WO2002053347A1 - Foam injection molding method - Google Patents

Foam injection molding method Download PDF

Info

Publication number
WO2002053347A1
WO2002053347A1 PCT/JP2001/011473 JP0111473W WO02053347A1 WO 2002053347 A1 WO2002053347 A1 WO 2002053347A1 JP 0111473 W JP0111473 W JP 0111473W WO 02053347 A1 WO02053347 A1 WO 02053347A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten resin
mold cavity
mold
gas
pressure
Prior art date
Application number
PCT/JP2001/011473
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Yamaki
Yuji Tanaka
Original Assignee
Asahi Kasei Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kabushiki Kaisha filed Critical Asahi Kasei Kabushiki Kaisha
Priority to US10/450,417 priority Critical patent/US7077987B2/en
Priority to DE10197126T priority patent/DE10197126T1/en
Priority to JP2002554281A priority patent/JPWO2002053347A1/en
Publication of WO2002053347A1 publication Critical patent/WO2002053347A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/58Moulds
    • B29C44/585Moulds with adjustable size of the mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/04Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities
    • B29C44/0415Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities by regulating the pressure of the material during or after filling of the mould, e.g. by local venting

Definitions

  • the present invention relates to a method for foam injection molding of a thermoplastic resin. More specifically, the present invention relates to a method for foaming and injection molding a thermoplastic resin for molding a foamed molded article having a substantially non-foamed skin layer, comprising: (1) a fixed half mold and a combination with the fixed mold half; A mold having a mold cavity defined by the inner wall surface of the fixed mold half and the inner wall surface of the movable mold half; and an inner wall surface of the mold cavity. Has means for discharging molten resin,
  • the foamable thermoplastic resin is injected into the mold cavity in a molten state to form a foamable molten resin mass in the mold cavity.
  • the present invention relates to a foam injection molding method for forming a foamed resin mass.
  • the mold cavity has a good transferability of the inner wall surface shape, and a molded article having a non-foamed skin layer and a highly foamed foam layer can be reproduced efficiently, economically Not only can it be manufactured in a specific manner, but also the thickness of the skin layer of the molded article and the expansion ratio of the molded article can be easily controlled.
  • various excellent thermoplastic resin foam injection molded articles such as housings for light electric appliances and electronic appliances, various automobile parts, various daily necessities and the like can be provided at low cost.
  • the foam injection molding method of the present invention includes not only ordinary thermoplastic resins but also resin compositions which contain flame retardants having low thermal stability and which are difficult to mold at high resin temperatures, and It can be advantageously applied to resins that are difficult to injection-mold by the conventional method because of their low performance.
  • Conventional technology includes not only ordinary thermoplastic resins but also resin compositions which contain flame retardants having low thermal stability and which are difficult to mold at high resin temperatures, and It can be advantageously applied to resins that are difficult to injection-mold by the conventional method because of their low performance.
  • a foam injection molding method for producing a foam molded article obtained by foaming a foamable thermoplastic resin containing a foaming agent is known.
  • the foaming agent azodicarbonamide (ADCA), ⁇ , ⁇ '-dinitrosopentamethylenetetramine (D ⁇ ) or the like is generally used.
  • the amount of the foaming agent is generally in the range of 1 to 5 parts by weight based on 100 parts by weight of the resin.
  • a typical example of the conventional foam injection molding method there is a short shot method. In the short shot method, a blowing agent is included. The molten resin is injected into the mold cavity with a volume smaller than the volume of the mold cavity.
  • the part of the molten resin injected into the mold cavity that first contacts the inner wall of the mold cavity is immediately cooled and solidified to form a solidified layer, and the molten resin that enters the mold cavity later. Flows through the center of the mold cavity along the solidified layer, reaches the flow front (flow front), then goes to the inner wall of the mold cavity, contacts the inner wall of the mold cavity, and is cooled. To form a solidified layer. That is, it has a flow behavior called a so-called fountain flow.
  • the molten resin is advanced to the end of the mold cavity by foaming of the molten resin, and is filled with the mold cavity to form a foam molded article.
  • This short shot method has the drawback that the resin surface of the molded article becomes rough because foaming occurs even at the leading end of the flowing molten resin, but it is the simplest molding method. Widely used.
  • a counter plate as disclosed in Japanese Patent Publication No. 62-166166 is used.
  • sha molding method This involves injecting a molten resin containing a foaming agent into a mold cavity filled with compressed air in a short shot, and then releasing the compressed air in the cavity out of the mold to form a cavity.
  • a molding method that cools the resin while keeping the pressure on the molten resin inside low, and suppresses foaming at the front when filling the resin.
  • the molten resin inside the molded product is cooled, and the volume shrinkage accompanying cooling is foamed. .
  • the basic idea is that the amount of the foaming agent contained in the resin for the purpose of giving the resin foaming properties should be the minimum that can compensate for volume shrinkage by foaming.
  • a foamed molten resin is injected and filled into a mold cavity, a gas is injected into the molten resin, a hollow body is formed once, and a surface layer of the hollow body is formed. After the part is solidified, there is a method of discharging the injected gas body out of the mold and foaming the expandable molten resin into the hollow part. (Japanese Patent Publication No. 53-253052 (US Patent No. 4, 1 229, and 6335))).
  • Japanese Patent Publication No. 53-253052 US Patent No. 4, 1 229, and 6335
  • the injected high-pressure gas is discharged out of the mold, and the foamable molten resin is foamed into the hollow part to form a hollow part in the thick part of the injection molded product.
  • JP-A-7-32405 There is disclosed a method for obtaining a resin molded product in which foam cells are interspersed and the surface of which does not have sink marks.
  • this method also requires time for gas discharge as in the above-mentioned Japanese Patent Publication No. 53-253032 (corresponding to U.S. Pat. No. 4,129,635).
  • a molten resin containing a foaming agent is injected and filled in a mold cavity, and then added to the molten resin.
  • a pressurized gas is injected and a part of the molten resin is discharged to a resin discharge cavity (spirover one-cavity) to form a hollow portion. Then, the pressurized gas in the hollow portion is discharged to remove the pressure.
  • a method is disclosed for obtaining a lightweight molded article having a good appearance, high strength and high rigidity, which is provided with a substantially non-foamed layer on the surface and a foamed portion inside the layer by lowering the surface area.
  • the conventional foam molding method is as follows. There is a problem. When two or more molded articles are to be molded simultaneously using a mold for simultaneously molding a plurality of molded articles, the respective mold cavities must be adjusted in order to achieve the same expansion ratio. The balance between the resin filling amount and the resin pressure must be balanced. In particular, when four or more molded products are to be molded at the same time, the conventional molding method has a problem that, in most cases, the above balance cannot be obtained, and products having the same expansion ratio cannot be obtained. Further, when obtaining a plurality of foamed molded products having different volumes in the same mold, it is more difficult to achieve the above balance. Thus, multi-cavity molding in foam molding is not actually used in mass production.
  • An object of the present invention is to provide a method for foam injection molding of a thermoplastic resin foam molded article, in which the shape of an inner wall surface of a mold cavity is transferred with high precision, and a lightweight foam molded article with high dimensional accuracy and high productivity is economically produced with high productivity. It is intended to provide a method for forming the target in a desired manner.
  • the foam injection molding method for a thermoplastic resin is (1) a fixed half mold and a movable half mold combined with the fixed half mold, and an inner wall surface of the fixed half mold and the movable half mold.
  • a mold having a mold cavity defined by the inner wall surface of the mold is provided, and the inner wall surface of the mold cavity has a molten resin discharging means.
  • the foamable thermoplastic resin is injected into the mold cavity in a molten state to form a foamed molten resin mass in the mold cavity, and (3) the mold cavity is formed.
  • the surface portion of the foamable molten resin mass is reduced. Solidifying to form a skin layer of the foamable molten resin mass; and (4) forming a part of the foamable molten resin mass by the foaming pressure of the foamable molten resin mass itself. It is discharged through the discharging means to the outside of the mold cavity to reduce the pressure on the foamable molten resin mass, whereby the foamable molten resin mass in the mold cavity is foamed. Forming a foamed resin mass having the skin layer which is substantially non-foamed.
  • the mold cavity has good transferability of the inner wall surface shape, and a molded article having a non-foamed skin layer and a highly foamed foam layer can be reproducibly, efficiently, and efficiently. It has been found that not only can it be manufactured economically, but also the thickness of the skin layer of the molded article and the expansion ratio of the molded article can be easily controlled. Based on this finding, the present invention has been completed.
  • one object of the present invention is to provide a molded article having a mold cavity having good inner wall shape transferability and having a non-foamed skin layer and a highly foamed foam layer with good reproducibility and efficiency. Not only can it be manufactured economically, but also the thickness of the skin layer of the molded article and the development of the molded article
  • An object of the present invention is to provide an excellent foam injection molding method capable of easily controlling a foam ratio.
  • 1 (a) to 1 (c) are schematic diagrams showing one embodiment of the first method of the present invention.
  • FIG. 1 (a) is a schematic cross-sectional view showing a state of the inside of a mold before injection filling of a foamable molten resin.
  • FIG. 1 (b) is a schematic cross-sectional view showing a state inside the mold when injection filling of the molten resin is completed.
  • FIG. 1 (c) shows the molten resin discharge means (opening / closing valve 4) opened, a part of the molten resin mass in the mold cavity discharged to the molten resin discharge cavity, and the molten metal when foamed.
  • FIG. 3 is a cross-sectional view showing a state inside a mold.
  • 2 (a) to 2 (c) are schematic views showing one embodiment of the second method of the present invention.
  • FIG. 2 (a) is a schematic cross-sectional view showing a state inside the mold during injection filling of the foamable molten resin.
  • Fig. 2 (b) shows the interior of the mold when the injection of the molten resin is completed and the pressurized gas is injected to form a gas-filled hollow in the molten resin mass. It is a schematic sectional drawing which shows the state of.
  • FIG. 2 (c) shows that the molten resin discharge means (open / close valve 4) is opened, and a part of the molten resin mass and the pressurized gas in the gas-filled hollow part are discharged into the molten resin discharge cavity and foamed.
  • FIG. 4 is a schematic cross-sectional view showing a state inside the mold when the mold is opened.
  • FIG. 3 (a) to 3 (d) are schematic diagrams showing the method of the present invention used in Example 6.
  • FIG. 3 (a) is a schematic cross-sectional view showing the state of the inside of the mold before the injection and filling of the foamable molten resin.
  • FIG. 3 (b) is a schematic cross-sectional view showing the state inside the mold when the injection and filling of the molten resin is completed.
  • FIG. 3 (c) is a schematic cross-sectional view showing a state inside the mold when a pressurized gas is injected into the molten resin mass to form a gas-filled hollow portion after the injection and filling of the molten resin are completed.
  • FIG. 3 (d) shows the molten resin discharge means (opening / closing valve 4) opened, and a part of the molten resin mass and the pressurized gas in the gas-filled hollow are discharged to the molten resin discharge cavity and foamed.
  • FIG. 4 is a schematic cross-sectional view showing a state inside the mold when the mold is opened.
  • FIG. 4 shows a schematic front view of one example of a movable half mold of a four-cavity mold that can be used in the method of the present invention.
  • FIG. 5 is a schematic diagram of an injection molding apparatus used in Examples and Comparative Examples. Explanation of reference numerals
  • thermoplastic resin comprising:
  • a mold comprising a fixed mold and a movable mold combined with the mold, and having a mold cavity defined by an inner wall surface of the fixed mold and an inner wall surface of the movable mold,
  • the mold cavity has an inner wall surface and communicates with a resin inlet.
  • the inner wall surface of the mold cavity has a molten resin discharging means
  • the foamable thermoplastic resin is injected in a molten state into the mold cavity through the resin inlet under a predetermined injection temperature and pressure conditions, and the amount of the foamable molten resin is determined by the predetermined injection temperature and pressure conditions.
  • the predetermined injection temperature and pressure conditions In the range of 95 to 110% by weight of the foamable molten resin having the same volume as the mold cavity as measured below, preferably 9 8 to: L 0 5% range,
  • a part of the foamable molten resin mass is discharged to the outside of the mold cavity through the molten resin discharging means by a foaming pressure of the foamable molten resin mass itself, and the foamable molten resin mass is discharged.
  • the pressure on the mass is reduced, thereby foaming the foamable molten resin mass within the mold cavity to form a substantially non-foamed foamed resin mass having the skin layer.
  • thermoplastic resin a thermoplastic resin
  • a mold comprising a fixed mold and a movable mold combined with the mold, and having a mold cavity defined by the inner wall surface of the fixed mold and the inner wall surface of the movable mold.
  • the mold cavity has an inner wall surface and communicates with the resin inlet and, if desired, the gas inlet.
  • the inner wall surface of the mold cavity has a molten resin discharging means
  • a pressurized gas is injected into the foamable molten resin mass in the mold cavity through the resin inlet or the gas inlet to form a gas-filled hollow portion in the foamable molten resin mass.
  • step (3) during step (2), after completion of step (2), or during and after step (2);
  • a part of the foamable molten resin mass and at least a part of the pressurized gas in the gas-filled hollow portion are subjected to the foaming pressure of the foamable molten resin mass itself and the pressure in the gas-filled hollow portion. Due to the pressure of the pressurized gas, the outside of the mold cavity is discharged through the molten resin discharging means. Discharging to reduce the pressure on the foamable molten resin mass, thereby foaming the foamable molten resin mass in the mold cavity to form a foam having the substantially non-foamed skin layer. Forming a resin mass,
  • a foam injection molding method characterized by this is provided. Next, in order to facilitate understanding of the present invention, basic features and preferred embodiments of the present invention will be listed.
  • thermoplastic resin 1. A foam injection molding method for thermoplastic resin
  • a mold comprising a fixed mold and a movable mold combined with the mold, and having a mold cavity defined by an inner wall surface of the fixed mold and an inner wall surface of the movable mold,
  • the mold cavity has an inner wall surface and communicates with a resin inlet.
  • the inner wall surface of the mold cavity has a molten resin discharging means
  • the foamable thermoplastic resin is injected in a molten state into the mold cavity through the resin inlet under a predetermined injection temperature and pressure conditions, and the amount of the foamable molten resin is determined by the predetermined injection temperature and pressure conditions. Measured in the range of 95 to 110% of the weight of the foamable molten resin having the same volume as the volume of the mold cavity,
  • a part of the foamable molten resin mass is discharged to the outside of the mold cavity through the molten resin discharging means by a foaming pressure of the foamable molten resin mass itself, and the foamable molten resin mass is discharged. Reducing the pressure on the foamed molten resin mass in the mold cavity to form a substantially non-foamed foamed resin mass having the skin layer.
  • step (3) Pressing the foamable molten resin mass in step (3), injecting additional foamable molten resin into the mold cavity and applying a predetermined resin holding pressure to the foamable molten resin mass 2.
  • step (3) Pressing the foamable molten resin mass in step (3), injecting additional foamable molten resin into the mold cavity and applying a predetermined resin holding pressure to the foamable molten resin mass 2.
  • step (3) Pressing the foamable molten resin mass in step (3), injecting additional foamable molten resin into the mold cavity and applying a predetermined resin holding pressure to the foamable molten resin mass 2.
  • step (2) and after step (1) pressurized gas is introduced into the mold cavity to reduce the pressure of the mold cavity.
  • the molten resin discharging means of the mold cavity is an on-off valve, and the mold has a molten resin discharging cavity communicating with the mold cavity via the on-off valve.
  • the volume of the molten resin discharging cavity is larger than the volume of the part of the foamable molten resin mass discharged to the outside of the mold cavity through the on-off valve in step (4).
  • the foamable molten resin is composed of the molten resin and at least one gaseous foaming agent dissolved therein, and the at least one gaseous foaming agent is carbon dioxide gas and carbon dioxide gas. 7. The method according to any one of items 1 to 6, wherein the method is selected from the group consisting of:
  • the content of the foaming agent in the foamable molten resin is 0.05 to 10%. 8. The method according to the above item 7, wherein the method is characterized in that the amount is by weight.
  • thermoplastic resin 9
  • a mold comprising a fixed mold and a movable mold combined with the mold, and having a mold cavity defined by an inner wall surface of the fixed mold and an inner wall surface of the movable mold,
  • the mold cavity has an inner wall surface and communicates with a resin inlet and, if desired, a gas inlet.
  • the inner wall surface of the mold cavity has a molten resin discharging means
  • the foamable thermoplastic resin is injected in a molten state into the mold cavity through the resin inlet under a predetermined injection temperature and pressure conditions, and the amount of the foamable molten resin is determined by the predetermined injection temperature and pressure conditions. Measured in the range of 55 to 110% by weight of the foamable molten resin having the same volume as the mold cavity,
  • a pressurized gas is injected into the foamable molten resin mass in the mold cavity through the resin inlet or the gas inlet to form a gas-filled hollow portion in the foamable molten resin mass.
  • step (3) during step (2), after completion of step (2), or during and after step (2);
  • At least a part of the foamable molten resin mass and at least a part of the pressurized gas in the gas-filled hollow portion are combined with the foaming pressure of the foamable molten resin mass itself and the pressure in the gas-filled hollow portion.
  • the pressure of the pressurized gas is discharged through the molten resin discharging means to the outside of the mold cavity to reduce the pressure on the foamable molten resin mass, thereby reducing the pressure in the mold cavity.
  • step (2) and after step (1) pressurized gas is introduced into the mold cavity to reduce the pressure of the mold cavity.
  • the molten resin discharging means of the mold cavity is an open / close valve, and the mold has a molten resin discharge cavity that communicates with the mold cavity through the open / close valve. That is, the volume of the molten resin discharging cavity is larger than the volume of the foamed molten resin mass discharged to the outside of the mold cavity through the on-off valve in step (4).
  • the foamable molten resin comprises the molten resin and at least one gaseous foaming agent dissolved therein, and the at least one gaseous foaming agent comprises carbon dioxide gas and nitrogen. 15. The method according to any one of items 9 to 14, wherein the method is selected from a group consisting of gas.
  • the method of the present invention includes the step of (3) Do not use pressurized gas to pressurize the molten resin mass in the mold cavity
  • the injection amount of the foamable molten resin in the step (2) is measured under a predetermined injection temperature and pressure condition and has the same volume as the volume of the mold cavity. It is in the range of 95 to 110% by weight of the foamable molten resin, preferably in the range of 98 to 105%. Further, in the second method, the injection amount of the foamable molten resin in the step (2) is measured under a predetermined injection temperature and pressure condition and has a volume equal to the volume of the mold cavity.
  • the “injection temperature” in the present invention refers to a cylinder temperature of a molding machine and is substantially equal to a temperature of a molten resin to be injected.
  • the “injection pressure” in the present invention is a pressure required to inject a molten resin.
  • the injection amount of the molten resin defined as above is hereinafter often referred to as “mold mold filling rate”.
  • the molten resin can be sufficiently discharged to the outside of the mold cavity through the molten resin discharging means. Also, since the part of the molten resin mass is discharged in a very short time, a rapid expansion can be generated while the molten resin is hardened, so that a high expansion ratio is achieved. It has been found that because the molten resin is rapidly cooled by the heat of vaporization at this time, the cooling time is short and the molding cycle can be shortened. Then, it was found that the obtained foamed molded article had a substantially non-foamed skin layer and a foamed layer wrapped by the skin layer, and was excellent in surface appearance and dimensional accuracy. Furthermore, the present inventors have also found that a similar effect can be obtained when a foaming gas (for example, nitrogen gas) other than carbon dioxide gas is used. Based on these findings, the present invention has been completed.
  • a foaming gas for example, nitrogen gas
  • the method of the present invention lowers the solidification temperature by dissolving foaming gas typified by carbon dioxide gas in a molten resin, To improve the melt fluidity of the resin and to form a part of the foamable molten resin mass after pressing the foamable molten resin mass against the inner wall of the mold cavity by the injection pressure or high pressure gas. Due to the foaming pressure of the mold itself, the foam is discharged to the outside of the mold cavity through the molten resin discharge means to reduce the pressure on the foamed molten resin mass, thereby reducing the pressure in the mold cavity.
  • This is a foam injection molding method that obtains a highly foamed molded product with excellent appearance and dimensional accuracy by combining foaming of the foamable molten resin mass.
  • the viscosity of the molten resin is significantly lower than the inherent viscosity of the thermoplastic resin, and the solidification temperature is lowered. It lowers the fluidity and foamability.
  • the molten resin is injected and filled into the mold cavity by the counter pressure method, the molten resin is filled in a state in which foaming of the molten resin is suppressed by the pressurized gas in the mold cavity. .
  • the viscosity of the molten resin is reduced by containing the foaming gas as described above, and the resin is filled with full shot.
  • a high-pressure gas to form a gas-filled hollow portion and because the gas pressure is maintained, it is strongly pressed against the inner wall surface of the mold cavity, and the inner wall surface of the mold cavity is pressed.
  • the shape is well transferred to the surface of the molten resin mass.
  • only the surface portion of the molten resin mass is cooled and solidified at this stage to form a skin layer.
  • This skin layer is It has a non-foaming or micro-foaming (expansion ratio of less than 1.01) filled with fat. Since foaming does not occur afterwards in the solidified skin layer, a high-quality molded product having no foaming pattern on the surface can be obtained by the method of the present invention.
  • the thickness of the skin layer can be easily controlled by adjusting the cooling and solidifying time.
  • the cooling and solidifying time is usually preferably in the range of 0.1 second to 2 seconds.
  • the molten resin mass inside the skin layer is kept sufficiently foamable because the solidification temperature is lowered due to the dissolution of the foamable gas. ing.
  • a part of the molten resin mass is instantaneously discharged and released to the outside of the mold cavity through the molten resin discharging means by the foaming pressure of the molten resin mass itself, and is melted in the mold cavity.
  • the resin mass is foamed, or at least a part of the molten resin mass and at least a part of the pressurized gas in the gas-filled hollow portion are subjected to the foaming pressure and the gas-filled hollow portion of the molten resin mass itself.
  • the pressure of the pressurized gas instantaneously discharges and opens the outside of the mold cavity through the molten resin discharge means, and foams the molten resin mass in the mold cavity.
  • the thickness of the skin layer and the foaming ratio can be easily controlled.
  • a molded article having a foaming ratio of 1.05 to 4.0 as the expansion ratio of the foamed layer can be favorably molded.
  • the thickness of the skin layer is not more than 20% of the maximum thickness of the molded article, or a thin skin layer having a thickness of 1 mm or less, and A lightweight molded article having a foamed layer having an open-cellular structure can be favorably molded.
  • thermoplastic resin used in the molding method of the present invention examples include polyethylene, polypropylene, polyvinyl chloride, acryl resin, styrene resin, polyethylene terephthalate, and polyethylene terephthalate.
  • the styrene-based resin used herein refers to homopolymers and copolymers that use styrene as an essential raw material, and polymer blends obtained from these polymers and other resins, and polystyrene. Or it is preferably ABS resin.
  • Polystyrene is a styrene homopolymer.
  • a so-called rubber-reinforced polystyrene having a structure in which rubber is distributed in a polystyrene resin phase is also preferably used.
  • thermoplastic resin whose melt viscosity is greatly reduced when a foaming gas, particularly carbon dioxide gas is dissolved, is preferable, and a styrene-based thermoplastic resin is used for an amorphous thermoplastic resin.
  • Resin, polycarbonate, polyphenylene ether, modified poly Phenylene ether resin is preferred.
  • polycarbonate not only has high solubility of carbon dioxide, but also produces carbon dioxide when pyrolyzed. Therefore, decomposition reaction occurs when molten resin contains carbon dioxide gas as a blowing agent. This is advantageous for the method of the present invention, because it has the advantage that the equilibrium is shifted and the decomposition reaction rate is reduced.
  • a polyamide resin composition containing 10% by weight or more of an inorganic filler such as glass fiber is preferable. Those having an aromatic ring are particularly suitable.
  • the molecular weight of various difficult-to-process resins for example, the resin is too large to be injection-molded by a conventional method, or the amount of inorganic fillers is large, and the flowability is very poor.
  • Additives such as thermoplastic resin, resin with poor thermal stability and easy to decompose, resin with high softening temperature that needs to be molded at a remarkably high temperature, and pyrolysis and flame retardant Resins can also be used by dissolving a large amount of foaming gas such as carbon dioxide
  • the above-mentioned "large amount of foaming gas” means, for example, 0.2% by weight or more based on the sum of the foaming gas weight and the resin weight).
  • thermoplastic resin having low flowability for injection molding by a conventional method or a thermoplastic resin having a molecular weight that is too large for injection molding by a conventional method.
  • Resins, thermoplastic resins whose softening temperature is too high to be injection molded by conventional methods also require large amounts of foaming gas (eg, foaming By dissolving 0.2% by weight or more with respect to the sum of gas weight and resin weight), it can be used favorably.
  • foaming gas eg, foaming By dissolving 0.2% by weight or more with respect to the sum of gas weight and resin weight
  • Acrylic resin with a melt flow rate of 1.0 or less.
  • ABS resin with a melt flow rate of 3.0 or less.
  • thermoplastic resin containing an easily decomposable flame retardant for example, Mobifenyl ether, tribromophenol, chlorinated polyethylene.
  • the meritlett rate is a value measured by the measurement method described in JISK7201, and the measurement conditions are the measurement conditions described in the JIS that are generally used for each resin.
  • the measurement conditions are the measurement conditions described in the JIS that are generally used for each resin.
  • acrylic resin condition 15
  • polystyrene and rubber-reinforced polystyrene condition 8
  • ABS resin condition 11
  • poly-polycarbonate condition 20.
  • the values of polyacetal and polyethylene are measured under condition 4
  • the values of polypropylene are measured under condition 14; the unit is g / 10 minutes.
  • Extrusion does not require as high a fluidity as injection molding, so polymers of high molecular weight are commonly used and are used in the process of the present invention for these extrusions and not for injection molding
  • the high-molecular-weight polymer also dissolves a large amount of carbon dioxide, and the molten resin mass itself has a part of the molten resin mass after the foamable molten resin mass is pressed against the mold wall surface by pressing.
  • the molten resin is discharged to the outside of the mold cavity through the molten resin discharging means to reduce the pressure on the molten resin mass, thereby foaming the molten resin mass in the mold cavity.
  • thermoplastic resins whose softening temperature is too high for injection molding include poly (vinylene ether), poly (phenylene ether) and polystyrene, or rubber-reinforced polystyrene. And a weight mixing ratio of 100: 0 to 60:40.
  • Polyethylene polyester has poor moldability, and is generally polystyrene or rubber reinforced poly.
  • Tylene is used in an amount exceeding 40% by weight.
  • foaming gas such as carbon dioxide is used. For example, it can be used by dissolving 0.2% by weight or more based on the sum of the foaming gas weight and the resin weight.
  • the method of the present invention is also effective for resins that decompose or degrade when heated until the molten resin has sufficient fluidity, such as a high softening temperature and a low decomposition temperature.
  • high fluidity can be obtained at a low resin temperature.
  • the thermoplastic resin is an amorphous thermoplastic resin
  • molding is performed at a temperature not higher than the glass transition temperature of the thermoplastic resin containing no foaming gas + 150 ° C as the melting temperature.
  • the thermoplastic resin is a crystalline thermoplastic resin
  • the melting temperature is not higher than the melting point of the thermoplastic resin containing no foaming gas + 100 ° C or less. Molding is possible.
  • the foaming gas (gas foaming agent) used by being dissolved in the thermoplastic resin in the present invention has an effect as a plasticizer that lowers the melt viscosity when dissolved in the thermoplastic resin.
  • a plasticizer that lowers the melt viscosity when dissolved in the thermoplastic resin.
  • the gaseous foaming agent include replacing some of the hydrogen atoms of carbon dioxide gas, nitrogen gas, saturated hydrocarbons having 1 to 5 carbon atoms, and saturated hydrocarbons having 1 to 5 carbon atoms with fluorine.
  • Fluoroalkane obtained by the above method for example, fluorocarbon.
  • fluorocarbon for example, fluorocarbon.
  • carbon dioxide gas and nitrogen gas are preferred, and carbon dioxide gas is most preferred.
  • Nitrogen gas has lower solubility in resin than carbon dioxide gas and has less plasticizer effect, but it has a temperature characteristic of increasing solubility in resin at higher temperatures, so it can obtain a high foaming pressure. it can.
  • the weight of the molded article immediately after the injection molding is reduced.
  • the amount of effervescent gas that escapes during injection molding differs slightly depending on the molding method.
  • a preferred embodiment of the present invention is to use carbon dioxide gas for effervescent gas and pressurize gas for pressurizing the mold cavity.
  • carbon dioxide gas for effervescent gas
  • pressurize gas for pressurizing the mold cavity.
  • the foaming gas dissolves well in the thermoplastic resin, becomes a good plasticizer, improves the fluidity of the thermoplastic resin, and functions as a foaming agent.
  • the foamable molten resin used in the method of the present invention comprises the molten resin and at least one gaseous blowing agent dissolved therein.
  • the content of the gaseous foaming agent in the foamable molten resin is preferably in the range of 0.55% by weight to 10% by weight. When the content is 0.05% by weight or more, the melt fluidity of the resin can be remarkably improved and the resin can be foamed, more preferably 0.2% by weight or more, and still more preferably 0.2% by weight. More than 5% by weight.
  • the maximum content of the gaseous foaming agent in the foamable molten resin is about 10% by weight. This is because the dissolution of a gaseous blowing agent (especially carbon dioxide gas) in a large amount into the molten resin is subject to many restrictions on equipment, and the counter gas pressure required when molding by the counterpressing method. This is because the pressure (pressure at which the mold cavity is pre-pressed with the pressurized gas before the injection of the molten resin) becomes extremely high.
  • the content of the gaseous blowing agent in the foamable molten resin is preferably 7% by weight or less, and more preferably 5% by weight or less.
  • the gaseous blowing agent eg, carbon dioxide
  • the foamable molten resin In order to increase the foaming ratio of the molded article, it is necessary to increase the amount of the gaseous blowing agent (eg, carbon dioxide) dissolved in the foamable molten resin to lower the viscosity of the molten resin and to enhance the foaming property of the molten resin. Is preferred.
  • the following two methods are preferred as a method for dissolving a foaming gas (gaseous foaming agent) in a thermoplastic resin.
  • a foaming gas gaseous foaming agent
  • the first is a method in which granular or powdery resin is absorbed in advance in a carbon dioxide gas atmosphere and then supplied to the injection molding machine.It is absorbed by the pressure, ambient temperature, and time of absorption of carbon dioxide. The amount is determined. For example, if the pressure of carbon dioxide gas is 2 to 10 MPa and the resin is absorbed at room temperature for 3 to 8 hours, the content of carbon dioxide gas in the resin becomes 0.1 to 10% by weight. In this method, a part of the carbon dioxide gas in the resin is volatilized as the resin is heated during plasticization, so that the amount of the carbon dioxide gas in the molten resin is smaller than the amount previously absorbed. For this reason, it is desirable that the resin supply path, such as the hopper of the molding machine, also be a carbon dioxide gas atmosphere.
  • Another method is to dissolve carbon dioxide gas in the resin during or after plasticizing the resin in the molding machine cylinder.
  • carbon dioxide gas is injected into the plasticized resin from the middle, tip, or cylinder of the screw.
  • it is preferable to increase the screw groove depth near the injection part to lower the resin pressure.
  • it is preferable to provide a mixing mechanism such as a damage or a mixing pin to the screw or to provide a static mixer in the resin flow path.
  • an in-line screw system or a screw pre-blur system using a ram type injection molding machine with a screw pre-plasticizing device
  • thermoplastic resin The carbon dioxide gas in the thermoplastic resin is gradually released into the atmosphere if the molded article is left in the air after the thermoplastic resin has solidified.
  • a pressurized gas is introduced into the mold cavity before the step (2) (injection of the molten resin), and the pressure of the mold cavity is injected in the step (2).
  • the pressure it is preferable to set the pressure so that the foamable molten resin does not cause foaming at the flow front, that is, to perform injection molding by a coupon prestressing method.
  • the “pressure at which the foamable molten resin injected in step (2) does not cause foaming in the flow front” is defined as the foamable molten resin. It is usually 3 PMa to 10 PMa, preferably 5 PMa to 8 PMa, although it varies depending on the foaming pressure of the compound.
  • the pressure of the pressurized gas introduced into the cavity only needs to be a minimum pressure that does not cause a foaming pattern on the surface of the molded product.
  • the amount of gas used in one process should be minimized, and the sealing of the mold cavity can be performed.
  • Simple structure of gas supply device For simplicity, it is better to keep the gas pressure close to the minimum required.
  • air, carbon dioxide gas, nitrogen gas, and other various gases that are inert to the resin can be used alone or as a mixture.
  • Gases with high solubility in thermoplastic resins e.g., carbon dioxide gas, nitrogen gas, part of hydrogen atoms in saturated hydrocarbons having 1 to 5 carbon atoms, and saturated hydrocarbons having 1 to 5 carbon atoms Fluoroalkanes obtained by substituting with fluorine, for example, freon, are preferred.
  • Carbon dioxide gas is particularly preferred because it has a high effect of improving the transferability of the inner wall surface of the mold cavity to the molded product.
  • the present inventors have already disclosed in Japanese Patent Application Laid-Open No. H10-1288783. (Corresponding to EP826477A2) and Japanese Patent Application Laid-Open No. 11-245562, as described in Japanese Patent Application Laid-Open No. 11-245562, the higher the pressure inside the capty, the better the transferability. Therefore, when high transferability is required, it is preferable to increase the gas pressure according to the clamping force of the molding machine and the sealing performance of the mold.
  • the carbon dioxide content of the pressurized gas introduced into the mold cavity is preferably higher, and particularly preferably 80% by weight or more.
  • the molten resin is not foamed after the molten resin is injected and filled into the gas-pressurized mold cavity.
  • the molten resin is pressed against the inner wall surface of the mold cavity with high pressure, and the surface shape of the inner wall surface of the mold cavity is transferred to the molten resin mass. Hold until layer has formed.
  • the pressurized gas supplied into the mold cavity before injection molding of the molten resin is checked whether there is a swirl mark on the surface of the molded product and the transfer status of the inner surface of the mold cavity. After the completion of resin injection and filling, select an appropriate time until the end of resin pressurization and open. If pressurized gas remains in the mold cavity after resin pressurization, the resin surface is pressed by the pressurized gas, causing dents or whitish surfaces due to foaming. It is not desirable.
  • a foamed molded article having no swirl mark on the molded article surface can be obtained by the counter-pressure method, but particularly for internal mechanism parts that do not require a good appearance. Can be formed without using the counter-pressure method.
  • swirl marks are formed on the surface, but in step (3), pressure is applied to the molten resin mass by applying a resin holding pressure. It has a high skin layer, and it is possible to obtain light molded products with high foam and high strength and dimensional accuracy.
  • a method of pressurizing the molten resin mass in step (3) of the method of the present invention a method of injecting additional molten resin into the mold cavity to apply a resin holding pressure, Injecting a pressure fluid such as gas into the molten resin, and injection compression molding to reduce the cavity volume.
  • the pressure for pressurizing the molten resin mass is set so that the surface of the molten resin is pressed against the inner wall surface of the mold cavity and solidifies while sufficiently transferring the surface shape of the inner wall surface of the mold cavity.
  • carbon dioxide is used as the pressurized gas of the mold cavity, higher transfer pressure can be obtained with higher pressure.
  • the pressure for pressurizing the molten resin mass is usually adjusted in the range of several MPa to 200 MPa according to the flow characteristics of the molten resin.
  • the time required for pressurizing the molten resin mass is the minimum time required for the surface of the molten resin to solidify. If it is too long, the thickness of the molten portion to be foamed later decreases, or the resin temperature decreases and the viscosity increases. Therefore, it is difficult to obtain a sufficient foaming state.
  • the pressurization time for the molten resin mass is usually in the range of 0.1 to 2 seconds.
  • the gas used to form the gas filling space is as follows.
  • the same gas as the gas that can be used as a gas that can be used as a foaming gas (a gaseous foaming agent) to be contained in a molten resin or a gas for pressurizing a mold cavity in advance can be used.
  • the same gas may be used as the gas for forming the hollow portion, the gaseous foaming agent, and the pressurized gas for the mold cavity, but it is not always necessary to use the same gas, and any combination is possible.
  • the pressurized gas that forms the hollow portion carbon dioxide gas is used because of its excellent effect of lowering the glass transition temperature (Tg) and solidification temperature of the molten resin and its excellent solubility in the molten resin. I like it
  • a part of the molten resin mass is discharged to the outside of the mold cavity (for example, the resin discharging cavity 3) to reduce the pressure on the molten resin mass. Since a foam layer is formed by lowering the temperature, it is necessary to mold two or more foam molded products at the same time with one mold or to obtain two or more foam molded products with different volumes with one mold. The expansion ratio of the molded product Uniformity can be easily obtained, and multi-cavity molding can be easily performed.
  • FIGS. 1 (a) to 1 (c) are explanatory views schematically showing one example of an embodiment of the first method of the present invention in a case where the obtained molded article has a thick rod shape. is there.
  • reference numeral 1 denotes a mold composed of a fixed half mold la and a movable half mold lb, and the inner wall of the fixed half mold la and the inner wall of the movable half mold lb.
  • the mold cavity 2 is a space in the mold 1 for molding a molded product.
  • the resin discharge cavity 3 outside the mold cavity 2 is a space in the mold 1 which is not intended for molding a molded product as a product, and is a space in the mold cavity 2.
  • a communication passage 5 which is opened and closed by an on-off valve 4 (melt resin discharging means).
  • the on-off valve 4 a valve that opens and closes by hydraulic pressure, air pressure, magnetism, motor, or the like can be used.
  • Reference numeral 12 denotes an injection nozzle
  • reference numeral 13 denotes a pressurized gas nozzle built in the injection nozzle 12.
  • the resin discharge cavity 3 has a gas supply port 14 and a vent 14 serving as a discharge port, and the vent 14 is connected to the counter gas supply three-way valve 16 by piping. Have been.
  • a gas injection port 18 is provided to allow the pressurized gas to be directly injected into the molten resin mass in the mold cavity 2. You.
  • the foaming molten resin 8 is injected from the injection nozzle 12 into the mold cavity 2.
  • the foamable molten resin 8 is to be injected and filled into the mold capty 2 through the sprue 6 and the runner 17.
  • a gas body is supplied from the counter gas supply hole 14 to pressurize the mold cavity 2, and then the gas is supplied to the thermoplastic resin.
  • the foaming molten resin 8 containing a foaming agent for example, carbon dioxide gas
  • the mold cavity filling rate of the molten resin 8 is in the range of 95% to 110%.
  • pressurized gas in the mold cavity 2 is connected to the vent 14 of the cavity 3 for resin discharge. And immediately release to the atmosphere.
  • the on-off valve 4 is closed, molten resin cannot pass through, but is not airtight and gas can pass.
  • the gas pressure in the mold becomes high as the resin is filled, and resin filling failure occurs at the end of the mold cavity 2, etc.
  • an unfavorable phenomenon such as whitening due to foaming occurs on the resin surface.
  • the surface of the molten resin mass 8 that is in contact with the inner wall surface of the mold cavity is cooled and solidified, so that substantially no molten resin is formed.
  • a foamed skin layer 10 is formed. If the cooling and solidifying time is lengthened, the skin layer becomes thicker.
  • the thickness of the skin layer 10 is usually preferably about 0.1 mm to 1 mm.
  • the volume of the resin discharge cavity 3 is set so that the part of the molten resin mass discharged to the outside of the mold cavity 2 by the foaming pressure of the foamable molten resin mass 8 is not densely filled. It is preferable to set the volume to be larger than the volume of the part of the molten resin mass to be discharged, and it is further preferable to make the volume of the resin discharge cavity 3 as large as possible.
  • the resin discharging cavity 3 is not completely filled with the molten resin, or the molten resin discharging cavity 3 is provided with the vent 14.
  • the problem of instantaneous release of the counter gas, air, and foam gas in the mold can be prevented, and it takes time to depressurize and a sufficient foaming state cannot be obtained. Problems such as insufficient conversion can be prevented.
  • 2 (a) to 2 (c) are explanatory views schematically showing one example of an embodiment of the second method of the present invention in a case where the obtained molded article is in the form of a thick rod. .
  • the molten resin mass 8 A pressurized gas having a pressure capable of suppressing foaming of the molten resin mass is injected to form a hollow portion 11 filled with the pressurized gas.
  • the injection of the pressurized gas in this example is performed from the pressurized gas nozzle 13 built in the injection nozzle 12, and, like the molten resin 8, the sprue 16 and the runner 7 are used. Then, it is injected into the molten resin mass 8 in the mold cavity 2.
  • the pressurized gas injection port as shown in FIG.
  • the mouth 18 may be provided directly near the gate of the mold cavity.
  • the mold cavity 2 is filled with the molten resin 8 having the hollow portion 11 filled with the pressurized gas, and the skin layer 1 is maintained for a predetermined time while maintaining the injection pressure of the pressurized gas.
  • out of the skin layer 10 surrounding the gas-filled hollow portion 11 the skin layer 10 near the communication passage 5 is located between the gas-filled hollow portion 11 and the molten resin discharge cavity 3.
  • the molten resin is discharged by the molten resin discharge cavity 3 due to the pressure difference between the two, and the pressurized gas in the hollow portion 11 passes through the molten resin discharge cavity 3 and is quickly released from the ventilation port 14. You. As a result, the pressure in the hollow portion 11 drops sharply, and the foaming of the molten resin 8, which has been suppressed by the pressure of the pressurized gas in the hollow portion 11, occurs around the hollow portion 11. Part of the generated and foamed molten resin and the foaming gas volatilized from the molten resin are also discharged to the molten resin discharge cavity 3, and as shown in FIG. 2 (c), the inside of the hollow portion 11 is formed. And the surrounding area becomes a foamed layer 9.
  • Sudden pressure reduction in the hollow portion 11 uses the on-off valve 4 that leads to the molten resin discharge cavity 3 as described above, and also, for example, an injection needle that can advance and retreat with respect to the mold cavity 2.
  • a hollow pin (not shown) is placed in the mold, and the pin is pierced into the molten resin mass formed with the hollow portion 11, and the pin in the hollow portion 11 is inserted through the hole of the pin. Pressurized gas to gold It can also be done by releasing it out of mold 1.
  • the volume of the molten resin discharge cavity 3 is preferably set to a volume that is not densely filled with the molten resin extruded by the gas pressure forming the hollow portion 11 or the molten resin extruded by foaming.
  • gas is discharged from the molten resin discharge cavity 3 to the outside of the mold instantaneously.
  • the mold cavity filling rate of the molten resin 8 can be arbitrarily set in the range of 55% to 110%.
  • the hollow portion can be formed. It is possible to prevent the problem that the pressurized gas to be formed is not sufficiently released and the problem that the decompression takes time and a sufficient foaming state cannot be obtained, and the product cannot be reduced in weight sufficiently.
  • the carbon dioxide gas is preferably used as the pressurized gas for forming the hollow portion.
  • the carbon dioxide gas is used, even if the holding time after injection of the pressurized gas is lengthened, the carbon dioxide gas is further absorbed from the gas-filled hollow portion 11 into the surrounding molten resin, so that the molten resin When the solidification is suppressed, a good foaming state is easily obtained.
  • the foamed resin mass having a substantially non-foamed skin layer in the mold cavity 2 is cooled to a temperature at which it can be taken out, and the mold 1 is opened to take out a molded product.
  • the molded article obtained is non-foamed because the skin layer 10 is cooled to a temperature at which foaming does not occur before foaming, and the inner layer is a foamed layer 9 due to the foaming.
  • the mold cavity is pressurized with a gas beforehand in order to eliminate the possibility of appearance defects such as silver on the skin layer of the molded article. Is preferred (counter pres- sure method).
  • a mold in which the periphery of the mold cavity is sealed in order to easily obtain a necessary counter gas pressure.
  • a single ring 15a to 15c for sealing each gap in the mold leading to the mold cavity 2 is provided in the mold 1 shown in FIGS. 1 (a) to 3 (c). It is provided. Therefore, in one example of the first method described above, After the counter gas is supplied from the counter gas supply hole 14 to fill the inside of the mold 2 with the counter gas, the foaming molten resin is injected and filled, thereby preventing foaming of the molten resin at the time of injection. It can be easily suppressed.
  • the counter gas supply hole 14 can be opened as a slit or small hole or a porous shape that does not allow molten resin to enter, so that the mold cavity 2 can be directly opened. It can also be opened at the end. ⁇ '
  • FIG. 3 (a) to 3 (d) show an example of an embodiment of the second method of the present invention in a case where the obtained molded product has a shape having a thick portion on one side of a large thin portion.
  • FIG. With the on-off valve 4 closed, the molten resin 8 is injected into the mold cavity 2 from the injection nozzle 12. The molten resin 8 is injected and filled through the sprue 6 and the runner 7 into the thick part forming area and the thin part forming area of the mold cavity 2.
  • the foaming gas gaseous blowing agent
  • the foaming gas for example, carbon dioxide gas
  • the foaming gas for example, carbon dioxide gas
  • the pressurized gas in the mold cavity 2 is discharged immediately before or immediately after resin filling is completed.
  • Force connected to the ventilation port 14 of the bitty 3 ⁇ Open the gas supply three-way valve 16 (not shown) and immediately open to the atmosphere.
  • mold cavity filling with molten resin The rate is preferably between 95% and 110%, and more preferably between 98% and: L0.5%.
  • the injection port of the pressurized gas may be provided directly at the thick portion or near the thick portion of the mold cavity.
  • the injection port of the pressurized gas is preferably provided on the side opposite to the communication passage 5 to the molten resin discharge cavity 3.
  • the thickness of the thick portion is set to 1.5 to 4 times the thickness of the thin portion so that the flow front preferentially flows through the thick portion when the molten resin is filled. I prefer to do that.
  • the molten resin mass 8 is pressed against the inner wall surface of the mold cavity 2 by the hollow portion 11 filled with the pressurized gas, and is kept in this state for a predetermined time to form the skin layer 10.
  • the on-off valve 4 is opened.
  • FIG. 4 is a schematic front view of a movable half mold of one example of a mold having four grip-shaped molded products, which can be used in the method of the present invention.
  • a resin discharge cavity 3 an on-off valve 4, and a gas inlet 18 for forming a gas-filled hollow portion are provided.
  • Each gas inlet 18 is independently controlled so that the gas pressure does not interfere with each other.
  • the on-off valve 4 closed, the inside of each mold cavity 2 from the injection nozzle 12 is filled with molten resin.
  • the molten resin 8 is to be injected and filled into the mold cavity 2 through the sprue 6 and the runner 7.
  • the volumes of the cavities 2 are the same, it is preferable to set the runner and gate dimensions connected to the cavities 2 so that the molten resin is evenly filled in the cavities 2.
  • the runner length and thickness are adjusted so that the resin filling completion timing for each cavity is the same. It is preferable to adjust the gate dimensions.
  • the gas inlets 18 are provided near the gates of the cavities, and the pipes connected to the gas inlets are preferably of equal length so that the gas pressure loss is equal. .
  • the molten resin 8 is injected and filled from the injection nozzle 12 into each mold cavity 2, and the molten resin mass is held for a predetermined time while being pressurized to form a skin layer 10.
  • a part of the molten resin mass and the foaming gas are discharged to the molten resin discharge cavity 3 through the communication passage 5 due to the foaming pressure of the molten resin mass 8 wrapped in the skin layer 10.
  • a foam layer 9 is formed in the molten resin mass 8 in the mold cavity 2.
  • a hollow is formed by gas; if all the cavities 2 are filled with the molten resin, a gas is injected into the molten resin mass to form a hollow portion. After that, the supply of gas is stopped, and then the on-off valve 4 is opened to discharge a part of the molten resin and the gas in the hollow part to the molten resin discharging cavity 3 to form the foam layer 9.
  • the mold cavity filling rate of molten resin is relatively small, about 70%, and when forming a gas-filled hollow part in a short shot, the mold cavity filling rate is between the cavities. Particular attention must be paid to the length, cross-sectional dimensions, gate dimensions, gas piping length, etc. of the runners connected to each cavity so that they are evenly distributed.
  • the foaming gas generated from the molten resin may cause defects such as silver appearance in the appearance, it is preferable to use the counter pressure method.
  • the injection molding machine 23 used was “SG260MS—S” manufactured by Sumitomo Heavy Industries, Japan.
  • the screw cylinder 20 of the injection molding machine has nine vent types, and the vent part can be pressurized with carbon dioxide gas.
  • the pressure of the carbon dioxide gas or nitrogen gas supplied from the carbon dioxide gas source 24 or nitrogen gas source 24 via the gas supply control device 19 constant by the pressure reducing valve, the carbon dioxide dissolved in the molten resin
  • the amount of carbon gas or nitrogen gas was controlled. From the time of plasticization to the start of injection, a minimum pressure was set and maintained as the screw back pressure so that the molten resin did not foam and the screw receded.
  • the mold 1 can be supplied with carbon dioxide gas or nitrogen gas from a carbon dioxide gas source 24 or a nitrogen gas source 24 via a gas supply control device 19 and a counter gas supply line 22. The sea is falling.
  • Example 1
  • a rod-shaped molded product having a cross section of approximately 20 mm X 20 mm and a length of 300 mm was formed by the method shown in Figs. 1 (a) to 1 (c).
  • Mold 1 has a cross-section at one end of a rod-shaped mold cavity 2.
  • a 5 mm X 10 mm gate is provided, and a communication passage 5 with a cross section of 5 mm X 10 mm and a length of 15 mm is provided at the end opposite to the gate, and a hydraulic pressure is applied to the center of the communication passage 5.
  • An on-off valve 4 for opening and closing is provided, and a molten resin discharge cavity 3 having a cross section of 20 mm ⁇ 20 mm and a length of 600 mm is connected to the end of the communication passage 5.
  • Cavity 2 (mold temperature: 80 ° C.) was filled with the above glass fiber-containing polyamide resin (foamable molten resin) in which carbon dioxide gas was dissolved in 1.5 seconds.
  • the counter gas pressure is released to the outside through the molten resin discharge cavity 3 and the counter gas supply hole 14 (vent), and the resin pressure in the cylinder is 90 MPa for 3 seconds.
  • the on-off valve 4 of the communication passage 5 is opened, and a part of the molten resin mass 8 is discharged to the molten resin discharging cavity 3 by the foaming pressure of the molten resin mass 8 itself.
  • the pressure on the molten resin mass 8 was reduced to cause foaming.
  • a molded article having a substantially non-foamed skin layer 10 and having a highly foamed foam layer inside was obtained.
  • the amount of carbon dioxide gas in the foamable molten resin determined from the weight loss of the molded article after molding was about 1.0% by weight.
  • the foaming ratio of the molded article was 1.4 times, and the thickness of the skin layer was about 1 mm.
  • the operation was performed in the same manner as in Example 1 except that the conditions were changed as follows.
  • the molten resin mass 8 is supplied with 8 MPa of carbon dioxide gas from the gas injection port 13 built into the injection nozzle 12.
  • the counter gas in the mold cavity 2 is released, and the injection of carbon dioxide gas into the molten resin mass 8 and the gas pressure
  • the injection of carbon dioxide gas was stopped, and the on-off valve 4 leading to the molten resin discharge cavity 3 was opened to open the carbon dioxide gas in the hollow portion 11 of the molten resin mass 8 and the gas.
  • a portion of the molten resin mass 8 that was extruded with the entrainment was discharged into the molten resin discharge cavity 3 at a stretch, and the molten resin mass 8 in the mold cavity 2 was foamed.
  • Example 3 The amount of carbon dioxide gas in the foamable molten resin was about 1.0% by weight. The foaming ratio of the molded product was 2.0 times, which was much lighter than that of Example 1.
  • Example 3 The amount of carbon dioxide gas in the foamable molten resin was about 1.0% by weight. The foaming ratio of the molded product was 2.0 times, which was much lighter than that of Example 1.
  • the mold cavity 2 had the same shape as that of the first embodiment, but the inner wall surface of the mold cavity 2 was formed as a sipo with an average roughness (R a) of 13.2 m.
  • the average roughness (Ra) was measured with a Surfcom 57 OA (Surfcom 570A) manufactured by Tokyo Seimitsu Co., Ltd., Japan. (For the average roughness (R a), refer to the Mechanical Engineering Handbook, Revised 6th Edition (Japan, published by The Japan Society of Mechanical Engineers; 1977).)
  • the on-off valve 4 of the communication passage 5 is opened, and a part of the molten resin mass 8 is discharged to the molten resin discharging cavity 3, thereby foaming the molten resin mass 8.
  • mold 1 was opened and the resulting molded product was removed.
  • the amount of carbon dioxide gas in the foamable molten resin was 3% by weight.
  • the foaming ratio of the molded product was 2.6 times, and the thickness of the skin layer was 1.5 mm.
  • the surface of the molded product is transferred with a grain shape with an average roughness (R a) of 13.1 m, and high transferability is obtained, and the surface has surface defects such as uneven gloss and flow marks. Was not seen.
  • Example 2 The operation was performed in the same manner as in Example 1 except that the conditions were changed as follows.
  • Polyresin Ponate (“Pan Light (registered trademark) L1225", manufactured by Teijin Chemicals Japan Limited) was used as the resin. Cylinder temperature 300 ° C, Injection pressure 220 MPa, Mold temperature 80 ° C, CO2 gas supply pressure to cylinder 100 Pa, Cavity to mold cavity 2 The water pressure is 7 MPa. Fill the above-mentioned resin with carbon dioxide dissolved in 2 seconds, and immediately release the gas pressure of the counter to the outside immediately after the filling is completed, while maintaining the resin pressure in the cylinder at 180 MPa.
  • the opening and closing valve 4 of the communication passage 5 is opened, and a part of the molten resin mass 8 is discharged to the molten resin discharging capity 3 by the foaming pressure of the molten resin mass 8 itself. Then, the molten resin mass 8 was foamed. 60 seconds after foaming, mold 1 was opened and the molded product was removed. Thus, a molded article having a substantially non-foamed skin layer 10 and having a highly foamed foam layer inside was obtained.
  • the amount of carbon dioxide gas in the foamable molten resin is about 2.0% by weight. there were.
  • the expansion ratio of the molded product was 1.4 times, and the thickness of the skin layer was about 2 mm.
  • Example 3 Semi-aromatic polyamide containing 33% by weight of glass fiber and having about 10% by weight of an aromatic ring component as a resin to slow down the crystallization rate (“Leona (registered trademark)” manufactured by Asahi Kasei in Japan) 9 0 G 3.
  • the amount of carbon dioxide gas in the foamable molten resin was about 0.1% by weight.
  • the foaming ratio of the molded product is 1.4 times, and the thickness of the skin layer is about 2 mm.
  • a piece of a 2.5mm thick flat plate has a channel (thick wall) with a cross section of 4mm x 4mm.
  • a mold having a cavity with a design was used.
  • the filling rate of the mold cavity with the molten resin is 98%, and after the filling of the molten resin is completed, the pressurized gas nozzle 13 built into the injection nozzle 12 and the carbon dioxide of 8 MPa
  • the gas is injected into the molten resin mass to form the gas-filled hollow portion 11, and at the same time, the counter gas in the mold cavity 2 is released to the outside, and carbon dioxide gas is injected for 2 seconds.
  • the injection of carbon dioxide gas was stopped, the on-off valve 4 leading to the molten resin discharge cavity 3 was opened, and the carbon dioxide gas in the hollow portion 11 of the molten resin mass 8 was removed.
  • a part of the molten resin mass 8 extruded with the gas was discharged to the molten resin discharging cavity 3 at a stretch, and the molten resin mass 8 in the mold cavity 2 was foamed.
  • the amount of carbon dioxide gas in the foamable molten resin was about 1.0% by weight.
  • the expansion ratio of the molded product was 1.2 times, and a molded product in which not only the thick part but also the thin part was foamed was obtained.
  • Molding was carried out using a mold 1 of four cavities having a lip shape with a diameter of 222 mm and a distance between end rims of 180 mm as shown in FIG.
  • the runner distance to each mold cavity 2 is set approximately equal.
  • Each of the cavities 2 is provided with a molten resin discharging cavity 3 through a communication passage, and each of the communication passages has an on-off valve 4.
  • the operation timing of each on-off valve 4 can be controlled independently.
  • the volume of the molten resin discharge cavity 3 is about 70 C C, the outer diameter is set to 3 O mm, and the depth is set to 100 mm.
  • the cross-sectional shape of the communication passage leading from the cavity 2 to the molten resin discharge cavity 3 is 5 mm X 5 mm, and the cross-sectional shape of the cavity outlet from the cavity 2 to the communication passage is 5 mm X 5 mm. It is.
  • a gas injection port 18 for forming the hollow portion 11 is disposed immediately adjacent to the resin gate of each cavity 2. The gas injection timing, pressure, and gas retention time for each cavity 2 can be controlled independently.
  • Polypropylene (“Novatech (registered trademark) TX1977K", manufactured by Nippon Polychem, Japan) was used as the resin. Cylinder temperature 230 ° (: Injection pressure 120 MPa, mold temperature 80 ° C, carbon dioxide gas supply pressure to the cylinder was 10 MPa. Each cavity 2 Is pressurized to 7 MPa with carbon dioxide gas, and the mold cavities of each cavity 2 are filled to a filling rate of about 75%. The amount of fat injection was set, and the above-mentioned polypropylene resin in which carbon dioxide gas was dissolved was filled in 2 seconds.
  • the length of the hollow portion varied up to 20 mm between each of the cavities 2.However, molding from each of the cavities 2 after foaming The foaming ratio (weight reduction ratio) of the product was almost 2.2 times, and the thickness of the skin layer was uniform at 2.5 mm.
  • the procedure was performed in the same manner as in Example 2 except that the carbon dioxide gas was discharged to the molten resin discharge cavity for 2 seconds, and then the mold 1 was immediately opened to remove the molded product.
  • the molded product has a non-foaming layer on the surface and an open-cell structure
  • Example 9 The molded product surface temperature was 60 ° C., 20 ° C. lower than the mold surface temperature, and a cooling effect due to adiabatic expansion of carbon dioxide was recognized. The expansion ratio and the thickness of the skin layer of the molded product were almost the same as those in Example 2.
  • Example 9 The expansion ratio and the thickness of the skin layer of the molded product were almost the same as those in Example 2.
  • the mold cavity 2 is pressurized with 6 MPa of nitrogen gas, the injection cylinder 20 to 8 MPa of nitrogen gas is supplied to the molten resin, and the gas-filled hollow portion 11 is filled with 8 MPa of nitrogen gas.
  • the procedure was performed in the same manner as in Example 2 except for the formation of.
  • the obtained molded product had the same expansion ratio and appearance as those of Example 2.
  • the nitrogen gas content in the foamable molten resin was about 0.8% by weight. Comparative Example 1
  • the procedure was performed in the same manner as in Example 2 except that the conditions were changed as follows.
  • the length of the molten resin discharge capacitor 3 was set to 7 O mm, the volume was set to 28 CC, and the filling rate of the mold cavity with the molten resin was set to 98%.
  • After filling the resin and injecting the pressurized gas open the on-off valve 4 and discharge a part of the molten resin mass into the molten resin discharge cavity 3 by gas pressure.
  • the hollow body with a hollow ratio of about 30% was formed.
  • the molten resin discharging cavity 3 was densely filled with the resin pressed by the gas pressure.
  • the carbon dioxide gas in which the hollow portion 11 was formed was released from the pressurized gas nozzle 13 built in the injection nozzle 12.
  • Example 3 The procedure was performed in the same manner as in Example 3 except that nitrogen gas was used as the pressurized gas for pressurizing the mold cavity 2. Although the surface of the obtained molded product had no foaming pattern, the surface roughness was 5 to 8 im and did not sufficiently transfer the sipo shape. 3 was better.
  • the amount of nitrogen gas in the foamable molten resin was 3% by weight.
  • the foaming ratio of the molded product was 2.6 times, and the thickness of the skin layer was 1.5 mm. Comparative Example 4
  • Example 3 was repeated except that the molten resin discharge cavity 3 was not used and the mold 1 was opened after 60 seconds of cooling time after injection and the molded product was removed.
  • the molded product removed from the mold swells greatly due to the foaming force of the gaseous foaming agent dissolved in the molten resin, Deformed. In order to prevent this deformation, a cooling time of more than 120 seconds was required. Comparative Example 5
  • Molding cavity 2 was not pressurized with a pressurized gas, and the filling was performed in the same manner as in Comparative Example 4 except that the mold cavity filling rate of the molten resin was 8.0%. Although a molded product with an expansion ratio of 1.2 times was obtained, a foamed pattern was formed on the surface of the molded product, and the appearance was poor. Comparative Example 6
  • the procedure was performed in the same manner as in Comparative Example 5 except that the mold cavity 2 was pressurized with 7 MPa of carbon dioxide gas before the injection of the molten resin.
  • the resulting molded product has no foaming pattern from the gate side in the mold cavity 2 to the point corresponding to the cavity volume of about 80% ', but from there it corresponds to the flow end. The appearance was poor due to the formation of a foam pattern toward the minute.
  • the mold cavity has good transferability of the inner wall surface shape, and a molded article having a non-foamed skin layer and a highly foamed foam layer is reproducible, efficient, and economical.
  • the thickness of the skin layer of the molded product and the expansion ratio of the molded product can be easily controlled.
  • various excellent thermoplastic resin foam injection molded articles such as housing of light electric equipment and electronic equipment, various automobile parts, and various daily necessities, can be provided at low cost. .
  • the foam injection molding method of the present invention includes not only ordinary thermoplastic resins but also flame retardants having low thermal stability, resin compositions which are difficult to mold at high resin temperatures, and low flowability.
  • the conventional method can be advantageously applied to resins for which injection molding is difficult.

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

A foam injection molding method, comprising the steps of providing a metal mold having a molten resin discharge means in the inside wall surface of a metal mold cavity, forming a foaming molten resin lump in the metal mold cavity by injecting a foaming thermoplastic resin, and pressing the surface of the foaming molten resin lump against the inside wall surface of the metal mold cavity by applying a pressure to the foaming molten resin lump inside the metal mold cavity to solidify the surface part of the foaming molten resin lump so as to form the skin layer of the foaming molten resin lump, and discharging a part of the foaming molten resin lump to the outside of the metal mold cavity through the molten resin discharge means by the foaming pressure of the foaming molten resin lump itself to lower the pressure applied to the foaming molten resin lump so as to form a foaming resin lump having a substantially foamless skin layer by foaming the foaming molten resin lump in the metal mold cavity, whereby a light foam mold product with high dimensional accuracy can be formed economically with a high productivity by accurately transferring the shape of the inside wall surface of the metal mold cavity.

Description

明 細 書 発泡射出成形方法 技術分野  Description Foam injection molding method Technical field
本発明は熱可塑性樹脂の発泡射出成形方法に関する。 更に 詳し く は、 本発明は、 実質的に無発泡の表皮層を有する発泡 成形品を成形するための熱可塑性樹脂の発泡射出成形方法で あって、 ( 1 ) 固定半型及びそれと組み合わさ った可動半型 か らな り 、 該固定半型の内壁面と該可動半型の内壁面によつ て規定される金型キヤ ビティ を有する金型を提供し、 該金型 キヤ ビティ の内壁面は溶融樹脂排出手段を有してお り 、 The present invention relates to a method for foam injection molding of a thermoplastic resin. More specifically, the present invention relates to a method for foaming and injection molding a thermoplastic resin for molding a foamed molded article having a substantially non-foamed skin layer, comprising: (1) a fixed half mold and a combination with the fixed mold half; A mold having a mold cavity defined by the inner wall surface of the fixed mold half and the inner wall surface of the movable mold half; and an inner wall surface of the mold cavity. Has means for discharging molten resin,
( 2 ) 発泡性の熱可塑性樹脂を溶融状態で該金型キヤ ビティ に射出して該金型キヤ ビティ 内に発泡性溶融樹脂塊を形成し(2) The foamable thermoplastic resin is injected into the mold cavity in a molten state to form a foamable molten resin mass in the mold cavity.
( 3 ) 該金型キヤ ビティ 内の該発泡性溶融樹脂塊に圧力をか けて該発泡性溶融樹脂塊の表面を該金型キヤ ビティ の内壁面 に押し付ける こ とによ り 、 該発泡性溶融樹脂塊の表面部分を 固化させて、 該発泡性溶融樹脂塊の表皮層を形成し、 そ して(3) By applying pressure to the foamable molten resin mass in the mold cavity and pressing the surface of the foamable molten resin mass against the inner wall surface of the mold cavity, the foamability is improved. The surface portion of the molten resin mass is solidified to form a skin layer of the foamable molten resin mass, and
( 4 ) 該発泡性溶融樹脂塊の一部を該発泡性溶融樹脂塊自体 が有する発泡圧力によ り該溶融樹脂排出手段を通じて該金型 キヤ ビティ の外側に排出して該発泡性溶融樹脂塊への圧力を 低下させ、 それによつて、 該金型キヤ ビティ 内の該発泡性溶 融樹脂塊を発泡させて、 実質的に無発泡の該表皮層を有する 発泡樹脂塊を形成する、 こ とを特徴とする発泡射出成形方法 に関する。 本発明の発泡射出成形方法によれば、 金型キヤ ビ ティ 内壁面形状の転写性が良好で、 無発泡の表皮層と高発泡 の発泡層を有する成形品を再現性良く 、 効率的、 経済的に製 造する こ とができるだけでなく 、 成形品の表皮層の厚さおよ び成形品の発泡倍率を容易に制御する こ とができる。 本発明 の発泡射出成形方法によれば、 弱電機器、 電子機器などのハ ウジング、 各種自動車部品、 各種日用品などの種々 の優れた 熱可塑性樹脂発泡射出成形品を安価に提供する こ とができる。 また、 本発明の発泡射出成形方法は、 通常の熱可塑性樹脂だ けでな く 、 熱安定性が低い難燃剤を含む、 高い樹脂温度で成 形する こ とが困難な樹脂組成物や、 流動性が低く 従来の方法 では射出成形が困難な樹脂にも有利に適用できる。 従来技術 (4) A part of the foamable molten resin mass is discharged to the outside of the mold cavity through the molten resin discharging means by a foaming pressure of the foamable molten resin mass itself, and the foamable molten resin mass is discharged. Pressure, thereby foaming the foamable molten resin mass in the mold cavity to have the substantially foamless skin layer The present invention relates to a foam injection molding method for forming a foamed resin mass. ADVANTAGE OF THE INVENTION According to the foam injection molding method of the present invention, the mold cavity has a good transferability of the inner wall surface shape, and a molded article having a non-foamed skin layer and a highly foamed foam layer can be reproduced efficiently, economically Not only can it be manufactured in a specific manner, but also the thickness of the skin layer of the molded article and the expansion ratio of the molded article can be easily controlled. According to the foam injection molding method of the present invention, various excellent thermoplastic resin foam injection molded articles such as housings for light electric appliances and electronic appliances, various automobile parts, various daily necessities and the like can be provided at low cost. In addition, the foam injection molding method of the present invention includes not only ordinary thermoplastic resins but also resin compositions which contain flame retardants having low thermal stability and which are difficult to mold at high resin temperatures, and It can be advantageously applied to resins that are difficult to injection-mold by the conventional method because of their low performance. Conventional technology
従来、 発泡剤を含有する発泡性熱可塑性樹脂を発泡させて 得られる発泡成形品を製造するための発泡射出成形方法が知 られている。 発泡剤と しては、 一般に、 ァゾジカルボンアミ ド ( A D C A ) や Ν , Ν ' —ジニ ト ロ ソペンタ メチレンテ ト ラ ミ ン ( D Ρ Τ ) などが用い られる。 発泡剤の使用量は、 一般 に、 樹脂 1 0 0 重量部に対して 1 〜 5 重量部の範囲である。 従来の発泡射出成形方法の代表例と しては、 シ ョ ー ト シ ョ ッ ト法が挙げられる。 ショ ー ト ショ ッ ト法では、 発泡剤を含 有させた溶融樹脂を金型キヤ ビティ 容積よ り も少ない体積で 該金型キヤ ビティ に射出する。 金型キヤ ビティ に射出された 溶融樹脂の う ち金型キヤ ビティ 内壁面に最初に接する部分は 直ち に冷却固化されて固化層を形成し、 後から金型キヤ ビテ ィ 内に入る溶融樹脂は固化層に沿って金型キヤ ビティ の中央 部を流れ、 流動先端 (フ ローフロ ン ト) に達してから金型キ ャ ビティ 内壁面に向かい、 金型キヤ ビティ 内壁面に接触して 冷却され、 固化層を形成する。 即ち、 いわゆる フ ア ウンテン フ ローと呼ばれる流動挙動をする。 溶融樹脂の射出終了後は、 該溶融樹脂の発泡によ り該溶融樹脂が金型キヤ ビティ の端部 にまで進行し、 金型キヤ ビティ を充填して発泡成形品を形成 する。 このショ ー ト ショ ッ ト法では、 流動中の溶融樹脂の先 端部でも発泡が生じるため、 成形品樹脂表面が荒れた状態に なる という 欠点を有する ものの、 最もシンプルな成形方法で あ り 、 広く 使用されている。 Conventionally, a foam injection molding method for producing a foam molded article obtained by foaming a foamable thermoplastic resin containing a foaming agent is known. As the foaming agent, azodicarbonamide (ADCA), Ν, Ν'-dinitrosopentamethylenetetramine (DΡΡ) or the like is generally used. The amount of the foaming agent is generally in the range of 1 to 5 parts by weight based on 100 parts by weight of the resin. As a typical example of the conventional foam injection molding method, there is a short shot method. In the short shot method, a blowing agent is included. The molten resin is injected into the mold cavity with a volume smaller than the volume of the mold cavity. The part of the molten resin injected into the mold cavity that first contacts the inner wall of the mold cavity is immediately cooled and solidified to form a solidified layer, and the molten resin that enters the mold cavity later. Flows through the center of the mold cavity along the solidified layer, reaches the flow front (flow front), then goes to the inner wall of the mold cavity, contacts the inner wall of the mold cavity, and is cooled. To form a solidified layer. That is, it has a flow behavior called a so-called fountain flow. After completion of the injection of the molten resin, the molten resin is advanced to the end of the mold cavity by foaming of the molten resin, and is filled with the mold cavity to form a foam molded article. This short shot method has the drawback that the resin surface of the molded article becomes rough because foaming occurs even at the leading end of the flowing molten resin, but it is the simplest molding method. Widely used.
一方、 外観が良好でヒケゃゾ リ の少ない厚肉発泡成形品を 得る手法と して、 日本国特公昭 6 2 — 1 6 1 6 6 号公報に示 される よう な、 一般にカ ウ ンタ プレツ シャ成形法と呼ばれて いる成形法がある。 これは発泡剤を含んだ溶融樹脂を圧縮空 気を満たした金型キヤ ビティ にショ 一 ト ショ ッ 卜で射出 し、 次いで該キヤ ビティ 内の圧縮空気を金型外に開放し、 キヤ ビ ティ 内の溶融樹脂への圧力を低く 保っ て樹脂を冷却する成形 法であ り 、 樹脂充填時のフ ロ一フ ロ ン トでの発泡を抑制する こ とで成形品の表面には発泡模様がなく 、 内部のみ発泡した 成形品を作る技術である。 カウ ンタ プレツ シャ成形法は、 発 泡性溶融樹脂を無発泡状態で金型キヤ ビティ にほぼ満たした 後、 成形品内部の溶融樹脂が冷却され、 冷却に伴う体積収縮 分が発泡するものである。 このため、 樹脂に発泡性を持たせ る 目的で樹脂中に含ませる発泡剤の量は、 体積収縮を発泡で 補える最低限とする こ とが基本的な考え方である。 そのため、 当該方法では高い圧力で樹脂を金型キヤ ビティ 内壁面に押し 付ける こ とがないために、 金型表面の転写性が低く 、 外観品 質に劣 り 、 また、 体積収縮分しか発泡しないために、 成形品 の軽量化に も限界がある。 また樹脂中に含ませる発泡剤の量 が多すぎる場合は、 金型か ら成形品を取り 出した後も発泡し、 成形品に膨張や変形が発生するため、 金型キヤ ビティ 内での 極めて長い冷却時間を必要とする問題がある。 On the other hand, as a technique for obtaining a thick-walled foamed article having a good appearance and a small amount of squeezing, generally, a counter plate as disclosed in Japanese Patent Publication No. 62-166166 is used. There is a molding method called sha molding method. This involves injecting a molten resin containing a foaming agent into a mold cavity filled with compressed air in a short shot, and then releasing the compressed air in the cavity out of the mold to form a cavity. A molding method that cools the resin while keeping the pressure on the molten resin inside low, and suppresses foaming at the front when filling the resin. This is a technology to create a molded product that has no foaming pattern on the surface of the molded product and only foams inside. In the counter pressure molding method, after the foaming molten resin is almost completely filled in the mold cavity in a non-foamed state, the molten resin inside the molded product is cooled, and the volume shrinkage accompanying cooling is foamed. . For this reason, the basic idea is that the amount of the foaming agent contained in the resin for the purpose of giving the resin foaming properties should be the minimum that can compensate for volume shrinkage by foaming. Therefore, in this method, since the resin is not pressed against the inner wall surface of the mold cavity with high pressure, the transferability of the mold surface is low, the appearance quality is poor, and only the volume shrinkage is foamed. Therefore, there is a limit in reducing the weight of molded products. Also, if the amount of the foaming agent contained in the resin is too large, foaming occurs even after the molded product is removed from the mold, and the molded product expands and deforms. There is a problem that requires a long cooling time.
また、 古く か らあるアイ デア と して、 発泡性溶融樹脂を金 型キヤ ビティ 内に射出充填後、 該溶融樹脂中にガス体を注入 し、 一旦中空体を成形し、 該中空体の表層部が固化した後、 注入したガス体を金型外へ放出し、 発泡性溶融樹脂を中空部 へ発泡させる方法がある ( 日本国特公昭 5 3 — 2 5 3 5 2 号 公報 (米国特許第 4 , 1 2 9 , 6 3 5 号に対応) ) 。 しか しながら 中 空部を形成するために用いたガス供給口か らガスを開放しよ う とする と配管等での圧力損失が大き く 中空部を形成したガ ス体の放出に時間がかかる。 結果と して、 中空部からのガス 体の放出を行なう間に中空部内面の溶融樹脂の固化が進み、 充分な大きさの発泡層を形成できない。 また発泡性溶融樹脂 中のガス吸収量が多い上に、 中空部内面が発泡する状態にお いてガスを開放しょう とする と、 ガスの供給口でもあるガス 開放口の周辺までも発泡してしま う 。 その結果、 中空体を形 成したガス体を金型外に速やかに開放できなく な り 、 中空部 にガス体の圧力が残存する こ と となる。 ついには、 金型を開 く 時や成形品を取り 出す時に、 成形品が破裂する という 問題 が発生する。 As an old idea, a foamed molten resin is injected and filled into a mold cavity, a gas is injected into the molten resin, a hollow body is formed once, and a surface layer of the hollow body is formed. After the part is solidified, there is a method of discharging the injected gas body out of the mold and foaming the expandable molten resin into the hollow part. (Japanese Patent Publication No. 53-253052 (US Patent No. 4, 1 229, and 6335))). However, when trying to release gas from the gas supply port used to form the hollow space, the pressure loss in the piping etc. is large, and it takes time to discharge the gas body having the hollow space. . As a result, gas from the hollow During the release of the body, the solidification of the molten resin on the inner surface of the hollow part progresses, and a foam layer of a sufficient size cannot be formed. Also, in addition to the large amount of gas absorbed in the foaming molten resin, if the gas is to be released while the inner surface of the hollow part is foaming, it will also foam around the gas opening, which is the gas supply port. U. As a result, the gas body forming the hollow body cannot be quickly opened outside the mold, and the pressure of the gas body remains in the hollow part. Eventually, when the mold is opened or the molded product is removed, the molded product will burst.
最近でも上記と同様に中空体を形成した後に発泡させる方 法が提案されている。 すなわち、 日本国特開平 7 — 3 2 4 0 5 号公報 (米国特許第 5 , 9 0 0 , 1 9 8号と米国特許第 5, 9 4 8, 44 6 号に対応) や日本国特開 2 0 0 0 - 9 4 4 6 8 号公報である。 前者の文献では、 発泡性溶融樹脂を高圧ガスで加圧した金型 キヤ ビティ 内に注入する に際し、 その注入中又は注入後に該 溶融樹脂中に高圧ガスを注入して中空部を形成した後、 注入 した高圧ガスを金型外へ排出 し、 発泡性溶融樹脂を中空部へ 発泡させる こ とによって、 射出成形品の厚肉部に中空部を形 成し、 さ ら に表面層と中空部の間に発泡セルを点在させた、 表面にひけの出ない樹脂成形品を得る方法が開示されている ( 日本国特開平 7 — 3 2 4 0 5 号公報) 。 しか し、 この方法 も、 上記の 日本国特公昭 5 3 — 2 5 3 5 2 号公報 (米国特許 第 4 , 1 2 9 , 6 3 5 号に対応) と同 じ く ガス排出に時間を要するた め、 充分な大きさの発泡層を形成する こ とが出来ない上に、 ガス排出口付近の発泡によ り ガス抜けが悪く なるため残存ガ スの圧力による成形品の破裂現象を引き起こす問題がある。 Recently, a method has been proposed in which a hollow body is formed and then foamed in the same manner as described above. That is, Japanese Patent Application Laid-Open No. 7-32405 (corresponding to U.S. Patent No. 5,900,198 and U.S. Patent No. 5,948,446) and Japanese Patent Application Publication No. This is a publication of No. 2000-0-9446. According to the former document, when a foamable molten resin is injected into a mold cavity pressurized with a high-pressure gas, a high-pressure gas is injected into the molten resin during or after the injection to form a hollow portion. The injected high-pressure gas is discharged out of the mold, and the foamable molten resin is foamed into the hollow part to form a hollow part in the thick part of the injection molded product. There is disclosed a method for obtaining a resin molded product in which foam cells are interspersed and the surface of which does not have sink marks (JP-A-7-32405). However, this method also requires time for gas discharge as in the above-mentioned Japanese Patent Publication No. 53-253032 (corresponding to U.S. Pat. No. 4,129,635). Was As a result, it is not possible to form a foam layer of a sufficient size, and furthermore, foaming near the gas discharge port deteriorates gas outflow, causing the molded article to burst due to the pressure of the residual gas. is there.
一方、 後者の文献 (日本国特開 2 0 0 0 — 9 4 4 6 8 号公 報) では、 発泡剤を含んだ溶融樹脂を金型キヤ ビティ に射出 充満させた後、 該溶融樹脂に加圧ガスを注入して該溶融樹脂 の一部を樹脂排出用キヤ ビティ (ス ピルオーバ一 · キヤ ビテ ィ ) に排出し、 中空部を形成した後、 該中空部内の加圧ガス を排出して圧力を下げる こ とによって、 表面部分の実質的無 発泡層とその内部に発泡部を備えた、 良好な外観と高強度 , 高剛性を確保した軽量成形品を得る方法が開示されている。 しかし、 この方法においても、 樹 '脂排出用キヤ ビティ に溶融 樹脂を排出した時点では中空部内のガスは高圧のままである ため、 その後該ガスを排出しても前者の文献の方法と同様の 問題がある (即ち、 充分な大きさの発泡層を形成する こ とが できず、 また、 残存ガスの圧力による成形品の破裂現象が起 さる) 。  On the other hand, in the latter document (Japanese Patent Publication No. 2000-094464), a molten resin containing a foaming agent is injected and filled in a mold cavity, and then added to the molten resin. A pressurized gas is injected and a part of the molten resin is discharged to a resin discharge cavity (spirover one-cavity) to form a hollow portion. Then, the pressurized gas in the hollow portion is discharged to remove the pressure. A method is disclosed for obtaining a lightweight molded article having a good appearance, high strength and high rigidity, which is provided with a substantially non-foamed layer on the surface and a foamed portion inside the layer by lowering the surface area. However, even in this method, when the molten resin is discharged into the resin discharging cavity, the gas in the hollow portion remains at a high pressure, so that even when the gas is discharged, the same method as in the former document is used. There is a problem (that is, a foam layer of a sufficient size cannot be formed, and a molded article bursts due to the pressure of the residual gas).
こ のよう に、 従来の発泡成形方法においては、 優れた外観 及び寸法精度を保持したまま、 高発泡倍率による軽量化 と成 形サイ クルの短縮を図る こ との出来る発泡射出成形方法はな かっ た。  As described above, in the conventional foam molding method, there is no foam injection molding method capable of reducing the weight and shortening the molding cycle by a high foaming ratio while maintaining excellent appearance and dimensional accuracy. Was.
さ ら に、 一度の成形で多数の成形品を得るよ う な成形方法 を行う場合を考える と、 従来の発泡成形法においては次のよ うな問題があ る。 複数個の成形品を同時に成形するための金 型を用いて 2 つ以上の成形品を同時に成形しょ う とする場合、 それら の発泡倍率を同じにするためには、 それぞれの金型キ ャ ビティ 内への榭脂充填量、 および樹脂圧力のバランスを均 等に しなければな らない。 特に 4つ以上の成形品を同時に成 形しょ う とする場合、 従来の成形方法においては、 ほとんど の場合、 上記のバラ ンスがとれず、 同じ発泡倍率の製品がと れない問題がある。 また同 じ金型内で異なる容積の複数の発 泡成形品を得るよ う な場合には、 さ ら に上記バラ ンス を とる こ とが困難である。 このよ う に、 発泡成形での多数個取 り は 量産において採用 されていないのが実状である。 Furthermore, considering the case of performing a molding method to obtain a large number of molded articles by one molding, the conventional foam molding method is as follows. There is a problem. When two or more molded articles are to be molded simultaneously using a mold for simultaneously molding a plurality of molded articles, the respective mold cavities must be adjusted in order to achieve the same expansion ratio. The balance between the resin filling amount and the resin pressure must be balanced. In particular, when four or more molded products are to be molded at the same time, the conventional molding method has a problem that, in most cases, the above balance cannot be obtained, and products having the same expansion ratio cannot be obtained. Further, when obtaining a plurality of foamed molded products having different volumes in the same mold, it is more difficult to achieve the above balance. Thus, multi-cavity molding in foam molding is not actually used in mass production.
本発明の課題は、 熱可塑性樹脂発泡成形品の発泡射出成形 方法において、 金型キヤ ビティ 内壁面の形状を高精度に転写 し、 寸法精度が高く 、 軽量の発泡成形品を高い生産性で経済 的に成形する方法を提供する こ とにある。 発明の概要  An object of the present invention is to provide a method for foam injection molding of a thermoplastic resin foam molded article, in which the shape of an inner wall surface of a mold cavity is transferred with high precision, and a lightweight foam molded article with high dimensional accuracy and high productivity is economically produced with high productivity. It is intended to provide a method for forming the target in a desired manner. Summary of the Invention
このよう な状況下、 本発明者らは上記課題を解決するため に鋭意検討した。 その結果、 意外にも、 熱可塑性樹脂の発泡 射出成形方法であっ て、 ( 1 ) 固定半型及びそれと組み合わ さ った可動半型か らな り 、 該固定半型の内壁面と該可動半型 の内壁面によっ て規定される金型キヤ ビティ を有する金型を 提供し、 該金型キヤ ビティ の内壁面は溶融榭脂排出手段を有 してお り 、 ( 2 ) 発泡性の熱可塑性樹脂を溶融状態で該金型 キヤ ビティ に射出 して該金型キヤ ビティ 内に発泡性溶融樹脂 塊を形成し、 ( 3 ) 該金型キヤ ビティ 内の該発泡性溶融樹脂 塊に圧力をかけて該発泡性溶融樹脂塊の表面を該金型キヤ ビ ティ の内壁面に押し付ける こ とによ り 、 該発泡性溶融樹脂塊 の表面部分を固化させて、 該発泡性溶融樹脂塊の表皮層を形 成し、 そして ( 4 ) 該発泡性溶融樹脂塊の一部を該発泡性溶 融樹脂塊自体が有する発泡圧力によ り 該溶融樹脂排出手段を 通じて該金型キヤ ビティ の外側に排出して該発泡性溶融樹脂 塊への圧力 を低下させ、 それによつて、 該金型キヤ ピティ 内 の該発泡性溶融樹脂塊を発泡させて、 実質的に無発泡の該表 皮層を有する発泡樹脂塊を形成する、 こ と を特徴とする発泡 射出成形方法によって上記目的を達成できる こ とを見出した。 すなわち、 上記の発泡射出成形方法によれば、 金型キヤ ビテ ィ 内壁面形状の転写性が良好で、 無発泡の表皮層 と高発泡の 発泡層を有する成形品を再現性良く 、 効率的、 経済的に製造 する こ とができるだけでなく 、 成形品の表皮層の厚さおよび 成形品の発泡倍率を容易に制御する こ とができる こ とを見出 した。 この知見に基づき、 本発明を完成するに至った。 Under such circumstances, the present inventors have intensively studied to solve the above-mentioned problems. As a result, surprisingly, the foam injection molding method for a thermoplastic resin is (1) a fixed half mold and a movable half mold combined with the fixed half mold, and an inner wall surface of the fixed half mold and the movable half mold. A mold having a mold cavity defined by the inner wall surface of the mold is provided, and the inner wall surface of the mold cavity has a molten resin discharging means. (2) The foamable thermoplastic resin is injected into the mold cavity in a molten state to form a foamed molten resin mass in the mold cavity, and (3) the mold cavity is formed. By applying pressure to the foamable molten resin mass in the cavity and pressing the surface of the foamable molten resin mass against the inner wall surface of the mold cavity, the surface portion of the foamable molten resin mass is reduced. Solidifying to form a skin layer of the foamable molten resin mass; and (4) forming a part of the foamable molten resin mass by the foaming pressure of the foamable molten resin mass itself. It is discharged through the discharging means to the outside of the mold cavity to reduce the pressure on the foamable molten resin mass, whereby the foamable molten resin mass in the mold cavity is foamed. Forming a foamed resin mass having the skin layer which is substantially non-foamed. By foam injection molding method for it found that you can achieve the above object. In other words, according to the foam injection molding method described above, the mold cavity has good transferability of the inner wall surface shape, and a molded article having a non-foamed skin layer and a highly foamed foam layer can be reproducibly, efficiently, and efficiently. It has been found that not only can it be manufactured economically, but also the thickness of the skin layer of the molded article and the expansion ratio of the molded article can be easily controlled. Based on this finding, the present invention has been completed.
従っ て、 本発明の 1 つの目的は、 金型キヤ ビティ 内壁面形 状の転写性が良好で、 無発泡の表皮層 と高発泡の発泡層を有 する成形品を再現性良く 、 効率的、 経済的に製造する こ とが できるだけでなく 、 成形品の表皮層の厚さおよび成形品の発 泡倍率を容易に制御する ことができる、 優れた発泡射出成形 方法を提供する ことにある。 Accordingly, one object of the present invention is to provide a molded article having a mold cavity having good inner wall shape transferability and having a non-foamed skin layer and a highly foamed foam layer with good reproducibility and efficiency. Not only can it be manufactured economically, but also the thickness of the skin layer of the molded article and the development of the molded article An object of the present invention is to provide an excellent foam injection molding method capable of easily controlling a foam ratio.
本発明の上記及びその他の諸目的: 諸特徴ならびに諸利益 は、 添付の図面を参照しながら行う以下の詳細な説明及び請 求の範囲か ら明らかになる。 図面の簡単な説明  The above and other objects of the present invention: Features and advantages will become apparent from the following detailed description and the appended claims, taken in conjunction with the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1 ( a ) 〜図 1 ( c ) は、 本発明の第 1 の方法の 1 つの 態様を示す概略図である。  1 (a) to 1 (c) are schematic diagrams showing one embodiment of the first method of the present invention.
図 1 ( a ) は、 発泡性溶融樹脂を射出充填する前の金型内 部の状態を示す概略断面図である。  FIG. 1 (a) is a schematic cross-sectional view showing a state of the inside of a mold before injection filling of a foamable molten resin.
図 1 ( b ) は、 溶融樹脂を射出充填完了した時の金型内部 の状態を示す概略断面図である。  FIG. 1 (b) is a schematic cross-sectional view showing a state inside the mold when injection filling of the molten resin is completed.
図 1 ( c ) は、 溶融樹脂排出手段 (開閉弁 4 ) を開き、 金 型キヤ ビティ 内の溶融樹脂塊の一部を溶融樹脂排出用キヤ ビ ティ に排出して、 発泡させた時の金型内部.の状態を示す断面 図である。  Fig. 1 (c) shows the molten resin discharge means (opening / closing valve 4) opened, a part of the molten resin mass in the mold cavity discharged to the molten resin discharge cavity, and the molten metal when foamed. FIG. 3 is a cross-sectional view showing a state inside a mold.
図 2 ( a ) 〜図 2 ( c ) は、 本発明の第 2 の方法の 1 つの 態様を示す概略図である。  2 (a) to 2 (c) are schematic views showing one embodiment of the second method of the present invention.
図 2 ( a ) は、 発泡性溶融樹脂を射出充填中の金型内部の 状態を示す概略断面図である。  FIG. 2 (a) is a schematic cross-sectional view showing a state inside the mold during injection filling of the foamable molten resin.
図 2 ( b ) は、 溶融樹脂を射出充填完了後、 加圧ガスを注 入して溶融樹脂塊にガス充填中空部を形成した時の金型内部 の状態を示す概略断面図である。 Fig. 2 (b) shows the interior of the mold when the injection of the molten resin is completed and the pressurized gas is injected to form a gas-filled hollow in the molten resin mass. It is a schematic sectional drawing which shows the state of.
図 2 ( c ) は、 溶融樹脂排出手段 (開閉弁 4 ) を開き、 溶 融樹脂塊の一部およびガス充填中空部内の加圧ガスを溶融樹 脂排出用キヤ ビティ に排出して、 発泡させた時の金型内部の 状態を示す概略断面図である。  Fig. 2 (c) shows that the molten resin discharge means (open / close valve 4) is opened, and a part of the molten resin mass and the pressurized gas in the gas-filled hollow part are discharged into the molten resin discharge cavity and foamed. FIG. 4 is a schematic cross-sectional view showing a state inside the mold when the mold is opened.
図 3 ( a ) 〜図 3 ( d ) は、 実施例 6 で用いた本発明の方 法を示す概略図である。  3 (a) to 3 (d) are schematic diagrams showing the method of the present invention used in Example 6. FIG.
図 3 ( a ) は、 発泡性溶融樹脂を射出充填する前の金型内 部の状態を示す概略断面図である。  FIG. 3 (a) is a schematic cross-sectional view showing the state of the inside of the mold before the injection and filling of the foamable molten resin.
図 3 ( b ) は、 溶融樹脂を射出充填完了した時の金型内部 の状態を示す概略断面図である。  FIG. 3 (b) is a schematic cross-sectional view showing the state inside the mold when the injection and filling of the molten resin is completed.
図 3 ( c ) は、 溶融樹脂を射出充填完了後、 加圧ガスを注 入して溶融樹脂塊にガス充填中空部を^成した時の金型内部 の状態を示す概略断面図である。  FIG. 3 (c) is a schematic cross-sectional view showing a state inside the mold when a pressurized gas is injected into the molten resin mass to form a gas-filled hollow portion after the injection and filling of the molten resin are completed.
図 3 ( d ) は、 溶融樹脂排出手段 (開閉弁 4 ) を開き、 溶 融樹脂塊の一部およびガス充填中空部内の加圧ガスを溶融樹 脂排出用キヤ ビティ に排出して、 発泡させた時の金型内部の 状態を示す概略断面図である。  Fig. 3 (d) shows the molten resin discharge means (opening / closing valve 4) opened, and a part of the molten resin mass and the pressurized gas in the gas-filled hollow are discharged to the molten resin discharge cavity and foamed. FIG. 4 is a schematic cross-sectional view showing a state inside the mold when the mold is opened.
図 4 は、 本発明の方法に用いる ことのできる 4 ケ取り金型 の 1 例の可動半型の概略正面図を示す。  FIG. 4 shows a schematic front view of one example of a movable half mold of a four-cavity mold that can be used in the method of the present invention.
図 5 は、 実施例および比較例で用いた射出成形装置の概略 図である。 符号の説明 FIG. 5 is a schematic diagram of an injection molding apparatus used in Examples and Comparative Examples. Explanation of reference numerals
1 金型  1 Mold
1 a 固定半型  1 a fixed half
1 b 可動半型  1 b movable half mold
2 金型キヤ ビティ  2 Mold cavity
3 溶融樹脂排出用キヤ ビティ  3 Capacities for discharging molten resin
4 溶融樹脂排出手段 (開閉弁)  4 Molten resin discharge means (open / close valve)
5 連絡通路  5 Access passage
6 スプルー  6 sprue
7 ラ ンナー  7 Runner
8 発泡性溶融樹脂  8 Foaming molten resin
9 発泡樹脂塊 (発泡層)  9 Foam resin block (foam layer)
1 0 表皮層  1 0 Skin layer
1 1 ガス充填中空部  1 1 Gas-filled hollow
1 2 射出ノ ズル  1 2 Injection nozzle
1 3 加圧ガス ノズル  1 3 Pressurized gas nozzle
1 4 カ ウ ン夕一ガス供給孔 (通気口)  1 4 Gas supply hole (vent)
1 5 a〜 1 5 c 〇 一 リ ング  15 a to 15 c 〇 one ring
1 6 カ ウ ン夕一ガス供給三方弁  16 One-way gas supply Three-way valve
1 7 カウン夕一ガス大気開放口に通じる ライ ン 1 7 Lines leading to the gas opening
1 8 ガス注入口 1 8 Gas inlet
1 9 ' ガス供給制御装置  1 9 'gas supply control device
2 0 ' 射出シ リ ンダ 2 1 発泡性溶融樹脂中へのガス供給ライ ン 2 0 'Injection cylinder 2 1 Gas supply line into foamable molten resin
2 2 金型へのカウ ンタ一ガス供給ライ ン  2 2 Counter gas supply line to mold
2 3 射出成形機  2 3 Injection molding machine
2 4 酸化炭素ガス源も し く は窒素ガス 図 1 ( a ) 〜図 5 において、 類似の部材ゃ部分は類似の参 照番号で示されている。 発明の詳細な説明  24 Carbon oxide gas source or nitrogen gas In Figs. 1 (a) to 5, similar members and parts are indicated by similar reference numbers. Detailed description of the invention
本発明の 1 つの態様による と、 熱可塑性樹脂の発泡射出成 形方法であって、  According to one aspect of the present invention, there is provided a foam injection molding method of a thermoplastic resin, comprising:
( 1 ) 固定半型及びそれと組み合わさ った可動半型からな り 、 該固定半型の内壁面と該可動半型の内壁面によって規定 される金型キヤ ビティ を有する金型を提供し、  (1) A mold comprising a fixed mold and a movable mold combined with the mold, and having a mold cavity defined by an inner wall surface of the fixed mold and an inner wall surface of the movable mold,
該金型キヤ ビティ は内壁面を有し、 また、 樹脂入口 に通じ てお り 、  The mold cavity has an inner wall surface and communicates with a resin inlet.
該金型キヤ ビティ の該内壁面は溶融樹脂排出手段を有して お り 、  The inner wall surface of the mold cavity has a molten resin discharging means,
( 2 ) 発泡性の熱可塑性樹脂を溶融状態で所定の射出温度 圧力条件下に上記樹脂入口 を通じて該金型キヤ ビティ に射出 し、 該発泡性溶融樹脂の量は、 該所定の射出温度圧力条件下 で測定して該金型キヤ ビティ の容積と同 じ体積を有する該発 泡性溶融樹脂の重量の 9 5 ~ 1 1 0 %の範囲、 好ま し く は 9 8 〜 : L 0 5 %の範囲であ り 、 (2) The foamable thermoplastic resin is injected in a molten state into the mold cavity through the resin inlet under a predetermined injection temperature and pressure conditions, and the amount of the foamable molten resin is determined by the predetermined injection temperature and pressure conditions. In the range of 95 to 110% by weight of the foamable molten resin having the same volume as the mold cavity as measured below, preferably 9 8 to: L 0 5% range,
これによつて該金型キヤ ビティ 内に発泡性溶融樹脂塊を形 成し、  As a result, a foamable molten resin mass is formed in the mold cavity,
( 3 ) 該金型キヤ ビティ 内の該発泡性溶融樹脂塊に圧力を かけて該発泡 'ί生溶融樹脂塊の表面を該金型キヤ ビティ の該内 壁面に押し付ける こ とによ り 、 該発泡性溶融樹脂塊の表面部 分を固化させて、 該発泡性溶融樹脂塊の表皮層を形成し、 そ して  (3) By applying pressure to the foamable molten resin mass in the mold cavity and pressing the surface of the foamed raw resin mass against the inner wall surface of the mold cavity, The surface portion of the foamable molten resin mass is solidified to form a skin layer of the foamable molten resin mass, and
( 4 ) 該発泡性溶融樹脂塊の一部を該発泡性溶融樹脂塊自 体が有する発泡圧力によ り該溶融樹脂排出手段を通じて該金 型キヤ ビティ の外側に排出して該発泡性溶融樹脂塊への圧力 を低下させ、 それによつて、 該金型キヤ ビティ 内の該発泡性 溶融樹脂塊を発泡させて、 実質的に無'発泡の該表皮層を有す る発泡樹脂塊を形成する、  (4) A part of the foamable molten resin mass is discharged to the outside of the mold cavity through the molten resin discharging means by a foaming pressure of the foamable molten resin mass itself, and the foamable molten resin mass is discharged. The pressure on the mass is reduced, thereby foaming the foamable molten resin mass within the mold cavity to form a substantially non-foamed foamed resin mass having the skin layer. ,
こ とを特徴とする発泡射出成形方法が提供される。 本発明の他の 1 つの態様による と、 熱可塑性樹脂の発泡射 出成形方法であって、  A foam injection molding method characterized by this is provided. According to another aspect of the present invention, there is provided a method for foam injection molding of a thermoplastic resin, comprising:
( 1 ) 固定半型及びそれと組み合わさっ た可動半型か らな 'り 、 該固定半型の内壁面と該可動半型の内壁面によって規定 される金型キヤ ビティ を有する金型を提供し、  (1) A mold comprising a fixed mold and a movable mold combined with the mold, and having a mold cavity defined by the inner wall surface of the fixed mold and the inner wall surface of the movable mold. ,
該金型キヤ ビティ は内壁面を有し、 また、 樹脂入口及び所 望によ り ガス入口 に通 じてお り 、 該金型キヤ ビティ の該内壁面は溶融樹脂排出手段を有して お り 、 The mold cavity has an inner wall surface and communicates with the resin inlet and, if desired, the gas inlet. The inner wall surface of the mold cavity has a molten resin discharging means,
( 2 ) 発泡性の熱可塑性樹脂を溶融状態で所定の射出温度 圧力条件下に上記樹脂入口 を通じて該金型キヤ ビティ に射出 し、 該発泡性溶融樹脂の量は、 該所定の射出温度圧力条件下 で測定して該金型キヤ ビティ の容積と同じ体積を有する該発 泡性溶融樹脂の重量の 5 5 〜 1 1 0 %の範囲、 好ま し く は 6 0 〜 ; 1 0 0 %の範囲であ り 、  (2) The foamable thermoplastic resin is injected in a molten state into the mold cavity through the resin inlet under a predetermined injection temperature and pressure conditions, and the amount of the foamable molten resin is determined by the predetermined injection temperature and pressure conditions. In the range of 55 to 110%, preferably in the range of 60 to 100% of the weight of the foamable molten resin having the same volume as that of the mold cavity as measured below. And
これによつて該金型キヤ ビティ 内に発泡性溶融樹脂塊を形 成し、  As a result, a foamable molten resin mass is formed in the mold cavity,
( 3 ) 上記樹脂入口または上記ガス入口 を通じて該金型キ ャ ビティ 内の該発泡性溶融樹脂塊に加圧ガスを注入して該発 泡性溶融樹脂塊にガス充填中空部を形成し、 それによつて該 発泡性溶融樹脂塊に圧力をかけて該発泡性溶融樹脂塊の外表 面を該金型キヤ ビティ の該内壁面に押し付ける こ とによ り 、 該発泡性溶融樹脂塊の外表面部分を固化させて、 該発泡性溶 融樹脂塊の表皮層を形成し、  (3) A pressurized gas is injected into the foamable molten resin mass in the mold cavity through the resin inlet or the gas inlet to form a gas-filled hollow portion in the foamable molten resin mass. Thus, by applying pressure to the foamable molten resin mass and pressing the outer surface of the foamable molten resin mass against the inner wall surface of the mold cavity, an outer surface portion of the foamable molten resin mass is obtained. To form a skin layer of the foamable molten resin mass,
工程 ( 3 ) は、 工程 ( 2 ) の間、 工程 ( 2 ) の完了後、 ま たは工程 ( 2 ) の間と完了後に行ない、 そして  Performing step (3) during step (2), after completion of step (2), or during and after step (2); and
( 4 ) 該発泡性溶融樹脂塊の一部と該ガス充填中空部内の 加圧ガス の少なく と も一部を、 該発泡性溶融樹脂塊自体が有 する発泡圧力 と該ガス充填中空部内の加圧ガスの圧力によつ て、 該溶融樹脂排出手段を通じて該金型キヤ ビティ の外側に 排出して該発泡性溶融樹脂塊への圧力を低下させ、 それによ つて、 該金型キヤ ビティ 内の該発泡性溶融樹脂塊を発泡させ て、 実質的に無発泡の該表皮層を有する発泡樹脂塊を形成す る、 (4) A part of the foamable molten resin mass and at least a part of the pressurized gas in the gas-filled hollow portion are subjected to the foaming pressure of the foamable molten resin mass itself and the pressure in the gas-filled hollow portion. Due to the pressure of the pressurized gas, the outside of the mold cavity is discharged through the molten resin discharging means. Discharging to reduce the pressure on the foamable molten resin mass, thereby foaming the foamable molten resin mass in the mold cavity to form a foam having the substantially non-foamed skin layer. Forming a resin mass,
こ とを特徴とする発泡射出成形方法が提供される。 次に、 本発明の理解を容易にするために、 本発明の基本的 特徵及び好ま しい態様を列挙する。 A foam injection molding method characterized by this is provided. Next, in order to facilitate understanding of the present invention, basic features and preferred embodiments of the present invention will be listed.
1 . 熱可塑性樹脂の発泡射出成形方法であっ て、 1. A foam injection molding method for thermoplastic resin,
( 1 ) 固定半型及びそれと組み合わさ った可動半型か らな り 、 該固定半型の内壁面と該可動半型の内壁面によって規定 される金型キヤ ビティ を有する金型を提供し、  (1) A mold comprising a fixed mold and a movable mold combined with the mold, and having a mold cavity defined by an inner wall surface of the fixed mold and an inner wall surface of the movable mold,
該金型キヤ ビティ は内壁面を有し、 また、 樹脂入口 に通じ てお り 、  The mold cavity has an inner wall surface and communicates with a resin inlet.
該金型キヤ ビティ の該内壁面は溶融樹脂排出手段を有して お り 、  The inner wall surface of the mold cavity has a molten resin discharging means,
( 2 ) 発泡性の熱可塑性樹脂を溶融状態で所定の射出温度 圧力条件下に上記樹脂入口 を通じて該金型キヤ ビティ に射出 し、 該発泡性溶融樹脂の量は、 該所定の射出温度圧力条件下 で測定して該金型キヤ ビティ の容積と同 じ体積を有する該発 泡性溶融樹脂の重量の 9 5 〜 1 1 0 % の範囲であ り 、  (2) The foamable thermoplastic resin is injected in a molten state into the mold cavity through the resin inlet under a predetermined injection temperature and pressure conditions, and the amount of the foamable molten resin is determined by the predetermined injection temperature and pressure conditions. Measured in the range of 95 to 110% of the weight of the foamable molten resin having the same volume as the volume of the mold cavity,
これによつて該金型キヤ ビティ 内に発泡性溶融樹脂塊を形 成し、 As a result, a foamable molten resin mass is formed in the mold cavity. And
( 3 ) 該金型キヤ ビティ 内の該発泡性溶融樹脂塊に圧力 を かけて該発泡性溶融樹脂塊の表面を該金型キヤ ビティ の該内 壁面に押し付ける こ とによ り 、 該発泡性溶融樹脂塊の表面部 分を固化させて、 該発泡性溶融樹脂塊の表皮層を形成し、 そ して  (3) By applying pressure to the foamable molten resin mass in the mold cavity and pressing the surface of the foamable molten resin mass against the inner wall surface of the mold cavity, the foamability is improved. The surface portion of the molten resin mass is solidified to form a skin layer of the foamable molten resin mass, and
( ) 該発泡性溶融樹脂塊の一部を該発泡性溶融樹脂塊自 体が有する発泡圧力によ り該溶融樹脂排出手段を通じて該金 型キヤ ビティ の外側に排出して該発泡性溶融樹脂塊への圧力 を低下させ、 それによつて、 該金型キヤ ビティ 内の該発泡性 溶融樹脂塊を発泡させて、 実質的に無発泡の該表皮層を有す る発泡樹脂塊を形成する、  (2) A part of the foamable molten resin mass is discharged to the outside of the mold cavity through the molten resin discharging means by a foaming pressure of the foamable molten resin mass itself, and the foamable molten resin mass is discharged. Reducing the pressure on the foamed molten resin mass in the mold cavity to form a substantially non-foamed foamed resin mass having the skin layer.
こ と を特徴とする発泡射出成形方法。 A foam injection molding method characterized by the above.
2 . 工程 ( 3 ) での該発泡性溶融樹脂塊への加圧を、 追加の 発泡性溶融樹脂を該金型キヤ ビティ に射出して該発泡性溶融 樹脂塊に所定の樹脂保圧をかける こ とによって行なう こ と を 特徴とする前項 1 に記載の方法。 2. Pressing the foamable molten resin mass in step (3), injecting additional foamable molten resin into the mold cavity and applying a predetermined resin holding pressure to the foamable molten resin mass 2. The method according to item 1, wherein the method is performed.
3 . 工程 ( 2 ) の前で工程 ( 1 ) の後に、 該金型キヤ ビティ に加圧ガスを導入して、 該金型キヤ ビティ の圧力 を、 工程3. Before step (2) and after step (1), pressurized gas is introduced into the mold cavity to reduce the pressure of the mold cavity.
( 2 ) で射出された該発泡性溶融樹脂がそのフ ローフ ロ ン ト で発泡を起 こ さない圧力 とする こ とを特徴とする前項 1 また は 2 に記載の方法。 (1) wherein the pressure at which the foamable molten resin injected in (2) does not cause foaming at its flow front is set to Is the method described in 2.
4 . 工程 ( 2 ) の前で工程 ( 1 ) の後に該金型キヤ ピティ に 導入する該加圧ガスが二酸化炭素ガスである こ とを特徴とす る前項 3 に記載の方法。 4. The method according to the above item 3, wherein the pressurized gas introduced into the mold cap before the step (2) and after the step (1) is carbon dioxide gas.
5 . 該金型キヤ ビティ の該溶融樹脂排出手段が開閉弁であ り 、 該金型が、 該開閉弁を介して該金型キヤ ビティ に通じる溶融 樹脂排出用キヤ ビティ を有してお り 、 該溶融樹脂排出用キヤ ビティ の容積が、 工程 ( 4 ) で該開閉弁を通じて該金型キヤ ビティ の外側に排出される該発泡性溶融樹脂塊の該一部の体 積よ り大きい こ とを特徴とする前項 1 〜 4 のいずれかに記載 の方法。 5. The molten resin discharging means of the mold cavity is an on-off valve, and the mold has a molten resin discharging cavity communicating with the mold cavity via the on-off valve. The volume of the molten resin discharging cavity is larger than the volume of the part of the foamable molten resin mass discharged to the outside of the mold cavity through the on-off valve in step (4). The method according to any one of the above items 1 to 4, characterized in that:
6 . 該溶融樹脂排出用キヤ ビティ が該金型の外側に通じる通 気口 を有する こ と を特徴とする前項 5 に記載の方法。 6. The method according to the above item 5, wherein the molten resin discharging cavity has an air opening communicating with the outside of the mold.
7 . 該発泡性溶融樹脂が、 溶融樹脂とそれに溶解した少なく と も 1 種のガス状発泡剤か らな り 、 該少な く と も 1 種のガス 状発泡剤が二酸化炭素ガス と窆素ガスか らなる群から選ばれ る こ とを特徴とする前項 1 〜 6 のいずれかに記載の方法。 7. The foamable molten resin is composed of the molten resin and at least one gaseous foaming agent dissolved therein, and the at least one gaseous foaming agent is carbon dioxide gas and carbon dioxide gas. 7. The method according to any one of items 1 to 6, wherein the method is selected from the group consisting of:
8 . 該発泡性溶融樹脂の該発泡剤の含有量が 0 . 0 5 〜 1 0 重量%である こ とを特徴とする前項 7 に記載の方法。 8. The content of the foaming agent in the foamable molten resin is 0.05 to 10%. 8. The method according to the above item 7, wherein the method is characterized in that the amount is by weight.
9 . 熱可塑性樹脂の発泡射出成形方法であって、 9. A foam injection molding method for a thermoplastic resin,
( 1 ) 固定半型及びそれと組み合わさ っ た可動半型か らな り 、 該固定半型の内壁面と該可動半型の内壁面によって規定 される金型キヤ ビティ を有する金型を提供し、  (1) A mold comprising a fixed mold and a movable mold combined with the mold, and having a mold cavity defined by an inner wall surface of the fixed mold and an inner wall surface of the movable mold,
該金型キヤ ビティ は内壁面を有し、 また、 樹脂入口及び所 望によ り ガス入口に通じてお り 、  The mold cavity has an inner wall surface and communicates with a resin inlet and, if desired, a gas inlet.
■ 該金型キヤ ビティ の該内壁面は溶融樹脂排出手段を有して お り 、  ■ The inner wall surface of the mold cavity has a molten resin discharging means,
( 2 ) 発泡性の熱可塑性樹脂を溶融状態で所定の射出温度 圧力条件下に上記樹脂入口を通じて該金型キヤ ビティ に射出 し、 該発泡性溶融樹脂の量は、 該所定の射出温度圧力条件下 で測定して該金型キヤ ビティ の容積と同 じ体積を有する該発 泡性溶融樹脂の重量の 5 5 〜 1 1 0 %の範囲であ り 、  (2) The foamable thermoplastic resin is injected in a molten state into the mold cavity through the resin inlet under a predetermined injection temperature and pressure conditions, and the amount of the foamable molten resin is determined by the predetermined injection temperature and pressure conditions. Measured in the range of 55 to 110% by weight of the foamable molten resin having the same volume as the mold cavity,
これによ つて該金型キヤ ビティ 内に発泡性溶融樹脂塊を形 成し、  As a result, a foamable molten resin mass is formed in the mold cavity,
( 3 ) 上記樹脂入口または上記ガス入口 を通じて該金型キ ャ ビティ 内の該発泡性溶融樹脂塊に加圧ガスを注入して該発 泡性溶融樹脂塊にガス充填中空部を形成し、 それによつ て該 発泡性溶融樹脂塊に圧力 をかけて該発泡性溶融樹脂塊の外表 面を該金型キヤ ビティ の該内壁面に押し付ける こ とによ り 、 該発泡性溶融樹脂塊の外表面部分を固化させて、 該発泡性溶 融樹脂塊の表皮層を形成し、 (3) A pressurized gas is injected into the foamable molten resin mass in the mold cavity through the resin inlet or the gas inlet to form a gas-filled hollow portion in the foamable molten resin mass. Thus, by applying pressure to the foamable molten resin mass and pressing the outer surface of the foamable molten resin mass against the inner wall surface of the mold cavity, the outer surface of the foamable molten resin mass is obtained. Solidifies the part, Forming the skin layer of the molten resin mass,
工程 ( 3 ) は、 工程 ( 2 ) の間、 工程 ( 2 ) の完了後、 ま たは工程 ( 2 ) の間と完了後に行ない、 そして  Performing step (3) during step (2), after completion of step (2), or during and after step (2); and
( 4 ) 該発泡性溶融樹脂塊の一部と該ガス充填中空部内の 加圧ガスの少なく と も一部を、 該発泡性溶融樹脂塊自体が有 する発泡圧力 と該ガス充填中空部内の加圧ガスの圧力によつ て、 該溶融樹脂排出手段を通じて該金型キヤ ビティ の外側に 排出して該発泡性溶融樹脂塊への圧力を低下させ、 それによ つて、 該金型キヤ ビティ 内の該発泡性溶融樹脂塊を発泡させ て、 実質的に無発泡の該表皮層を有する発泡樹脂塊を形成す る、  (4) At least a part of the foamable molten resin mass and at least a part of the pressurized gas in the gas-filled hollow portion are combined with the foaming pressure of the foamable molten resin mass itself and the pressure in the gas-filled hollow portion. The pressure of the pressurized gas is discharged through the molten resin discharging means to the outside of the mold cavity to reduce the pressure on the foamable molten resin mass, thereby reducing the pressure in the mold cavity. Foaming the foamable molten resin mass to form a substantially non-foamed foamed resin mass having the skin layer;
こ と を特徴 とする発泡射出成形方法。 A foam injection molding method characterized by the above.
1 0 . 工程 ( 3 ) で用いる該加圧ガスが二酸化炭素ガスであ る こ と を特徴とする前項 9 に記載の方法。 10. The method according to the above item 9, wherein the pressurized gas used in the step (3) is carbon dioxide gas.
1 1 . 工程 ( 2 ) の前で工程 ( 1 ) の後に、 該金型キヤ ビテ ィ に加圧ガスを導入して、 該金型キヤ ビティ の圧力を、 工程11. Before step (2) and after step (1), pressurized gas is introduced into the mold cavity to reduce the pressure of the mold cavity.
( 2 ) で射出された該発泡性溶融樹脂がそのフ ローフ ロ ン ト で発泡を起 こさない圧力 とする こ とを特徴とする前項 9 また は 1 0 に記載の方法。 (10) The method according to the above (9) or (10), wherein the pressure is such that the foamable molten resin injected in (2) does not cause foaming in the flow front.
1 2 . 工程 ( 2 ) の前で工程 ( 1 ) の後に該金型キヤ ビティ に導入する該加圧ガスが二酸化炭素ガスである こ とを特徴と する前項 1 1 に記載の方法。 1 2. Before the process (2), after the process (1), the mold cavity 12. The method according to the above item 11, wherein the pressurized gas introduced into the reactor is carbon dioxide gas.
1 3 . 該金型キヤ ビティ の該溶融樹脂排出手段が開閉弁であ り 、 該金型が、 該開閉弁を介して該金型キヤ ビティ に通じる 溶融樹脂排出用キヤ ビティ を有してお り、 該溶融樹脂排出用 キヤ ビティ の容積が、 工程 ( 4 ) で該開閉弁を通じて該金型 キヤ ビティ の外側に排出される該発泡性溶融樹脂塊の該ー部 の体積よ り大きい こ とを特徵とする前項 9 〜 1 2 のいずれか に記載の方法。 13. The molten resin discharging means of the mold cavity is an open / close valve, and the mold has a molten resin discharge cavity that communicates with the mold cavity through the open / close valve. That is, the volume of the molten resin discharging cavity is larger than the volume of the foamed molten resin mass discharged to the outside of the mold cavity through the on-off valve in step (4). The method according to any one of the above items 9 to 12, which is characterized by the following.
1 4 . 該溶融樹脂排出用キヤ ビティ が該金型の外側に通じる 通気口 を有する こ と を特徴とする前項 1 3 に記載の方法。 14. The method according to the above item 13, wherein the molten resin discharging cavity has a ventilation hole communicating with the outside of the mold.
1 5 . 該発泡性溶融樹脂が、 溶融樹脂とそれに溶解した少な く と も 1 種のガス状発泡剤か らな り 、 該少なく と も 1 種のガ ス状発泡剤が二酸化炭素ガス と窒素ガスか らなる群か ら選ば れる こ と を特徴とする前項 9 〜 1 4 のいずれかに記載の方法。 15. The foamable molten resin comprises the molten resin and at least one gaseous foaming agent dissolved therein, and the at least one gaseous foaming agent comprises carbon dioxide gas and nitrogen. 15. The method according to any one of items 9 to 14, wherein the method is selected from a group consisting of gas.
1 6 . 該発泡性溶融樹脂の該発泡剤の含有量が 0 . 0 5 〜 1 0 重量%である こ と を特徴とする前項 1 5 に記載の方法。 上記のよ う に、 本発明の方法には、 工程 ( 3 ) における金 型キヤ ビティ 内の溶融樹脂塊への加圧に加圧ガスを用いない16. The method according to the above item 15, wherein the content of the foaming agent in the foamable molten resin is 0.05 to 10% by weight. As described above, the method of the present invention includes the step of (3) Do not use pressurized gas to pressurize the molten resin mass in the mold cavity
(樹脂保圧をかける こ となどによって行なう) 第 1 の方法と、 工程 ( 3 ) における金型キヤ ビティ 内の溶融樹脂塊への加圧 に加圧ガス を用いる第 2 の方法がある。 なお、 第 1 の方法に おいては、 工程 ( 2 ) での発泡性溶融樹脂の射出量は、 所定 の射出温度圧力条件下で測定して金型キヤ ビティ の容積と同 じ体積を有する該発泡性溶融樹脂の重量の 9 5 〜 1 1 0 %の 範囲、 好ま し く は 9 8 〜 1 0 5 %の範囲である。 また、 第 2 の方法においては、 工程 ( 2 ) での発泡性溶融樹脂の射出量 は、 所定の射出温度圧力条件下で測定して金型キヤ ビティ の . 容積と同 じ体積を有する該発泡性溶融樹脂の重量の 5 5 〜 1 1 0 %の範囲、 好ま し く は 6 0 〜 1 0 0 %の範囲である。 発 泡性溶融樹脂の射出量が金型キヤ ビティ の容積と同じ体積を 有する該発泡性溶融樹脂の重量の 1 0 0 %を超える こ とが可 能な理由は、 射出圧力で溶融樹脂が圧縮されるか らである。 本発明でい う 「射出温度」 とは成形機のシリ ンダ温度のこ と であ り 、 射出される溶融樹脂の温度にほぼ等しい。 また、 本 発明でい う 「射出圧力」 とは、 溶融樹脂を射出するのに要す る圧力であ る。 以下、 上記のよ う に定義される溶融樹脂の射 出量を以下しばしば、 「金型キヤ ピティ 充填率」 と称する。 There are a first method (by applying a resin holding pressure, etc.) and a second method in which a pressurized gas is used to press the molten resin mass in the mold cavity in step (3). In the first method, the injection amount of the foamable molten resin in the step (2) is measured under a predetermined injection temperature and pressure condition and has the same volume as the volume of the mold cavity. It is in the range of 95 to 110% by weight of the foamable molten resin, preferably in the range of 98 to 105%. Further, in the second method, the injection amount of the foamable molten resin in the step (2) is measured under a predetermined injection temperature and pressure condition and has a volume equal to the volume of the mold cavity. It is in the range of 55 to 110%, preferably in the range of 60 to 100% by weight of the soluble molten resin. The reason that the injection amount of the foamable molten resin can exceed 100% of the weight of the foamable molten resin having the same volume as the mold cavity is that the molten resin is compressed by the injection pressure. Because it is done. The “injection temperature” in the present invention refers to a cylinder temperature of a molding machine and is substantially equal to a temperature of a molten resin to be injected. The “injection pressure” in the present invention is a pressure required to inject a molten resin. Hereinafter, the injection amount of the molten resin defined as above is hereinafter often referred to as “mold mold filling rate”.
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明者 らが従来技術の問題を解決するため鋭意検討した 結果、 特定量の二酸化炭素ガス を溶融樹脂に溶解させてお く と、 成形中にのみ二酸化炭素ガスが可塑剤と発泡剤の両方の 働きをし、 成形後の成形品は変形せずに二酸化炭素ガスが大 気中に放散するため、 樹脂性能を変える こ となく溶融樹脂の 粘度を低下させ、 かつ固化を抑制し、 発泡射出成形を容易に できる こ と を見出し、 また、 溶融樹脂が高い発泡性を持った めに、 金型表面状態が成形品に転写するよ う に保圧した後で あっても、 表皮層に包まれた発泡性溶融樹脂塊の一部を発泡 性溶融樹脂塊自体が有する発泡圧力によ り表皮層の一部を破 つ て溶融樹脂排出手段を通じて金型キヤ ビティ の外側へ十分 に排出できる こ とを見いだした。 また該溶融樹脂塊の該一部 の排出が極めて短時間に行われるため、 溶融樹脂が固ま らな いう ちに急激な発泡を生ぜしめる こ とができる こ とか ら、 高 い発泡倍率を達成できる こ と、 しかも この時の気化熱によ り 溶融樹脂が急激に冷却されるため、 冷却時間が少なく て済み 成形サイ クルの短縮が図れる こ とを見いだした。 そして、 得 られた発泡成形品は、 実質的に無発泡の表皮層と該表皮層に 包まれた発泡層を有し、 表面外観及び寸法精度に優れる こ と ' を見いだした。 更に、 本発明者ら は、 二酸化炭素ガス以外の 発泡性ガス (例えば窒素ガス) を用いた場合でも、 同様な効 果が得られる こ と も見いだした。 これらの知見に基づき、 本 発明を完成した。 As a result of intensive studies by the present inventors to solve the problems of the prior art, a specific amount of carbon dioxide gas was dissolved in the molten resin. The carbon dioxide gas acts as both a plasticizer and a foaming agent only during molding, and the molded product after molding is not deformed and the carbon dioxide gas is released into the atmosphere, thus changing the resin performance. That the viscosity of the molten resin can be reduced, solidification can be suppressed, and foam injection molding can be easily performed.In addition, since the molten resin has high foamability, the mold surface state is transferred to the molded product. Even after the pressure is maintained, a part of the foamable molten resin mass wrapped in the skin layer is broken by the foaming pressure of the foamable molten resin mass itself. It has been found that the molten resin can be sufficiently discharged to the outside of the mold cavity through the molten resin discharging means. Also, since the part of the molten resin mass is discharged in a very short time, a rapid expansion can be generated while the molten resin is hardened, so that a high expansion ratio is achieved. It has been found that because the molten resin is rapidly cooled by the heat of vaporization at this time, the cooling time is short and the molding cycle can be shortened. Then, it was found that the obtained foamed molded article had a substantially non-foamed skin layer and a foamed layer wrapped by the skin layer, and was excellent in surface appearance and dimensional accuracy. Furthermore, the present inventors have also found that a similar effect can be obtained when a foaming gas (for example, nitrogen gas) other than carbon dioxide gas is used. Based on these findings, the present invention has been completed.
本発明の方法は、 二酸化炭素ガスに代表される発泡性ガス . を溶融樹脂に溶解する こ とによ り 、 固化温度を低下させ、 樹 脂の溶融流動性を向上させる こ と と、 発泡性溶融樹脂塊を射 出圧力や高圧ガスによ り金型キヤ ビティ 内壁面に押し付けた 後に発泡性溶融樹脂塊の一部を該溶融樹脂塊自体が有する発 泡圧力によ り 溶融樹脂排出手段を通じて金型キヤ ビティ の外 側に排出して該発泡性溶融樹脂塊への圧力を低下させ、 それ によ って、 金型キヤ ビティ 内の発泡性溶融樹脂塊を発泡させ る こ とを組み合わせる こ とによ り 、 外観や寸法精度に優れ、 高度に発泡した成形品を得る発泡射出成形法である。 The method of the present invention lowers the solidification temperature by dissolving foaming gas typified by carbon dioxide gas in a molten resin, To improve the melt fluidity of the resin and to form a part of the foamable molten resin mass after pressing the foamable molten resin mass against the inner wall of the mold cavity by the injection pressure or high pressure gas. Due to the foaming pressure of the mold itself, the foam is discharged to the outside of the mold cavity through the molten resin discharge means to reduce the pressure on the foamed molten resin mass, thereby reducing the pressure in the mold cavity. This is a foam injection molding method that obtains a highly foamed molded product with excellent appearance and dimensional accuracy by combining foaming of the foamable molten resin mass.
即ち、 熱可塑性樹脂に二酸化炭素ガス等の発泡性ガスを溶 解させる こ とによ り 同じ射出温度において、 溶融樹脂の粘度 が熱可塑性樹脂本来の粘度よ り も大幅に低下し、 固化温度を 低下させ、 高い流動性と発泡性が得 られる。 この状態で金型 キヤ ビティ に該溶融樹脂をカウ ンタ プレツ シャ法で射出充填 する と、 金型キヤ ビティ 内の加圧ガスによって溶融樹脂の発 泡が抑えられた状態で溶融樹脂が充填される。 さ ら に溶融樹 脂を加圧しながら金型表面に押し付ける と、 上記したよ う に 該溶融樹脂は発泡性ガスを含むこ とで低粘度化してお り 、 ま た樹脂がフルショ ッ トで充填されているため、 も し く は高圧 のガスでガス充填中空部を形成し、 ガス圧で保圧されている ために金型キヤ ビティ 内壁面に強く 押し付けられ、 該金型キ ャ ビティ 内壁面形状が良好に溶融樹脂塊表面に転写される。 本発明の方法においては、 この段階で溶融樹脂塊の表面部 分のみを冷却固化して表皮層を形成する。 この表皮層は、 樹 脂が緻密に充填された、 無発泡または微発泡 (発泡倍率 1 . 0 1 倍以下) な構造を有する。 一旦固化した表皮層ではその 後に発泡が生じないため、 本発明の方法では表面に発泡模様 のない高品質の成形品が得られる こ とになる。 また表皮層の 厚さ は上記冷却固化の時間を調整する こ とで容易に制御する こ とができる。 上記冷却固化の時間は通常 0 . 1 秒〜 2 秒の 範囲内が好ま しい。 That is, by dissolving a foaming gas such as carbon dioxide gas in the thermoplastic resin, at the same injection temperature, the viscosity of the molten resin is significantly lower than the inherent viscosity of the thermoplastic resin, and the solidification temperature is lowered. It lowers the fluidity and foamability. In this state, when the molten resin is injected and filled into the mold cavity by the counter pressure method, the molten resin is filled in a state in which foaming of the molten resin is suppressed by the pressurized gas in the mold cavity. . Further, when the molten resin is pressed against the mold surface while being pressurized, the viscosity of the molten resin is reduced by containing the foaming gas as described above, and the resin is filled with full shot. Or a high-pressure gas to form a gas-filled hollow portion, and because the gas pressure is maintained, it is strongly pressed against the inner wall surface of the mold cavity, and the inner wall surface of the mold cavity is pressed. The shape is well transferred to the surface of the molten resin mass. In the method of the present invention, only the surface portion of the molten resin mass is cooled and solidified at this stage to form a skin layer. This skin layer is It has a non-foaming or micro-foaming (expansion ratio of less than 1.01) filled with fat. Since foaming does not occur afterwards in the solidified skin layer, a high-quality molded product having no foaming pattern on the surface can be obtained by the method of the present invention. Also, the thickness of the skin layer can be easily controlled by adjusting the cooling and solidifying time. The cooling and solidifying time is usually preferably in the range of 0.1 second to 2 seconds.
表皮層が形成された段階では、 該表皮層に包まれた内部の 溶融樹脂塊は発泡性ガスの溶解によ り 固化温度が低下してい る こ とによ り 、 十分な発泡性を維持している。 本発明の方法 では、 溶融樹脂塊の一部を溶融樹脂塊自体が有する発泡圧力 によ り溶融樹脂排出手段を通じて金型キヤ ビティ の外側に瞬 時に排出、 開放し、 金型キヤ ビティ 内の溶融樹脂塊を発泡さ せるか、 も し く は、 溶融樹脂塊の一部とガス充填中空部内の 加圧ガスの少なく と も一部を、 溶融樹脂塊自体が有する発泡 圧力 とガス充填中空部内の加圧ガスの圧力によ り溶融樹脂排 出手段を通じて金型キヤ ビティ の外側に瞬時に排出、 開放し、 金型キヤ ビティ 内の溶融樹脂塊を発泡させる。  At the stage where the skin layer is formed, the molten resin mass inside the skin layer is kept sufficiently foamable because the solidification temperature is lowered due to the dissolution of the foamable gas. ing. In the method of the present invention, a part of the molten resin mass is instantaneously discharged and released to the outside of the mold cavity through the molten resin discharging means by the foaming pressure of the molten resin mass itself, and is melted in the mold cavity. The resin mass is foamed, or at least a part of the molten resin mass and at least a part of the pressurized gas in the gas-filled hollow portion are subjected to the foaming pressure and the gas-filled hollow portion of the molten resin mass itself. The pressure of the pressurized gas instantaneously discharges and opens the outside of the mold cavity through the molten resin discharge means, and foams the molten resin mass in the mold cavity.
上記したよ う に、 本発明の方法によれば表皮層の厚みや発 泡倍率を容易に制御する こ とができる。 発泡層の発泡倍率と して 1 . 0 5 〜 4 . 0 の成形品を良好に成形する こ とができ る。 また表皮層の厚さが成形品の最大肉厚の 2 0 %以下であ る、 ある いは厚さが 1 m m以下の薄い表皮層を有して、 かつ 連続気泡構造 ( open- eel lular structure) を有する発泡層 を有する軽量の成形品を良好に成形する こ とができる。 As described above, according to the method of the present invention, the thickness of the skin layer and the foaming ratio can be easily controlled. A molded article having a foaming ratio of 1.05 to 4.0 as the expansion ratio of the foamed layer can be favorably molded. Also, the thickness of the skin layer is not more than 20% of the maximum thickness of the molded article, or a thin skin layer having a thickness of 1 mm or less, and A lightweight molded article having a foamed layer having an open-cellular structure can be favorably molded.
本発明の成形方法で使用される熱可塑性樹脂の例と しては、 ポ リ エチレン、 ポリ プロ ピレン、 ポ リ塩化ビニル、 アク リ ル 樹脂、 スチ レン系樹脂、 ポリ エチレンテレフタ レー ト、 ポ リ ブチレンテレフタ レー ト、 ポ リ ア リ レー 卜、 ポリ フエ二レン エーテル、 変性ポ リ フエ二レンエーテル樹脂、 全芳香族ポ リ エステル、 ポリ アセ夕一ル、 ポリ 力一ポネー ト、 ポリ エーテ- ルイ ミ ド、 ポリ エーテルサルフ ォ ン、. ポ リ ア ミ ド系樹脂、 ポ リ サルフォ ン、 ポ リ エ一テルエ一テルケ ト ン、 ポ リ エ一テル ケ ト ンなどの熱可塑性のプラスチッ ク材料、 およびこれら を 2種以上混合した組成物、 これら に各種充填材を配合 したも のである。 こ こでい う スチレン系樹脂とは、 スチレンを必須 原料とするホモポ リ マー、 コポ リ マーおよびこれらのポ リ マ —と他の樹脂よ り得 られるポ リ マーブレン ドであ り、 ポリ ス チレンまたは A B S樹脂である こ とが好ま しい。 ポリ スチレ ンとは、 スチレンホモポ リ マーである。 また、 ポ リスチレン 樹脂相中にゴムが分布した構造を有する、 いわゆるゴム強化 ポ リ スチ レンも好ま し く 用い られる。  Examples of the thermoplastic resin used in the molding method of the present invention include polyethylene, polypropylene, polyvinyl chloride, acryl resin, styrene resin, polyethylene terephthalate, and polyethylene terephthalate. Polybutylene terephthalate, polylaterate, polyphenylene ether, modified polyphenylene ether resin, wholly aromatic polyester, polyacetylene, polyphenylene ether, polyetherate -Thermoplastic plastics such as Louismid, Polyethersulfone, Polyamide resin, Polysulfone, Polyether terketone, Polyether terketone, etc. It is a material, a composition in which two or more of these are mixed, and various fillers are blended with them. The styrene-based resin used herein refers to homopolymers and copolymers that use styrene as an essential raw material, and polymer blends obtained from these polymers and other resins, and polystyrene. Or it is preferably ABS resin. Polystyrene is a styrene homopolymer. Further, a so-called rubber-reinforced polystyrene having a structure in which rubber is distributed in a polystyrene resin phase is also preferably used.
特に、 本発明の方法においては、 発泡性ガス特に二酸化炭 素ガスを溶解させたときに大き く 溶融粘度が低下する熱可塑 性樹脂が好ま し く 、 非晶性の熱可塑性樹脂ではスチレ ン系樹 脂、 ポ リ カーボネー ト、 ポ リ フエ二レ ンエーテル、 変性ポ リ フエ二レンェ一テル樹脂などが好ま しい。 特にポリ カーポネ — ト は二酸化炭素の溶解度が高いだけでな く 、 熱分解したと きに二酸化炭素を生じる こ とか ら、 溶融樹脂に発泡剤と して 二酸化炭素ガスが含まれている と分解反応の平衡がずれ, 分 解反応速度が遅く なる利点もあ り 、 本発明の方法に好適であ る。 また結晶性の熱可塑性樹脂では、 ガラス繊維等の無機フ ィ ラ一を 1 0 重量%以上含んだポ リ アミ ド系樹脂組成物が好 ま し く 、' ポリ アミ ド系樹脂と しては芳香環を有するものが特 に好適である。 In particular, in the method of the present invention, a thermoplastic resin whose melt viscosity is greatly reduced when a foaming gas, particularly carbon dioxide gas is dissolved, is preferable, and a styrene-based thermoplastic resin is used for an amorphous thermoplastic resin. Resin, polycarbonate, polyphenylene ether, modified poly Phenylene ether resin is preferred. In particular, polycarbonate not only has high solubility of carbon dioxide, but also produces carbon dioxide when pyrolyzed. Therefore, decomposition reaction occurs when molten resin contains carbon dioxide gas as a blowing agent. This is advantageous for the method of the present invention, because it has the advantage that the equilibrium is shifted and the decomposition reaction rate is reduced. Further, among crystalline thermoplastic resins, a polyamide resin composition containing 10% by weight or more of an inorganic filler such as glass fiber is preferable. Those having an aromatic ring are particularly suitable.
また、 本発明の方法では、 各種の難加工性樹脂、 例えば樹 脂の分子量が従来の方法で射出成形する には大きすぎる、 も し く は無機の充填材等が多く 非常に流動性が悪い熱可塑性樹 脂、 熱安定性が悪く 、 熱分解を起こ しやすい樹脂、 軟化温度 が高く 著し く 高温度にして成形する必要がある樹脂、 熱分解 しゃすい難燃剤な どの添加物を配合した樹脂なども多量の二 酸化炭素等の発泡性ガスを溶解する こ とによ り使用できる In addition, in the method of the present invention, the molecular weight of various difficult-to-process resins, for example, the resin is too large to be injection-molded by a conventional method, or the amount of inorganic fillers is large, and the flowability is very poor. Additives such as thermoplastic resin, resin with poor thermal stability and easy to decompose, resin with high softening temperature that needs to be molded at a remarkably high temperature, and pyrolysis and flame retardant Resins can also be used by dissolving a large amount of foaming gas such as carbon dioxide
(上記の 「多量の発泡性ガス」 とは、 例えば、 発泡性ガス重 量と樹脂重量の合計に対して 0 . 2 重量%以上を意味する) 。 (The above-mentioned "large amount of foaming gas" means, for example, 0.2% by weight or more based on the sum of the foaming gas weight and the resin weight).
本発明の方法では、 一般に押出成形には使用さ れるが、 従 来の方法で射出成形するには流動性が悪い熱可塑性樹脂、 従 来の方法で射出成形するには分子量が大きすぎる熱可塑性樹 脂、 従来の方法で射出成形するには軟化温度が高すぎる熱可 塑性樹脂なども、 同様に多量の発泡性ガス (例えば、 発泡性 ガス重量と樹脂重量の合計に対して 0 . 2重量%以上) を溶 解する こ とによ り 良好に使用できる。 これらの例と して次の 熱可塑性樹脂がある。 In the method of the present invention, it is generally used for extrusion molding, but a thermoplastic resin having low flowability for injection molding by a conventional method, or a thermoplastic resin having a molecular weight that is too large for injection molding by a conventional method. Resins, thermoplastic resins whose softening temperature is too high to be injection molded by conventional methods, also require large amounts of foaming gas (eg, foaming By dissolving 0.2% by weight or more with respect to the sum of gas weight and resin weight), it can be used favorably. The following thermoplastic resins are examples of these.
( 1) メル ト フローレー トが 1 . 0 以下のアク リ ル樹脂。  (1) Acrylic resin with a melt flow rate of 1.0 or less.
(2) メル ト フ口一レー トが 1 . 5 以下のポリ スチレン。  (2) Polystyrene with a melt rate of 1.5 or less.
(3) メル ト フローレー トが 2 . 0 以下のゴム強化ポリ スチ レン。  (3) Rubber-reinforced polystyrene with a melt flow rate of 2.0 or less.
(4) メル ト フローレ一 トが 3 . 0以下の A B S樹脂。  (4) ABS resin with a melt flow rate of 3.0 or less.
(5) メル ト フローレー トが 6 . 0 以下のポリ カーポネ一ト。  (5) Polycarbonate with a melt flow rate of 6.0 or less.
(6) ポ リ フエ二 レンェ一テル、 あるいはポリ フエ二レンェ 一テルが 6 0 重量%以上含まれるポ リ フエ二レンエーテル樹 脂組成物。  (6) A polyphenylene ether resin composition containing 60% by weight or more of polyphenylene ether or polyphenylene ether.
( 7) メリレ ト フ口一レー トが 5 . 0 以下のポ リ アセタール。  (7) Polyacetal with a merit of less than 5.0.
( 8) メリレ 卜 フローレー トが 5 . 0以下のポ リ エチレン。  (8) Polyethylene with a mel flow rate of 5.0 or less.
(9) メル ト フ 口一レー トが 5 . 0以下のポ リ プロ ピレン。 (9) Polypropylene with a melt rate of 5.0 or less.
( 10) 易分解性難燃剤 (例えばへキサブ口モビフ エニルエー テル、 ト リ ブロモフ エノ ール、 塩素化ポ リ エチレン) を配合 した熱可塑性樹脂。 (10) A thermoplastic resin containing an easily decomposable flame retardant (for example, Mobifenyl ether, tribromophenol, chlorinated polyethylene).
こ こで、 メリレ ト フ 口一レー トは J I S K 7 2 1 0 に記載の 測定法で測定した値であ り 、 測定条件は各樹脂に一般に使用 されている該 J I S記載の測定条件であ り 、 ァク リ ル樹脂は 条件 1 5 で、 ポ リ スチ レンとゴム強化ポ リ スチ レンは条件 8 で、 A B S樹脂は条件 1 1 で、 ポリ 力一ポネー ト は条件 2 0 で、 ポ リ アセタールとポリ エチレンは条件 4で、 ポリ プロ ピ レンは条件 1 4でそれぞれ測定した値であ り 、 単位は g / 1 0 分である。 Here, the meritlett rate is a value measured by the measurement method described in JISK7201, and the measurement conditions are the measurement conditions described in the JIS that are generally used for each resin. For acrylic resin, condition 15; for polystyrene and rubber-reinforced polystyrene, condition 8; for ABS resin, condition 11; and for poly-polycarbonate, condition 20. Here, the values of polyacetal and polyethylene are measured under condition 4, and the values of polypropylene are measured under condition 14; the unit is g / 10 minutes.
一般に、 熱可塑性樹脂の分子量が大きいほど、 成形品の耐 化学薬品性、 耐衝擊性などが良く なるが、 成形時の流動性が 悪く な り 、 射出成形が困難になる。 押出成形には射出成形ほ ど高い流動性が必要とされないため、 分子量の大きな重合体 が一般に使用されてお り 、 本発明の方法では、 これらの押出 成形に使用 され、 射出成形には使用 されない高分子量の重合 体も多量の二酸化炭素を溶解する こ と と、 発泡性溶融樹脂塊 を加圧によ り金型壁面に押し付けた後に該溶融樹脂塊の一部 を該溶融樹脂塊自体が有する発泡圧力によ り溶融樹脂排出手 段を通じて金型キヤ ビティ の外側に排出 して該溶融樹脂塊へ の圧力 を低下させ、 それによつて、 金型キヤ ビティ 内の該溶 融樹脂塊を発泡させる こ と、 を組み合わせて用いる こ と によ り 、 薄肉部を有する外観に優れた発泡成形品を成形する こ と ができる。  In general, the greater the molecular weight of the thermoplastic resin, the better the chemical resistance and impact resistance of the molded product, but the lower the fluidity during molding and the more difficult the injection molding. Extrusion does not require as high a fluidity as injection molding, so polymers of high molecular weight are commonly used and are used in the process of the present invention for these extrusions and not for injection molding The high-molecular-weight polymer also dissolves a large amount of carbon dioxide, and the molten resin mass itself has a part of the molten resin mass after the foamable molten resin mass is pressed against the mold wall surface by pressing. Due to the foaming pressure, the molten resin is discharged to the outside of the mold cavity through the molten resin discharging means to reduce the pressure on the molten resin mass, thereby foaming the molten resin mass in the mold cavity. By using these in combination, it is possible to mold a foam molded article having a thin portion and excellent appearance.
また、 射出成形するには軟化温度が高すぎる熱可塑性樹脂 の例と して、 ポ リ フエ二 レンエーテル、 あるいはポリ フ エ二 レンエーテルとポ リ スチレンも し く はゴム強化ポ リ スチ レ ン の重量混合比が 1 0 0 : 0〜 6 0 : 4 0 のポ リ フエ二レンェ 一テル樹脂組成物が挙げられる。 ポ リ フ エ二 レンェ一テルは 成形性が悪 く 、 一般にポ リ スチレンも し く はゴム強化ポ リ ス チレンを 4 0 重量% を越える量を配合して使用されている。 と こ ろが、 本発明の成形法によれば、 ポリ スチレンも し く は ゴム強化ポ リ スチレンの配合量が 4 0 重量%以下の場合にお いても多量の二酸化炭素等の発泡性ガス (例えば、 発泡性ガ ス重量と樹脂重量の合計に対して 0 . 2重量%以上) を溶解 すれば使用可能である。 Examples of thermoplastic resins whose softening temperature is too high for injection molding include poly (vinylene ether), poly (phenylene ether) and polystyrene, or rubber-reinforced polystyrene. And a weight mixing ratio of 100: 0 to 60:40. Polyethylene polyester has poor moldability, and is generally polystyrene or rubber reinforced poly. Tylene is used in an amount exceeding 40% by weight. However, according to the molding method of the present invention, even when the blending amount of polystyrene or rubber-reinforced polystyrene is 40% by weight or less, a large amount of foaming gas such as carbon dioxide is used. For example, it can be used by dissolving 0.2% by weight or more based on the sum of the foaming gas weight and the resin weight.
'また軟化温度が高い、 分解温度が低いなど、 溶融樹脂が十 分な流動性をもつまで加熱する と分解した り劣化して物性低 下を起こす樹脂に対しても、 本発明の方法は有効で、 低い樹 脂温度で高い流動性を得る こ とができる。 一般には、 熱可塑 性樹脂が非晶性熱可塑性樹脂の場合、 溶融温度と して、 「発 泡性ガスを含まない熱可塑性樹脂のガラス転移温度 + 1 5 0 °C」 以下の温度で成形する こ とが可能であ り 、 熱可塑性樹 脂が結晶性熱可塑性樹脂の場合、 溶融温度と して、 「発泡性 ガス を含まない熱可塑性樹脂の融点 + 1 0 0 °C」 以下の温度 で成形する.こ とが可能である。  The method of the present invention is also effective for resins that decompose or degrade when heated until the molten resin has sufficient fluidity, such as a high softening temperature and a low decomposition temperature. Thus, high fluidity can be obtained at a low resin temperature. In general, when the thermoplastic resin is an amorphous thermoplastic resin, molding is performed at a temperature not higher than the glass transition temperature of the thermoplastic resin containing no foaming gas + 150 ° C as the melting temperature. When the thermoplastic resin is a crystalline thermoplastic resin, the melting temperature is not higher than the melting point of the thermoplastic resin containing no foaming gas + 100 ° C or less. Molding is possible.
本発明で熱可塑性樹脂に溶解させて用いる発泡性ガス (ガ ス状発泡剤) と しては、 該熱可塑性樹脂に溶解させた時に溶 融粘度を低下させる可塑剤と しての効果を持つものであれば 特に制限はないが、 熱可塑性榭脂に対する溶解度が大き く 、 樹脂や金型、 成形機素材を劣化させない こ と、 環境に対し危 険性がない こ と、 安価である こ と、 また成形後に成形品か ら 速やかに揮発する こ となどの制約を満たすものが好ま しい。 ガス状発泡剤の例と しては、 二酸化炭素ガス、 窒素ガス、 炭 素数 1 〜 5 の飽和炭化水素、 および炭素数 1 〜 5 の飽和炭化 水素の水素原子の一部をフ ッ素で置換して得られるフルォロ アルカ ン、 例えばフ ロ ン、 等が挙げられる。 これらの中で、 二酸化炭素ガス と窒素ガスが好ま し く 、 二酸化炭素ガスが最 も好ま しい。 窒素ガスは樹脂に対する溶解性が二酸化炭素ガ スよ り も低く 、 可塑剤効果は少ないものの、 高温になるほど 樹脂への溶解度が増加する温度特性を有するために、 高い発 泡圧力を得る こ とができる。 The foaming gas (gas foaming agent) used by being dissolved in the thermoplastic resin in the present invention has an effect as a plasticizer that lowers the melt viscosity when dissolved in the thermoplastic resin. There is no particular limitation, as long as it is soluble in thermoplastic resin, it does not degrade resin, molds and molding machine materials, has no environmental dangers, and is inexpensive. Further, it is preferable to use a material that satisfies restrictions such as rapid volatilization from a molded product after molding. Examples of the gaseous foaming agent include replacing some of the hydrogen atoms of carbon dioxide gas, nitrogen gas, saturated hydrocarbons having 1 to 5 carbon atoms, and saturated hydrocarbons having 1 to 5 carbon atoms with fluorine. Fluoroalkane obtained by the above method, for example, fluorocarbon. Of these, carbon dioxide gas and nitrogen gas are preferred, and carbon dioxide gas is most preferred. Nitrogen gas has lower solubility in resin than carbon dioxide gas and has less plasticizer effect, but it has a temperature characteristic of increasing solubility in resin at higher temperatures, so it can obtain a high foaming pressure. it can.
なお金型キヤ ビティ に射出する発泡性溶融樹脂中の発泡性 ガス (ガス状発泡剤) の含有量を直接測定する こ とは難しい ため、 本発明では、 射出成形直後の成形品の重量と、 成形品 を、 非晶性樹脂にあってはガラス転移温度以下の熱風乾燥機 中に 2 4時間以上放置し、 も し く は結晶性樹脂にあっては融 点よ り も約 3 0 °C低い熱風乾燥機中に 2 4時間以上放置し、 成形品中に含まれていた発泡性ガス量を放散させた成形品の 重量の差を、 金型キヤ ビティ に射出 した発泡性溶融樹脂の発 泡性ガスの含有量と した。 射出成形中に逃げる発泡性ガス量 は成形法によ り若干異なるが、 特に本発明の好ま しい態様で ある、 発泡性ガス に二酸化炭素ガスを用い、 金型キヤ ビティ を加圧する加圧ガス と して二酸化炭素ガス を用 いたカ ウ ンタ プレ ツ シャ法で成形する場合には、 成形直後の成形品中の発 泡性ガス即ち二酸化炭素ガスの量をもって発泡性溶融樹脂中 の発泡性ガス (二酸化炭素) の含有量と してもほとんど差異 は生じない。 In addition, since it is difficult to directly measure the content of the foaming gas (gaseous foaming agent) in the foaming molten resin injected into the mold cavity, in the present invention, the weight of the molded article immediately after the injection molding is reduced. Leave the molded article in a hot air dryer at a temperature below the glass transition temperature for amorphous resin for 24 hours or more, or about 30 ° C above the melting point for crystalline resin. Leaving in a low-temperature hot air dryer for 24 hours or more, the difference in the weight of the molded product, in which the amount of foaming gas contained in the molded product was dissipated, was injected into the mold cavity to generate the foamed molten resin. The content of foaming gas was used. The amount of effervescent gas that escapes during injection molding differs slightly depending on the molding method. In particular, a preferred embodiment of the present invention is to use carbon dioxide gas for effervescent gas and pressurize gas for pressurizing the mold cavity. When molding by the counter-press method using carbon dioxide gas, the amount of foaming gas in the molded article immediately after molding, that is, the amount of carbon dioxide gas, is used in the foaming molten resin. There is almost no difference in the content of effervescent gas (carbon dioxide).
発泡性ガス特に二酸化炭素ガスは熱可塑性樹脂によ く溶解 して良好な可塑剤になって熱可塑性樹脂の流動性を向上させ る と と もに、 発泡剤 と して機能する。 本発明の方法に用いる 発泡性溶融樹脂は、 溶融樹脂とそれに溶解した少なく と も 1 種のガス状発泡剤か らなる。 本発明では、 発泡性溶融樹脂の ガス状発泡剤の含有量は、 好ま し く は 0 · 0 5 重量%〜 1 0 重量%の範囲である。 0 . 0 5重量%以上であれば樹脂の溶 融流動性を顕著に向上させ、 かつ発泡させる こ とができ、 更 に好ま し く は 0 . 2 重量%以上、 更に好ま し く は 0 . 5 重 量%以上である。 また発泡性溶融樹脂のガス状発泡剤の含有 量の最大量は 1 0 重量%程度である こ とが望ま しい。 これは ガス状発泡剤 (特に二酸化炭素ガス) を溶融樹脂に多量に溶 解するには装置上の制約が多く なつた り 、 カウンタプレツ シ ャ法で成形する場合において、 必要なカウ ンタガス圧力 (溶 融樹脂射出前に金型キヤ ビティ を加圧ガスであ らか じめ加圧 する圧力) が非常に高 く なつ た りするためである。 発泡性溶 融樹脂のガス状発泡剤の含有量は好ま し く は 7 重量%以下で あ り 、 さ ら に好ま し く は 5 重量%以下である。 成形品の発泡 倍率を増すには、 発泡性溶融樹脂中のガス状発泡剤 (例えば 二酸化炭素) の溶解量を増して、 溶融樹脂の粘度を下げる と と も に溶融樹脂の発泡性を高める こ とが好ま しい。 熱可塑性樹脂に発泡性ガス (ガス状発泡剤) を溶解させる 方法と して、 次の二つの方法が好ま しい。 こ こでは、 発泡性 ガス と して二酸化炭素ガスを用いた場合を例にとって説明す る。 The foaming gas, particularly the carbon dioxide gas, dissolves well in the thermoplastic resin, becomes a good plasticizer, improves the fluidity of the thermoplastic resin, and functions as a foaming agent. The foamable molten resin used in the method of the present invention comprises the molten resin and at least one gaseous blowing agent dissolved therein. In the present invention, the content of the gaseous foaming agent in the foamable molten resin is preferably in the range of 0.55% by weight to 10% by weight. When the content is 0.05% by weight or more, the melt fluidity of the resin can be remarkably improved and the resin can be foamed, more preferably 0.2% by weight or more, and still more preferably 0.2% by weight. More than 5% by weight. Further, it is desirable that the maximum content of the gaseous foaming agent in the foamable molten resin is about 10% by weight. This is because the dissolution of a gaseous blowing agent (especially carbon dioxide gas) in a large amount into the molten resin is subject to many restrictions on equipment, and the counter gas pressure required when molding by the counterpressing method. This is because the pressure (pressure at which the mold cavity is pre-pressed with the pressurized gas before the injection of the molten resin) becomes extremely high. The content of the gaseous blowing agent in the foamable molten resin is preferably 7% by weight or less, and more preferably 5% by weight or less. In order to increase the foaming ratio of the molded article, it is necessary to increase the amount of the gaseous blowing agent (eg, carbon dioxide) dissolved in the foamable molten resin to lower the viscosity of the molten resin and to enhance the foaming property of the molten resin. Is preferred. The following two methods are preferred as a method for dissolving a foaming gas (gaseous foaming agent) in a thermoplastic resin. Here, a case where carbon dioxide gas is used as the foaming gas will be described as an example.
一つは、 予め粒状や粉状の樹脂を二酸化炭素ガス雰囲気中 において二酸化炭素を吸収させてか ら射出成形機に供給する 方法で、 二酸化炭素の圧力や雰囲気温度、 吸収させる時間に よ り 吸収量が決まる。 例えば、 二酸化炭素ガスの圧力を 2〜 1 0 M P a と し、 室温で 3〜 8 時間樹脂に吸収させる と、 樹 脂の二酸化炭素ガスの含有量は 0 . 1 〜 1 0 重量% となる。 この方法では、 可塑化時に樹脂が加熱される に従って樹脂中 の二酸化炭素ガスの一部が揮散するため、 溶融樹脂中の二酸 化炭素ガス量は予め吸収させた量よ り も少な く なる。 そのた め、 成形機のホッパなど樹脂の供給経路も二酸化炭素ガス雰 囲気にする こ とが望ま しい。  The first is a method in which granular or powdery resin is absorbed in advance in a carbon dioxide gas atmosphere and then supplied to the injection molding machine.It is absorbed by the pressure, ambient temperature, and time of absorption of carbon dioxide. The amount is determined. For example, if the pressure of carbon dioxide gas is 2 to 10 MPa and the resin is absorbed at room temperature for 3 to 8 hours, the content of carbon dioxide gas in the resin becomes 0.1 to 10% by weight. In this method, a part of the carbon dioxide gas in the resin is volatilized as the resin is heated during plasticization, so that the amount of the carbon dioxide gas in the molten resin is smaller than the amount previously absorbed. For this reason, it is desirable that the resin supply path, such as the hopper of the molding machine, also be a carbon dioxide gas atmosphere.
も う一つの方法は、 成形機のシリ ンダ内で樹脂を可塑化す る間、 または可塑化した後で樹脂に二酸化炭素ガスを溶解す る方法で、 成形機のホッ パ付近を二酸化炭素ガス雰囲気にし た り 、 スク リ ュの中間部や先端、 シリ ンダか ら可塑化樹脂に 二酸化炭素ガスを注入する。 スク リ ュゃシ リ ンダ中間部から 二酸化炭素ガス を注入する場合には、 注入部付近のスク リ ュ 溝深さ を深く して樹脂圧力 を低く する こ とが好ま しい。 また 二酸化炭素ガスを注入後、 樹脂中に均一に溶解、 分散させる ため、 スク リ ュにダルメージや混連ピンなどのミ キシング機 構を付けた り 、 樹脂流路にスタティ ク ミ キサを設ける こ とが 好ま しい。 射出成形機と しては、 イ ンライ ンスク リ ュ方式で もスク リ ュプリ ブラ方式 (スク リ ュ予備可塑化装置付ラム式 射出成形機を用いる) でも使用できるが、 スク リ ュプリ ブラ 方式は樹脂を可塑化する押出し機部分のスク リ ュデザイ ンや 二酸化炭素の注入位置の変更が容易である こ とか ら、 特に好 ま しい。 Another method is to dissolve carbon dioxide gas in the resin during or after plasticizing the resin in the molding machine cylinder. In addition, carbon dioxide gas is injected into the plasticized resin from the middle, tip, or cylinder of the screw. When injecting carbon dioxide gas from the middle of the screw cylinder, it is preferable to increase the screw groove depth near the injection part to lower the resin pressure. Also, after injecting carbon dioxide gas, it is uniformly dissolved and dispersed in the resin. For this reason, it is preferable to provide a mixing mechanism such as a damage or a mixing pin to the screw or to provide a static mixer in the resin flow path. As the injection molding machine, either an in-line screw system or a screw pre-blur system (using a ram type injection molding machine with a screw pre-plasticizing device) can be used. It is particularly preferable because it is easy to change the screw design of the extruder part for plasticizing the resin and the injection position of carbon dioxide.
熱可塑性樹脂中の二酸化炭素ガスは熱可塑性樹脂が固化し た後に成形品を大気中に放置すれば徐々 に大気中に放散する。  The carbon dioxide gas in the thermoplastic resin is gradually released into the atmosphere if the molded article is left in the air after the thermoplastic resin has solidified.
本発明.の方法では、 工程 ( 2 ) (溶融樹脂の射出) の前に、 金型キヤ ビティ に加圧ガスを導入して、 金型キヤ ビティ の圧 力を、 工程 ( 2 ) で射出された発泡性溶融樹脂がそのフロー フ ロ ン トで発泡を起こさない圧力 とする こ と、 つま り 、 カウ ン夕プレツ シャ法で射出成形する こ とが良好な外観を得るた めにも好ま し い。 なお、 「工程 ( 2 ) で射出された発泡性溶 融樹脂がそのフ ローフ ロ ン トで発泡を起こ さない圧力」 (キ ャ ビティ に導入する加圧ガスの圧力) は、 発泡性溶融樹脂が 有する発泡圧力 によっ て異なるが、 通常 3 P M a 〜 l 0 P M a 、 好ま し く は 5 P M a 〜 8 P M aである。 キヤ ビティ に導 入する加圧ガスの圧力は、 成形品表面に発泡模様が生じない 最低圧力であれば良く 、 一工程に使用するガスの量を最小限 に抑え、 金型キヤ ビティ のシールやガス供給装置の構造を簡 単にするためにもガス圧力は必要最低限に近い圧力とする方 が良い。 In the method of the present invention, a pressurized gas is introduced into the mold cavity before the step (2) (injection of the molten resin), and the pressure of the mold cavity is injected in the step (2). In order to obtain a good appearance, it is preferable to set the pressure so that the foamable molten resin does not cause foaming at the flow front, that is, to perform injection molding by a coupon prestressing method. No. The “pressure at which the foamable molten resin injected in step (2) does not cause foaming in the flow front” (pressure of the pressurized gas introduced into the cavity) is defined as the foamable molten resin. It is usually 3 PMa to 10 PMa, preferably 5 PMa to 8 PMa, although it varies depending on the foaming pressure of the compound. The pressure of the pressurized gas introduced into the cavity only needs to be a minimum pressure that does not cause a foaming pattern on the surface of the molded product.The amount of gas used in one process should be minimized, and the sealing of the mold cavity can be performed. Simple structure of gas supply device For simplicity, it is better to keep the gas pressure close to the minimum required.
カ ウンタプレツ シャ法で金型キヤ ビティ に圧入するガス と して、 空気や二酸化炭素ガス、 窒素ガス をはじめと して、 樹 脂に対して不活性な各種ガスの単体あるいは混合物が使用で きるが、 熱可塑性樹脂への溶解度の高いガス、 例えば、 二酸 化炭素ガス、 窒素ガス、 炭素数 1 〜 5 の飽和炭化水素、 およ び炭素数 1 〜 5 の飽和炭化水素の水素原子の一部をフ ッ 素で 置換して得られる フルォロアルカ ン、 例えばフロ ン、 などが 好ま しい。 二酸化炭素ガスは金型キヤ ビティ 内壁面形状の成 形品への転写性を向上させる効果が高いので特に好ま しい。 樹脂に非晶性樹脂を用い、 溶融樹脂の射出前に金型キヤ ビテ ィ を二酸化炭素ガスで加圧する場合、 本発明者らが既に 日本 国特開平 1 0 — 1 2 8 7 8 3 号公報 ( E P 8 2 6 4 7 7 A 2 に対応) や 日本国特開平 1 1 一 2 4 5 2 5 6 号公報に示した よ う に、 キヤ ピティ 内圧力を高めた方が良好な転写性が得ら れるため、 高度な転写性が要求される場合には、 成形機の型 締め力や金型のシール性能に応じ、 ガス圧力を高める こ と力 S 好ま しい。 金型キヤ ビティ 内に導入する加圧ガスの二酸化炭 素含有量は、 高い方が好ま し く 、 8 0 重量%以上が特に好ま しレ 。  As the gas to be injected into the mold cavity by the counter-plate method, air, carbon dioxide gas, nitrogen gas, and other various gases that are inert to the resin can be used alone or as a mixture. Gases with high solubility in thermoplastic resins, e.g., carbon dioxide gas, nitrogen gas, part of hydrogen atoms in saturated hydrocarbons having 1 to 5 carbon atoms, and saturated hydrocarbons having 1 to 5 carbon atoms Fluoroalkanes obtained by substituting with fluorine, for example, freon, are preferred. Carbon dioxide gas is particularly preferred because it has a high effect of improving the transferability of the inner wall surface of the mold cavity to the molded product. In a case where an amorphous resin is used as the resin and the mold cavity is pressurized with carbon dioxide gas before the injection of the molten resin, the present inventors have already disclosed in Japanese Patent Application Laid-Open No. H10-1288783. (Corresponding to EP826477A2) and Japanese Patent Application Laid-Open No. 11-245562, as described in Japanese Patent Application Laid-Open No. 11-245562, the higher the pressure inside the capty, the better the transferability. Therefore, when high transferability is required, it is preferable to increase the gas pressure according to the clamping force of the molding machine and the sealing performance of the mold. The carbon dioxide content of the pressurized gas introduced into the mold cavity is preferably higher, and particularly preferably 80% by weight or more.
本発明の方法では好ま し く はガス加圧された金型キヤ ビテ ィ 内に溶融樹脂を射出充填した後、 該溶融樹脂が発泡しない 高い圧力で該溶融樹脂を金型キヤ ビティ 内壁面に押し付け、 金型キヤ ビティ 内壁面の表面形状を溶融樹脂塊に転写させる と と もに溶融樹脂塊の表面が冷却固化して無発泡の表面層が 形成するまで保持する。 溶融樹脂射出充填前に金型キヤ ビテ ィ 内に供給した加圧ガスは、 成形品表面のス ワールマーク の 有無や、 金型キヤ ビティ 内壁面形状の転写状況を見て、 樹脂 射出充填中か ら樹脂射出充填終了後、 樹脂加圧終了までの適 当な時期を選定して開放する。 樹脂加圧終了後に金型キヤ ビ ティ 内に加圧ガスが残っている と、 加圧ガスによ り樹脂表面 が押され、 凹みを生じた り 、 表面が発泡によ り 白っ ぽく なる こ とがあ り 望ま しく ない。 In the method of the present invention, preferably, the molten resin is not foamed after the molten resin is injected and filled into the gas-pressurized mold cavity. The molten resin is pressed against the inner wall surface of the mold cavity with high pressure, and the surface shape of the inner wall surface of the mold cavity is transferred to the molten resin mass. Hold until layer has formed. The pressurized gas supplied into the mold cavity before injection molding of the molten resin is checked whether there is a swirl mark on the surface of the molded product and the transfer status of the inner surface of the mold cavity. After the completion of resin injection and filling, select an appropriate time until the end of resin pressurization and open. If pressurized gas remains in the mold cavity after resin pressurization, the resin surface is pressed by the pressurized gas, causing dents or whitish surfaces due to foaming. It is not desirable.
本発明の方法の好ましい態様では、 カウ ンタプレツ シャ法 によ り 、 成形品表面にス ワールマーク のない発泡成形品を得 る こ とができるが、 特に良好な外観を要求されない内部機構 部品などにおいては、 カ ウンタ プレツ シャ法を用いずに成形 する こ とも可能である。 この場合、 表面にス ワールマークは 生じるが、 工程 ( 3 ) での溶融樹脂塊への加圧を樹脂保圧を かける こ と によって行な.う こ と によ り 、 無発泡で寸法精度の 高い表皮層を有し、 内部が高度に発泡した軽く て強度や寸法 精度の高い成形品を得る こ とができる。  In a preferred embodiment of the method of the present invention, a foamed molded article having no swirl mark on the molded article surface can be obtained by the counter-pressure method, but particularly for internal mechanism parts that do not require a good appearance. Can be formed without using the counter-pressure method. In this case, swirl marks are formed on the surface, but in step (3), pressure is applied to the molten resin mass by applying a resin holding pressure. It has a high skin layer, and it is possible to obtain light molded products with high foam and high strength and dimensional accuracy.
またサン ドイ ッチ成形法 ( s a n d w i c h m o l d i n g) を用 い、 非 発泡性の溶融樹脂を射出充填後、 発泡性の溶融樹脂を射出充 填し、 発泡層を形成して、 無発泡層の間に発泡層がサン ドィ ツチされた構造の成形品を製造する場合も、 特にカウンタプ レツ シャ法は必要ない。 Also, using a sandwich molding method, injection-filling a non-foamable molten resin, injection-filling a foamable molten resin, forming a foamed layer, and foaming between the non-foamed layers Layer is Sandy In the case of manufacturing a molded product with a punched structure, there is no need for the counter pressure method.
また、 本発明の方法の工程 ( 3 ) での溶融樹脂塊の加圧方 法と しては金型キヤ ビティ に追加の溶融樹脂を射出して樹脂 保圧をかける方法、 金型キヤ ビティ 内の溶融樹脂中にガスな どの圧力流体を注入する方法、 キヤ ビティ 容積を減少させる 射出圧縮法 ( injection compression molding) な どが挙け られる。 溶融樹脂塊の加圧のための圧力は、 該溶融樹脂表面 が金型キヤ ビティ 内壁面に押し付け られ、 金型キヤ ピティ 内 壁面の表面形状を十分転写しながら固化するよう に設定する。 特に金型キヤ ビティ の加圧ガスに二酸化炭素を用いる場合に は、 高い圧力にするほど高度な転写性を得る こ とができる。 溶融樹脂塊を加圧するための圧力は、 通常、 数 M P a〜 2 0 0 M P aの範囲で、 溶融樹脂の流動特性に応じて調整する。 また溶融樹脂塊への加圧時間は、 該溶融樹脂表面が固化する までの最低時間でよ く 、 あま り長い と、 後に発泡させる溶融 部分の厚みが減少した り 、 樹脂温度が下がり粘度が高く なる ため、 十分な発泡状態が得られに く く なる。 溶融樹脂塊への 加圧時間は、 通常 0. 1 秒〜 2秒の範囲である。  In addition, as a method of pressurizing the molten resin mass in step (3) of the method of the present invention, a method of injecting additional molten resin into the mold cavity to apply a resin holding pressure, Injecting a pressure fluid such as gas into the molten resin, and injection compression molding to reduce the cavity volume. The pressure for pressurizing the molten resin mass is set so that the surface of the molten resin is pressed against the inner wall surface of the mold cavity and solidifies while sufficiently transferring the surface shape of the inner wall surface of the mold cavity. In particular, when carbon dioxide is used as the pressurized gas of the mold cavity, higher transfer pressure can be obtained with higher pressure. The pressure for pressurizing the molten resin mass is usually adjusted in the range of several MPa to 200 MPa according to the flow characteristics of the molten resin. The time required for pressurizing the molten resin mass is the minimum time required for the surface of the molten resin to solidify. If it is too long, the thickness of the molten portion to be foamed later decreases, or the resin temperature decreases and the viscosity increases. Therefore, it is difficult to obtain a sufficient foaming state. The pressurization time for the molten resin mass is usually in the range of 0.1 to 2 seconds.
日 本国特開平 1 1 一 2 4 5 2 5 6号公報に示されるよ う に、 金型キヤ ビティ を二酸化炭素ガスで加圧した後に溶融樹脂を 充填する場合、 溶融樹脂の冷却を金型内で行う にあた り 、 充 填工程中に二酸化炭素が溶融樹脂中に溶解した こ とによって 低下した該溶融樹脂表面の固化温度よ り 3 5 °C低い温度以上 の金型温度であ り 、 かつ、 熱可塑性樹脂が本来有する固化温 度よ り 5 °C低い温度以下の金型温度で冷却する こ とによ り 、 金型キヤ ビティ 内壁表面形状を溶融樹脂塊表面に高度に転写 する こ とができる。 As shown in Japanese Patent Application Laid-Open No. H11-124,556, when the mold cavity is pressurized with carbon dioxide gas and then filled with molten resin, the molten resin is cooled in the mold. In the filling process, carbon dioxide was dissolved in the molten resin during the filling process. At a mold temperature that is at least 35 ° C lower than the solidification temperature of the molten resin surface that has dropped, and at a mold temperature that is at most 5 ° C lower than the inherent solidification temperature of the thermoplastic resin. By cooling, the surface shape of the inner wall of the mold cavity can be highly transferred to the surface of the molten resin mass.
溶融樹脂塊の加圧を溶融樹脂塊中に加圧ガスなどの圧力流 体を注入する こ とによっ て行なう場合において、 ガス充填中 空部を形成するのに用いるガス と しては、 本発明において溶 融樹脂中に含有させる発泡性ガス (ガス状発泡剤) や金型キ ャ ビティ を予め加圧するガス と して使用できるガス と同じも のが使用できる。 これら の中空部形成ガス、 ガス状発泡剤及 び金型キヤ ビティ 加圧ガス、 全て同じガスを用いても良いが、 必ずし も同 じである必要はなく 、 任意の組合せが可能である。 中空部を形成する加圧ガス と しては、 溶融樹脂のガラス転移 温度 ( T g ) や固化温度の低下効果に優れる こ とおよび溶融 樹脂への溶解性に優れる こ とか ら、 二酸化炭素ガスが好ま し い  In the case where the molten resin mass is pressurized by injecting a pressure fluid such as a pressurized gas into the molten resin mass, the gas used to form the gas filling space is as follows. In the present invention, the same gas as the gas that can be used as a gas that can be used as a foaming gas (a gaseous foaming agent) to be contained in a molten resin or a gas for pressurizing a mold cavity in advance can be used. The same gas may be used as the gas for forming the hollow portion, the gaseous foaming agent, and the pressurized gas for the mold cavity, but it is not always necessary to use the same gas, and any combination is possible. As the pressurized gas that forms the hollow portion, carbon dioxide gas is used because of its excellent effect of lowering the glass transition temperature (Tg) and solidification temperature of the molten resin and its excellent solubility in the molten resin. I like it
また、 本発明は、 一旦溶融樹脂をフルシヨ ッ ト した後、 溶 融樹脂塊の一部を金型キヤ ビティ の外側 (例えば樹脂排出用 キヤ ビティ 3 ) に排出 して溶融樹脂塊への圧力を低下させて 発泡層を形成するので、 1 つの金型で 2 つ以上の発泡成形品 を同時に成形しょ う とする場合や 1 つの金型で体積の異なる 2 つ以上の発泡成形品を得る場合に、 成形品の発泡倍率を容 易に均一化する こ とができ、 容易に多数個取り の発泡成形が 可能である。 Further, according to the present invention, after the molten resin is once full-shortened, a part of the molten resin mass is discharged to the outside of the mold cavity (for example, the resin discharging cavity 3) to reduce the pressure on the molten resin mass. Since a foam layer is formed by lowering the temperature, it is necessary to mold two or more foam molded products at the same time with one mold or to obtain two or more foam molded products with different volumes with one mold. The expansion ratio of the molded product Uniformity can be easily obtained, and multi-cavity molding can be easily performed.
以下、 図面に基づいて本発明をさ ら に説明する。  Hereinafter, the present invention will be further described with reference to the drawings.
図 1 ( a ) 〜図 1 ( c ) は、 得られる成形品が厚肉の棒形 状の場合の、 本発明の第 1 の方法の実施態様の 1 例を模式的 · に示す説明図である。  FIGS. 1 (a) to 1 (c) are explanatory views schematically showing one example of an embodiment of the first method of the present invention in a case where the obtained molded article has a thick rod shape. is there.
図 1 ( a ) 〜図 1 ( c ) において、 1 は固定半型 l a と可 動半型 l b とか ら構成された金型で、 この固定半型 l a の内 壁面と可動半型 l b の内壁面によ り 、 金型キヤ ビティ 2 と樹 脂排出用キヤ ビティ 3 とが形成されている。 金型キヤ ビティ 2 は製品となる成形品を成形するための金型 1 内の空間であ る。 また金型キヤ ビティ 2 の外側にある樹脂排出用キヤ ビテ ィ 3 は、 製品 と しての成形品の成形を目的と していない金型 1 内の空間であっ て、 上記金型キヤ ビティ 2 と開閉弁 4 (溶 融樹脂排出手段) によって開閉される連絡通路 5 によっ て連 通している。 開閉弁 4 と しては、 油圧、 空気圧、 磁気、 モー 夕などによっ て開閉作動する ものを用いる こ とができる。 な お、 1 2 は射出ノ ズル、 1 3 は射出ノ ズル 1 2 に内蔵される 加圧ガスノ ズルである。 また樹脂排出用キヤ ビティ 3 には力 ゥ ン夕一ガスの供給孔と排出孔となる通気口 1 4 を有し、 か つ通気口 1 4 はカ ウ ンターガス供給三方弁 1 6 に配管で接続 されている。 また加圧ガスを直接金型キヤ ビティ 2 内の溶融 樹脂塊中に注入可能とする、 ガス注入口 1 8 が設けられてい る。 In Figs. 1 (a) to 1 (c), reference numeral 1 denotes a mold composed of a fixed half mold la and a movable half mold lb, and the inner wall of the fixed half mold la and the inner wall of the movable half mold lb. Thus, a mold cavity 2 and a resin discharge cavity 3 are formed. The mold cavity 2 is a space in the mold 1 for molding a molded product. The resin discharge cavity 3 outside the mold cavity 2 is a space in the mold 1 which is not intended for molding a molded product as a product, and is a space in the mold cavity 2. And a communication passage 5 which is opened and closed by an on-off valve 4 (melt resin discharging means). As the on-off valve 4, a valve that opens and closes by hydraulic pressure, air pressure, magnetism, motor, or the like can be used. Reference numeral 12 denotes an injection nozzle, and reference numeral 13 denotes a pressurized gas nozzle built in the injection nozzle 12. In addition, the resin discharge cavity 3 has a gas supply port 14 and a vent 14 serving as a discharge port, and the vent 14 is connected to the counter gas supply three-way valve 16 by piping. Have been. In addition, a gas injection port 18 is provided to allow the pressurized gas to be directly injected into the molten resin mass in the mold cavity 2. You.
まず、 図 1 ( a ) と図 1 ( b ) に示されるよ う に、 開閉弁 4 を閉鎖した状態で、 射出ノズル 1 2 か ら金型キヤ ビティ 2 内に発泡性溶融樹脂 8 を射出してキヤ ビティ 2 に溶融樹脂塊 を形成する。 発泡性溶融樹脂 8 は、 スプルー 6 およびラ ンナ 一 7 を通って、 金型キヤ ピティ 2 へと射出充填される ものと なっている。 この実施態様では、 発泡性溶融樹脂 8 を射出す る前に、 カウ ンターガスの供給孔 1 4 か らガス体を供給して 金型キヤ ビティ 2 を加圧しておき、 それから、 熱可塑性樹脂 にガス状発泡剤 (例えば二酸化炭素ガス) を含有させた発泡 性溶融樹脂 8 を射出ノズル 1 2 か ら金型キヤ ビティ 2 内に射 出充填する。 溶融樹脂 8 による金型キヤ ビティ 充填率は 9 5 %〜 1 1 0 %の範囲である。  First, as shown in FIGS. 1 (a) and 1 (b), with the on-off valve 4 closed, the foaming molten resin 8 is injected from the injection nozzle 12 into the mold cavity 2. To form a molten resin mass in cavity 2. The foamable molten resin 8 is to be injected and filled into the mold capty 2 through the sprue 6 and the runner 17. In this embodiment, before injecting the foamable molten resin 8, a gas body is supplied from the counter gas supply hole 14 to pressurize the mold cavity 2, and then the gas is supplied to the thermoplastic resin. The foaming molten resin 8 containing a foaming agent (for example, carbon dioxide gas) is injected and filled into the mold cavity 2 from the injection nozzle 12. The mold cavity filling rate of the molten resin 8 is in the range of 95% to 110%.
また樹脂充填完了の直前も し く は直後に金型キヤ ビティ 2 内の加圧ガスを樹脂排出用キヤ ビティ 3 の通気口 1 4 につな がるカ ウ ン夕一ガス供給三方弁 1 6 を開き速やかに大気に開 放する。 なお、 開閉弁 4 は、 閉めた状態では、 溶融榭脂は通 過できないが気密ではないのでガスは通過できる。 金型キヤ ビティ 2 内のカ ウ ンター加圧ガスの開放がされないとカ ウ ン 夕一ガス圧力が樹脂の充填に伴い高圧化し、 金型キヤ ビティ 2 末端等で樹脂充填不良が生じた り 、 も し く は樹脂表面にガ スが大量に吸収されるため樹脂表面に発泡によ る 白化等の不 良現象が発生する。 ついで該溶融樹脂塊に追加の溶融樹脂を射出 して加圧しな がら所定時間保持する こ とによ り 、 金型キヤ ビティ 内壁表面 に接する溶融樹脂塊 8 の表面が冷却固化され実質的に無発泡 の表皮層 1 0 を形成する。 この冷却固化の時間を長くする と 表皮層は厚肉になる。 Immediately before or immediately after resin filling is completed, pressurized gas in the mold cavity 2 is connected to the vent 14 of the cavity 3 for resin discharge. And immediately release to the atmosphere. When the on-off valve 4 is closed, molten resin cannot pass through, but is not airtight and gas can pass. Unless the counter pressurized gas in the mold cavity 2 is released, the gas pressure in the mold becomes high as the resin is filled, and resin filling failure occurs at the end of the mold cavity 2, etc. Alternatively, since a large amount of gas is absorbed on the resin surface, an unfavorable phenomenon such as whitening due to foaming occurs on the resin surface. Then, by injecting additional molten resin into the molten resin mass and maintaining the same for a predetermined time while applying pressure, the surface of the molten resin mass 8 that is in contact with the inner wall surface of the mold cavity is cooled and solidified, so that substantially no molten resin is formed. A foamed skin layer 10 is formed. If the cooling and solidifying time is lengthened, the skin layer becomes thicker.
ついで、 図 1 ( c ) に示されるよ う に、 金型キヤ ピティ 2 か ら樹脂排出用キヤ ビティ 3 に通じる開閉弁 4 を開放する と、 表皮層 1 0 に包まれた溶融樹脂塊 8 自体の有する発泡圧力に よって該溶融樹脂塊の一部および溶融樹脂中か ら揮散する発 泡ガスが連絡通路 5 を通じて溶融樹脂排出用キヤ ビティ 3 に 排出されるため、 金型キヤ ビティ 2 内の溶融樹脂塊 8 の体積 が減少して溶融樹脂塊 8 への圧力が低下し、 それによつ て発 泡層 9 が形成される。  Then, as shown in FIG. 1 (c), when the on-off valve 4 communicating with the resin discharge cavity 3 from the mold cavity 2 is opened, the molten resin mass 8 wrapped in the skin layer 10 itself is opened. Due to the foaming pressure of the molten resin, a part of the molten resin mass and the foaming gas volatilized from the molten resin are discharged to the molten resin discharge cavity 3 through the communication passage 5, so that the molten resin in the mold cavity 2 is melted. The volume of the resin mass 8 decreases, and the pressure on the molten resin mass 8 decreases, whereby a foam layer 9 is formed.
なお発泡層 9 の形成時には溶融樹脂塊 8 の一部は表皮層 1 0 の一部を破って溶融樹脂排出キヤ ビティ 3 に排出されるた め、 表皮層 1 0 はこれを妨げない程度に薄く 形成してお く こ とが好ま しい。 この観点か ら、 表皮層 1 0 の厚さは通常 0 . 1 m m〜 1 m m程度が好ま しい。  During the formation of the foam layer 9, a part of the molten resin mass 8 breaks a part of the skin layer 10 and is discharged to the molten resin discharge cavity 3, so that the skin layer 10 is thin enough not to hinder this. It is preferable to form it. From this viewpoint, the thickness of the skin layer 10 is usually preferably about 0.1 mm to 1 mm.
また表皮層 1 0 を破るために、 開閉弁 4 を開いてか ら溶融 樹脂塊 8 を追加の溶融樹脂を射出 して加圧する こ とも有効で ある。 また樹脂排出キヤ ビティ 3 の容積は、 発泡性溶融樹脂 塊 8 の発泡圧力によって金型キヤ ビティ 2 の外側に排出され る該溶融樹脂塊の該一部によって密に充填されないよ う に、 排出される該溶融樹脂塊の該一部の体積よ り大きい容積に設 定する こ とが好ま し く 、 さ ら には、 樹脂排出キヤ ビティ 3 の 容積はできるだけ大きく する こ とが好ましい。 In order to break the skin layer 10, it is also effective to open the on-off valve 4 and then press the molten resin mass 8 by injecting additional molten resin. The volume of the resin discharge cavity 3 is set so that the part of the molten resin mass discharged to the outside of the mold cavity 2 by the foaming pressure of the foamable molten resin mass 8 is not densely filled. It is preferable to set the volume to be larger than the volume of the part of the molten resin mass to be discharged, and it is further preferable to make the volume of the resin discharge cavity 3 as large as possible.
以上に述べたよ う に、 樹脂排出用キヤ ビティ 3 に溶融樹脂 が完全に充填されないよ う にした り 、 も し く は溶融樹脂排出 用キヤ ビティ 3 に通気口 1 4 を設ける こ とによ り 、 金型内の カウ ンタ一ガス、 空気および発泡ガスが瞬時に開放されない とい う 問題の発生を防止でき、 また、 減圧に時間がかか り十 分な発泡状態が得られず、 製品の軽量化が十分できない とい う 問題が発生した り する こ とを防止できる。  As described above, the resin discharging cavity 3 is not completely filled with the molten resin, or the molten resin discharging cavity 3 is provided with the vent 14. The problem of instantaneous release of the counter gas, air, and foam gas in the mold can be prevented, and it takes time to depressurize and a sufficient foaming state cannot be obtained. Problems such as insufficient conversion can be prevented.
図 2 ( a ) 〜図 2 ( c ) は、 得られる成形品が厚肉の棒形 状の場合の、 本発明の第 2 の方法の実施態様の 1 例を模式的 に示す説明図である。  2 (a) to 2 (c) are explanatory views schematically showing one example of an embodiment of the second method of the present invention in a case where the obtained molded article is in the form of a thick rod. .
図 2 ( a ) 〜図 2 ( c ) に示す実施態様では、 発泡性の溶 融樹脂 8 で金型キヤ ビティ 2 の容積の約 7 0 %を満たした後 に、 溶融樹脂塊 8 中に該溶融樹脂塊の発泡を抑え られる圧力 の加圧ガス を注入し、 この加圧ガスで満たされた中空部 1 1 を形成する。 本例における加圧ガスの注入は射出ノ ズル 1 2 に内蔵された加圧ガスノ ズル 1 3 か ら行われる ものとなっ て お り 、 溶融樹脂 8 と同様に、 ス プル一 6 およびラ ンナー 7 を 通っ て金型キヤ ビティ 2 内の溶融樹脂塊 8 中に注入される も のである。 また加圧ガスの注入口 と しては、 前記加圧ガス ノ ズル 1 3 の他に、 図 1 ( a ) に示されるよ う な加圧ガス注入 口 1 8 を金型キヤ ビティ のゲー ト近傍に直接設けても良い。 上記のよ う に加圧ガスで満たされた中空部 1 1 を有する溶 融樹脂 8 で金型キヤ ビティ 2 を満たし、 加圧ガスの注入圧を 維持した状態で所定時間保持して表皮層 1 0 を形成する。 次 いで、' 加圧ガスの注入を制御するバルブ (図示しない) を閉 じ、 も し く は上記バルブを開けたままの状態で、 開閉弁 4 を 開放する。 する と、 ガス充填中空部 1 1 の周囲を囲んでいる 表皮層 1 0 のう ち、 連絡通路 5 付近の表皮層 1 0 が、 ガス充 填中空部 1 1 と溶融樹脂排出用キヤ ビティ 3 間の圧力差によ り破れて溶融樹脂排出キヤ ビティ 3 側へ飛ばされ、 中空部 1 1 内の加圧ガスが溶融樹脂排出用キヤ ビティ 3 を通 り 、 通気 口 1 4 か ら速やかに開放される。 これによ り 、 中空部 1 1 内 の圧力が急激に下がり 、 それまで中空部 1 1 内の加圧ガスの 圧力 によ り 押さえ られていた溶融樹脂 8 の発泡が中空部 1 1 の周囲で生じ、 かつ発泡した溶融樹脂の一部および該溶融樹 脂か ら揮散する発泡ガス も溶融樹脂排出用キヤ ビティ 3 に排 出され、 図 2 ( c ) に示されるよう に、 中空部 1 1 内および その周辺が発泡した発泡層 9 となる。 この中空部 1 1 内の急 激な減圧は、 上記のよ う に溶融樹脂排出用キヤ ビティ 3 に通 じる 開閉弁 4 を用いる他、 例えば金型キヤ ビティ 2 に対して 進退可能な注射針状の ピン (図示されてない) を金型内に設 けておき、 中空部 1 1 の形成された溶融樹脂塊に この ピンを 突き刺して、 ピンの孔を介して中空部 1 1 内の加圧ガスを金 型 1 外へ放出させる こ となどによっても行う こ とができる。 溶融樹脂排出用キヤ ビティ 3 の容積は中空部 1 1 を形成する ガス圧力によって押し出される溶融樹脂や発泡によ り押し出 される溶融樹脂によ り 密に充填されない容積に設定する こ と が好ま しく 、 かつ該溶融樹脂排出用キヤ ビティ 3 か ら瞬時に ガスが金型外へ放出される こ とが好ま しい。 溶融樹脂 8 によ る金型キヤ ビティ 充填率は 5 5 %〜 1 1 0 %の範囲で任意に 設定できる。 In the embodiment shown in FIGS. 2 (a) to 2 (c), after filling about 70% of the volume of the mold cavity 2 with the foamable molten resin 8, the molten resin mass 8 A pressurized gas having a pressure capable of suppressing foaming of the molten resin mass is injected to form a hollow portion 11 filled with the pressurized gas. The injection of the pressurized gas in this example is performed from the pressurized gas nozzle 13 built in the injection nozzle 12, and, like the molten resin 8, the sprue 16 and the runner 7 are used. Then, it is injected into the molten resin mass 8 in the mold cavity 2. In addition to the pressurized gas nozzle 13, the pressurized gas injection port as shown in FIG. The mouth 18 may be provided directly near the gate of the mold cavity. As described above, the mold cavity 2 is filled with the molten resin 8 having the hollow portion 11 filled with the pressurized gas, and the skin layer 1 is maintained for a predetermined time while maintaining the injection pressure of the pressurized gas. Form a 0. Next, close the valve (not shown) that controls the injection of the pressurized gas, or open the on-off valve 4 while keeping the above valve open. Then, out of the skin layer 10 surrounding the gas-filled hollow portion 11, the skin layer 10 near the communication passage 5 is located between the gas-filled hollow portion 11 and the molten resin discharge cavity 3. The molten resin is discharged by the molten resin discharge cavity 3 due to the pressure difference between the two, and the pressurized gas in the hollow portion 11 passes through the molten resin discharge cavity 3 and is quickly released from the ventilation port 14. You. As a result, the pressure in the hollow portion 11 drops sharply, and the foaming of the molten resin 8, which has been suppressed by the pressure of the pressurized gas in the hollow portion 11, occurs around the hollow portion 11. Part of the generated and foamed molten resin and the foaming gas volatilized from the molten resin are also discharged to the molten resin discharge cavity 3, and as shown in FIG. 2 (c), the inside of the hollow portion 11 is formed. And the surrounding area becomes a foamed layer 9. Sudden pressure reduction in the hollow portion 11 uses the on-off valve 4 that leads to the molten resin discharge cavity 3 as described above, and also, for example, an injection needle that can advance and retreat with respect to the mold cavity 2. A hollow pin (not shown) is placed in the mold, and the pin is pierced into the molten resin mass formed with the hollow portion 11, and the pin in the hollow portion 11 is inserted through the hole of the pin. Pressurized gas to gold It can also be done by releasing it out of mold 1. The volume of the molten resin discharge cavity 3 is preferably set to a volume that is not densely filled with the molten resin extruded by the gas pressure forming the hollow portion 11 or the molten resin extruded by foaming. Preferably, gas is discharged from the molten resin discharge cavity 3 to the outside of the mold instantaneously. The mold cavity filling rate of the molten resin 8 can be arbitrarily set in the range of 55% to 110%.
溶融樹脂排出用キヤ ビティ 3 に溶融樹脂が完全に充填され ないよ う に配慮した り 、 も し く は溶融樹脂排出用キヤ ピティ 3 に通気口 1 4 を設ける こ とによ り 、 中空部を形成する加圧 ガスが十分開放されない という 問題や、 また、 減圧に時間が かか り十分な発泡状態が得られず、 製品の軽量化が十分でき ないという 問題の発生を防止できる。  Considering that the molten resin discharging cavity 3 is not completely filled with the molten resin, or by providing the molten resin discharging cavity 3 with a vent 14, the hollow portion can be formed. It is possible to prevent the problem that the pressurized gas to be formed is not sufficiently released and the problem that the decompression takes time and a sufficient foaming state cannot be obtained, and the product cannot be reduced in weight sufficiently.
中空部を形成する加圧ガス と しては、 上述の通 り 、 二酸化 炭素ガスが好ま しい。 二酸化炭素ガスを用いる と、 加圧ガス の注入後の保持時間を長く しても、 ガス充填中空部 1 1 か ら 周囲の溶融樹脂に二酸化炭素ガスがさ ら に吸収されるため、 溶融樹脂の固化が抑制される と と もに良好な発泡状態が得や すく なる。  As described above, the carbon dioxide gas is preferably used as the pressurized gas for forming the hollow portion. When carbon dioxide gas is used, even if the holding time after injection of the pressurized gas is lengthened, the carbon dioxide gas is further absorbed from the gas-filled hollow portion 11 into the surrounding molten resin, so that the molten resin When the solidification is suppressed, a good foaming state is easily obtained.
また中空部 1 1 を形成するガス体に二酸化炭素ガス を用い、 開閉弁 4 を開放後も中空部 1 1 を形成するガス体の供給を継 続し、 溶融樹脂排出用キヤ ビティ 3 に設け られた通気口 1 4 よ り金型外に開放する こ とで、 二酸化炭素ガスの断熱膨張に よ り 、 発泡成形品内部が冷却される。 これによ り 、 本発明の 方法の工程 ( 4 ) の後の冷却固化時間を短く 設定する こ とが 可能になる。 も し く は金型温度を非晶性樹脂ではガラス転移 温度 ( T g ) 以上、 結晶性樹脂においても融点温度付近まで 高めても成形品の取り 出しが可能とな り 、 かつ外観も極めて 良好な成形品が得 られる。 In addition, carbon dioxide gas is used for the gas forming the hollow portion 11, and the supply of the gas forming the hollow portion 11 is continued even after the on-off valve 4 is opened, and is provided in the molten resin discharge cavity 3. Vent 1 4 By opening the molded product outside the mold, the inside of the foamed molded product is cooled by the adiabatic expansion of the carbon dioxide gas. This makes it possible to shorten the cooling and solidifying time after step (4) of the method of the present invention. Even if the mold temperature is raised above the glass transition temperature (Tg) of amorphous resin and the temperature of crystalline resin is raised to near the melting point, it is possible to take out molded products and the appearance is extremely good. A molded product can be obtained.
上記発泡後、 金型キヤ ビティ 2 内の実質的に無発泡の表皮 層を有する発泡樹脂塊を取り 出し可能温度にまで冷却し、 金 型 1 を開いて成形品を取り 出す。 得られる成形品は、 表皮層 1 0 が、 上記発泡前に発泡を生じない温度にまで冷却されて いる こ とで、 無発泡とな り 、 内層が上記発泡による発泡層 9 となっ ている。  After the above foaming, the foamed resin mass having a substantially non-foamed skin layer in the mold cavity 2 is cooled to a temperature at which it can be taken out, and the mold 1 is opened to take out a molded product. The molded article obtained is non-foamed because the skin layer 10 is cooled to a temperature at which foaming does not occur before foaming, and the inner layer is a foamed layer 9 due to the foaming.
上記本発明の第 1 の方法と第 2 の方法のいずれにおいても、 成形品表皮層にシルバー等の外観不良が発生する可能性を除 く ために、 予め金型キヤ ビティ をガス体によって加圧してお く こ と (カ ウ ンタ プレツ シャ法) が好ま しい。  In both the first method and the second method of the present invention, the mold cavity is pressurized with a gas beforehand in order to eliminate the possibility of appearance defects such as silver on the skin layer of the molded article. Is preferred (counter pres- sure method).
カ ウ ン夕 プレツ シャ法を用いる場合は、 必要なカウ ンタ一 ガス圧を得やすく するために、 金型キヤ ビティ の周囲をシ一 ルした金型を用いる こ とが好ま しい。 例えば図 1 ( a ) 〜図 3 ( c ) に示される金型 1 では、 金型キヤ ビティ 2 に通じる 金型内の各隙間を シールするための〇 一 リ ング 1 5 a 〜 1 5 c が設け られている。 従って、 前述した第 1 の方法の 1 例に おいて、 カウ ンターガス供給孔 1 4 か らカウ ンターガスを供 給して金型 2 内をカ ウンターガスで満たした後、 発泡性溶融 樹脂を射出充填する こ とで、 射出時の溶融樹脂の発泡を容易 に抑制する こ とができる。 またカウンターガス供給孔 1 4は、 溶融榭脂が侵入できない程度の狭いス リ ッ ト状ゃ小孔状、 も し く はポーラス状と して開口 させる こ とで、 直接金型キヤ ビ ティ 2 に開口 させる こ と もできる。 ·' In the case of using the counter pressure method, it is preferable to use a mold in which the periphery of the mold cavity is sealed in order to easily obtain a necessary counter gas pressure. For example, in the mold 1 shown in FIGS. 1 (a) to 3 (c), a single ring 15a to 15c for sealing each gap in the mold leading to the mold cavity 2 is provided. It is provided. Therefore, in one example of the first method described above, After the counter gas is supplied from the counter gas supply hole 14 to fill the inside of the mold 2 with the counter gas, the foaming molten resin is injected and filled, thereby preventing foaming of the molten resin at the time of injection. It can be easily suppressed. In addition, the counter gas supply hole 14 can be opened as a slit or small hole or a porous shape that does not allow molten resin to enter, so that the mold cavity 2 can be directly opened. It can also be opened at the end. · '
図 3 ( a ) 〜図 3 ( d ) は、 得られる成形品が大きな薄肉 部の片側に厚肉部を有する形状の場合の、 本発明の第 2 の方 法の実施態様の 1 例を示す説明図である。 開閉弁 4 を閉鎖し た状態で、 射出ノ ズル 1 2 か ら金型キヤ ビティ 2 内に溶融樹 脂 8 を射出する。 溶融樹脂 8 は、 スプル一 6 およびラ ンナー 7 を通って、 金型キヤ ビティ 2 の厚肉部成形領域と薄肉部成 形領域へと射出充填される。  3 (a) to 3 (d) show an example of an embodiment of the second method of the present invention in a case where the obtained molded product has a shape having a thick portion on one side of a large thin portion. FIG. With the on-off valve 4 closed, the molten resin 8 is injected into the mold cavity 2 from the injection nozzle 12. The molten resin 8 is injected and filled through the sprue 6 and the runner 7 into the thick part forming area and the thin part forming area of the mold cavity 2.
本発明では発泡性ガス (ガス状発泡剤) (例えば二酸化炭 素ガス) によって溶融樹脂 8 の溶融粘度が低下しているため、 薄肉部にも溶融樹脂 8 が速やかに充填される。 射出充填前に 金型キヤ ビティ 2 が加圧ガスで加圧されている場合は、 樹脂 充填完了の直前も し く は直後に金型キヤ ピティ 2 内の加圧ガ スを溶融樹脂排出用キヤ ビティ 3 の通気口 1 4 につながる力 ゥ ン夕一ガス供給三方弁 1 6 (図示しない) を開き速やかに 大気に開放する。  In the present invention, since the melt viscosity of the molten resin 8 is reduced by the foaming gas (gaseous blowing agent) (for example, carbon dioxide gas), the thin portion is quickly filled with the molten resin 8. If the mold cavity 2 is pressurized with pressurized gas before injection filling, the pressurized gas in the mold cavity 2 is discharged immediately before or immediately after resin filling is completed. Force connected to the ventilation port 14 of the bitty 3 ゥ Open the gas supply three-way valve 16 (not shown) and immediately open to the atmosphere.
こ の実施態様の場合、 溶融樹脂によ る金型キヤ ビティ 充填 率は好まし く は 9 5 %〜 1 1 0 %で、 さ ら に好ま しく は 9 8 %〜 : L 0 5 %である。 In this embodiment, mold cavity filling with molten resin The rate is preferably between 95% and 110%, and more preferably between 98% and: L0.5%.
発泡性の溶融樹脂 8 を金型キヤ ビティ に射出充填した後に、 溶融樹脂塊 8 中に該溶融樹脂の発泡を抑え られる圧力の加圧 ガスを注入し、 この加圧ガスで満たされた中空部 1 1 を形成 する。 本例における加圧ガスの注入は射出ノ ズル 1 2 に内蔵 された加圧ガスノ ズル 1 3 か ら行われる もの となってお り 、 溶融樹脂と同様に、 スプルー 6 およびラ ンナー 7 を通って金 型キヤ ビティ 2 内の溶融樹脂塊 8 中に注入される ものである。 また この加圧ガスの注入は、 金型キヤ ビティ 2 内の溶融樹脂 塊 8 の冷却収縮を補う ものと して行われる もので、 本例のよ う に厚肉部を有する成形体の成形においては、 図 3 ( c ) に 示めされるよ う に、 厚肉部成形領域に重点的に注入される。 厚肉部は樹脂ゲー ト近傍か ら樹脂の流動末端側まで連続した 形で配置され、 溶融樹脂排出用キヤ ビティ 3 への連絡通路 5 に接続する。  After injecting the foamable molten resin 8 into the mold cavity, a pressurized gas is injected into the molten resin mass 8 at a pressure capable of suppressing foaming of the molten resin, and the hollow portion filled with the pressurized gas is injected. Form 1 1. The injection of the pressurized gas in this example is performed from the pressurized gas nozzle 13 built in the injection nozzle 12 and, like the molten resin, passes through the sprue 6 and the runner 7. It is injected into the molten resin mass 8 in the mold cavity 2. The injection of the pressurized gas is performed to compensate for the cooling shrinkage of the molten resin mass 8 in the mold cavity 2, and in the molding of a molded product having a thick portion as in this example. As shown in Fig. 3 (c), the injection is focused on the thick part forming region. The thick portion is arranged continuously from the vicinity of the resin gate to the end of the flow of the resin, and is connected to the communication passage 5 to the molten resin discharge cavity 3.
また加圧ガスの注入口は前記加圧ガスノ ズル 1 3 の他、 金 型キヤ ビティ の前記厚肉部も し く は厚肉部近傍に直接設けて も良い。 こ の場合、 加圧ガスの注入口は、 溶融樹脂排出用キ ャ ビティ 3 への連絡通路 5 と反対側に設けるのが好ま しい。 また溶融樹脂の充填の際にフ ローフ ロ ン 卜が該厚肉部を優先 的に流れる よう にするために、 該厚肉部肉厚を薄肉部肉厚の 1 . 5 〜 4 倍程度に設定するのが好ま しい。 上記のよう に加圧ガスで満たされた中空部 1 1 によって溶 融樹脂塊 8 を金型キヤ ビティ 2 の内壁面に押しつけ、 その状 態で所定時間保持して表皮層 1 0 を形成する。 次いで、 開閉 弁 4 を開放する。 すると、 ガス充填中空部 1 1 の周囲を囲ん でいる溶融樹脂の表皮層 1 0 の一部がガス充填中空部 1 1 と 溶融樹脂排出用キヤ ビティ 3 間の圧力差によ り破れて溶融樹 脂排出キヤ ビティ 3側へ飛ばされ、' 中空部 1 1 内の圧力が急 激に下がり、 それまで中空部 1 1 内の加圧ガスの圧力によ り 押さえ られていた溶融樹脂 8 の発泡が中空部 1 1 の周囲で生 じ、 かつ発泡した溶融樹脂の一部おょぴ該溶融樹脂から揮散 する発泡ガスも溶融樹脂排出用キヤ ビティ 3 に排出され、 図 3 ( d ) に示されるよう に、 中空部 1 1 内およびその周辺が 発泡した発泡層 9 となる。 なお、 ガス充填中空部 1 1 を形成 せず、 溶融樹脂 8 の自 らの発泡圧力だけで溶融樹脂排出用キ ャ ビティ 3 に溶融榭脂の一部を排出、 発泡させる こと もでき る。 In addition to the pressurized gas nozzle 13, the injection port of the pressurized gas may be provided directly at the thick portion or near the thick portion of the mold cavity. In this case, the injection port of the pressurized gas is preferably provided on the side opposite to the communication passage 5 to the molten resin discharge cavity 3. The thickness of the thick portion is set to 1.5 to 4 times the thickness of the thin portion so that the flow front preferentially flows through the thick portion when the molten resin is filled. I prefer to do that. As described above, the molten resin mass 8 is pressed against the inner wall surface of the mold cavity 2 by the hollow portion 11 filled with the pressurized gas, and is kept in this state for a predetermined time to form the skin layer 10. Next, the on-off valve 4 is opened. Then, a part of the skin layer 10 of the molten resin surrounding the gas-filled hollow portion 11 is broken by the pressure difference between the gas-filled hollow portion 11 and the molten resin discharge cavity 3, and the molten resin The oil in the cavity 11 is blown off to the side of the grease discharge cavity 3, and the pressure in the hollow portion 11 drops sharply, and the foaming of the molten resin 8 that was previously held down by the pressure of the pressurized gas in the hollow portion 11 Some of the foamed molten resin generated around the hollow portion 11 and foaming gas volatilized from the molten resin is also discharged to the molten resin discharge cavity 3, as shown in Fig. 3 (d). Then, the foamed layer 9 in and around the hollow portion 11 becomes foamed. It is also possible to discharge and foam a part of the molten resin into the molten resin discharge cavity 3 only by the foaming pressure of the molten resin 8 without forming the gas-filled hollow portion 11.
図 4 は本発明の方法に用いる こ とのできる、 グリ ップ形状 成形品の 4 ケ取り の金型の 1 例の可動半型の概略正面図であ る。 図示されるよ う に、 キヤ ビティ 2 のほかに樹脂排出用キ ャ ビティ 3 、 開閉弁 4、 およびガス充填中空部を形成するた めのガスの注入口 1 8 が設けられている。 各々のガス注入口 1 8 はお互いにガス圧力が干渉しないよう独立して制御され ている。 開閉弁 4 を閉鎖した状態で、 射出ノ ズル 1 2 か ら各々 の金 型キヤ ビティ 2 内を溶融樹脂で満たす。 溶融樹脂 8 は、 スプ ルー 6 およびラ ンナー 7 を通って、 金型キヤ ビティ 2 へと射 出充填される ものとなっ ている。 FIG. 4 is a schematic front view of a movable half mold of one example of a mold having four grip-shaped molded products, which can be used in the method of the present invention. As shown, in addition to the cavity 2, a resin discharge cavity 3, an on-off valve 4, and a gas inlet 18 for forming a gas-filled hollow portion are provided. Each gas inlet 18 is independently controlled so that the gas pressure does not interfere with each other. With the on-off valve 4 closed, the inside of each mold cavity 2 from the injection nozzle 12 is filled with molten resin. The molten resin 8 is to be injected and filled into the mold cavity 2 through the sprue 6 and the runner 7.
各キヤ ビティ 2 の容積が同 じ場合は該キヤ ビティ 2 につな がる ラ ンナー、 ゲー ト寸法は各キヤ ビティ 2 に溶融樹脂が均 等に充填されるよ う に設定する こ とが好ま しい。  If the volumes of the cavities 2 are the same, it is preferable to set the runner and gate dimensions connected to the cavities 2 so that the molten resin is evenly filled in the cavities 2. New
またキヤ ビティ 2 の配置によ り ラ ンナー長が変わる場合や キヤ ビティ 容積が異なる場合は、 各キヤ ビティ の樹脂充填完 了タイ ミ ングが同 じになるよ う にラ ンナーの長さ、 太さ、 ゲ — ト寸法を調整する こ とが好ま しい。  If the runner length changes due to the arrangement of the cavities 2 or if the cavities have different volumes, the runner length and thickness are adjusted so that the resin filling completion timing for each cavity is the same. It is preferable to adjust the gate dimensions.
またガスの注入口 1 8 は各キヤ ビティ のゲー ト近傍に設け られてお り 、 ガスの注入口 につながる配管はガスの圧力損失 が均等になるよ う均等の長さ にする こ とが好ましい。  The gas inlets 18 are provided near the gates of the cavities, and the pipes connected to the gas inlets are preferably of equal length so that the gas pressure loss is equal. .
まず、 溶融樹脂 8 を射出ノ ズル 1 2 か ら各金型キヤ ビティ 2 内に射出充填し、 該溶融樹脂塊を加圧しながら所定時間保 持して表皮層 1 0 を形成した後、 開閉弁 4 を開放する と、 表 皮層 1 0 に包まれた溶融樹脂塊 8 の発泡圧力によ り該溶融樹 脂塊の一部および発泡ガスが連絡通路 5 を通じて溶融樹脂排 出用キヤ ビティ 3 に排出されるため、 金型キヤ ビティ 2 内の 溶融樹脂塊 8 に発泡層 9 が形成される。 一度各キヤ ビティ を 完全に充填し、 溶融樹脂の発泡圧力によ り溶融樹脂排出用キ ャ ビティ 3 に樹脂を排出するため、 各キヤ ビティ の成形品は、 同等の外観、 発泡層を有している。 First, the molten resin 8 is injected and filled from the injection nozzle 12 into each mold cavity 2, and the molten resin mass is held for a predetermined time while being pressurized to form a skin layer 10. When 4 is opened, a part of the molten resin mass and the foaming gas are discharged to the molten resin discharge cavity 3 through the communication passage 5 due to the foaming pressure of the molten resin mass 8 wrapped in the skin layer 10. As a result, a foam layer 9 is formed in the molten resin mass 8 in the mold cavity 2. Once each cavity is completely filled and the resin is discharged to the molten resin discharging cavity 3 by the foaming pressure of the molten resin, the molded product of each cavity is It has the same appearance and foam layer.
また本例において溶融樹脂を充填後、 ガスによ り 中空を形 成する.場合は、 すべてのキヤ ビティ 2 に溶融樹脂を充填後、 該溶融樹脂塊中にガスを注入して中空部を形成したのち、 ガ スの供給を停止、 ついで開閉弁 4 を開き溶融樹脂排出用キヤ ビティ 3 へ溶融樹脂の一部および中空部内のガス を排出し、 発泡層 9 を形成する。 溶融樹脂による金型キヤ ビティ 充填率 が 7 0 %程度と比較的に少なく 、 ショ 一 ト シ ョ ッ トでガス充 填中空部を形成する場合は、 金型キヤ ビティ 充填率がキヤ ビ ティ 間で均等になるよ う に、 各キヤ ビティ につながるランナ 一長さや断面寸法、 ゲ一 ト寸法、 ガスの配管長等に特に注意 が必要である。  In this example, after filling the molten resin, a hollow is formed by gas; if all the cavities 2 are filled with the molten resin, a gas is injected into the molten resin mass to form a hollow portion. After that, the supply of gas is stopped, and then the on-off valve 4 is opened to discharge a part of the molten resin and the gas in the hollow part to the molten resin discharging cavity 3 to form the foam layer 9. When the mold cavity filling rate of molten resin is relatively small, about 70%, and when forming a gas-filled hollow part in a short shot, the mold cavity filling rate is between the cavities. Particular attention must be paid to the length, cross-sectional dimensions, gate dimensions, gas piping length, etc. of the runners connected to each cavity so that they are evenly distributed.
また溶融樹脂か ら発生する発泡ガスが外観にシルバ一等の 不良をもた らすおそれのある場合は、 カ ウンタ プレツ シャ法 を用いる こ とが好ま しい。 In addition, when the foaming gas generated from the molten resin may cause defects such as silver appearance in the appearance, it is preferable to use the counter pressure method.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下に実施例を用いて本発明の効果をさ ら に具体的に説明 する。  Hereinafter, the effects of the present invention will be described more specifically with reference to examples.
図 5 に示されるよ うな射出成形装置を用いて成形を行った 図 5 において射出成形機 2 3 は、 日本国住友重機械工業製 「 S G 2 6 0 M— S 」 を使用 した。 射出成形機のスク リ ュシ リ ンダ 2 0 は 9 のベン ト タイ プと し、 ベン ト部分 を二酸化炭素ガスで加圧できるよ う になつている。 二酸化炭 素ガス源 2 4 または窒素ガス源 2 4 か らガス供給制御装置 1 9 を介し供給する二酸化炭素ガス または窒素ガスの圧力を減 圧弁で一定に保つ こ とで、 溶融樹脂に溶解する二酸化炭素ガ ス量または窒素ガス量を制御した。 また可塑化か ら射出開始 までの間、 スク リ ュ背圧と して溶融樹脂が発泡してスク リ ュ が後退しない最低限の圧力を設定、 保持した。  Molding was performed using an injection molding apparatus as shown in FIG. 5. In FIG. 5, the injection molding machine 23 used was “SG260MS—S” manufactured by Sumitomo Heavy Industries, Japan. The screw cylinder 20 of the injection molding machine has nine vent types, and the vent part can be pressurized with carbon dioxide gas. By keeping the pressure of the carbon dioxide gas or nitrogen gas supplied from the carbon dioxide gas source 24 or nitrogen gas source 24 via the gas supply control device 19 constant by the pressure reducing valve, the carbon dioxide dissolved in the molten resin The amount of carbon gas or nitrogen gas was controlled. From the time of plasticization to the start of injection, a minimum pressure was set and maintained as the screw back pressure so that the molten resin did not foam and the screw receded.
また金型 1 にはガス供給制御装置 1 9 とカ ウンターガス供 給ライ ン 2 2 を介して、 二酸化炭素ガス源 2 4 または窒素ガ ス源 2 4 か ら二酸化炭素ガスまたは窒素ガス を供給できるよ う になつ ている。 実施例 1  The mold 1 can be supplied with carbon dioxide gas or nitrogen gas from a carbon dioxide gas source 24 or a nitrogen gas source 24 via a gas supply control device 19 and a counter gas supply line 22. The sea is falling. Example 1
断面が 2 0 m m X 2 0 m mのほぼ正方形で、 長さが 3 0 0 m mの棒状成形品を図 1 ( a ) 〜図 1 ( c ) に示す方法で成 形した。 金型 1 は、 棒状の金型キヤ ビティ 2 の一端に断面が 5 mm X 1 0 m mのゲー ト を設け、 ゲー ト と反対側の端部に 断面が 5 mmX l 0 mmで長さ 1 5 mmの連絡通路 5 と該連 絡通路 5の中央部に油圧で開閉する開閉弁 4を設け、 連絡通 路 5の先には断面が 2 0 mmX 2 0 mm、 長さ 6 0 0 mmの 溶融樹脂排出用キヤ ビティ 3がつながっている。 A rod-shaped molded product having a cross section of approximately 20 mm X 20 mm and a length of 300 mm was formed by the method shown in Figs. 1 (a) to 1 (c). Mold 1 has a cross-section at one end of a rod-shaped mold cavity 2. A 5 mm X 10 mm gate is provided, and a communication passage 5 with a cross section of 5 mm X 10 mm and a length of 15 mm is provided at the end opposite to the gate, and a hydraulic pressure is applied to the center of the communication passage 5. An on-off valve 4 for opening and closing is provided, and a molten resin discharge cavity 3 having a cross section of 20 mm × 20 mm and a length of 600 mm is connected to the end of the communication passage 5.
射出シリ ンダか ら 8 M P aの二酸化炭素をガラス繊維 3 3 %含有ポ リ アミ ド 6 6 (日本国旭化成製 レオナ (登録商 標) 1 4 0 2 G ) に供給して、 溶解しつつ、 図 1 ( a ) 、 図 1 ( b ) に示すよ う にして射出成形した。 シ リ ンダ温度は 2 8 0 °Cと し、 射出圧力は 1 2 0 M P a と した。 溶融樹脂によ る金型キヤ ビティ 充填率は 1 0 0 %と した。 まず、 金型 1 を 閉じ射出ノ ズル 1 2 を金型 1 に圧接した後、 カウ ンターガス 供給孔 1 4か ら圧力 7 M P aの二酸化炭素ガスを 3秒間供給 して加圧状態に した金型キヤ ビティ 2 (金型温度 8 0 °C ) に、 二酸化炭素ガス を溶解した上記ガラス繊維含有ポ リ アミ ド樹 脂 (発泡性溶融樹脂) を 1 . 5秒間で充填した。 充填完了直 後に、 溶融樹脂排出用キヤ ビティ 3 とカ ウンタ一ガス供給孔 1 4 (通気口) を通じてカ ウ ンターガス圧を外部へ開放しつ つ、 シリ ンダ内樹脂圧力 9 0 M P aで 3秒間保圧した後、 上 記連絡通路 5 の開閉弁 4を開放し、 溶融樹脂塊 8 の一部を溶 融樹脂塊 8 自体が有する発泡圧力によ り溶融樹脂排出用キヤ ビティ 3 に排出 して溶融樹脂塊 8への圧力を低下させ、 発泡 させた。 発泡か ら 6 0秒後に金型 1 を開いて得 られた成形品 を取 り 出した。 こ う して、 実質的に無発泡の表皮層 1 0 を有 し、 内部に高発泡の発泡層を有する成形品が得られた。 8 MPa of carbon dioxide is supplied from an injection cylinder to a polyamide 66 (Rona (registered trademark) 1442 G, manufactured by Asahi Kasei, Japan) containing 33% of glass fiber, and dissolved while melting. Injection molding was performed as shown in Fig. 1 (a) and Fig. 1 (b). The cylinder temperature was 280 ° C and the injection pressure was 120 MPa. The mold cavity filling rate of the molten resin was 100%. First, the mold 1 is closed, the injection nozzle 12 is pressed into contact with the mold 1, and then the carbon dioxide gas with a pressure of 7 MPa is supplied from the counter gas supply hole 14 for 3 seconds to pressurize the mold. Cavity 2 (mold temperature: 80 ° C.) was filled with the above glass fiber-containing polyamide resin (foamable molten resin) in which carbon dioxide gas was dissolved in 1.5 seconds. Immediately after filling is completed, the counter gas pressure is released to the outside through the molten resin discharge cavity 3 and the counter gas supply hole 14 (vent), and the resin pressure in the cylinder is 90 MPa for 3 seconds. After maintaining the pressure, the on-off valve 4 of the communication passage 5 is opened, and a part of the molten resin mass 8 is discharged to the molten resin discharging cavity 3 by the foaming pressure of the molten resin mass 8 itself. The pressure on the molten resin mass 8 was reduced to cause foaming. Molded product obtained by opening mold 1 60 seconds after foaming Removed. Thus, a molded article having a substantially non-foamed skin layer 10 and having a highly foamed foam layer inside was obtained.
'また成形後の成形品の重量減少か ら求めた発泡性溶融樹脂 中の二酸化炭素ガス量は約 1 . 0 重量%であった。 成形品の '発泡倍率は 1 . 4 倍、 表皮層の厚さは約 1 m mであった。 実施例 2  'The amount of carbon dioxide gas in the foamable molten resin determined from the weight loss of the molded article after molding was about 1.0% by weight. The foaming ratio of the molded article was 1.4 times, and the thickness of the skin layer was about 1 mm. Example 2
条件を以下のよ う に変更した他は実施例 1 と同様に行なつ た。 金型キヤ ビティ 充填率を 7 0 % と し、 発泡性溶融樹脂の 射出完了後、 射出ノ ズル 1 2 に内蔵されたガス注入口 1 3 か ら 8 M P a の二酸化炭素ガス を溶融樹脂塊 8 中に注入してガ ス充填中空部 1 1 を形成する と同時に、 金型キヤ ビティ 2 内 のカ ウ ンターガスを開放し、 溶融樹脂塊 8 への二酸化炭素ガ スの注入とガス保圧を 3 秒間継続した後、 二酸化炭素ガスの 注入を停止し、 溶融樹脂排出用キヤ ビティ 3 に通じる開閉弁 4 を開放して、 溶融樹脂塊 8 の中空部 1 1 内の二酸化炭素ガ ス と該ガス に同伴されて押し出される溶融樹脂塊 8 の一部を 溶融樹脂排出用キヤ ビティ 3 に一気に排出 し、 金型キヤ ビテ ィ 2 内の溶融樹脂塊 8 を発泡させた。  The operation was performed in the same manner as in Example 1 except that the conditions were changed as follows. After setting the mold cavity filling rate to 70% and completing the injection of the foamable molten resin, the molten resin mass 8 is supplied with 8 MPa of carbon dioxide gas from the gas injection port 13 built into the injection nozzle 12. At the same time as forming the gas-filled hollow portion 11 by opening the inside, the counter gas in the mold cavity 2 is released, and the injection of carbon dioxide gas into the molten resin mass 8 and the gas pressure After continuing for 2 seconds, the injection of carbon dioxide gas was stopped, and the on-off valve 4 leading to the molten resin discharge cavity 3 was opened to open the carbon dioxide gas in the hollow portion 11 of the molten resin mass 8 and the gas. A portion of the molten resin mass 8 that was extruded with the entrainment was discharged into the molten resin discharge cavity 3 at a stretch, and the molten resin mass 8 in the mold cavity 2 was foamed.
発泡性溶融樹脂中の二酸化炭素ガス量は約 1 . 0重量%で あっ た。 成形品の発泡倍率は 2 . 0 倍と実施例 1 にく らべさ ら に軽量化できた。 実施例 3 The amount of carbon dioxide gas in the foamable molten resin was about 1.0% by weight. The foaming ratio of the molded product was 2.0 times, which was much lighter than that of Example 1. Example 3
条件を以下のよう に変更した他は実施例 1 と同様に行なつ た。  The operation was performed in the same manner as in Example 1 except that the conditions were changed as follows.
金型キヤ ビティ 2 については、 実施例 1 と同形状であ るが 金型キヤ ビティ 2 の内壁面は平均粗さ ( R a ) 1 3 . 2 m のシポ状と した。 平均粗さ ( R a ) は日本国、 株式会社東京 精密社製の平均粗さ測定機サ一フコム 5 7 O A ( Surf com 570A) にて測定した。 (平均粗さ ( R a ) については、 機械 工学便覧 改訂第 6版 (日本国、 社団法人日本機械学会発 行 ; 1 9 7 7年) を参照できる。 )  The mold cavity 2 had the same shape as that of the first embodiment, but the inner wall surface of the mold cavity 2 was formed as a sipo with an average roughness (R a) of 13.2 m. The average roughness (Ra) was measured with a Surfcom 57 OA (Surfcom 570A) manufactured by Tokyo Seimitsu Co., Ltd., Japan. (For the average roughness (R a), refer to the Mechanical Engineering Handbook, Revised 6th Edition (Japan, published by The Japan Society of Mechanical Engineers; 1977).)
射出シリ ンダ 2 0 か ら二酸化炭素ガスをポ リ スチレン (日 本国 A &Mスチレン製 ΓΑ & Μポリ スチレン (登録商標) 6 8 5 」 に 1 0 M P aで供給して溶解させつつ、 実施例 1 と同 様に金型キヤ ビティ 2 に射出 した。 シリ ンダ温度は 2 2 0 °C と し、 射出圧力は 1 0 0 M P a と した。 二酸化炭素ガスで 7 M P a に加圧した金型キャ ビティ 2 (金型温度 5 0 °C ) に二 酸化炭素ガスを溶解 した上記ポリ スチレン (発泡性溶融樹 脂) を 1 . 5秒間で充填し、 シリ ンダ内の樹脂圧力 8 0 M P aで 3 秒間保圧した後、 連絡通路 5 の開閉弁 4 を開放し、 溶 融樹脂塊 8 の一部を溶融樹脂排出用キヤ ビティ 3 に排出 して、 溶融樹脂塊 8 を発泡させた。 発泡か ら 6 0秒後に金型 1 を開 いて得られた成形品を取 り 出 した。  While supplying carbon dioxide gas from the injection cylinder 20 to polystyrene (A & M Styrene ΓΑ & Μ Polystyrene (registered trademark) 6885, Japan) at 10 MPa and dissolving it, Injected into mold cavity 2 in the same manner as above.The cylinder temperature was set at 220 ° C and the injection pressure was set at 100 MPa.The mold cap pressurized to 7 MPa with carbon dioxide gas. The polystyrene (foamable molten resin) obtained by dissolving carbon dioxide gas in Viti 2 (mold temperature: 50 ° C) is filled in 1.5 seconds, and the resin pressure in the cylinder is increased by 80 MPa. After holding the pressure for 2 seconds, the on-off valve 4 of the communication passage 5 is opened, and a part of the molten resin mass 8 is discharged to the molten resin discharging cavity 3, thereby foaming the molten resin mass 8. After 60 seconds, mold 1 was opened and the resulting molded product was removed.
発泡性溶融樹脂中の二酸化炭素ガス量は 3重量%であっ た。 成形品の発泡倍率は 2 . 6 倍、 表皮層の厚さは 1 . 5 m mで あっ た。 また成形品表面は平均粗さ ( R a ) が 1 3 . 1 m のシボ形状が転写されてお り 、 高度な転写性が得られ、 表面 には光沢む らやフ ローマークなどの表面不良は見 られなかつ た。 実施例 4 The amount of carbon dioxide gas in the foamable molten resin was 3% by weight. The foaming ratio of the molded product was 2.6 times, and the thickness of the skin layer was 1.5 mm. In addition, the surface of the molded product is transferred with a grain shape with an average roughness (R a) of 13.1 m, and high transferability is obtained, and the surface has surface defects such as uneven gloss and flow marks. Was not seen. Example 4
条件を以下のよう に変更した他は実施例 1 と同様に行なつ た。 樹脂と してポリ 力一ポネー ト (日本国帝人化成製 「パン ライ ト (登録商標) L 1 2 2 5」 ) を用いた。 シリ ンダ温度 3 0 0 °C、 射出圧力 2 2 0 M P a 、 金型温度 8 0 °C、 シリ ン ダへの二酸化炭素ガス供給圧は 1 0 Αί P a 、 金型キヤ ビティ 2 へのカ ウ ンター圧は 7 M P a である。 二酸化炭素ガス を溶 解した上記ポ リ 力一ポネー ト樹脂を 2 秒間で充填し、 充填完 了直後にカ ウンタ一ガス圧を外部へ開放しつつ、 シリ ンダ内 樹脂圧力 1 8 0 M P aで 1 秒間保圧した後、 連絡通路 5 の開 閉弁 4 を開放し、 溶融樹脂塊 8 の一部を溶融樹脂塊 8 自体が 有する発泡圧力 によ り 溶融樹脂排出用キヤ ピティ 3 に排出し て、 溶融樹脂塊 8 を発泡させた。 発泡か ら 6 0 秒後に金型 1 を開いて成形品を取り 出 した。 こ う して、 実質的に無発泡の 表皮層 1 0 を有し、 内部に高発泡の発泡層を有する成形品が 得 られた。  The operation was performed in the same manner as in Example 1 except that the conditions were changed as follows. Polyresin Ponate ("Pan Light (registered trademark) L1225", manufactured by Teijin Chemicals Japan Limited) was used as the resin. Cylinder temperature 300 ° C, Injection pressure 220 MPa, Mold temperature 80 ° C, CO2 gas supply pressure to cylinder 100 Pa, Cavity to mold cavity 2 The water pressure is 7 MPa. Fill the above-mentioned resin with carbon dioxide dissolved in 2 seconds, and immediately release the gas pressure of the counter to the outside immediately after the filling is completed, while maintaining the resin pressure in the cylinder at 180 MPa. After maintaining the pressure for 1 second, the opening and closing valve 4 of the communication passage 5 is opened, and a part of the molten resin mass 8 is discharged to the molten resin discharging capity 3 by the foaming pressure of the molten resin mass 8 itself. Then, the molten resin mass 8 was foamed. 60 seconds after foaming, mold 1 was opened and the molded product was removed. Thus, a molded article having a substantially non-foamed skin layer 10 and having a highly foamed foam layer inside was obtained.
発泡性溶融樹脂中の二酸化炭素ガス量は約 2 . 0 重量%で あった。 成形品の発泡倍率は 1 . 4倍、 表皮層の厚さは約 2 m mでめつ た。 実施例 5 The amount of carbon dioxide gas in the foamable molten resin is about 2.0% by weight. there were. The expansion ratio of the molded product was 1.4 times, and the thickness of the skin layer was about 2 mm. Example 5
条件を以下のよ う に変更した他は実施例 1 と同様に行なつ ' た。 樹脂と して芳香環成分を約 1 0 重量%有して結晶化速度 を遅らせた、 ガラス繊維 3 3 重量%を含有した半芳香族ポ リ アミ ド (日本国旭化成製 「レオナ (登録商標) 9 0 G 3 .  The operation was performed in the same manner as in Example 1 except that the conditions were changed as follows. Semi-aromatic polyamide containing 33% by weight of glass fiber and having about 10% by weight of an aromatic ring component as a resin to slow down the crystallization rate (“Leona (registered trademark)” manufactured by Asahi Kasei in Japan) 9 0 G 3.
3 」 ) を用いた。 シリ ンダ温度 2 8 0 °C、 射出圧力 1 2 0 M P a 、 金型温度 8 0 °C、 シ リ ンダへの二酸化炭素ガス供給圧 は 2 M P a 、 金型キヤ ビティ へ 2 のカウ ンター圧は用いない。 二酸化炭素ガスを溶解した上記ガラス繊維含有半芳香族ポ リ アミ ド樹脂を 2 秒間で充填し、 シリ ンダ内樹脂圧力 8 0 λ4 P a で 1 秒間保圧した後、 連絡通路 5 の開閉弁 4 を開放し、 溶 融樹脂塊 8 の一部を溶融樹脂塊 8 自体が有する発泡圧力によ り溶融樹脂排出用キヤ ビティ 3 に排出して、 溶融樹脂塊 8 を 発泡させた。 発泡か ら 6 0 秒後に金型 1 を開いて成形品を取 り 出した。 こ う して、 実質的に無発泡の表皮層 1 0 を有し、 内部に高発泡の発泡層を有する成形品が得られた。 3)) was used. Cylinder temperature 280 ° C, injection pressure 120MPa, mold temperature 80 ° C, carbon dioxide gas supply pressure to cylinder 2MPa, counter pressure 2 to mold cavity Is not used. The above-mentioned glass fiber-containing semi-aromatic polyamide resin in which carbon dioxide gas is dissolved is filled in for 2 seconds, and the resin pressure in the cylinder is maintained at 80 λ4 Pa for 1 second. Was released and a part of the molten resin mass 8 was discharged to the molten resin discharge cavity 3 by the foaming pressure of the molten resin mass 8 itself, and the molten resin mass 8 was foamed. 60 seconds after foaming, mold 1 was opened and the molded product was removed. Thus, a molded article having a substantially non-foamed skin layer 10 and having a highly foamed foam layer inside was obtained.
発泡性溶融樹脂中の二酸化炭素ガス量は約 0 . 1 重量%で あっ た。 成形品の発泡倍率は 1 . 4倍、 表皮層の厚さ は約 2 m mであつ /こ。  The amount of carbon dioxide gas in the foamable molten resin was about 0.1% by weight. The foaming ratio of the molded product is 1.4 times, and the thickness of the skin layer is about 2 mm.
樹脂の結晶化速度が遅い こ と によ り 、 かつフルショ ッ トで 成形する こ と によ り外観に発泡模様は発生せず、 高質外観が 得られた。 実施例 6 Due to the low crystallization speed of the resin, and in full shot By molding, no foaming pattern appeared on the appearance, and a high quality appearance was obtained. Example 6
条件を以下のよ う に変更した他は実施例 2 と同様に行なつ た。 図 3 ( a ) 〜図 3 ( c ) に示すような、 肉厚 2 . 5 m m の平板 (薄肉部) の一片に断面形状 4 m m X 4 m mのチャ ン ネル (厚肉部) の付いたデザイ ン (薄板一チャ ンネルデザィ ン) を有するキヤ ビティ を有する金型を用いた。 この際、 溶 融樹脂による金型キヤ ビティ 充填率は 9 8 % と し、 溶融樹脂 の充填完了後、 射出ノ ズル 1 2 に内蔵された加圧ガスノ ズル 1 3 か ら 8 M P a の二酸化炭素ガス を溶融樹脂塊中に注入し てガス充填中空部 1 1 を形成する と同時に、 金型キヤ ビティ 2 内のカウ ンタ一ガスを外部へ開放し、 2 秒間二酸化炭素ガ スの注入によ るガス保圧を継続した後、 二酸化炭素ガスの注 入を停止し、 溶融樹脂排出用キヤ ビティ 3 に通じる開閉弁 4 を開放して、 溶融樹脂塊 8 の中空部 1 1 内の二酸化炭素ガス と該ガス に同伴されて押し出される溶融樹脂塊 8 の一部を溶 融樹脂排出用キヤ ビティ 3 に一気に排出し、 金型キヤ ビティ 2 内の溶融樹脂塊 8 を発泡させた。  The procedure was performed in the same manner as in Example 2 except that the conditions were changed as follows. As shown in Fig. 3 (a) to Fig. 3 (c), a piece of a 2.5mm thick flat plate (thin wall) has a channel (thick wall) with a cross section of 4mm x 4mm. A mold having a cavity with a design (thin plate-one channel design) was used. At this time, the filling rate of the mold cavity with the molten resin is 98%, and after the filling of the molten resin is completed, the pressurized gas nozzle 13 built into the injection nozzle 12 and the carbon dioxide of 8 MPa The gas is injected into the molten resin mass to form the gas-filled hollow portion 11, and at the same time, the counter gas in the mold cavity 2 is released to the outside, and carbon dioxide gas is injected for 2 seconds. After the gas pressure was maintained, the injection of carbon dioxide gas was stopped, the on-off valve 4 leading to the molten resin discharge cavity 3 was opened, and the carbon dioxide gas in the hollow portion 11 of the molten resin mass 8 was removed. A part of the molten resin mass 8 extruded with the gas was discharged to the molten resin discharging cavity 3 at a stretch, and the molten resin mass 8 in the mold cavity 2 was foamed.
発泡性溶融樹脂中の二酸化炭素ガス量は約 1 . 0 重量%で あっ た。 成形品の発泡倍率は 1 . 2 倍で厚肉部分だけでなく 、 薄肉部分も発泡した成形品を得た。 実施例 7 The amount of carbon dioxide gas in the foamable molten resin was about 1.0% by weight. The expansion ratio of the molded product was 1.2 times, and a molded product in which not only the thick part but also the thin part was foamed was obtained. Example 7
図 4 に示す、 直径 2 2 m m、 端部ァ一ム間の距離が 1 8 0 m mのダリ ッ プ形状を有する成形品 4個取り の金型 1 を用い 成形した。 各金型キヤ ビティ 2 へのラ ンナー部距離はほぼ均 等に設定してある。 各々 のキヤ ビティ 2 には連絡通路を通じ. 溶融樹脂排出用キヤ ビティ 3 が設け られ、 連絡通路には各々 開閉弁 4 を有している。 各々 の開閉弁 4 の動作タイ ミ ングは 独立に制御可能である。 溶融樹脂排出用キヤ ビティ 3 の容積 は約 7 0 C Cで、 外径が 3 O m m , 深さ 1 0 0 m mに設定し てあ る。 キヤ ビティ 2 か ら溶融樹脂排出用キヤ ビティ 3 へ連 絡する連絡通路の断面形状は 5 m m X 5 m m、 キヤ ビティ 2 か ら連絡通路につながるキヤ ビティ 出口部の断面形状は 5 m m X 5 m mである。 中空部 1 1 を形成するためのガス注入口 1 8 が各キヤ ビティ 2 の樹脂ゲー ト直近に配置されている。 各キヤ ビティ 2 へのガス注入タイ ミ ング、 圧力、 ガスの保持 時間は独立に制御可能と してある。  Molding was carried out using a mold 1 of four cavities having a lip shape with a diameter of 222 mm and a distance between end rims of 180 mm as shown in FIG. The runner distance to each mold cavity 2 is set approximately equal. Each of the cavities 2 is provided with a molten resin discharging cavity 3 through a communication passage, and each of the communication passages has an on-off valve 4. The operation timing of each on-off valve 4 can be controlled independently. The volume of the molten resin discharge cavity 3 is about 70 C C, the outer diameter is set to 3 O mm, and the depth is set to 100 mm. The cross-sectional shape of the communication passage leading from the cavity 2 to the molten resin discharge cavity 3 is 5 mm X 5 mm, and the cross-sectional shape of the cavity outlet from the cavity 2 to the communication passage is 5 mm X 5 mm. It is. A gas injection port 18 for forming the hollow portion 11 is disposed immediately adjacent to the resin gate of each cavity 2. The gas injection timing, pressure, and gas retention time for each cavity 2 can be controlled independently.
樹脂はポ リ プロ ピ レン (日本国、 日本ポ リ ケム製 「ノ バテ ッ ク (登録商標) T X 1 9 7 7 K」 ) を用いた。 シリ ンダ温 度 2 3 0 ° (:、 射出圧力 1 2 0 M P a 、 金型温度 8 0 °C、 シ リ ンダへの二酸化炭素ガス供給圧は 1 0 M P a と した。 予め各 キヤ ビティ 2 を二酸化炭素ガスで 7 M P a に加圧し、 各キヤ ビティ 2 の金型キヤ ビティ 充填率が約 7 5 % になるよう に樹 脂射出量を設定し、 二酸化炭素ガスを溶解した上記ポ リ プロ ピレン樹脂を 2秒間で充填した。 この際、 発泡性溶融樹脂の 射出開始か ら 1 . 5 秒後に溶融樹脂塊中にガスを注入開始し、 ガス充填中空部を形成しガス圧を 3 秒保持した。 ガス充填中 空部を形成するガス と しては 8 M P a の二酸化炭素ガスを用 いた。 次いで各々 のガス供給側バルブを閉じ、 溶融樹脂排出 用キヤ ビティ 3 に通じる開閉弁 4 を開いた。, これによ り 中空 部内の加圧ガス と溶融樹脂塊の一部を溶融樹脂排出用キヤ ビ ティ 3 に排出して、 金型キヤ ビティ 2 内の溶融樹脂塊を発泡 させた。 発泡か ら 3 0秒後に金型を開いて成形品を取 り 出し た。 こ う して、 実質的に無発泡の表皮層を有し、 内部に高発 泡の発泡層を有する成形品が得られた。 Polypropylene ("Novatech (registered trademark) TX1977K", manufactured by Nippon Polychem, Japan) was used as the resin. Cylinder temperature 230 ° (: Injection pressure 120 MPa, mold temperature 80 ° C, carbon dioxide gas supply pressure to the cylinder was 10 MPa. Each cavity 2 Is pressurized to 7 MPa with carbon dioxide gas, and the mold cavities of each cavity 2 are filled to a filling rate of about 75%. The amount of fat injection was set, and the above-mentioned polypropylene resin in which carbon dioxide gas was dissolved was filled in 2 seconds. At this time, gas injection was started into the molten resin mass 1.5 seconds after the start of the injection of the foamable molten resin, a gas-filled hollow portion was formed, and the gas pressure was maintained for 3 seconds. As the gas that forms the space during gas filling, 8 MPa carbon dioxide gas was used. Next, each gas supply side valve was closed, and the on-off valve 4 communicating with the molten resin discharge cavity 3 was opened. As a result, the pressurized gas and a part of the molten resin mass in the hollow portion were discharged to the molten resin discharge cavity 3, and the molten resin mass in the mold cavity 2 was foamed. 30 seconds after foaming, the mold was opened and the molded product was removed. Thus, a molded article having a substantially non-foamed skin layer and having a highly foamed foam layer inside was obtained.
溶融樹脂塊内にガス充填中空部を形成した段階で、 各キヤ ピティ 2 の間で中空部長さ には最大で 2 0 m mのバラツキが あつたが、 発泡後の各キヤ ビティ 2 か らの成形品の発泡倍率 (軽量化率) は、 ほぼ 2 . 2 倍、 表皮層の厚さは 2 . 5 m m と均一であった。  At the stage when the gas-filled hollow portion was formed in the molten resin mass, the length of the hollow portion varied up to 20 mm between each of the cavities 2.However, molding from each of the cavities 2 after foaming The foaming ratio (weight reduction ratio) of the product was almost 2.2 times, and the thickness of the skin layer was uniform at 2.5 mm.
発泡性溶融樹脂中の二酸化炭素ガス量は約 3 . 0 重量%で あった。 実施例 8  The amount of carbon dioxide gas in the foamable molten resin was about 3.0% by weight. Example 8
溶融樹脂排出用キヤ ビティ 3 に通じる開閉弁 4 を開放後も ガス充填中空部 1 1 を形成した二酸化炭素ガスの供給を 1 5 秒間継続し、 該二酸化炭素ガスを溶融樹脂排出用キヤ ビティ へ放出し、 次いですぐに金型 1 を開き成形品を取 り 出 した他 は実施例 2 と同様にして行なっ た ·。· 成形品は表面部分が非発 泡層で断面中央部に連続気泡構造 (open- eel lular Even after opening the on-off valve 4 leading to the molten resin discharge cavity 3, the supply of carbon dioxide gas with the gas-filled hollow part 1 The procedure was performed in the same manner as in Example 2 except that the carbon dioxide gas was discharged to the molten resin discharge cavity for 2 seconds, and then the mold 1 was immediately opened to remove the molded product. · The molded product has a non-foaming layer on the surface and an open-cell structure
structure) を有する発泡層が形成;されていた。 成形品表面 温度は 6 0 Cと金型表面温度よ り 2 0 °C低く 、 二酸化炭素の 断熱膨張による冷却効果が認め られた。 成形品の '発泡倍率と 表皮層の厚さは実施例 2 と同程度であっ た。 実施例 9 structure) having been formed. The molded product surface temperature was 60 ° C., 20 ° C. lower than the mold surface temperature, and a cooling effect due to adiabatic expansion of carbon dioxide was recognized. The expansion ratio and the thickness of the skin layer of the molded product were almost the same as those in Example 2. Example 9
金型キヤ ビティ 2 を 6 M P a の窒素ガスで加圧し、 射出シ リ ンダ 2 0から 8 M P a の窒素ガスを溶融樹脂に供給し、 ガ ス充填中空部 1 1 を 8 M P a の窒素ガスで形成した他は実施 例 2 と同様に して行なっ た。 得られた成形品は実施例 2 と同 程度の発泡倍率、. 外観であっ た。 発泡性溶融樹脂中の窒素ガ ス量は約 0 . 8 重量%であっ た。 比較例 1  The mold cavity 2 is pressurized with 6 MPa of nitrogen gas, the injection cylinder 20 to 8 MPa of nitrogen gas is supplied to the molten resin, and the gas-filled hollow portion 11 is filled with 8 MPa of nitrogen gas. The procedure was performed in the same manner as in Example 2 except for the formation of. The obtained molded product had the same expansion ratio and appearance as those of Example 2. The nitrogen gas content in the foamable molten resin was about 0.8% by weight. Comparative Example 1
溶融樹脂排出用キヤ ピティ 3 につながる連絡通路 5 に設け られた開閉弁 4 を開かず、 中空部 1 1 を形成した二酸化炭素 ガス を射出ノ ズル 1 2 に内蔵した加圧ガス ノズル 1 3 か ら開 放しよ う と した他は実施例 2 と同様にして行なっ た。 ス プル — 6 、 ラ ンナー 7 に充填された発泡性溶融樹脂は発泡してい たが、 成形品内は発泡してお らず、 かつ金型 1 を開く 際に成 形品が破裂した。 これはスプル一 6 とラ ンナー 7 に充填され た発泡性溶融樹脂が先に発泡してしまい、 溶融樹脂塊 8 のガ ス充填中空部 1 1 内の二酸化炭素ガスを開放できないため と 考え られる。 比較例 2 Without opening the on-off valve 4 provided in the communication passage 5 leading to the molten resin discharge capital 3, the carbon dioxide gas that formed the hollow portion 11 was injected from the pressurized gas nozzle 13 built in the injection nozzle 12. The procedure was the same as in Example 2, except that the release was attempted. The foamable molten resin filled in sprue 6 and runner 7 is foaming. However, the inside of the molded product was not foamed, and when the mold 1 was opened, the molded product burst. This is considered to be because the foamable molten resin filled in the sprue 16 and the runner 7 foams first, and the carbon dioxide gas in the gas-filled hollow portion 11 of the molten resin mass 8 cannot be released. Comparative Example 2
条件を以下のよ う に変更した他は実施例 2 と同様に行なつ た。 溶融樹脂排出用キヤ ピティ 3 の長さ を 7 O m mと し、 容 積 2 8 C C に設定し、 かつ溶融樹脂による金型キヤ ビティ 充 填率を 9 8 % と した。 樹脂を充填、 加圧ガス を注入開始後、 開閉弁 4 を開き、 ガス圧によ り溶融樹脂排出用キヤ ビティ 3 に溶融樹脂塊の一部を排出し、 中空率約 3 0 %の中空体を形 成した。 この際、 溶融樹脂排出用キヤ ビティ 3 はガス圧に押 された樹脂によっ て密に充填されていた。 次いで中空部 1 1 を形成した二酸化炭素ガスを射出ノ ズル 1 2 に内蔵した加圧 ガス ノ ズル 1 3 か ら開放した。 スプル一 6 と ラ ンナー 7 に充 填された溶融樹脂は発泡していたが、 成形品内は発泡してお らず、 かつ金型 1 を開く 際成形品が破裂した。 これはス プル 一 6 と ラ ンナー 7 の部分の溶融榭脂が先に発泡してしまい、 溶融樹脂塊 8 のガス充填中空部 1 1 内の二酸化炭素ガス を開 放できないため と考え られる。 比較例 3 The procedure was performed in the same manner as in Example 2 except that the conditions were changed as follows. The length of the molten resin discharge capacitor 3 was set to 7 O mm, the volume was set to 28 CC, and the filling rate of the mold cavity with the molten resin was set to 98%. After filling the resin and injecting the pressurized gas, open the on-off valve 4 and discharge a part of the molten resin mass into the molten resin discharge cavity 3 by gas pressure.The hollow body with a hollow ratio of about 30% Was formed. At this time, the molten resin discharging cavity 3 was densely filled with the resin pressed by the gas pressure. Next, the carbon dioxide gas in which the hollow portion 11 was formed was released from the pressurized gas nozzle 13 built in the injection nozzle 12. The molten resin filled in sprue 1 and runner 7 was foamed, but was not foamed in the molded product, and the molded product burst when mold 1 was opened. This is considered to be because the molten resin in the sprue 16 and the runner 7 foamed first, and the carbon dioxide gas in the gas-filled hollow portion 11 of the molten resin mass 8 could not be released. Comparative Example 3
条件を以下のよう に変更した他は比較例 2 と同様に行なつ た。 中空部 1 1 を形成する加圧ガスを金型キヤ ピティ 2 に設 けたガス注入口 1 8 か ら直接注入した。 また同じガス注入口 1 8 か ら中空部 1 1 のガスを開放した。 ガス注入口 1 8 近傍 が発泡し、 成形品内は発泡してお らず、 かつ金型 1 を開 く 際 成形品が破裂し、 比較例 2 と同様の結果であっ た。 実施例 1 0  The same procedure was performed as in Comparative Example 2 except that the conditions were changed as follows. The pressurized gas forming the hollow portion 11 was directly injected from the gas injection port 18 provided in the mold cap 2. The gas in the hollow portion 11 was released from the same gas inlet 18. The vicinity of the gas inlet 18 was foamed, the inside of the molded product was not foamed, and when the mold 1 was opened, the molded product burst, and the result was the same as that of Comparative Example 2. Example 10
金型キヤ ビティ 2 を加圧する加圧ガスに窒素ガスを用いた 他は実施例 3 と同様に して行なった。 得られた成形品の表面 は、 発泡模様はないものの表面粗さは 5 〜 8 i mでシポ形状 を充分に転写してお らず、 金型キヤ ビティ 内壁面形状の転写 性においては実施例 3 の方が優れる ものであっ た。  The procedure was performed in the same manner as in Example 3 except that nitrogen gas was used as the pressurized gas for pressurizing the mold cavity 2. Although the surface of the obtained molded product had no foaming pattern, the surface roughness was 5 to 8 im and did not sufficiently transfer the sipo shape. 3 was better.
発泡性溶融樹脂中の窒素ガス量は 3 重量%であった。 成形 品の発泡倍率は 2 . 6 倍、 表皮層の厚さは 1 . 5 m mであつ た。 比較例 4  The amount of nitrogen gas in the foamable molten resin was 3% by weight. The foaming ratio of the molded product was 2.6 times, and the thickness of the skin layer was 1.5 mm. Comparative Example 4
溶融樹脂排出用キヤ ビティ 3 を使用せず、 射出後の冷却時 間 6 0 秒後に金型 1 を開き成形品を取り 出 した他は実施例 3 と同様に して行なっ た。 金型か ら取 り 出 した成形品は、 溶融 樹脂中に溶解したガス状発泡剤の発泡力によ り大きく 膨らみ、 変形した。 またこの変形を防止するためには冷却時間が 1 2 0 秒以.上必要であった。 比較例 5 Example 3 was repeated except that the molten resin discharge cavity 3 was not used and the mold 1 was opened after 60 seconds of cooling time after injection and the molded product was removed. The molded product removed from the mold swells greatly due to the foaming force of the gaseous foaming agent dissolved in the molten resin, Deformed. In order to prevent this deformation, a cooling time of more than 120 seconds was required. Comparative Example 5
金型キヤ ビティ 2 を加圧ガスで加圧せず、 かつ溶融樹脂に よる金型キヤ ビティ 充填率を 8. 0 % と した他は比較例 4 と同 様に して行なった。 発泡倍率が 1 . 2 倍の成形品が得られる ものの、 成形品表面に発泡模様ができ外観が悪く なつた。 比較例 6  Molding cavity 2 was not pressurized with a pressurized gas, and the filling was performed in the same manner as in Comparative Example 4 except that the mold cavity filling rate of the molten resin was 8.0%. Although a molded product with an expansion ratio of 1.2 times was obtained, a foamed pattern was formed on the surface of the molded product, and the appearance was poor. Comparative Example 6
成形品外観を改善するため、 溶融樹.脂の射出前に金型キヤ ビティ 2 を 7 M P a の二酸化炭素ガスで加圧した他は比較例 5 と同様に して行なった。 得られた成形品は、 金型キヤ ピテ ィ 2 内のゲー ト側か らキヤ ビティ 容積約 8 0 %'に対応する と ころまでは発泡模様がないものの、 そ こか ら流動末端対応部 分に向けて発泡模様ができ外観が悪かっ た。 In order to improve the appearance of the molded product, the procedure was performed in the same manner as in Comparative Example 5 except that the mold cavity 2 was pressurized with 7 MPa of carbon dioxide gas before the injection of the molten resin. The resulting molded product has no foaming pattern from the gate side in the mold cavity 2 to the point corresponding to the cavity volume of about 80% ', but from there it corresponds to the flow end. The appearance was poor due to the formation of a foam pattern toward the minute.
産業上の利用可能性 Industrial applicability
本発明の発泡射出成形方法によれば、. 金型キヤ ビティ 内壁 面形状の転写性が良好で、 無発泡の表皮層と高発泡の発泡層 を有する成形品を再現性良く 、 効率的、 経済的に製造する こ とができるだけでなく、 成形品の表皮層の厚さおよび成形品 の発泡倍率を容易に制御するこ とができる。 本発明の発泡射 出成形方法によれば、 弱電機器、 電子機器などのハウジング、 各種自動車部品、 各種日用品などの種々の優れた熱可塑性樹 脂発泡射出成形品を安価に提供する こ とができる。 また、 本 発明の発泡射出成形方法は、 通常の熱可塑性樹脂だけでなく 、 熱安定性が低い難燃剤を含む、 高い樹脂温度で成形する こ と が困難な樹脂組成物や、 流動性が低く従来の方法では射出成 形が困難な樹脂にも有利に適用できる。  According to the foam injection molding method of the present invention, the mold cavity has good transferability of the inner wall surface shape, and a molded article having a non-foamed skin layer and a highly foamed foam layer is reproducible, efficient, and economical. In addition to being able to manufacture the molded product, the thickness of the skin layer of the molded product and the expansion ratio of the molded product can be easily controlled. ADVANTAGE OF THE INVENTION According to the foam injection molding method of this invention, various excellent thermoplastic resin foam injection molded articles, such as housing of light electric equipment and electronic equipment, various automobile parts, and various daily necessities, can be provided at low cost. . In addition, the foam injection molding method of the present invention includes not only ordinary thermoplastic resins but also flame retardants having low thermal stability, resin compositions which are difficult to mold at high resin temperatures, and low flowability. The conventional method can be advantageously applied to resins for which injection molding is difficult.

Claims

求 の 範 囲 Range of request
1 . 熱可塑性樹脂の発泡射出成形方法であって、' 1. A foam injection molding method for a thermoplastic resin, the method comprising '
( 1 ) 固定半型及びそれと組み合わさ っ た可動半型か らな り 、 該固定半型の内壁面と該可動半型の内壁面によって規定 される金型キヤ ビティ を有する金型を提供し、  (1) A mold comprising a fixed mold and a movable mold combined with the mold, and having a mold cavity defined by an inner wall surface of the fixed mold and an inner wall surface of the movable mold,
該金型キヤ ビティ は内壁面を有し、 また、 樹脂入口に通じ てお り 、  The mold cavity has an inner wall surface and communicates with a resin inlet.
該金型キヤ ビティ の該内壁面は溶融樹脂排出手段を有して お り 、  The inner wall surface of the mold cavity has a molten resin discharging means,
( 2 ) 発泡性の熱可塑性樹脂を溶融状態で所定の射出温度 圧力条件下に上記樹脂入口 を通じて該金型キヤ ビティ に射出 し、 該発泡性溶融樹脂の量は、 該所定の射出温度圧力条件下 で測定して該金型キヤ ビティ の容積と同 じ体積を有する該発 泡性溶融樹脂の重量の 9 5 〜 1 1 0 %の範囲であ り 、  (2) The foamable thermoplastic resin is injected in a molten state into the mold cavity through the resin inlet under a predetermined injection temperature and pressure conditions, and the amount of the foamable molten resin is determined by the predetermined injection temperature and pressure conditions. Measured in the range of 95 to 110% of the weight of the foamable molten resin having the same volume as the volume of the mold cavity,
これによつて該金型キヤ ビティ 内に発泡性溶融樹脂塊を形 成し、  As a result, a foamable molten resin mass is formed in the mold cavity,
( 3 ) 該金型キヤ ビティ 内の該発泡性溶融樹脂塊に圧力を かけて該発泡性溶融樹脂塊の表面を該金型キャ ビティ の該内 壁面に押し付ける こ とによ り 、 該発泡性溶融樹脂塊の表面部 分を固化させて、 該発泡性溶融樹脂塊の表皮層を形成し、 そ して  (3) The foamability is increased by applying pressure to the foamable molten resin mass in the mold cavity and pressing the surface of the foamable molten resin mass against the inner wall surface of the mold cavity. The surface portion of the molten resin mass is solidified to form a skin layer of the foamable molten resin mass, and
( 4 ) 該発泡性溶融樹脂塊の一部を該発泡性溶融樹脂塊自 体が有する発泡圧力 によ り該溶融樹脂排出手段を通じて該金 型キヤ ビティ の外側に排出して該発泡性溶融樹脂塊への圧力 を低下させ、 それによつて、 該金型キヤ ビティ 内の該発泡性 溶融樹脂塊を発泡させて、 実質的に無発泡の該表皮層を有す る発泡樹脂塊を形成する、 (4) A part of the foamable molten resin mass is Due to the foaming pressure of the body, the molten resin is discharged to the outside of the mold cavity through the molten resin discharge means to reduce the pressure on the foamable molten resin mass, thereby reducing the pressure in the mold cavity. Foaming the molten resin mass to form a substantially non-foamed foamed resin mass having the skin layer;
こ とを特徴とする発泡射出成形方法。 A foam injection molding method characterized by the above.
2 . 工程 ( 3 ) での該発泡性溶融樹脂塊への加圧を、 追加の 発泡性溶融樹脂を該金型キヤ ビティ に射出 して該発泡性溶融 樹脂塊に所定の樹脂保圧をかける こ とによって行なう こ とを 特徴とする請求項 1 に記載の方法。 2. Pressurizing the foamable molten resin mass in step (3) by injecting additional foamable molten resin into the mold cavity to apply a predetermined resin holding pressure to the foamable molten resin mass. The method according to claim 1, wherein the method is performed.
3 . 工程 ( 2 ) の前で工程 ( 1 ) の後に、 該金型キヤ ビティ に加圧ガス を導入して、 該金型キヤ ビティ の圧力 を、 工程3. Before step (2) and after step (1), pressurized gas is introduced into the mold cavity to reduce the pressure of the mold cavity.
( 2 ) で射出された該発泡性溶融樹脂がそのフ ローフ ロ ン ト で発泡を起こ さない圧力 とする こ と を特徴とする請求項 1 ま たは 2 に記載の方法。 The method according to claim 1 or 2, wherein the pressure is such that the foamable molten resin injected in (2) does not cause foaming in its flow front.
4 . 工程 ( 2 ) の前で工程 ( 1 ) の後に該金型キヤ ビティ に 導入する該加圧ガスが二酸化炭素ガスである こ と を特徴とす る請求項 3 に記載の方法。 4. The method according to claim 3, wherein the pressurized gas introduced into the mold cavity before step (2) and after step (1) is carbon dioxide gas.
5 . 該金型キヤ ビティ の該溶融樹脂排出手段が開閉弁であ り 、 該金型が、 該開閉弁を介して該金型キヤ ビティ に通じる溶融 樹脂排出用キヤ ビティ を有してお り 、 該溶融樹脂排出用キヤ ビティ の容積が、 工程 ( 4 ) で該開閉弁を通じて該金型キヤ ビティ の外側に排出される該発泡性溶融樹脂塊の該一部の体 積よ り 大きい こ とを特徴とする請求項 1 〜 4 のいずれかに記 載の方法。 5. The molten resin discharging means of the mold cavity is an on-off valve, The mold has a molten resin discharge cavity that communicates with the mold cavity through the on-off valve, and the volume of the molten resin discharge cavity is increased by the on-off valve in step (4). The method according to any one of claims 1 to 4, wherein the volume of the foamable molten resin mass discharged to the outside of the mold cavity is larger than the volume of the part.
6 . 該溶融樹脂排出用キヤ ビティ が該金型の外側に通じる通 気口 を有する こ とを特徴とする請求項 5 に記載の方法。 6. The method according to claim 5, wherein the molten resin discharging cavity has an air opening communicating with the outside of the mold.
7 . 該発泡性溶融樹脂が、 溶融樹脂とそれに溶解した少なく と も 1 種のガス状発泡剤か らな り 、 該少なく と も 1 種のガス 状発泡剤が二酸化炭素ガス と窒素ガスか らなる群か ら選ばれ る こ とを特徴とする請求項 1 〜 6 のいずれかに記載の方法。 7. The foamable molten resin comprises the molten resin and at least one gaseous foaming agent dissolved therein, and the at least one gaseous foaming agent comprises carbon dioxide gas and nitrogen gas. The method according to any one of claims 1 to 6, wherein the method is selected from the group consisting of:
8 . 該発泡性溶融樹脂の該発泡剤の含有量が 0 . 0 5 〜 1 0 重量%である こ とを特徴とする請求項 7 に記載の方法。 8. The method according to claim 7, wherein the content of the foaming agent in the foamable molten resin is 0.05 to 10% by weight.
9 . 熱可塑性樹脂の発泡射出成形方法であって、 9. A foam injection molding method for a thermoplastic resin,
( 1 ) 固定半型及びそれと組み合わさった可動半型か らな り 、 該固定半型の内壁面と該可動半型の内壁面によって規定 される金型キヤ ビティ を有する金型を提供し、  (1) A mold comprising a fixed mold and a movable mold combined with the mold, and having a mold cavity defined by an inner wall surface of the fixed mold and an inner wall surface of the movable mold,
該金型キヤ ビティ は内壁面を有し、 また、 樹脂入口及び所 望によ り ガス入口 に通じてお り 、 The mold cavity has an inner wall surface, and a resin inlet and a location. It leads to the gas inlet if desired,
該金型キヤ ビティ の該内壁面は溶融樹脂排出手段を有して お り、  The inner wall surface of the mold cavity has a molten resin discharging means,
( 2 ) 発泡性の熱可塑性樹脂を溶融状態で所定の射出温度 圧力条件下に上記樹脂入口 を通じて該金型キヤ ビティ に射出 し、 該発泡性溶融樹脂の量は、 該所定の射出温度圧力条件下 で測定して該金型キヤ ビティ の容積と同 じ体積を有する該発 泡性溶融樹脂の重量の 5 5 〜 1 1 0 %の範囲であ り 、  (2) The foamable thermoplastic resin is injected in a molten state into the mold cavity through the resin inlet under a predetermined injection temperature and pressure conditions, and the amount of the foamable molten resin is determined by the predetermined injection temperature and pressure conditions. Measured in the range of 55 to 110% by weight of the foamable molten resin having the same volume as the mold cavity,
これによつて該金型キヤ ビティ 内に発泡性溶融樹脂塊を形 成し、  As a result, a foamable molten resin mass is formed in the mold cavity,
( 3 ) 上記樹脂入口 または上記ガス入口 を通じて該金型キ ャ ビティ 内の該発泡性溶融樹脂塊に加圧ガスを注入して該発 泡性溶融樹脂塊にガス充填中空部を形成し、 それによつて該 発泡性溶融樹脂塊に圧力をかけて該発泡性溶融樹脂塊の外表 面を該金型キヤ ビティ の該内壁面に押し付ける こ とによ り 、 該発泡性溶融樹脂塊の外表面部分を固化させて、 該発泡性溶 融樹脂塊の表皮層を形成し、  (3) A pressurized gas is injected into the foamable molten resin mass in the mold cavity through the resin inlet or the gas inlet to form a gas-filled hollow portion in the foamable molten resin mass. Thus, by applying pressure to the foamable molten resin mass and pressing the outer surface of the foamable molten resin mass against the inner wall surface of the mold cavity, an outer surface portion of the foamable molten resin mass is obtained. To form a skin layer of the foamable molten resin mass,
工程 ( 3 ) は、 工程 ( 2 ) の間、 工程 ( 2 ) の完了後、' ま たは工程 ( 2 ) の間と完了後に行ない、 そして  Performing step (3) during step (2), after completion of step (2), or during and after step (2); and
( 4 ) 該発泡性溶融樹脂塊の一部と該 ス充填中空部内の 加圧ガスの少な く と も一部を、 該発泡性溶融樹脂塊自体が有 する発泡圧力 と該ガス充填中空部内の加圧ガスの圧力 によつ て、 該溶融樹脂排出'手段を通じて該金型キヤ ビティ の外側に 排出して該発泡性溶融樹脂塊への圧力 を低下させ、 それによ つて、 該金型キヤ ビティ 内の該発泡性溶融樹脂塊を発泡させ て、 実質的に無発泡の該表皮層を有する発泡樹脂塊を形成す る、 (4) At least a part of the foamable molten resin mass and at least a part of the pressurized gas in the gas-filled hollow portion are subjected to the foaming pressure of the foamable molten resin mass itself and the gas pressure in the gas-filled hollow portion. Due to the pressure of the pressurized gas, the outside of the mold cavity is discharged through the molten resin discharging means. Discharging to reduce the pressure on the foamable molten resin mass, thereby foaming the foamable molten resin mass in the mold cavity to form a foam having the substantially non-foamed skin layer. Forming a resin mass,
こ とを特徴とする発泡射出成形方法。 A foam injection molding method characterized by the above.
1 0 . 工程 ( 3 ) で用いる該加圧ガスが二酸化炭素ガスであ る こ とを特徴とする請求項 9 に記載の方法。 10. The method according to claim 9, wherein the pressurized gas used in step (3) is carbon dioxide gas.
1 1 . 工程 ( 2 ) の前で工程 ( 1 ) の後に、 該金型キヤ ビテ ィ に加圧ガス を導入して、 該金型キヤ ビティ の圧力を、 工程11. Before the step (2) and after the step (1), pressurized gas is introduced into the mold cavity to increase the pressure of the mold cavity.
( 2 ) で射出された該発泡性溶融樹脂がそのフ ローフ ロ ン ト で発泡を起こ さない圧力 とする こ とを特徴とする請求項 9 ま たは 1 0 に記載の方法。 The method according to claim 9 or 10, wherein the pressure is such that the foamable molten resin injected in (2) does not cause foaming in the flow front.
1 2 . 工程 ( 2 ) の前で工程 ( 1 ) の後に該金型キヤ ビティ に導入する該加圧ガスが二酸化炭素ガスである こ とを特徴と する請求項 1 1 に記載の方法。 12. The method according to claim 11, wherein the pressurized gas introduced into the mold cavity before step (2) and after step (1) is carbon dioxide gas.
1 3 . 該金型キヤ ビティ の該溶融樹脂排出手段が開閉弁であ り 、 該金型が、 該開閉弁を介して該金型キヤ ビティ に通じる 溶融樹脂排出用キヤ ビティ を有してお り 、 該溶融樹脂排出用 キヤ ビティ の容積が、 工程 ( 4 ) で該開閉弁を通じて該金型 キヤ ビティ の外側に排出される該発泡性溶融樹脂塊の該ー部 の体積よ り 大きいことを特徴とする請求項 9 〜 1 2 のいずれ かに記載の方法。 13. The molten resin discharging means of the mold cavity is an open / close valve, and the mold has a molten resin discharge cavity that communicates with the mold cavity through the open / close valve. In step (4), the volume of the molten resin discharging cavity is passed through the on-off valve to the mold. The method according to any one of claims 9 to 12, wherein the volume of the foamable molten resin mass discharged to the outside of the cavity is larger than the volume of the portion.
1 4 . 該溶融樹脂排出用キヤ ビティ が該金型の外側に通じる 通気口 を有する こ とを特徴とする請求項 1 3 に記載の方法。 14. The method according to claim 13, wherein the molten resin discharging cavity has a ventilation hole communicating with the outside of the mold.
1 5 . 該発泡性溶融樹脂が、 溶融樹脂とそれに溶解した少な く とも 1 種のガス状発泡剤か らな り 、 該少な く と も 1 種のガ ス状発泡剤が二酸化炭素ガス と窒素ガスか らなる群か ら選ば れる こ と を特徴とする請求項 9 〜 1 4 のいずれかに記載の方 法。 15. The foamable molten resin comprises the molten resin and at least one gaseous foaming agent dissolved therein, and the at least one gaseous foaming agent comprises carbon dioxide gas and nitrogen. The method according to any one of claims 9 to 14, wherein the method is selected from the group consisting of gas.
1 6 . 該発泡性溶融樹脂の該発泡剤の含有量が 0 . 0 5 〜 1 0 重量%である こ とを特徴とする請求項 1 5 に記載の方法。 16. The method according to claim 15, wherein the content of the foaming agent in the foamable molten resin is 0.05 to 10% by weight.
PCT/JP2001/011473 2000-12-27 2001-12-26 Foam injection molding method WO2002053347A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/450,417 US7077987B2 (en) 2000-12-27 2001-12-26 Foam injection molding method
DE10197126T DE10197126T1 (en) 2000-12-27 2001-12-26 Foam injection molding process
JP2002554281A JPWO2002053347A1 (en) 2000-12-27 2001-12-26 Foam injection molding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000396891 2000-12-27
JP2000-396891 2000-12-27

Publications (1)

Publication Number Publication Date
WO2002053347A1 true WO2002053347A1 (en) 2002-07-11

Family

ID=18862111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011473 WO2002053347A1 (en) 2000-12-27 2001-12-26 Foam injection molding method

Country Status (5)

Country Link
US (1) US7077987B2 (en)
JP (1) JPWO2002053347A1 (en)
CN (1) CN1273277C (en)
DE (1) DE10197126T1 (en)
WO (1) WO2002053347A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1582328A1 (en) * 2002-11-11 2005-10-05 Sunstar Giken Kabushiki Kaisha Method and apparatus for foam molding
JP2007253443A (en) * 2006-03-23 2007-10-04 Sumitomo Chemical Co Ltd Method of manufacturing thermoplastic resin foam molding
JP2011071148A (en) * 2009-09-24 2011-04-07 Fuji Xerox Co Ltd Multi-cavity mold, method of manufacturing magnet piece, and method of manufacturing magnet roll
WO2013015232A1 (en) * 2011-07-26 2013-01-31 三桜工業 株式会社 Method and device for producing pipe member
JP2017140805A (en) * 2016-02-12 2017-08-17 株式会社日本製鋼所 Hollow injection molding method in multi-piece mold
KR20200050732A (en) * 2018-11-02 2020-05-12 주식회사 엘지화학 Foam injection molding, foam injection molding machine containing the same and method for preparing forming products using the same
EP3564004A4 (en) * 2016-12-28 2020-06-24 Bando Chemical Industries, Ltd. Food container manufacturing method
TWI697395B (en) 2017-05-23 2020-07-01 歐特捷實業股份有限公司 Molding processing system of foamed polymer
JP2023031250A (en) * 2021-08-23 2023-03-08 キング スチール マシネリー カンパニー リミテッド Molding apparatus and injection molding method using the same

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005044384A1 (en) * 2005-09-16 2007-03-29 Mekra Lang Gmbh & Co. Kg Fluid Innendruckverfahren for the production of molded parts
CN100448643C (en) * 2007-02-01 2009-01-07 东华机械有限公司 Chemical foaming prepressing high speed injection molding method
EP2221160A4 (en) * 2007-11-20 2011-12-28 Asahi Kasei Constr Mat Co Ltd Process for producing heat curing resin foamed plate
MX2010010481A (en) * 2008-03-26 2011-05-25 Delta Tooling Company Method of manufacture of a foamed core class "a" article.
WO2009120838A2 (en) * 2008-03-26 2009-10-01 Delta Tooling Company Interchangeable mold tooling
US7846533B2 (en) * 2008-03-26 2010-12-07 Hendrickson Usa, L.L.C. Molded thermoplastic articles
US8514060B2 (en) 2008-05-21 2013-08-20 Mitomo Corporation Wireless identification tag
JP5008201B2 (en) * 2008-05-21 2012-08-22 三智商事株式会社 Wireless IC tag
CN101733907B (en) * 2008-11-12 2014-06-18 汉达精密电子(昆山)有限公司 System and method for injection moulding of micro-foamed plastic part
CN102529007A (en) * 2011-03-30 2012-07-04 上海克朗宁技术设备有限公司 Injection foaming molding process of automobile steering wheel
DE102012022970A1 (en) * 2012-01-13 2013-07-18 Engel Austria Gmbh Preparing a foamed plastic component, comprises injecting a to-be-processed plastic provided with a physical blowing agent including carbon dioxide and nitrogen into a mold cavity of an injection molding machine
CN103507200A (en) * 2012-06-29 2014-01-15 合肥杰事杰新材料股份有限公司 Preparation method of microporous foam composite material and product thereof
CN103386729B (en) * 2013-07-25 2015-11-25 延锋汽车饰件系统有限公司 A kind of method improving injection foaming product appearance
EA201691941A1 (en) * 2014-03-27 2016-12-30 Манни С. П. А. INSTALLATION AND METHOD OF MANUFACTURING PANELS PERFORMED FROM PLASTED PLASTIC MATERIAL
CN105014862A (en) * 2015-08-14 2015-11-04 深圳乐新模塑有限公司 Foaming molding mold and molding method for microcellular foaming plastic structural parts
US20190126580A1 (en) * 2017-10-31 2019-05-02 Saucony, Inc. Method and apparatus for manufacturing footwear soles
JP7062484B2 (en) * 2018-03-27 2022-05-06 住友重機械工業株式会社 Gas vent clogging detection device, mold system, injection molding system, gas vent clogging detection method
US11766812B2 (en) 2019-10-15 2023-09-26 King Steel Machinery Co., Ltd. Injection molding system and injection molding method
CN114178710A (en) * 2020-08-24 2022-03-15 奥特斯(中国)有限公司 Component carrier and method for producing the same
CN112959594A (en) * 2021-02-19 2021-06-15 北京中拓模塑科技有限公司 Injection molding system and method for thermoplastic resin articles
TWI834253B (en) * 2021-08-23 2024-03-01 歐特捷實業股份有限公司 Composite and method of manufacturing the same
CN114523641A (en) * 2022-04-02 2022-05-24 福建冠中科技有限公司 Environment-friendly injection molding process for polyhydroxyalkanoate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08118388A (en) * 1994-10-20 1996-05-14 Idemitsu Petrochem Co Ltd Gas injecting injection molding method and its mold
JP2659415B2 (en) * 1988-10-25 1997-09-30 西川化成株式会社 Reaction injection molding method
JPH11138577A (en) * 1997-11-12 1999-05-25 Hashimoto Forming Ind Co Ltd Method and device for injection molding
JP2000094468A (en) * 1998-09-24 2000-04-04 Idemitsu Petrochem Co Ltd Lightweight molding, coated lightweight molding and manufacture thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129635A (en) * 1973-12-28 1978-12-12 Asahi-Dow Limited Method for producing foamed moldings from synthetic resin materials
US3987216A (en) 1975-12-31 1976-10-19 International Business Machines Corporation Method of forming schottky barrier junctions having improved barrier height
US4208368A (en) * 1978-07-18 1980-06-17 Gebruder Buhler Ag Method and apparatus for injection molding foamed plastic articles using a pre-pressurized mold having fixed core members with controlled venting
EP0297158A1 (en) * 1987-07-01 1989-01-04 Battenfeld GmbH Process for producing multilayer moulded articles from thermoplastic synthetic material
JP2511800B2 (en) 1993-07-19 1996-07-03 泰典 堀 Resin molded product, its molding method, and its molding device
US5798063A (en) * 1994-10-03 1998-08-25 E. I. Du Pont De Nemours And Company Molding process using gas under pressure
US5900198A (en) * 1996-01-31 1999-05-04 Hori; Yasunori Method of producing molded resin product
JP3814032B2 (en) * 1996-11-01 2006-08-23 本田技研工業株式会社 Molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2659415B2 (en) * 1988-10-25 1997-09-30 西川化成株式会社 Reaction injection molding method
JPH08118388A (en) * 1994-10-20 1996-05-14 Idemitsu Petrochem Co Ltd Gas injecting injection molding method and its mold
JPH11138577A (en) * 1997-11-12 1999-05-25 Hashimoto Forming Ind Co Ltd Method and device for injection molding
JP2000094468A (en) * 1998-09-24 2000-04-04 Idemitsu Petrochem Co Ltd Lightweight molding, coated lightweight molding and manufacture thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1582328B1 (en) * 2002-11-11 2014-04-02 Sunstar Giken Kabushiki Kaisha Method and apparatus for foam molding
EP1582328A1 (en) * 2002-11-11 2005-10-05 Sunstar Giken Kabushiki Kaisha Method and apparatus for foam molding
JP2007253443A (en) * 2006-03-23 2007-10-04 Sumitomo Chemical Co Ltd Method of manufacturing thermoplastic resin foam molding
JP2011071148A (en) * 2009-09-24 2011-04-07 Fuji Xerox Co Ltd Multi-cavity mold, method of manufacturing magnet piece, and method of manufacturing magnet roll
US9321195B2 (en) 2011-07-26 2016-04-26 Sanoh Industrial Co., Ltd. Method and device for producing a pipe member
JP5501529B2 (en) * 2011-07-26 2014-05-21 三桜工業株式会社 Pipe member manufacturing method and manufacturing apparatus
WO2013015232A1 (en) * 2011-07-26 2013-01-31 三桜工業 株式会社 Method and device for producing pipe member
JP2017140805A (en) * 2016-02-12 2017-08-17 株式会社日本製鋼所 Hollow injection molding method in multi-piece mold
EP3564004A4 (en) * 2016-12-28 2020-06-24 Bando Chemical Industries, Ltd. Food container manufacturing method
TWI697395B (en) 2017-05-23 2020-07-01 歐特捷實業股份有限公司 Molding processing system of foamed polymer
KR20200050732A (en) * 2018-11-02 2020-05-12 주식회사 엘지화학 Foam injection molding, foam injection molding machine containing the same and method for preparing forming products using the same
KR102276124B1 (en) * 2018-11-02 2021-07-12 주식회사 엘지화학 Foam injection molding, foam injection molding machine containing the same and method for preparing forming products using the same
JP2023031250A (en) * 2021-08-23 2023-03-08 キング スチール マシネリー カンパニー リミテッド Molding apparatus and injection molding method using the same
JP7350387B2 (en) 2021-08-23 2023-09-26 キング スチール マシネリー カンパニー リミテッド Molding equipment and injection molding method using it

Also Published As

Publication number Publication date
CN1484576A (en) 2004-03-24
DE10197126T1 (en) 2003-11-20
US20040108612A1 (en) 2004-06-10
CN1273277C (en) 2006-09-06
US7077987B2 (en) 2006-07-18
JPWO2002053347A1 (en) 2004-04-30

Similar Documents

Publication Publication Date Title
WO2002053347A1 (en) Foam injection molding method
US10513052B2 (en) Method for manufacturing molded article and device for manufacturing molded article
JP4839728B2 (en) Thermoplastic resin multilayer molding method and multilayer molding apparatus
JP4735541B2 (en) Thermoplastic resin injection foam molding method
JP4569417B2 (en) Thermoplastic resin injection foam molding method
JP4945957B2 (en) Thermoplastic resin injection foam molding method and injection foam molding apparatus
US6884380B2 (en) Method of injection molding of thermoplastic resin
CA2719696C (en) Method of manufacture of a foamed core class "a" article
JP3716904B2 (en) Foam molding method and molding apparatus
JP2006281698A (en) Shaping method for foamed molded product, and shaping device for foamed molded product
JP2002192549A (en) Expanded injection moldings
WO1999043482A1 (en) Method of molding cross-linked foamed compositions
JP2001341152A (en) Injection molding machine
JP4951894B2 (en) Injection device
JP2001162649A (en) Method and apparatus for manufacturing sandwich foam
JP2001277281A (en) Method for molding foamed resin magnet, and foamed resin magnet
JP2003127191A (en) High cycle expansion/injection molding method
JPH10337755A (en) Molding machine, molding method, mold, and molding
JP3851439B2 (en) Manufacturing method of difficult-to-mold resin molded products
Di Maio et al. Molding processes
JPH11333876A (en) Molding method of resin molded article
JPH1142665A (en) Method and apparatus for reducing weight of fibercontaining resin
JP5277607B2 (en) Method for producing foam molded article
JP2003053766A (en) Continuous molding method for injection foamed molded object
JP2003039511A (en) Injection foam molding method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002554281

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10450417

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 018215645

Country of ref document: CN

RET De translation (de og part 6b)

Ref document number: 10197126

Country of ref document: DE

Date of ref document: 20031120

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10197126

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607