JP3851439B2 - Manufacturing method of difficult-to-mold resin molded products - Google Patents

Manufacturing method of difficult-to-mold resin molded products Download PDF

Info

Publication number
JP3851439B2
JP3851439B2 JP08888398A JP8888398A JP3851439B2 JP 3851439 B2 JP3851439 B2 JP 3851439B2 JP 08888398 A JP08888398 A JP 08888398A JP 8888398 A JP8888398 A JP 8888398A JP 3851439 B2 JP3851439 B2 JP 3851439B2
Authority
JP
Japan
Prior art keywords
difficult
resin
mold
mold resin
injection machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08888398A
Other languages
Japanese (ja)
Other versions
JPH11198163A (en
Inventor
浩次 原田
博之 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP08888398A priority Critical patent/JP3851439B2/en
Publication of JPH11198163A publication Critical patent/JPH11198163A/en
Application granted granted Critical
Publication of JP3851439B2 publication Critical patent/JP3851439B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、難成形樹脂成形品の製造方法に関し、より詳細には、表面が0.1g/10分以下のメルトインデックスを有する難成形樹脂からなり、内部に熱可塑性樹脂を充填された難成形樹脂成形品の製造方に関する。
【0002】
【従来の技術】
超高分子量ポリエチレン、フッ素置換ポリエチレン、超高重合度ポリ塩化ビニル、高塩化度ポリ塩化ビニル、ポリイミドなどは、耐衝撃性、耐摩耗性、耐熱性、自己潤滑性、耐薬品性などに示されるような特殊な樹脂性能を有している。しかし、これらの樹脂は、溶融粘度が極めて高く流動性が極めて低い、分解しやすいなどの理由により、成形が非常に難しい樹脂である。そのため、これらの樹脂は一般に難成形樹脂と呼ばれている。
【0003】
このような溶融粘度が高い難成形樹脂から成形体を製造する従来の方法として、以下のような方法が挙げられる:
(1) 粉末状の樹脂を圧縮成形、焼結成形、またはラム押出成形により、板状あるいはロッド状の成形体を作成し、この成形体を切削などの切り出し加工により所望の製品に賦形する方法、
(2) 特公昭57−30067号公報に記載されているように、わずかに開いた状態の金型キャビティ内に所定の剪断速度で溶融状態の樹脂をフラッシュ射出し、次いで金型キャビティ内に射出された固体形態の樹脂を所定の容積まで金型キャビティの容積を減少させて圧縮する方法、および
(3) 特公平4−47608号公報に記載されているように、難成形樹脂の粉末に、p−キシレン、テトラクロロエタンなどの有機溶媒を加えて得られる所定の濃度の難成形樹脂分散物または混合物を加熱溶融した後にフィルム状またはシート状に押出し、次いでこのフィルム状またはシート状の難成形樹脂成形体を加熱して有機溶媒を揮散させる方法。
【0004】
しかし、上記(1)または(2)の方法では、フラッシュ射出などのため、金型キャビティ内部に充填された難成形樹脂は固体状態であるので、このような樹脂を圧縮する必要がある。このため、中実かつ単層の成形体しか得られない。従って、所定の形状の成形体を得るためには、高価な難成形樹脂を大量に使う必要があり、そのためコストが高くなり、そして軽量化を図れないという欠点を有する。さらに、上記(2)の方法では、金型の注入口(図示せず)から射出された樹脂は、射出によるフラッシュのため固体状態になり、このような状態で金型キャビティ内に充填されるため、固体状態における樹脂の形状などによっては、金型キャビティ内に一様に充填されなかったり、あるいは一様に充填された場合であっても、固体状態の樹脂を圧縮させる必要があったため、図に示すように、平板状の成形体以外の成形体を製造することは困難であり、そのため、圧縮時の型締方向に対して平行な側壁を有するなどの複雑な形状に賦形することが極めて困難である。
【0005】
また、上記(3)の方法では、p−キシレン、テトラクロロエタンなどの有機溶媒を用いて難成形樹脂を溶解または膨潤させることにより、難成形樹脂の加工性を向上させて溶融成形が可能となる。これにより、内部に空間が形成された難成形樹脂成形品、または内部に他の材料を充填した多層構造の難成形樹脂成形品を製造できる可能性があるが、上記の有機溶媒により、製造された難成形樹脂成形品中にこの有機溶媒が残存し得る。これにより、難成形樹脂成形品が有する優れた性質(例えば、上記で説明したような、耐摩耗性、自己潤滑性など)が損なわれるおそれがあるという問題点がある。
【0006】
また、これらの優れた性質の低下を抑制するためには、難成形樹脂成形品から有機溶媒を除去する必要があり、そのためには設備および手間を必要とするという問題点がある。また、環境面を考慮した場合には、除去した有機溶媒を回収することが好ましいが、この場合にも、除去の場合と同様に、設備を必要とし、手間が掛かるという問題点がある。
【0007】
また、近年では二酸化炭素などの非反応性ガスを難成形樹脂に溶解して、難成形樹脂を溶融状態にする方法が行われているが、このような方法に用いられる装置として、例えば、特開平8−85128号公報に記載されている熱可塑性樹脂発泡成形体の製造装置が挙げられる。この装置においては、射出機の上部に設けられたホッパとその射出機との間に耐圧チャンバを設け、さらに耐圧チャンバとホッパおよび射出機との間にそれぞれ耐圧バルブを設けている。まず、耐圧チャンバとホッパとの間に設けられた耐圧バルブを開け、ホッパから耐圧チャンバ内に樹脂を供給する。次いで樹脂は、耐圧チャンバ内で撹拌されながら二酸化炭素を溶解される。最後に、耐圧チャンバと射出機との間に設けられた耐圧バルブを開けて、非反応性ガスを溶解された樹脂を射出機に供給する。
【0008】
しかし、この装置においては、耐圧チャンバ内で二酸化炭素を樹脂に溶解するためには時間がかかるだけでなく、非反応性ガスを溶解された樹脂が射出機に供給される際には、樹脂は耐圧チャンバから自重により落下して射出機に供給されるため、樹脂が射出機に供給されるためにも時間がかかり、生産性が低いという
欠点を有する。
【0009】
さらに、非反応性ガスを溶解された樹脂が射出機に供給される間には、耐圧チャンバへの二酸化炭素の供給を一旦停止する必要がある場合がある。このため、二酸化炭素を耐圧チャンバへ間欠的に供給する必要があり、そのためには二酸化炭素を間欠的に供給する装置が必要となるが、このような装置は非常に高価であるだけでなく、二酸化炭素を間欠的に供給すると、樹脂に対する二酸化炭素の溶解量が一定にならず、統一された品質の難成形樹脂成形体が作製できなくなる場合がある。
【0010】
一方、非反応性ガスを溶解された樹脂が射出機に供給される間にも耐圧チャンバへ二酸化炭素を供給することを続けると、二酸化炭素が射出機などに漏洩するという問題がある。
【0011】
【発明が解決しようとする課題】
本発明は上記課題を解決するためになされ、その目的とするところは、有機溶媒などを用いずに、そしてコストを抑え、多くの難成形樹脂を使用せずに同等の物性を維持することのできる、内部に熱可塑性樹脂を充填された難成形樹脂成形品の製造方法を提供することにある。
【0012】
【課題を解決するための手段】
(請求項1のリクレーム)
上記課題を解決するために、表面が0.1g/10分以下のMIを有する難成形樹脂からなり、内部に熱可塑性樹脂が充填されている難成形樹脂成形品を製造する、上記課題を解決する他の手段としての本発明に係る方法は、メルトインデックスが0.1g/10分以下の難成形樹脂に、常温・常圧で気体状態の非反応性ガスを溶解させて溶融混練した難成形樹脂溶融組成物を射出機の計量部の前方に充填し、次に溶融状態の熱可塑性樹脂を射出機から計量部の後方に充填し、さらに射出機から金型キャビティ内に難成形樹脂溶融組成物および熱可塑性樹脂を順に圧入する構成とした。
【0013】
(請求項2のリクレーム)
また、上記構成において、難成形樹脂の充填と熱可塑性樹脂の充填との順序を逆にしても良い。すなわち、表面が0.1g/10分以下のMIを有する難成形樹脂からなり、内部に熱可塑性樹脂が充填されている難成形樹脂成形品を製造する、上記課題を解決するさらに他の手段としての本発明に係る方法は、溶融状態の熱可塑性樹脂を射出機の計量部に充填し、次にメルトインデックスが0.1g/10分以下の難成形樹脂に、常温・常圧で気体状態の非反応性ガスを溶解させて溶融混練した難成形樹脂溶融組成物を射出機の計量部の前方に充填し、さらに射出機から金型キャビティ内に難成形樹脂溶融組成物および熱可塑性樹脂を順に圧入する構成としてもよい。
【0014】
(各請求項に共通する事項)
(難成形樹脂について)
MIが0.1g/10分以下である難成形樹脂としては、例えば、粘度平均分子量100万以上の超高分子量ポリエチレン、フッ素置換ポリエチレン、超高重合度ポリ塩化ビニル、高塩化度ポリ塩化ビニル、およびポリイミドが挙げられる。なお、本明細書において用いられる用語「フッ素置換ポリエチレン」とは、以下の化学式で表される重合体を指し、このような重合体としては例えば、ポリテトラフルオロエチレン(Xは全てF)などが挙げられる:
【0015】
【化1】
X X
| |
−(−C−C−)n
| |
X X
(ここで、Xは水素又はフッ素である。)

【0016】
MIが0.1g/10分を超える樹脂は、通常の成形用樹脂と比較して溶融粘度が高いとはいえ、通常の成形技術を用いて成形できるので、本明細書における難成形樹脂とはいえない。なお、以下、特に明確に指示しない限り、難成形樹脂とは、MIが0.1g/10分以下の樹脂を指す。
【0017】
(難成形樹脂に非反応性ガスを溶解させて溶融状態とする工程について)
難成形樹脂に常温・常圧で気体状態の非反応性ガスを溶解させて溶融混練することにより難成形樹脂を難成形樹脂溶融組成物とする方法としては特に限定されないが、例えば、スクリュー式押出機内部で、常温・常圧で気体状態の非反応性ガスを可塑化剤として用いて難成形樹脂に溶解させて難成形樹脂を易成形状態にし、次いでこのような状態の難成形樹脂を溶融混練して難成形樹脂を溶融状態とする方法が挙げられる。
【0018】
難成形樹脂に常温・常圧で気体状態の非反応性ガスを溶解させる方法としては、
(1) 熱などにより溶融状態とされた難成形樹脂に非反応性ガスを溶解させる方法、および
(2) 非反応性ガスを固体状態の難成形樹脂に溶解させ、樹脂を膨潤させる方法、
が挙げられる。難成形樹脂に対する樹脂の溶解性などの観点から、高圧下で非反応性ガスを溶解させることが好ましい。また、上記のいずれの方法を用いてもよく、両者を併用してもよい。
【0019】
熱などにより溶融状態とされた難成形樹脂に非反応性ガスを溶解させる方法(上記方法(1))としては、例えば、ベントタイプスクリューを用いて、熱などにより溶融状態とされた難成形樹脂が充填されたシリンダーの途中からベント部分に非反応性ガスを混入する方法が挙げられる。
【0020】
非反応性ガスを固体状態の難成形樹脂に溶解させて樹脂を膨潤させる方法(上記方法(2))としては、
(2−A) 予め高圧容器中などでペレットまたはパウダー状態の難成形樹脂に非反応性ガスを溶解させて膨潤させる方法、
および
(2−B) スクリュー式押出機内のホッパから固体輸送部において非反応性ガスを難成形樹脂中に溶解させて膨潤させる方法、
が挙げられる。
【0021】
上記(2−A)の方法の場合、非反応性ガスを溶解させた難成形樹脂を押出機に供給する際には、樹脂に溶解した非反応性ガスが拡散によって樹脂の外へ抜けてしまうことを抑制するために、できるだけ速やかにこの供給を行うことが好ましい。
【0022】
上記(2−B)の方法の場合には、非反応性ガスがスクリュー式押出機外に揮散しないように、スクリュー駆動軸およびホッパを耐圧シール構造とすることが好ましい。
【0023】
本明細書において用いられる用語「非反応性ガス」とは、常温・常圧で気体状態の有機または無機物質であって、難成形樹脂と反応を起こさず、さらにこの樹脂を劣化させるなどの悪影響を樹脂に与えないガスを指す。このようなガスは、上記の条件を満たせば特に限定されず、例えば、無機ガス、有機ガス(例えば、フロンガス、低分子量の炭化水素ガス)などが挙げられる。環境に与える悪影響が低く、そしてガスの回収を必要としない点で、無機ガスが好ましく、難成形樹脂に対する溶解度が高く、樹脂の溶融粘度の低下が大きい(すなわち、得られる難成形樹脂溶融組成物の粘度が低い)という観点から、二酸化炭素が好ましい。なお、このような非反応性ガスは、単独で用いられてもよく、あるいは2種類以上の非反応性ガスを併用してもよい。
【0024】
非反応性ガスとして二酸化炭素を用いる場合には、難成形樹脂に対する二酸化炭素の溶解量は、1重量%以上30重量%以下の範囲が好ましく、3重量%以上20重量%以下の範囲がより好ましい。
【0025】
難成形樹脂に対する二酸化炭素の溶解量が1重量%未満である場合には、難成形樹脂の粘度が充分に低下せず、流動性に欠け、難成形樹脂を難成形樹脂溶融組成物とすることができない場合がある。一方、難成形樹脂に対する二酸化炭素の溶解量を30重量%を超える量にしようとする場合には、大がかりな設備を用いて溶解時の圧力を極端に高くする必要がある場合があり、不適切である。
【0026】
非反応性ガスとして二酸化炭素が用いられる場合には、難成形樹脂に対する二酸化炭素の溶解量を上記の範囲内とするためには、二酸化炭素の圧力は約2Kg/cm2以上約500Kg/cm2以下(すなわち、約0.196MPa以上約49MPa以下)であることが好ましく、約6Kg/cm2以上約350Kg/cm2以下(すなわち、約0.588MPa以上約34.3MPa以下)であることがより好ましい。
【0027】
ガスは、ガスボンベから直接供給してもよく、プランジャーポンプなどを用いて加圧供給しても良い。なお、難成形樹脂の可塑化、およびその粘度の低下は、樹脂の分子量、ガスの種類、樹脂に対するガスの溶解量などに依存する。
【0028】
(溶融状態の難成形樹脂を射出機の計量部に充填する工程について)
次いでこのように非反応性ガスを溶解され、そして溶融混練されることにより得られた難成形樹脂溶融組成物を、射出機の計量部に充填する。計量部に充填されるのであれば、計量部の後側(すなわち、スクリュー側)、計量部の側面側、または計量部の前側のいずれから難成形樹脂溶融組成物を充填しても良いが、内部に熱可塑性樹脂が充填されている難成形樹脂成形品を製造する場合には熱可塑性樹脂がスクリュー側から供給され得るので、難成形樹脂溶融組成物と熱可塑性樹脂とが混合しないようにすること、工程を簡略化することなどを考慮すれば、計量部の側面側あるいは前側から充填されることが好ましい。
【0029】
難成形樹脂溶融組成物が計量部の先端側(すなわち、前側)から充填される場合には、難成形樹脂溶融組成物が押出機または射出機から漏れ出さないよう、また難燃性樹脂溶融組成物を空気に触れさせないように、射出機の計量部の先端にバルブを設けておくことが好ましい。後に説明するが、難成形樹脂溶融組成物を射出機から金型キャビティに圧入する場合には、押出機と射出機とを分離する場合があるので、好ましくは、押出機の先端部および射出機の先端部にそれぞれバルブを設けておくことが好ましい。
【0030】
(クレーム3、プランジャー式押出機について)
難成形樹脂溶融組成物を射出機の計量部に充填する際には、スクリュー式押出機と射出機との間に、プランジャー式押出機を設けることが好ましい。すなわち、スクリュー式押出機から押し出される難成形樹脂溶融組成物を、プランジャー式押出機内に一旦蓄積し、次いでプランジャー式押出機内に備えられているプランジャーにより、難成形樹脂溶融組成物を射出機の計量部に充填することが好ましい。後の他の発明に詳細に説明するが、このようなプランジャー式押出機が設けられることにより、成形サイクルの短縮化およびガス溶解量の安定化を図ることができる。なお、本明細書において用いられる用語「押出機」は、特に限定しない限り、スクリュー式押出機およびプランジャー式押出機を包含する。
【0031】
(クレーム1および2について)
表面が難成形樹脂からなり内部に熱可塑性樹脂が充填されている難成形樹脂成形品を製造する方法においては、難成形樹脂溶融組成物を射出機の計量部の前部に充填した後、次いで溶融状態の熱可塑性樹脂を射出機から計量部の後方に充填し、そして射出機から金型内に難成形樹脂溶融組成物および熱可塑性樹脂を順に圧入する。なお、難成形樹脂溶融組成物の充填と熱可塑性樹脂の充填との順序を逆にしても良い。すなわち、上記方法において、溶融状態の熱可塑性樹脂を射出機の計量部に充填し、次いで難成形樹脂溶融組成物を射出機の計量部の前部に充填し、そして射出機から金型内に難成形樹脂溶融組成物および熱可塑性樹脂の順に圧入してもよい。
【0032】
金型キャビティ内に難成形樹脂溶融組成物を圧入する際には、金型キャビティ内に圧入された難成形樹脂溶融組成物が発泡することを防止するために、カウンタープレッシャー法により、高圧ガスなどを用いて予め金型キャビティ内の圧力を高圧にし、そのような高圧の圧力が保たれた金型キャビティ内に難成形樹脂溶融組成物を圧入することが好ましい。このような高圧の金型キャビティ内の圧力としては、約0.196MPa以上約49MPa以下であることが好ましく、約0.588MPa以上約34.3MPa以下であることがより好ましい。予め金型キャビティ内の圧力を高圧にするために用いられる高圧ガスなどとしては、圧入される樹脂に悪影響を与えない限り特に限定されず、例えば、無機ガス、有機ガス(例えば、フロンガス、低分子量の炭化水素ガス)などが挙げられる。環境に与える悪影響が低く、そしてガスの回収を必要としない点で、無機ガスが好ましく、難成形樹脂および難成形樹脂溶融組成物に対する溶解度が低く、低コストであるという観点から、窒素がより好ましい。なお、このようなガスは、単独で用いられてもよく、あるいは2種類以上のガスを併用してもよい。
【0033】
前部に難成形樹脂溶融組成物が充填された射出機の計量部の後部に溶融状態の熱可塑性樹脂を充填する方法としては特に限定されず、射出機後部のホッパから熱可塑性樹脂を供給し、次いで射出機内部のスクリューによりこの熱可塑性樹脂を溶融混練し、熱可塑性樹脂を溶融状態にして計量部の後方に充填する周知の方法が挙げられる。また、難成形樹脂溶融組成物の充填と熱可塑性樹脂の充填との順序を逆にした場合においても、上記と同様の方法で熱可塑性樹脂を計量部に充填することができる。
【0034】
上記熱可塑性樹脂としては特に限定されず、このような熱可塑性樹脂としては、例えば、オレフィン系樹脂、ポリエステル樹脂などが挙げられる。難成形樹脂が粘度平均分子量100万以上の超高分子量ポリエチレンまたはフッ素置換ポリエチレンの場合には、ポリエチレン(低密度、中密度、および高密度のいずれをも含む)、ポリプロピレンなどのオレフィン系樹脂が好ましい。なぜなら、上記の難成形樹脂からなる表面に対して良好な接着性を有するためである。
【0035】
次いで、射出機から金型キャビティ内に難成形樹脂溶融組成物および熱可塑性樹脂を順に圧入する。また、上記と同様に、金型キャビティ内に圧入された組成物および樹脂の発泡を防止するために予め金型キャビティ内の圧力を高圧に保つことが好ましい。このようにして、表面が0.1g/10分以下のMIを有する難成形樹脂からなり、内部に熱可塑性樹脂が充填されている難成形樹脂成形品が製造される。なお、金型キャビティ内に難成形樹脂溶融組成物および熱可塑性樹脂を順に圧入した後、上記と同様な方法で空間形成ガスを樹脂に注入することにより、表面が0.1g/10分以下のMIを有する難成形樹脂からなり、内部に熱可塑性樹脂が充填され、さらに熱可塑性樹脂内部に空間が形成されている難成形樹脂成形品が製造され得るが、このような難成形樹脂成形品についても本願発明の製造方法に包含される。
【0036】
【発明の実施の形態】
以下、本発明を図面と共に詳細に説明する。
【0037】
図1および図2は、本発明に係る方法を実施するための装置を示す図である。この図に示されるように、この製造方法は、以下のようにして行われる。まず、難成形樹脂を難成形樹脂成形体製造装置(1)の高圧ホッパ(7)に投入し、この高圧ホッパ(7)に加圧ポンプ(8)を介して接続されている開閉バルブ(9)を開けて、ガスボンベ(10)から加圧ポンプ(8)により加圧された非反応性ガスを高圧ホッパ(7)に供給して、高圧状態の非反応性ガスを難成形樹脂に溶解させる。
【0038】
次に、高圧ホッパ(7)内の非反応性ガスを溶解された難成形樹脂を、スクリュー式押出機(3)のシリンダー内に供給して溶融混練することにより難成形樹脂溶融組成物とし、次いで先端にバルブ(32)が設けられ、他端がスクリュー式押出機(3)の先端に接続された樹脂輸送管(31)を介して、先端にバルブ(54)が設けられた射出機(5)の計量部(51)にこの難成形樹脂溶融組成物を射出機(5)の計量部(51)の先端から充填する。この充填時においては、射出機(5)の計量部(51)に充填された難成形樹脂溶融組成物が発泡することを防止するという観点から、計量部(51)に圧力を保持しておくために、スクリュー(52)に対して後部から図の左(金型)方向に圧力をかけつつ、難成形樹脂溶融組成物が充填されると図の右方向に押し戻されるようにしておく。このようにして、所定の位置まで射出機(5)内部のスクリュー(52)が後退するまで、射出機(5)の計量部(51)に難成形樹脂溶融組成物を充填する。なお、この充填の際には、射出機(5)に対しても、図の左方向に力をかけ、射出機(5)自体が後退しないようにする。
【0039】
次いで、所定の位置まで射出機(5)内部のスクリュー(52)が後退すると、スクリュー式押出機(3)の運転を中止し、難成形樹脂溶融組成物を射出機(5)の計量部(51)に供給することを停止する。そして、バルブ(32)(54)を閉め、図2のように、射出機(5)自体が後退することを防止するために射出機(5)に対して図の左方向にかけていた力を解放し、射出機(5)自体を後退させる。これによりスクリュー式押出機(3)と射出機(5)との連結を解除し、次いで、スクリュー式押出機(3)の下部に備えられたモーター(図示せず)によりスクリュー式押出機(3)を後退させる。
【0040
次に、射出機(5)のホッパ(53)から一般の熱可塑性樹脂を可塑化混練し、射出機(5)内部のスクリュー(52)をさらに所定の位置まで後退させながら射出機(5)の計量部(51)に溶融状態の熱可塑性樹脂を射出機の後方から充填する。このようにして、射出機(5)の計量部(51)の前部に難成形樹脂溶融組成物を、射出機(5)の計量部(51)の後部に溶融状態の熱可塑性樹脂を充填する。
【0041】
続いて、ガスボンベ(11)から供給される高圧ガスを加圧ポンプ(12)を用いて加圧し、次いでこの加圧された高圧ガスを、開閉バルブ(13)を介して金型(6)内に供給し、金型キャビティ(61)内の圧力を所定の圧力にする。金型キャビティ(61)内の圧力が所定の圧力になった後、開閉バルブ(13)を閉じ、高圧ガスの供給を停止する。
【0042】
次いで、射出機(5)自体を図の左方向に前進させ、射出機(5)と金型(6)とを連結し、バルブ(54)を開けた後に射出機(5)内部のスクリュー(52)を前進させて計量部(51)に充填された難成形樹脂溶融組成物および熱可塑性樹脂を順に金型キャビティ(61)内に圧入する。なお、これらの組成物および樹脂を金型キャビティ(61)内に圧入する際には、金型(6)に設けられた圧力調整バルブ(65)を用いて、金型キャビティ(61)内部の圧力を上記の所定の圧力に保つ。
【0043】
ここで、順に金型キャビティ(61)内に圧入される難成形樹脂溶融組成物および熱可塑性樹脂の状態を図を用いて詳細に説明する。図においては、図の右側が射出機(5)方向、図の左側が金型末端(62)方向である。圧入される難成形樹脂溶融組成物および熱可塑性樹脂は溶融状態であり、粘度が低下しているだけでなく、高圧の非反応性ガスを溶解されているため、金型キャビティ(61)内では噴流流れを示しながら金型キャビティ(61)内に圧入される。この噴流流れが生じている際に、難成形樹脂溶融組成物から少なくとも一部の非反応性ガスが放出される。
【0044】
(a)に示すように、まず、先に圧入された難成形樹脂溶融組成物の一部が金型側壁(63)に接する。すると、難成形樹脂溶融組成物が硬化しはじめる温度より金型側壁(63)の温度の方が低いので、この金型側壁(63)近傍の難成形樹脂溶融組成物は硬化し、固化層(64)を形成する。次いで難成形樹脂溶融組成物は次々に図の左方向に圧入されてゆき、それと共にその一部が金型側壁(63)に接していくので固化層(64)も金型側壁(63)の近傍で図の左方向に形成されてゆく。図(b)に示すように、ある程度難成形樹脂溶融組成物が図の左方向に圧入され、それと共に固化層(64)がある程度形成された後に、熱可塑性樹脂が金型キャビティ(61)内に圧入される。後に圧入される熱可塑性樹脂は、先に圧入され、まだ金型側壁(63)に接していない難成形樹脂溶融組成物を図の左方向に押すようにして次々に金型キャビティ(61)内に圧入され、最終的に、図(c)のように、金型側壁(63)の近傍には難成形樹脂溶融組成物が固化層(64)として形成され、そしてその内部には熱可塑性樹脂が充填される。
【0045】
難成形樹脂溶融組成物および熱可塑性樹脂を金型キャビティ(61)内に圧入し、難成形樹脂溶融組成物の温度が所定の温度になるまで冷却した後、圧力調整バルブ(65)を開放し、脱圧することによって、図5に示されるように、表面(21)が上記のような難成形樹脂であり、そして内部(22)に熱可塑性樹脂が充填された多層形の難成形樹脂成形品(2)が作製される。なお、難成形樹脂溶融組成物が冷却される際にも、その内部から非反応性ガスが放出される。
【0046】
本発明にかかる製造方法は、上記の構成を有するため、以下のような効果を有する。まず、非反応性ガスを溶解され、溶融混練された難成形樹脂溶融組成物を射出機(5)の計量部の先端から充填し、次いで溶融状態の熱可塑性樹脂を射出機の後方から射出機(5)の計量部(51)に充填することによって、難成形樹脂溶融組成物と熱可塑性樹脂とが混合されずに射出機(5)の計量部(51)に充填することが可能になる。
【0047】
また、このようにして射出機(5)の計量部(51)に難成形樹脂溶融組成物と熱可塑性樹脂とを充填することにより、図に示したように難成形樹脂溶融組成物、熱可塑性樹脂の順に樹脂が圧入されるため、図5に示すように、表面(21)が難成形樹脂からなり、内部(22)に熱可塑性樹脂が充填されている難成形樹脂成形品(2)を製造することができる。このような難成形樹脂成形品(2)は、全体が難成形樹脂からなり中実である従来の難成形樹脂成形品と比較して、大きさは同じであるが、内部(22)に難成形樹脂より密度の低い熱可塑性樹脂が充填されているため軽量であり、多くの難成形樹脂を必要としないのでコストダウンが図れる。また、表面(21)が難成形樹脂であるため、難成形樹脂成形品(2)においても難成形樹脂が有する耐衝撃性などの優れた性質を有する。また、強度に関しても、内部(22)に熱可塑性樹脂が充填されているため、上記のような従来の難成形樹脂成形品とほぼ同様の強度を有する難成形樹脂成形品(2)が提供される。むろん、成形品の剛性や外観のニーズに応じて、逆に表面が一般の熱可塑性樹脂で内部が難成形樹脂の成形品も提供することも可能である。
【0048】
また、本発明に係る方法では、高圧の非反応性ガスを溶解されるために金型キャビティ(61)内では噴流流れ(いわゆる、「ファウンテンフロー」)を示しながら溶融状態で金型キャビティ(61)内に圧入される。これにより、難成形樹脂溶融組成物はキャビティ内に一様に充填され、従来の成形方法のように、難成形樹脂を圧縮させる必要がない。従って、圧縮時の型締方向に対して平行な側壁を有するなどの複雑な形状の難成形樹脂成形品を作製することもできる。
【0049】
また、難成形樹脂溶融組成物の充填時においては、難成形樹脂溶融組成物が充填されるとともにスクリュー(52)が図の右方向に押し戻されるようにしておくことにより、射出機(5)の計量部(51)に充填される難成形樹脂溶融組成物の量を計量することができる。次いで、射出機(5)内部のスクリュー(52)をさらに所定の位置まで後退させながら射出機(5)の計量部(51)に溶融状態の熱可塑性樹脂を充填することにより、充填される難成形樹脂溶融組成物の量および溶融状態の熱可塑性樹脂の量をそれぞれ調整することができる。従って、これらの樹脂の量を上記のように調節することができるので、製造される難成形樹脂成形品(2)の難成形樹脂および熱可塑性樹脂の厚みをそれぞれ調整することができる。
【0050】
(他の発明の実施の形態)
図3および図4は、本発明に係る他の方法を実施するための装置を示す図である。この図に示されるように、この製造方法は、以下のようにして行われる。まず、難成形樹脂を、図3に示す難成形樹脂成形体製造装置(1)の高圧ホッパ(7)に投入する。次いで、上記の発明の実施の形態と同様に、ガスボンベ(10)から非反応性ガスを高圧ホッパ(7)に供給して、高圧ホッパ(7)内の非反応性ガスを所定の圧力にして難成形樹脂に非反応性ガスを溶解させる。
【0051】
次に、高圧ホッパ(7)内の非反応性ガスを溶解された難成形樹脂を、所定の温度に設定されたスクリュー式押出機(3)のシリンダー内に供給して溶融混練することにより難成形樹脂溶融組成物とし、この難成形樹脂溶融組成物をプランジャー式押出機(4)の蓄積部(41)にその側面側から蓄積する。なお、この場合には、難成形樹脂溶融組成物がプランジャー式押出機(4)に設けられたプランジャー(42)を押し戻しながら、蓄積部(41)に蓄積される。
【0052】
蓄積が完了し、射出機(5)が所定の位置まで戻り、プランジャー押出機(4)と射出機(5)とが接続されると(図3の状態)、プランジャー式押出機(4)の先端に設けられたバルブ(43)と射出機(5)の先端に設けられたバルブ(54)とを開けて、プランジャー式押出機(4)のプランジャー(42)を前進させながら、難成形樹脂溶融組成物を射出機(5)の計量部(51)に充填する。図3では、難成形樹脂溶融組成物を射出機(5)の計量部(51)にその前方から充填するようになっているが、計量部(51)の側面側から充填しても良く、バルブ(43)および(54)を統合して三方向バルブ(図示せず)とし、難成形樹脂溶融組成物を射出機(5)の計量部(51)にその前方から充填しても良い。このように難成形樹脂溶融組成物が射出機(5)の計量部(51)に充填される際の充填方向は特に限定されない。この点は先の実施の形態でも同様である。なお、三方向バルブ(図示せず)が用いられる場合には、スクリュー式押出機(3)、プランジャー式押出機(4)、および射出機(5)は固定された状態でも用いられ得る。上記の発明の実施の形態と同様に、この充填時においても、難成形樹脂溶融組成物が充填されるとともに図の右方向に押し戻されるようにしておきながらも、射出機(5)内部のスクリュー(52)に、その後部から図の左方向に圧力をかけて難成形樹脂の発泡を防ぐ。これにより、所定の位置まで射出機(5)内部のスクリュー(52)が後退するまで、射出機(5)の計量部(51)に難成形樹脂溶融組成物を充填する。
【0053】
次いで、所定の位置まで射出機(5)内部のスクリュー(52)が後退すると、プランジャー式押出機(4)のプランジャー(42)の前進を中止し、バルブ(43)および(54)を閉め、難成形樹脂溶融組成物を射出機(5)の計量部(51)内に供給することを停止する。
そして、図4のように、射出機(5)自体が後退することを防止するために射出機(5)に対して図の左方向にかけていた力を開放し、射出機(5)自体を後退させる。これにより、プランジャー式押出機(4)と射出機(5)との連結を解除し、次いで、スクリュー式押出機(3)およびプランジャー式押出機(4)の下部に設けられたモーター(図示せず)によりこれらの押出機(3)(4)を後退させる。
【0054】
続いて、上記の発明の実施の形態と同様に、ガスボンベ(11)から供給される高圧ガスを加圧ポンプ(12)を用いて加圧し、次いでこの加圧された窒素を、開閉バルブ(13)を介して供給し、金型キャビティ(61)内部の圧力が所定の圧力になった時点で開閉バルブ(13)を閉じ、高圧ガスの供給を停止する。
【0055】
以下、上記の発明の実施の形態と同様に、射出機(5)の計量部(51)に溶融状態の熱可塑性樹脂を射出機の後方から充填する。このようにして、射出機(5)の計量部(51)の前部に難成形樹脂溶融組成物を、射出機(5)の計量部(51)の後部に溶融状態の熱可塑性樹脂を充填する。
次いで、難成形樹脂溶融組成物および熱可塑性樹脂を金型キャビティ(61)内に圧入し、難成形樹脂溶融組成物の温度が所定の温度になるまで冷却した後、圧力調整バルブ(65)を開放し、脱圧することによって、図5に示されるように、表面(21)が上記のような難成形樹脂であり、そして内部(22)に熱可塑性樹脂が充填された多層形の難成形樹脂成形品(2)が作製される。
【0056】
本発明にかかる製造方法は、上記の構成を有するため、上記の発明の実施の形態で詳述した効果だけでなく、難成形樹脂溶融組成物を、一旦プランジャー式押出機(4)の蓄積部(41)に蓄積することによって予め難成形樹脂溶融組成物をある程度計量することにより、射出機(5)における計量作業が軽減される。これによっても、成形プロセスの短縮化が図れる。
【0057】
【実施例】
本発明を以下の実施例を用いてさらに詳細に説明するが、以下の実施例は例示の目的でのみ用いられ、限定の目的で用いられてはならない。
【0058】
(実施例1)
難成形樹脂として、超高分子量ポリエチレン樹脂(Hoechst社製、商品名「HostalenGUR4120」、平均分子量:約440万、非常に高粘度のためメルトインデックスの測定は不能)を、図1に示す難成形樹脂成形体製造装置(1)の高圧ホッパ(7)に投入した。次いで、この高圧ホッパ(7)に加圧ポンプ(8)を介して接続されている開閉バルブ(9)を開けて、ガスボンベ(10)から加圧ポンプ(8)により加圧された二酸化炭素を高圧ホッパ(7)に供給した。高圧ホッパ(7)内の二酸化炭素の圧力を約15.0MPa、温度を約60℃で約1時間保持し、超高分子量ポリエチレン樹脂に二酸化炭素を溶解させた。
【0059】
次に、高圧ホッパ(7)内の二酸化炭素を溶解された超高分子量ポリエチレン樹脂を、約180℃に設定されたスクリュー式押出機(3)のシリンダー内に供給して溶融混練することにより超高分子量ポリエチレン樹脂溶融組成物とし、次いで先端にバルブ(32)が設けられ、他端がスクリュー式押出機(3)の先端に接続された樹脂輸送管(31)を介して、先端にバルブ(54)が設けられた射出機(5)の計量部(51)にこの超高分子量ポリエチレン樹脂溶融組成物を射出機(5)の計量部の先端から充填した。この場合には、当然ながら、バルブ(32)(54)はいずれも開状態であった。なお、この充填時においては、超高分子量ポリエチレン樹脂溶融組成物の発泡を防ぐために、スクリュー(52)に対して後部から超高分子量ポリエチレン樹脂溶融組成物の発泡を防ぐことができる程度の圧力(約50Kg/cm2〜約300Kg/cm2)をその後ろ側からかけて計量部(51)の圧力を保持しつつも、超高分子量ポリエチレン樹脂溶融組成物が充填されるとともに図の右方向に押し戻されるようにしておいた。このようにして、所定の位置まで射出機(5)内部のスクリュー(52)が後退するまで、射出機(5)の計量部(51)に超高分子量ポリエチレン樹脂溶融組成物を充填した。なお、この充填の際には、射出機(5)に対して、図の左方向に約20〜30kN(キロニュートン)の力をかけ、射出機(5)自体が後退しないようにした。
【0060】
次いで、所定の位置まで射出機(5)内部のスクリュー(52)が後退すると、スクリュー式押出機(3)の運転を中止し、超高分子量ポリエチレン樹脂溶融組成物を射出機(5)の計量部(51)に供給することを停止した。次に、バルブ(32)(54)を閉め、図2のように、射出機(5)自体が後退することを防止するために射出機(5)に対して図の左方向にかけていた力を解放し、射出機(5)自体を後退させた。これによりスクリュー式押出機(3)と射出機(5)との連結が解除され、次いで、スクリュー式押出機(3)の下部に備えられたモーター(図示せず)によりスクリュー式押出機(3)を後退させた。
【0061】
次に、射出機(5)のホッパ(53)から高密度ポリエチレン樹脂(旭化成工業株式会社製、商品名「サンテック−HD」)を可塑化混練し、射出機(5)内部のスクリュー(52)をさらに所定の位置まで後退させながら射出機(5)の計量部(51)に溶融状態の高密度ポリエチレン樹脂を射出機の後方から充填した。このようにして、射出機(5)の計量部(51)の前部に超高分子量ポリエチレン樹脂溶融組成物を、射出機(5)の計量部(51)の後部に溶融状態の高密度ポリエチレン樹脂を充填した。
【0062】
続いて、ガスボンベ(11)から供給される窒素を加圧ポンプ(12)を用いて加圧し、次いでこの加圧された窒素を、開閉バルブ(13)を介して、金型キャビティ(61)内部の圧力が約16.0MPaになるまで金型(6)内に供給した。金型キャビティ(61)内部の圧力が約16.0MPaになった時点で開閉バルブ(13)を閉じ、窒素の供給を停止した。
【0063】
次いで射出機(5)自体を図の左方向に前進させ、射出機(5)と金型(6)とを連結し、バルブ(54)を開けた後に射出機(5)内部のスクリュー(52)を前進させて計量部(51)に充填された超高分子量ポリエチレン樹脂溶融組成物および溶融状態の高密度ポリエチレン樹脂を順に金型キャビティ(61)内に圧入した。なお、これらの組成物および樹脂を金型キャビティ(61)内に圧入する際には、金型(6)に設けられた圧力調整バルブ(65)を用いて、金型キャビティ(61)内部の圧力を約16.0MPaに保った。
【0064】
超高分子量ポリエチレン樹脂溶融組成物および溶融状態の高密度ポリエチレン樹脂を金型キャビティ(61)内に圧入し、超高分子量ポリエチレン樹脂溶融組成物の温度が約110℃になるまで冷却した後、圧力調整バルブ(65)を開放し、脱圧することによって、図5に示されるように、表面(21)が上記のような難成形樹脂である超高分子量ポリエチレン樹脂であり、そして内部(22)に高密度ポリエチレン樹脂が充填された多層形の難成形樹脂成形品(2)を作製した。このようにして作製された多層形の難成形樹脂成形品(2)を切断したところ、超高分子量ポリエチレン樹脂の厚みは約1.1mmであり、高密度ポリエチレン樹脂の厚みは約1.9mmであった。
【0065】
【発明の効果】
本発明により、従来の難成形樹脂成形品と比較して、同じ大きさで耐衝撃性などを保持したまま、軽量かつ、多くの難成形樹脂を必要とせず、コストダウンが図れる難成形樹脂成形品を製造する方法、およびそのような難成形樹脂成形品、ならびに難成形樹脂成形品製造装置が提供される。
【図面の簡単な説明】
【図1】 図1は、難成形樹脂樹脂溶融組成物が射出機(5)の計量部(51)に蓄積されている状態における、本発明に係る難成形樹脂成形体製造装置(1)を示す図である。
【図2】 図2は、図1の装置において、スクリュー式押出機(3)から射出機(5)の計量部(51)に難成形樹脂樹脂溶融組成物を充填した後の難成形樹脂成形体製造装置(1)を示す図である。
【図3】 図3は、プランジャー式押出機(4)を用い、難成形樹脂樹脂溶融組成物がプランジャー式押出機(4)の蓄積部(41)に蓄積されている状態における、本発明に係る難成形樹脂成形体製造装置(1)示す図である。
【図4】 図4は、図3の装置において、スクリュー式押出機(3)から射出機(5)の計量部(51)に難成形樹脂溶融組成物を充填した後の難成形樹脂成形体製造装置(1)を示す図である。
【図5】 図5は、表面(21)が難成形樹脂からなり、内部(22)に熱可塑性樹脂空間が充填されている、本発明に係る難成形樹脂成形品(2)を示す図である。
【図6】 図6は、金型キャビティ(61)内に順に圧入される難成形樹脂および熱可塑性樹脂の状態を詳細に説明する図である。
【図7】 図7は、難成形樹脂を成形する従来の方法を示す図である。
【符号の説明】
1…難成形樹脂成形体製造装置
2…難成形樹脂成形品
21…表面 22…内部
3…スクリュー式押出機
31…樹脂輸送管 32…バルブ
4…プランジャー式押出機
41…蓄積部 42…プランジャー 43…バルブ
5…射出機
51…計量部 52…スクリュー 53…ホッパ 54…バルブ
6 金型
61…金型キャビティ 62…金型末端 63…金型側壁
64…固化層 65…圧力調整バルブ
7…高圧ホッパ
8…加圧ポンプ
9…開閉バルブ
10…ガスボンベ
11…ガスボンベ
12…加圧ポンプ
13…開閉バルブ
[0001]
BACKGROUND OF THE INVENTION
  The present invention provides a method for producing a difficult-to-mold resin molded product.To the lawMore specifically, the surface is made of a difficult-to-mold resin having a melt index of 0.1 g / 10 min or less.PartManufacturing method of difficult-to-mold resin molded products filled with thermoplastic resinLawAbout.
[0002]
[Prior art]
  Ultra-high molecular weight polyethylene, fluorine-substituted polyethylene, ultra-high polymerization degree polyvinyl chloride, high chloride degree polyvinyl chloride, polyimide, etc. are shown in impact resistance, wear resistance, heat resistance, self-lubricating property, chemical resistance, etc. It has such special resin performance. However, these resins are very difficult to mold because they have extremely high melt viscosity, extremely low fluidity, and are easily decomposed. Therefore, these resins are generally called difficult-to-mold resins.
[0003]
  As a conventional method for producing a molded body from such a difficult-to-mold resin having a high melt viscosity, the following method may be mentioned:
(1) A plate-shaped or rod-shaped molded body is formed by compression molding, sintering molding, or ram extrusion molding of a powdered resin, and the molded body is shaped into a desired product by cutting-out processing such as cutting. Method,
(2) As described in Japanese Patent Publication No. 57-30067, a molten resin is flash-injected into a slightly opened mold cavity at a predetermined shear rate, and then injected into the mold cavity. A method of compressing the solid resin formed by reducing the volume of the mold cavity to a predetermined volume, and
(3) As described in Japanese Patent Publication No. 4-47608, a difficult-to-mold resin dispersion having a predetermined concentration obtained by adding an organic solvent such as p-xylene and tetrachloroethane to a hardly-molded resin powder or A method in which the mixture is heated and melted and then extruded into a film or sheet, and then the film or sheet of a difficult-to-mold resin molded product is heated to evaporate the organic solvent.
[0004]
  However, in the above method (1) or (2), since the hard-to-mold resin filled in the mold cavity is in a solid state due to flash injection or the like, it is necessary to compress such resin. For this reason, only a solid and single-layer molded body can be obtained. Therefore, in order to obtain a molded body having a predetermined shape, it is necessary to use a large amount of expensive difficult-to-mold resin, and therefore, there is a disadvantage that the cost is increased and the weight cannot be reduced. Furthermore, in the method (2), the resin injected from the injection port (not shown) of the mold becomes a solid state due to flushing by injection, and is filled in the mold cavity in such a state. Therefore, depending on the shape of the resin in the solid state, even if the mold cavity is not uniformly filled or evenly filled, it is necessary to compress the solid state resin, Figure7As shown in FIG. 4, it is difficult to produce a molded body other than a flat molded body, and therefore, it is possible to shape a complicated shape such as having a side wall parallel to the clamping direction at the time of compression. It is extremely difficult.
[0005]
  In the method (3), the moldability of the hardly moldable resin can be improved and melt molding can be achieved by dissolving or swelling the hardly moldable resin using an organic solvent such as p-xylene or tetrachloroethane. . As a result, there is a possibility that a difficult-to-mold resin molded product having a space formed therein, or a difficult-to-mold resin molded product having a multilayer structure filled with other materials inside may be manufactured. The organic solvent may remain in the difficult-to-mold resin molded product. Thereby, there exists a problem that the outstanding property (for example, abrasion resistance, self-lubricating property etc. which were demonstrated above) which a difficult-to-mold resin molded product has may be impaired.
[0006]
  Further, in order to suppress the deterioration of these excellent properties, it is necessary to remove the organic solvent from the difficult-to-mold resin molded product, and there is a problem that it requires equipment and labor. In consideration of the environment, it is preferable to recover the removed organic solvent. However, in this case, as in the case of removal, there is a problem that it requires equipment and takes time and effort.
[0007]
  Further, in recent years, a method of dissolving a non-reactive gas such as carbon dioxide in a difficult-to-mold resin to bring the difficult-to-mold resin into a molten state has been proposed. An apparatus for producing a thermoplastic resin foam-molded article described in Kaihei 8-85128 is exemplified. In this apparatus, a pressure-resistant chamber is provided between a hopper provided on the upper part of the injector and the injector, and a pressure-resistant valve is provided between the pressure-resistant chamber, the hopper and the injector. First, a pressure valve provided between the pressure chamber and the hopper is opened, and resin is supplied from the hopper into the pressure chamber. The resin is then dissolved in carbon dioxide while being stirred in the pressure chamber. Finally, a pressure-resistant valve provided between the pressure-resistant chamber and the injector is opened, and a resin in which a non-reactive gas is dissolved is supplied to the injector.
[0008]
  However, in this apparatus, not only does it take time to dissolve carbon dioxide in the pressure-resistant chamber, but when the resin in which the non-reactive gas is dissolved is supplied to the injection machine, the resin Because it falls from the pressure-resistant chamber by its own weight and is supplied to the injection machine, it takes time to supply the resin to the injection machine, and productivity is low.
Has drawbacks.
[0009]
  Furthermore, while the resin in which the non-reactive gas is dissolved is supplied to the injection machine, it may be necessary to temporarily stop the supply of carbon dioxide to the pressure resistant chamber. For this reason, it is necessary to intermittently supply carbon dioxide to the pressure-resistant chamber, and for that purpose, an apparatus for intermittently supplying carbon dioxide is required, but such an apparatus is not only very expensive, If carbon dioxide is supplied intermittently, the amount of carbon dioxide dissolved in the resin will not be constant, and it may be impossible to produce a difficult-to-mold resin molded product of uniform quality.
[0010]
  On the other hand, if carbon dioxide is continuously supplied to the pressure resistant chamber while the resin in which the non-reactive gas is dissolved is supplied to the injector, there is a problem that carbon dioxide leaks to the injector or the like.
[0011]
[Problems to be solved by the invention]
  The present invention has been made to solve the above-mentioned problems, and its object is to use an organic solvent and the like, and to reduce costs.Method for producing difficult-to-mold resin molded product filled with thermoplastic resin inside, which can maintain the same physical properties without using many difficult-to-mold resinsIs to provide.
[0012]
[Means for Solving the Problems]
(Reclaim of claim 1)
  In order to solve the above-mentioned problem, the above-mentioned problem is solved by manufacturing a difficult-to-mold resin molded product having a surface made of a hardly-molded resin having MI of 0.1 g / 10 min or less and filled with a thermoplastic resin. As another means, the method according to the present invention is a difficult molding in which a non-reactive gas in a gaseous state is dissolved at room temperature and normal pressure in a difficult molding resin having a melt index of 0.1 g / 10 min or less. Fill the resin melt composition in front of the metering section of the injection machine, then fill the molten thermoplastic resin from the injection machine to the back of the metering section, and then add the difficult-to-mold resin melt composition from the injection machine into the mold cavity. The product and the thermoplastic resin were sequentially press-fitted.
[0013]
(Reclaim claim 2)
  Further, in the above configuration, the order of filling of the difficult-to-mold resin and filling of the thermoplastic resin may be reversed. That is, as another means for solving the above-described problem, a surface-molded resin molded product having a MI of 0.1 g / 10 min or less and having a MI and having a thermoplastic resin filled therein is manufactured. In the method according to the present invention, a thermoplastic resin in a molten state is filled in a measuring section of an injection machine, and then a difficult-to-mold resin having a melt index of 0.1 g / 10 min or less is put in a gaseous state at normal temperature and normal pressure. The difficult-to-mold resin melt composition melted and kneaded by dissolving the non-reactive gas is filled in front of the metering section of the injection machine, and the difficult-to-mold resin melt composition and the thermoplastic resin are sequentially placed from the injection machine into the mold cavity. It is good also as a structure to press-fit.
[0014]
(Matters common to each claim)
(About difficult-to-mold resins)
  Examples of difficult molding resins having MI of 0.1 g / 10 min or less include, for example, ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 1 million or more, fluorine-substituted polyethylene, ultrahigh polymerization degree polyvinyl chloride, high chloride degree polyvinyl chloride, And polyimide. The term “fluorine-substituted polyethylene” used in the present specification refers to a polymer represented by the following chemical formula. Examples of such a polymer include polytetrafluoroethylene (X is all F). To mention:
[0015]
[Chemical 1]
         X X
         | |
   -(-C-C-)n-
         | |
         X X
              (Where X is hydrogen or fluorine)
                                                                      .
[0016]
  Resins with MI exceeding 0.1 g / 10 min have a higher melt viscosity than ordinary molding resins, but can be molded using ordinary molding techniques. I can't say that. In the following, unless otherwise specified, the difficult-to-mold resin refers to a resin having MI of 0.1 g / 10 min or less.
[0017]
(About the process of dissolving non-reactive gas in difficult-to-mold resin to make it molten)
  Although there is no particular limitation on the method of making the difficult-to-mold resin into a difficult-to-mold resin melt composition by dissolving a non-reactive gas in a gaseous state at room temperature and normal pressure in the difficult-to-mold resin and melting and kneading, for example, screw extrusion Inside the machine, a non-reactive gas in the gaseous state at normal temperature and normal pressure is used as a plasticizer and dissolved in a difficult-to-mold resin to make the difficult-to-mold resin easy to mold, and then the difficult-to-mold resin in such a state is melted The method of kneading and making difficult-to-mold resin into a molten state is mentioned.
[0018]
  As a method of dissolving a non-reactive gas in a gaseous state at room temperature and normal pressure in a difficult-to-mold resin,
  (1) a method of dissolving a non-reactive gas in a difficult-to-mold resin made molten by heat, etc., and
  (2) A method in which a non-reactive gas is dissolved in a solid hard-to-mold resin to swell the resin,
Is mentioned. From the viewpoint of the solubility of the resin in the difficult-to-mold resin, it is preferable to dissolve the non-reactive gas under high pressure. Moreover, any of the above methods may be used, or both may be used in combination.
[0019]
  As a method for dissolving the non-reactive gas in the hardly molded resin that has been melted by heat or the like (the above method (1)), for example, a hardly moldable resin that has been melted by heat or the like using a vent type screw. There is a method in which a non-reactive gas is mixed into the vent portion from the middle of the cylinder filled with.
[0020]
  As a method of swelling a resin by dissolving a non-reactive gas in a hard-to-mold resin in a solid state (the above method (2)),
  (2-A) A method in which a non-reactive gas is dissolved in a difficult-to-mold resin in a pellet or powder state in advance in a high-pressure container or the like, and swollen.
and
  (2-B) A method in which a non-reactive gas is dissolved in a difficult-to-mold resin in a solid transport part from a hopper in a screw type extruder and swells,
Is mentioned.
[0021]
  In the case of the above method (2-A), when supplying a difficult-to-mold resin in which a non-reactive gas is dissolved to an extruder, the non-reactive gas dissolved in the resin escapes out of the resin by diffusion. In order to suppress this, it is preferable to perform this supply as soon as possible.
[0022]
  In the case of the above method (2-B), it is preferable that the screw drive shaft and the hopper have a pressure-resistant seal structure so that the non-reactive gas does not volatilize outside the screw type extruder.
[0023]
  The term “non-reactive gas” used in this specification is an organic or inorganic substance in a gaseous state at normal temperature and normal pressure, and does not react with difficult-to-mold resins, and further adversely affects such resins. Refers to a gas that does not give to the resin. Such a gas is not particularly limited as long as the above conditions are satisfied, and examples thereof include inorganic gas and organic gas (for example, chlorofluorocarbon gas and low molecular weight hydrocarbon gas). Inorganic gas is preferable because it has a low adverse effect on the environment and does not require gas recovery, has high solubility in difficult-to-mold resins, and has a large decrease in melt viscosity of the resin (that is, the difficult-to-mold resin melt composition obtained) Carbon dioxide is preferable from the viewpoint of low viscosity. Such a non-reactive gas may be used alone, or two or more kinds of non-reactive gases may be used in combination.
[0024]
  When carbon dioxide is used as the non-reactive gas, the amount of carbon dioxide dissolved in the difficult-to-mold resin is preferably in the range of 1% by weight to 30% by weight, and more preferably in the range of 3% by weight to 20% by weight. .
[0025]
  When the amount of carbon dioxide dissolved in the difficult-to-mold resin is less than 1% by weight, the viscosity of the difficult-to-mold resin does not sufficiently decrease, the fluidity is insufficient, and the difficult-to-mold resin is used as a difficult-to-mold resin melt composition. May not be possible. On the other hand, when trying to make the amount of carbon dioxide dissolved in difficult-to-mold resin more than 30% by weight, it may be necessary to extremely increase the pressure at the time of dissolution using a large-scale equipment, which is inappropriate. It is.
[0026]
  When carbon dioxide is used as the non-reactive gas, the carbon dioxide pressure is about 2 kg / cm so that the amount of carbon dioxide dissolved in the difficult-to-mold resin falls within the above range.2About 500 kg / cm2Or less (that is, about 0.196 MPa or more and about 49 MPa or less), and about 6 kg / cm.2About 350 kg / cm2Or less (ie, about 0.588 MPa or more and about 34.3 MPa or less).
[0027]
  The gas may be supplied directly from a gas cylinder or may be supplied under pressure using a plunger pump or the like. The plasticization of the difficult-to-mold resin and the decrease in its viscosity depend on the molecular weight of the resin, the type of gas, the amount of gas dissolved in the resin, and the like.
[0028]
(Regarding the process of filling the metering part of the injection machine with molten difficult-to-mold resin)
  Subsequently, the non-reactive gas is dissolved and melted and kneaded in this manner, and the difficult-to-mold resin melt composition obtained by melting and kneading is filled in the measuring unit of the injection machine. If it is filled in the measuring unit, it may be filled with the difficult-to-mold resin melt composition from any of the rear side of the measuring unit (that is, the screw side), the side surface of the measuring unit, or the front side of the measuring unit, When manufacturing difficult-to-mold resin molded products filled with a thermoplastic resin inside, the thermoplastic resin can be supplied from the screw side, so that the difficult-to-mold resin melt composition and the thermoplastic resin are not mixed. In view of simplifying the process, it is preferable to fill from the side or front side of the measuring unit.
[0029]
  When the difficult-to-mold resin melt composition is filled from the front end side (that is, the front side) of the measuring portion, the flame-resistant resin melt composition is prevented from leaking out of the extruder or the injection machine. It is preferable to provide a valve at the tip of the metering part of the injection machine so that the object is not exposed to air. As will be described later, when the difficult-to-mold resin melt composition is pressed into the mold cavity from the injection machine, the extruder and the injection machine may be separated. It is preferable to provide a valve at the tip of each.
[0030]
(Claim 3, plunger type extruder)
  When filling the difficult-to-mold resin melt composition into the measuring section of the injection machine, it is preferable to provide a plunger type extruder between the screw type extruder and the injection machine. That is, the difficult-to-mold resin melt composition extruded from the screw-type extruder is temporarily accumulated in the plunger-type extruder, and then the hardly-molded resin melt composition is injected by the plunger provided in the plunger-type extruder. It is preferable to fill the weighing section of the machine. Other departures afterClearlyAs will be described in detail, by providing such a plunger type extruder, it is possible to shorten the molding cycle and stabilize the gas dissolution amount. The term “extruder” used in the present specification includes a screw-type extruder and a plunger-type extruder unless specifically limited.
[0031]
(Claims 1 and 2)
  In the method of producing a difficult-to-mold resin molded product having a surface made of a difficult-to-mold resin and filled with a thermoplastic resin, after filling the difficult-to-mold resin melt composition in the front part of the measuring unit of the injection machine, The molten thermoplastic resin is filled from the injection machine to the rear of the measuring section, and the difficult-to-mold resin melt composition and the thermoplastic resin are sequentially pressed into the mold from the injection machine. In addition, you may reverse the order of filling of a difficult-to-mold resin melt composition and filling of a thermoplastic resin. That is, in the above method, the molten thermoplastic resin is filled in the metering part of the injection machine, and then the difficult-to-mold resin melt composition is filled in the front part of the metering part of the injection machine, and from the injection machine into the mold You may press-fit in order of a difficult-to-mold resin melt composition and a thermoplastic resin.
[0032]
  When the difficult-to-mold resin melt composition is pressed into the mold cavity, the counter-pressure method is used to prevent the difficult-to-mold resin melt composition press-fitted into the mold cavity from foaming. It is preferable that the pressure in the mold cavity is set to a high pressure in advance, and the difficult-to-mold resin melt composition is pressed into the mold cavity in which such high pressure is maintained. The pressure in such a high-pressure mold cavity is preferably about 0.196 MPa or more and about 49 MPa or less, and more preferably about 0.588 MPa or more and about 34.3 MPa or less. The high-pressure gas used to increase the pressure in the mold cavity in advance is not particularly limited as long as it does not adversely affect the injected resin. For example, inorganic gas, organic gas (for example, Freon gas, low molecular weight) Hydrocarbon gas). Inorganic gas is preferred in that it has a low adverse effect on the environment and does not require gas recovery, and nitrogen is more preferred from the viewpoint of low solubility and low cost in difficult-to-mold resins and difficult-to-mold resin melt compositions. . In addition, such gas may be used independently or may use 2 or more types of gas together.
[0033]
  There is no particular limitation on the method of filling the molten thermoplastic resin in the rear part of the weighing unit of the injection machine in which the difficult-to-mold resin melt composition is filled in the front part, and the thermoplastic resin is supplied from the hopper at the rear part of the injection machine. Then, there is a known method in which the thermoplastic resin is melted and kneaded with a screw inside the injection machine, and the thermoplastic resin is melted and filled in the back of the measuring unit. Further, even when the order of filling of the difficult-to-mold resin melt composition and filling of the thermoplastic resin is reversed, the measuring portion can be filled with the thermoplastic resin by the same method as described above.
[0034]
  The thermoplastic resin is not particularly limited, and examples of such a thermoplastic resin include olefin resins and polyester resins. When the difficult-to-mold resin is ultra high molecular weight polyethylene having a viscosity average molecular weight of 1 million or more or fluorine-substituted polyethylene, olefin resins such as polyethylene (including any of low density, medium density, and high density) and polypropylene are preferable. . This is because it has good adhesion to the surface made of the above difficult-to-mold resin.
[0035]
  Next, the difficult-to-mold resin melt composition and the thermoplastic resin are sequentially pressed into the mold cavity from the injection machine. Similarly to the above, it is preferable to keep the pressure in the mold cavity high in advance in order to prevent foaming of the composition and resin press-fitted into the mold cavity. In this way, a difficult-to-mold resin molded product having a surface made of a difficult-to-mold resin having an MI of 0.1 g / 10 min or less and filled with a thermoplastic resin is produced. In addition, after press-fitting the difficult-to-mold resin melt composition and the thermoplastic resin into the mold cavity in order, the surface is 0.1 g / 10 min or less by injecting the space forming gas into the resin in the same manner as described above. A difficult-to-mold resin molded product made of a difficult-to-mold resin having MI, filled with a thermoplastic resin, and having a space formed inside the thermoplastic resin can be manufactured.The manufacturing method of the present invention is also included.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, the present invention will be described in detail with reference to the drawings.
[0037]
  1 and 2 show a device for carrying out the method according to the invention. As shown in this figure, this manufacturing method is performed as follows. First, an open / close valve (9) in which a difficult-to-mold resin is put into a high-pressure hopper (7) of the hardly-molded resin molded body manufacturing apparatus (1) and connected to the high-pressure hopper (7) through a pressure pump (8). ) And the non-reactive gas pressurized by the pressure pump (8) from the gas cylinder (10) is supplied to the high-pressure hopper (7) to dissolve the non-reactive gas in the high-pressure state in the hardly-molded resin. .
[0038]
  Next, the hardly-molded resin in which the non-reactive gas in the high-pressure hopper (7) is dissolved is supplied into the cylinder of the screw-type extruder (3) and melt-kneaded to obtain a hardly-molded resin melt composition. Next, an injection machine (31) provided with a valve (32) at the tip and a valve (54) at the tip through a resin transport pipe (31) connected at the other end to the tip of the screw extruder (3). The metering part (51) of 5) is filled with this difficult-to-mold resin melt composition from the tip of the metering part (51) of the injection machine (5). At the time of filling, pressure is maintained in the weighing unit (51) from the viewpoint of preventing the difficult-to-mold resin melt composition filled in the weighing unit (51) of the injection machine (5) from foaming. Therefore, while the pressure is applied to the screw (52) from the rear in the left (die) direction in the figure, when the difficult-to-mold resin melt composition is filled, the screw (52) is pushed back in the right direction in the figure. In this way, until the screw (52) inside the injection machine (5) moves backward to a predetermined position, the weighing part (51) of the injection machine (5) is filled with the hardly molded resin molten composition. In this filling, a force is also applied to the left side of the figure on the injection machine (5) so that the injection machine (5) itself does not move backward.
[0039]
  Next, when the screw (52) inside the injection machine (5) moves backward to a predetermined position, the operation of the screw type extruder (3) is stopped, and the difficult-to-mold resin melt composition is removed from the metering section ( 51) is stopped. Then, the valves (32) and (54) are closed, and the force applied to the left side of the figure (5) is released to prevent the injector (5) from moving backward as shown in FIG. Then, the injection machine (5) itself is moved backward. Thereby, the connection between the screw type extruder (3) and the injection machine (5) is released, and then the screw type extruder (3) is driven by a motor (not shown) provided at the lower part of the screw type extruder (3). ).
0040]
  Next, a general thermoplastic resin is plasticized and kneaded from the hopper (53) of the injection machine (5), and the screw (52) inside the injection machine (5) is further retracted to a predetermined position, thereby the injection machine (5). The weighing unit (51) is filled with a molten thermoplastic resin from the back of the injection machine. In this way, the hardly molded resin melt composition is filled in the front part of the measuring part (51) of the injection machine (5), and the molten thermoplastic resin is filled in the rear part of the measuring part (51) of the injection machine (5). To do.
[0041]
  Subsequently, the high-pressure gas supplied from the gas cylinder (11) is pressurized using the pressurizing pump (12), and then the pressurized high-pressure gas is passed through the opening / closing valve (13) into the mold (6). The pressure in the mold cavity (61) is set to a predetermined pressure. After the pressure in the mold cavity (61) reaches a predetermined pressure, the open / close valve (13) is closed and the supply of high-pressure gas is stopped.
[0042]
  Next, the injection machine (5) itself is advanced in the left direction in the figure, the injection machine (5) and the mold (6) are connected, the valve (54) is opened, and then the screw ( 52) is advanced, and the difficult-to-mold resin melt composition and the thermoplastic resin filled in the metering section (51) are sequentially press-fitted into the mold cavity (61). In addition, when press-fitting these compositions and resins into the mold cavity (61), the pressure adjustment valve (65) provided in the mold (6) is used, and the inside of the mold cavity (61) is used. The pressure is maintained at the predetermined pressure described above.
[0043]
  Here, the states of the difficult-to-mold resin melt composition and the thermoplastic resin that are sequentially press-fitted into the mold cavity (61) are illustrated.6Will be described in detail. Figure6The right side of the figure is the direction of the injection machine (5), and the left side of the figure is the direction of the mold end (62). The hard-to-mold molten resin composition and the thermoplastic resin to be press-fitted are in a molten state and not only the viscosity is lowered, but also the high-pressure non-reactive gas is dissolved, so that in the mold cavity (61) It is press-fitted into the mold cavity (61) while showing a jet flow. When this jet flow is generated, at least a part of the non-reactive gas is released from the difficult-to-mold resin melt composition.
[0044]
  Figure6As shown in (a), first, a part of the hard-to-mold resin molten composition that has been press-fitted first comes into contact with the mold side wall (63). Then, since the temperature of the mold side wall (63) is lower than the temperature at which the difficult-to-mold resin molten composition starts to cure, the difficult-to-mold resin melt composition in the vicinity of the mold side wall (63) is cured and the solidified layer ( 64). Subsequently, the difficult-to-mold resin melt composition is successively pressed in the left direction in the figure, and at the same time, a part thereof comes into contact with the mold side wall (63), so that the solidified layer (64) is also on the mold side wall (63). It is formed near the left in the figure. Figure6As shown in (b), after a somewhat difficult-to-mold resin melt composition is press-fitted in the left direction in the figure and a solidified layer (64) is formed to some extent, the thermoplastic resin is placed in the mold cavity (61). Press fit. The thermoplastic resin to be pressed in later is pressed into the mold cavity (61) one after another so as to push the difficult-to-mold resin melt composition that has been pressed into the mold side wall (63) in the left direction. Pressed into the final figure6As shown in (c), the hardly moldable resin melt composition is formed as a solidified layer (64) in the vicinity of the mold side wall (63), and the inside thereof is filled with a thermoplastic resin.
[0045]
  The difficult-to-mold resin melt composition and the thermoplastic resin are press-fitted into the mold cavity (61) and cooled until the temperature of the difficult-to-mold resin melt composition reaches a predetermined temperature, and then the pressure adjustment valve (65) is opened. By releasing the pressure, as shown in FIG. 5, the surface (21) is a difficult-to-mold resin as described above, and the inner (22) is filled with a thermoplastic resin in a multi-layer difficult-to-mold resin molded product. (2) is produced. In addition, also when a difficult-to-mold resin melt composition is cooled, a non-reactive gas is emitted from the inside.
[0046]
  Since the manufacturing method according to the present invention has the above-described configuration, it has the following effects. First, the non-reactive gas is melted and melt-kneaded difficult-to-mold resin melt composition is filled from the tip of the measuring section of the injection machine (5), and then the molten thermoplastic resin is injected from the back of the injection machine. By filling the metering part (51) of (5), it becomes possible to fill the metering part (51) of the injection machine (5) without mixing the difficult-to-mold resin melt composition and the thermoplastic resin. .
[0047]
  Further, by filling the weighing part (51) of the injection machine (5) with the hardly-molded resin molten composition and the thermoplastic resin in this way,6As shown in FIG. 5, since the resin is press-fitted in the order of the hardly moldable resin melt composition and the thermoplastic resin, as shown in FIG. 5, the surface (21) is made of a hardly moldable resin, and the inside (22) is the thermoplastic resin. It is possible to produce a hard-to-mold resin molded product (2) filled with. Such a difficult-to-mold resin molded product (2) has the same size as the conventional difficult-to-mold resin-molded product, which is entirely made of a difficult-to-mold resin and is solid, but difficult to the interior (22). Since it is filled with a thermoplastic resin having a density lower than that of the molding resin, it is lightweight, and a lot of difficult molding resins are not required, so that the cost can be reduced. Moreover, since the surface (21) is a hard-to-mold resin, the hard-to-mold resin molded article (2) also has excellent properties such as impact resistance that the hard-to-mold resin has. Further, regarding the strength, since the interior (22) is filled with the thermoplastic resin, a difficult-to-mold resin molded product (2) having substantially the same strength as the conventional difficult-to-mold resin molded product as described above is provided. The Of course, according to the needs of the rigidity and appearance of the molded product, it is also possible to provide a molded product having a general thermoplastic resin on the surface and a difficult-to-mold resin inside.
[0048]
  Further, in the method according to the present invention, since the high-pressure non-reactive gas is dissolved, the mold cavity (61) is melted while showing a jet flow (so-called “fountain flow”) in the mold cavity (61). ). Thereby, the difficult-to-mold resin melt composition is uniformly filled in the cavity, and there is no need to compress the hardly-molded resin as in the conventional molding method. Therefore, it is also possible to produce a difficult-to-mold resin molded product having a complicated shape such as having a side wall parallel to the clamping direction during compression.
[0049]
  Further, at the time of filling the difficult-to-mold resin melt composition, by filling the difficult-to-mold resin melt composition and pushing the screw (52) back to the right in the figure, the injection machine (5) The amount of the difficult-to-mold resin melt composition filled in the measuring section (51) can be measured. Next, it is difficult to fill by filling the measuring portion (51) of the injection machine (5) with the molten thermoplastic resin while further retracting the screw (52) inside the injection machine (5) to a predetermined position. The amount of the molding resin melt composition and the amount of the thermoplastic resin in the molten state can be adjusted. Therefore, since the amount of these resins can be adjusted as described above, the thicknesses of the hardly-molded resin and the thermoplastic resin of the difficult-to-mold resin molded product (2) to be manufactured can be adjusted.
[0050]
(Other Embodiments)
  3 and 4 are diagrams showing an apparatus for carrying out another method according to the present invention. As shown in this figure, this manufacturing method is performed as follows. First, the hardly-molded resin is put into the high-pressure hopper (7) of the hardly-molded resin molded body manufacturing apparatus (1) shown in FIG. Next, as in the embodiment of the invention described above, non-reactive gas is supplied from the gas cylinder (10) to the high-pressure hopper (7), and the non-reactive gas in the high-pressure hopper (7) is set to a predetermined pressure. Non-reactive gas is dissolved in difficult-to-mold resin.
[0051]
  Next, difficult molding resin in which the non-reactive gas in the high-pressure hopper (7) is dissolved is supplied into the cylinder of the screw type extruder (3) set to a predetermined temperature and melted and kneaded. The molded resin melt composition is used, and this hardly molded resin melt composition is accumulated from the side surface in the accumulation section (41) of the plunger type extruder (4). In this case, the hard-to-mold resin melt composition is accumulated in the accumulation unit (41) while pushing back the plunger (42) provided in the plunger type extruder (4).
[0052]
  When the accumulation is completed, the injection machine (5) returns to a predetermined position, and the plunger extruder (4) and the injection machine (5) are connected (the state shown in FIG. 3), the plunger type extruder (4 ) While opening the valve (43) provided at the tip of the injection valve (54) and the valve (54) provided at the tip of the injection machine (5) while advancing the plunger (42) of the plunger-type extruder (4). The difficult-to-mold resin melt composition is filled into the measuring section (51) of the injection machine (5). In FIG. 3, the difficult-to-mold resin melt composition is filled from the front side into the weighing unit (51) of the injection machine (5), but may be filled from the side of the weighing unit (51), The valves (43) and (54) may be integrated to form a three-way valve (not shown), and the metering part (51) of the injection machine (5) may be filled from the front with the hardly molded resin melt composition. Thus, the filling direction at the time of filling the measurement part (51) of an injection machine (5) with a difficult-to-mold resin melt composition is not specifically limited. This is the same in the previous embodiment. When a three-way valve (not shown) is used, the screw type extruder (3), the plunger type extruder (4), and the injection machine (5) can be used even in a fixed state. As in the above-described embodiment of the present invention, the screw inside the injection machine (5) is filled with the difficult-to-mold resin melt composition and pushed back in the right direction in the figure. In (52), pressure is applied from the rear part to the left in the figure to prevent foaming of the difficult-to-mold resin. Thereby, until the screw (52) inside the injection machine (5) is retracted to a predetermined position, the weighing part (51) of the injection machine (5) is filled with the hardly molded resin molten composition.
[0053]
  Next, when the screw (52) inside the injection machine (5) moves backward to a predetermined position, the advance of the plunger (42) of the plunger type extruder (4) is stopped, and the valves (43) and (54) are turned off. Close and stop supplying the difficult-to-mold resin melt composition into the metering section (51) of the injection machine (5).
  Then, as shown in FIG. 4, in order to prevent the injection machine (5) itself from moving backward, the force applied to the left direction of the drawing to the injection machine (5) is released, and the injection machine (5) itself is moved backward. Let As a result, the connection between the plunger type extruder (4) and the injection machine (5) is released, and then a motor (under the screw type extruder (3) and the plunger type extruder (4) ( These extruders (3) and (4) are moved backward by a not-shown).
[0054]
  Subsequently, as in the embodiment of the invention described above, the high-pressure gas supplied from the gas cylinder (11) is pressurized using the pressure pump (12), and then the pressurized nitrogen is supplied to the open / close valve (13). When the pressure inside the mold cavity (61) reaches a predetermined pressure, the open / close valve (13) is closed and the supply of the high-pressure gas is stopped.
[0055]
  Hereinafter, similarly to the above-described embodiment of the present invention, the metering part (51) of the injection machine (5) is filled with a molten thermoplastic resin from the rear side of the injection machine. In this way, the hardly molded resin melt composition is filled in the front part of the measuring part (51) of the injection machine (5), and the molten thermoplastic resin is filled in the rear part of the measuring part (51) of the injection machine (5). To do.
  Next, after the difficult-to-mold resin melt composition and the thermoplastic resin are press-fitted into the mold cavity (61) and cooled until the temperature of the difficult-to-mold resin melt composition reaches a predetermined temperature, the pressure adjusting valve (65) is turned on. By releasing and depressurizing, as shown in FIG. 5, the surface (21) is such a difficult-to-mold resin as described above, and the interior (22) is filled with a thermoplastic resin in a multi-layer difficult-to-mold resin A molded article (2) is produced.
[0056]
  Since the production method according to the present invention has the above-described configuration, not only the effects detailed in the embodiment of the invention described above, but also the difficult-to-mold resin melt composition is temporarily accumulated in the plunger-type extruder (4). By weighing the difficult-to-mold resin melt composition to some extent by accumulating in the part (41), the weighing work in the injection machine (5) is reduced. This also shortens the molding process.
[0057]
【Example】
  The present invention will be described in further detail using the following examples, which are used for illustrative purposes only and should not be used for limiting purposes.
[0058]
(Example 1)
  Ultra-high molecular weight polyethylene resin (manufactured by Hoechst, trade name “Hostalen GUR4120”, average molecular weight: about 4.4 million, melt index measurement impossible due to very high viscosity) is shown in FIG. It put into the high-pressure hopper (7) of the compact manufacturing apparatus (1). Next, the open / close valve (9) connected to the high-pressure hopper (7) via the pressure pump (8) is opened, and carbon dioxide pressurized by the pressure pump (8) from the gas cylinder (10) is opened. The high pressure hopper (7) was supplied. The pressure of carbon dioxide in the high-pressure hopper (7) was maintained at about 15.0 MPa and the temperature at about 60 ° C. for about 1 hour to dissolve carbon dioxide in the ultrahigh molecular weight polyethylene resin.
[0059]
  Next, the ultrahigh molecular weight polyethylene resin in which the carbon dioxide in the high-pressure hopper (7) is dissolved is supplied into the cylinder of the screw type extruder (3) set at about 180 ° C. and melt kneaded. A high molecular weight polyethylene resin melt composition was prepared, and then a valve (32) was provided at the tip, and the other end was connected to the tip of a valve (32) connected to the tip of the screw-type extruder (3). 54) The ultra-high molecular weight polyethylene resin melt composition was filled into the measuring section (51) of the injection machine (5) provided with 54) from the tip of the measuring section of the injection machine (5). In this case, of course, both the valves (32) and (54) were in the open state. In addition, at the time of this filling, in order to prevent foaming of the ultrahigh molecular weight polyethylene resin melt composition, a pressure that can prevent foaming of the ultrahigh molecular weight polyethylene resin melt composition from the rear with respect to the screw (52) ( About 50Kg / cm2~ About 300Kg / cm2) Was applied from the rear side while the pressure of the measuring part (51) was maintained, while being filled with the ultrahigh molecular weight polyethylene resin melt composition and pushed back to the right in the figure. In this way, the ultrahigh molecular weight polyethylene resin molten composition was filled in the measuring section (51) of the injection machine (5) until the screw (52) inside the injection machine (5) was retracted to a predetermined position. During the filling, a force of about 20 to 30 kN (kilonewtons) was applied to the injector (5) in the left direction in the drawing so that the injector (5) itself did not move backward.
[0060]
  Next, when the screw (52) inside the injection machine (5) moves backward to a predetermined position, the operation of the screw type extruder (3) is stopped, and the ultrahigh molecular weight polyethylene resin molten composition is measured by the injection machine (5). Supply to part (51) was stopped. Next, the valve (32) (54) is closed, and as shown in FIG. 2, the force applied to the left side of the figure to the injector (5) to prevent the injector (5) from moving backward is applied. Released and retreated the injector (5) itself. Thereby, connection with a screw type extruder (3) and an injection machine (5) is cancelled | released, and then a screw type extruder (3) is provided by a motor (not shown) provided at the lower part of the screw type extruder (3). ) Was retreated.
[0061]
  Next, a high-density polyethylene resin (trade name “Suntec-HD”, manufactured by Asahi Kasei Kogyo Co., Ltd.) is plasticized and kneaded from the hopper (53) of the injection machine (5), and the screw (52) inside the injection machine (5). Was further retracted to a predetermined position, and the high-density polyethylene resin in a molten state was filled from the rear side of the injection machine into the measuring section (51) of the injection machine (5). In this way, the ultra-high molecular weight polyethylene resin melt composition is placed in the front part of the weighing part (51) of the injection machine (5), and the molten high-density polyethylene is placed in the rear part of the weighing part (51) of the injection machine (5). Filled with resin.
[0062]
  Subsequently, nitrogen supplied from the gas cylinder (11) is pressurized using a pressurizing pump (12), and then the pressurized nitrogen is supplied to the inside of the mold cavity (61) via the open / close valve (13). Was supplied into the mold (6) until the pressure of was about 16.0 MPa. When the pressure inside the mold cavity (61) reached about 16.0 MPa, the on-off valve (13) was closed and the supply of nitrogen was stopped.
[0063]
  Next, the injection machine (5) itself is moved forward in the left direction in the drawing, the injection machine (5) and the mold (6) are connected, the valve (54) is opened, and then the screw (52 in the injection machine (5) is opened. ) Was advanced, and the ultrahigh molecular weight polyethylene resin molten composition and the molten high-density polyethylene resin filled in the metering section (51) were sequentially pressed into the mold cavity (61). In addition, when press-fitting these compositions and resins into the mold cavity (61), a pressure adjusting valve (65) provided in the mold (6) is used, and the inside of the mold cavity (61) is used. The pressure was kept at about 16.0 MPa.
[0064]
  The ultrahigh molecular weight polyethylene resin molten composition and the molten high density polyethylene resin are pressed into the mold cavity (61) and cooled until the temperature of the ultrahigh molecular weight polyethylene resin molten composition reaches about 110 ° C. By opening the regulating valve (65) and releasing the pressure, as shown in FIG. 5, the surface (21) is an ultrahigh molecular weight polyethylene resin which is a difficult-to-mold resin as described above, and the inside (22) A multilayer difficult-to-mold resin molded article (2) filled with a high-density polyethylene resin was produced. When the multi-layer difficult-to-mold resin molded article (2) produced in this way was cut, the thickness of the ultrahigh molecular weight polyethylene resin was about 1.1 mm, and the thickness of the high-density polyethylene resin was about 1.9 mm. there were.
[0065]
【The invention's effect】
  According to the present invention, compared to conventional difficult-to-mold resin molded products, it is lightweight and does not require many difficult-to-mold resins while maintaining impact resistance and the like. There are provided a method of manufacturing a product, and such a difficult-to-mold resin molded product, and a difficult-to-mold resin molded product manufacturing apparatus.
[Brief description of the drawings]
FIG. 1 shows a hardly molded resin molded body production apparatus (1) according to the present invention in a state where a hardly molded resin resin molten composition is accumulated in a measuring section (51) of an injection machine (5). FIG.
FIG. 2 is a difficult-to-mold resin molding after the difficult-to-mold resin resin melt composition is filled from the screw type extruder (3) into the metering section (51) of the injection machine (5) in the apparatus of FIG. It is a figure which shows a body manufacturing apparatus (1).
FIG. 3 is a view showing a state in which a plunger-type extruder (4) is used and a difficult-to-mold resin resin melt composition is accumulated in the accumulation section (41) of the plunger-type extruder (4). It is a figure which shows the hard-to-mold resin molded object manufacturing apparatus (1) based on invention.
4 is a difficult-to-mold resin molded article after the difficult-to-mold resin melt composition is filled from the screw type extruder (3) into the metering section (51) of the injection machine (5) in the apparatus of FIG. It is a figure which shows a manufacturing apparatus (1).
FIG. 5 is a view showing a difficult-to-mold resin molded product (2) according to the present invention in which the surface (21) is made of a difficult-to-mold resin and the interior (22) is filled with a thermoplastic resin space. is there.
FIG. 6 is a diagram for explaining in detail the state of a hard-to-mold resin and a thermoplastic resin that are sequentially press-fitted into the mold cavity (61).
FIG. 7 is a view showing a conventional method for molding a hardly moldable resin.
[Explanation of symbols]
  1 ... Difficult-to-mold resin molding production equipment
  2 ... Hard-to-mold resin molded products
    21 ... surface 22 ... inside
  3 ... Screw type extruder
    31 ... Resin transport pipe 32 ... Valve
  4 ... Plunger type extruder
    41 ... Accumulator 42 ... Plunger 43 ... Valve
  5 ... Injection machine
    51 ... Metering unit 52 ... Screw 53 ... Hopper 54 ... Valve
  6 Mold
    61 ... Mold cavity 62 ... Mold end 63 ... Mold side wall
    64 ... Solidified layer 65 ... Pressure adjustment valve
  7 ... High pressure hopper
  8 ... Pressure pump
  9 ... Open / close valve
  10 ... Gas cylinder
  11 ... Gas cylinder
  12 ... Pressure pump
  13 ... Open / close valve

Claims (4)

メルトインデックスが0.1g/10分以下の難成形樹脂に、常温・常圧で気体状態の非反応性ガスを溶解させて溶融混練した難成形樹脂溶融組成物を射出機の計量部の前方に充填し、次に溶融状態の熱可塑性樹脂を該射出機から該計量部の後方に充填し、さらに該射出機から金型キャビティ内に該難成形樹脂溶融組成物および該熱可塑性樹脂を順に圧入することにより、表面が該難成形樹脂からなり内部に該熱可塑性樹脂が充填されている難成形樹脂成形品の製造方法。  A difficult-to-mold resin melt composition in which a non-reactive gas in a gaseous state is dissolved at room temperature and normal pressure in a difficult-to-mold resin having a melt index of 0.1 g / 10 min or less is melt-kneaded in front of the measuring unit of the injection machine. Then, the molten thermoplastic resin is filled from the injection machine to the back of the measuring section, and the difficult-to-mold resin melt composition and the thermoplastic resin are sequentially pressed into the mold cavity from the injection machine. Thus, a method for producing a difficult-to-mold resin molded product having a surface made of the hardly-molded resin and filled with the thermoplastic resin therein. 溶融状態の熱可塑性樹脂を射出機の計量部に充填し、次にメルトインデックスが0.1g/10分以下の難成形樹脂に、常温・常圧で気体状態の非反応性ガスを溶解させて溶融混練した難成形樹脂溶融組成物を射出機の計量部の前方に充填し、さらに該射出機から金型キャビティ内に該難成形樹脂溶融組成物および該熱可塑性樹脂を順に圧入することにより、表面が該難成形樹脂からなり内部に該熱可塑性樹脂が充填されている難成形樹脂成形品の製造方法。  Fill the metering part of the injection machine with a molten thermoplastic resin, and then dissolve the non-reactive gas in a gaseous state at room temperature and normal pressure in a difficult-to-mold resin with a melt index of 0.1 g / 10 min or less. By filling the melt-kneaded difficult-to-mold resin melt composition in front of the measuring unit of the injection machine and further press-fitting the difficult-to-mold resin melt composition and the thermoplastic resin sequentially into the mold cavity from the injection machine, A method for producing a hardly-molded resin molded product, the surface of which is made of the hardly-molded resin and filled with the thermoplastic resin. 前記難成形樹脂溶融組成物をプランジャー式押出機内に一旦蓄積し、次いでプランジャーにより該難成形樹脂溶融組成物を前記射出機の計量部あるいは前記射出機の計量部の前方に充填する、請求項1又は2に記載の難成形樹脂成形品の製造方法。The hard-to-mold resin melt composition is temporarily accumulated in a plunger-type extruder, and then the hard-to-mold resin melt composition is filled by a plunger in front of the metering section of the injection machine or the metering section of the injection machine. Item 3. A method for producing a difficult-to-mold resin molded article according to Item 1 or 2 . 前記難成形樹脂が、粘度平均分子量100万以上の超高分子量ポリエチレンまたはフッ素置換ポリエチレンである、請求項1から3いずれかに記載の難成形樹脂成形品の製造方法。The method for producing a difficult-to-mold resin molded product according to any one of claims 1 to 3 , wherein the difficult-to-mold resin is ultra high molecular weight polyethylene having a viscosity average molecular weight of 1,000,000 or more or fluorine-substituted polyethylene.
JP08888398A 1997-11-17 1998-04-01 Manufacturing method of difficult-to-mold resin molded products Expired - Lifetime JP3851439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08888398A JP3851439B2 (en) 1997-11-17 1998-04-01 Manufacturing method of difficult-to-mold resin molded products

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31556197 1997-11-17
JP9-315561 1997-11-17
JP08888398A JP3851439B2 (en) 1997-11-17 1998-04-01 Manufacturing method of difficult-to-mold resin molded products

Publications (2)

Publication Number Publication Date
JPH11198163A JPH11198163A (en) 1999-07-27
JP3851439B2 true JP3851439B2 (en) 2006-11-29

Family

ID=26430228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08888398A Expired - Lifetime JP3851439B2 (en) 1997-11-17 1998-04-01 Manufacturing method of difficult-to-mold resin molded products

Country Status (1)

Country Link
JP (1) JP3851439B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140124923A (en) * 2013-04-16 2014-10-28 아주대학교산학협력단 Injection molding method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353206B2 (en) * 1999-07-12 2002-12-03 戸田工業株式会社 Injection molding method and apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220321A (en) * 1988-07-08 1990-01-23 Mitsui Petrochem Ind Ltd Blow-molded object of ultra-high-molecular-weight polyethylene and production thereof
JP3062629B2 (en) * 1991-03-15 2000-07-12 東芝機械株式会社 Continuous plasticizing injection molding apparatus and injection molding method
JPH0615707A (en) * 1991-08-28 1994-01-25 Komatsu Ltd Injection molding method for injection molding machine
DE4314869A1 (en) * 1993-05-05 1994-11-10 Boehringer Ingelheim Kg Process for shaping thermoplastics, in particular resorbable thermoplastics
JP3595355B2 (en) * 1994-05-19 2004-12-02 三菱重工業株式会社 Injection molding method for composite molded products
JP3349070B2 (en) * 1996-09-03 2002-11-20 旭化成株式会社 Molding method of thermoplastic resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140124923A (en) * 2013-04-16 2014-10-28 아주대학교산학협력단 Injection molding method

Also Published As

Publication number Publication date
JPH11198163A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
JP6728440B2 (en) Method for producing foamed molded article
JP6109360B2 (en) Pressure adjustment mechanism
EP1475208B1 (en) Method for forming a molded polymeric part
US6929763B2 (en) Injection molding method
JP6045386B2 (en) Method for producing foam molded article
JP6023149B2 (en) Manufacturing method and manufacturing apparatus for foam molded article
WO2002053347A1 (en) Foam injection molding method
JP3590559B2 (en) Injection molding equipment for thermoplastic resin molded products
EP1393879B1 (en) Forming device for thermoplastic resin formed part
JP3851439B2 (en) Manufacturing method of difficult-to-mold resin molded products
JP2001341152A (en) Injection molding machine
CN109906138B (en) Method and apparatus for producing foam molded body
JP4148583B2 (en) Method for producing difficult-to-mold resin molded body
JP2001162649A (en) Method and apparatus for manufacturing sandwich foam
JP3598017B2 (en) Injection molding equipment for thermoplastic resin molded products
JP2001277328A (en) Apparatus and method for manufacturing thermoplastic resin molding
JP2002192549A (en) Expanded injection moldings
JP2003053766A (en) Continuous molding method for injection foamed molded object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

EXPY Cancellation because of completion of term