WO2002052680A1 - Antenne imprimee pastille compacte - Google Patents

Antenne imprimee pastille compacte Download PDF

Info

Publication number
WO2002052680A1
WO2002052680A1 PCT/FR2001/004064 FR0104064W WO02052680A1 WO 2002052680 A1 WO2002052680 A1 WO 2002052680A1 FR 0104064 W FR0104064 W FR 0104064W WO 02052680 A1 WO02052680 A1 WO 02052680A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
projection
substrate
symmetry
faces
Prior art date
Application number
PCT/FR2001/004064
Other languages
English (en)
Inventor
Yann Toutain
Jean-Philippe Coupez
Jean-Pierre Blot
Original Assignee
France Telecom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom filed Critical France Telecom
Priority to EP01995742A priority Critical patent/EP1346442B1/fr
Priority to DE60105447T priority patent/DE60105447T2/de
Publication of WO2002052680A1 publication Critical patent/WO2002052680A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0471Non-planar, stepped or wedge-shaped patch

Definitions

  • the present invention relates to a printed antenna of the "patch" type in plated technology, with linear or circular polarization, to operate at frequencies of the order of a few Gigahertz.
  • this antenna is intended to be reproduced to be integrated into a network for receiving and / or transmitting telecommunications signals, on board a vehicle, such as a low-orbit satellite, or installed in a base station. in connection with a telecommunications satellite, or installed in a base station for radiocommunications with mobile terminals.
  • the invention is directed to a printed antenna of the half-wave "patch" type comprising a dielectric substrate and two conductive layers respectively on the faces of the substrate.
  • One of the layers constitutes a ground plane.
  • the other layer is a rectangular or square conductive plate, called a "patch".
  • Such an elementary printed antenna is easily integrated and has a low manufacturing cost thanks to a simple machining process.
  • the electrical characteristics of the antenna depend considerably on the dielectric material of the substrate on which the two conductive layers are etched.
  • the dielectric substrate When the dielectric substrate is thin and has a high dielectric permittivity, the antenna is ineffective and its bandwidth is low. To obtain a more efficient antenna, the dielectric substrate must be thick and be made of a material of low dielectric permittivity. However, the size of the antenna thus obtained is significantly larger, which makes it difficult to integrate it into a network. In addition, the opening of the antenna radiation pattern is reduced.
  • the object of the present invention is to provide a printed antenna of the high-efficiency half-wave "pellet" type, having a size smaller than that according to the prior art mentioned above, and having a more open radiation pattern.
  • a printed antenna of the half-wave type comprising a dielectric substrate and two conductive layers respectively on the faces of the substrate and symmetrically with respect to a plane of symmetry of the antenna perpendicular to the faces of the substrate, is characterized in that one of the faces of the substrate has a projection extending longitudinally to the plane of symmetry and one of the conductive layers extends over and along the projection.
  • the conductive layer of the antenna which extends over and along the projection may have a contour, for example rectangular, and constitute a radiating element, and the other conductive layer may constitute a ground plane.
  • the conductive layer which extends over and along the projection can constitute a ground plane, and the other layer conductive can be flat, for example rectangular, and constitute a radiating element.
  • the projection which may have a cross section of the plane of symmetry which is rectangular or sinusoidal, or trapezoidal or triangular, has a height substantially equal to the half-difference of the lengths of the large and small sides of the rectangular layer extending over and the along the projection.
  • the height of the projection is generally chosen as a function of the targeted level of compactness of the antenna; the greater the height of the projection, the smaller the size of the antenna.
  • the other face of the substrate may include another projection extending longitudinally to the plane of symmetry and covered by the other conductive layer.
  • one of the faces of the antenna substrate comprises two perpendicular projections forming a projecting cross, extending longitudinally to two respective planes of symmetry of the perpendicular antenna.
  • the conductive layer of the antenna which extends over and along the projections can occupy a rectangular or square surface on the dielectric substrate whose sides have the lengths of the projections respectively.
  • the cross-polarized antenna preferably comprises a hybrid coupler which is produced on a dielectric support and housed in the dielectric substrate and which has at least one access connected to the end of the internal conductor of a coaxial probe, and at least one another access connected by a metal crossing to the conductive layer extending over and along one of the projections.
  • the two projections on one of the faces of the substrate are replaced by a projection with axial symmetry about an axis perpendicular to the faces of the substrate.
  • the invention also relates to a method of manufacturing the printed “patch” antenna, which comprises machining one face of a block of dielectric substrate to form cavities separated by at least one strip having the section of a projection. extending longitudinally to the plane of symmetry, at least one metallization of the face of the dielectric block machined to form one of the conductive layers, and a cutting of the printed antenna substantially in the center of the machined block metallized along the contour of the antenna.
  • FIGS. 1 and 2 are respectively a sectional view taken along the line I-I in Figure 2 and a top view of a printed antenna type "patch" with linear polarization according to a first preferred embodiment of the invention
  • FIG. 3 and 4 are respectively a sectional view taken along line III-III in Figure 4 and a top view of a printed antenna type "patch" with linear polarization according to a second preferred embodiment of the invention ;
  • FIG. 5 shows two diagrams of electric field radiation respectively relating to a “patch” antenna according to the prior art and a "patch” antenna according to the first embodiment;
  • FIGS. 6 and 7 are respectively top and perspective views of a block of raw dielectric foam during a first step of manufacturing an antenna according to the invention
  • FIGS. 8 and 9 are respectively top and perspective views of the block of dielectric foam machined during a second step of the manufacturing process
  • - Figures 10 and 11 are respectively top and perspective views of the block of foam machined and metallized during a third step of the manufacturing process
  • - Figures 12 and 13 are respectively top and perspective views of the block of machined and metallized foam after another machining step according to the manufacturing process
  • Figures 14 and 15 are sectional views similar to Figure 1, showing projections with sinusoidal profiles and staircase, respectively;
  • Figure 16 is a sectional view similar to Figures 1 and 3, of an antenna with two projections superposed respectively on the two faces of the substrate;
  • FIG. 17 is a perspective view of a printed antenna of the "patch" type with circular polarization with hybrid coupler, according to a third embodiment of the invention, a quarter of antenna sector having been cut away;
  • FIG. 18 and 19 are top and sectional views taken along line XIX-XIX of the antenna shown in Figure 17;
  • FIG. 20 shows variations in adaptation and transmission as a function of the frequency for the antenna according to the third embodiment;
  • - Figure 21 is a perspective view of a printed antenna with crossed polarizations.
  • a printed antenna of the linearly polarized "patch" half-wave type la comprises a dielectric substrate 2a, a first electrically conductive layer 3a extending over a first face of the substrate and constituting a ground plane, and a second rectangular electrically conductive layer 4a extending at the center of the second face of the substrate and having a central parallelepipedal projection 5a.
  • the second conductive layer 4a has a rectangular outline and covers the top and the longitudinal sides of the projection 5a.
  • the antenna thus has a symmetrical structure with respect to a plane of symmetry YY perpendicular to the faces of the substrate 2a and longitudinal to the projection 5a.
  • the layer 4a has a U-shaped section with a potent end, as shown in FIG. 1, with wings extending over the second face of the substrate 2a and having a width L1 much greater than the width L2 of the projection 5a.
  • the height h of the projection 5a is equal to or greater than the thickness e of the substrate 2a.
  • the length of the radiating element constituted by the second conductive layer 4a is reduced significantly. This reduction in length brings the radiating slots 6a closer to symmetrical ends of the “patch” antenna 1a, which opens the radiation pattern in the electric field plane perpendicular to the projection 5a.
  • the significant thickening at the center of the substrate 2a formed by the projection 5a covered with the conductive layer 4a electrically lengthens the resonant dimension of the half-wave antenna and thus increases the characteristic impedance at the center of the antenna which is equivalent to a pseudo short-circuit.
  • the projection significantly reduces the size of the antenna for a given operating frequency. The higher the jump impedance at the center of the antenna, the more the width L2 of the jump must be reduced for a given frequency under the resonance condition.
  • a microstrip line 7a having a width W7 significantly smaller than the width W of the radiating element 4a and extending perpendicularly to it, up to the middle of the long side of a wing of width L1 of layer 4a.
  • This microstrip line corresponds to a quarter-wave transformer, and acts as an impedance adapter with respect to the characteristic impedance, typically 50 ⁇ , of the antenna supply line.
  • another solution consists in using a coaxial probe, the internal conductor of which is connected at a point on the antenna, such as a wing. of layer 4a, having an input impedance equal to the characteristic impedance.
  • FIGS. 3 and 4 concerning a second embodiment of printed antenna lb of the half-wave "pastille" type according to the invention elements similar to those in the antenna la according to the first embodiment are designated by the same numerical reference followed of the letter b in place of the letter a.
  • the printed antenna of the half-wave "pellet" type lb is a dual variant of the first embodiment while still having symmetry with respect to a plane of symmetry YY perpendicular to the faces of the substrate 2b and by providing the symmetrical projection 5a, not on the second face of the dielectric substrate 2a supporting the rectangular radiating element 4a, but on the first face of the substrate 2b supporting the first conductive layer 3b constituting the ground plane of the antenna lb.
  • the radiating element 1b is a completely flat rectangular conductive plate 4b, extending along the axis of the projection 5b above it.
  • the length Lb of the conductive layer 4b is still conserved according to the preceding relation:
  • Lb L - 2h, where h denotes the height of the jump 5b of width L2.
  • the radiation diagram in the electric field plane perpendicular to the projection 5a has an opening proportional to the height h of the projection, much wider, for example for the antenna la4, than the opening of the diagram radiation from the TA antenna according to the prior art.
  • the aperture at half radiated power (3 dB) reaches approximately 120 ° for the antenna la4.
  • the openings of the radiation pattern at 3 dB can vary from 60 ° to at least approximately 120 °.
  • the radiation efficiency remains greater than 90% for all the antennas according to the invention.
  • a preferred method of manufacturing a printed antenna with linear polarization 1a according to the invention mainly comprises four steps E1, E2, E3 and
  • the production starts from a block of thin foam BL of thickness h + e, of width greater than W and of length greater than La.
  • step E2 two rectangular cavities C with a bottom of thickness e, are machined symmetrically with respect to the transverse axis in one face of the block BL so that the cavities are separated by a transverse strip BA having the section (h .L2) of jump 5a.
  • the cavities C have a width greater than L1 and a length greater than W.
  • the upper face of the block BL with the cavities is metallized by depositing a layer of metallic paint to constitute the conductive layer 4a.
  • the metallic paint covers the strip BA and the bottom of the cavities C.
  • the metallic paint also covers the underside of the block so as to constitute the ground plane 3a.
  • the ground plane 3a is constituted by a metal support on which the block of machined foam is fixed.
  • step E4 the antenna la is cut in D by a second machining in the metallized block along the rectangular outline (W.La) of the conductive layer 4a and the elongated rectangular outline of the microstrip supply line 7a.
  • an antenna 1b with a ground plane 3b shaped with a projection 5b can also be machined in a block of dielectric foam BL.
  • the section of the projection 5a, 5b transverse to the plane of symmetry YY is not limited to the rectangular or square profile shown in FIGS. 1 and 3.
  • the reduction in the length of L to La, Lb of the antenna generating a central zone of very high impedance may result from another symmetrical profile of the cross section of the projection, for example substantially sinusoidal 51, as shown in FIG. 14, or substantially isosceles or isosceles trapezoidal, or even substantially in stair steps 52 as shown in Figure 15, with bearings parallel or inclined relative to the faces of the substrate.
  • the antenna includes both parallel projections superimposed on the faces of the substrate. For example, as shown in FIG.
  • the faces of the substrate 2ab of the lab antenna respectively comprise a first projection 52ab with rectangular cross section for the first conductive layer of ground plane 3ab and a second projection 51ab with sinusoidal cross section for the second conductive layer of radiating element 4ab.
  • the projections 52ab and 51ab extend one above the other longitudinally to the plane of symmetry YY and are covered respectively by the layers 3ab and 4ab.
  • the half-wave antenna 1a, 1b Compared to a quarter wave ground return antenna which is not symmetrical with respect to in two planes, the half-wave antenna 1a, 1b according to the invention retains, despite the projection 5a, 5b, a double symmetry along the plane of symmetry YY longitudinal to the projection and a plane of symmetry XX perpendicular to the projection and longitudinal to the supply line 7a, as shown in Figures 2 and.
  • This double symmetry makes it possible to confer the advantages of the jump to an antenna with two crossed polarizations, and more particularly to an antenna with circular polarization described below.
  • a printed antenna with circular polarization the according to the invention has a doubly symmetrical structure with respect to two planes of symmetry XX and YY perpendicular to each other and to the faces of one antenna.
  • the antenna comprises it on a first face of a thin dielectric substrate 2c of thickness e a metal layer 3c, which can be a metal base, to constitute the ground plane of the antenna le, and in the center of a second face of the substrate 2c, a conductive layer 4c covering two projections 5c of identical size perpendicular to each other to form a central cross with four equal branches.
  • the projections 5c have a height h generally greater than the thickness e of the substrate 2c and a length Le such that:
  • L2 denotes the width of each projection
  • Ll the width of the four square surfaces of the metal layer 4c located at the base of the cross formed by the projections 5c and arranged on the second face of the substrate 2c
  • L the corresponding length of a flat square patch of an antenna according to the prior art.
  • the antenna thus presents it two perpendicular planes of symmetry XX and YY longitudinal respectively to the crossed projections 5c and a conductive layer 4c forming a radiating element having a reduced square surface (Le. Le) on the substrate 2c.
  • the antenna is fed by a coaxial probe 7c whose external conductive base is fixed to the ground plane 3c and whose internal conductor passes only through the dielectric support 21c.
  • the end of the internal conductor of the coaxial probe 7c is welded to the end of a branch 81c forming an access to the top of a hybrid coupler 8c at 3dB-90 °.
  • the coupler 8c is configured substantially along the outline of a square and photo-etched on the upper face of the support 21c.
  • Another vertex, located in front in Figures 17 and 18, can be connected to the internal conductor of a second coaxial probe (not shown) for cross-polarization operation.
  • the other two vertices 82c of the coupler 8c are extended by metallic bushings 83c which are formed through the ends of the two projections 5c and the ends of which are in metallic contact by welding 84c with the conductive layer 4c extending over the tops of the projections 5c.
  • the relative permittivity of the dielectric support 21c is significantly higher than that of the substrate 2c so that for the operating frequencies of the antenna of the order of gigahertz, the dimensions of the coupler 8c are small and therefore compatible with the compactness of the antenna.
  • the antenna 2c is produced, substantially according to steps analogous to steps E1 to E4, with regard to the block of dielectric foam 21c, by digging by machining four cavities to form two cross bands forming after cutting the two perpendicular projections 5c, and by digging an underlying cavity to receive the dielectric support 21c supporting the hybrid coupler 8c.
  • the dielectric substrate 21c has an overall thickness e of 10 mm with a cavity with a thickness of 635 ⁇ m for receiving the dielectric support 21c having a thickness of 635 ⁇ m.
  • FIG. 20 shows the adaptation A and the transmission TC for a preferred circular polarization rotating in the anticlockwise direction, compared to a TD transmission rotating in the direction direct clockwise, depending on the frequency.
  • the antenna resonates around a frequency of 2 GHz with an adaptation to 10 dB of around 20% for the bandwidth, which corresponds to a bandwidth of 410 MHz.
  • the effective bandwidth in transmission is lower, of the order of 13%.
  • the lengths of the projections 5c are different for an operation with elliptical polarization with one probe, or an operation with crossed polarizations with two probes.
  • the invention is not limited to crossed parallelepipedic projections 5c for an operation with crossed polarizations, in particular with circular polarization.
  • the two projections can be replaced by a central projection with axial symmetry around a central axis of symmetry ZZ perpendicular to the faces of the substrate 2d coated with the conductive layers 3d and 4d.
  • the projection 5d is a macaroon.
  • the projection has a discoid, frustoconical or conical or dome or bell shape, with a circular or elliptical base on the substrate.
  • At least two ends of supply coupler 84d are provided on the projection 5d, on two axes perpendicular to each other and to the axis of symmetry ZZ, at equal or different distances from the axis ZZ.

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

L'antenne imprimée de type demi-onde 'pastille' comprend, symétriquement à un plan (YY) perpendiculaire aux faces de l'antenne, un substrat diélectrique (2a) et deux couches conductrices (3a, 4a) s'étendant respectivement sur les faces du substrat. L'une des faces du substrat comporte un ressaut (5a) s'étendant longitudinalement au plan de symàtrie (YY) et l'une (4a) des couches conductrices s'étend sur et le long du ressaut. En conséquence, l'antenne a une taille réduite, tout en présentant un diagramme de rayonnement plus ouvert. L'antenne ne comprend qu'un ressaut pour une polarisation linéaire, et deux ressauts croisés ou un ressaut à symétrie axiale pour des polarisations croisées.

Description

Antenne imprimée pastille compacte
La présente invention concerne une antenne imprimée du type "pastille" en technologie plaquée, à polarisation linéaire ou circulaire, pour fonctionner à des fréquences de l'ordre de quelques Gigahertz. En particulier, cette antenne est destinée à être reproduite pour être intégrée dans un réseau de réception et/ou d'émission de signaux de télécommunications, embarqué dans un engin, tel qu'un satellite à orbite basse, ou installée dans une station de base en liaison avec un satellite de télécommunication, ou installée dans une station de base pour des radiocommunications avec des terminaux mobiles.
Plus particulièrement, l'invention est dirigée vers une antenne imprimée du type demi-onde "pastille" comprenant un substrat diélectrique et deux couches conductrices respectivement sur les faces du substrat. L'une des couches constitue un plan de masse. L'autre couche est une plaque conductrice rectangulaire ou carrée, appelée "pastille" (patch en anglais) . Une telle antenne imprimée élémentaire est facilement intégrable et présente un faible coût de fabrication grâce à un procédé d'usinage simple.
Cependant, les caractéristiques électriques de l'antenne dépendent considérablement de la matière diélectrique du substrat sur lequel les deux couches conductrices sont gravées .
Lorsque le substrat diélectrique est mince et présente une permittivité diélectrique élevée, l'antenne est peu efficace et sa bande passante est faible. Pour obtenir une antenne plus efficace, le substrat diélectrique doit être épais et être constitué en une matière de faible permittivité diélectrique. Toutefois la taille de l'antenne ainsi obtenue est nettement plus grande, ce qui rend difficile l'intégration de celle-ci dans un réseau. En outre, l'ouverture du diagramme du rayonnement de l'antenne est diminuée.
La présente invention a pour but de fournir une antenne imprimée de type demi-onde "pastille" à efficacité élevée, ayant une taille plus petite que celle selon la technique antérieure évoquée ci- dessus, et présentant un diagramme de rayonnement plus ouvert.
A cette fin, une antenne imprimée du type demi- onde comprenant un substrat diélectrique et deux couches conductrices respectivement sur les faces du substrat et symétriquement par rapport à un plan de symétrie de l'antenne perpendiculaire aux faces du substrat, est caractérisée en ce que l'une des faces du substrat comporte un ressaut s'étendant longitudinalement au plan de symétrie et l'une des couches conductrices s'étend sur et le long du ressaut.
Pour une antenne à polarisation linéaire, la couche conductrice de l'antenne qui s'étend sur et le long du ressaut peut avoir un contour par exemple rectangulaire et constituer un élément rayonnant, et l'autre couche conductrice peut constituer un plan de masse. Selon une autre réalisation, la couche conductrice qui s'étend sur et le long du ressaut peut constituer un plan de masse, et l'autre couche conductrice peut être plane, par exemple rectangulaire, et constituer un élément rayonnant.
Le ressaut qui peut avoir une section transversale au plan de symétrie qui est rectangulaire ou sinusoïdale, ou trapézoïdale ou triangulaire, a une hauteur sensiblement égale à la demi-différence des longueurs des grands et petits côtés de la couche rectangulaire s'étendant sur et le long du ressaut. Toutefois, la hauteur du ressaut est de manière générale choisie en fonction du niveau de compacité visé de l'antenne ; plus la hauteur du ressaut est grande, plus la taille de l'antenne est réduite .
L'autre face du substrat peut comporter un autre ressaut s'étendant longitudinalement au plan de symétrie et recouvert par l'autre couche conductrice. Pour une antenne à polarisations croisées, notamment à polarisation circulaire ou elliptique, l'une des faces du substrat de l'antenne comporte deux ressauts perpendiculaires formant une croix saillante, s'étendant longitudinalement à deux plans de symétrie respectifs de l'antenne perpendiculaires. La couche conductrice de l'antenne qui s'étend sur et le long des ressauts peut occuper une surface rectangulaire ou carrée sur le substrat diélectrique dont les côtés ont respectivement les longueurs des ressauts .
L'antenne à polarisations croisées comprend de préférence un coupleur hybride qui est réalisé sur un support diélectrique et logé dans le substrat diélectrique et qui a au moins un accès connecté à l'extrémité du conducteur interne d'une sonde coaxiale, et au moins un autre accès relié par une traversée métallique à la couche conductrice s'étendant sur et le long de l'un des ressauts. En variante, les deux ressauts sur l'une des faces du substrat sont remplacés par un ressaut à symétrie axiale autour d'un axe perpendiculaire aux faces du substrat.
L'invention concerne également un procédé de fabrication de l'antenne imprimée "pastille", qui comprend un usinage d'une face d'un bloc de substrat diélectrique pour former des cavités séparées par au moins une bande ayant la section d'un ressaut s'étendant longitudinalement au plan de symétrie, une métallisation au moins de la face du bloc diélectrique usiné pour former l'une des couches conductrices, et un découpage de l'antenne imprimée sensiblement au centre du bloc usiné métallisé suivant le contour de l'antenne.
D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante de plusieurs réalisations préférées de l'invention en référence aux dessins annexés dans lesquels :
- les figures 1 et 2 sont respectivement une vue en coupe prise suivant la ligne I-I dans la figure 2 et une vue de dessus d'une antenne imprimée de type "pastille" à polarisation linéaire selon une première réalisation préférée de l'invention ;
- les figures 3 et 4 sont respectivement une vue en coupe prise suivant la ligne III-III dans la figure 4 et une vue de dessus d'une antenne imprimée de type "pastille" à polarisation linéaire selon une deuxième réalisation préférée de l'invention ; la figure 5 montre deux diagrammes de rayonnement de champ électrique relatifs respectivement à une antenne "pastille" selon la technique antérieure et une antenne "pastille" selon la première réalisation ;
- les figures 6 et 7 sont respectivement des vues de dessus et en perspective d'un bloc de mousse diélectrique brut lors d'une première étape de fabrication d'une antenne selon l'invention ;
- les figures 8 et 9 sont respectivement des vues de dessus et en perspective du bloc de mousse diélectrique usiné lors d'une deuxième étape du procédé de fabrication ;
- les figures 10 et 11 sont respectivement des vues de dessus et en perspective du bloc de mousse usiné et métallisé lors d'une troisième étape du procédé de fabrication ; - les figures 12 et 13 sont respectivement des vues de dessus et en perspective du bloc de mousse usiné et métallisé après une autre étape d'usinage selon le procédé de fabrication;
- les figures 14 et 15 sont des vues en coupe analogues à la figure 1, montrant des ressauts à profils sinusoïdal et en marche d'escalier, respectivement ;
- la figure 16 est une vue en coupe analogue aux figures 1 et 3, d'une antenne à deux ressauts superposés respectivement sur les deux faces du substrat ;
- la figure 17 est une vue en perspective d'une antenne imprimée du type "pastille" à polarisation circulaire avec coupleur hybride, selon une troisième réalisation de l'invention, un quart de secteur d'antenne ayant été arraché ;
- les figures 18 et 19 sont des vues de dessus et en coupe prises le long de la ligne XIX-XIX de l'antenne montrée à la figure 17 ; la figure 20 montre des variations d'adaptation et de transmission en fonction de la fréquence pour l'antenne selon la troisième réalisation ; et - la figure 21 est une vue en perspective d'une antenne imprimée à polarisations croisées.
En référence aux figures 1 et 2, une antenne imprimée de type demi-onde "pastille" à polarisation linéaire la selon la première réalisation de l'invention comprend un substrat diélectrique 2a, une première couche conductrice électriquement 3a s'étendant sur une première face du substrat et constituant un plan de masse, et une deuxième couche rectangulaire conductrice électriquement 4a s ' étendant au centre de la deuxième face du substrat et présentant un ressaut central parallélépipédique 5a. La deuxième couche conductrice 4a a un contour rectangulaire et recouvre le dessus et les côtés longitudinaux du ressaut 5a. L'antenne a ainsi une structure symétrique par rapport à un plan de symétrie YY perpendiculaire aux faces du substrat 2a et longitudinal au ressaut 5a. La couche 4a présente une section en U à extrémité potencée, comme montré à la figure 1, avec des ailes s'étendant sur la deuxième face du substrat 2a et ayant une largeur Ll beaucoup plus grande que la largeur L2 du ressaut 5a. En général, la hauteur h du ressaut 5a est égale ou supérieure à l'épaisseur e du substrat 2a. Comparativement à un élément rayonnant plat (patch) selon la technique antérieure ayant une largeur W et une longueur L bien souvent égale à W, comme montré en traits pointillés à la figure 2, la longueur La de l'antenne la selon l'invention est réduite à : La = 2L1 + L2 = L - 2h. Grâce au ressaut 5a sur toute la largeur W de l'antenne, la longueur de l'élément rayonnant constitué par la deuxième couche conductrice 4a est réduite de manière significative. Cette réduction de longueur rapproche les fentes rayonnantes 6a à des extrémités symétriques de l'antenne "pastille" la, ce qui ouvre le diagramme de rayonnement dans le plan de champ électrique perpendiculaire au ressaut 5a. L' épaississement important au centre du substrat 2a formé par le ressaut 5a recouvert de la couche conductrice 4a allonge électriquement la dimension résonnante de l'antenne demi-onde et ainsi augmente l'impédance caractéristique au centre de l'antenne qui est équivalent à un pseudo court-circuit. Le ressaut réduit de manière significative la taille de l'antenne pour une fréquence de fonctionnement donnée. Plus l'impédance de ressaut au centre de l'antenne est élevée, plus la largeur L2 du ressaut doit être diminuée pour une fréquence donnée sous la condition de résonance.
Dans la figure 2 est également représentée une ligne microruban 7a présentant une largeur W7 nettement plus petite que la largeur W de l'élément rayonnant 4a et s'étendant perpendiculairement à celui-ci, jusqu'au milieu du long côté d'une aile de largeur Ll de la couche 4a. Cette ligne microruban correspond à un transformateur quart d'onde, et joue le rôle d'adaptateur d'impédance par rapport à l'impédance caractéristique, typiquement 50 Ω, de la ligne d'alimentation de l'antenne. Pour alimenter l'antenne, une autre solution consiste à utiliser une sonde coaxiale, dont le conducteur interne est connecté en un point de l'antenne, telle qu'une aile de la couche 4a, présentant une impédance d'entrée égale à l'impédance caractéristique.
Dans les figures 3 et 4 concernant une deuxième réalisation d'antenne imprimée lb de type demi-onde "pastille" selon l'invention, des éléments similaires à ceux dans l'antenne la selon la première réalisation sont désignés par le même repère numérique suivi de la lettre b à la place de la lettre a.
L'antenne imprimée de type demi-onde "pastille" lb est une variante duale de la première réalisation en présentant encore une symétrie par rapport à un plan de symétrie YY perpendiculaire aux faces du substrat 2b et en ménageant le ressaut symétrique 5a, non pas sur la deuxième face du substrat diélectrique 2a supportant l'élément rayonnant rectangulaire 4a, mais sur la première face du substrat 2b supportant la première couche conductrice 3b constituant le plan de masse de l'antenne lb. L'élément rayonnant lb est une plaque conductrice rectangulaire 4b complètement plane, s'étendant suivant l'axe du ressaut 5b au- dessus de celui-ci. La longueur Lb de la couche conductrice 4b est encore conservée selon la relation précédente :
Lb = L - 2h, où h dénote la hauteur du ressaut 5b de largeur L2.
A titre d'exemple, le tableau I ci-après indique la fréquence de résonance correspondant à une longueur d'onde λ, la bande passante centrée sur la fréquence de résonance en pourcentage par rapport à celle-ci, et la directivité pour une antenne TA selon la technique antérieure comprenant une plaque plane carrée de largeur W = L = 50 mm = λ/ (2 / S r) et un substrat ayant une épaisseur e = 2 mm et réalisé en mousse de permittivité relative εr = 1,07, sensiblement équivalent à une lame d'air, et pour des antennes conformées à polarisation linéaire lai à la4 selon la première réalisation (figures 1 et 2), avec une longueur La = L - 2h < λ/ { 2 - Jε r) .
TABLEAU 1
Figure imgf000011_0001
Selon le tableau 1 précédent, plus la hauteur h du ressaut 5a est grande, ou plus précisément plus le rapport h/e est grand, et dans une moindre mesure, plus la largeur L2 du ressaut 5a est grande, plus la bande passante de l'antenne croît et plus la directivité de l'antenne diminue.
Comme montré à la figure 5, le diagramme de rayonnement dans le plan de champ électrique perpendiculaire au ressaut 5a présente une ouverture proportionnelle à la hauteur h du ressaut, beaucoup plus large, par exemple pour l'antenne la4, que l'ouverture du diagramme du rayonnement de l'antenne TA selon la technique antérieure. L'ouverture à demi- puissance rayonnée (3 dB) atteint 120° environ pour l'antenne la4. Ces propriétés offrent plus de liberté sur les positions relatives des antennes selon l'invention mises dans un réseau à cause de la réduction relative des dimensions de l'antenne. De plus, le faisceau d'un réseau avec des antennes selon l'invention peut être plus largement dépointé puisque le diagramme de rayonnement de l'antenne est plus ouvert.
Ainsi en adaptant de manière appropriée la hauteur h du ressaut 5a, les ouvertures du diagramme de rayonnement à 3 dB peuvent varier de 60° à au moins 120° environ. L'efficacité de rayonnement reste supérieure à 90% pour toutes les antennes selon 1 ' invention.
Des résultats similaires ont été observés pour des antennes lbl à lb4 selon la deuxième réalisation de l'invention, avec un plan de masse 3b conformé avec un ressaut 5b, comme montré dans le tableau 2 ci-après pour des antennes toujours avec les dimensions Lb = L = 50 mm et e = 2 mm.
TABLEAU 2
Figure imgf000012_0001
Un procédé de fabrication préféré d'une antenne imprimée à polarisation linéaire la selon l'invention comprend principalement quatre étapes El, E2, E3 et
E4 respectivement illustrées aux figures 6-7, 8-9, 10-11 et 12-13.
A l'étape initiale El, la fabrication part d'un bloc de mousse mince BL d'épaisseur h+e, de largeur supérieure à W et de longueur supérieure à La . La matière diélectrique du bloc BL dans lequel sera usiné le substrat diélectrique 2a présente une permittivité relative typiquement de l'ordre de 1,07 en correspondance avec une longueur L = 50 mm < λr/2 avec λr = X/ s/ë z , où λ est la longueur d'onde correspondant à une fréquence de l'ordre de 2 GHz. A l'étape E2, deux cavités rectangulaires C avec un fond d'épaisseur e, sont usinées symétriquement par rapport à l'axe transversal dans une face du bloc BL afin que les cavités soient séparées par une bande transversale BA ayant la section (h.L2) du ressaut 5a. Les cavités C ont une largeur supérieure à Ll et une longueur supérieure à W.
Puis à l'étape E3, la face supérieure du bloc BL avec les cavités est métallisée en déposant une couche de peinture métallique pour constituer la couche conductrice 4a. En particulier, la peinture métallique recouvre la bande BA et le fond des cavités C. La peinture métallique recouvre également la face inférieure du bloc de manière à constituer le plan de masse 3a. En variante, à la place de la métallisation de la face inférieure, le plan de masse 3a est constitué par un support métallique sur lequel le bloc de mousse usiné est fixe.
Finalement à l'étape E4, l'antenne la est découpée en D par un deuxième usinage dans le bloc métallisé suivant le contour rectangulaire (W.La) de la couche conductrice 4a et le contour rectangulaire allongé de la ligne d'alimentation à microruban 7a.
Par des étapes analogues aux étapes précédentes El à E4, une antenne lb avec un plan de masse 3b conformé avec un ressaut 5b peut être également usinée dans un bloc de mousse diélectrique BL.
La section du ressaut 5a, 5b transversale au plan de symétrie YY n'est pas limitée au profil rectangulaire ou carré montré aux figures 1 et 3. La réduction de la longueur de L en La, Lb de l'antenne engendrant une zone centrale de très forte impédance peut résulter d'un autre profil symétrique de la section transversale du ressaut, par exemple sensiblement sinusoïdal 51, comme montré à la figure 14, ou sensiblement trapézoïdal isocèle ou triangulaire isocèle, ou encore sensiblement en marches d'escalier 52 comme montré à la figure 15, avec des paliers parallèles ou inclinés par rapport aux faces du substrat. Selon une autre variante, l'antenne comprend à la fois des ressauts parallèles superposés sur les faces du substrat. Par exemple, comme montré à la figure 16, les faces du substrat 2ab de l'antenne lab comprennent respectivement un premier ressaut 52ab à section transversale rectangulaire pour la première couche conductrice de plan de masse 3ab et un deuxième ressaut 51ab à section transversale sinusoïdale pour la deuxième couche conductrice d'élément rayonnant 4ab. Les ressauts 52ab et 51ab s'étendent l'un au dessus de l'autre longitudinalement au plan de symétrie YY et sont recouverts respectivement par les couches 3ab et 4ab.
Comparativement à une antenne quart d'onde à retour de masse qui n'est pas symétrique par rapport à deux plans, l'antenne demi-onde la, lb selon l'invention conserve, malgré le ressaut 5a, 5b une double symétrie suivant le plan de symétrie YY longitudinal au ressaut et un plan de symétrie XX perpendiculaire au ressaut et longitudinal à la ligne d'alimentation 7a, comme indiqué aux figures 2 et .
Cette double symétrie permet de conférer les avantages du ressaut à une antenne à deux polarisations croisées, et plus particulièrement à une antenne à polarisation circulaire décrite ci- après .
En référence maintenant aux figures 17, 18 et 19, une antenne imprimée à polarisation circulaire le selon l'invention présente une structure doublement symétrique par rapport à deux plans de symétrie XX et YY perpendiculaires entre eux et aux faces de 1 ' antenne .
L'antenne le comprend sur une première face d'un substrat diélectrique mince 2c d'épaisseur e une couche métallique 3c, qui peut être un socle métallique, pour constituer le plan de masse de l'antenne le, et au centre d'une deuxième face du substrat 2c, une couche conductrice 4c recouvrant deux ressauts 5c de dimension identique perpendiculaires entre eux pour former une croix centrale à quatre branches égales. Comme les ressauts 5a et 5b, les ressauts 5c ont une hauteur h en général supérieure à l'épaisseur e du substrat 2c et une longueur Le telle que :
Le - L2 + 2.L1 = L - 2h, où L2 désigne la largeur de chaque ressaut, Ll la largeur des quatre surfaces carrées de la couche métallique 4c situées à la base de la croix formée par les ressauts 5c et disposées sur la deuxième face du substrat 2c, et L la longueur correspondante d'une pastille carrée plane d'une antenne selon la technique antérieure.
L'antenne le présente ainsi deux plans perpendiculaires de symétrie XX et YY longitudinaux respectivement aux ressauts croisés 5c et une couche conductrice 4c formant un élément rayonnant ayant une surface carrée réduite (Le. Le) sur le substrat 2c.
En pratique, le substrat diélectrique 2c est composé d'un substrat 2c en mousse diélectrique de permittivité faible εr = 1,07, dont la face supérieure est usinée d'une manière analogue au substrat 2a, 2b pour obtenir les ressauts croisés 5c, et d'un petit support diélectrique carré 21c encastré dans une cavité centrale de la première face du substrat 2c et recouvert par la couche métallique 3c. La permittivité relative du support 21c est plus élevée, comme le diélectrique AR1000 de la société ARLON avec une permittivité εr = 10,2. Comme montré en détail aux figures 17 à 19, l'antenne le est alimentée par une sonde coaxiale 7c dont l'embase conductrice externe est fixée sur le plan de masse 3c et dont le conducteur interne traverse seulement le support diélectrique 21c. L'extrémité du conducteur interne de la sonde coaxiale 7c est soudée à l'extrémité d'une branche 81c formant un accès à un sommet d'un coupleur hybride 8c à 3dB-90°. Le coupleur 8c est configuré sensiblement suivant le contour d'un carré et photogravé sur la face supérieure du support 21c. Un autre sommet, situé devant dans les figures 17 et 18, peut être relié au conducteur interne d'une deuxième sonde coaxiale (non représentée) pour un fonctionnement à polarisations croisées. Les deux autres sommets 82c du coupleur 8c sont prolongés par des traversées métalliques 83c qui sont ménagées à travers des extrémités des deux ressauts 5c et dont les extrémités sont en contact métallique par soudures 84c avec la couche conductrice 4c s'étendant sur les dessus des ressauts 5c.
La permittivité relative du support diélectrique 21c est nettement plus élevée que celle du substrat 2c afin que pour les fréquences de fonctionnement de l'antenne de l'ordre du gigahertz, les dimensions du coupleur 8c soient petites et donc compatibles avec la compacité de l'antenne.
L'antenne 2c est fabriquée, sensiblement selon des étapes analogues aux étapes El à E4, pour ce qui concerne le bloc de mousse diélectrique 21c, en creusant par usinage quatre cavités pour former deux bandes en croix formant après découpe les deux ressauts perpendiculaires 5c, et en creusant une cavité sous-jacente pour recevoir le support diélectrique 21c supportant le coupleur hybride 8c. Par exemple, le substrat diélectrique 21c a une épaisseur globale e de 10 mm avec une cavité d'épaisseur de 635 μm pour recevoir le support diélectrique 21c ayant une épaisseur de 635 μm. La couche conductrice 4c recouvrant les ressauts croisés 5c a une largeur Le = 25 mm, pour des ressauts 5c ayant une hauteur h = 8 mm par rapport à une épaisseur utile e = 2 mm du substrat 2c.
Pour l'antenne le telle que dimensionnée ci- dessus, la figure 20 montre l'adaptation A et la transmission TC pour une polarisation circulaire préférée tournant suivant le sens contraire des aiguilles d'une montre, comparativement à une transmission TD tournant suivant le sens direct des aiguilles d'une montre, en fonction de la fréquence. L'antenne résonne autour d'une fréquence de 2 GHz avec une adaptation à 10 dB de 20% environ pour la bande passante, ce qui correspond à une largeur de bande de 410 MHz. La bande passante effective en transmission est plus faible, de l'ordre de 13%. En variante, les longueurs des ressauts 5c sont différentes pour un fonctionnement à polarisation elliptique avec une sonde, ou un fonctionnement à polarisations croisées avec deux sondes.
L'invention n'est pas limitée aux ressauts parallelepipediques croisés 5c pour un fonctionnement à polarisations croisées, notamment à polarisation circulaire. Par exemple, les deux ressauts peuvent être remplacés par un ressaut central à symétrie axiale autour d'un axe central de symétrie ZZ perpendiculaire aux faces du substrat 2d revêtues des couches conductrices 3d et 4d. Selon l'exemple illustré à la figure 21, le ressaut 5d est un macaron. Plus généralement, le ressaut a une forme discoïde, tronconique ou conique ou en forme de dôme ou cloche, avec une base circulaire ou elliptique sur le substrat. Au moins deux extrémités de coupleur d'alimentation 84d sont prévues sur le ressaut 5d, sur deux axes perpendiculaires entre eux et à l'axe de symétrie ZZ, à distances égales ou différentes de l'axe ZZ.

Claims

REVENDICATIONS
1 - Antenne imprimée (la ; lb) du type demi-onde comprenant un substrat diélectrique (2a ; 2b) et deux couches conductrices (3a, 4a ; 3b, 4b) s'étendant respectivement sur les faces du substrat et symétriquement par rapport à un plan de symétrie (XY) de l'antenne perpendiculaire aux faces du substrat, caractérisée en ce que l'une des faces du substrat (2a ; 2b) comporte un ressaut (5a ; 5b) s'étendant longitudinalement au plan de symétrie et l'une (4a ; 3b) des couches conductrices s'étend sur et le long du ressaut.
2 - Antenne conforme à la revendication 1, dans laquelle la couche conductrice (4a) qui s'étend sur et le long du ressaut (5a) constitue un élément rayonnant, et l'autre couche conductrice (3a) constitue un plan de masse.
3 - Antenne conforme à la revendication 1, dans laquelle la couche conductrice (3b) qui s'étend sur et le long du ressaut (5b) constitue un plan de masse, et l'autre couche conductrice (4b) constitue un élément rayonnant.
4 - Antenne conforme à l'une quelconque des revendications 1 à 3, dans laquelle le ressaut (5a ; 5b) a une hauteur (h) sensiblement égale à la demi- différence des longueurs des grands et petits côtés de la couche rectangulaire (4a ; 4b) s'étendant sur et le long du ressaut.
5 - Antenne conforme à l'une quelconque des revendications 1 à 4, dans laquelle le ressaut (51, 52) a une section transversale au plan de symétrie (YY) qui est rectangulaire, ou sinusoïdale, ou trapézoïdale ou triangulaire.
6 - Antenne conforme à l'une quelconque des revendications 1 à 5, caractérisée en ce que l'autre face du substrat (2ab) comporte un autre ressaut (52ab ; 51ab) s'étendant longitudinalement au plan de symétrie (YY) et recouvert par l'autre couche conductrice (3ab ; 4ab) .
7 - Antenne (le) conforme à l'une quelconque des revendications 1 à 6, dans laquelle l'une des faces du substrat (2c) comporte deux ressauts perpendiculaires (5c) s'étendant longitudinalement à deux plans de symétrie respectifs (XX, YY) de l'antenne perpendiculaires.
8 - Antenne conforme à la revendication 7, dans laquelle la couche conductrice ( 4c ) qui s'étend sur et le long des ressauts occupe une surface rectangulaire sur le substrat diélectrique (2c) dont les côtés ont respectivement les longueurs des ressauts (5c) .
9 - Antenne conforme à la revendication 7 ou 8, comprenant un coupleur hybride (8c) qui est réalisé sur un support diélectrique (21c) et logé dans le substrat diélectrique (2c) et qui a au moins un accès (81c) connecté à l'extrémité du conducteur interne d'une sonde coaxiale (7c), et au moins un autre accès (81c) relié par une traversée métallique (83c) à la couche conductrice (4c) s'étendant sur et le long des ressauts (5c) . 10 - Antenne conforme à l'une des revendications 7 à 9, dans laquelle lesdits deux ressauts sur l'une des faces du substrat (2d) sont remplacés par un ressaut (5d) à symétrie axiale autour d'un axe (ZZ) perpendiculaire aux faces du substrat.
11 - Procédé de fabrication d'une antenne imprimée du type demi-onde (la ; lb ; le) comprenant un substrat diélectrique (2a ; 2b) et deux couches conductrices (3a, 4a ; 3b, 4b) s'étendant respectivement sur les faces du substrat et symétriquement par rapport à un plan de symétrie (XY) de l'antenne perpendiculaire aux faces du substrat, caractérisé en ce qu'il comprend un usinage d'une face (E2) d'un bloc de substrat diélectrique (BL) pour former des cavités (C) séparées par au moins une bande (BA) ayant la section d'un ressaut (5a ; 5b ; 5c) s'étendant longitudinalement au plan de symétrie, une métallisation (E3) au moins de la face du bloc avec ressaut diélectrique usiné pour former l'une des couches conductrices (4a ; 3b ; 4c) , et un découpage (E4) de l'antenne imprimée sensiblement au centre du bloc usiné métallisé suivant le contour de l'antenne.
PCT/FR2001/004064 2000-12-26 2001-12-19 Antenne imprimee pastille compacte WO2002052680A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01995742A EP1346442B1 (fr) 2000-12-26 2001-12-19 Antenne imprimee pastille compacte
DE60105447T DE60105447T2 (de) 2000-12-26 2001-12-19 Gedruckte patch-antenne

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0017257A FR2818811A1 (fr) 2000-12-26 2000-12-26 Antenne imprimee pastille compacte
FR00/17257 2000-12-26

Publications (1)

Publication Number Publication Date
WO2002052680A1 true WO2002052680A1 (fr) 2002-07-04

Family

ID=8858373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/004064 WO2002052680A1 (fr) 2000-12-26 2001-12-19 Antenne imprimee pastille compacte

Country Status (5)

Country Link
US (1) US20020113736A1 (fr)
EP (1) EP1346442B1 (fr)
DE (1) DE60105447T2 (fr)
FR (1) FR2818811A1 (fr)
WO (1) WO2002052680A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8077092B2 (en) 2004-04-30 2011-12-13 Ecole Nationale Superieure Des Telecommunications De Bretagne Planar antenna with conductive studs extending from the ground plane and/or from at least one radiating element, and corresponding production method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051747A (ja) * 2003-07-14 2005-02-24 Ngk Spark Plug Co Ltd アンテナ装置およびその製造方法
US8552835B2 (en) * 2005-10-28 2013-10-08 Mojix, Inc. RFID system with low complexity implementation and pallet coding error correction
WO2007094868A2 (fr) 2005-10-28 2007-08-23 Mojix, Inc. Récepteur rfid
US7873326B2 (en) * 2006-07-11 2011-01-18 Mojix, Inc. RFID beam forming system
WO2008027650A2 (fr) * 2006-07-11 2008-03-06 Mojix Inc. Système rfid
US7667652B2 (en) * 2006-07-11 2010-02-23 Mojix, Inc. RFID antenna system
EP2137710B1 (fr) 2007-03-23 2019-10-09 Mojix, Inc. Systèmes rfid utilisant un réseau d'exciteurs distribués
US8072311B2 (en) 2008-04-14 2011-12-06 Mojix, Inc. Radio frequency identification tag location estimation and tracking system and method
GB2485310B (en) * 2009-08-06 2014-12-10 Indian Space Res Organisation Printed quasi-tapered tape helical array antenna
JP5702675B2 (ja) 2010-06-18 2015-04-15 株式会社半導体エネルギー研究所 半導体装置の作製方法
US9008239B2 (en) 2011-03-07 2015-04-14 Mojix, Inc. Collision detection using a multiple symbol noncoherent soft output detector
US9602316B2 (en) 2011-03-07 2017-03-21 Mojix, Inc. Multiple symbol noncoherent soft output detector
US9883337B2 (en) 2015-04-24 2018-01-30 Mijix, Inc. Location based services for RFID and sensor networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0394960A1 (fr) * 1989-04-26 1990-10-31 Kokusai Denshin Denwa Co., Ltd Antenne à microruban
US5216430A (en) * 1990-12-27 1993-06-01 General Electric Company Low impedance printed circuit radiating element
US5886668A (en) * 1994-03-08 1999-03-23 Hagenuk Telecom Gmbh Hand-held transmitting and/or receiving apparatus
EP1026774A2 (fr) * 1999-01-26 2000-08-09 Siemens Aktiengesellschaft Antenne pour terminaux de radiocommunication sans fil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0394960A1 (fr) * 1989-04-26 1990-10-31 Kokusai Denshin Denwa Co., Ltd Antenne à microruban
US5216430A (en) * 1990-12-27 1993-06-01 General Electric Company Low impedance printed circuit radiating element
US5886668A (en) * 1994-03-08 1999-03-23 Hagenuk Telecom Gmbh Hand-held transmitting and/or receiving apparatus
EP1026774A2 (fr) * 1999-01-26 2000-08-09 Siemens Aktiengesellschaft Antenne pour terminaux de radiocommunication sans fil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8077092B2 (en) 2004-04-30 2011-12-13 Ecole Nationale Superieure Des Telecommunications De Bretagne Planar antenna with conductive studs extending from the ground plane and/or from at least one radiating element, and corresponding production method

Also Published As

Publication number Publication date
FR2818811A1 (fr) 2002-06-28
EP1346442A1 (fr) 2003-09-24
DE60105447D1 (de) 2004-10-14
EP1346442B1 (fr) 2004-09-08
US20020113736A1 (en) 2002-08-22
DE60105447T2 (de) 2005-11-17

Similar Documents

Publication Publication Date Title
EP0825673B1 (fr) Antenne plane à éléments superposés court-circuités
EP2564466B1 (fr) Element rayonnant compact a cavites resonantes
EP1346442B1 (fr) Antenne imprimee pastille compacte
EP2710676B1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
EP0667984B1 (fr) Antenne fil-plaque monopolaire
EP0064313A1 (fr) Elément rayonnant ou récepteur de signaux hyperfréquences à polarisations circulaires et antenne plane hyperfréquence comprenant un réseau de tels éléments
EP0493190B1 (fr) Antenne hyperfréquence de type pavé
EP1172885A1 (fr) Antenne à couche conductrice et dispositif de transmission bi-bande incluant cette antenne.
EP1228552A1 (fr) Antenne imprimee bi-bande
EP1225655B1 (fr) Antenne planaire et dispositif de transmission bi-bande incluant cette antenne
EP1550183A2 (fr) Element rayonnant large bande a double polarisation, de forme generale carree
EP1516392B1 (fr) Antenne a brins
WO2012095365A1 (fr) Antenne a resonateur dielectrique
EP0605338A1 (fr) Antenne plaquée à double polarisation et dispositif d&#39;émission/réception correspondant
WO2004001902A1 (fr) Dispositif rayonnant bi-bande a double polarisation
EP2009735A1 (fr) Antenne a diversité de polarisation pour la transmission et/ou la reception de signaux audio et/ou video
EP0860894B1 (fr) Antenne miniature résonnante de type microruban de forme annulaire
EP2316149B1 (fr) Element rayonnant compact a faibles pertes
EP1376758B1 (fr) Antenne pastille compacte avec un moyen d&#39;adaptation
FR2987941A1 (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne
WO2010106073A1 (fr) Antenne a double ailettes
EP0429338A1 (fr) Antenne à polarisation circulaire, notamment pour réseau d&#39;antennes
FR2705167A1 (fr) Antenne plaquée large bande à encombrement réduit, et dispositif d&#39;émission/réception correspondant.
EP1399990A1 (fr) Antenne imprimee a large bande et a plusieurs elements rayonnants
FR2828014A1 (fr) Antenne

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001995742

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001995742

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001995742

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP