WO2002055850A1 - Realisations complementaires de moteurs anti-refoulement - Google Patents

Realisations complementaires de moteurs anti-refoulement Download PDF

Info

Publication number
WO2002055850A1
WO2002055850A1 PCT/FR2002/000053 FR0200053W WO02055850A1 WO 2002055850 A1 WO2002055850 A1 WO 2002055850A1 FR 0200053 W FR0200053 W FR 0200053W WO 02055850 A1 WO02055850 A1 WO 02055850A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
piston
counter
machine
crankshaft
Prior art date
Application number
PCT/FR2002/000053
Other languages
English (en)
Inventor
Normand Beaudoin
Original Assignee
Nivesh Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nivesh Sa filed Critical Nivesh Sa
Publication of WO2002055850A1 publication Critical patent/WO2002055850A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • F02B33/06Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps
    • F02B33/10Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps with the pumping cylinder situated between working cylinder and crankcase, or with the pumping cylinder surrounding working cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • F02B33/06Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps
    • F02B33/10Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps with the pumping cylinder situated between working cylinder and crankcase, or with the pumping cylinder surrounding working cylinder
    • F02B33/12Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps with the pumping cylinder situated between working cylinder and crankcase, or with the pumping cylinder surrounding working cylinder the rear face of working piston acting as pumping member and co-operating with a pumping chamber isolated from crankcase, the connecting-rod passing through the chamber and co-operating with movable isolating member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B35/00Engines characterised by provision of pumps for sucking combustion residues from cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1808Number of cylinders two
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • backdraft engines i.e. only two-stroke gas engines, and moreover, able to withstand not only much higher than average back pressures , but still amply sufficient to be able to have, at the outlet of these, high density filters, capable of purifying the exhaust outlets of the engines almost one hundred percent.
  • a first way of making these corrections will therefore be to add an excess part to the piston head, provided with a first conduit capable of integrating the gases from the cylinder liner towards the center of the piston (Fig. III).
  • a second conduit, connected to the first is then inserted in the center of the piston, this time in the vertical direction.
  • This conduit will be slidably coupled to a conduit for conveying new gases, rigidly disposed at the top of the cylinder.
  • this gas conveying duct could for example be rigidly connected to a membrane, this membrane being assembled between the cylinder and the head of the engine.
  • this membrane will have to be perforated with several openings allowing the new gases to penetrate upwards through the gas routing conduit into the cylinder itself.
  • Another interesting and original aspect of this configuration is to be able to operate, as already emphasized, without the need for connecting rods between the piston and the conventional connecting rods since, in this case, the pistons are directly connected to or to the conventional connecting rods, this which makes the engine even simpler and marketable.
  • a first originality resides in that the spark plug is placed inside the counter piston.
  • the burnt gas cylinder is therefore quite original this time since it is placed inside the piston, while the suction chambers of the used gases are above.
  • a third original element resides in the fact that the gases are admitted into the wall of the master piston and conveyed at its base, in the part of the piston opposite to that of the outlet of the used gases. The gases can still be better assimilated by an umbrella distribution. The displacement of the gases is therefore here also ideal.
  • this configuration allows the piston to be attached to the original connecting rod, which saves parts and space.
  • FIG. VI Another embodiment of the present engine (Fig. VI), this time adapted not to the U-shaped piston, but rather to the H-shaped piston, consists in using a central rod as a gas-conducting valve rod. This makes it possible to obtain an injection by the center, directed in a manner completely contrary to the entry of the gases. This version allows you to keep the spark plug at the top of the cylinder, since the burn cylinder will be the one at the top, or to insert it into the wall of the counter-cylinder and thus, as before, to obtain the explosion in the lower chamber. piston in H.
  • FIG. VIII Another possible embodiment results in the use of cylinders angularly arranged on the crankshaft. In this configuration, preferably mounted as in FIG. II with two sets of complementary piston-cylinders, the used gases are sucked from top to bottom of the other. This arrangement requires the already commented umbrella supply duct, but allows the connecting rods of the pistons to be removed from the original connecting rods.
  • this type of gas induction can be applied to different kinds of piston engines and rotary engines.
  • Figure I shows the normal and expansive path of gases in a conventional two-stroke engine.
  • Figure II shows how, in an anti-backflow motor, even with the orifices in opposite angles, part of the new gases will still be sucked into the waste gas intake chambers, while part waste gas will remain in the new gas intake chambers, which we will correct here.
  • Figure III shows a first way, by adding a gas delivery pipe, how one can force the new gases to pass through the top of the chamber before replacing the used gases.
  • Figure IV shows a second version where it will be through the same side walls of the piston that the gases will be routed to the bottom of the piston, therefore in a location opposite to their place of suction.
  • Figure V is a three-dimensional view of Figure IV.
  • Figure VI shows how a similar configuration can be made, but this time using an H-piston.
  • FIG. VII is a three-dimensional view of the previous one, where the spark plugs have nevertheless been placed in the wall of the counter cylinder, and where consequently, as in IV, the explosion takes place inside the piston in H, and suction in the top cylinder.
  • Figure VIII shows how one can produce a direct attachment of the pistons to the connecting rods, using piston-cylinder assemblies, arranged angularly with respect to the crankshaft.
  • Figure IX shows how our induction process can be applied to existing engines, for example here, piston engines, orbital type engines or even five-stroke engines. We have chosen the U and H configurations. Figure X shows an application of these engines to quasi-turbines.
  • Figure XI shows the application of anti-backflow techniques to triangular and blower motors.
  • Figure I is a representation of a conventional two-stroke engine. There are in particular the block (1), the cylinder (2), the piston (3), the connecting rod (4), the crankshaft (5), the carburetor (6). In this figure, we see the expanding penetration (7) of the new gases adequately forcing the evacuation of the used gases (8).
  • Figure II shows how, for a two-piston backflow preventer, for example, the waste gases are sucked into the bottom of the complementary waste gas intake cylinder (12).
  • the same gas transfer pipe (13) is sufficient for the double transfer of gases.
  • the two types of gas, by suction will have a tendency (16) to shave the piston head (3). Consequently, part of the new gases will be prematurely admitted into the waste gas intake chambers (12), while part of the waste gases will remain in the combustion chambers and cylinder (2), which we will correct in the next achievements.
  • FIG. III shows a first way of improving and even making complete the good evacuation of the used gases, and consequently, the good admission of the new gases. Indeed, one will add for example, to a provision similar to that of the preceding figure, for each piston, a surplus part which we will call admittive part of the piston (19). This admittance will be provided with a piston inlet light (20) which, when the piston passes to its lowest level, will communicate with the inlet of the carburetor (21).
  • a section (22) will be cut off, which will allow the suction of the gases. Then, there will be disposed in the piston a cylindrical piston conduit (23) allowing the conduit for conveying new gases (24) to be inserted in a sliding manner during the rise of the piston.
  • Said gas delivery duct (24) will be rigidly connected either to the head of the cylinder or to a support membrane platform (25), itself connected between the cylinder and the head of the cylinder .
  • the new gas delivery pipe (24) will not be able to go directly to the waste gas intake lights, but will rather be forced to pass to through the gas delivery duct (24), through the umbrella membrane (27), to then be integrated into the compression-combustion chamber.
  • This circuit would allow a complete filling of the intake cylinder and moreover, a complete emptying of the used gases, by suction and that without premature evacuation of the new gases, which is the desired effect (29).
  • Figure IV shows another interesting embodiment allowing a complete emptying and admission of the used and new gases and which, moreover, makes it possible to subtract the induction rods and consequently to keep only the conventional rods.
  • a counter-piston (30) is rigidly connected at the top of the cylinder (31).
  • This counter-piston (30) has the advantage that it is hollowed out in its center and, using the required threads, allows the screwing of a spark plug (32).
  • the master piston In the main cylinder (2) and around the enlarged part of the counter-piston (30) is assembled the master piston (33) which, at its base, is connected to a connecting rod (34).
  • This master piston has the particularity of containing not only pipes for transporting used gases (35) to the inlet chambers for used gases (36), but moreover, pipes for transporting new gases (37) ending at the base of the piston by back umbrella lights (38) are incorporated into its side walls.
  • a flue gas supply pipe (35) routes the flue gas from the interior chamber of the master piston (39) which acts as a combustion chamber, to the flue gas inlet chamber. The gases are then propelled towards the filters and towards the outside (40).
  • Figure V is a three-dimensional view of the previous figure to which counter piston rings (42), master piston (43), exhaust valves (44), filters (45) have been added. .
  • Figure VI is an embodiment which, too, succeeds in cutting off the straight induction rods, by connecting the piston (3) directly to or from the conventional rods (4).
  • the configuration is made by positively fitting the H-type piston (49).
  • This type of piston coupled to the counter-cylinder (48) and to the base cylinder, will form a lower cylinder (50) allowing it to be coupled to a gas delivery duct (51) serving both as a valve ( 52), rigidly disposed in the main cylinder of the engine (2).
  • This specific and original gas transport duct (51) serves in fact both as an intake valve (53).
  • the master piston, of the H-piston type (49) is indirectly connected to the crankshaft (5) by the use of a conventional connecting rod (4).
  • this H-piston has this specific that it is perforated in its center and that it allows the intrusion of a valve conduit which will allow the suction of the used gases (56).
  • the piston in H must be mounted so as to be combined with the counter-cylinder (48), rigidly disposed in the main cylinder (2).
  • the new gas supply duct will be rigidly connected to the top of the main cylinder (60). It will have one of its lights arranged downwards (68) so as to open when the piston is at its lowest level, while its upper end will be induced by intake lights for used gases (59).
  • New gas intake lights (61) may be arranged in the wall of the counter cylinder leading to the main cylinder.
  • Figure VII shows a three-dimensional view of the previous figure.
  • the spark plug (32) has been arranged here in the wall of the counter-cylinder (62).
  • the same elements including the engine body (1), the crankshaft (5), the connecting rod (2), the waste gas intake duct (35), the lights waste gas intake (15), the new gas intake lights (14), the H-piston (49), the counter-cylinder (62), the spark plug (32), the exhaust valves ( 44), the filter (80), the carburetor.
  • Figure VIII is a configuration with double cylinder-piston assembly, making it possible to subtract the rectilinear connecting rods.
  • the engine body (1) we find the crankshaft (5), the cylinder assemblies (2) piston (3), the waste gas supply pipes (35) and new gas supply pipes (24).
  • piston-cylinder assemblies have been arranged angularly (82) relative to the crankshaft.
  • the pistons are therefore attached laterally (83) to the connecting rods.
  • Figure IX is an application of a gas integration technique to an orbital type engine.
  • each piston-cylinder assembly is similar to one of the embodiments already explained.
  • Each assembly is in fact provided with a counter-piston (30) in which a candle (32) is connected.
  • a master piston (33) is mounted around each counter-piston (30) and so on.
  • Figure X shows the application of anti-backflow techniques to different types of motors, here triangular (90).
  • the motor is mounted with two sets of blades (91).
  • One of the two assemblies will serve as a sucker-expeller of the waste gases, while the second will admit by suction new gases for burning (95).
  • Figure XI shows the application of anti-backflow techniques to engines of the quasi-turbine type (91) or of the wind tunnel type (92).
  • each of these engines comprises for each system several expansive and depressive chambers, one can easily imagine a suction effect of the burnt gases from one to the other (100).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Dans les prochaines pages, l'inventeur va montrer comment améliorer le fonctionnement et l'éfficacité des moteurs anti-refoulement et ce, principalement en proposant des réalisations améliorant le cheminement des gaz dans le moteur anti-refoulement, réalisations qui auront aussi la qualité de diminuer le nombre de pièces nécessaires pour réaliser ces moteurs, et par conséquent pour en faciliter la commercialisation. L'inventeur va montrer quelques réalisations supplémentaires permettant d'obtenir des moteurs anti-refoulement dont le ou les pistons sont directement reliés à la bielle d'origine. Ainsi donc, il sera possible d'obtenir plusieurs versions du moteur ne nécessitant plus de bielles de raccord. De plus, certaines de ces manières de faire auront de plus, l'avantage de rendre facultative l'utilisation des contre-segments, ce qui rend les moteurs encore plus facilement réalisables et commercialisables.

Description

REALISATIONS COMPLEMENTAIRES DE MOTEURS ANTI-REFOULEMENT
Jusqu'à présent, nous avons montré comment produire des moteurs anti- refoulement, c'est-à-dire des moteurs deux temps seulement à gaz, et de surcroît, pouvant résister à des contre-pressions non seulement de beaucoup supérieures à la moyenne, mais encore amplement suffisantes pour pouvoir disposer, à la sortie de ceux-ci, de filtres de haute densité, capables de purifier les sorties d'échappement des moteurs presque à cent pour cent.
Nous allons maintenant préciser certains aspects de cette invention qui peuvent être améliorés. En l'occurrence, nous allons discuter et résoudre ici une difficulté desdits moteurs, causée par le fait d'une déficience accrue d'intégration de gaz par ceux-ci, parce qu'en effet, le cheminement des gaz y est plus difficilement contrôlable.
Comme on peut en effet le constater par comparaison à un moteur à deux temps conventionnel (Fig. I), c'est par pression que les gaz sont injectés dans le cylindre de compression-combustion. De ce fait, lorsque les gaz sont libérés, leur entrée dans le cylindre se produit avec une expansion automatique. Les gaz neufs envahissent donc expansivement le cylindre.
De plus, ce type d'alimentation est amélioré par une orientation appropriée des lumières d'admission et de sortie des gaz. Dès lors, on s'aperçoit que le vidage des gaz usés est finalement tout aussi complet que celui de l'admission des nouveaux gaz. Les gaz neufs sont en effet dirigés vers le haut et ce de façon expansive et de façon inverse à l'orientation des lumières servant au vidage des gaz usés qui, comme résultat, se vident de façon complète. Dans les moteurs anti-refoulement, les gaz neufs, de façon originale, sont admis au deuxième temps du moteur, c'est-à-dire qu'ils sont admis sous l'effet de la succion que provoque l'admission des gaz usés dans les chambres d'admission des gaz usés (Fig. II). De ce fait, le contrôle complet de leur trajectoire est cependant plus difficilement réalisable. Ainsi donc, on constate que sous l'effet de succion, les gaz neufs, cherchant la loi du moindre effort, auront tendance, en dépit d'une orientation correcte des lumières des gaz neufs et usés, à raser la tête du piston. Ainsi donc, une partie des gaz neufs serra attirée prématurément dans la chambre d'admission des gaz usés, alors qu'une partie des gaz brûlés demeurera dans les chambres et cylindres de combustion (Fig. II).
Mais on peut palier ce problème en contrôlant de façon mécanique le cheminement des gaz usés et neufs. Une première façon de réaliser ces corrections sera donc d'ajouter à la tête du piston une partie excédentaire, munie d'un premier conduit capable d'intégrer les gaz de la chemise du cylindre vers le centre du piston (Fig. III). Un deuxième conduit, raccordé au premier est ensuite inséré dans le centre du piston, cette fois-ci, dans le sens vertical. Ce conduit sera jumelé de façon coulissante à un conduit d'acheminement des gaz neufs, disposé rigidement au haut du cylindre. D'une autre façon, ce conduit d'acheminement des gaz, pourra par exemple être rigidement relié à une membrane, cette membrane étant assemblée entre le cylindre et la tête du moteur. Bien entendu, cette membrane devra être perforée de plusieurs lumières laissant pénétrer les gaz neufs acheminés vers le haut par le conduit d'acheminement des gaz dans le cylindre lui-même.
Ainsi donc, le cheminement par succion des gaz sera idéal puisque les gaz neufs, aspirés par les gaz usés sous effet de vide, seront forcés de passer par la partie supérieure du cylindre avant d'être intégrés dans la chambre du cylindre proprement dite. Dans la figure IV, une configuration encore plus intéressante est proposée. En effet, non seulement cette configuration permet d'acheminer correctement les gaz, mais aussi elle permet d'obtenir des chambres d'induction des gaz usés avec un volume plus élevé que celui de l'admission des gaz neufs. Enfin, cette configuration peut aussi fonctionner sans l'utilisation de contre segments, souvent nécessaires dans les configurations de base déjà exposées.
Un autre aspect intéressant et original de cette configuration est de pouvoir fonctionner, comme déjà souligné, sans la nécessité de bielles de raccord entre le piston et les bielles conventionnelles puisque, dans ce cas, les pistons sont directement reliés à ou aux bielles conventionnelles, ce qui rend le moteur encore plus simple et commercialisable.
En effet, dans cette configuration, une première originalité réside en ce que la bougie est placée à l'intérieur même du contre piston. Le cylindre de brûlage des gaz nsufs est donc cette fois-ci assez original puisqu'il est disposé à l'intérieur du piston, alors que les chambres de succion des gaz usés sont au-dessus. Un troisième élément original réside dans le fait que les gaz sont admis dans la paroi du piston maître et acheminés à sa base, dans la partie du piston contraire à celle de la sortie des gaz usés . Les gaz peuvent encore être mieux assimilés par une distribution en parapluie. Le déplacement des gaz est donc là aussi idéal. Enfin, cette configuration permet de rattacher le piston à la bielle originale, ce qui économise pièces et espace.
Une autre réalisation du présent moteur (Fig. VI) cette fois-ci adaptée non pas au piston en U, mais plutôt au piston en H, consiste à se servir d'une tige centrale comme tige-valve conductrice des gaz. Cela permet d'obtenir une injection par le centre, dirigée de façon tout à fait contraire à l'entrée des gaz. Cette version permet de conserver la bougie au haut du cylindre, puisque le cylindre de brûlage sera celui du haut, ou encore de l'insérer dans la paroi du contre-cylindre et ainsi comme précédemment, d'obtenir l'explosion dans la chambre inférieure du piston en H. Une autre réalisation possible (Fig. VIII) résulte en l'utilisation de cylindres angulairement disposés au vilebrequin. Dans cette configuration, préférablement montée comme dans la figure II avec deux ensembles de cylindres-pistons complémentaires, les gaz usés sont aspirés du haut au bas de l'autre. Cette disposition nécessite le conduit d'alimentation parapluie déjà commenté, mais permet de retrancher les bielles de rattachement des pistons aux bielles originales.
Pour terminer cette description de l'invention, nous devons donner quelques précisions concernant l'application de ce type d'induction des gaz à d'autres genres de mécaniques de moteurs. Comme déjà mentionné, ce type d'injection peut être appliqué aux différents genres de moteurs à pistons et aux moteurs rotatifs.
Parmi les moteurs à pistons auxquels on peut appliquer ce type de pistons, on peut citer par exemple les moteurs orbital et les moteurs à cinq temps. Par exemple ici, on aura recours à la dernière configuration de piston évoquée plus haut, appliquée à une mécanique orbitale.
Nos méthodes d'induction, comme déjà mentionné, pourront de plus s'appliquer aux moteurs rotatifs, aux quasi turbines, aux moteurs triangulaires, aux moteurs souffleries.
Description sommaire des figures
La figure I montre le cheminement normal et expansif des gaz dans un moteur à deux temps conventionnel.
La figure II montre comment, dans un moteur anti-refoulement, même en disposant les orifices dans les angles opposés, une partie des gaz neufs sera quand même succionnée dans les chambres d'admission des gaz usés, alors qu'une partie des gaz usés demeurera dans les chambres d'admission des gaz neufs, ce que nous allons corriger aux présentes.
La figure III montre une première manière, par l'ajout d'un tuyau d'acheminement des gaz, comment on peut forcer les gaz neufs à transiter par le haut de la chambre avant de remplacer les gaz usés.
La figure IV montre une deuxième version où ce sera par les parois latérales mêmes du piston que seront acheminés les gaz vers le bas du piston, donc dans un emplacement contraire à leur lieu de succion.
La figure V est une vue en trois dimensions de la figure IV.
La figure VI montre comment on peut effectuer une configuration similaire, mais cette fois-ci, en utilisant un piston en H.
La figure VII est une vue en trois dimensions de la précédente, où on a cependant placé les bougies dans la paroi du contre cylindre, et où par conséquent comme en IV, l'explosion se fait à l'intérieur du piston en H, et la succion dans le cylindre du dessus.
La figure VIII montre comment on peut produire un rattachement direct des pistons aux bielles, en utilisant des ensembles pistons-cylindres, disposés angulairement par rapport au vilebrequin.
La figure IX montre comment notre procédé d'induction peut s'appliquer aux moteurs existants, par exemple ici, aux moteurs à pistons, aux moteurs de type orbital ou encore aux moteurs à cinq temps. Nous avons choisi les configurations en U et en H. La figure X montre une application de ces moteurs à des quasi turbines.
La figure XI montre l'application des techniques anti-refoulement aux moteurs triangulaires et à soufflerie.
Description détaillée des figures
La figure I est une représentation d'un moteur à deux temps conventionnel. On y retrouve notamment le bloc (1 ), le cylindre (2), le piston (3), la bielle (4), le vilebrequin (5), le carburateur (6). Dans la présente figure, on aperçoit la pénétration en expansion (7) des gaz neufs forçant adéquatement l'évacuation des gaz usés (8).
La figure II montre comment, pour un moteur anti-refoulement à deux pistons par exemple, les gaz usés sont aspirés dans le bas du cylindre complémentaire d'admission des gaz usés (12). Ici, un même tuyau de transfert des gaz (13) suffit au double transfert des gaz. Dans cette réalisation, on remarquera que même en disposant les lumières d'alimentation des gaz neufs (14) dans un angle différent de celui des gaz usés (15), les deux types de gaz, par succion, auront tendance (16) à raser la tête du piston (3). Par conséquent, une partie des gaz neufs sera prématurément admise dans les chambres d'admission des gaz usés (12), alors qu'une partie des gaz usés demeurera dans les chambres et cylindre de combustion (2), ce que nous allons corriger dans les prochaines réalisations.
La figure III montre une première manière d'améliorer et même de rendre complète la bonne évacuation des gaz usés, et par voie de conséquence, la bonne admission des gaz neufs. En effet, on ajoutera par exemple, à une disposition similaire à celle de la figure précédente, pour chaque piston, une partie excédentaire que nous nommerons partie admittive du piston (19). Cette partie admittive sera munie d'une lumière d'admission du piston (20) qui, lors du passage du piston à son niveau le plus bas, communiquera avec l'entrée du carburateur (21).
Dans la partie contraire de la partie admittive, sera retranchée une section (22), ce qui permettra la succion des gaz. Ensuite, il sera disposé dans le piston un conduit cylindrique de piston (23) permettant au conduit d'acheminement des gaz neufs (24) d'être inséré de façon coulissante lors de la montée du piston.
Ledit conduit d'acheminement des gaz (24) sera pour sa part, rigidement relié, soit à la tête du cylindre, soit à une plate-forme membrane de support (25), elle-même reliée entre le cylindre et la tête du cylindre. Nous appelons ce conduit, conduit d'acheminement des gaz neufs (24). Ainsi donc, par cette disposition, lors de la succion des gaz usés vers la chambre d'admission des gaz usés, les gaz neufs ne pourront pas se diriger directement vers les lumières d'admission des gaz usés, mais seront plutôt forcés de passer à travers le conduit d'acheminement des gaz (24), à travers la membrane parapluie (27), pour être ensuite intégrés à la chambre de compression- combustion.
Ce circuit permettrait un remplissage complet du cylindre d'admission et de plus, un vidage complet des gaz usés, par succion et cela sans évacuation prématurée des gaz neufs, ce qui est l'effet recherché (29).
La figure IV montre une autre réalisation intéressante permettant un vidage et une admission complète des gaz usés et neufs et qui, de plus, permet de retrancher les bielles d'induction et de ne conserver par conséquent que les bielles conventionnelles.
En effet, dans cette configuration, on retrouve un bloc moteur (1), une ou plusieurs bielles (4) et autres éléments de base mentionnés précédemment. Plus spécifiquement pour la présente réalisation, un contre-piston (30) est rigidement relié au haut du cylindre (31). Ce contre-piston (30) a ceci d'intéressant qu'il est évidé en son centre et, à l'aide de filets requis, permet le vissage d'une bougie (32).
Dans le cylindre principal (2) et autour de la partie élargie du contre-piston (30) est assemblé le piston-maître (33) qui, à sa base, est relié à une bielle (34). Ce piston- maître a la particularité de contenir non seulement des conduits de transport des gaz usés (35) vers les chambres d'admission des gaz usés (36), mais de plus, des conduits d'acheminement des gaz neufs (37) se terminant à la base du piston par dos lumières en parapluie (38) sont incorporés à ses parois latérales. Un conduit d'acheminement des gaz brûlés (35) achemine les gaz brûlés de la chambre intérieure du piston-maître (39) qui fait office de chambre à combustion, vers la chambre d'admission des gaz brûlés. Les gaz sont ensuite propulsés vers les filtres et vers l'extérieur (40).
La figure V est une vue en trois dimensions de la figure précédente à laquelle ont été ajoutés des segments de contre-piston (42), du piston-maître (43), les valves d'échappement (44), les filtres (45).
La figure VI est une réalisation qui, elle aussi, réussit à retrancher les bielles d'induction rectilignes, en raccordant le piston (3) directement à ou aux bielles conventionnelles (4).
Ici, la configuration est faite en aménageant positivement le piston de type en H (49). Ce type de piston, couplé au contre-cylindre (48) et au cylindre de base, formera un cylindre inférieur (50) lui permettant d'être couplé à un conduit d'acheminement des gaz (51 ) servant à la fois de valve (52), disposé rigidement dans le cylindre principal du moteur (2). Ce conduit d'acheminement des gaz spécifique et original (51) sert en effet à la fois de valve d'admission (53). Dans la présente réalisation, le piston- maître, de type piston en H (49), est indirectement relié au vilebrequin (5) par le recours à une bielle conventionnelle (4). Comme déjà mentionné, ce piston en H a ceci de spécifique qu'il est perforé dans son centre et qu'il permet l'intrusion d'un conduit valve qui permettra la succion des gaz usés (56). Bien entendu, le piston en H doit être monté de manière à se jumeler au contre-cylindre (48), disposé rigidement dans le cylindre principal (2).
Le conduit d'acheminement des gaz neufs sera relié rigidement au haut du cylindre principal (60). Il aura l'une de ses lumières disposée vers le bas (68) de manière à s'ouvrir lorsque le piston sera à son plus bas niveau, alors que son extrémité supérieure sera induite de lumières d'admission des gaz usés (59).
Des lumières d'admission des gaz neufs (61) pourront être disposées dans la paroi du contre-cylindre menant vers le cylindre principal.
Ainsi donc, les gaz usés, qui devront de cette manière obligatoirement parcourir le chemin de conduit d'admission (69), céderont totalement la place aux gaz neufs (70), avant d'être admis dans la chambre d'admission des gaz (71 ).
La figure VII représente une vue en trois dimensions de la figure précédente. On doit cependant y noter que l'emplacement des chambres d'admission des gaz usés (17) et de brûlage (70) ont été inversées. Ainsi donc la bougie (32) a été ici disposée dans la paroi du contre-cylindre (62). Outre cette particularité, on y retrouve les mêmes éléments que ceux précédemment énoncés dont, le corps du moteur (1), le vilebrequin (5), la bielle (2), le conduit d'admission des gaz usés (35), les lumières d'admission des gaz usés (15), les lumières d'admission des gaz neufs (14), le piston en H (49), le contre-cylindre (62), la bougie (32), les valves d'échappement (44), le filtre (80), le carburateur.
La figure VIII est une configuration à double ensemble cylindre-pistons, permettant de retrancher les bielles de liaison rectilignes. Dans cette configuration, on retrouve le corps du moteur (1), le vilebrequin (5), les ensembles cylindre (2) piston (3), les conduits d'acheminement des gaz usés (35) et conduits d'acheminement des gaz neufs (24).
On notera que les ensembles pistons-cylindre ont été disposés de façon angulaire (82) par rapport au vilebrequin. Les pistons sont dès lors rattachés latéralement (83) aux bielles.
La figure IX est une application d'une technique d'intégration des gaz à un moteur de type orbital. Ici, chaque ensemble de piston-cylindre est similaire à l'une des réalisations déjà expliquée.
Chaque ensemble est en effet muni d'un contre-piston (30) dans lequel est reliée une bougie (32). Autour de chaque contre-piston (30) est monté un piston-maître (33) et ainsi de suite.
La figure X montre l'application des techniques anti-refoulement à différents types de moteurs, ici triangulaires (90). En ce cas ci, le moteur est monté avec deux ensembles de pales (91 ). L'un des deux ensembles servira de succionneur- expulseur des gaz usés, alors que le second admettra par succion des gaz neufs pour le brûlage (95).
La figure XI montre l'application des techniques anti-refoulement à des moteurs de type quasi turbine (91) ou encore de type soufflerie (92). Ici, comme chacun de ces moteurs comporte pour chaque système plusieurs chambres expansives et dépressives, on peut facilement imaginer un effet de succion des gaz brûlés de l'une à l'autre (100).

Claims

- REVENDICATIONS -
1. Une machine, comprenant en composition :
- un bloc de la machine,
- un ensemble de deux cylindres rigidement reliés à ce corps et réunis entre eux par un conduit d'admission des gaz usés, ces cylindres étant munis de lumières d'admission, un vilebrequin monté rotativement dans ce bloc,
- un contre-cylindre disposé rigidement dans la partie inférieure de chaque cylindre, à travers lequel sont disposées de façon coulissante les bielles de rattachement,
- des bielles de type conventionnel, reliant les manetons du vilebrequin à la partire inférieure des bielles de rattachement,
- des bielles de rattachement, insérées chacune dans le contre- cylindre, et réunissant chaque piston à une bielle, pour chaque cylindre un piston, ce piston étant muni d'une tête d'admission et d'un cylindre interne,
- un conduit d'acheminement des gaz neufs, rigidement relié à un soutien tel une membrane de soutien,
une membrane de soutien, munie de lumières d'admission et rigidement reliée au haut du cylindre,
un conduit d'admission des gaz usés, - des conduits d'admission des gaz neufs,
- des valves d'échappement.
2. Une machine, selon la revendication 1 :
dont les bielles de rattachement ont été retranchées et dont les ensembles pistons, cylindres, ont été disposés de façon angulaire par rapport au vilebrequin,
dont les pistons sont rattachés aux bielles par un encrage situé dans leur paroi latérale.
3. Une machine, selon les revendications 1 ou 2, comprenant en série plusieurs ensembles de doubles cylindres, pistons.
4. Une machine comprenant en composition :
- un bloc de la machine,
- un vilebrequin, rotativement monté dans ce bloc,
- une bielle, librement reliée au maneton du vilebrequin,
- un cylindre principal,
- une tête de cylindre servant à la fois de contre-piston, ce contre-piston étant vide dans son centre de manière à pouvoir y disposer une bougie, - un piston-maître, monté autour du contre-piston, et inséré de façon coulissante à la fois à l'intérieur du cylindre principal et à l'extérieur du contre-piston, ce piston-maître étant à sa base rattaché à une bielle et étant muni de conduits d'évacuation des gaz usés et de conduits d'admission des gaz neufs ,
- une lumière d'admission, disposée dans le cylindre principal,
- une lumière d'échappement, munie d'une valve anti-retour, disposée dans la tête du cylindre,
- des conduits d'admission des gaz usés et neufs, disposés dans le cylindre.
e machine comprenant en composition :
- un bloc de la machine,
- un vilebrequin, rotativement monté dans ce bloc,
- une bielle reliant le maneton du vilebrequin au piston,
- un cylindre, rigidement relié au bloc de la machine,
- un piston en H, inséré de façon coulissante dans le cylindre, en couplage entrelacé avec le contre-cylindre, relié à la bielle, ce piston en H étant de plus muni d'un cylindre lui permettant d'avoir une action coulissante sur le conduit d'acheminement des gaz usés, - un conduit d'acheminement des gaz usés, rigidement relié au haut du cylindre maître, et inséré dans le cylindre du piston en H, ce conduit d'acheminement des gaz usés étant muni, à chaque extrémité de lumières d'entrée et de sortie des gaz brûlés,
- un contre-cylindre, disposé rigidement dans le cylindre, entre les parties excédentaires du piston en H,
- des conduits d'admission des gaz neufs, disposés dans la paroi du cylindre au dessus de la tête du piston en H,
- des conduits d'évacuation des gaz usés, disposés dans la paroi du cylindre, dans la partie inférieure du piston en H,
- des valves anti-retour, disposées sur Ikes lumières des conduits d'échappement,
- un lieu de vissage de bougie, disposé dans la tête du cylindre maître.
6. Une machine selon la revendication 5, dont les chambres d'admission des gaz usés et les valves d'échappement sont disposées dans le haut du cylindre et dont les bougies sont disposées dans la paroi du contre-cylindre.
7. Une machine selon les revendications 5 et 6, comprenant en composition plusieurs ensembles de pistons en H, contre-cylindres, bielles, valves d'échappement, emplacements de bougies.
8. Une machine selon les revendications 1 , 4 et 5 :
- Dont les ensembles pistons-cylindres sont disposés autour du corps du moteur, - Dont les bielles sont toutes reliées à l'une de leurs extrémités à leurs piston respectif et à l'autre extrémité à un même maneton du vilebrequin.
9. Une machine comprenant en composition :
- un bloc de la machine,
- un vilebrequin, rotativement monté dans ce bloc,
- deux cylindres rattachés de façon diamétralement opposée à ce bloc,
- pour chaque cylindre , un piston,
- deux bielles, chacune étant reliée à l'une des ses extrémités à son piston respectif et à l'autre extrémité, au même maneton du vilebrequin,
- des conduits de succion des gaz usés reliant les deux cylindres opposés,
- un conduit d'acheminement des gaz neufs,
- des valves anti-retour d'échappement.
10. Une machine selon la revendication 9 comprenant en composition plusieurs ensembles de doubles pistons-cylindres.
11. Une machine de type rotative, quasi turbine, pour laquelle un ensemble sert d'ensemble succion des gaz brûlés et pour laquelle le second ensemble constitue la partie compressive-explosive.
12. Une machine de type poly-turbine, dont l'un des deux ensembles compressifs complémentaires agit à titre de succionneur-évacuateur des gaz usés, alors que le second agit comme brûleur des gaz neufs.
13. Une machine selon les revendications 11 et 12, comprenant en composition plusieurs ensembles de pales ou poly-turbines.
PCT/FR2002/000053 2001-01-09 2002-01-09 Realisations complementaires de moteurs anti-refoulement WO2002055850A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA002330591A CA2330591A1 (fr) 2001-01-09 2001-01-09 Realisations complementaires de moteurs antirefoulement
CA2,330,591 2001-01-09

Publications (1)

Publication Number Publication Date
WO2002055850A1 true WO2002055850A1 (fr) 2002-07-18

Family

ID=4168059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/000053 WO2002055850A1 (fr) 2001-01-09 2002-01-09 Realisations complementaires de moteurs anti-refoulement

Country Status (2)

Country Link
CA (1) CA2330591A1 (fr)
WO (1) WO2002055850A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113027604A (zh) * 2021-02-25 2021-06-25 敬留献 双缸两冲程超高压发动机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH112460A (fr) * 1924-11-05 1925-11-02 Smith Whaley William Burroughs Procédé de travail de moteur à combustion interne lente et moteur à combustion interne pour la mise en oeuvre de ce procédé.
US3885386A (en) * 1973-05-23 1975-05-27 William V Bachmann Annular piston engine with afterburner and separable power turbine
US3993029A (en) * 1972-07-05 1976-11-23 Wankel Gmbh Method of operating a compound supercharged rotary piston engine
JPS64321A (en) * 1987-06-19 1989-01-05 Mitsubishi Motors Corp Four cycle internal combustion engine
DE9003721U1 (fr) * 1990-03-30 1990-06-07 Forschungsinstitut Fuer Kraftfahrwesen Und Fahrzeugmotoren Stuttgart - Fkfs -, 7000 Stuttgart, De
EP0741232A1 (fr) * 1995-05-03 1996-11-06 Richard Weiss Cylindre comprenant 3 chambres

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH112460A (fr) * 1924-11-05 1925-11-02 Smith Whaley William Burroughs Procédé de travail de moteur à combustion interne lente et moteur à combustion interne pour la mise en oeuvre de ce procédé.
US3993029A (en) * 1972-07-05 1976-11-23 Wankel Gmbh Method of operating a compound supercharged rotary piston engine
US3885386A (en) * 1973-05-23 1975-05-27 William V Bachmann Annular piston engine with afterburner and separable power turbine
JPS64321A (en) * 1987-06-19 1989-01-05 Mitsubishi Motors Corp Four cycle internal combustion engine
DE9003721U1 (fr) * 1990-03-30 1990-06-07 Forschungsinstitut Fuer Kraftfahrwesen Und Fahrzeugmotoren Stuttgart - Fkfs -, 7000 Stuttgart, De
EP0741232A1 (fr) * 1995-05-03 1996-11-06 Richard Weiss Cylindre comprenant 3 chambres

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 013, no. 161 (M - 815) 18 April 1989 (1989-04-18) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113027604A (zh) * 2021-02-25 2021-06-25 敬留献 双缸两冲程超高压发动机

Also Published As

Publication number Publication date
CA2330591A1 (fr) 2002-07-09

Similar Documents

Publication Publication Date Title
BE1013791A5 (fr) Moteur a combustion interne a cinq temps.
FR2487915A1 (fr) Moteur thermique a deux temps
EP1171698B1 (fr) Moteur surmontant la contre-pression échappement
EP1109991B1 (fr) Procede de fonctionnement de chambre d'expansion de moteur depolluant et chambre d'expansion pour sa mise en oeuvre
WO2002055850A1 (fr) Realisations complementaires de moteurs anti-refoulement
EP1489283A1 (fr) Moteur suralimenté à combustion interne à injection indirecte à balayage de gaz brulés et procédé d'alimentation en air suralimenté pour un tel moteur
EP0507648B1 (fr) Moteur à deux temps à contrôle sélectif de la charge introduite dans la chambre de combustion
FR2841597A1 (fr) Moteur a deux temps et procede pour faire fonctionner celui-ci
EP2653690B1 (fr) Moteur deux temps, notamment de type Diesel, avec balayage de gaz brûlés de la chambre de combustion et procédé de balayage pour un tel moteur
FR2957631A1 (fr) Element de moteur a combustion interne a detente prolongee et moteur a combustion interne comprenant un ou plusieurs de ces elements
EP1489280A1 (fr) Procédé de combustion d'un moteur quatre temps suralimenté et moteur utilisant un tel procédé
EP0754268B1 (fr) Moteur diesel a deux temps avec canal d'admission d'air en volute
CA2356435A1 (fr) Moteur anti refoulement ii
WO1986000374A1 (fr) Procede d'amelioration du fonctionnement d'un moteur a combustion interne a deux temps
EP0094872B1 (fr) Moteur à combustion interne à deux temps et à injection directe
FR2827006A1 (fr) Moteur rotatif
FR2989731A1 (fr) Moteur deux temps, notamment de type diesel, avec debit d'air d'admission variable pour le balayage des gaz brules residuels et procede de balayage pour un tel moteur
CA2346190A1 (fr) Deuxieme version complementaire de moteurs antirefoulement
CA2310489A1 (fr) Moteur energetique a double niveaux
FR2888285A1 (fr) Systeme d'admission pour moteurs a injection directe avec dispositif de generation de tourbillons continument variable
FR2883036A1 (fr) Moteur thermique, rotatif a rotor unique et deux pistons cylindriques, biconvexes et a mouvements alternatifs
FR2461096A1 (fr) Moteur rotatif a combustion et a detente prolongee, utilisant une oxydation prealable du melange combustible, avant la combustion
FR2531139A1 (fr) Dispositif de controle d'un circuit de gaz d'une chambre de combustion
FR2625529A1 (fr) 1. Groupe-moteur Turbex 2. Moteur Turbex 3. Turbex
FR2897892A1 (fr) Partie de moteur a explosion comportant une turbine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: CONSTATATION DE LA PERTE D UN DROIT CONFORMEMENT AE LA REGLE 69(1) CBE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP