N2 bei -186 C gelagert zu werden.
3. Wirkung von neurotrophen Faktoren auf b-raf (-/-) defiziente
Neuronen
Zu Motoneuronen wurden als neurotrophische Faktoren GDNF, BDNF und CNTF (jeweils 1 ng/ml) und zu sensorischen Neuronen NGF (1 ng/ml) hinzugegeben. In Kontrollkulturen normaler Mäuse überlebten nach 3 Tagen ohne Zugabe der jeweiligen neurotrophen Wachstumsfaktoren nur ca. 10-25% der Zellen, mit Zugabe der jeweiligen Wachstumsfaktoren jedoch etwa 70% der ursprünglich eingesäten neuronalen Zellen. Während neuronale Zellkulturen von c-raf (-/-), c- raf (+/-) oder b-raf (+/-) defizienten Embryonen bzw. Mäusen diesbezüglich keinen Unterschied zu Kulturen von normalen Mäusen aufwiesen, konnte kein Effekt neurotropher Faktoren auf das Überleben von Motoneuronen oder sensorischen Neuronen von b-raf '(-/-) defizienten Embryonen bzw. Neugeborenen nachgewiesen werden. Bei b-raf '(-/-) defizienten Neuronen lag die Überlebensrate nach 3 Tagen Zellkultur mit oder ohne neurotrophe Faktoren bei Werten, die kleiner als 3% der eingesäten Neuronen waren. Diese Ergebnisse zeigen, daß B-Raf ein entscheidendes signaltransduzierendes Protein für das Überleben von sensorischen wie auch motorischen Nervenzellen ist.
4. Verfahren zur Auffindung von Nervenzell-schützenden Substanzen
Somit können Nervenzellen, die beispielsweise mit der oben angeführten Methode gewonnen sind, für die Suche nach Substanzen benutzt werden, welch Nerven- zellen vor Zelltod schützen.
Hierzu werden b-raf (-/-), b-raf (+/-), c-raf (-/-) defiziente und normale motorische Neuronen und sensorische Neuronen wie oben beschrieben gewonnen, in Zellkulturen ausgesät und mit der Prüfsubstanz versetzt. Nervenzell-schützende Substanzen sind in der Lage, das Absterben von b-raf (-/-) Neuronen zu verhindern, ohne das Überleben von b-raf (+/-), c-raf (-/-) oder normalen Neuronen zu beeinträchtigen.
Zur modellhaften Prüfung des Verfahrens wurden sensorische neuronale Zellen mit einem Plasmid (pCDNA3), das den offenen Leserahmen des B-Raf Gens enthielt (Wojnowski et al. Mech. Dev. 91: 97-104, 2000), oder mit einem LacZ- Expressionsplasmid mit der von Wiese et al. (Nature Neurosci. 2: 987-983, 1999) angegebenen Methode transfiziert und das Überleben der so transfizierten Neuronen in der Zellkultur ermittelt.
Während nicht-transfizierte und mit dem LacZ-Expressionsplasmid transfizierte b-raf (-/-) defiziente Neuronen in Zellkultur mit und ohne neurotrophe Faktoren starben, erwiesen sich b-raf '(-/-) defiziente Neuronen, die mit einem das b-raf 'Gen enthaltene Plasmid transfiziert wurden, als überlebensfähig. Immunfluoreszen- suntersuchungen an überlebenden b-raf (-/-) defizienten neuronalen Zellen, die mit einem das b-raf Gen enthaltenden Plasmid transfiziert worden waren, ergaben mit einem für das B-Raf Protein spezifischen Antikörper (Sithanandam et al., Oncogene 5: 1775-1780, 1990), daß diese Zellen das B-Raf Protein enthielten.
Diese Untersuchungen zeigen, daß durch eine geeignete Wirksubstanz (Plasmide kodierend für B-Raf) b-raf (-/-) defiziente neuronale Zellen vor dem Absterben geschützt werden können, dieses Verfahren somit geeignet ist für die Auffindung von Nervenzell-schützenden Substanzen.
5. Prüfung von Wirksubstanzen
Mit dem erfindungsgemäßem Verfahren wurden folgende Wirksubstanzen geprüft:
- GW 5074, Inhibitor der C-Raf Kinase (IC50 Wert von 9nM; Lackey et al Bioorg. Med. Chem Lett 10:223, (2000)
- EMD 400073; Inhibitor der B-Raf Kinase (IC50 Wert von lμM; Fa. Boehringer Pharmakologie-Kongress 2001 ;)
- ZM 338372; Inhibitor der C-Raf Kinase (IC50 Wert von 70nM; Hall- Jackson et al Chem Biol. 6: 559 (1999)
Die Substanzen wurden in Konzentrationen von 0.1; 1,0; 10 und 100 μM den in Kultur gehaltenen Motoneuronen mit und ohne CNTF ( 1 ng/ml) zugefügt und die Anzahl der apoptotischen und der überlebenden Zellen nach 24 Stunden gezählt. Während der B-Raf- Inhibitor sowohl mit als auch ohne CNTF eine starke Apoptose der Motoneuronen bewirkte, überlebten in den mit C-Raf Inhibitoren behandelten Zellkulturen gleichviel Zellen wie in den jeweiligen Kontrollgruppen, in denen kein Inhibitor zugefügt worden war. Diese Versuche zeigen, dass die spezifische Hemmung von B-Raf zu einer Apoptose von Neuronen führt, während im Gegensatz hierzu eine Hemmung von C-Raf das Überleben von Neuronen nicht beeinflusst.
6. Prüfung von Wirksubstanzen auf die Regeneration von Nerven
In adulten Mäusen wurde unter Ketanest/Rompun — Anesthesie (100mg/kg) der Nervus facialis durchschnitten und lokal an den durchtrennten Nerv GW 5074 und EMD400073 angegebenen Wirksubstanzen in Mengen von jeweils 20μM auf ein Gelschaumstückchen aufgetragen und an den distalen Nervstumpf angebracht. Einer Kontrollgruppe wurde der Nerv durchtrennt und das Gelschaumstückchen mit dem Lösungsmittel (100 % DMSO) appliziert. Folgendes Ergebnis ist zu erzielen: Eine Untersuchung der Tiere nach 14 Tagen wird bei der Kontrollgruppe ein über 90 %iges Überleben ergeben, da die Motoneuronen des Nervus facialis in der adulten Maus nach Durchtrennung den Axons wieder regenerieren. Die Applikation von GW 5084 dürfte nicht von Nachteil für die Regenerationsfähigkeit der Motoneuronen sein, während die Applikation von EMD400073 zu einem deutlichen Motoneuronenverlust führen sollte. (Es wurden saturierende Mengen der jeweiligen Substanzen verwendet, da eine Titration der Substanzen ist in vivo nicht möglich ist aufgrund der unklaren Absorption durch das umliegende Gewebe.)

Claims

Patentansprüche 1. Verfahren zum Auffinden von pharmakologisch aktiven Wirkstoffen, welche die Funktion von Zellen des zentralen Nervensystems beeinflussen, das die folgenden Schritte umfaßt: a) Inkontaktbringen einer Probe mit mindestens einem potentiellen Wirkstoff; und b) Bestimmen der Aktivität von B-Raf in der Probe.
2. Verfahren nach Anspruch 1, wobei die Probe mindestens eine Zelle, mindestens einen Zellextrakt, mindestens eine Proteinmischung und/oder eine Mischung enthaltend B-Raf, insbesondere aktiviertes B-Raf, oder einen Teil davon, enthält.
3. Verfahren nach Anspruch 2, wobei die Zelle eine Gliazelle; eine neuronale
Zelle, insbesondere eine sensorische, sympathische oder motorische neuronale Zelle; eine neuronale Stammzelle; ein Neuron, insbesondere ein choli- nerges Neuron des basalen Vorderhirns, eine dopaminerge Nervenzelle des
Mittelhirns, eine Körnerzelle eine Purkinje-Zelle des Kleinhirns oder des Hippocampus; eine retinale Ganglienzelle oder ein Photorezeptor ist.
4. Verfahren nach einem der Ansprüche 2 oder 3, wobei die Zelle eine reduzierte oder keine B-Raf Aktivität hat.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Aktivität von B-Raf in der Zelle über eine Veränderung der Überlebensrate der Zelle bestimmt wird.
6. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Aktivität von B-Raf in der Probe durch die Menge des B-Raf-Proteins, die Menge der für B-Raf kodierenden Nukleinsäuren und/oder die enzymatische Aktivität von B-Raf direkt oder indirekt bestimmt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei in einem weiteren Schritt die Aktivität von IAP-1, IAP-2, x-IAP und/oder Survivin bestimmt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, wobei in einem weiteren Schritt der pharmakologisch aktive Wirkstoff isoliert wird.
9. Wirkstoff, der durch das Verfahren gemäß einem der Ansprüche 1 bis 8, aufgefunden wird.
10. Verfahren zur in vitro Analyse der Funktion von Zellen des zentralen
Nervensystems, dadurch gekennzeichnet, daß die Aktivität von B-Raf, IAP-1, IAP-2, x-IAP und/oder Survivin in den Zellen und/oder Zellextrakten bestimmt wird.
11. Diagnostikum zur in vitro Analyse der Funktion von Zellen des zentralen Nervensystems, enthaltend mindestens ein Mittel zum Nachweise der Akti- vität von B-Raf, IAP- 1 , IAP-2, x-IAP und/oder Survivin.
12. Testsystem zum Auffinden von pharmakologisch aktiven Wirkstoffen, welche die Funktion von Zellen des zentralen Nervensystems beeinflussen, enthaltend: a) mindestens eine Probe; und b) mindestens ein Mittel zur Bestimmung von B-Raf Aktivität in der Probe.
13. Arzneimittel zur Behandlung von Erkrankungen, die mit einer Störung der
Funktion von Zellen des zentralen Nervensystems einhergehen, enthaltend B- Raf und gegebenenfalls geeignete Hilfs- und Zusatzstoffe.
14. Arzneimittel nach Anspruch 13, wobei die Störung der Funktion von Zellen des zentralen Nervensystems durch eine Verringerung der Überlebensrate der Zellen charakterisiert ist.
15. Arzneimittel nach Anspruch 13 oder 14, wobei B-Raf in einem Vektor enthalten ist.
PCT/EP2002/000590 2001-01-22 2002-01-22 Verfahren und testsystem zum auffinden von nervenzell-schützenden substanzen WO2002057484A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02710808A EP1368494A2 (de) 2001-01-22 2002-01-22 Verfahren und testsystem zum auffinden von nervenzell-schützenden substanzen
US10/470,068 US20040082014A1 (en) 2001-01-22 2002-01-22 Method and test system for identifying substances which protect nerve cells
JP2002558536A JP2004527231A (ja) 2001-01-22 2002-01-22 神経細胞を保護する物質を特定するための方法及び検査システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10102722A DE10102722A1 (de) 2001-01-22 2001-01-22 Verfahren und Testsystem zum Auffinden von Nervenzell-schützenden Substanzen
DE10102722.2 2001-01-22

Publications (2)

Publication Number Publication Date
WO2002057484A2 true WO2002057484A2 (de) 2002-07-25
WO2002057484A3 WO2002057484A3 (de) 2003-10-09

Family

ID=7671343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/000590 WO2002057484A2 (de) 2001-01-22 2002-01-22 Verfahren und testsystem zum auffinden von nervenzell-schützenden substanzen

Country Status (5)

Country Link
US (1) US20040082014A1 (de)
EP (1) EP1368494A2 (de)
JP (1) JP2004527231A (de)
DE (1) DE10102722A1 (de)
WO (1) WO2002057484A2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG178854A1 (en) 2009-08-28 2012-04-27 Array Biopharma Inc Raf inhibitor compounds and methods of use thereof
SG178561A1 (en) 2009-08-28 2012-03-29 Array Biopharma Inc 1h-pyrazolo [ 3, 4-b] pyridine compounds for inhibiting raf kinase
SG178899A1 (en) 2009-08-28 2012-04-27 Array Biopharma Inc Raf inhibitor compounds and methods of use thereof
CN102666498A (zh) 2009-08-28 2012-09-12 健泰科生物技术公司 Raf抑制剂化合物及其使用方法
US20120157439A1 (en) 2009-08-28 2012-06-21 Genentech, Inc. Raf inhibitor compounds and methods of use thereof
EP2470539A1 (de) 2009-08-28 2012-07-04 Array Biopharma, Inc. Raf-hemmende verbindungen und anwendungsverfahren dafür
WO2012118492A1 (en) 2011-03-01 2012-09-07 Array Biopharma Inc. Heterocyclic sulfonamides as raf inhibitors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245523B1 (en) * 1996-11-20 2001-06-12 Yale University Survivin, a protein that inhibits cellular apoptosis, and its modulation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744101A (en) * 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US5981731A (en) * 1994-05-31 1999-11-09 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of B-raf gene expression

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245523B1 (en) * 1996-11-20 2001-06-12 Yale University Survivin, a protein that inhibits cellular apoptosis, and its modulation

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BARNIER J V ET AL.: "The mouse B-raf gene encodes multiple protein isoforms with tissue-specific expression" THE JOURNAL OF BIOLOGICAL CHEMISTRY, Bd. 270, Nr. 40, 1995, Seiten 23381-23389, XP002233917 *
DUGAN L L ET AL.: "Differential effects of cAMP in neurons and astrocytes" THE JOURNAL OF BIOLOGICAL CHEMISTRY, Bd. 274, Nr. 36, 1999, Seiten 25842-25848, XP002233918 *
ERHARDT P ET AL: "B-Raf inhibits programmed cell death downstream of cytochrome c release from mitochondria by activating the MEK/Erk pathway" MOLECULAR AND CELLULAR BIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, WASHINGTON, US, Bd. 19, Nr. 8, August 1999 (1999-08), Seiten 5308-5315, XP002231909 ISSN: 0270-7306 *
METZGER F ET AL.: "Effect of glutamate on dendritic growth in embryonic rat motoneurons" THE JOURNAL OF NEUROSCIENCE, Bd. 18, Nr. 5, 1998, Seiten 1735-1742, XP002233919 in der Anmeldung erwähnt *
SITHANANDAM G ET AL.: "Complete coding sequence of a human B-raf cDNA and detection of B-raf protein kinase with isozyme specific antibodies" ONCOGENE, Bd. 5, 1990, Seiten 1775-1780, XP009006652 *
WIESE S ET AL.: "Specific function of B-Raf in mediating survival of embryonic motoneurons and sensory neurons" NATURE NEUROSCIENCE, Bd. 4, Nr. 2, Februar 2001 (2001-02), Seiten 137-142, XP009006644 *
WOJNOWSKI L ET AL.: "Overlapping and specific functions of Braf and Craf-1 proto-oncogenes during mouse embryogenesis" MECHANISMS OF DEVELOPMENT, Bd. 91, 2000, Seiten 97-104, XP002233916 in der Anmeldung erwähnt *

Also Published As

Publication number Publication date
US20040082014A1 (en) 2004-04-29
EP1368494A2 (de) 2003-12-10
DE10102722A1 (de) 2002-08-14
WO2002057484A3 (de) 2003-10-09
JP2004527231A (ja) 2004-09-09

Similar Documents

Publication Publication Date Title
DE69836740T2 (de) Amyloid beta protein (globulärer aufbau und seine verwendung)
Wang et al. Induction of dopaminergic neuron phenotype in the midbrain by Sonic hedgehog protein
Sendtner et al. Developmental motoneuron cell death and neurotrophic factors
Marsh et al. Neurotrophin‐3 and brain‐derived neurotrophic factor activate multiple signal transduction events but are not survival factors for hippocampal pyramidal neurons
Hakkoum et al. Interleukin‐6 promotes sprouting and functional recovery in lesioned organotypic hippocampal slice cultures
Burden et al. Investigation into the structural integrity of lysosomes in the normal and dystrophic rat retina
EP1386161B1 (de) Screeningverfahren mit pim1-kinase oder pim3-kinase
EP1469316B1 (de) Screeningverfahren
DE19957065B4 (de) Screening-Verfahren für Arzneistoffe
EP1368494A2 (de) Verfahren und testsystem zum auffinden von nervenzell-schützenden substanzen
Schmid et al. Inhibition of LTP in vivo by beta-amyloid peptide in different conformational states
EP1709202A1 (de) A141s- und g399s-mutation im omi/htra2-protein bei morbus parkinson
EP1282827B1 (de) Verfahren zum selektieren von inhibitoren für enzyme
Sun et al. Differential regulation of JNK in caspase‐3‐mediated apoptosis of MPP+‐treated primary cortical neurons
US8293488B2 (en) Method for screening neurogenic agents
Coupe et al. Insights into nervous system repair from the fruit fly
EP1395834B1 (de) Screeningverfahren mit bnpi und dnpi
WO2005063966A2 (de) Verfahren zur in vitro differenzierung neuronaler stammzellen oder von neuronalen stammzellen abgeleiteter zellen
DE602004013319T2 (de) Hefemodell für die toxizität amyloidogener proteine
DE69819524T2 (de) Verwendung von shp-1 und shp-2 zum nachweis von verbindungen, die an neuronalem überleben beteiligt sind
EP1526382B1 (de) Screeningverfahren für verschiedene Indikationen mit DNPI
DE10153335A1 (de) Verfahren zum Auffinden von pharmakologisch aktiven Wirkstoffen, die die Funktion von Nervenzellen beeinflussen
DE69434650T2 (de) Verfahren und produkt zur regulation der reaktionsempfindlichkeit von zellen auf externe signale
DE10147028A1 (de) Screeningverfahren für verschiedene Indikationen mit BNPI und/oder DNPI
DE10147006A1 (de) Screeningverfahren für verschiedene Indikationen mit BNPI und/oder DNPI

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU CA CN JP RU US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002710808

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002558536

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002710808

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10470068

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2002710808

Country of ref document: EP