WO2002052345A1 - Method and device for mask cleaning, and device manufacturing system - Google Patents

Method and device for mask cleaning, and device manufacturing system Download PDF

Info

Publication number
WO2002052345A1
WO2002052345A1 PCT/JP2001/011170 JP0111170W WO02052345A1 WO 2002052345 A1 WO2002052345 A1 WO 2002052345A1 JP 0111170 W JP0111170 W JP 0111170W WO 02052345 A1 WO02052345 A1 WO 02052345A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
gas
reticle
exposure
cleaning
Prior art date
Application number
PCT/JP2001/011170
Other languages
French (fr)
Japanese (ja)
Inventor
Naomasa Shiraishi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2002553185A priority Critical patent/JP4096246B2/en
Publication of WO2002052345A1 publication Critical patent/WO2002052345A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • G03F7/70741Handling masks outside exposure position, e.g. reticle libraries
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70933Purge, e.g. exchanging fluid or gas to remove pollutants

Definitions

  • the present invention relates to a photolithography process for manufacturing various devices such as a semiconductor device, an imaging device (such as a CCD), a liquid crystal display device, or a thin film magnetic head.
  • the present invention relates to a mask cleaning method and apparatus used for cleaning. Further, the present invention relates to a device manufacturing system provided with the mask cleaning device. Background art
  • a reticle as a mask that draws a pattern to be formed at a magnification of about 4 to 5 times is used.
  • the pattern surface of the reticle has been generally covered with a dustproof film having a thickness of about 1 im called a pellicle.
  • the pellicle was stretched about 5 to 7 mm away from the reticle pattern surface via a metal frame called pellicle frame.
  • the exposure wavelength has been shifted to shorter wavelengths in order to respond to miniaturization of semiconductor integrated circuits.
  • the exposure wavelength is mainly 248 nm of KrF excimer laser, but the ArF excimer laser, which can be regarded as a shorter wavelength, substantially a vacuum ultraviolet region (VUV), is used.
  • VUV vacuum ultraviolet region
  • the 193 nm is also entering the practical stage.
  • the shorter wavelength 1 5 7 nm F 2 laser or has also been proposed a projection exposure apparatus that uses exposure light source of vacuum ultraviolet region A r 2 laser having a wavelength of 1 2 6 nm.
  • the light in the vacuum ultraviolet region can be supplied to a conventional exposure apparatus having an exposure wavelength of about 200 to 400 nm by using many gases existing on the optical path of the exposure light, such as oxygen, water vapor, and dioxide.
  • gases such as carbon and hydrocarbon gas (organic gas) (hereinafter referred to as “absorbent gas”) is extremely large. Therefore, in a projection exposure apparatus using vacuum ultraviolet light, in order to remove the absorbing gas from the light path of the exposure light, the gas in the light path is converted to a gas (such as nitrogen or a rare gas) which has relatively little absorption for the exposure light.
  • low-absorbing gas The gas used to actually replace the gas in the optical path among the low-absorbing gases is called “purge gas”.
  • purge gas the gas used to actually replace the gas in the optical path among the low-absorbing gases.
  • the allowable residual concentration of absorbent gas for example, for organic gases, the average concentration in the optical path must be suppressed to several ppm or less.
  • ArF excimer laser wavelength: 193 nm
  • pellicle space the space surrounded by the reticle, the pellicle frame, and the pellicle (hereinafter referred to as “pellicle space”) is almost the same as the outside air except for small ventilation holes to prevent deformation of the pellicle due to a pressure difference. It is an isolated space with high airtightness.
  • absorbent gas such as oxygen, water vapor, and organic gas remains.
  • the exposure light is, for example, an F 2 laser (wavelength: 157 nm) in the vacuum ultraviolet region
  • the absorption by oxygen is extremely large, so that the light remains even in an optical path of only a few mm in the pellicle space.
  • Absorption (dimming) by oxygen is extremely large.
  • organic substances and water adhere to the reticle stored in a normal storage state to a certain extent, and the transmittance of the reticle to exposure light in the vacuum ultraviolet region is significantly reduced due to the absorption of the adhered substances. There is a risk of doing it.
  • the present invention provides a mask cleaning technology capable of efficiently cleaning a mask and maintaining a high transmittance of the mask without adversely affecting an exposure main body that transfers a mask pattern onto a wafer.
  • the primary purpose is to provide
  • the mask cleaning method according to the present invention is a mask cleaning method for cleaning a mask (R) to which a dustproof member (1) is attached so as to cover a pattern surface and a predetermined exposure beam is irradiated at the time of exposure.
  • the present invention by irradiating the mask with ultraviolet rays, organic substances and water adhering to the surface of the mask and the dustproof member (pellicle, etc.) are decomposed and removed. Also, since the atmosphere around the mask is replaced by a gas (purge gas) that transmits the exposure beam, adhesion of organic substances and water to the mask surface is suppressed, and the transmittance of the mask to the exposure beam can be improved. it can. Further, the cleaned mask can be stored in the case and transported while maintaining a high transmittance, so that the cleaning operation can be efficiently performed in a place different from the exposure main body.
  • a gas purge gas
  • the inside of the substantially enclosed space surrounded by the mask, the dustproof member, and the support frame of the dustproof member may be replaced with a gas that transmits the exposure beam.
  • a gas that transmits the exposure beam desirable.
  • the transmittance for the exposure beam is further improved.
  • the presence of oxygen around the mask may increase the efficiency of light cleaning, and the first and second steps may be performed substantially simultaneously (in parallel) to reduce the mask cleaning time. It is desirable to execute.
  • the second step may be performed before the first step.
  • the mask cleaning apparatus is a mask cleaning apparatus for mounting a dustproof member (1) so as to cover a pattern surface, and for cleaning a mask (R) irradiated with a predetermined exposure beam during exposure.
  • a gas replacement mechanism (42, 43, 45A, 46A) that replaces gas in a predetermined area (24) surrounding the mask with a gas that transmits the exposure beam, and the mask
  • An ultraviolet irradiation device (27) for light cleaning
  • a loading mechanism (3) for loading the mask in an airtight case (8) filled with a gas that transmits the exposure beam in a hermetically sealed state. 5, 36, 37A, 37B, 38A, 38B).
  • the mask cleaning method of the present invention can be implemented.
  • the ultraviolet irradiation device and the gas replacement mechanism are at least partially integrated, and the transfer system for transferring the mask between the gas replacement mechanism and the loading mechanism (32, 33). Is desirably provided. This makes it possible to reduce the size of the purification device as a whole and shorten the time required for purification.
  • the gas replacement mechanism has, for example, an airtight chamber (24) for accommodating the mask and a pressure reducing mechanism (42, 45A) for reducing the pressure in the airtight chamber.
  • the gas replacement mechanism includes a gas-tight chamber (24) for accommodating the mask, a gas exhaust in the gas-tight chamber, and a flow control of supply of a gas that transmits the exposure beam to the gas-tight chamber. And a supply and exhaust mechanism (42, 43, 45A, 46A).
  • the pressure reducing mechanism is used as in the former case, the gas can be replaced in a short time.
  • the flow control is used as in the latter, even if the strength of the dustproof member is low, for example, the air can be replaced without deforming the dustproof member. .
  • the gas displacement mechanism operates with the mask, the dustproof member, and the support frame. Replace the inside of the enclosed space with gas that transmits the exposure beam It is desirable to do.
  • the exposure beam is not absorbed even in the enclosed space, so that the illuminance on the substrate to be exposed can be increased.
  • the gas replacement mechanism further replaces the gas in the space between the pattern surface and the dustproof member with a gas that transmits the exposure beam. Thereby, the transmittance for the exposure beam is improved.
  • the gas displacement mechanism operates through the ventilation holes (2a, 2b) formed in the frame.
  • the space between the pattern surface and the dustproof member may be replaced with a gas that transmits the exposure beam.
  • the device manufacturing system is a device manufacturing system for forming a device pattern (Rl, R2) on a work piece (Wl, W2). 4), an exposure apparatus main body (68 A to 68 C) for transferring an image of the device pattern onto the workpiece, and the mask cleaning apparatus between the mask cleaning apparatus and the exposure apparatus main body. And a transfer device (65-67) for transferring the mask cleaned in step (1).
  • the exposure apparatus main body can efficiently transfer various device patterns onto a work piece while maintaining a high transmittance to the exposure beam. Mass production with high throughput is possible.
  • the exposure apparatus main body has a mask removal mechanism (73) for removing the mask loaded in the case (8A, 8B) by the mask cleaning apparatus. Thereby, the delivery of the mask can be performed smoothly.
  • the device manufacturing method of the present invention is a device manufacturing method of forming a device pattern on a work piece (W), wherein the dust-proof member ( 1) Remove the mask (R) with A first step of cleaning and loading in an airtight case (8), a second step of storing the cleaned mask in the case, and transporting the mask to the exposure main body (68A); And a third step of exposing the substrate (W) with an exposure beam through the mask taken out of the case in the exposure main body.
  • the mask purified by the mask purification unit separate from the exposure main unit is housed in a sufficiently clean, gas-exchanged, highly airtight case, and the exposure main unit is Transported to Therefore, it is possible to transfer a circuit pattern of a device such as a semiconductor device using a mask with sufficient transmittance without installing a mask purification section (gas replacement section and ⁇ 6 cleaning section) in the exposure main body. become.
  • FIG. 1 is a partially cutaway configuration view showing a reticle cleaning device according to an example of an embodiment of the present invention.
  • (A) is a side view showing a normal case for a reticle
  • (B) is a cross-sectional view showing a clean case for a reticle.
  • Figure 3 is a partially cutaway configuration view showing a reticle cleaning device according to an example of an embodiment of the present invention.
  • (A) is a side view showing a normal case for a reticle
  • (B) is a cross-sectional view showing a clean case for a reticle.
  • Figure 3 is a partially cutaway configuration view showing a reticle cleaning device according to an example of an embodiment of the present invention.
  • (A) is a bottom view showing an example of a gas replacement mechanism for replacing the pellicle space with a purge gas
  • FIG. 4 is a perspective view showing a main part of an example of a device manufacturing system including the reticle cleaning device of FIG.
  • FIG. 5 is a diagram illustrating an example of a manufacturing process when a semiconductor device is manufactured using the device manufacturing system according to the embodiment of the present invention.
  • a reticle purification device is installed, in which a pellicle (dust-proof member) in the form of a thin film is stretched to protect the pattern surface, and the reticle (mask) is irradiated with vacuum ultraviolet light as an exposure beam.
  • the present invention is applied.
  • the reticle cleaning apparatus of the present example is, for example, a photolithography for manufacturing semiconductor devices and the like. : Installed separately from the exposure equipment in the manufacturing line that executes the process.
  • FIG. 1 shows the reticle cleaning apparatus of the present embodiment.
  • the reticle cleaning apparatus is stored in a normal case 3 (reticle case) stored in a reticle storage device (not shown) under an atmospheric environment.
  • the reticle R as a mask is loaded into an airtight clean case 8 (clean reticle case) after being replaced with a gas transmitting the exposure light and washed with light, and the clean case 8 seals the reticle R. Then, it is transported to an exposure device (not shown) in a state where it is incorporated.
  • the reticle R is equipped with a pellicle 1 as a dustproof member to protect the surface of the reticle.
  • Fig. 2 (A) shows the normal case 3, and in Fig. 2 (A),
  • Case 3 is constructed by connecting the upper lid 5 to the bottom plate 4 so that it can be opened and closed about two fulcrum portions 7 as axes, and four pedestals 6 on the bottom plate 4 (Fig. 2 (A)
  • the reticle R is placed via the reticle R.
  • a thin pellicle 1 having a thickness of about 1 m is provided on a reticle R surface (lower surface) via a rectangular frame-shaped metal pellicle frame 2.
  • the pellicle 1 for example, a flat plate having a thickness of about 300 to 800 / xm of fluoride crystal can be used.
  • Case 3 is used to store the reticles individually when the reticles are stored in a reticle storage device in the same atmosphere as normal air.
  • FIG. 2 (B) is a cross-sectional view showing the clean case 8, and in FIG. 2 (B), the clean case 8 is mounted on the upper surface of a flat mount portion 9 having an opening formed in the center. Then, fix the box-shaped receiving section 10 with an open bottom, and then press the flat bottom plate 11 on the bottom of the mounting section 9 with two spring-type clamps 14 A, 14 B that hang the flat bottom plate 11.
  • the reticle R is mounted on the bottom plate 11 via four pedestals 12.
  • the mounting portion 9 and the housing portion 10 are fixed by welding, integral molding, or the like in order to maintain the airtightness inside, and the mounting portion 9 and the bottom plate portion detachable from the mounting portion 9 are provided.
  • the ring 1 3 (seal member) Is arranged.
  • the mounting portion 9, the housing portion 10, and the bottom plate portion 11 are made of a material such as stainless steel or metal such as aluminum, which has a small outgassing and can maintain a high internal airtightness.
  • the mechanism of the clamps 14A and 14B is not limited to the spring type.
  • the mount 9 and the member attached to and detached from the mount 9 may be connected at a plurality of locations using a port, and a permanent magnet may be used.
  • the mount 9 and the vacuum pump may be connected to each other via a flexible pipe, and the mount 9 and its members may be connected by vacuum suction.
  • the mount 9 and its members may be connected to each other by electrostatic attraction, adsorption by an electromagnet, or the like.
  • SMIF Standard mechanical i.m.
  • SMIpod product name
  • the reticle R of this embodiment the wavelength 2 0 0 nm approximately following the vacuum ultraviolet light is used as the exposure light, oxygen from the optical path of such exposure light, water vapor, carbon dioxide (C ⁇ 2 It is necessary to eliminate “absorbent gas” which is a gas that has a strong absorption rate for exposure light such as, and hydrocarbon (organic) gases. On the other hand, it transmits the exposure beam
  • the "low-absorbing gas” that has low absorption for exposure light in the vacuum ultraviolet region includes nitrogen and noble gases (helium, neon, argon, krypton, xenon, radon), and a mixture thereof. is there.
  • the ⁇ purge gas '' selected from the low-absorbing gas based on, for example, the required stability of the imaging characteristics and the operating cost is used.
  • the gas in the light path of the exposure light is replaced.
  • the purge gas for example, nitrogen is used in applications where the operation cost is to be kept low, and helium is used in applications where importance is placed on the stability of the imaging characteristics.
  • the gas in the clean case 8 is ordinary air containing a low-absorbing gas
  • the clean case 8 is transported to the exposure apparatus, and when the reticle R is taken out of the clean case 8, the clean case 8 is removed.
  • the air inside may mix into the purge gas on the optical path of the exposure light, reducing the intensity of the exposure light. Therefore, in this example, the gas inside the clean case 8 is also replaced with the purge gas supplied from the exposure apparatus using the reticle R.
  • the space surrounded by 2 has a short optical path for the exposure light, but it is desirable that the inside of the space is also replaced with a purge gas.
  • the pellicle frame 2 is provided with extremely small ventilation holes 2a and 2b in order to prevent deformation and breakage of the pellicle 1 due to a difference in pressure between the inside and outside of the pellicle space. Then, the gas in the pellicle space is replaced with a purge gas through the ventilation holes 2a and 2b (details will be described later).
  • the reticle purifying apparatus of the present example is divided into a plurality of hermetic chambers surrounded by a loading side loader 21 for transferring a reticle R in a case 3 and an airtight housing 23.
  • a vacuum pump 42 such as a dry type as a pressure reducing mechanism for exhausting gas from a plurality of hermetic chambers in the main body, and a purge gas supply including a gas cylinder for supplying the purge gas to the hermetic chambers.
  • a control system 41 composed of a computer for controlling the operation of the entire apparatus.
  • the inside of the housing 23 is divided into a purge gas replacement chamber 24 as a plurality of airtight chambers, a lamp chamber 26, a loader chamber 30 and a chamber 35 for loading a clean case.
  • Loading chamber 35 It can also be called a lean case interface.
  • the openable and closable shirt 28 is partitioned between the purge gas exchange chamber 24 and the outside air, and the fluorescent gas through which ultraviolet light for light cleaning passes is provided between the purge gas exchange chamber 24 and the lamp chamber 26.
  • a window member 25 made of a fluoride crystal such as stone (CaF 2 ) is provided.
  • the window member 25 is provided between the purge gas replacement chamber 24 and the loader chamber 30, and the mouth chamber 30 and the loading chamber 35.
  • shutters 31 and 34 which can be freely opened and closed.
  • the loading-side loader 21 sucks and holds the bottom surface of the reticle R (having the pellicle 1 stretched out) taken out of the case 3 by a mouth pot arm (not shown) and transports the reticle R into the purge gas replacement chamber 24.
  • a drive unit 22 for sliding, rotating, and moving up and down the carry-in port 21 is also provided.
  • four holding mechanisms 29 for holding the loaded reticle by suction etc. are arranged, and in the lamp chamber 26, an ultraviolet light source 27 such as an excimer lamp is installed. I have.
  • a purge gas replacement mechanism must also be installed in the lamp chamber 26 to maintain the intensity of ultraviolet rays high. Is desirable. However, when using a light source with a wavelength that does not absorb much oxygen, such as an ArF excimer lamp (wavelength: 193 nm), as the ultraviolet light source 27, the purge gas replacement mechanism must not be provided. Good.
  • the loader chamber 30 In order to transport the reticle R in the purge gas replacement chamber 24 to the load chamber 35 for loading into the clean case, the loader chamber 30 has two arms that hold the bottom surface of the reticle R by suction.
  • a side loader 32 is arranged, and a drive unit 33 for sliding, rotating, and vertically moving the unloading side loader 32 is also provided.
  • a vertical movement device 36 that holds the bottom plate 11 of the clean case 8 and moves up and down is installed in the clean case loading chamber 35.
  • the housing 23 at the top of the loading chamber 35 is provided with an opening 35a through which the bottom plate 11 passes, so that the opening 35a is covered to maintain airtightness.
  • the mounting part 9 and the housing part 10 of the clean case 8 are mounted on the housing 23 by two clamping mechanisms 38 A and 38 B.
  • the space surrounded by the loading chamber 35 and the accommodating section 10 of the clean case 8 is one airtight chamber. Further, in the vicinity of the opening 35a on the inner surface of the loading chamber 35, the clamp release mechanisms 37A and 37B for removing the two clamps 14A and 14B of the mount 9 of the clean case 8 are provided. Is installed.
  • a loading mechanism for loading the reticle into the clean case 8 is constituted by the vertical movement device 36, the clamp release mechanisms 37A and 37B, and the clamp mechanisms 38A and 38B.
  • the mounting part 9 of the closed clean case 8 shown in FIG. 2B is placed on the housing 23 so as to cover the opening 35 a of the loading chamber 35, and the clamping mechanism 38 A and
  • FIG. 1 shows the state in which the vertical movement device 36 is lowered from this state.
  • the operation of the loading side loader 21, the ultraviolet light source 27, the loading side loader 32, the mechanism for loading into the clean case, and the shirts 28, 31, 34 are controlled by the control system 41. ing.
  • purge gas replacement chamber 24, the loader chamber 30 and the loading chamber 35 and the vacuum pump 42 are respectively provided with exhaust pipes 45A, 45B,
  • the purge gas replacement chamber 24, the loader chamber 30, the loading chamber 35, and the purge gas supply source 43, which are connected via 45 C, are each provided with an electromagnetically openable and closable air supply pipe 46.
  • A, 46 B, and 46 C are connected.
  • the vacuum pump 42 is also connected to a pipe 46 for sending gas exhausted from each hermetic chamber to an exhaust gas treatment facility (not shown) of the factory.
  • a gas replacement mechanism is composed of a vacuum pump 42, a purge gas supply source 43, an exhaust pipe 45A to 45C, and an air supply pipe 46A to 46C.
  • gas sensors 44 A, 44 B and 44 C for measuring the residual concentration of impurities such as absorptive gas are arranged in the purge gas replacement chamber 24, the loader chamber 30 and the loading chamber 35, respectively.
  • concentration of impurities measured by these gas sensors 44A to 44C Information is supplied to the control system 41.
  • a galvanic cell-type oxygen concentration meter can be used as the gas sensor 44A to 44C.
  • the control system 41 When replacing the gas in the three airtight chambers (purge gas replacement chamber 24, loader chamber 30 and loading chamber 35) with the purge gas, the control system 41 responds via a vacuum pump 42.
  • the gas in the sealed chamber is exhausted, and a purge gas is supplied from the purge gas supply source 43 into the sealed chamber. This operation is performed until the impurity concentration measured by the gas sensors 44A to 44C becomes equal to or lower than a predetermined allowable level.
  • the purging gas replacement operation is performed by a vacuum pump 42 (a depressurizing mechanism) in which a corresponding airtight chamber is depressurized to a pressure greater than the atmospheric pressure and exhausted, and then a purge gas is supplied.
  • the purge gas supply source 4 3 supplies exhaust gas and purge gas almost continuously at atmospheric pressure (approximately equal exhaust volume and supply volume). May go.
  • the depressurization method can be used, for example, immediately after the start of operation of the reticle purifying apparatus of the present example to replace the air in each airtight chamber with purge gas in a short time.
  • the pellicle 1 stretched on the reticle R may be deformed, but pass through the ventilation holes 2 a and 2 b (see FIG. 2B) provided in the pellicle frame 2.
  • the pumping speed at which the pellicle 1 hardly deforms is determined in advance in accordance with the gas flow rate, and the pressure may be reduced below this pumping speed.
  • the reticle R with the pellicle 1 in the case 3 is carried into the purge gas replacement chamber 24 via the loading side loader 21, and the position P 1 on the holding mechanism 29. Is held in In this state, the shirts 28 and 31 are closed, and the gas in the purge gas replacement chamber 24 is replaced by the purge gas by the vacuum pump 42 and the purge gas supply source 43. Further, light emission of the ultraviolet light source 27 is started, and light cleaning of the reticle R is performed by ultraviolet light L from the ultraviolet light source 27.
  • Reticle R stored in a normal atmospheric environment contains foreign substances such as organic substances and water. Therefore, ultraviolet light from an ultraviolet light source 27 such as an excimer lamp is irradiated to vaporize and remove those foreign substances.
  • an ultraviolet light source 27 such as an excimer lamp is irradiated to vaporize and remove those foreign substances.
  • new reticle R to be purified At the time of loading (replacement), the purge gas replacement chamber 24 is open to the atmosphere and is contaminated. To minimize the area open to the atmosphere, the ultraviolet light source 27 is installed in the purge gas replacement chamber. It is arranged in a lamp room 26 different from 24.
  • the optical cleaning should be performed not only after the replacement with the purge gas in the purge gas replacement chamber 24 is completed but also during (substantially simultaneously with) the purge gas replacement operation. Is desirable. Further, the ultraviolet irradiation may be started at the same time when the reticle R is carried into the purge gas replacement chamber 24, and then the replacement with the purge gas may be performed.
  • the shirt 31 is opened, and the reticle R is transferred from the purge gas replacement chamber 24 to the loader chamber 30 by the unloader 32. Then, after closing the shirt 31 and opening the shirt 34, the reticle R is loaded into the loading room 35 (clean case interface) with the bottom plate 1 1 (clean case 8). Is placed at the position P 2 on the pedestal 1 2. The bottom plate 11 is held on a vertical movement device 36 which is a part of the loading mechanism. Subsequently, the shirt 34 is closed, and the space surrounded by the loading room 35 and the housing 10 of the clean case 8, that is, the space in which the reticle R is housed, becomes a sealed space. Until the impurity concentration falls below the allowable level, the purge gas is replaced by the vacuum pump 42 and the purge gas supply source 43.
  • the vertical motion device 36 is raised, and the clamp release mechanisms 37 A and 37 B are moved from the clamps 14 A and 14 B while the bottom plate 11 is in contact with the bottom surface of the mount 9. 2B, the reticle R is held in the atmosphere of the purge gas in the hermetically sealed clean case 8 as shown in FIG. 2 (B). This completes the reticle R purification process using the reticle purification device of the present example.
  • the atmosphere around the reticle R on which the pellicle 1 is mounted is replaced with the purge gas, the reticle R is optically cleaned, and the reticle R is cleaned into the clean case 8.
  • Effective loading in purge gas atmosphere It can be performed efficiently. Further, it is clear that the reticle cleaning apparatus of the present example can be applied not only to the reticle R equipped with the pellicle 1 but also to the reticle not equipped with the pellicle.
  • the loader chamber 30 is not opened to the atmosphere under the normal use condition. Is good.
  • the loading chamber 35 is opened to the atmosphere, so that the clean case 8 is mounted.
  • the bottom plate 11 is lowered to open the shirt 34, and the reticle R is carried into the loading chamber 35.
  • reticle R not stored in case 3 may be transported to a reticle cleaning device to purify reticle R.
  • the reticle R stored in the clean case may be transported to the reticle cleaning device, where the reticle R is purified, and then the purified reticle R may be returned to the clean case.
  • a local replacement mechanism for replacing the inside of the pellicle space surrounded by the reticle R, the pellicle 1, and the pellicle frame 2 with a purge gas will be described with reference to FIG.
  • the local replacement mechanism is provided around the holding mechanism 29 in the purge gas replacement chamber 24 in FIG. 1.
  • the gas in the pellicle space is replaced with a purge gas.
  • the pellicle since the pellicle is originally provided for the purpose of preventing foreign matter from adhering to the reticle pattern, it is preferable that air permeability between the pellicle space and the outside is low.
  • air permeability between the pellicle space and the outside is low.
  • a typhoon or the like as described with reference to FIG.
  • the pellicle frame 2 as a side wall of the pellicle space is used.
  • FIG. 3 (A) is a bottom view showing an example of a mechanism for replacing the pellicle space with a purge gas
  • FIG. 3 (B) is a partially cutaway front view showing the mechanism.
  • the four holding mechanisms 29 a to 29 supporting the reticle R at the bottom correspond to the holding mechanisms 29 in the purge gas replacement chamber 24 in FIG.
  • a reticle R is stretched over a pellicle 1 via a pellicle frame 2 provided with ventilation holes 2a and 2b.
  • one vent hole 2 a of the pellicle frame 2 is connected to a vacuum pump 42 via an exhaust pipe 45 D
  • the other vent hole 2 b is connected to a purge gas supply source 4 via an air supply pipe 46 D.
  • the purge gas is flowed into the pellicle space via the air supply pipe 46D in parallel with the flow out of the gas in the pellicle space via the exhaust pipe 45D by the flow control method.
  • This makes it possible to efficiently replace the pellicle space with the purge gas even if the air holes 2a and 2b have a slight air permeability.
  • a fluorine-based resin such as Teflon or the like is provided at the tip of the exhaust pipe 45 D and the air supply pipe 46 D.
  • Hollow elastic members 47 A and 47 B made of another soft material are provided.
  • a fluorine-based resin such as Viton (trade name), Kalrez (trade name), or Armacrystal (trade name) can be used.
  • a gas sensor for measuring the impurity concentration is provided in the exhaust pipe 45D. It may be provided.
  • a pellicle surface displacement meter 48 is installed to monitor the displacement amount with respect to the reticle R at the center of the pellicle 1.
  • the detection light DL emitted from the light source 49 forms a slit image obliquely on the central surface of the pellicle 1 via the slit plate 50 and the condenser lens 51.
  • the detection light DL reflected on the surface of the pellicle 1 re-forms the slit image on the slit plate 53 via the condenser lens 52, and the slit image is formed.
  • the detection light DL that has passed through the plate 53 is received by the photoelectric detector 54 such as a photodiode, and the detection signal of the photoelectric detector 54 is supplied to the signal processing device 55.
  • the slit plate 53 on the light receiving side vibrates in a direction corresponding to the vertical movement of the pellicle 1
  • the signal processing device 55 uses the drive signal of the slit plate 53 as an example for photoelectric detection.
  • the detection signal of the detector 54 is synchronously rectified to obtain a surface position signal. Since the surface position signal changes almost linearly within a predetermined range according to the vertical movement of the pellicle 1, the signal processor 55 calculates the amount of vertical displacement of the pellicle 1 from the surface position signal.
  • the information on the displacement is supplied to the control system 41. Note that even if a line sensor (one-dimensional image sensor) is installed instead of the slit plate 53 and the photoelectric detector 54, the surface position signal can be obtained.
  • the control system 41 adjusts the exhaust speed by the vacuum pump 42 and the air supply speed by the purge gas supply source 43 so that the measured value of the displacement amount of the pellicle 1 falls within an allowable range. As a result, the pellicle space can be efficiently replaced with the purge gas within a range where the pellicle 1 is not damaged.
  • Fig. 4 shows the main parts of the device manufacturing system of this example.
  • the normal case in the reticle storage force 62 under the atmospheric environment (the same as case 3 in Fig. 2 (A)) is shown. Cases) 3 A, 3 B, 3 C,.
  • a loading port 21 is installed near the reticle stocker 62 together with the drive unit 22, and thereafter a reticle purifying device 64 identical to the reticle conversion device shown in FIG. 1 is installed.
  • a highly airtight clean case 8A (the same case as the clean case 8 in Fig. 2 (B)) is installed on the upper surface of the end of the purifier 64, and a reticle is placed in the clean case 8A in the atmosphere of purge gas. Will be loaded.
  • a transport line 66 for transporting a clean case loaded with a reticle is installed near the end of the reticle cleaning device 64, and a slider 67 moving along the transport line 66 is provided.
  • the clean case 8B loaded with the reticle is held.
  • a plurality of (three in FIG. 4) projection exposure apparatuses 6 of a batch exposure method or a scanning exposure method such as a step-and-scan method are used.
  • 8 A, 68 B, 68 C and a foreign matter inspection device 69 are installed.
  • a r F excimer laser (wavelength 1 9 3 nm), F 2 laser (wavelength 1 5 7 nm), or A r 2 laser (wavelength 1 2 6 nm) in the vacuum ultraviolet region such as an exposure light
  • An exposure optical system (not shown), a reticle stage 70 for driving a reticle, a projection optical system PLA, a wafer stage 71 for driving a wafer as a substrate to be exposed, and a wafer base.
  • the pattern of the reticle R1 is transferred to each shot area on the wafer W1 via the projection optical system PLA.
  • the other projection exposure apparatuses 68 B and 68 C transfer the patterns of the reticles R 2 and R 3 to the respective shot areas on the wafers W 2 and W 3 via the projection optical systems PLB and PLC.
  • each of the projection exposure apparatuses 68A to 68C is provided with a reticle loader system 73, and a reticle opening system 73 is provided with a slider 6 moving along a transfer line 66.
  • the reticle loader system 73 stores the used reticle in a normal case (the same case as case 3), and transfers the normal case through a reticle storage line via a return transport line (not shown). 6 Return to 2.
  • the foreign matter inspection device 69 receives, for example, a laser light source 74, a scanner 75 scanning a laser beam from now on, and reflected light from a reticle R 4 to be inspected via a lens system 76. It is equipped with a photoelectric detector 77 and a stage device 78 that moves the reticle R 4 in a direction intersecting the scanning direction of the laser beam, and checks whether there is any foreign matter exceeding an allowable level on the pattern surface of the reticle R 4. inspect.
  • the foreign matter inspection device 69 also includes a reticle loader system 79 that takes out a reticle from the clean case 8B received from the slider 67 of the transfer line 66 and installs the reticle on the stage device 78.
  • the reticle R which has been inspected for foreign matter by the foreign matter inspection device 69, may be returned to the clean case.
  • the reticle R may be transported again to the projection exposure apparatus via the transport line 66.
  • inspected The returned reticle R may not be returned to the clean case, but may be installed directly on the reticle stage 70 of the projection exposure apparatus from the foreign matter inspection device 69.
  • the transport path of the reticle R may be shielded from the outside air and set to a purge gas atmosphere.
  • a multi-joint robot for transferring the reticle and the clean case respectively.
  • Hands 63 and 65 are installed.
  • a host computer that controls the operations of the mouth pot hands 63, 65, the reticle cleaning device 64, the slider 67, the projection exposure devices 68A to 68C, and the foreign material inspection device 69. 6 1 are provided.
  • a transfer line and a wafer loader system of FIG. 8 are also provided.
  • the reticle with a pellicle in a normal case (for example, case 3A) in a reticle stocker 62 in an atmospheric environment is The reticle carried into the reticle cleaning device 64 via the loader 21 and the loader 21 is replaced with a purge gas and subjected to light cleaning.
  • the reticle is highly airtight and has a clean case 8A with little organic contamination.
  • After being loaded, it is conveyed to any of the projection exposure apparatuses 68 A to 68 C via the robot hand 65 and the slider 67.
  • the reticle in the clean case 8A is loaded on the reticle stage 70 by the reticle loader system 73 without being exposed to the atmosphere, and exposure is performed.
  • the reticle used in the projection exposure apparatuses 68 A to 68 C is stored in a normal case as an example and returned to the reticle stocker 62.
  • the reticle cleaning device 64 has a mechanism to store the reticle in the clean case in the normal case, and the reticle used in the projection exposure device 68 A to 68 C is cleaned again. It may be stored in a case and returned to the reticle cleaning device 64, where it may be taken out of the clean case and stored in a normal case, and this case may be returned to the reticle stocker 62.
  • the number of semiconductor wafers that can be exposed with one type of reticle is large, so the reticle replacement frequency is low. You don't have to. Therefore, in the projection exposure apparatus 68 A to 68 C for a fine pattern using vacuum ultraviolet light as exposure light, the frequency of reticle replacement and the frequency of reticle cleaning using the reticle cleaning apparatus 64 are low. Therefore, by associating a plurality of projection exposure apparatuses 68 A to 68 C with one reticle purifying apparatus 64, the number of reticle purifying apparatuses 64 installed can be reduced, and production line costs can be reduced. It is possible to reduce it.
  • a transfer line 66 is disposed near the reticle cleaning device 64, and the clean case loaded with the reticle is transferred to a plurality of exposure apparatuses via the transfer line 66.
  • the reticle cleaning device 64 may be configured to be able to run on its own. That is, the reticle cleaning device 64 may have a function of an unmanned transporter (AGV: Automated Guided Vehicle) for transporting the reticle case.
  • AGV Automated Guided Vehicle
  • the clean case can be directly transferred from the reticle cleaning device 64 to a plurality of exposure devices.
  • a plurality of reticle cleaning devices 64 may be provided corresponding to each of the plurality of exposure devices.
  • the purified reticle is transported to the foreign material inspection device 69, where the particle surface is inspected for foreign matter. It is desirable to carry out.
  • the foreign matter inspection function may be incorporated in the reticle cleaning device 64.
  • a foreign substance inspection apparatus similar to the foreign substance inspection apparatus 69 in FIG. 4 may be installed in the loader chamber 30 of the reticle cleaning apparatus in FIG.
  • the present invention is applicable to a case where a proximity exposure apparatus that exposes a mask pattern by bringing a mask into close contact with a substrate without using a projection optical system is also used as an exposure apparatus in the device manufacturing system of this example. can do.
  • the reticle purifying apparatus of the embodiment shown in FIG. 1 includes a purge gas replacement chamber 24, a lamp chamber 26, a loader chamber 30, and a plurality of airtight chambers inside the housing 23. Separately into the clean room loading chamber 35, mechanical components are incorporated into each hermetic chamber, and these multiple hermetic chambers are connected to the vacuum pump 42 and the purge gas supply source 43 by piping. It can be manufactured by connecting the unit and the control system 41 with wiring, and then performing overall adjustment (electrical adjustment, operation confirmation, etc.). It is desirable to manufacture the reticle purifier in a clean room where the temperature and cleanliness are controlled.
  • FIG. 5 shows an example of a manufacturing process of a semiconductor device.
  • a wafer W is manufactured from a silicon semiconductor or the like.
  • a photoresist is applied on the wafer W (step S10), and the wafer W is loaded on, for example, a wafer stage of a projection exposure apparatus 68A (scanning exposure method) in FIG.
  • the reticle R1 taken out from the reticle storage force 62 of FIG. 4 is loaded onto the reticle stage of the projection exposure apparatus 68A via the reticle cleaning apparatus 64.
  • the reticle R1 is moved below the illumination area, and the pattern of the reticle R1 is scanned and exposed on all the shot areas SE on the wafer W.
  • the wafer W is, for example, a wafer having a diameter of 300 mm (12-inch wafer).
  • the size of the shot area SE is, for example, 25 mm in the non-scanning direction and 33 mm in the scanning direction. This is a rectangular area.
  • step S14 a predetermined pattern is formed in each shot region SE of the wafer W by performing development, implantation of an etching zone, and the like.
  • step S16 a photoresist is applied on the wafer W, and the wafer W is loaded again on the wafer stage of the projection exposure apparatus 68A in FIG.
  • step S18 another reticle R2 taken out of the reticle stocker 62 is loaded onto the reticle stage of the projection exposure apparatus 68A via the reticle cleaning apparatus 64. Then, the reticle R2 is moved below the illumination area, and the pattern of the reticle R2 is scanned and exposed on each shot area SE on the wafer W. Then, in step S20, a predetermined pattern is formed in each shot region of the wafer W by performing development of the wafer W, implantation of an etching zone, and the like.
  • the above exposure process to pattern formation process (Step S16 to Step S20) Is repeated as many times as necessary to produce the desired semiconductor device. Then, through a dicing process (step S22) for separating each chip CP on the wafer W one by one, a bonding process and a packaging process (step S24), a semiconductor device as a product is obtained. SP is manufactured.
  • the application of the device manufacturing system of the present invention is not limited to semiconductor device manufacturing.
  • a liquid crystal display element formed on a square glass plate, or an exposure apparatus for a display device such as a plasma display It can be widely applied to the process of manufacturing various devices such as imaging devices (such as CCDs), micro machines, thin film magnetic heads, and DNA chips.
  • the present invention can be applied to an exposure step (exposure apparatus) when manufacturing a mask (photomask, reticle, or the like) on which mask patterns of various devices are formed using a photolithography process.
  • the mask after the light cleaning is loaded in an airtight case filled with a gas that transmits the exposure beam, the mask is placed in a different place from the exposure main body (exposure apparatus). Can be efficiently cleaned, and the cleaned mask can be transported to the exposure main body in a state where no foreign matter adheres.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Library & Information Science (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

A method and a device for mask cleaning capable of efficiently cleaning reticle without affecting an exposure body part and transferring the cleaned reticle to the exposure body part without being contaminated; the method, comprising the steps of transferring the reticle (R) contained in a normal case (3) into a purge gas substitution chamber (24) to substitute the atmosphere around the reticle with a purge gas with high transmittance to exposure beam, performing an optical cleaning by the ultraviolet ray from an ultraviolet ray source (27), transferring the reticle (R) into a charging chamber (35) to load the reticle (R) air-tight into a clean case (8) in the purge gas atmosphere, and transferring the reticle (R) loaded in the clean case (8) to the exposure body part.

Description

明 細 書 マスク浄化方法及び装置、 並びにデバイス製造システム 技術分野  Description Mask cleaning method and apparatus, and device manufacturing system
本発明は、 例えば半導体素子、 撮像素子 (C C D等) 、 液晶表示素子、 又は薄 膜磁気へッド等の各種デバィスを製造するためのフォトリソグラフイエ程中で、 原版パターンの形成されたマスクを洗浄するために使用されるマスク浄化方法及 び装置に関する。 更に本発明は、 そのマスク浄化装置を備えたデバイス製造シス テムに関する。 背景技術  The present invention relates to a photolithography process for manufacturing various devices such as a semiconductor device, an imaging device (such as a CCD), a liquid crystal display device, or a thin film magnetic head. The present invention relates to a mask cleaning method and apparatus used for cleaning. Further, the present invention relates to a device manufacturing system provided with the mask cleaning device. Background art
半導体集積回路、 液晶ディスプレイ等の電子デバイスの微細パターンを形成す るためのフォトリソグラフイエ程では、 形成すべきパターンを 4〜 5倍程度に比 例拡大して描画したマスクとしてのレチクル (又はフォトマスク等) のパターン を、 一括露光方式又は走査露光方式の露光装置を用いて被露光基板としてのゥェ ノ (又はガラスプレート等) 上に縮小転写する方法が用いられている。  In the photolithography process for forming micropatterns for electronic devices such as semiconductor integrated circuits and liquid crystal displays, a reticle (or photo) as a mask that draws a pattern to be formed at a magnification of about 4 to 5 times is used. A method of reducing and transferring a pattern of a mask or the like onto a wafer (or a glass plate or the like) as a substrate to be exposed by using an exposure apparatus of a batch exposure method or a scanning exposure method is used.
その微細パターンの転写のために使用される露光装置において、 レチクル上の パターンに、 塵や化学的汚染物等の異物が付着すると、 その部分のパターンの透 過率が低下し、 ウェハへのパターン誤転写の原因となる。 そこで、 そのような異 物の付着を防止するために、 従来より一般にレチクルのパターン面は、 ペリクル と呼ばれる厚さ 1 im程度の防塵膜で覆われていた。 ペリクリレは、 ペリクルフレ —ムと呼ばれる金属製の枠を介して、 レチクルのパターン面から 5〜 7 mm程度 離れた位置に張設されていた。  In an exposure apparatus used to transfer the fine pattern, if foreign matter such as dust or chemical contaminants adheres to the pattern on the reticle, the transmittance of the pattern in that part decreases, and the pattern on the wafer It may cause erroneous transfer. Therefore, in order to prevent such foreign matter from adhering, the pattern surface of the reticle has been generally covered with a dustproof film having a thickness of about 1 im called a pellicle. The pellicle was stretched about 5 to 7 mm away from the reticle pattern surface via a metal frame called pellicle frame.
また、 露光装置においては、 半導体集積回路の微細化に対応するために、 その 露光波長がより短波長側にシフトして来ている。 現在、 その露光波長は K r Fェ キシマレーザの 2 4 8 nmが主流となっているが、 より短波長の実質的に真空紫 外域 (VUV: Vacuum Ul traviolet) とみなすことができる A r Fエキシマレー ザの 1 9 3 n mも実用化段階に入りつつある。 そして、 更に短い波長 1 5 7 n m の F 2 レーザや、 波長 1 2 6 nmの A r 2 レーザ等の真空紫外域の露光光源を使 用する投影露光装置の提案も行なわれている。 Further, in exposure apparatuses, the exposure wavelength has been shifted to shorter wavelengths in order to respond to miniaturization of semiconductor integrated circuits. At present, the exposure wavelength is mainly 248 nm of KrF excimer laser, but the ArF excimer laser, which can be regarded as a shorter wavelength, substantially a vacuum ultraviolet region (VUV), is used. The 193 nm is also entering the practical stage. And the shorter wavelength 1 5 7 nm F 2 laser or, has also been proposed a projection exposure apparatus that uses exposure light source of vacuum ultraviolet region A r 2 laser having a wavelength of 1 2 6 nm.
この真空紫外域の光は、 露光波長が 2 0 0〜4 0 0 nm程度の従来の露光装置 に対して、 露光光の光路上に存在していた多くの気体、 例えば酸素、 水蒸気、 二 酸化炭素、 及び炭化水素ガス (有機系ガス) 等の気体 (以下、 「吸収性ガス」 と 称する。)による吸収が極めて大きい。 そのため、 真空紫外光を用いる投影露光装 置では、 露光光の光路から吸収性ガスを排除するために、 その光路の気体を露光 光に対して比較的吸収の少ない窒素や希ガス等の気体 (以下、 「低吸収性ガス」 と称する。)で置換する必要がある。 低吸収性ガスのうちで実際に光路上の気体を 置換するために使用される気体は、 「パージガス」 と呼ばれている。 吸収性ガス の許容残留濃度に関して、 例えば有機系ガスについては、 光路中の平均濃度を数 p p m以下程度に抑える必要がある。 これは、 真空紫外域では最も長い A r Fェ キシマレ一ザ (波長 1 9 3 n m) でも同様である。  The light in the vacuum ultraviolet region can be supplied to a conventional exposure apparatus having an exposure wavelength of about 200 to 400 nm by using many gases existing on the optical path of the exposure light, such as oxygen, water vapor, and dioxide. Absorption by gases such as carbon and hydrocarbon gas (organic gas) (hereinafter referred to as “absorbent gas”) is extremely large. Therefore, in a projection exposure apparatus using vacuum ultraviolet light, in order to remove the absorbing gas from the light path of the exposure light, the gas in the light path is converted to a gas (such as nitrogen or a rare gas) which has relatively little absorption for the exposure light. Hereinafter, it will be referred to as “low-absorbing gas”.) The gas used to actually replace the gas in the optical path among the low-absorbing gases is called “purge gas”. Regarding the allowable residual concentration of absorbent gas, for example, for organic gases, the average concentration in the optical path must be suppressed to several ppm or less. The same is true for the ArF excimer laser (wavelength: 193 nm), which is the longest in the vacuum ultraviolet region.
上記の如く従来よりレチクルのパ夕一ン面を保護するためにペリクルが使用さ れている。 この場合、 レチクル、 ペリクルフレーム、 及びペリクルによって囲ま れた空間 (以下、 「ペリクル空間」 と称する。)は、 気圧差によるペリクルの変形 を防止するための小さい通気孔を除いて、 外気とはほぼ隔離された高い気密性を 持つ空間である。 このペリクル空間内には、 そのペリクルを張設する工程の雰囲 気中の空気、 例えば酸素、 水蒸気、 及び有機系ガス等の吸収性ガスが残留してい る。  As described above, pellicles have been used to protect the reticle surface. In this case, the space surrounded by the reticle, the pellicle frame, and the pellicle (hereinafter referred to as “pellicle space”) is almost the same as the outside air except for small ventilation holes to prevent deformation of the pellicle due to a pressure difference. It is an isolated space with high airtightness. In this pellicle space, air in the atmosphere in the process of extending the pellicle, for example, absorbent gas such as oxygen, water vapor, and organic gas remains.
しかしながら、 露光光が真空紫外域中の例えば F 2 レーザ (波長 1 5 7 nm) の場合には、 酸素による吸収が極めて大きいため、 ペリクル空間中のわずか数 m mの光路においても、 残留している酸素による吸収 (減光) が極めて大きい。 更 に、 通常の保管状態で保管されたレチクルには有機物や水が或る程度は付着して おり、 それらの付着物の吸収により、 真空紫外域の露光光に対するレチクルの透 過率は大きく低下してしまう恐れがある。 However, when the exposure light is, for example, an F 2 laser (wavelength: 157 nm) in the vacuum ultraviolet region, the absorption by oxygen is extremely large, so that the light remains even in an optical path of only a few mm in the pellicle space. Absorption (dimming) by oxygen is extremely large. In addition, organic substances and water adhere to the reticle stored in a normal storage state to a certain extent, and the transmittance of the reticle to exposure light in the vacuum ultraviolet region is significantly reduced due to the absorption of the adhered substances. There is a risk of doing it.
これらの対策として、 レチクルを使用した露光に先立って、 露光装置内で、 上 記のペリクル空間内のガス置換ゃレチクルの光洗浄を行なうことも可能ではある 力 ガス置換動作に伴なつて発生する振動や、 光洗浄用の光源から発生する熱は、 露光装置の各種性能を低下させるという不都合がある。 また、 露光装置がレチク ルの洗浄処理を行うことによって露光処理能力が低下して、 半導体デバイス等を 生産する工程全体としてのスループットが低下する恐れもある。 As a countermeasure against this, prior to exposure using a reticle, it is possible to perform the above-mentioned gas replacement in the pellicle space in the lithography equipment ゃ optical cleaning of the reticle. Vibration and heat generated from the light cleaning light source There is a disadvantage that various performances of the exposure apparatus are reduced. In addition, the exposure apparatus performs the reticle cleaning process, so that the exposure processing capability is reduced, and the throughput of the entire process of manufacturing semiconductor devices and the like may be reduced.
本発明は斯かる点に鑑み、 マスクのパターンをウェハ上に転写する露光本体部 に対して悪影響を与えることなく、 マスクを効率的に洗浄して、 マスクの透過率 を高く維持できるマスク浄化技術を提供することを第 1の目的とする。  In view of the foregoing, the present invention provides a mask cleaning technology capable of efficiently cleaning a mask and maintaining a high transmittance of the mask without adversely affecting an exposure main body that transfers a mask pattern onto a wafer. The primary purpose is to provide
また、 本発明は、 ペリクルのような防塵部材の設けられたマスクを使用する場 合に、 露光光に対する透過率の低下を防止できるマスク浄化技術を提供すること を第 2の目的とする。 発明の開示  It is a second object of the present invention to provide a mask cleaning technology capable of preventing a decrease in transmittance of exposure light when using a mask provided with a dust-proof member such as a pellicle. Disclosure of the invention
本発明によるマスク浄化方法は、 パターン面を覆うように防塵部材 (1 ) が取 り付けられるとともに、 露光時に所定の露光ビームが照射されるマスク (R) を 洗浄するためのマスク浄化方法において、 そのマスクを囲む所定範囲の空間内の 気体をその露光ビームを透過する気体で置換する第 1ステップと、 そのマスクを 紫外線で光洗浄する第 2ステップと、 その露光ビームを透過する気体が充填され、 かつ気密性を有するケース (8 ) 内にそのマスクを密閉状態で装填する第 3ステ ップとを有するものである。  The mask cleaning method according to the present invention is a mask cleaning method for cleaning a mask (R) to which a dustproof member (1) is attached so as to cover a pattern surface and a predetermined exposure beam is irradiated at the time of exposure. A first step of replacing gas in a predetermined range of space surrounding the mask with a gas that transmits the exposure beam, a second step of optically cleaning the mask with ultraviolet light, and a gas filled with the exposure beam. And a third step of loading the mask in a hermetically sealed case (8) in a sealed state.
斯かる本発明によれば、 マスクに対する紫外線照射によって、 そのマスクやそ の防塵部材 (ペリクル等) の表面に付着していた有機物や水が分解されて除去さ れる。 また、 そのマスク周辺の雰囲気がその露光ビームを透過する気体 (パージ ガス) で置換されるため、 マスク表面に対する有機物や水等の付着が抑制され、 露光ビームに対するマスクの透過率を向上させることができる。 更に、 浄化後の マスクは、 そのケース内に収納して透過率を高く維持した状態で搬送できるため、 その浄化動作を露光本体部とは別の場所で効率的に行うことができる。  According to the present invention, by irradiating the mask with ultraviolet rays, organic substances and water adhering to the surface of the mask and the dustproof member (pellicle, etc.) are decomposed and removed. Also, since the atmosphere around the mask is replaced by a gas (purge gas) that transmits the exposure beam, adhesion of organic substances and water to the mask surface is suppressed, and the transmittance of the mask to the exposure beam can be improved. it can. Further, the cleaned mask can be stored in the case and transported while maintaining a high transmittance, so that the cleaning operation can be efficiently performed in a place different from the exposure main body.
この場合、 その第 1ステップにおいて、 そのマスク、 その防塵部材、 及びこの 防塵部材の支持枠で囲まれて実質的に密閉された空間の内部を、 その露光ビーム を透過する気体で置換することが望ましい。 これによつて、 露光ビームに対する 透過率が更に向上する。 また、 マスクの周囲に酸素があると光洗浄の効率が向上する場合があるため、 更にはマスクの浄化時間を短縮するために、 その第 1及び第 2ステップを実質的 に同時に (並行して) 実行することが望ましい。 又は、 その第 2ステップをその 第 1ステップの前に実行してもよい。 In this case, in the first step, the inside of the substantially enclosed space surrounded by the mask, the dustproof member, and the support frame of the dustproof member may be replaced with a gas that transmits the exposure beam. desirable. Thereby, the transmittance for the exposure beam is further improved. In addition, the presence of oxygen around the mask may increase the efficiency of light cleaning, and the first and second steps may be performed substantially simultaneously (in parallel) to reduce the mask cleaning time. It is desirable to execute. Alternatively, the second step may be performed before the first step.
次に、 本発明によるマスク浄化装置は、 パターン面を覆うように防塵部材 (1 ) が取り付けられるとともに、 露光時に所定の露光ビームが照射されるマスク (R) を洗浄するためのマスク浄化装置において、 そのマスクを囲む所定範囲の空間 ( 2 4 ) 内の気体をその露光ビームを透過する気体で置換する気体置換機構 (4 2 , 4 3 , 4 5 A, 4 6 A) と、 そのマスクを光洗浄するための紫外線照射装置 ( 2 7 ) と、 その露光ビームを透過する気体が充填され、 かつ気密性を有するケ ース (8 ) 内にそのマスクを密閉状態で装填する装填機構 (3 5 , 3 6 , 3 7 A, 3 7 B , 3 8 A, 3 8 B ) とを有するものである。  Next, the mask cleaning apparatus according to the present invention is a mask cleaning apparatus for mounting a dustproof member (1) so as to cover a pattern surface, and for cleaning a mask (R) irradiated with a predetermined exposure beam during exposure. A gas replacement mechanism (42, 43, 45A, 46A) that replaces gas in a predetermined area (24) surrounding the mask with a gas that transmits the exposure beam, and the mask An ultraviolet irradiation device (27) for light cleaning, and a loading mechanism (3) for loading the mask in an airtight case (8) filled with a gas that transmits the exposure beam in a hermetically sealed state. 5, 36, 37A, 37B, 38A, 38B).
この発明によって、 本発明のマスク浄化方法を実施することができる。  According to the present invention, the mask cleaning method of the present invention can be implemented.
この場合、 その紫外線照射装置と、 その気体置換機構とを少なくとも部分的に 一体化して、 その気体置換機構とその装填機構との間に、 そのマスクを搬送する 搬送系 (3 2, 3 3 ) を設けることが望ましい。 これによつて、 浄化装置を全体 として小型化できるとともに、 浄化に要する時間を短縮できる。  In this case, the ultraviolet irradiation device and the gas replacement mechanism are at least partially integrated, and the transfer system for transferring the mask between the gas replacement mechanism and the loading mechanism (32, 33). Is desirably provided. This makes it possible to reduce the size of the purification device as a whole and shorten the time required for purification.
また、 その気体置換機構は、 一例としてそのマスクを収納する気密室 (2 4 ) と、 この気密室内を減圧する減圧機構 (4 2 , 4 5 A) とを有するものである。 また、 その気体置換機構は、 別の例としてそのマスクを収納する気密室 (2 4 ) と、 この気密室内の気体の排気、 及びこの気密室に対するその露光ビームを透過 する気体の供給をフロー制御で行う給排気機構 (4 2, 4 3 , 4 5 A, 4 6 A) とを有するものである。 前者のように減圧機構を用いる場合には、 短時間に気体 の置換を行うことができる。 一方、 後者のようにフロー制御を用いる場合には、 例えば防塵部材の強度が低いような場合でも、 防麈部材を変形させることなく気 体の置換を行うことができる。 .  The gas replacement mechanism has, for example, an airtight chamber (24) for accommodating the mask and a pressure reducing mechanism (42, 45A) for reducing the pressure in the airtight chamber. Further, as another example, the gas replacement mechanism includes a gas-tight chamber (24) for accommodating the mask, a gas exhaust in the gas-tight chamber, and a flow control of supply of a gas that transmits the exposure beam to the gas-tight chamber. And a supply and exhaust mechanism (42, 43, 45A, 46A). When the pressure reducing mechanism is used as in the former case, the gas can be replaced in a short time. On the other hand, when the flow control is used as in the latter, even if the strength of the dustproof member is low, for example, the air can be replaced without deforming the dustproof member. .
また、 その防塵部材 (1 ) がそのマスク (R) に対して支持枠 (2 ) を介して 固定されているときに、 その気体置換機構は、 そのマスク、 その防塵部材、 及び その支持枠で囲まれた密閉空間の内部をもその露光ビームを透過する気体で置換 することが望ましい。 この状態のマスクを露光装置に口一ドした場合には、 その 密閉空間の内部でも露光ビームの吸収がないため、 露光対象の基板上での照度を 高めることができる。 Further, when the dustproof member (1) is fixed to the mask (R) via the support frame (2), the gas displacement mechanism operates with the mask, the dustproof member, and the support frame. Replace the inside of the enclosed space with gas that transmits the exposure beam It is desirable to do. When the mask in this state is put into the exposure apparatus, the exposure beam is not absorbed even in the enclosed space, so that the illuminance on the substrate to be exposed can be increased.
また、 その気体置換機構は、 さらにそのパターン面とその防塵部材との間の空 間内の気体をその露光ビームを透過する気体で置換することが望ましい。 これに よって、 露光ビームに対する透過率が向上する。  It is desirable that the gas replacement mechanism further replaces the gas in the space between the pattern surface and the dustproof member with a gas that transmits the exposure beam. Thereby, the transmittance for the exposure beam is improved.
また、 その防塵部材を保持すると共に、 そのパターン面に取り付けられるフレ ーム (2 ) を有する場合、 その気体置換機構は、 そのフレームに形成された通気 孔 ( 2 a , 2 b ) を介して、 そのパターン面とその防塵部材との間の空間をその 露光ビームを透過する気体で置換するようにしてもよい。 このように通気孔を活 用することで、 そのフレームに特別の加工を施す必要がない。  In addition, when a frame (2) that holds the dust-proof member and is attached to the pattern surface is provided, the gas displacement mechanism operates through the ventilation holes (2a, 2b) formed in the frame. Alternatively, the space between the pattern surface and the dustproof member may be replaced with a gas that transmits the exposure beam. By utilizing the ventilation holes in this way, there is no need to apply special processing to the frame.
次に、 本発明によるデバイス製造システムは、 デバイスパターン (R l, R 2 ) をワークピース (W l, W 2 ) 上に形成するデバイス製造システムにおいて、 本 発明の何れかのマスク浄化装置 (6 4 ) と、 そのデバイスパターンの像をそのヮ ークピース上に転写する露光装置本体 (6 8 A〜6 8 C) と、 そのマスク浄化装 置とその露光装置本体との間で、 そのマスク浄化装置で洗浄が行われたマスクを 搬送する搬送装置 (6 5〜6 7 ) とを有するものである。  Next, the device manufacturing system according to the present invention is a device manufacturing system for forming a device pattern (Rl, R2) on a work piece (Wl, W2). 4), an exposure apparatus main body (68 A to 68 C) for transferring an image of the device pattern onto the workpiece, and the mask cleaning apparatus between the mask cleaning apparatus and the exposure apparatus main body. And a transfer device (65-67) for transferring the mask cleaned in step (1).
本発明のマスク浄化装置を用いることによって、 露光装置本体では、 露光ビー ムに対する透過率を高く維持して、 各種のデバイスパターンを効率的にワークピ —ス上に転写することができ、 各種デバイスを高いスループットで量産すること ができる。  By using the mask cleaning apparatus of the present invention, the exposure apparatus main body can efficiently transfer various device patterns onto a work piece while maintaining a high transmittance to the exposure beam. Mass production with high throughput is possible.
この場合、 その露光装置本体は、 そのマスク洗浄装置でケース (8 A, 8 B) 内に装填されたそのマスクを取り出すマスク取り出し機構 (7 3 ) を有すること が望ましい。 これによつて、 マスクの受け渡しを円滑に行うことができる。  In this case, it is preferable that the exposure apparatus main body has a mask removal mechanism (73) for removing the mask loaded in the case (8A, 8B) by the mask cleaning apparatus. Thereby, the delivery of the mask can be performed smoothly.
また、 そのマスク浄化装置は、 複数のその露光装置本体の間で共用されること が望ましい。 これによつて、 マスク浄化装置の稼動率を高めることができる。 次に、 本発明のデバイス製造方法は、 デバイスパターンをワークピース (W) 上に形成するデバイス製造方法において、 本発明の何れかのマスク浄化方法を用 いて、 パターン面を覆うように防塵部材 (1 ) が取り付けられたマスク (R) を 洗浄して気密性を有するケース (8 ) 内に装填する第 1ステップと、 その洗浄が 行われたマスクをそのケースに収納して露光本体部 (6 8 A) まで搬送する第 2 ステップと、 その露光本体部にて、 そのケースから取り出されたそのマスクを介 して露光ビームで基板 (W) を露光する第 3ステップとを有するものである。 斯かる本発明によれば、 例えば露光本体部とは別体のマスク浄化部で浄化され たマスクが、 十分にクリーンで、 且つ気体置換された気密性の高いケースに収納 されて、 露光本体部に搬送される。 従って、 露光本体部内にマスク浄化部 (気体 置換部、 及び^ 6洗浄部) を設置すること無く、 十分な透過率を有するマスクを使 用して半導体素子等のデバイスの回路パターンの転写が可能になる。 Further, it is desirable that the mask cleaning apparatus is shared by a plurality of exposure apparatus bodies. Thus, the operation rate of the mask cleaning device can be increased. Next, the device manufacturing method of the present invention is a device manufacturing method of forming a device pattern on a work piece (W), wherein the dust-proof member ( 1) Remove the mask (R) with A first step of cleaning and loading in an airtight case (8), a second step of storing the cleaned mask in the case, and transporting the mask to the exposure main body (68A); And a third step of exposing the substrate (W) with an exposure beam through the mask taken out of the case in the exposure main body. According to the present invention, for example, the mask purified by the mask purification unit separate from the exposure main unit is housed in a sufficiently clean, gas-exchanged, highly airtight case, and the exposure main unit is Transported to Therefore, it is possible to transfer a circuit pattern of a device such as a semiconductor device using a mask with sufficient transmittance without installing a mask purification section (gas replacement section and ^ 6 cleaning section) in the exposure main body. become.
この場合、 そのマスクを浄化するマスク浄化部を、 複数個のその露光本体部に 対して共用することが望ましい。 これによつて、 生産ライン全体の設備を少なく することができる。 図面の簡単な説明  In this case, it is desirable to share a mask purifying section for purifying the mask with a plurality of the exposure main bodies. As a result, the number of facilities on the entire production line can be reduced. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態の一例のレチクル浄化装置を示す一部を切り欠い た構成図である。 図 2において、 (A) はレチクル用の通常のケースを示す側面 図、 (B ) はレチクル用のクリーンケースを示す断面図である。 図 3において、 FIG. 1 is a partially cutaway configuration view showing a reticle cleaning device according to an example of an embodiment of the present invention. In FIG. 2, (A) is a side view showing a normal case for a reticle, and (B) is a cross-sectional view showing a clean case for a reticle. In Figure 3,
(A) はペリクル空間をパージガスで置換する気体置換機構の一例を示す底面図、(A) is a bottom view showing an example of a gas replacement mechanism for replacing the pellicle space with a purge gas,
(B ) はその気体置換機構を示す一部を切り欠いた正面図である。 図 4は、 図 1 のレチクル浄化装置を備えたデバイス製造システムの一例の要部を示す斜視図で ある。 図 5は、 本発明の実施の形態のデバイス製造システムを用いて半導体デバ イスを製造する場合の製造工程の一例を示す図である。 発明を実施するための最良の形態 (B) is a partially cutaway front view showing the gas replacement mechanism. FIG. 4 is a perspective view showing a main part of an example of a device manufacturing system including the reticle cleaning device of FIG. FIG. 5 is a diagram illustrating an example of a manufacturing process when a semiconductor device is manufactured using the device manufacturing system according to the embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好ましい実施の形態の一例につき図面を参照して説明する。 本 例は、 パターン面を保護するために、 薄膜状のペリクル (防塵部材) が張設され るとともに、 露光ビームとして真空紫外光が照射されるレチクル (マスク) のク リーニングを行うレチクル浄化装置に、 本発明を適用したものである。 本例のレ チクル浄化装置は、 一例として半導体デバイス等を製造するためのフォトリソグ :程を実行する製造ライン中に、 露光装置とは別置きで設置されるもので ある。 Hereinafter, an example of a preferred embodiment of the present invention will be described with reference to the drawings. In this example, a reticle purification device is installed, in which a pellicle (dust-proof member) in the form of a thin film is stretched to protect the pattern surface, and the reticle (mask) is irradiated with vacuum ultraviolet light as an exposure beam. The present invention is applied. The reticle cleaning apparatus of the present example is, for example, a photolithography for manufacturing semiconductor devices and the like. : Installed separately from the exposure equipment in the manufacturing line that executes the process.
図 1は、 本例のレチクル浄化装置を示し、 この図 1において、 大気環境下でレ チクルストツ力一 (不図示) 内に保管されている通常のケース 3 (レチクルケ一 ス) に格納されているマスクとしてのレチクル Rが、 露光光を透過する気体によ る置換及び光洗浄を受けて、 気密化されたクリーンケース 8 (クリーンレチクル ケース) 内に装填され、 このクリーンケース 8がレチクル Rを密閉して内蔵した 状態で不図示の露光装置に搬送される。 また、 レチクル Rには、 パ夕一ン面を保 護するために防塵部材としてのペリクル 1が装着されている。  FIG. 1 shows the reticle cleaning apparatus of the present embodiment. In FIG. 1, the reticle cleaning apparatus is stored in a normal case 3 (reticle case) stored in a reticle storage device (not shown) under an atmospheric environment. The reticle R as a mask is loaded into an airtight clean case 8 (clean reticle case) after being replaced with a gas transmitting the exposure light and washed with light, and the clean case 8 seals the reticle R. Then, it is transported to an exposure device (not shown) in a state where it is incorporated. The reticle R is equipped with a pellicle 1 as a dustproof member to protect the surface of the reticle.
図 2 (A) は、 その通常のケース 3を示し、 この図 2 (A) において、 ケース Fig. 2 (A) shows the normal case 3, and in Fig. 2 (A),
3は、 底板部 4に対して 2箇所の支点部 7を軸として開閉自在に上蓋部 5を連結 することによって構成されており、 底板部 4上に 4本の台座 6 (図 2 (A) では その内の 2本が現れている。 以下同様。)を介してレチクル Rが載置されている。 レチクル Rのパ夕一ン面 (下面) には、 矩形の枠状の金属製のペリクルフレーム 2を介して厚さ 1 m程度の薄膜のペリクル 1が張設されている。 なお、 ペリク ル 1としては、 例えばフッ化物結晶の厚さ 3 0 0〜8 0 0 /x m程度の平板を使用 することも可能である。 ケース 3は、 上蓋部 5を閉じた状態でも気密度はかなり 低く、 ケース 3内の気体はほぼその周囲の気体と同じ気体である。 そのため、 ケ —ス 3は、 レチクルを通常の大気と同じ雰囲気中のレチクルストツ力一内に保管 する際に、 レチクルを個別に収納するために使用される。 3 is constructed by connecting the upper lid 5 to the bottom plate 4 so that it can be opened and closed about two fulcrum portions 7 as axes, and four pedestals 6 on the bottom plate 4 (Fig. 2 (A) The reticle R is placed via the reticle R. A thin pellicle 1 having a thickness of about 1 m is provided on a reticle R surface (lower surface) via a rectangular frame-shaped metal pellicle frame 2. As the pellicle 1, for example, a flat plate having a thickness of about 300 to 800 / xm of fluoride crystal can be used. In Case 3, the gas density is quite low even when the top lid 5 is closed, and the gas in Case 3 is almost the same as the surrounding gas. Therefore, Case 3 is used to store the reticles individually when the reticles are stored in a reticle storage device in the same atmosphere as normal air.
図 2 (B ) は、 そのクリーンケース 8を示す断面図であり、 この図 2 (B ) に おいて、 クリーンケ一ス 8は、 中央に開口が形成された平板状のマウント部 9の 上面に、 底面が開いた箱状の収容部 1 0を固定し、 更にそのマウント部 9の底面 に平板状の底板部 1 1をつる巻ばね方式の 2箇所のクランプ 1 4 A, 1 4 Bで押 さえつけることによって構成され、 底板部 1 1上に 4本の台座 1 2を介してレチ クル Rが載置されている。 この場合、 マウント部 9と収容部 1 0とは内部の気密 性を保っために、 溶接、 又は一体成形等によって固定されており、 マウント部 9 とこのマウント部 9に対して着脱可能な底板部 1 1との間には、 マウント部 9に 底板部 1 1を取り付けた際の気密性を高めるために〇リング 1 3 (シール部材) が配置されている。 また、 マウント部 9、 収容部 1 0、 及び底板部 1 1は、 ステ ンレススチール又はアルミニウム等の金属のように、 脱ガスが少なく内部の気密 性を高く維持できる材料より形成されており、 クランプ 1 4 A, 1 4 Bでマウン ト部 9に底板部 1 1を固定した状態で、 クリーンケース 8の内部は気密室となり、 その内部のレチクル Rは外気からほぼ完全に隔離された局所的な環境内に設置さ れていることになる。 FIG. 2 (B) is a cross-sectional view showing the clean case 8, and in FIG. 2 (B), the clean case 8 is mounted on the upper surface of a flat mount portion 9 having an opening formed in the center. Then, fix the box-shaped receiving section 10 with an open bottom, and then press the flat bottom plate 11 on the bottom of the mounting section 9 with two spring-type clamps 14 A, 14 B that hang the flat bottom plate 11. The reticle R is mounted on the bottom plate 11 via four pedestals 12. In this case, the mounting portion 9 and the housing portion 10 are fixed by welding, integral molding, or the like in order to maintain the airtightness inside, and the mounting portion 9 and the bottom plate portion detachable from the mounting portion 9 are provided. In order to improve the airtightness when the bottom plate 1 1 is attached to the mount 9, the ring 1 3 (seal member) Is arranged. Also, the mounting portion 9, the housing portion 10, and the bottom plate portion 11 are made of a material such as stainless steel or metal such as aluminum, which has a small outgassing and can maintain a high internal airtightness. With the bottom plate 11 fixed to the mount 9 with the clamps 14A and 14B, the inside of the clean case 8 becomes an airtight chamber, and the reticle R inside is locally isolated almost completely from the outside air. This means that it is installed in a comfortable environment.
なお、 クランプ 1 4 A, 1 4 Bの機構は、 ばね方式には限られず、 例えば複数 箇所でポルトによってマウント部 9とそれに対して着脱される部材とを連結して もよく、 永久磁石を用いてそれらを着脱可能に連結してもよく、 更には可撓性を 有する配管を介してマウント部 9と真空ポンプとを連結し、 真空吸着によってマ ゥント部 9とその部材とを連結してもよく、 静電吸着や電磁石による吸着等によ つてマウント部 9とその部材とを連結してもよい。  The mechanism of the clamps 14A and 14B is not limited to the spring type.For example, the mount 9 and the member attached to and detached from the mount 9 may be connected at a plurality of locations using a port, and a permanent magnet may be used. The mount 9 and the vacuum pump may be connected to each other via a flexible pipe, and the mount 9 and its members may be connected by vacuum suction. Alternatively, the mount 9 and its members may be connected to each other by electrostatic attraction, adsorption by an electromagnet, or the like.
最近のフォトリソグラフイエ程では、 クリーンルームや露光装置の全体を覆う チャンバのような広い空間の環境をクリーンに保つ技術とともに、 所定枚数のゥ ェハを搬送するためのウェハケースの内部のような局所的な環境をクリーンに維 持する局所クリーン化環境 (ミニ ·エンバイロンメント: mini-environineiil;) 技 術の重要性が認識されるようになっている。 本例のクリーンケース 8は気密性が 高いため、 その内部のレチクル Rを囲む空間は、 異物の付着が防止されている局 所クリーン化環境と言うことができる。  In recent photolithography projects, technologies for keeping the environment of a large space clean, such as a clean room or a chamber that covers the entire exposure apparatus, and a local area such as the inside of a wafer case for transporting a predetermined number of wafers have been developed. The importance of the local clean environment (mini-environment: mini-environineiil;) technology that keeps the natural environment clean has been recognized. Since the clean case 8 of this example is highly airtight, the space surrounding the reticle R inside it can be said to be a local clean environment in which foreign matter is prevented from adhering.
また、 最近は、 例えばフォトリソグラフイエ程中の種々の装置間でのレチクル やウェハの受け渡しを標準化するために、 レチクルやウェハを収納するケースを 標準化する機械的インターフェース技術である S M I F (Standard mechanical i nterface) 技術が提案されている。 そこで、 本例のクリーンケース 8としては、 その S M I F技術に基づいて標準化されたケース、 例えば S M I F p o d (商 品名) を使用してもよい。  Recently, for example, in order to standardize the transfer of reticles and wafers between various devices during the photolithographic process, SMIF (Standard mechanical i.m.) is a mechanical interface technology that standardizes the case for storing reticles and wafers. nterface) technology has been proposed. Therefore, as the clean case 8 in this example, a case standardized based on the SMIF technology, for example, SMIpod (product name) may be used.
また、 本例のレチクル Rは、 波長 2 0 0 n m程度以下の真空紫外光が露光光と して使用されるが、 そのような露光光の光路からは酸素、 水蒸気、 炭酸ガス (C 〇2 等) 、 及び炭化水素系 (有機物) の気体等の露光光に対して強い吸収率を持 つ気体である 「吸収性ガス」 を排除する必要がある。 一方、 露光ビームを透過す る気体、 即ち本例では真空紫外域の露光光に対する吸収の少ない 「低吸収性ガス」 には、 窒素及び希ガス (ヘリウム、 ネオン、 アルゴン、 クリプトン、 キセノン、 ラドン) 、 並びにそれらの混合気体がある。 そして、 本例のレチクル Rが使用さ れる露光装置においては、 それらの低吸収性ガスの内から例えば必要とされる結 像特性の安定性や運転コスト等に基づいて選択した 「パージガス」 によって、 露 光光の光路の気体が置換される。 パージガスとしては、 運転コストを低く抑えた い用途では例えば窒素が使用され、 結像特性の安定性を重視する用途では例えば ヘリウムが使用される。 Further, the reticle R of this embodiment, the wavelength 2 0 0 nm approximately following the vacuum ultraviolet light is used as the exposure light, oxygen from the optical path of such exposure light, water vapor, carbon dioxide (C 〇 2 It is necessary to eliminate “absorbent gas” which is a gas that has a strong absorption rate for exposure light such as, and hydrocarbon (organic) gases. On the other hand, it transmits the exposure beam In this example, the "low-absorbing gas" that has low absorption for exposure light in the vacuum ultraviolet region includes nitrogen and noble gases (helium, neon, argon, krypton, xenon, radon), and a mixture thereof. is there. In the exposure apparatus using the reticle R of the present example, the `` purge gas '' selected from the low-absorbing gas based on, for example, the required stability of the imaging characteristics and the operating cost is used. The gas in the light path of the exposure light is replaced. As the purge gas, for example, nitrogen is used in applications where the operation cost is to be kept low, and helium is used in applications where importance is placed on the stability of the imaging characteristics.
これに関して、 クリーンケース 8内の気体が低吸収性ガスを含む通常の空気で あるとすると、 クリーンケ一ス 8を露光装置に搬送して、 クリーンケース 8から レチクル Rを取り出す際に、 クリーンケース 8内の空気が露光光の光路上のパー ジガスに混入して、 露光光の強度が低下する恐れがある。 そこで、 本例では、 ク リーンケース 8の内部の気体も、 レチクル Rが使用される露光装置で供給されて いるパージガスで置換しておく。  In this regard, assuming that the gas in the clean case 8 is ordinary air containing a low-absorbing gas, the clean case 8 is transported to the exposure apparatus, and when the reticle R is taken out of the clean case 8, the clean case 8 is removed. The air inside may mix into the purge gas on the optical path of the exposure light, reducing the intensity of the exposure light. Therefore, in this example, the gas inside the clean case 8 is also replaced with the purge gas supplied from the exposure apparatus using the reticle R.
更に、 図 2 (B ) において、 レチクル R、 ペリクル 1、 及びペリクルフレーム Further, in FIG. 2B, reticle R, pellicle 1, and pellicle frame
2で囲まれる空間 (ペリクル空間) 内は、 露光光の光路としては短いが、 その内 部もパージガスで置換しておくことが望ましい。 これに関して、 ペリクル空間の 内外気圧差に伴うペリクル 1の変形や破損を防止するために、 ペリクルフレーム 2には極めて小さい通気孔 2 a, 2 bが設けられているため、 本例では必要に応 じてその通気孔 2 a , 2 bを通して、 ペリクル空間内の気体をパージガスで置換 することとする (詳細後述) 。 The space surrounded by 2 (pellicle space) has a short optical path for the exposure light, but it is desirable that the inside of the space is also replaced with a purge gas. In this regard, the pellicle frame 2 is provided with extremely small ventilation holes 2a and 2b in order to prevent deformation and breakage of the pellicle 1 due to a difference in pressure between the inside and outside of the pellicle space. Then, the gas in the pellicle space is replaced with a purge gas through the ventilation holes 2a and 2b (details will be described later).
図 1に戻り、 本例のレチクル浄化装置は、 ケース 3内のレチクル Rを受け渡す ための搬入側ローダ 2 1と、 気密性を有するハウジング 2 3で囲まれて複数の気 密室に仕切られた本体部と、 その本体部内の複数の気密室から気体を排気する減 圧機構としてのドライ型等の真空ポンプ 4 2と、 それらの気密室に上記のパージ ガスを供給するガスボンベ等からなるパージガス供給源 4 3と、 装置全体の動作 を制御するコンピュータよりなる制御系 4 1とを有している。 また、 ハウジング 2 3内は、 複数の気密室としてのパージガス置換室 2 4、 ランプ室 2 6、 ローダ 室 3 0、 及びクリーンケースへの装填室 3 5に分かれている。 装填室 3 5は、 ク リーンケ—ス ·インターフェースとも言うことができる。 この場合、 パージガス 置換室 2 4と外気との間は開閉自在のシャツ夕 2 8で仕切られ、 パージガス置換 室 2 4とランプ室 2 6との間には、 光洗浄用の紫外光を通す蛍石 (C a F 2 ) 等 のフッ化物結晶よりなる窓部材 2 5が設けられ、 パ一ジガス置換室 2 4とローダ 室 3 0との間、 及び口一ダ室 3 0と装填室 3 5との間はそれぞれ開閉自在のシャ ッタ 3 1及び 3 4によって仕切られている。 これらのシャツ夕 2 8, 3 1, 3 4 はレチクル Rが通過するときにのみ開かれ、 それ以外のときには気密性を保った めに閉じている。 Returning to FIG. 1, the reticle purifying apparatus of the present example is divided into a plurality of hermetic chambers surrounded by a loading side loader 21 for transferring a reticle R in a case 3 and an airtight housing 23. A vacuum pump 42 such as a dry type as a pressure reducing mechanism for exhausting gas from a plurality of hermetic chambers in the main body, and a purge gas supply including a gas cylinder for supplying the purge gas to the hermetic chambers. And a control system 41 composed of a computer for controlling the operation of the entire apparatus. Further, the inside of the housing 23 is divided into a purge gas replacement chamber 24 as a plurality of airtight chambers, a lamp chamber 26, a loader chamber 30 and a chamber 35 for loading a clean case. Loading chamber 35 It can also be called a lean case interface. In this case, the openable and closable shirt 28 is partitioned between the purge gas exchange chamber 24 and the outside air, and the fluorescent gas through which ultraviolet light for light cleaning passes is provided between the purge gas exchange chamber 24 and the lamp chamber 26. A window member 25 made of a fluoride crystal such as stone (CaF 2 ) is provided. The window member 25 is provided between the purge gas replacement chamber 24 and the loader chamber 30, and the mouth chamber 30 and the loading chamber 35. Are separated from each other by shutters 31 and 34 which can be freely opened and closed. These shirts 28, 31 and 34 are opened only when reticle R passes, and closed at other times to maintain airtightness.
先ず、 搬入側ローダ 2 1は、 ケース 3内から不図示の口ポットアームによって 取り出されたレチクル R (ペリクル 1が張設されている) の底面を吸着保持して パージガス置換室 2 4内に搬送する 2本のアームを備え、 搬入側口一ダ 2 1のス ライド移動、 回転、 及び上下動を行うための駆動部 2 2も付設されている。 パー ジガス置換室 2 4内には、 搬入されたレチクルを吸着等で保持する 4箇所の保持 機構 2 9が配置され、 ランプ室 2 6内にはエキシマランプ等の紫外線光源 2 7が 設置されている。 本例のランプ室 2 6には、 排気管及びパージガスの給気管は接 続されていないが、 紫外線の強度を高く維持するためには、 ランプ室 2 6にもパ ージガスの置換機構を設けることが望ましい。 但し、 紫外線光源 2 7として、 A r Fエキシマランプ (波長 1 9 3 n m) のように、 酸素による吸収がそれほど大 きくない波長の光源を使用する場合には、 そのパージガスの置換機構は持たせな くとも良い。  First, the loading-side loader 21 sucks and holds the bottom surface of the reticle R (having the pellicle 1 stretched out) taken out of the case 3 by a mouth pot arm (not shown) and transports the reticle R into the purge gas replacement chamber 24. A drive unit 22 for sliding, rotating, and moving up and down the carry-in port 21 is also provided. In the purge gas replacement chamber 24, four holding mechanisms 29 for holding the loaded reticle by suction etc. are arranged, and in the lamp chamber 26, an ultraviolet light source 27 such as an excimer lamp is installed. I have. Although the exhaust pipe and the supply pipe for the purge gas are not connected to the lamp chamber 26 in this example, a purge gas replacement mechanism must also be installed in the lamp chamber 26 to maintain the intensity of ultraviolet rays high. Is desirable. However, when using a light source with a wavelength that does not absorb much oxygen, such as an ArF excimer lamp (wavelength: 193 nm), as the ultraviolet light source 27, the purge gas replacement mechanism must not be provided. Good.
また、 ローダ室 3 0内には、 パージガス置換室 2 4内のレチクル Rをクリーン ケースへの装填室 3 5に搬送するために、 レチクル; Rの底面を吸着保持する 2本 のアームを持つ搬出側ローダ 3 2が配置され、 搬出側ローダ 3 2のスライド移動、 回転、 及び上下動を行うための駆動部 3 3も付設されている。 そして、 クリーン ケースへの装填室 3 5内には、 クリーンケース 8の底板部 1 1を保持して上下に 移動する上下動装置 3 6が設置されている。 また、 装填室 3 5の上部のハウジン グ 2 3には、 その底板部 1 1を通すための開口 3 5 aが設けられており、 その開 口 3 5 aを覆って気密性を保つように、 クリーンケース 8のマウント部 9及び収 容部 1 0が、 2つのクランプ機構 3 8 A及び 3 8 Bによってハウジング 2 3の上 面に固定されている。 本例では、 装填室 3 5及びクリーンケース 8の収容部 1 0 で囲まれた空間が一つの気密室となっている。 更に、 装填室 3 5の内面の開口 3 5 aの近傍に、 クリーンケース 8のマウント部 9の 2箇所のクランプ 1 4 A, 1 4 Bを外すためのクランプ解除機構 3 7 A及び 3 7 Bが設置されている。 上下動 装置 3 6、 クランプ解除機構 3 7 A, 3 7 B、 及びクランプ機構 3 8 A, 3 8 B 等から、 レチクルをクリーンケース 8内に装填する装填機構が構成されている。 In order to transport the reticle R in the purge gas replacement chamber 24 to the load chamber 35 for loading into the clean case, the loader chamber 30 has two arms that hold the bottom surface of the reticle R by suction. A side loader 32 is arranged, and a drive unit 33 for sliding, rotating, and vertically moving the unloading side loader 32 is also provided. A vertical movement device 36 that holds the bottom plate 11 of the clean case 8 and moves up and down is installed in the clean case loading chamber 35. The housing 23 at the top of the loading chamber 35 is provided with an opening 35a through which the bottom plate 11 passes, so that the opening 35a is covered to maintain airtightness. The mounting part 9 and the housing part 10 of the clean case 8 are mounted on the housing 23 by two clamping mechanisms 38 A and 38 B. It is fixed to the surface. In this example, the space surrounded by the loading chamber 35 and the accommodating section 10 of the clean case 8 is one airtight chamber. Further, in the vicinity of the opening 35a on the inner surface of the loading chamber 35, the clamp release mechanisms 37A and 37B for removing the two clamps 14A and 14B of the mount 9 of the clean case 8 are provided. Is installed. A loading mechanism for loading the reticle into the clean case 8 is constituted by the vertical movement device 36, the clamp release mechanisms 37A and 37B, and the clamp mechanisms 38A and 38B.
この場合、 図 2 (B ) の閉じたクリーンケース 8のマウント部 9を装填室 3 5 の開口 3 5 aを覆うようにハウジング 2 3に載置して、 クランプ機構 3 8 A及び In this case, the mounting part 9 of the closed clean case 8 shown in FIG. 2B is placed on the housing 23 so as to cover the opening 35 a of the loading chamber 35, and the clamping mechanism 38 A and
3 8 Bでマウント部 9を固定する。 この際に、 マウント部 9とハウジング 2 3と の間の気密性を高めるために、 ハウジング 2 3の上面のマウント部 9との接触部 に凹部を形成し、 この凹部に〇リング (シール部材) を配置してもよい。 その後、 底板部 1 1にほぼ接するように上下動装置 3 6の先端部を上昇させてから、 クラ ンプ解除機構 3 7 A及び 3 7 Bによってクランプ 1 4 A, 1 4 Bを外すことによ つて、 台座 1 2を備えた底板部 1 1をマウント部 9から離して上下動装置 3 6に 受け渡すことができる。 この状態から上下動装置 3 6を降下させたのが図 1の状 態である。 なお、 上記の搬入側ローダ 2 1、 紫外線光源 2 7、 搬出側ローダ 3 2、 クリーンケースへの装填機構、 及びシャツ夕 2 8, 3 1 , 3 4等の動作は制御系 4 1によって制御されている。 3 Fix the mount 9 with 8 B. At this time, in order to increase the airtightness between the mounting portion 9 and the housing 23, a concave portion is formed in a contact portion of the upper surface of the housing 23 with the mounting portion 9, and a ring (seal member) is formed in the concave portion. May be arranged. After that, the tip of the vertical movement device 36 is raised so as to be almost in contact with the bottom plate portion 11, and then the clamps 14A and 14B are removed by the clamp release mechanisms 37A and 37B. Thus, the bottom plate 11 provided with the pedestal 12 can be transferred to the vertical movement device 36 while being separated from the mount 9. FIG. 1 shows the state in which the vertical movement device 36 is lowered from this state. The operation of the loading side loader 21, the ultraviolet light source 27, the loading side loader 32, the mechanism for loading into the clean case, and the shirts 28, 31, 34 are controlled by the control system 41. ing.
また、 パージガス置換室 2 4、 ローダ室 3 0、 及び装填室 3 5と真空ポンプ 4 2とは、 それぞれ電磁的に開閉自在のバルブが設けられた排気管 4 5 A, 4 5 B , Further, the purge gas replacement chamber 24, the loader chamber 30 and the loading chamber 35 and the vacuum pump 42 are respectively provided with exhaust pipes 45A, 45B,
4 5 Cを介して接続され、 パージガス置換室 2 4、 ローダ室 3 0、 及び装填室 3 5とパージガス供給源 4 3とは、 それぞれ電磁的に開閉自在のバルブが設けられ た給気管 4 6 A, 4 6 B , 4 6 Cを介して接続されている。 真空ポンプ 4 2には、 各気密室から排気した気体を工場の排気ガス処理施設 (不図示) に送るための配 管 4 6も接続されている。 真空ポンプ 4 2、 パージガス供給源 4 3、 排気管 4 5 A〜4 5 C、 及び給気管 4 6 A〜4 6 C等から気体置換機構が構成されている。 更に、 パージガス置換室 2 4、 ローダ室 3 0、 及び装填室 3 5内にはそれぞれ吸 収性ガス等の不純物の残留濃度を計測する気体センサ 4 4 A, 4 4 B , 4 4 Cが 配置され、 これらの気体センサ 4 4 A〜4 4 Cによって計測される不純物の濃度 情報が制御系 4 1に供給されている。 その不純物として酸素濃度を計測する場合 には、 気体センサ 4 4 A〜4 4 Cとして例えばガルバ二電池式 (galvanic cel l) の酸素濃度計を使用することができる。 The purge gas replacement chamber 24, the loader chamber 30, the loading chamber 35, and the purge gas supply source 43, which are connected via 45 C, are each provided with an electromagnetically openable and closable air supply pipe 46. A, 46 B, and 46 C are connected. The vacuum pump 42 is also connected to a pipe 46 for sending gas exhausted from each hermetic chamber to an exhaust gas treatment facility (not shown) of the factory. A gas replacement mechanism is composed of a vacuum pump 42, a purge gas supply source 43, an exhaust pipe 45A to 45C, and an air supply pipe 46A to 46C. In addition, gas sensors 44 A, 44 B and 44 C for measuring the residual concentration of impurities such as absorptive gas are arranged in the purge gas replacement chamber 24, the loader chamber 30 and the loading chamber 35, respectively. The concentration of impurities measured by these gas sensors 44A to 44C Information is supplied to the control system 41. When measuring the oxygen concentration as the impurity, for example, a galvanic cell-type oxygen concentration meter can be used as the gas sensor 44A to 44C.
制御系 4 1は、 3つの気密室 (パージガス置換室 2 4、 ローダ室 3 0、 及び装 填室 3 5 ) 内の気体をパージガスで置換する際には、 真空ポンプ 4 2を介して対 応する気密室内の気体を排気するとともに、 その気密室内にパージガス供給源 4 3からパージガスを供給する。 この動作は、 気体センサ 4 4 A〜4 4 Cによって 計測される不純物濃度が予め定められた許容レベル以下になるまで行われる。 な お、 そのパージガスの置換動作は、 真空ポンプ 4 2 (減圧機構) によって対応す る気密室内を大気圧よりも大きく減圧させて排気してからパージガスを供給する 減圧方式と、 真空ポンプ 4 2及びパージガス供給源 4 3 (給排気機構) によって 大気圧程度の気圧でほぼ連続的に排気及びパージガスの供給を行う (排気量と給 気量とをほぼ等しくする) フロー制御方式との何れの方式で行ってもよい。 減圧 方式は、 例えば本例のレチクル浄化装置の稼働開始直後に、 各気密室内の空気を 短時間にパージガスで置換するために使用することができる。 また、 減圧方式で は、 レチクル Rに張設されたペリクル 1が変形する恐れがあるが、 ペリクルフレ ーム 2に設けられた通気孔 2 a , 2 b (図 2 (B ) 参照) を通過する気体の流量 に応じて、 予めペリクル 1が殆ど変形しない排気速度を求めておき、 この排気速 度以下で減圧を行えばよい。  When replacing the gas in the three airtight chambers (purge gas replacement chamber 24, loader chamber 30 and loading chamber 35) with the purge gas, the control system 41 responds via a vacuum pump 42. The gas in the sealed chamber is exhausted, and a purge gas is supplied from the purge gas supply source 43 into the sealed chamber. This operation is performed until the impurity concentration measured by the gas sensors 44A to 44C becomes equal to or lower than a predetermined allowable level. In addition, the purging gas replacement operation is performed by a vacuum pump 42 (a depressurizing mechanism) in which a corresponding airtight chamber is depressurized to a pressure greater than the atmospheric pressure and exhausted, and then a purge gas is supplied. The purge gas supply source 4 3 (supply / exhaust mechanism) supplies exhaust gas and purge gas almost continuously at atmospheric pressure (approximately equal exhaust volume and supply volume). May go. The depressurization method can be used, for example, immediately after the start of operation of the reticle purifying apparatus of the present example to replace the air in each airtight chamber with purge gas in a short time. In the decompression method, the pellicle 1 stretched on the reticle R may be deformed, but pass through the ventilation holes 2 a and 2 b (see FIG. 2B) provided in the pellicle frame 2. The pumping speed at which the pellicle 1 hardly deforms is determined in advance in accordance with the gas flow rate, and the pressure may be reduced below this pumping speed.
次に、 本例のレチクル浄化装置の全体の動作の一例につき説明する。 図 1にお いて、 ケース 3内のペリクル 1が装着されたレチクル Rは、 搬入側ローダ 2 1を 介してパ一ジガス置換室 2 4内に搬入されて、 保持機構 2 9上の位置 P 1に保持 される。 この状態で、 シャツ夕 2 8及び 3 1が閉じられて、 真空ポンプ 4 2及び パージガス供給源 4 3によって、 パージガス置換室 2 4内の気体がパージガスに 置換される。 更に、 紫外線光源 2 7の発光が開始されて、 紫外線光源 2 7からの 紫外線 Lによってレチクル Rの光洗浄が行われる。  Next, an example of the overall operation of the reticle cleaning device of the present example will be described. In FIG. 1, the reticle R with the pellicle 1 in the case 3 is carried into the purge gas replacement chamber 24 via the loading side loader 21, and the position P 1 on the holding mechanism 29. Is held in In this state, the shirts 28 and 31 are closed, and the gas in the purge gas replacement chamber 24 is replaced by the purge gas by the vacuum pump 42 and the purge gas supply source 43. Further, light emission of the ultraviolet light source 27 is started, and light cleaning of the reticle R is performed by ultraviolet light L from the ultraviolet light source 27.
通常の大気環境で保管されていたレチクル Rには、 有機物及び水等の異物が付 着している。 そこで、 エキシマランプ等の紫外線光源 2 7からの紫外線を照射し て、 それらの異物を気化させて除去している。 なお、 浄化すべきレチクル Rの新 規搬入時 (交換時) には、 パージガス置換室 2 4は大気に開放されて汚染される ので、 大気に開放されるエリアを最小限に抑えるために、 紫外線光源 2 7は、 パ ージガス置換室 2 4とは別のランプ室 2 6に配置されている。 Reticle R stored in a normal atmospheric environment contains foreign substances such as organic substances and water. Therefore, ultraviolet light from an ultraviolet light source 27 such as an excimer lamp is irradiated to vaporize and remove those foreign substances. In addition, new reticle R to be purified At the time of loading (replacement), the purge gas replacement chamber 24 is open to the atmosphere and is contaminated. To minimize the area open to the atmosphere, the ultraviolet light source 27 is installed in the purge gas replacement chamber. It is arranged in a lamp room 26 different from 24.
また、 上記の紫外線照射による光洗浄は、 或る程度酸素が存在する環境下で行 なった方が効率が良い。 これは、 紫外線照射によって酸素からオゾンが発生し、 そのオゾンによって有機物の分解が促進されるためである。 従って、 その光洗浄 は、 そのパージガス置換室 2 4内のパージガスによる置換が完全に終了してから 行なうのではなく、 パージガスの置換動作中に、 それと並行して (実質的に同時 に) 行なうことが望ましい。 また、 パージガス置換室 2 4内にレチクル Rが搬入 されたのと同時に紫外線照射を開始してから、 パージガスによる置換を行うよう にしてもよい。  Further, it is more efficient to perform the above-described light cleaning by ultraviolet irradiation in an environment where oxygen is present to some extent. This is because UV irradiation generates ozone from oxygen, which accelerates the decomposition of organic matter. Therefore, the optical cleaning should be performed not only after the replacement with the purge gas in the purge gas replacement chamber 24 is completed but also during (substantially simultaneously with) the purge gas replacement operation. Is desirable. Further, the ultraviolet irradiation may be started at the same time when the reticle R is carried into the purge gas replacement chamber 24, and then the replacement with the purge gas may be performed.
以上の工程により浄化された後にシャツ夕 3 1が開かれ、 レチクル Rは搬出側 ローダ 3 2によって、 パージガス置換室 2 4からローダ室 3 0内に搬送される。 続いてシャツ夕 3 1を閉じ、 シャツ夕 3 4を開いてから、 レチクル Rは搬出側口 ーダ 3 2によって、 装填室 3 5 (クリーンケース ·インターフェース) 内の底板 部 1 1 (クリーンケース 8の一部) の台座 1 2上の位置 P 2に載置される。 その 底板部 1 1は、 装填機構の一部である上下動装置 3 6の上に保持されている。 続 いてシャツ夕 3 4が閉じられて、 装填室 3 5及びクリーンケース 8の収容部 1 0 によって囲まれた空間、 即ちレチクル Rが収容されている空間は密閉された空間 となり、 その空間内の不純物濃度が許容レベル以下になるまで、 真空ポンプ 4 2 及びパージガス供給源 4 3によるパージガスの置換が行われる。  After being purified by the above steps, the shirt 31 is opened, and the reticle R is transferred from the purge gas replacement chamber 24 to the loader chamber 30 by the unloader 32. Then, after closing the shirt 31 and opening the shirt 34, the reticle R is loaded into the loading room 35 (clean case interface) with the bottom plate 1 1 (clean case 8). Is placed at the position P 2 on the pedestal 1 2. The bottom plate 11 is held on a vertical movement device 36 which is a part of the loading mechanism. Subsequently, the shirt 34 is closed, and the space surrounded by the loading room 35 and the housing 10 of the clean case 8, that is, the space in which the reticle R is housed, becomes a sealed space. Until the impurity concentration falls below the allowable level, the purge gas is replaced by the vacuum pump 42 and the purge gas supply source 43.
その後、 上下動装置 3 6を上昇させて、 底板部 1 1がマウント部 9の底面に接 触した状態で、 クランプ解除機構 3 7 A, 3 7 Bがクランプ 1 4 A, 1 4 Bを元 の状態に戻すことで、 図 2 ( B ) に示すように、 気密化されたクリーンケース 8 内のパージガスの雰囲気中にレチクル Rが保持される。 これで、 本例のレチクル 浄化装置によるレチクル Rの浄化工程は終了する。  Then, the vertical motion device 36 is raised, and the clamp release mechanisms 37 A and 37 B are moved from the clamps 14 A and 14 B while the bottom plate 11 is in contact with the bottom surface of the mount 9. 2B, the reticle R is held in the atmosphere of the purge gas in the hermetically sealed clean case 8 as shown in FIG. 2 (B). This completes the reticle R purification process using the reticle purification device of the present example.
このように本例のレチクル浄化装置を用いた浄化動作によれば、 ペリクル 1が 装着されたレチクル Rの周囲の雰囲気のパージガスによる置換、 レチクル Rの光 洗浄、 及びレチクル Rのクリーンケース 8内へのパージガス雰囲気での装填を効 率的に実行することができる。 また、 本例のレチクル浄化装置は、 ペリクル 1が 装着されたレチクル Rのみならず、 ペリクルが装着されていないレチクルの浄化 を行う場合にも適用できることは明らかである。 つ As described above, according to the purifying operation using the reticle purifying apparatus of the present embodiment, the atmosphere around the reticle R on which the pellicle 1 is mounted is replaced with the purge gas, the reticle R is optically cleaned, and the reticle R is cleaned into the clean case 8. Effective loading in purge gas atmosphere It can be performed efficiently. Further, it is clear that the reticle cleaning apparatus of the present example can be applied not only to the reticle R equipped with the pellicle 1 but also to the reticle not equipped with the pellicle. One
なお、 図 1のローダ室 3 0においてもパージガスによる置換が行われているが、 ローダ室 3 0は、 通常の使用条件下においては大気に開放されることが無いため、 パージガスによる置換を行なう頻度は少なくて良い。 それに対して、 クリーンケ ース 8の装填室 3 5への着脱時には (正確にはクリーンケース 8が装着されてい ない状態では) 、 装填室 3 5は大気に開放されるため、 クリーンケース 8のマウ ント部 9の装着後で底板部 1 1のクランプ 1 4 A, 1 4 Bを外す前に、 装填室 3 5内をパ一ジガスで置換する必要のあることは言うまでもない。 そして、 パージ ガスの置換後に、 底板部 1 1を下降させてシャツ夕 3 4を開いて、 レチクル Rを 装填室 3 5内に搬入することになる。  Although the replacement with the purge gas is also performed in the loader chamber 30 in FIG. 1, the loader chamber 30 is not opened to the atmosphere under the normal use condition. Is good. On the other hand, when the clean case 8 is attached to and detached from the loading chamber 35 (accurately, when the clean case 8 is not mounted), the loading chamber 35 is opened to the atmosphere, so that the clean case 8 is mounted. Needless to say, it is necessary to replace the inside of the loading chamber 35 with a purge gas before the clamps 14 A and 14 B of the bottom plate 11 are detached after the mounting of the contact portion 9. After replacement of the purge gas, the bottom plate 11 is lowered to open the shirt 34, and the reticle R is carried into the loading chamber 35.
なお、 上記の実施の形態では、 通常のケース 3に格納されているレチクル Rを レチクル浄化装置に搬送する構成を説明したが、 本発明はこの構成に限られるも のではない。 例えば、 ケース 3に格納されていないレチクル Rをレチクル浄化装 置に搬送して、 このレチクル Rを浄化してもよい。 その他に、 クリーンケースに 格納されたレチクル Rをレチクル浄化装置に搬送し、 そこでレチクル Rを浄化し た後、 浄化後のレチクル Rを再びクリーンケースに戻す構成であってもよい。 次に、 レチクル R、 ペリクル 1、 及びペリクルフレーム 2で囲まれたペリクル 空間内をパージガスで置換する局所置換機構の一例につき図 3を参照して説明す る。 その局所置換機構は、 図 1のパージガス置換室 2 4内の保持機構 2 9の周囲 に設けられるものであり、 本例ではレチクル Rの周囲の雰囲気をパージガスで置 換する動作と並行して、 そのペリクル空間内の気体がパージガスで置換される。 これに関して、 ペリクルは本来、 レチクルパターンへの異物の付着を防止する目 的で設けられるものであるから、 ペリクル空間と外部との通気性は低い方が好ま しい。 しかしながら、 例えば台風等による気圧低下時に、 ペリクル空間が膨張し てペリクルが破損することを防止するために、 図 2 (B ) を参照して説明したよ うに、 ペリクル空間の側壁としてのペリクルフレーム 2には、 2箇所に微小な通 気孔 2 a, 2 bが設けられ、 ペリクル空間と外気との通気性がわずかながら確保 されている。 そこで、 ペリクル空間のパージガス置換に際して、 本例では通気孔 2 a , 2 bを積極的に利用する。 In the above embodiment, the configuration in which the reticle R stored in the normal case 3 is transported to the reticle cleaning device has been described, but the present invention is not limited to this configuration. For example, reticle R not stored in case 3 may be transported to a reticle cleaning device to purify reticle R. Alternatively, the reticle R stored in the clean case may be transported to the reticle cleaning device, where the reticle R is purified, and then the purified reticle R may be returned to the clean case. Next, an example of a local replacement mechanism for replacing the inside of the pellicle space surrounded by the reticle R, the pellicle 1, and the pellicle frame 2 with a purge gas will be described with reference to FIG. The local replacement mechanism is provided around the holding mechanism 29 in the purge gas replacement chamber 24 in FIG. 1.In this example, in parallel with the operation of replacing the atmosphere around the reticle R with the purge gas, The gas in the pellicle space is replaced with a purge gas. In this regard, since the pellicle is originally provided for the purpose of preventing foreign matter from adhering to the reticle pattern, it is preferable that air permeability between the pellicle space and the outside is low. However, in order to prevent the pellicle space from expanding and damaging the pellicle when the atmospheric pressure drops due to, for example, a typhoon or the like, as described with reference to FIG. 2B, the pellicle frame 2 as a side wall of the pellicle space is used. Has small air holes 2a and 2b at two locations to ensure a slight air permeability between the pellicle space and the outside air. Have been. Therefore, in purging the pellicle space with the purge gas, the vent holes 2a and 2b are positively used in this example.
図 3 (A) は、 ペリクル空間内をパージガスで置換する機構の一例を示す底面 図、 図 3 (B ) は、 その機構を示す一部を切り欠いた正面図であり、 図 3 (A) のレチクル Rを底面で支持する 4個の保持機構 2 9 a〜2 9 は、 図 1のパージ ガス置換室 2 4内の保持機構 2 9に対応している。 図 3 (A) , (B ) において、 レチクル Rには、 通気孔 2 a , 2 bが設けられたペリクルフレーム 2を介してべ リクル 1が張設されている。 本例では、 ペリクルフレーム 2の一方の通気孔 2 a を排気管 4 5 Dを介して真空ポンプ 4 2に連結し、 他方の通気孔 2 bを給気管 4 6 Dを介してパージガス供給源 4 3に連結し、 フロー制御方式で、 排気管 4 5 D を介してペリクル空間内の気体を流出させるのと並行に、 給気管 4 6 Dを介して そのペリクル空間内にパージガスを流入させる。 これによつて、 通気孔 2 a , 2 bのわずかの通気性であっても、 ペリクル空間のパージガスによる置換を効率的 に行なうことが可能となる。 更に、 排気管 4 5 D及び給気管 4 6 Dとペリクルフ レーム 2との密着性を向上するために、 排気管 4 5 D及び給気管 4 6 Dの先端部 に、 テフロン等のフッ素系樹脂や 他の軟性材料からなる中空の弾力部材 4 7 A 及び 4 7 Bを設けている。 なお、 弾力部材 4 7 A, 4 7 Bとして、 バイトン (商 品名) 、 カルレッツ (商品名) 、 又はァーマクリスタル (商品名) 等のフッ素系 樹脂を用いることができる。  FIG. 3 (A) is a bottom view showing an example of a mechanism for replacing the pellicle space with a purge gas, and FIG. 3 (B) is a partially cutaway front view showing the mechanism. The four holding mechanisms 29 a to 29 supporting the reticle R at the bottom correspond to the holding mechanisms 29 in the purge gas replacement chamber 24 in FIG. In FIGS. 3A and 3B, a reticle R is stretched over a pellicle 1 via a pellicle frame 2 provided with ventilation holes 2a and 2b. In this example, one vent hole 2 a of the pellicle frame 2 is connected to a vacuum pump 42 via an exhaust pipe 45 D, and the other vent hole 2 b is connected to a purge gas supply source 4 via an air supply pipe 46 D. The purge gas is flowed into the pellicle space via the air supply pipe 46D in parallel with the flow out of the gas in the pellicle space via the exhaust pipe 45D by the flow control method. This makes it possible to efficiently replace the pellicle space with the purge gas even if the air holes 2a and 2b have a slight air permeability. Further, in order to improve the adhesion between the exhaust pipe 45 D and the air supply pipe 46 D and the pellicle frame 2, a fluorine-based resin such as Teflon or the like is provided at the tip of the exhaust pipe 45 D and the air supply pipe 46 D. Hollow elastic members 47 A and 47 B made of another soft material are provided. In addition, as the elastic members 47A and 47B, a fluorine-based resin such as Viton (trade name), Kalrez (trade name), or Armacrystal (trade name) can be used.
なお、 そのペリクル空間内の不純物の残留濃度が許容レベル以下になったかど うかを確認するためには、 一例として、 排気管 4 5 Dの途中に不純物の濃度を計 測するための気体センサを設ければよい。  In order to check whether the residual concentration of impurities in the pellicle space has fallen below an allowable level, as an example, a gas sensor for measuring the impurity concentration is provided in the exhaust pipe 45D. It may be provided.
また、 ペリクル 1は非常に薄い膜であるため、 内外の気圧差が大きくなると、 膨張して破損する恐れがある。 そこで、 図 3 (B ) に示すように、 ペリクル面変 位計 4 8を設置して、 ペリクル 1の中央でレチクル Rに対する変位量をモニタし ている。 そのペリクル面変位計 4 8において、 光源 4 9から射出された検出光 D Lは、 スリツト板 5 0及び集光レンズ 5 1を介してペリクル 1の中央表面に斜め にスリット像を形成する。 そして、 ペリクル 1の表面で反射される検出光 D Lが、 集光レンズ 5 2を介してスリツト板 5 3上にそのスリツト像を再形成し、 スリツ ト板 5 3を通過した検出光 D Lがフォトダイオード等の光電検出器 5 4によって 受光され、 光電検出器 5 4の検出信号が信号処理装置 5 5に供給される。 Further, since the pellicle 1 is a very thin film, if the pressure difference between inside and outside increases, the pellicle 1 may expand and be damaged. Therefore, as shown in FIG. 3 (B), a pellicle surface displacement meter 48 is installed to monitor the displacement amount with respect to the reticle R at the center of the pellicle 1. In the pellicle surface displacement meter 48, the detection light DL emitted from the light source 49 forms a slit image obliquely on the central surface of the pellicle 1 via the slit plate 50 and the condenser lens 51. Then, the detection light DL reflected on the surface of the pellicle 1 re-forms the slit image on the slit plate 53 via the condenser lens 52, and the slit image is formed. The detection light DL that has passed through the plate 53 is received by the photoelectric detector 54 such as a photodiode, and the detection signal of the photoelectric detector 54 is supplied to the signal processing device 55.
この場合、 受光側のスリット板 5 3は、 ペリクル 1の上下動に対応する方向に 振動しており、 信号処理装置 5 5では、 一例としてそのスリット板 5 3の駆動信 号を用いて光電検出器 5 4の検出信号を同期整流して面位置信号を得る。 そして、 ペリクル 1の上下動に応じてその面位置信号は所定範囲内でほぼリニアに変化す るため、 信号処理装置 5 5では、 その面位置信号からペリクル 1の上下方向への 変位量を求め、 この変位量の情報を制御系 4 1に供給する。 なお、 スリット板 5 3及び光電検出器 5 4の代わりにラインセンサ (1次元の撮像素子) を設置して も、 その面位置信号を得ることができる。 制御系 4 1では、 そのペリクル 1の変 位量の計測値が許容範囲内に収まるように、 真空ポンプ 4 2による排気速度、 及 びパージガス供給源 4 3による給気速度を調整する。 これによつて、 ペリクル 1 を破損しない範囲で効率的に、 ペリクル空間をパージガスで置換することができ る。  In this case, the slit plate 53 on the light receiving side vibrates in a direction corresponding to the vertical movement of the pellicle 1, and the signal processing device 55 uses the drive signal of the slit plate 53 as an example for photoelectric detection. The detection signal of the detector 54 is synchronously rectified to obtain a surface position signal. Since the surface position signal changes almost linearly within a predetermined range according to the vertical movement of the pellicle 1, the signal processor 55 calculates the amount of vertical displacement of the pellicle 1 from the surface position signal. The information on the displacement is supplied to the control system 41. Note that even if a line sensor (one-dimensional image sensor) is installed instead of the slit plate 53 and the photoelectric detector 54, the surface position signal can be obtained. The control system 41 adjusts the exhaust speed by the vacuum pump 42 and the air supply speed by the purge gas supply source 43 so that the measured value of the displacement amount of the pellicle 1 falls within an allowable range. As a result, the pellicle space can be efficiently replaced with the purge gas within a range where the pellicle 1 is not damaged.
次に、 図 1のレチクル浄化装置を備えた半導体デバイスの製造システムの構成 例につき図 4を参照して説明する。  Next, an example of a configuration of a semiconductor device manufacturing system including the reticle purifying apparatus of FIG. 1 will be described with reference to FIG.
図 4は、 本例のデバイス製造システムの要部を示し、 この図 4において、 大気 環境下のレチクルストツ力一 6 2内の通常のケ一ス (図 2 (A) のケ一ス 3と同 じケース) 3 A , 3 B , 3 C , …内にそれぞれべリクルが張設されたレチクルが 格納されている。 そして、 レチクルストッカー 6 2の近傍に搬入側口一ダ 2 1が 駆動部 2 2とともに設置され、 その後に図 1のレチクル挣化装置と同一のレチク ル浄化装置 6 4が設置されており、 レチクル浄化装置 6 4の端部上面に、 気密性 の高いクリーンケース 8 A (図 2 (B ) のクリーンケース 8と同じケース) が設 置され、 クリーンケース 8 A内にパージガスの雰囲気中でレチクルが装填される。 更に、 レチクル浄化装置 6 4の端部の近傍に、 レチクルが装填されたクリーン ケースを搬送するための搬送ライン 6 6が設置され、 搬送ライン 6 6に沿って移 動するスライダ 6 7上に、 レチクルが装填されたクリーンケース 8 Bが保持され ている。 また、 搬送ライン 6 6に沿って、 一括露光方式、 又はステップ 'アンド •スキャン方式のような走査露光方式の複数 (図 4では 3台) の投影露光装置 6 8 A, 6 8 B , 6 8 C、 及び異物検査装置 6 9が設置されている。 投影露光装置Fig. 4 shows the main parts of the device manufacturing system of this example. In Fig. 4, the normal case in the reticle storage force 62 under the atmospheric environment (the same as case 3 in Fig. 2 (A)) is shown. Cases) 3 A, 3 B, 3 C,. Then, a loading port 21 is installed near the reticle stocker 62 together with the drive unit 22, and thereafter a reticle purifying device 64 identical to the reticle conversion device shown in FIG. 1 is installed. A highly airtight clean case 8A (the same case as the clean case 8 in Fig. 2 (B)) is installed on the upper surface of the end of the purifier 64, and a reticle is placed in the clean case 8A in the atmosphere of purge gas. Will be loaded. Further, a transport line 66 for transporting a clean case loaded with a reticle is installed near the end of the reticle cleaning device 64, and a slider 67 moving along the transport line 66 is provided. The clean case 8B loaded with the reticle is held. Along the transfer line 6, a plurality of (three in FIG. 4) projection exposure apparatuses 6 of a batch exposure method or a scanning exposure method such as a step-and-scan method are used. 8 A, 68 B, 68 C and a foreign matter inspection device 69 are installed. Projection exposure equipment
6 8 Aは、 A r Fエキシマレーザ (波長 1 9 3 nm) 、 F 2 レーザ (波長 1 5 7 n m) 、 又は A r 2 レーザ (波長 1 2 6 nm) 等の真空紫外域の露光光 (露光ビ ーム) の照明光学系 (不図示) と、 レチクルを駆動するレチクルステージ 7 0と、 投影光学系 P L Aと、 被露光基板としてのウェハを駆動するゥェ八ステージ 7 1 と、 ウェハベース 7 2とを有し、 レチクル R 1のパターンを投影光学系 P L Aを 介してウェハ W 1上の各ショット領域に転写する。 同様に他の投影露光装置 6 8 B , 6 8 Cもそれぞれレチクル R 2 , R 3のパターンを投影光学系 P L B , P L Cを介してウェハ W 2, W 3上の各ショット領域に転写する。 6 8 A is, A r F excimer laser (wavelength 1 9 3 nm), F 2 laser (wavelength 1 5 7 nm), or A r 2 laser (wavelength 1 2 6 nm) in the vacuum ultraviolet region such as an exposure light ( An exposure optical system (not shown), a reticle stage 70 for driving a reticle, a projection optical system PLA, a wafer stage 71 for driving a wafer as a substrate to be exposed, and a wafer base. The pattern of the reticle R1 is transferred to each shot area on the wafer W1 via the projection optical system PLA. Similarly, the other projection exposure apparatuses 68 B and 68 C transfer the patterns of the reticles R 2 and R 3 to the respective shot areas on the wafers W 2 and W 3 via the projection optical systems PLB and PLC.
これらの投影露光装置 6 8 A〜6 8 Cの露光光の光路の気体は、 露光光を透過 するパージガスで置換されている。 また、 投影露光装置 6 8 A〜6 8 Cには、 そ れぞれレチクルローダ系 7 3が備えられており、 レチクル口一ダ系 7 3は、 搬送 ライン 6 6に沿って移動するスライダ 6 7からレチクルが装填されたクリーンケ ース 8 Bを受け取ると、 パージガスの雰囲気中でそのクリーンケ一ス 8 B中から ペリクルが張設されたレチクルを取り出して、 そのレチクルをレチクルステージ The gas in the optical path of the exposure light of these projection exposure apparatuses 68A to 68C is replaced by a purge gas that transmits the exposure light. Further, each of the projection exposure apparatuses 68 A to 68 C is provided with a reticle loader system 73, and a reticle opening system 73 is provided with a slider 6 moving along a transfer line 66. When a clean case 8B loaded with a reticle is received from 7, a reticle with a pellicle stretched out is taken out of the clean case 8B in an atmosphere of purge gas, and the reticle is placed on a reticle stage.
7 0上に設置する。 更に、 レチクルローダ系 7 3は、 使用済みのレチクルを通常 のケース (ケース 3と同じケース) 内に収納し、 この通常のケースを返却用の搬 送ライン (不図示) を介してレチクルストツ力一 6 2に戻す。 Place it on 70. Further, the reticle loader system 73 stores the used reticle in a normal case (the same case as case 3), and transfers the normal case through a reticle storage line via a return transport line (not shown). 6 Return to 2.
また、 異物検査装置 6 9は、 一例としてレーザ光源 7 4と、 これからのレーザ ビームを走査するスキャナ 7 5と、 検査対象のレチクル R 4からの反射光をレン ズ系 7 6を介して受光する光電検出器 7 7と、 レチクル R 4をレーザビームの走 査方向に交差する方向に移動するステージ装置 7 8とを備え、 レチクル R 4のパ ターン面に許容レベルを超える異物があるかどうかを検査する。 また、 異物検査 装置 6 9にも、 搬送ライン 6 6のスライダ 6 7から受け取ったクリーンケース 8 B内からレチクルを取り出して、 ステージ装置 7 8に設置するレチクルローダ系 7 9が備えられている。  Further, the foreign matter inspection device 69 receives, for example, a laser light source 74, a scanner 75 scanning a laser beam from now on, and reflected light from a reticle R 4 to be inspected via a lens system 76. It is equipped with a photoelectric detector 77 and a stage device 78 that moves the reticle R 4 in a direction intersecting the scanning direction of the laser beam, and checks whether there is any foreign matter exceeding an allowable level on the pattern surface of the reticle R 4. inspect. The foreign matter inspection device 69 also includes a reticle loader system 79 that takes out a reticle from the clean case 8B received from the slider 67 of the transfer line 66 and installs the reticle on the stage device 78.
なお、 本実施の形態では、 異物検査装置 6 9で異物があるかどうか検査された レチクル Rをクリーンケースに戻してもよい。 この場合には、 そのレチクル Rを 再び搬送ライン 6 6を介して投影露光装置に搬送すればよい。 あるいは、 検查さ れたレチクル Rをクリーンケースに戻さずに、 異物検査装置 6 9から直接、 投影 露光装置のレチクルステージ 7 0に設置してもよい。 なお、 異物検査装置 6 9か ら直接、 レチクル Rをレチクルステージ 7 0に設置する場合は、'レチクル Rの搬 送経路は、 外気から遮断すると共に、 パージガス雰囲気とすればよい。 In the present embodiment, the reticle R, which has been inspected for foreign matter by the foreign matter inspection device 69, may be returned to the clean case. In this case, the reticle R may be transported again to the projection exposure apparatus via the transport line 66. Or, inspected The returned reticle R may not be returned to the clean case, but may be installed directly on the reticle stage 70 of the projection exposure apparatus from the foreign matter inspection device 69. When the reticle R is installed on the reticle stage 70 directly from the foreign matter inspection device 69, the transport path of the reticle R may be shielded from the outside air and set to a purge gas atmosphere.
更に、 レチクルストツ力一 6 2とレチクル浄化装置 6 4との間、 及びレチクル 浄化装置 6 4と搬送ライン 6 6との間にはそれぞれレチクル及びクリーンケース の受け渡しを行うための、 多関節型のロポットハンド 6 3及び 6 5が設置されて いる。 また、 これらの口ポットハンド 6 3 , 6 5、 レチクル浄化装置 6 4、 スラ イダ 6 7、 投影露光装置 6 8 A〜6 8 C、 及び異物検査装置 6 9の動作を統轄制 御するホストコンピュータ 6 1が設けられている。 なお、 不図示であるが、 ゥェ 八の搬送ライン及びウェハローダ系も設けられている。  Further, between the reticle storage device 62 and the reticle purifying device 64, and between the reticle purifying device 64 and the transfer line 66, a multi-joint robot for transferring the reticle and the clean case respectively. Hands 63 and 65 are installed. A host computer that controls the operations of the mouth pot hands 63, 65, the reticle cleaning device 64, the slider 67, the projection exposure devices 68A to 68C, and the foreign material inspection device 69. 6 1 are provided. Although not shown, a transfer line and a wafer loader system of FIG. 8 are also provided.
本例のデバイス製造システムを用いて半導体デバイスを製造するフォトリソグ ラフイエ程では、 大気環境下のレチクルストッカー 6 2中の通常のケース (例え ばケース 3 A) 中のペリクル付きのレチクルが、 口ポットハンド 6 3及び搬入側 ローダ 2 1を介してレチクル浄化装置 6 4に搬入され、 ここでパージガスによる 置換及び光洗浄が施されたレチクルは、 気密性が高く、 且つ有機物汚染の少ない クリーンケース 8 Aに装填された後、 ロポットハンド 6 5及びスライダ 6 7を介 して、 投影露光装置 6 8 A〜6 8 Cの何れかへと搬送される。 そして、 クリーン ケース 8 A内のレチクルは、 レチクルローダ系 7 3によって、 大気に曝されるこ となくレチクルステージ 7 0上にロードされて露光が行われる。  In the photolithography process for manufacturing semiconductor devices using the device manufacturing system of this example, the reticle with a pellicle in a normal case (for example, case 3A) in a reticle stocker 62 in an atmospheric environment is The reticle carried into the reticle cleaning device 64 via the loader 21 and the loader 21 is replaced with a purge gas and subjected to light cleaning.The reticle is highly airtight and has a clean case 8A with little organic contamination. After being loaded, it is conveyed to any of the projection exposure apparatuses 68 A to 68 C via the robot hand 65 and the slider 67. Then, the reticle in the clean case 8A is loaded on the reticle stage 70 by the reticle loader system 73 without being exposed to the atmosphere, and exposure is performed.
そして、 投影露光装置 6 8 A〜 6 8 Cでの使用が済んだレチクルは、 一例とし て通常のケースに収納されてレチクルストッカー 6 2に戻される。 その他に、 レ チクル浄化装置 6 4に、 クリーンケース内のレチクルを通常のケース内に収納す る機構を設け、 投影露光装置 6 8 A〜6 8 Cでの使用が済んだレチクルを再びク リーンケースに収納してレチクル浄化装置 6 4に戻し、 ここでクリーンケースか ら取り出して通常のケースに収納し、 このケースをレチクルストッカー 6 2に戻 すようにしてもよい。  Then, the reticle used in the projection exposure apparatuses 68 A to 68 C is stored in a normal case as an example and returned to the reticle stocker 62. In addition, the reticle cleaning device 64 has a mechanism to store the reticle in the clean case in the normal case, and the reticle used in the projection exposure device 68 A to 68 C is cleaned again. It may be stored in a case and returned to the reticle cleaning device 64, where it may be taken out of the clean case and stored in a normal case, and this case may be returned to the reticle stocker 62.
なお、 特にメモリ等の微細パターンを有する大量生産品については、 1種類の レチクルで露光できる半導体ウェハの枚数が多いため、 レチクルの交換頻度が少 なくて済む。 従って、 真空紫外光を露光光とする微細パターン用の投影露光装置 6 8 A〜6 8 Cでは、 レチクルの交換頻度、 ひいてはレチクル浄化装置 6 4を用 いるレチクルの浄化頻度が少ないことになる。 従って、 1台のレチクル浄化装置 6 4に対して複数台の投影露光装置 6 8 A〜6 8 Cを対応させることで、 レチク ル浄化装置 6 4の設置台数を低減し、 生産ラインのコストを低減することが可能 になる。 In addition, especially for mass-produced products having fine patterns such as memories, the number of semiconductor wafers that can be exposed with one type of reticle is large, so the reticle replacement frequency is low. You don't have to. Therefore, in the projection exposure apparatus 68 A to 68 C for a fine pattern using vacuum ultraviolet light as exposure light, the frequency of reticle replacement and the frequency of reticle cleaning using the reticle cleaning apparatus 64 are low. Therefore, by associating a plurality of projection exposure apparatuses 68 A to 68 C with one reticle purifying apparatus 64, the number of reticle purifying apparatuses 64 installed can be reduced, and production line costs can be reduced. It is possible to reduce it.
また、 本実施の形態では、 レチクル浄化装置 6 4の近傍に搬送ライン 6 6を配 置し、 この搬送ライン 6 6を介してレチクルが装填されたクリーンケースを複数 台の露光装置に搬送する構成について説明したが、 レチクル浄化装置 6 4を自走 可能に構成してもよい。 即ち、 レチクル浄化装置 6 4にレチクルケースを搬送す るための無人搬送機 (A G V: Automated Guided Vehic le) の機能を持たせても 良い。 この場合、 レチクル浄化装置 6 4から直接、 複数台の露光装置にクリーン ケースを搬送することができる。  In the present embodiment, a transfer line 66 is disposed near the reticle cleaning device 64, and the clean case loaded with the reticle is transferred to a plurality of exposure apparatuses via the transfer line 66. However, the reticle cleaning device 64 may be configured to be able to run on its own. That is, the reticle cleaning device 64 may have a function of an unmanned transporter (AGV: Automated Guided Vehicle) for transporting the reticle case. In this case, the clean case can be directly transferred from the reticle cleaning device 64 to a plurality of exposure devices.
なお、 レチクル浄化装置 6 4を、 複数台の露光装置のそれぞれに対応させて複 数台設けても良い。  Note that a plurality of reticle cleaning devices 64 may be provided corresponding to each of the plurality of exposure devices.
なお、 レチクル雰囲気のパージガス置換、 特にペリクル空間内のパージガス置 換に際しては、 そのペリクル空間に高速の気体流が生じるため、 それに伴って、 他の部分に付着していた塵等の異物が、 レチクルのパターン面に流れてくる恐れ がある。 そこで、 図 4のレチクル浄化装置 6 4でのレチクル雰囲気のパ一ジガス 置換の後に、 浄化されたレチクルを異物検査装置 6 9に搬送し、 ここでそのパ夕 ーン面の異物の有無の検査を行うことが望ましい。 或いは、 異物検査機能をレチ クル浄化装置 6 4に組み込むようにしてもよい。 そのためには、 例えば図 1のレ チクル浄化装置のローダ室 3 0内に、 図 4の異物検査装置 6 9と同様の異物検査 装置を設置すればよい。  In addition, when replacing the purge gas in the reticle atmosphere, particularly when replacing the purge gas in the pellicle space, a high-speed gas flow is generated in the pellicle space, and consequently foreign substances such as dust adhering to other parts are removed from the reticle space. There is a risk of flowing on the pattern surface. Therefore, after purging of the reticle atmosphere with the reticle purifying device 64 shown in FIG. 4, the purified reticle is transported to the foreign material inspection device 69, where the particle surface is inspected for foreign matter. It is desirable to carry out. Alternatively, the foreign matter inspection function may be incorporated in the reticle cleaning device 64. For this purpose, for example, a foreign substance inspection apparatus similar to the foreign substance inspection apparatus 69 in FIG. 4 may be installed in the loader chamber 30 of the reticle cleaning apparatus in FIG.
なお、 本例のデバイス製造システム中の露光装置として、 投影光学系を用いる ことなくマスクと基板とを密接させてマスクのパターンを露光するプロキシミテ ィ露光装置も使用する場合にも、 本発明を適用することができる。  The present invention is applicable to a case where a proximity exposure apparatus that exposes a mask pattern by bringing a mask into close contact with a substrate without using a projection optical system is also used as an exposure apparatus in the device manufacturing system of this example. can do.
なお、 上記の図 1の実施の形態のレチクル浄化装置は、 ハウジング 2 3内を複 数の気密室としてのパージガス置換室 2 4、 ランプ室 2 6、 ローダ室 3 0、 及び クリーンケースへの装填室 3 5に分けて、 各気密室内に機構部品を組み込むと共 に、 これら複数の気密室と真空ポンプ 4 2及びパージガス供給源 4 3とを配管で 連結し、 これらの機構部と制御系 4 1とを配線で接続し、 更に総合調整 (電気調 整、 動作確認等) を行うことにより製造することができる。 なお、 レチクル浄化 装置の製造は温度及びクリ一ン度等が管理されたクリ一ンルームで行うことが望 ましい。 The reticle purifying apparatus of the embodiment shown in FIG. 1 includes a purge gas replacement chamber 24, a lamp chamber 26, a loader chamber 30, and a plurality of airtight chambers inside the housing 23. Separately into the clean room loading chamber 35, mechanical components are incorporated into each hermetic chamber, and these multiple hermetic chambers are connected to the vacuum pump 42 and the purge gas supply source 43 by piping. It can be manufactured by connecting the unit and the control system 41 with wiring, and then performing overall adjustment (electrical adjustment, operation confirmation, etc.). It is desirable to manufacture the reticle purifier in a clean room where the temperature and cleanliness are controlled.
次に、 '上記の実施の形態のデバイス製造システムを用いてウェハ上に半導体デ パイスを製造する際の製造工程の一例につき図 5を参照して説明する。  Next, an example of a manufacturing process for manufacturing a semiconductor device on a wafer using the device manufacturing system of the above embodiment will be described with reference to FIG.
図 5は、 半導体デバイスの製造工程の一例を示し、 この図 5において、 まずシ リコン半導体等からウェハ Wが製造される。 その後、 ウェハ W上にフォトレジス トを塗布し (ステップ S 1 0 ) 、 このウェハ Wを例えば図 4の投影露光装置 6 8 A (走査露光方式とする) のウェハステージ上にロードする。 次のステップ S 1 2において、 図 4のレチクルストツ力一 6 2から取り出したレチクル R 1をレチ クル浄化装置 6 4を介して、 投影露光装置 6 8 Aのレチクルステージ上にロード する。 そして、 このレチクル R 1を照明領域の下方に移動して、 レチクル R 1の パターンをウェハ W上の全部のショット領域 S Eに走査露光する。 なお、 ウェハ Wは例えば直径 3 0 0 mmのウェハ (1 2インチウェハ) であり、 ショット領域 S Eの大きさは一例として非走査方向の幅が 2 5 mmで走査方向の幅が 3 3 mm の矩形領域である。 次に、 ステップ S 1 4において、 現像及びエッチングゃィォ ン注入等を行うことにより、 ウェハ Wの各ショット領域 S Eに所定のパターンが 形成される。 次に、 ステップ S 1 6において、 ウェハ W上にフォトレジストを塗 布し、 再びそのウェハ Wを図 4の投影露光装置 6 8 Aのウェハステージ上にロー ドする。 その後ステップ S 1 8において、 レチクルストッカー 6 2から取り出し た別のレチクル R 2をレチクル浄化装置 6 4を介して投影露光装置 6 8 Aのレチ クルステージ上にロードする。 そして、 このレチクル R 2を照明領域の下方に移 動して、 レチクル R 2のパターンをウェハ W上の各ショット領域 S Eに走査露光 する。 そして、 ステップ S 2 0において、 ウェハ Wの現像及びエッチングゃィォ ン注入等を行うことにより、 ウェハ Wの各ショット領域に所定のパターンが形成 される。 以上の露光工程〜パターン形成工程 (ステップ S 1 6〜ステップ S 2 0 ) は所望の半導体デバイスを製造するのに必要な回数だけ繰り返される。 そして、 ウェハ W上の各チップ C Pを 1つ 1つ切り離すダイシング工程 (ステップ S 2 2 ) や、 ボンディング工程、 及びパッケージング工程等 (ステップ S 2 4 ) を経るこ とによって、 製品としての半導体デバイス S Pが製造される。 FIG. 5 shows an example of a manufacturing process of a semiconductor device. In FIG. 5, first, a wafer W is manufactured from a silicon semiconductor or the like. Thereafter, a photoresist is applied on the wafer W (step S10), and the wafer W is loaded on, for example, a wafer stage of a projection exposure apparatus 68A (scanning exposure method) in FIG. In the next step S12, the reticle R1 taken out from the reticle storage force 62 of FIG. 4 is loaded onto the reticle stage of the projection exposure apparatus 68A via the reticle cleaning apparatus 64. Then, the reticle R1 is moved below the illumination area, and the pattern of the reticle R1 is scanned and exposed on all the shot areas SE on the wafer W. The wafer W is, for example, a wafer having a diameter of 300 mm (12-inch wafer). The size of the shot area SE is, for example, 25 mm in the non-scanning direction and 33 mm in the scanning direction. This is a rectangular area. Next, in step S14, a predetermined pattern is formed in each shot region SE of the wafer W by performing development, implantation of an etching zone, and the like. Next, in step S16, a photoresist is applied on the wafer W, and the wafer W is loaded again on the wafer stage of the projection exposure apparatus 68A in FIG. Thereafter, in step S18, another reticle R2 taken out of the reticle stocker 62 is loaded onto the reticle stage of the projection exposure apparatus 68A via the reticle cleaning apparatus 64. Then, the reticle R2 is moved below the illumination area, and the pattern of the reticle R2 is scanned and exposed on each shot area SE on the wafer W. Then, in step S20, a predetermined pattern is formed in each shot region of the wafer W by performing development of the wafer W, implantation of an etching zone, and the like. The above exposure process to pattern formation process (Step S16 to Step S20) Is repeated as many times as necessary to produce the desired semiconductor device. Then, through a dicing process (step S22) for separating each chip CP on the wafer W one by one, a bonding process and a packaging process (step S24), a semiconductor device as a product is obtained. SP is manufactured.
なお、 本発明のデバイス製造システムの用途としては半導体デバイス製造用に 限定されることなく、 例えば、 角型のガラスプレートに形成される液晶表示素子、 若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、 撮像素子 ( C C D等) 、 マイクロマシーン、 薄膜磁気ヘッド、 及び D NAチップ等の各種 デバイスを製造する工程にも広く適用できる。 更に、 本発明は、 各種デバイスの マスクパターンが形成されたマスク (フォトマスク、 レチクル等) をフォトリソ グフイエ程を用いて製造する際の、 露光工程 (露光装置) にも適用することがで きる。  The application of the device manufacturing system of the present invention is not limited to semiconductor device manufacturing. For example, a liquid crystal display element formed on a square glass plate, or an exposure apparatus for a display device such as a plasma display, It can be widely applied to the process of manufacturing various devices such as imaging devices (such as CCDs), micro machines, thin film magnetic heads, and DNA chips. Further, the present invention can be applied to an exposure step (exposure apparatus) when manufacturing a mask (photomask, reticle, or the like) on which mask patterns of various devices are formed using a photolithography process.
なお、 本発明は上述の実施の形態に限定されず、 本発明の要旨を逸脱しない範 囲で種々の構成を取り得ることは勿論である。 また、 明細書、 特許請求の範囲、 図面、 及び要約を含む 2 0 0 0年 1 2月 2 2日付け提出の日本国特願 2 0 0 0— 3 9 1 6 8 8の全ての開示内容は、 そつくりそのまま引用して本願に組み込まれ ている。 産業上の利用の可能性  It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be adopted without departing from the gist of the present invention. In addition, all disclosures in Japanese Patent Application No. 2000-1991-1988 filed on February 22, 2000, including the specification, claims, drawings, and abstract Is incorporated herein by reference as it is. Industrial applicability
本発明によれば、 光洗浄後のマスクを、 露光ビームを透過する気体が充填され た気密性を有するケース内に装填しているため、 露光本体部 (露光装置) とは別 の場所でマスクを効率的に洗浄できるとともに、 洗浄後のマスクを異物が付着し ない状態で露光本体部まで搬送することができる。  According to the present invention, since the mask after the light cleaning is loaded in an airtight case filled with a gas that transmits the exposure beam, the mask is placed in a different place from the exposure main body (exposure apparatus). Can be efficiently cleaned, and the cleaned mask can be transported to the exposure main body in a state where no foreign matter adheres.
また、 マスクと防塵部材 (ペリクル) とで囲まれた空間の気体をも露光ビーム を透過する気体で置換する場合には、 防塵部材の設けられたマスクを使用してい ても、 露光ビームに対する透過率の低下を防止することができる。  When the gas in the space surrounded by the mask and the dustproof member (pellicle) is also replaced by a gas that transmits the exposure beam, even if the mask provided with the dustproof member is used, the gas transmitted through the exposure beam is not removed. The rate can be prevented from lowering.

Claims

請 求 の 範 囲 The scope of the claims
1 . パターン面を覆うように防塵部材が取り付けられるとともに、 露光時に所定 の露光ビームが照射されるマスクを洗浄するためのマスク浄化方法において、 前記マスクを囲む所定範囲の空間内の気体を前記露光ビームを透過する気体で 置換する第 1ステップと、 1. A mask cleaning method for cleaning a mask to which a dustproof member is attached so as to cover a pattern surface and is irradiated with a predetermined exposure beam at the time of exposure, wherein the gas in a predetermined range of space surrounding the mask is exposed to light. A first step of replacing the beam with a gas that is permeable,
前記マスクを紫外線で光洗浄する第 2ステップと、  A second step of optically cleaning the mask with ultraviolet light;
前記露光ビームを透過する気体が充填され、 かつ気密性を有するケース内に前 記マスクを密閉状態で装填する第 3ステップとを有することを特徴とするマスク 浄化方法。  A third step of loading the mask in a hermetically sealed state into a gas-tight case filled with a gas that transmits the exposure beam.
2 . 前記第 1及ぴ第 2ステツプを同時に実行することを特徴とする請求の範囲 1 に記載のマスク浄化方法。  2. The mask cleaning method according to claim 1, wherein the first and second steps are performed simultaneously.
3 . 前記第 1ステップは、 さらに前記パターン面と前記防塵部材との間の空間内 の気体を前記露光ビームを透過する気体で置換することを特徴とする請求の範囲 1に記載のマスク浄化方法。  3. The mask cleaning method according to claim 1, wherein the first step further comprises replacing a gas in a space between the pattern surface and the dustproof member with a gas that transmits the exposure beam. .
4 . パターン面を覆うように防塵部材が取り付けられるとともに、 露光時に所定 の露光ビームが照射されるマスクを洗浄するためのマスク浄化装置において、 前記マスクを囲む所定範囲の空間内の気体を前記露光ビームを透過する気体で 置換する気体置換機構と、  4. A mask cleaning device for cleaning a mask to which a predetermined exposure beam is irradiated at the time of exposure while a dustproof member is attached so as to cover a pattern surface, wherein the gas in a predetermined range surrounding the mask is exposed to the gas. A gas replacement mechanism for replacing the beam with a gas that passes therethrough,
前記マスクを光洗浄するための紫外線照射装置と、  An ultraviolet irradiation device for optically cleaning the mask,
前記露光ビームを透過する気体が充填され、 かつ気密性を有するケース内に前 記マスクを密閉状態で装填する装填機構とを有することを特徴とするマスク浄化  A masking mechanism for mounting the mask in a hermetically sealed state in a case filled with a gas that transmits the exposure beam and having airtightness.
5 . 前記紫外線照射装置と、 前記気体置換機構とは少なくとも部分的に一体化さ れており、 5. The ultraviolet irradiation device and the gas replacement mechanism are at least partially integrated,
前記気体置換機構と前記装填機構との間に、 前記マスクを搬送する搬送系が設 けられたことを特徴とする請求の範囲 4に気体のマスク浄化装置。  5. The gas mask cleaning apparatus according to claim 4, wherein a transfer system for transferring the mask is provided between the gas replacement mechanism and the loading mechanism.
6 . 前記気体置換機構は、 前記マスクを収納する気密室と、 該気密室内を減圧す る減圧機構とを有することを特徴とする請求の範囲 4又は 5に記載のマスク浄化 6. The mask purifying apparatus according to claim 4, wherein the gas replacement mechanism has an airtight chamber for accommodating the mask, and a pressure reducing mechanism for reducing the pressure in the airtight chamber.
7 . 前記気体置換機構は、 前記マスクを収納する気密室と、 該気密室内の気体の 排気、 及び該気密室に対する前記露光ビームを透過する気体の供給をフロー制御 で行う給排気機構とを有することを特徴とする請求の範囲 4又は 5に記載のマス ク浄化装置。 7. The gas replacement mechanism has an airtight chamber for accommodating the mask, a gas supply / exhaust mechanism for exhausting gas in the airtight chamber, and supplying a gas transmitting the exposure beam to the airtight chamber by flow control. The mask purification device according to claim 4 or 5, wherein
8 . 前記防塵部材は前記マスクに対して支持枠を介して固定されており、 前記気体置換機構は、 前記マスク、 前記防塵部材、 及び前記支持枠で囲まれた 密閉空間の内部をも前記露光ビームを透過する気体で置換することを特徴とする 請求の範囲 4又は 5に記載のマスク浄化装置。  8. The dustproof member is fixed to the mask via a support frame, and the gas replacement mechanism also exposes the inside of a closed space surrounded by the mask, the dustproof member, and the support frame. 6. The mask cleaning apparatus according to claim 4, wherein the gas is replaced by a gas that transmits the beam.
9 . 前記気体置換機構は、 さらに前記パターン面と前記防塵部材との間の空間内 の気体を前記露光ビームを透過する気体で置換することを特徴とする請求の範囲 4に記載のマスク浄化装置。  9. The mask cleaning apparatus according to claim 4, wherein the gas replacement mechanism further replaces a gas in a space between the pattern surface and the dustproof member with a gas that transmits the exposure beam. .
1 0 . 前記防塵部材を保持すると共に、 前記パターン面に取り付けられるフレー ムを有し、  10. A frame that holds the dustproof member and is attached to the pattern surface.
前記気体置換機構は、 前記フレームに形成された通気孔を介して、 前記パ夕一 ン面と前記防塵部材との間の空間を前記露光ビームを透過する気体で置換するこ とを特徴とする請求の範囲 9に記載のマスク浄化装置。  The gas replacement mechanism replaces a space between the dust pad and the dustproof member with a gas that transmits the exposure beam, through a ventilation hole formed in the frame. 10. The mask purification device according to claim 9.
1 1 . デバイスパターンをヮ一クピース上に形成するデバイス製造システムにお いて、  1 1. In a device manufacturing system that forms a device pattern on a single piece,
請求の範囲 4〜 1 0の何れか一項に記載のマスク浄化装置と、  Mask cleaning device according to any one of claims 4 to 10,
前記デバイスパターンの像を前記ヮ一クピース上に転写する露光装置本体と、 前記マスク浄化装置と前記露光装置本体との間で、 前記マスク浄化装置で洗浄 が行われたマスクを搬送する搬送装置とを有することを特徴とするデバイス製造  An exposure apparatus main body that transfers the image of the device pattern onto the mask piece; and a transport device that transports the mask that has been cleaned by the mask cleaning apparatus between the mask cleaning apparatus and the exposure apparatus main body. Device manufacturing characterized by having
1 2. 前記露光装置本体は、 前記マスク洗浄装置でケース内に装填された前記マ スクを取り出すマスク取り出し機構を有することを特徴とする請求の範囲 1 1に 記載のデバイス製造システム。 . 12. The device manufacturing system according to claim 11, wherein the exposure apparatus main body has a mask removal mechanism for removing the mask loaded in a case by the mask cleaning device. .
1 3 . 前記マスク浄化装置は、 複数の前記露光装置本体の間で共用されることを 特徴とする請求の範囲 1 1又は 1 2に記載のデバイス製造 24 13. The device manufacturing device according to claim 11, wherein the mask cleaning device is shared by a plurality of the exposure apparatus main bodies. twenty four
1 . デバイスパターンをワークピース上に形成するデバイス製造方法において、 請求の範囲 1又は 2に記載のマスク浄化方法を用いて、 パターン面を覆うよう に防塵部材が取り付けられたマスクを洗浄して気密性を有するケース内に装填す る第 1ステップと、 1. In a device manufacturing method for forming a device pattern on a work piece, a mask provided with a dust-proof member so as to cover a pattern surface is air-tightly sealed by using the mask cleaning method according to claim 1 or 2. A first step of loading into a flexible case,
前記洗浄が行われたマスクを前記ケースに収納して露光本体部まで搬送する第 前記露光本体部にて、 前記ケースから取り出された前記マスクを介して露光ビ ームで基板を露光する第 3ステップとを有することを特徴とするデバイス製造方 法。  A third exposing main body that accommodates the cleaned mask in the case and conveys the substrate to the exposing main body, exposing a substrate with an exposing beam through the mask taken out of the case; And a device manufacturing method.
1 5 . 前記マスクを浄化するマスク浄化部は、 複数個の前記露光本体部に対して 共用されることを特徴とする請求の範囲 1 4に記載のデバイス製造方法。  15. The device manufacturing method according to claim 14, wherein a mask purifying unit that purifies the mask is shared by a plurality of the exposure main units.
PCT/JP2001/011170 2000-12-22 2001-12-20 Method and device for mask cleaning, and device manufacturing system WO2002052345A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002553185A JP4096246B2 (en) 2000-12-22 2001-12-20 Mask cleaning method and apparatus, and device manufacturing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-391688 2000-12-22
JP2000391688 2000-12-22

Publications (1)

Publication Number Publication Date
WO2002052345A1 true WO2002052345A1 (en) 2002-07-04

Family

ID=18857791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011170 WO2002052345A1 (en) 2000-12-22 2001-12-20 Method and device for mask cleaning, and device manufacturing system

Country Status (2)

Country Link
JP (1) JP4096246B2 (en)
WO (1) WO2002052345A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1457831A1 (en) * 2003-03-11 2004-09-15 ASML Netherlands B.V. Method and apparatus for maintaining a machine part
JP2005010700A (en) * 2003-06-23 2005-01-13 Toppan Printing Co Ltd Inspection apparatus and method for original plate for exposure
EP1892570A2 (en) * 2006-08-24 2008-02-27 Dai Nippon Printing Co., Ltd. Method for cleaning photo mask
US7878755B2 (en) 2003-03-11 2011-02-01 Asml Netherlands B.V. Load lock and method for transferring objects
WO2021001092A1 (en) * 2019-07-01 2021-01-07 Asml Netherlands B.V. Surface treatment apparatus and method for surface treatment of patterning devices and other substrates
CN112526827A (en) * 2019-09-19 2021-03-19 株式会社斯库林集团 Exposure device
US20220299882A1 (en) * 2021-03-19 2022-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for cleaning an euv mask within a scanner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195647A (en) * 1983-04-21 1984-11-06 Nec Corp Device for washing exposure mask
JPS6322411A (en) * 1986-07-11 1988-01-29 Canon Inc Printed circuit board transport device
JPH03109750A (en) * 1989-09-25 1991-05-09 Nikon Corp Control and storage device for substrate
EP0846983A2 (en) * 1996-12-03 1998-06-10 Nikon Corporation Reticle transfer
JPH10242046A (en) * 1996-12-24 1998-09-11 Nikon Corp Aligner, exposing method and mask case

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195647A (en) * 1983-04-21 1984-11-06 Nec Corp Device for washing exposure mask
JPS6322411A (en) * 1986-07-11 1988-01-29 Canon Inc Printed circuit board transport device
JPH03109750A (en) * 1989-09-25 1991-05-09 Nikon Corp Control and storage device for substrate
EP0846983A2 (en) * 1996-12-03 1998-06-10 Nikon Corporation Reticle transfer
JPH10242046A (en) * 1996-12-24 1998-09-11 Nikon Corp Aligner, exposing method and mask case

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1457831A1 (en) * 2003-03-11 2004-09-15 ASML Netherlands B.V. Method and apparatus for maintaining a machine part
US7878755B2 (en) 2003-03-11 2011-02-01 Asml Netherlands B.V. Load lock and method for transferring objects
JP2005010700A (en) * 2003-06-23 2005-01-13 Toppan Printing Co Ltd Inspection apparatus and method for original plate for exposure
EP1892570A2 (en) * 2006-08-24 2008-02-27 Dai Nippon Printing Co., Ltd. Method for cleaning photo mask
JP2008051986A (en) * 2006-08-24 2008-03-06 Dainippon Printing Co Ltd Method for cleaning photomask
EP1892570A3 (en) * 2006-08-24 2008-04-09 Dai Nippon Printing Co., Ltd. Method for cleaning photo mask
US7718008B2 (en) 2006-08-24 2010-05-18 Dai Nippon Printing Co., Ltd. Method for cleaning photo mask
WO2021001092A1 (en) * 2019-07-01 2021-01-07 Asml Netherlands B.V. Surface treatment apparatus and method for surface treatment of patterning devices and other substrates
CN112526827A (en) * 2019-09-19 2021-03-19 株式会社斯库林集团 Exposure device
US20220299882A1 (en) * 2021-03-19 2022-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for cleaning an euv mask within a scanner

Also Published As

Publication number Publication date
JPWO2002052345A1 (en) 2004-04-30
JP4096246B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
US6279249B1 (en) Reduced particle contamination manufacturing and packaging for reticles
KR100774027B1 (en) Container and method of transporting substrate using the same
TW473816B (en) Exposure device, exposure method, and highly integrated device manufacturing method
JP5071109B2 (en) Reticle conveying apparatus, exposure apparatus, reticle conveying method, reticle processing method, and device manufacturing method
JP2003228163A (en) Method and apparatus for replacing inert gas, exposure device, reticle cabinet, reticle inspection apparatus, reticle conveyance box, and method of manufacturing device
JP2004273762A (en) Processing method and system thereof
JP4027085B2 (en) Device manufacturing related apparatus and device manufacturing method
US20060197935A1 (en) Processing unit, exposure apparatus having the processing unit, and protection unit
JP4096246B2 (en) Mask cleaning method and apparatus, and device manufacturing system
WO2003079419A1 (en) Mask storage device, exposure device, and device manufacturing method
JP2008066635A (en) Apparatus for purging inside of container with purge gas
JP3958049B2 (en) Reticle with pellicle, device manufacturing related apparatus, exposure apparatus and device manufacturing method
US20050095829A1 (en) Housing unit and exposure method using the same
TW202321817A (en) Methods for cleaning lithography mask
JP2004240221A (en) Photomask, device for applying and removing pellicle, and device for processing substrate
WO2002093626A1 (en) Aligning method and aligner, and method and system for conveying substrate
JP2000200745A (en) Projection aligner
JP2002033258A (en) Aligner, mask apparatus, pattern protective apparatus, and method of manufacturing device
US20080173339A1 (en) Method for cleaning semiconductor device
US6418187B1 (en) X-ray mask structure, and X-ray exposure method and apparatus using the same
JP2005079297A (en) Original transporting device and semiconductor aligner
JP2004289147A (en) Aligner and its method, and manufacturing method for electronic device
JP2005345876A (en) Gas exchange apparatus, aligner and method for manufacturing electronic device
JP5263274B2 (en) Exposure apparatus and method
JP2003215785A (en) Pattern protection device, mask device and its manufacturing method, device and method for exposure, and device manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002553185

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase