WO2002054522A1 - Procede de fabrication d'un assemblage d'elements de base pour un etage de pile a combustible - Google Patents

Procede de fabrication d'un assemblage d'elements de base pour un etage de pile a combustible Download PDF

Info

Publication number
WO2002054522A1
WO2002054522A1 PCT/FR2001/004221 FR0104221W WO02054522A1 WO 2002054522 A1 WO2002054522 A1 WO 2002054522A1 FR 0104221 W FR0104221 W FR 0104221W WO 02054522 A1 WO02054522 A1 WO 02054522A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
plate
manufacturing
anode
cathode
Prior art date
Application number
PCT/FR2001/004221
Other languages
English (en)
Inventor
Renaut Mosdale
Pierre Baurens
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to JP2002554907A priority Critical patent/JP2004517446A/ja
Priority to EP01989671A priority patent/EP1356536A1/fr
Priority to US10/451,169 priority patent/US20040071865A1/en
Publication of WO2002054522A1 publication Critical patent/WO2002054522A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2418Grouping by arranging unit cells in a plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to all installations for producing energy by means of fuel cells. It applies both to local or centralized production and to land, space or maritime transport.
  • the power scale of such fuel cells is very wide, since it includes mobile or portable equipment producing a few milliwatts and static installations producing a power of several kilowatts.
  • Fuel cells are electrochemical cells made up of a stack of stages, producing electricity. Each of them comprises an anode and a cathode each placed on either side of an electrolytic element. A different reagent arrives on each outer surface of the two electrodes, namely a fuel and an oxidizer. These react chemically via the electrolytic element, so that it is possible to take an electrical voltage, of the order of 1 volt, at zero current, across the terminals of the two electrodes. If the fuel is hydrogen and the oxidizer oxygen, hydrogen oxidation takes place at the anode, while at the cathode the reduction of oxygen to water occurs. The low voltage produced is the main handicap of the fuel cell system compared to conventional batteries, whose elementary voltage can rise up to 4 volts. To remedy this problem, it is customary to constitute fuel cells constructed by a stack of a large number of basic elements or stages producing electricity, according to a technology which can be called “filter- hurry ".
  • Such a fuel cell therefore consists of a stack of a large number of stages.
  • Each stage itself consists of a basic element consisting of a membrane / electrode assembly 2 comprising a membrane and two electrodes and of the two halves of two bipolar plates 3 each placed between the two basic membrane / electrode elements 2 of two consecutive floors.
  • At least one manifold 4A supplies each stage with hydrogen and at least one manifold 4B supplies each stage with oxygen.
  • Collectors for discharging products from the redox are also provided at the periphery of this stack, but are not shown in this figure 1. The entire stack is kept clamped between two end plates 1.
  • a fuel cell is known using a membrane / electrode base element of a particular type. Indeed, it consists of an assembly of several membrane / electrode basic elements, that is to say of several individual batteries 10, placed one next to or behind the other, an anode 11 and a cathode 12, enclosing an electrolytic layer 13. These individual cells 11 are separated by insulating zones 17, but are connected together by a piece conductive 14. In fact, a first end 15 of this conductive part 14 is connected to the cathode 12 of a first battery 10, while a second end 16 of this conductive part 14 is connected to the anode 11 of the battery 10 which is adjacent to it.
  • the main object of the invention is therefore to remedy these drawbacks, by proposing a method of manufacturing an assembly of membrane / electrode basic elements of fuel cells, comprising several elementary cells, and which can be carried out in series. , reliably, avoiding machining and which can make it possible to achieve optimum sealing between such assemblies of membrane elements / electrodes and their bipolar plates.
  • the main object of the invention is a method of manufacturing a assembly of anode / membrane / cathode base elements of a fuel cell stage and consisting of a plurality of anode / membrane / cathode base elements, electrically connected to each other by an electronic conductor connecting the anode from a base element to the cathode of the adjacent base element.
  • the assembly therefore includes:
  • the method mainly consists in using as support a plate of weft material in which and on which are deposited the materials constituting the various elements of the assembly and in depositing a layer of seal over the entire thickness of the plate and pairs of vertical insulating walls to delimit the different elementary stacks or basic elements.
  • the first operation therefore consists in cutting, to the desired shape, a piece of sheet of weft material.
  • this can be made of a porous matrix, made of Teflon or glass.
  • the third operation is preferably the deposition of the ionic conductor inside the plate, but not between the two vertical walls intended to delimit the elementary cells.
  • the fourth operation is, in this case, the deposition of the electronic conductor between the two vertical insulating walls of all the couples.
  • the following operation consists in depositing the anodes on a first surface of the plate thus filled and the cathodes on the other surface of this same plate.
  • An electronic collector is placed on one of the two ends of the series of anodes and cathodes, in an opposite manner.
  • FIG. 3 therefore represents the assembly of basic elements according to the invention, once completed.
  • All the functional elements of this assembly are parts deposited one after the other on and / or in a plate of weft material whose thickness corresponds to the thickness of the ion conductor layer.
  • the assembly comprises, first of all, a peripheral seal 21, placed over the entire thickness of the plate at the periphery thereof.
  • a chemically inert material which is electronically and ionically insulating is chosen.
  • the different elementary cells of this assembly each consist of an anode 22 placed on a first surface of the plate, a cathode 23 placed on the opposite surface of the plate and a deposit of ionic conductor 24 placed between the anode 22 and the cathode 23, over the entire thickness of the plate. Note that the anode protrudes from one side of the ion conductor 24 and that the cathode 23 protrudes from
  • each projecting part of the anodes 22 and of the cathodes 23 is located opposite, to the thickness of the plate near, a cathode 23 or an anode 22 of a neighboring cell, except for the anode 22 of a first end cell and cathode 23 of the other end cell.
  • This special protruding arrangement of the anodes 22 and the cathodes 23 allows an electronic conductor 26, deposited throughout the thickness of the plate, to connect the anode 22 of a stack of rows n to the cathode 23 of the stack next to the rank n + 1, which is placed opposite it.
  • Two vertical insulating seal layers are used to connect the anode 22 of a stack of rows n to the cathode 23 of the stack next to the rank n + 1, which is placed opposite it.
  • An electronic collector 26 is placed on the anode 22 projecting from a first end stack and on the cathode 23 projecting from the other end stack.
  • the assembly according to the invention forms a homogeneous one-piece assembly impermeable to gas.
  • FIG. 4 shows an embodiment of the plate of weft material in the form of a porous matrix 20.
  • the shape of this porous matrix 20 is directly linked to the application of the fuel cell for which it is intended and to the space available. Different forms are therefore envisaged, ranging from the prismatic cell to the spiral cylinder, passing through a simple sheet or a tube.
  • the thickness of the porous matrix determines the thickness of the assembly of basic elements, produced in this porous matrix. Cleaning or chemical treatment may also be necessary depending on the different applications that must be made of the assembly and the material constituting the porous matrix.
  • porous teflon and porous glass can advantageously be used to constitute this porous matrix 20.
  • FIG. 5 shows the first phase of deposition of material on and in the porous matrix 20.
  • This peripheral seal 21 has a thickness slightly greater than the thickness of the plate 20 so that it can be very slightly compressed.
  • This step is completed by the deposition of several series of two vertical and parallel insulating walls 25 intended to delimit and isolate the areas of the plate 20 which will subsequently be filled with ionic deposition. A slight space remains between each pair of vertical insulating walls 25 to allow another subsequent deposition of an electronic conductor.
  • Each insulating wall 25 crosses the entire thickness of the porous matrix 20 and exceeds one of the two surfaces of the latter, so that each insulating wall 25 also separates two anodes or two cathodes. All these deposits are made using masks placed on the parts of the two surfaces of the porous matrix which must not receive the material to be deposited.
  • FIG. 6 shows a second deposit of material, which is that of the ionic conductor.
  • the ionic conductor deposits 24 relate to the zones delimited by the pairs of insulating vertical walls 25 and the peripheral seal 21 at this same end. These deposits of ionic conductors 24 therefore take place over the entire thickness of the porous matrix 20.
  • FIG. 7 shows the filling of the spaces located between two vertical insulating walls 25 of the same pair, by means of an electronic conductive material 26, and over the entire thickness of the porous matrix 20, in the same way as the conductor deposit ionic 24.
  • the material used can be a mixture of joint material and a material containing a conductive filler, such as graphite, carbon or metal.
  • the last phase consists in depositing the electrodes, that is to say the anodes 22 and the cathodes 23 and adding an electronic collector 26 to each end of the assembly.
  • the anodes 22 and cathodes 23 are deposited in such a way that each catalytic layer deposited and constituting one of these electrodes protrudes with respect to one side of the opposite ion conductor layer 24 which exceeds the vertical insulating wall 25, to be in intimate contact with the deposit of conductive material 26 located between these two vertical insulating walls 25.
  • each layer constituting these anodes 22 and cathodes 23 may be only a few microns.
  • a collector 27 is placed on the anode 22N protruding from a first end of the assembly, while another electrical collector 27 is placed on the protruding part of the last cathode 23N of the assembly, on the other face of the porous matrix. The latter is thus completely filled and is completely covered, except at the level of the peripheral seal 21.
  • the method according to the invention does not implement any machining and is relatively simple, since it only uses material deposition methods with the possible intervention of masks. It is necessary to take into account the fact of the nature of the matrix, which is here porous, but which could be of mat type or fabric.
  • FIG. 8 illustrates an example of stacking made for the construction of a fuel cell where each stage uses an assembly of basic elements as just described.
  • the complementary constituent elements are bipolar plates 30, each placed between two assemblies marked 40, corresponding to the thickness of the porous matrix 20, increased by the compressed additional thickness of the peripheral seal 21.
  • a circuit of fuel collectors 41 is installed on the sides of the stack to supply both oxidizer and fuel, such as air and hydrogen, to each bipolar plate.
  • oxidizer and fuel such as air and hydrogen
  • the bipolar plates 30 must then be electronically insulating and constitute a gas-tight barrier. Common plastic materials, for example of the polysulfone, polyethylene or teflon type, can be used.
  • weft material plates can, perhaps, be used. This allows to be able to build fuel cells of any section, depending on the space available to them.
  • the method of manufacturing such an assembly of basic elements does not involve complicated and costly machining, but only uses deposition methods.
  • This assembly structure of basic elements can be used both for batteries operating at high or low temperature.
  • the number of basic elements or basic cells constituting each assembly can also be a function of the voltage which it is desired to obtain with the fuel cell constituted with a series of assemblies. All applications are possible for such a fuel cell, but light, portable systems requiring electrical supplies with a voltage greater than 1 volt and in which the weight and shape problems arise, constitute a preferred application.
  • the fuel feeding a cell can be stored in the form of compressed gas outside the cell or else in the form adsorbed in hydrides, which can be produced in the form of hydride sheets in contact with the anodes.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Le procédé permet de fabriquer des assemblages de plusieurs éléments de base d'étage de pile à combustible, sans avoir à recourir à des usinages coûteux ou montages mécaniques difficiles. Il consiste à utiliser une matrice poreuse de base (20) dans laquelle sont déposés, pour chaque élément de base, un conducteur ionique (24) entouré d'une anode (22) et d'une électrode (23), l'ensemble est isolé par un joint périphérique (21) et des couples de parois isolantes (25). Des conducteurs électroniques (26) relient l'anode (22) d'un élément de base à la cathode (23) de l'élément de base adjacent. Application à toutes les piles à combustible.

Description

PROCEDE DE FABRICATION
D'UN ASSEMBLAGE D'ELEMENTS DE BASE
POUR UN ETAGE DE PILE A COMBUSTIBLE
DESCRIPTION
Domaine de l'invention
L'invention concerne toutes les installations de production d'énergie au moyen de piles à combustible. Elle s'applique tant à la production locale ou centralisée qu'aux transports terrestres, spatiaux ou maritimes. L'échelle de puissance de telles piles à combustible est très étendue, puisqu'elle comprend des matériels mobiles ou portables produisant quelques milliwatts et des installations statiques produisant une puissance de plusieurs kilowatts.
Art antérieur et problème posé
Les piles à combustible sont des piles électrochimiques constituées d'un empilement d'étages, producteurs d'électricité. Chacun d'entre eux comprend une anode et une cathode placées chacune de part et d'autre d'un élément électrolytique . Un réactif différent arrive sur chaque surface extérieure des deux électrodes, à savoir un carburant et un comburant. Ceux-ci réagissent chimiquement par l'intermédiaire de l'élément, électrolytique, de sorte qu'il est possible de prélever une tension électrique, de l'ordre de 1 volt, à courant nul, aux bornes des deux électrodes. Si le carburant est l'hydrogène et le comburant l'oxygène, une oxydation de l'hydrogène a lieu à l'anode, tandis qu'à la cathode se produit la réduction de l'oxygène en eau. La faible tension produite constitue le principal handicap du système des piles à combustible par rapport aux batteries classiques, dont la tension élémentaire peut monter jusqu'à 4 volts. Pour remédier à ce problème, il est d'usage de constituer des piles à combustible construites par un empilement d'un grand nombre d'éléments de base ou d'étages producteurs d'électricité, suivant une technologie qui peut être appelée « filtre-presse ».
En effet, en référence à la figure 1, une telle pile à combustible est donc constituée d'un empilement d'un grand nombre d'étages. Chaque étage est constitué lui-même d'un élément de base constitué d'un assemblage membrane/électrodes 2 comprenant une membrane et deux électrodes et des deux moitiés de deux plaques bipolaires 3 placées chacune entre les deux éléments de base membrane/électrodes 2 de deux étages consécutifs. Au moins un collecteur 4A alimente chaque étage en hydrogène et au moins un collecteur 4B alimente chaque étage en oxygène. Des collecteurs d'évacuation des produits issus de l' oxydoréduction sont également prévus à la périphérie de cet empilement, mais ne sont pas représentés sur cette figure 1. L'ensemble de l'empilage est maintenu serré entre deux plaques terminales 1.
Un des différents problèmes techniques qui se posent concernant ce type de technologie est, notamment, une distribution assez aléatoire de l'oxygène et de l'hydrogène dans chaque cellule' de circulation de chacun des étages. Des problèmes au niveau de l'étanchéité dans l'empilement se posent également et sont multipliés par le nombre grandissant d'étages. De plus, les plaques bipolaires 3, séparant chacune deux éléments de base membrane/électrodes 2, doivent pouvoir répondre à des critères physiques et chimiques spécifiques, tels qu'une très bonne conductivité électronique, une imperméabilité aux gaz constituant le comburant et le carburant, une faible masse, une résistance chimique à l'eau, à l'oxygène et à l'hydrogène, quand ceux-ci constituent le comburant et le carburant, un faible coût du matériau utilisé et une bonne usinabilité. II s'ensuit l'utilisation, à ce jour, de plaques bipolaires onéreuses, du fait, entre autres, d'usinages importants et de l'emploi de matériaux coûteux. De plus, la forme parallélépipédique habituelle de tels empilages est peu propice à l'intégration de ce matériel.
En référence à la figure 2, par le brevet américain US-5 863 672, on connaît une pile à combustible utilisant un élément de base membrane/électrodes d'un type particulier. En effet, il est constitué d'un assemblage de plusieurs éléments de base membrane/électrodes, c'est-à-dire de plusieurs piles individuelles 10, disposées les unes à côté ou derrière les autres, d'une anode 11 et d'une cathode 12, enserrant une couche électrolytique 13. Ces piles individuelles 11 sont séparées par des zones isolantes 17, mais sont connectées entre elles par une pièce conductrice 14. En effet, une première extrémité 15 de cette pièce conductrice 14 est connectée à la cathode 12 d'une première pile 10, tandis qu'une deuxième extrémité 16 de cette pièce conductrice 14 est reliée à l'anode 11 de la pile 10 qui lui est adjacente.
On imagine facilement la difficulté qui existe pour réaliser un tel assemblage d'éléments de base, non seulement pour la réalisation à petite échelle des différentes piles individuelles, mais aussi pour réaliser leur connexion électrique entre elles. De plus, les problèmes d'étanchéité subsistent au niveau de l'empilement constituant chacune de ces piles individuelles. Enfin, un tel assemblage est relativement épais, ce qui porte préjudice à l'encombrement de la pile constituée par un empilement d'un grand nombre d'étages utilisant un tel assemblage.
Le but principal de l'invention est donc de remédier à ces inconvénients, en proposant un procédé de fabrication d'un assemblage d'éléments de base membrane/électrodes de piles à combustible, comportant plusieurs piles élémentaires, et qui puisse être réalisé en série, de façon fiable, en évitant les usinages et qui puisse permettre de réaliser une étanchéité optimale entre de tels assemblages d'éléments membrane/électrodes et leurs plaques bipolaires .
Résumé de l'invention
A cet effet, l'objet principal de l'invention est un procédé de fabrication d'un assemblage d'éléments de base anode/membrane/cathode d'un étage de pile à combustible et constitué d'une pluralité d'éléments de base anode/membrane/cathode, reliés électriquement les uns aux autres par un conducteur électronique reliant l'anode d'un élément de base à la cathode de l'élément de base adjacent. L'assemblage comprend donc :
- une succession d'anodes sur un premier côté d'une plaque constituant l'assemblage, isolées les unes des autres ; une succession de cathodes sur le deuxième côté de la plaque constituant l'assemblage, isolées les unes des autres et légèrement décalées par rapport à la succession d'anodes ; - un conducteur ionique entre chaque couple anode/cathode, placé dans l'épaisseur de l'assemblage ;
- le conducteur électronique des couples de parois isolantes verticales autour du conducteur ionique ; et - un joint périphérique placé autour de tous ces éléments sur toute l'épaisseur de la plaque, avec une légère surépaisseur de chaque côté.
Selon l'invention, le procédé consiste principalement à utiliser comme support une plaque de matériau en trame dans laquelle et sur laquelle sont déposés les matériaux constitutifs des différents éléments de l'assemblage et à déposer une couche de joint sur toute l'épaisseur de la plaque et de couples de parois isolantes verticales pour délimiter les différentes piles élémentaires ou éléments de base. Dans le déroulement préférentiel du procédé selon l'invention, la première opération consiste donc à découper, à la forme souhaitée, un morceau de plaque de matériau en trame. De préférence, celui-ci peut être constitué d'une matrice poreuse, en téflon ou en verre.
La troisième opération est, de préférence, le dépôt du conducteur ionique à l'intérieur de la plaque, mais pas entre les deux parois verticales destinées à délimiter les piles élémentaires.
La quatrième opération est, dans ce cas, le dépôt du conducteur électronique entre les deux parois isolantes verticales de tous les couples .
L'opération suivante consiste à déposer les anodes sur une première surface de la plaque ainsi remplie et les cathodes sur l'autre surface de cette même plaque.
Un collecteur électronique est placé sur une des deux extrémités des séries d'anodes et de cathodes, de façon opposée.
Liste des figures
L'invention, ses différentes caractéristiques et ses phases de fabrication seront mieux comprises à la lecture de la description suivante, illustrée de plusieurs figures qui représentent respectivement :
- figure 1, déjà décrite, une structure traditionnelle d'une pile à combustible ; - figure 2, un assemblage d'éléments de base utilisé dans un étage d'une pile à combustible selon un type particulier de l'art antérieur ;
- figure 3, en vue cavalière coupée, un assemblage d'éléments de base produit au moyen du procédé selon l'invention ;
- figure 4, en vue cavalière coupée, une plaque de matériau en trame utilisée dans le procédé selon l'invention ; - figure 5, en vue cavalière coupée, la plaque de la figure 4, après la première phase de dépôt du matériau de joint ;
- figure 6, en vue cavalière coupée, la même plaque que la figure 5, après la phase de dépôt du conducteur ionique ;
- figure 7, en vue cavalière coupée, la même plaque que la figure 6, après la phase de dépôt du conducteur électronique ; et
- figure 8, en coupe, une structure de pile à combustible utilisant des assemblages issus du procédé de fabrication selon l'invention.
Description d' une réalisation préférentielle de l'invention
La figure 3 représente donc l'assemblage d'éléments de base selon l'invention, une fois terminé.
Tous les éléments fonctionnels de cet assemblage sont des parties déposées les unes après les autres sur et/ou dans une plaque en matériau en trame dont l'épaisseur correspond à l'épaisseur de la couche de conducteur ionique.
L'assemblage comprend, tout d'abord, un joint périphérique 21, placé sur toute l'épaisseur de la plaque à la périphérie de celle-ci. Pour réaliser ce joint périphérique 21, on choisit un matériau inerte chimiquement et isolant électroniquement et ioniquement .
Les différentes piles élémentaires de cet assemblage sont constituées chacune d'une anode 22 placée sur une première surface de la plaque, une cathode 23 placée sur la surface opposée de la plaque et un dépôt de conducteur ionique 24 placé entre l'anode 22 et la cathode 23, sur toute l'épaisseur de la plaque. On note que l'anode dépasse d'un côté du conducteur ionique 24 et que la cathode 23 dépasse du
Aonducteur ionique 24 du côté opposé à l'anode. De cette manière, chaque partie dépassante des anodes 22 et des cathodes 23 se trouve en regard, à l'épaisseur de la plaque près, d'une cathode 23 ou d'une anode 22 d'une pile voisine, exception faite pour l'anode 22 d'une première pile d'extrémité et la cathode 23 de l'autre pile d'extrémité.
Cette disposition spéciale dépassante des anodes 22 et des cathodes 23 permet à un conducteur électronique 26, déposé dans toute l'épaisseur de la plaque, de relier l'anode 22 d'une pile de rangs n à la cathode 23 de la pile voisine du rang n + 1, qui est placée en regard de celle-ci. Deux couches isolantes verticales de joint
25 séparent le conducteur électronique 26 des deux parties de conducteur ionique 24 qui lui sont adjacentes. Un collecteur électronique 26 est placé sur l'anode 22 dépassant d'une première pile d'extrémité et sur la cathode 23 dépassant de l'autre pile d'extrémité.
Ainsi, l'assemblage selon l'invention forme un assemblage monobloc homogène imperméable au gaz.
La figure 4 montre une réalisation de la plaque en matériau de trame sous la forme d'une matrice poreuse 20. La forme de cette matrice poreuse 20 est directement liée à l'application de la pile à combustible pour laquelle elle est destinée et à l'encombrement disponible. Différentes formes sont donc envisagées, allant de la cellule prismatique au cylindre spirale, en passant par une simple feuille ou un tube .
L'épaisseur de la matrice poreuse, ainsi choisie, détermine l'épaisseur de l'assemblage d'éléments de base, fabriqués dans cette matrice poreuse. Un nettoyage ou un traitement chimique peut également être nécessaire en fonction des différentes applications qui doivent être faites de l'assemblage et du matériau constituant la matrice poreuse. A ce sujet, le téflon poreux et le verre poreux peuvent être avantageusement utilisés pour constituer cette matrice poreuse 20.
La figure 5 montre la première phase de dépôt de matériau sur et dans la matrice poreuse 20. Il s'agit de la formation du joint périphérique 21 à la périphérie de la matrice poreuse 20, sous la forme du dépôt d'un matériau de joint. Ce joint périphérique 21 a une épaisseur légèrement supérieure à l'épaisseur de la plaque 20 pour pouvoir être très légèrement comprimé. Cette étape se complète du dépôt de plusieurs séries de deux parois isolantes verticales et parallèles 25 destinées à délimiter et isoler les zones de la plaque 20 qui seront ultérieurement remplies du dépôt ionique. Un léger espace subsiste entre chaque couple de parois isolantes verticales 25 pour permettre un autre dépôt ultérieur d'un conducteur électronique. Chaque paroi isolante 25 traverse toute l'épaisseur de la matrice poreuse 20 et dépasse l'une des deux surfaces de cette dernière, de manière à ce que chaque paroi isolante 25 sépare également deux anodes ou deux cathodes . Tous ces dépôts se font à l'aide de masques placés sur les parties des deux surfaces de la matrice poreuse qui ne doivent pas recevoir le matériau à déposer.
La figure 6 montre un deuxième dépôt de matériau, qui est celui du conducteur ionique. Les dépôts de conducteur ionique 24 concernent les zones délimitées par les couples de parois verticales isolantes 25 et le joint périphérique 21 à cette même extrémité. Ces dépôts de conducteurs ioniques 24 s'effectuent donc sur toute l'épaisseur de la matrice poreuse 20.
La figure 7 montre le remplissage des espaces situés entre deux parois isolantes verticales 25 d'un même couple, au moyen d'un matériau conducteur électronique 26, et sur toute l'épaisseur de la matrice poreuse 20, de façon identique au dépôt de conducteur ionique 24. Le matériau utilisé peut être un mélange de matériau de joint et d'un matériau contenant une charge conductrice, comme le graphite, le carbone ou le métal. En référence de nouveau à la figure 3, la dernière phase consiste à déposer les électrodes, c'est-à-dire les anodes 22 et les cathodes 23 et d'adjoindre un collecteur électronique 26 à chaque extrémité de l'assemblage. Le dépôt des anodes 22 et des cathodes 23 doit se faire de manière à ce que chaque couche catalytique déposée et constituant une de ces électrodes dépasse par rapport à un côté de la couche de conducteur ionique 24 opposée qui dépasse la paroi verticale isolante 25, pour être en contact intime avec le dépôt de matériau conducteur 26 se trouvant entre ces deux parois isolantes verticales 25.
L'épaisseur de chaque couche constituant ces anodes 22 et cathodes 23 peut être seulement de quelques microns.
Un collecteur 27 est placé sur l'anode 22N dépassant d'une première extrémité de l'assemblage, tandis qu'un autre collecteur électrique 27 est placé sur la partie dépassante de la dernière cathode 23N de l'assemblage, sur l'autre face de la matrice poreuse. Cette dernière se trouve ainsi entièrement remplie et est complètement recouverte, sauf au niveau du joint périphérique 21.
Le procédé selon l'invention ne met en œuvre aucun usinage et est relativement simple, puisqu'il n'utilise que des procédés de dépôts de matériaux avec l'intervention éventuelle de masques. Il faut prendre en compte le fait de la nature de la matrice, qui est ici poreuse, mais qui pourrait être de type mat ou en tissu.
On signale que les trois premières étapes de dépôt peuvent être permutées .
La figure 8 illustre un exemple d'empilage réalisé pour la construction d'une pile à combustible ou chaque étage utilise un assemblage d'éléments de base tel qu'il vient d'être décrit. Les éléments constitutifs complémentaires sont des plaques bipolaires 30, placées chacune entre deux assemblages repérés 40, correspondants à l'épaisseur de la matrice poreuse 20, augmentée de la surépaisseur comprimée du joint périphérique 21. Un circuit de collecteurs de combustible 41 est installé sur les côtés de l'empilage pour alimenter à la fois en comburant et en carburant, par exemple en air et en hydrogène, chaque plaque bipolaire. Pour les piles à combustible de moyennes et de grandes tailles, il est possible d'équiper un tel empilage d'un circuit analogue de circulation de réfrigérant dans chaque plaque bipolaire. Les plaques bipolaires 30 doivent être alors isolantes électroniquement et constituer une barrière étanche au gaz. Des matériaux plastiques courants, par exemple du type polysulfone, polyéthylene ou téflon, peuvent être utilisés .
Avantages de l'invention
Toutes formes de plaques de matériaux de trame peuvent, peut être, être utilisées. Ceci permet de pouvoir construire des piles à combustible de n'importe quelle section, en fonction de l'encombrement disponible qui leur est réservé.
Le procédé de fabrication d'un tel assemblage d'éléments de base ne met pas en jeu d'usinages compliqués et coûteux, mais n'utilise que des procédés de dépôts. Cette structure d'assemblage d'éléments de base peut être utilisée à la fois pour les piles fonctionnant à haute ou à basse température. Le nombre d'éléments de base ou de piles de base constituant chaque assemblage peut être fonction également de la tension que l'on désire obtenir avec la pile à combustible constituée avec une série d' assemblages . Toutes les applications sont possibles pour une telle pile à combustible, mais les systèmes légers, portables et nécessitant des alimentations électriques de tension supérieure à 1 volt et dans lesquels se posent les problèmes de poids et de formes, constituent une application préférentielle.
Le combustible alimentant une pile, ainsi construite, peut être stocké sous forme de gaz comprimé à l'extérieur de la pile ou bien sous forme adsorbée dans des hydrures, qui peuvent être réalisés sous forme de feuilles d'hydrure au contact des anodes.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un assemblage d'éléments de base du type anode/membrane/cathode ou membrane/électrodes, d'un étage de pile à combustible, est constitué d'une pluralité d'éléments de base anode/membrane/cathode, reliés les uns aux autres par un conducteur électronique (26), reliant l'anode (22) d'un élément de base à la cathode (23) de l'élément de base adjacent, l'assemblage comprenant : une succession d'anodes (22) sur un premier côté d'une plaque constituant l'assemblage et isolées les unes des autres ;
- une succession de cathodes (23) sur le deuxième côté de la plaque constituant l'assemblage et isolées les unes des autres, mais étant légèrement décalées par rapport à la succession d'anodes (22) ;
- un conducteur ionique (24) placé entre chaque couple anode (22) /cathode (23) et placé dans l'épaisseur de l'assemblage ;
- le conducteur électronique (26) ;
- des couples de parois isolantes verticales (25) autour de chaque conducteur électronique (26) ; - un joint périphérique (21) placé autour de tous ces éléments, sur toute l'épaisseur de la plaque avec une légère surépaisseur de chaque côté, le procédé étant caractérisé en ce qu'il consiste principalement à utiliser, comme support, une plaque en matériau de trame, dans laquelle et sur laquelle sont déposés les matériaux constitutifs des différents éléments de l'assemblage, et à déposer une couche de joint sur toute l'épaisseur de la périphérie de la plaque et en légère surépaisseur et des couples de deux parois isolantes verticales (25) pour délimiter les différents éléments de base.
2. Procédé de fabrication selon la revendication 1, caractérisé en ce que la première opération consiste à découper, à la forme souhaitée, un morceau de plaque de matériau en trame.
3. Procédé de fabrication selon la revendication 1 ou 2, caractérisé en ce que la plaque en matériau de trame est une matrice poreuse (20) .
4. Procédé de fabrication selon la revendication 3, caractérisé en ce que la matrice poreuse (20) est en téflon.
5. Procédé de fabrication selon la revendication 3, caractérisé en ce que la matrice poreuse (20) est en verre.
6. Procédé de fabrication selon la revendication 3, caractérisé en ce qu'une opération consiste à déposer le conducteur ionique (24) dans toute l'épaisseur de la plaque, mais pas entre les deux parois isolantes verticales (25) destinées à délimiter les piles élémentaires.
7. Procédé de fabrication selon la revendication 3, caractérisé en ce qu'une opération consiste à procéder au dépôt des conducteurs électroniques (26) entre les deux parois isolantes (25) .
8. Procédé de fabrication selon la revendication 3, caractérisé en ce qu'une opération suivante consiste à procéder au dépôt des anodes (22) sur une première surface de la plaque ainsi remplie et des cathodes (23) sur l'autre surface de la même plaque .
9. Procédé de fabrication selon la revendication 8, caractérisé en ce que la dernière phase consiste à procéder au dépôt d'un collecteur électronique (27) placé à une des deux extrémités des séries d'anodes (22) et de cathodes (23), de façon opposée.
PCT/FR2001/004221 2000-12-29 2001-12-28 Procede de fabrication d'un assemblage d'elements de base pour un etage de pile a combustible WO2002054522A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002554907A JP2004517446A (ja) 2000-12-29 2001-12-28 燃料電池基板の基本構成要素のアセンブリ作成方法
EP01989671A EP1356536A1 (fr) 2000-12-29 2001-12-28 Procede de fabrication d'un assemblage d'elements de base pour un etage de pile a combustible
US10/451,169 US20040071865A1 (en) 2000-12-29 2001-12-28 Method for making an assembly of base elements for a fuel cell substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/17279 2000-12-29
FR0017279A FR2819107B1 (fr) 2000-12-29 2000-12-29 Procede de fabrication d'un assemblage d'elements de base pour un etage de pile a combustible

Publications (1)

Publication Number Publication Date
WO2002054522A1 true WO2002054522A1 (fr) 2002-07-11

Family

ID=8858390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/004221 WO2002054522A1 (fr) 2000-12-29 2001-12-28 Procede de fabrication d'un assemblage d'elements de base pour un etage de pile a combustible

Country Status (5)

Country Link
US (1) US20040071865A1 (fr)
EP (1) EP1356536A1 (fr)
JP (1) JP2004517446A (fr)
FR (1) FR2819107B1 (fr)
WO (1) WO2002054522A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100352097C (zh) * 2003-03-18 2007-11-28 原子能委员会 平板型燃料电池及其制造方法
US7479341B2 (en) * 2003-01-20 2009-01-20 Panasonic Corporation Fuel cell, separator plate for a fuel cell, and method of operation of a fuel cell
US8148436B2 (en) 2005-08-16 2012-04-03 Commissariat A L'energie Atomique Ion/electron-conducting composite polymer membrane, manufacturing processes thereof and planar fuel cell core comprising it

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378176B2 (en) * 2004-05-04 2008-05-27 Angstrom Power Inc. Membranes and electrochemical cells incorporating such membranes
US7632587B2 (en) * 2004-05-04 2009-12-15 Angstrom Power Incorporated Electrochemical cells having current-carrying structures underlying electrochemical reaction layers
JP4386187B2 (ja) * 2004-09-03 2009-12-16 日産自動車株式会社 固体酸化物形燃料電池及びその製造方法
JP2006244715A (ja) * 2005-02-28 2006-09-14 Sanyo Electric Co Ltd 複合膜およびそれを用いた燃料電池
KR100760132B1 (ko) * 2005-02-28 2007-09-18 산요덴키가부시키가이샤 복합막, 복합막을 이용한 연료 전지
GB2432717A (en) * 2005-11-25 2007-05-30 Seiko Epson Corp Metal oxide electrochemical cell
CN101490885B (zh) 2006-07-11 2012-07-18 法商Bic公司 燃料电池组件
CN100428551C (zh) * 2006-10-25 2008-10-22 李北明 一种液冷型质子交换膜燃料电池
FR2918799B1 (fr) * 2007-07-10 2010-10-08 Commissariat Energie Atomique Substrat poreux etanche pour piles a combustible planaires et packaging integre.
US8790842B2 (en) * 2007-09-25 2014-07-29 Societe Bic Fuel cell systems including space-saving fluid plenum and related methods
US9056449B2 (en) * 2007-10-01 2015-06-16 Intelligent Energy Limited Methods of manufacturing electrochemical cells
JP5798323B2 (ja) * 2008-02-29 2015-10-21 ソシエテ ビックSociete Bic 電気化学電池アレイ、電気化学システムおよびそれに関する方法
JP5362406B2 (ja) * 2009-03-25 2013-12-11 三洋電機株式会社 燃料電池
US9178244B2 (en) * 2009-12-28 2015-11-03 Intelligent Energy Limited Fuel cells and fuel cell components having asymmetric architecture and methods thereof
FR2958798B1 (fr) 2010-04-07 2015-04-03 Commissariat Energie Atomique Pile a combustible comportant une membrane a conduction ionique localisee et procede de fabrication.
TW201246680A (en) * 2011-03-09 2012-11-16 Sanyo Electric Co Fuel cell and method for making fuel cell
US9935327B2 (en) 2011-03-14 2018-04-03 Sanyo Electric Co., Ltd. Fuel cell and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145062A (ja) * 1989-10-30 1991-06-20 Nippon Soken Inc 燃料電池及びその製造方法
WO1997001194A1 (fr) * 1995-06-21 1997-01-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Systeme de cellules electrochimiques a electrolyte solide
US5759712A (en) * 1997-01-06 1998-06-02 Hockaday; Robert G. Surface replica fuel cell for micro fuel cell electrical power pack
US5861221A (en) * 1993-07-28 1999-01-19 Fraunhofer Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Battery shaped as a membrane strip containing several cells
US5863672A (en) * 1994-12-09 1999-01-26 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E. V. Polymer electrolyte membrane fuel cell
US6007932A (en) * 1996-10-16 1999-12-28 Gore Enterprise Holdings, Inc. Tubular fuel cell assembly and method of manufacture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185142A (en) * 1978-08-09 1980-01-22 Diamond Shamrock Corporation Oxygen electrode rejuvenation methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145062A (ja) * 1989-10-30 1991-06-20 Nippon Soken Inc 燃料電池及びその製造方法
US5861221A (en) * 1993-07-28 1999-01-19 Fraunhofer Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Battery shaped as a membrane strip containing several cells
US5863672A (en) * 1994-12-09 1999-01-26 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E. V. Polymer electrolyte membrane fuel cell
WO1997001194A1 (fr) * 1995-06-21 1997-01-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Systeme de cellules electrochimiques a electrolyte solide
US6007932A (en) * 1996-10-16 1999-12-28 Gore Enterprise Holdings, Inc. Tubular fuel cell assembly and method of manufacture
US5759712A (en) * 1997-01-06 1998-06-02 Hockaday; Robert G. Surface replica fuel cell for micro fuel cell electrical power pack

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 367 (E - 1112) 17 September 1991 (1991-09-17) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7479341B2 (en) * 2003-01-20 2009-01-20 Panasonic Corporation Fuel cell, separator plate for a fuel cell, and method of operation of a fuel cell
CN100352097C (zh) * 2003-03-18 2007-11-28 原子能委员会 平板型燃料电池及其制造方法
US8148436B2 (en) 2005-08-16 2012-04-03 Commissariat A L'energie Atomique Ion/electron-conducting composite polymer membrane, manufacturing processes thereof and planar fuel cell core comprising it

Also Published As

Publication number Publication date
FR2819107A1 (fr) 2002-07-05
EP1356536A1 (fr) 2003-10-29
JP2004517446A (ja) 2004-06-10
FR2819107B1 (fr) 2003-09-05
US20040071865A1 (en) 2004-04-15

Similar Documents

Publication Publication Date Title
WO2002054522A1 (fr) Procede de fabrication d'un assemblage d'elements de base pour un etage de pile a combustible
EP3183379B1 (fr) Procédé d'électrolyse ou de co-électrolyse à haute température, procédé de production d'électricité par pile à combustible sofc, interconnecteurs, réacteurs et procédés de fonctionnement associés
FR2553582A1 (fr) Pile a combustible a oxyde solide comportant un noyau a ecoulement transversal et un systeme de distribution
EP1604420B1 (fr) Pile a combustible planaire et procede de fabrication d une telle pile
EP1749323B1 (fr) Cellule de pile a combustible a electrolyte solide
CA2560761C (fr) Pile a combustible a electrolyte solide a structure etanche
EP3516721B1 (fr) Réacteur d'électrolyse de l'eau (soec) ou pile à combustible (sofc) à taux d'utilisation de vapeur d'eau ou respectivement de combustible augmenté
CA3126965C (fr) Reacteur d'electrolyse ou de co-electrolyse (soec) ou pile a combustible (sofc) a empilement de cellules electrochimiques par modules preassembles, procede de realisation associe
FR3023981A1 (fr) Plaque bipolaire pour reacteur electrochimique a zone d'homogeneisation compacte et a faible differentiel de pression
FR2819108A1 (fr) Element de base composite et son joint pour pile a combustible et procede de fabrication de l'ensemble
WO2015101924A1 (fr) Interconnecteur electrique et fluidique pour electrolyseur eht ou pile a combustible sofc.
WO2019186051A1 (fr) Plaque bipolaire a canaux ondules
CA3233798A1 (fr) Systeme de conditionnement d'une pluralite d'empilements de cellules a oxydes solides de type soec/sofc a haute temperature superposes
EP4315462A1 (fr) Procédé de réalisation d'un empilement à oxydes solides de type soec/sofc et empilement associé
EP2301101B1 (fr) Pile à combustible à empilement membrane/électrodes perpendiculaire au substrat de support et procédé de réalisation
EP3482437B1 (fr) Pile à combustible comprenant un assemblage membrane/électrodes incluant une couche capacitive
EP1807897B1 (fr) Module de pile a combustible, son procede de fabrication et unite contenant plusieurs de ceux-ci
EP3092671A1 (fr) Plaque de guidage d'ecoulement pour pile a combustible
EP4249640B1 (fr) Système de conditionnement d'une pluralité de sous-empilements de cellules à oxydes solides de type soec/sofc à haute température superposés
CA3230063A1 (fr) Interconnecteur pour empilement de cellules a oxydes solides de type soec/sofc comportant des elements en relief differents
WO2024134101A1 (fr) Interconnecteur pour empilement de cellules à oxydes solides de type soec/sofc comportant une couche de contact ajourée
CA3233399A1 (fr) Interconnecteur pour empilement de cellules a oxydes solides de type soec/sofc comportant des languettes de geometrie optimisee
FR2858117A1 (fr) Empilement de cellules dans une pile a combustible
EP1501143A1 (fr) Cellule de pile à combustible comprenant un système de distribution des gaz réactifs
FR2997230A1 (fr) Pile a combustible a membrane echangeuse de protons presentant une duree de vie et des performances accrues

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001989671

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10451169

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002554907

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2001989671

Country of ref document: EP