WO2002045746A2 - Composiciones farmaceuticas para potenciar la inmunogenicidad de antigenos poco inmunogenicos - Google Patents

Composiciones farmaceuticas para potenciar la inmunogenicidad de antigenos poco inmunogenicos Download PDF

Info

Publication number
WO2002045746A2
WO2002045746A2 PCT/CU2001/000010 CU0100010W WO0245746A2 WO 2002045746 A2 WO2002045746 A2 WO 2002045746A2 CU 0100010 W CU0100010 W CU 0100010W WO 0245746 A2 WO0245746 A2 WO 0245746A2
Authority
WO
WIPO (PCT)
Prior art keywords
composition according
vssp
vaccine
cells
egf
Prior art date
Application number
PCT/CU2001/000010
Other languages
English (en)
French (fr)
Other versions
WO2002045746A3 (es
Inventor
Luis Enrique Fernandez Molina
Belinda Sanchez Ramirez
Eduardo Raul Suarez Pestana
Anabel. De La Barrera Aira
Circe Mesa Pardillo
Joel De Leon Delgado
Yildian Diaz Rodriguez
Rolando. Perez Rodriguez
Original Assignee
Centro De Inmunologia Molecular
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CU20000285A external-priority patent/CU23000A1/es
Priority claimed from CU20010167A external-priority patent/CU23009A1/es
Priority to DK01999387.2T priority Critical patent/DK1356822T3/da
Priority to BRPI0116013-3 priority patent/BRPI0116013B8/pt
Priority to MXPA03005032A priority patent/MXPA03005032A/es
Priority to EP01999387A priority patent/EP1356822B1/en
Priority to AU2002221519A priority patent/AU2002221519B2/en
Priority to AT01999387T priority patent/ATE485833T1/de
Application filed by Centro De Inmunologia Molecular filed Critical Centro De Inmunologia Molecular
Priority to CA2431188A priority patent/CA2431188C/en
Priority to DE60143363T priority patent/DE60143363D1/de
Priority to EA200300640A priority patent/EA005138B1/ru
Priority to KR1020037007634A priority patent/KR100850473B1/ko
Priority to JP2002547529A priority patent/JP4210519B2/ja
Priority to AU2151902A priority patent/AU2151902A/xx
Publication of WO2002045746A2 publication Critical patent/WO2002045746A2/es
Publication of WO2002045746A3 publication Critical patent/WO2002045746A3/es
Priority to NZ526282A priority patent/NZ526282A/en
Priority to HK04106497A priority patent/HK1063726A1/xx

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/385Haptens or antigens, bound to carriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001102Receptors, cell surface antigens or cell surface determinants
    • A61K39/001103Receptors for growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001102Receptors, cell surface antigens or cell surface determinants
    • A61K39/001103Receptors for growth factors
    • A61K39/001106Her-2/neu/ErbB2, Her-3/ErbB3 or Her 4/ErbB4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55588Adjuvants of undefined constitution
    • A61K2039/55594Adjuvants of undefined constitution from bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6081Albumin; Keyhole limpet haemocyanin [KLH]

Definitions

  • the present invention relates to the branch of human medicine and especially to protective and / or therapeutic vaccines for infectious, autoimmune and cancer diseases, and particularly provides vaccine compositions that allow the generation or increase of the immune response against little antigens.
  • immunogenic Previous Technique The little success achieved so far in the prevention and treatment of a group of infectious diseases, cancer and autoimmune diseases with vaccines is due to combinations of various factors, mainly the low immunogenicity of relevant antigens, the lack of knowledge on how to manipulate the regulation of Immune system and strategies to evade pathogens and tumors, including host immunosuppression.
  • Those peptides, polypeptides and proteins (or their corresponding DNA sequences) present in tumors and normal tissues, or associated with pathogens that produce chronic infections by evading the action of the immune system are known within the state of the art as low immunogenic antigens. .
  • growth factor receptors with kinase activity in tyrosine residues have been shown to be closely related to the development of tumors and tumor metastases, and their value has been proven in some cases as indicators of poor prognosis in cancer.
  • receptors such as the epidermal growth factor receptor (EGF-R) or HER-1, the epidermal growth factor 2 receptor (HER-2), and the derived growth factor receptor of platelets (PDGF-R).
  • EGF-R epidermal growth factor receptor
  • HER-1 epidermal growth factor receptor
  • HER-2 epidermal growth factor 2 receptor
  • PDGF-R derived growth factor receptor of platelets
  • IAE specific active immunotherapy
  • Acquired immunity cells cannot distinguish structures that require an immune response from those that do not and therefore need to be instructed by innate immune system cells.
  • An essential link between innate and acquired immunity is provided by the Antigen Presenting Cells (CPA), among which the Dendritic Cells (DC) are the most efficient inducers of both primary and secondary immune responses.
  • CPA Antigen Presenting Cells
  • DCs are crucial because they are the only CPAs capable of activating virgin T lymphocytes.
  • molecules related to innate immunity have been identified that could be considered as a new generation of vehicles and adjuvants, because they have the ability to mature DCs and mediate the cross-presentation of antigens coupled to them.
  • HSP thermal stress proteins
  • HSP HSP
  • researchers have the disadvantage that they must be obtained from the source of origin, for example, from tumors. This makes the procedure laborious and expensive and you never really know who is the antigen that has been responsible for the effect.
  • Hartmann, et al. Proc. Nati. Acad. Sci. USA, Vol. 96, pp 9305-9310. 1999
  • Hemmi, et al (Nature, Vol. 6813, pp 740-5. 2000)
  • Sparwasser, et al. Eur. J. lmmunol. Vol. 12, pp 3591-3597. 2000
  • Hochreiter et al. (Int. Arch. Allergy Immunol. No. 124, pp.
  • compositions are characterized in that the antigens are chemically modified by the addition of at least one cysteine residue and subsequent conjugation of an aliphatic fatty acid molecule or a hydrophobic peptide. Subsequently, the modified antigens are complexed with a proteasome by dialysis or lyophilization processes. In particular these compositions do not include glycosides. Disclosure of the invention.
  • the novelty of the present invention consists in providing formulations that allow to make immunogenic peptides, polypeptides, proteins, their corresponding DNA sequences and white cells of vaccine interest, without the need to introduce structural changes in said antigens, by means of their association with very small proteoliposomes size (Very Small Size Proteoliposomes, VSSP) of the Neisseria meningitidis bacteria, which contain potent innate immunity ligands and gangliosides.
  • This invention shows how the immunopotentiating vehicle consists precisely of very small-sized proteoliposomes (VSSP) obtained from the association of the Protein Complex of the External Membrane (CPME) of the Gram-negative bacterium Neisseria meningitidis with gangliosides.
  • An object of this invention is to provide immunogenic compositions containing peptides, polypeptides, proteins, their corresponding DNA sequences, white cells or their used as antigens, and very small proteoliposomes (VSSP), which are formed by joining the Complex of Proteins of the External Membrane (CPME) of the bacterium Neisseria meningitidis with gangliosides, by hydrophobic bonds. Additionally it is postulated that these compositions can be formulated alone or in emulsions with the incomplete Freund's adjuvant (AIF) and also be lyophilized. Another object of the invention is to provide immunostimulatory compositions capable of generating antigen-specific immune responses even in immunocompromised hosts, such as those suffering from cancer and chronic viral infections.
  • CPME External Membrane
  • AIF incomplete Freund's adjuvant
  • the administration of the vaccine compositions described in this invention makes it possible to restore the functionality of sectors of their immune system.
  • the vaccine compositions described in the present invention constitute a solution to the problem of the immunogenicity of growth factor receptors and their impact on the treatment of tumors, because these receptors with tyrosine kinase activity and the gangliosides that specifically they are associated with these in the form of molecular membrane clusters, they are presented simultaneously to the host's immune system in the context of the danger signals provided by the VSSP, necessary to activate dendritic cells (DC) in a way effective, and produce cross presentation.
  • DC dendritic cells
  • vaccine compositions in addition to presenting their components to the immune system, simulating the molecular associations in which they naturally occur in tumor cells, make the use of chemical protein conjugation techniques that generate new spurious immunodominant epitopes unnecessary.
  • this technological solution allows the use of the complete structures of the receptors, favoring the solution of the problem of the genetic restriction of immunodominance, unlike others that have used derived peptides and that may have more limitations in this regard. More specifically the invention provides vaccine compositions for the treatment of cancer.
  • Said vaccine compositions contain as active ingredient one or more receptors of growth factors or their extracellular domains, the latter may or may not contain the transmembrane domains, using as a vaccine vehicle very small-sized proteoliposomes derived from the Neisseria outer membrane protein complex. meningitidis (VSSP) and gangliosides that are specifically associated with these receptors, forming molecular membrane clusters. These vaccine compositions may additionally contain an appropriate adjuvant.
  • the vaccine compositions of the invention can be used in the specific active immunotherapy of tumors such as prostate cancer, colon, lung, breast, ovary, head-neck, vulva, bladder, gliomas, as well as in chronic non-communicable diseases. Detailed description of the invention.
  • the present invention relates to pharmaceutical compositions to enhance the immunogenicity of low immunogenic antigens, the components of which are: (A) one or more low immunogenic antigens;
  • compositions of the invention allow to enhance the immunogenicity of poorly immunogenic antigens, which may be peptides, polypeptides, proteins, or their corresponding nucleic acid sequences, as well as white cells of vaccine interest, or their used, or the mixture thereof.
  • growth factor receptors or their extracellular domains can be employed. Such extracellular domains of growth factor receptors may or may not contain their transmembrane region.
  • Receptors of growth factors that can be used to increase their immunogenicity are HER-1, HER-2, R-PDGF or any of its variants that contain the extracellular domain with and without transmembrane region.
  • the proteoliposomes of the vaccine vehicle of the present invention are obtained from the outer membrane protein complex of a gram-negative bacterium, with Neisseria meningitidis bacteria being preferred, which may be a wild or genetically modified strain.
  • the proteoliposomes of the vaccine vehicle with incorporated gangliosides are obtained by hydrophobic incorporation of said gangliosides to the Neisseria meningitidis outer membrane protein complex, the gangliosides GM1, GM3 or their N- variants being used for this purpose. glycolylated.
  • compositions of the invention additionally contain an adjuvant, which can be oily in nature or a natural or recombinant polypeptide.
  • an adjuvant which can be oily in nature or a natural or recombinant polypeptide.
  • the oil-based adjuvant used is preferably the Freund Incomplete Adjuvant or Montanide ISA 51.
  • compositions of the invention are useful for the prevention and treatment of cancer, particularly prostate cancer, colon, lung, breast, ovary, head-neck, vulva, bladder, brain, gliomas, as well as chronic non-communicable diseases. It can also be used for the prevention and treatment of infectious diseases of viral and bacterial origin, and within these, it can be used in the treatment of Acquired Immune Deficiency Syndrome, as well as for the treatment of autoimmune diseases.
  • the present invention provides formulations that confer immunogenicity to peptides, recombinant or natural proteins, used cell phones, intact cells and nucleic acids, poorly immunogenic.
  • Immunostimulatory formulations can be defined as those capable of stimulating both the humoral and the cellular response against a particular antigen.
  • these formulations have the peculiar characteristic of rescuing the immunity of immunocompromised individuals, such as those suffering from cancer and chronic viral infections or certain types of autoimmune diseases.
  • This invention shows how the immunopotentiating vehicle consists of very small-sized proteoliposomes (VSSP) obtained from the association of the Protein Complex of the External Membrane (CPME) of the Gram-negative bacterium, Neisseria meningitidis with incorporated gangliosides.
  • VSSP very small-sized proteoliposomes
  • the components of the CPME undergo a dialysis process that lasts between 2 and 15 days, during which glycolylated and / or acetylated gangliosides are incorporated.
  • a dialysis process that lasts between 2 and 15 days, during which glycolylated and / or acetylated gangliosides are incorporated.
  • gangliosides With the incorporation of gangliosides to the outer membrane complex, a non-vesicular preparation is obtained, of very small molecular size, invisible to the electron microscope, soluble and of high buoyancy.
  • VSSPs of the present invention show surprising immunological properties such as a marked ability to mature dendritic cells, and to immunosuppress immunosuppressed patients.
  • VSSPs are obtained as described in Cuban patents 131/93 and 130/97, in US patents 5,788,985 and US 6,149,921, as well as in the article Estevez, et al. (Vaccine, Vol. 18, pp 190-197. 1999).
  • the antigenic peptides of interest can be synthetic or extracted from various sources.
  • the preferred size of the peptides can be between 7 and 25 amino acids, depending on the type of T cell to be stimulated. However, the length can vary between 3 and 50 amino acids.
  • the peptides used can be neutral or charged. The hydrophobic nature of the peptides may also vary.
  • the present invention establishes that the recombinant proteins used can be expressed in various expression systems such as bacteria, yeasts, plants and higher cells.
  • the use of N. meningitidis as an expression system is postulated, where the proteins of interest are expressed in the outer membrane of the bacterium itself. This allows the protein of interest to be directly part of the CPME.
  • the expression of the complete protein, or the insertion of any of its polypeptides or peptides in one or more of the outer membrane proteins of Neisseria meningitidis, such as TBP, Opa, Opc and P1 porins, is equally valid. , P2, P3.
  • the antigens of the vaccine compositions can be receptors of growth factors with tyrosine kinase activity overexpressed in tumor tissues and, alternatively, their extracellular domains, with or without transmembrane region, and having a relationship specific with gangliosides expressed in the membrane of tumor cells.
  • the growth factor receptors referred to in the invention are proteins obtained recombinantly through clones by Polymerase Chain Reaction (PCR) according to regular Molecular Biology procedures (Sambrook J, Fritsch EF, Maniatis T, Molecular Cloning A Laboratory Manual, second edition, Cold Spring Harbor Laboratory Press, 1989) in expression plasmids in higher cells. Plasmids containing the genes encoding the receptors or their variants are stably transfected into higher cells such as HEK 293 (ATCC CRL 1573), NIH-3T3 (ATCC CRL 1658) and CHO. The receptors or their variants are expressed by the transfected lines in their membranes or are secreted to the supernatant as appropriate.
  • PCR Polymerase Chain Reaction
  • antigens are extracted from the membrane of the superior cells that express them or from the culture supernatant of said cells and purified by chromatography. Subsequently they are filtered under sterile conditions and lyophilized. They are stored at 4 ° C.
  • the optimal amounts of these antigens in vaccine formulations range between 1 ⁇ g and 1000 ⁇ g per dose.
  • the VSSP used in vaccine formulations contain gangliosides selected from those that are specifically associated with growth factor receptors forming molecular membrane clusters, this being the case of GM3 and GM1, among others.
  • the VSSPs are present in this vaccine composition in a range between 1 ⁇ g and 1000 ⁇ g referring to the amount of gangliosides per vaccine dose.
  • the preferred vaccine compositions in this invention which are vaccine preparations containing as growth factor receptor antigens to which they wish to increase their immunogenicity, can be prepared in various ways: a) The growth factor receptors or their extracellular domains (containing or not, transmembrane region) lyophilized (1-100 mg of protein), amounts of VSSP solutions are added, which allow to guarantee a ratio of receptor / ganglioside mass in a range between 0.1 / 1 to 1/1. Mixing by stirring, between 4 ° C and 20 ° C, during a time interval between 5 minutes and 24 hours. This preparation is kept at a temperature of 4 ° C until it is administered to the host. Just before being administered to the host, the preparation described above is mixed by stirring with AIF in volume / volume ratio between 40/60 and
  • the volume ratios cover the appropriate range for the type of emulsion desired according to the route of inoculation to the host.
  • Another way of proceeding, equally convenient, is to conserve separately containers containing lyophilized growth factor receptors or their extracellular domains (containing or not transmembrane region) and VSSP solutions, at 4 ° C. Just before being administered to the corresponding host, to the growth factor receptors amounts of VSSP solutions are added, the vaccine composition is prepared in the same manner described in part a).
  • a third way of proceeding is to combine more than one growth factor receptor or its extracellular domains (containing or not transmembrane region) with the corresponding VSSP solutions in the vaccine composition
  • the amounts of each of the antigens in the vaccine composition will be in any proportion that covers the range between 1 ⁇ g and 1000 ⁇ g per vaccine dose.
  • the amounts of each of the gangliosides in the form of VSSP in the vaccine composition will be between 1 ⁇ g and 1000 ⁇ g per vaccine dose.
  • the growth factor receptors or their extracellular domains that will be part of it are lyophilized in the amounts referred to in the corresponding subsection.
  • amounts of VSSP solutions are added to ensure a receptor / ganglioside mass ratio in a range between 0.1 / 1 to 1/1.
  • Mixing by stirring, between 4 ° C and 20 ° C, during a time interval between 5 minutes and 24 hours. This preparation is kept at a temperature of 4 ° C until it is administered to the host.
  • the preparation described above is mixed by stirring with AIF in volume / volume ratio between 40/60 and
  • multiantigenic systems such as cells from established tumor lines or those obtained directly from cancer patients, are also used in the formulations described in the present invention.
  • the inactivation of the cells is achieved by the use of gamma radiation or by treatment with Mitomycin C.
  • Another equally convenient alternative is the use of oncolysates obtained by mechanical rupture or infection with tumor cell viruses.
  • the immunopotentiating preparations of the present invention can be advantageously used in DNA and RNA vaccines. Also the immunogenicity of retro and adenoviral vectors, used as vaccine vehicles, is increased by combining them with the preparations described in the present invention. These vectors contain the genes that code for the antigenic proteins of interest.
  • the different immunogenic formulations are obtained by combining the different antigen systems with VSSP previously produced.
  • Antigens that are directly introduced recombinantly into the outer membranes of the N. meningitidis bacteria, as well as those that are incorporated into the proteoliposomes during the dialysis process, are already incorporated into the process of obtaining the VSSPs.
  • these modified proteoliposomes can also be used with other unincorporated antigens. This allows the preparation of multivalent vaccines.
  • the preparations with protein antigens are obtained from mixing between 10 and 1000 ⁇ g of the peptide or antigenic protein with amounts of VSSP that allow to guarantee a ratio of total protein mass / ganglioside in a range between 1 and 3.
  • the preparations are preserved at a temperature of 4 ° C until the moment of administration to the host. Another way of proceeding, equally convenient, is to keep the antigenic solutions and the VSSP solutions separately, at 4 ° C, and mix them just before being administered.
  • Nucleic acid formulations are obtained by directly mixing the VSSPs with the DNA or RNA solutions. The mixing process is carried out at 4 ° C, guaranteeing a ratio of 2-100 ⁇ g of nucleic acid per 0.1 mg of ganglioside in VSSP. This method is feasible due to the absence of nucleases in VSSP preparations.
  • live viral vectors vaccinia virus, fowlpox or others
  • VSSPs are administered intramuscularly, subcutaneously, intradermally, orally or intranasally, between 12 hours before and 12 hours after administering the viral vector.
  • the preparations with white cells of interest or their used ones are obtained first by precipitating the respective cultures by centrifugation and then resuspending the cell precipitate in amounts of VSSP that allow to guarantee a ratio between 10 3 and 5x10 6 cells per 0.1 mg of ganglioside.
  • These quantities are mixed directly by stirring, between 4 ° C and 20 ° C, for a time interval between 5 and 24 hours.
  • the preparations are stored at a temperature of 4 ° C until the time of administration to the host.
  • Another way of proceeding, equally convenient, is to keep separately the cell suspensions or their corresponding used and the VSSP solutions, at 4 ° C, and mix them just before being administered.
  • the preparations described in the present invention, in which the antigens are mixed or incorporated into the VSSPs, can be administered alone or emulsified with incomplete Freund's adjuvant (AIF).
  • Emulsions are prepared just before being administered to the host. Each preparation is mixed by stirring with the adjuvant in volume / volume ratio between 40/60 and 60/40, for a time interval between 10 and 30 minutes, at room temperature.
  • the volume ratios cover the appropriate range for the type of emulsion desired according to the route of inoculation to the host.
  • the described preparations in which the antigens are mixed or incorporated into the VSSPs, are lyophilized before being administered alone or emulsified with incomplete Freund's adjuvant.
  • the vaccine compositions of the present invention can be introduced into the patient parenterally (intramuscularly, intradermally, subcutaneously) or by direct application on mucous membranes. Examples of realization.
  • Example 1 Obtaining an antigen of the vaccine composition composed of extracellular domain (ECD) from murine EGF-R (ECD-EGF-Rm).
  • the gene encoding the ECD-EGF-Rm was amplified using the PCR technique, from complementary DNA (cDNA) of mouse liver.
  • the PCR was performed by mixing 1 ⁇ g of cDNA with, 10 pmoles of each specific primer. Subsequently 0.2 mMolar of each dNTP and 1 U of Taq polymerized was added. 30 cycles of PCR were performed with temperatures of 9 ° C, 1 min. (except in the first cycle that were 3 min.); 56 ° C, 1 min .; 72 ° C, 1 min. and 30 sec. (except in the last cycle that was 5 min.).
  • the amplified gene was cloned into the expression vector in superior pcDNA3 cells (AmpTori, ColE ori, CMV-Promoter, SV40 or ⁇ , SV40pa, Neomycin, Invitrogen), and subsequently the HEK-293 line cells were stably transfected with this plasmid. Transfection was carried out by conventional methods and the cells were grown in a selective medium.
  • the ECD-EGF-Rm is obtained from the supernatant of the HEK-293 / ECD-EGF-Rm line that stably expresses the ECD-EGF-Rm.
  • the ECD-EGF-Rm obtained in the culture supernatant is purified by affinity chromatography techniques, coupling the ligand to the matrix (Affinity Chromatography principies and methods 3:12, Pharmacia fine Chemicals); It is subsequently filtered under sterile conditions, and lyophilized.
  • Example 2 Obtaining a vaccine composition comprising ECD-EGF-Rm, VSSP-GM3 and incomplete Freund's adjuvant (AIF), combining all components just before administration.
  • Proteoliposomes derived from the Neisseria meningitidis outer membrane protein complex including the incorporated GM3 ganglioside were obtained as referred to in US Patent No. 6,149,921.
  • the OMPC complex of N. meningitidis provided by the "Carlos J. Finlay” Institute (C. Campa et al EP 301992) was employed. 10 mg of this OMPC complex is dispersed in a solution of 0.5% sodium deoxycholate and 0.1% sodium dodecyl sulfate, also containing 10 mg of NAcGM3, by gentle mixing overnight at 4 ° C.
  • the separation of the soluble complex OMPC-NGCGM3 from the detergents was carried out by dialysis, for 14 days, using a 3.5 Kda membrane.
  • the dialysate was ultracentrifuged at 100,000 g for 1 h and the immunogen present in the supernatant was sterilized by filtration.
  • the degree of incorporation of ganglioside into protein was determined using the Bio-Rad reagent for proteins and resorcinol for sialic acid. In this way an incorporation of 1 mg of NGcGM3 per mg of OMPC is obtained.
  • the amount of the vaccine vehicle previously prepared is 120 ⁇ g, based on the amount of gangliosides incorporated in the proteoliposomes per vaccine dose.
  • ECD-EGF-Rm 1 mg was lyophilized and stored at 4 ° C until the time of immunization.
  • 2.4 mg of VSSP-GM3 referred to amount of ganglioside
  • AIF 1 mL of AIF
  • Proteoliposomes derived from the Neisseria meningitidis outer membrane protein complex including GM3 ganglioside were obtained as referred to in US Patent No. 6,149,921.
  • the amount of vaccine vehicle used was 120 ⁇ g referred to the amount of gangliosides per vaccine dose.
  • To prepare the immunogen 1 mg of ECD-EGF-Rm was lyophilized, and then 2.4 mg of VSSP-GM3 (referring to the amount of ganglioside incorporated) was added, in a volume of 1 mL. Both components were mixed at room temperature for 15 minutes and stored at 4 ° C until the time of immunization. Just before administration to the mice, 1 mL of AIF was added and the mixing was performed by stirring at room temperature for 20 minutes.
  • Example 4. Obtaining a combined vaccine comprising ECD-HER-1, ECD-HER-2, VSSP-GM3 and AIF.
  • Proteoliposomes derived from the Neisseria meningitidis outer membrane protein complex including GM3 ganglioside were obtained as referred to in US Patent No. 6,149,921.
  • the amount of vaccine vehicle used was 120 ⁇ g referred to the amount of gangliosides incorporated in the proteoliposomes per vaccine dose.
  • ECD-HER-1 and 1 mg of ECD-HER-2 were lyophilized together, and stored at 4 ° C until the time of immunization.
  • 2.4 mg of VSSP-GM3 (referred to amount of ganglioside) was added in a volume of 1 mL. All components were mixed at room temperature for 15 minutes. Subsequently, 1 mL of AIF was added and the mixture was made by stirring at room temperature for 20 minutes.
  • Example 5 Induction of specific immune response to autologous R-EGF by the vaccine composition.
  • mice of the C57BL / 6 line were immunized with the vaccine composition containing ECD-EGF-Rm / VSSP-GM3 and AIF, prepared as described in example 2.
  • the immunogen dose was 50 ⁇ g per mouse based on quantity of antigen in the composition.
  • the immunization schedule followed comprised three doses intramuscularly every fifteen days, with blood drawn on days 0, 21, 35 and 56 after the first immunization (Group II).
  • a group of mice of the same line immunized with 50 ⁇ g of ECD-EGF-Rm chemically conjugated to KLH and adjuvant in Freund's Complete Adjuvant (ACF) and AIF was used, following the same immunization schedule (Group I).
  • the sera obtained were tested by ELISA for recognition to ECD-EGF-Rm.
  • the ELISA was performed by coating the plate with 10 ⁇ g / mL ECD-EGF-Rm. After blocking the plate with PBS / 5% calf serum, sera from the immunized animals and controls were incubated at different dilutions. A mouse anti-IgG antibody conjugate (Fe-specific) with alkaline phosphatase (Sigma) was then added. All the aforementioned incubations were performed for 1 hour at 37 ° C and after each of the mentioned steps three washes were performed with PBS / 0.05% Tween 20.
  • the reaction was developed with the addition of 1 mg / mL of substrate (p-nitrophenyl phosphate) in diethanolamine buffer, pH 9.8.
  • substrate p-nitrophenyl phosphate
  • the absorbance at 405 nm was measured in an ELISA reader at 30 min. 100% of the mice immunized with the vaccine composition of the invention developed a specific antibody response against ECD-EGF-Rm, which increased during the course of immunizations, reaching titres of up to 1/160000, while the Preimmune sera did not recognize ECD-EGF-Rm.
  • the isotype of the antibody response developed was primarily of the IgG type.
  • the subclass distribution of the induced antibody response was determined by ELISA. 20.21% of the antibodies were lgG2a, 36.03% lgG1 and 38.93% was lgG2b, showing a shift towards the Th1 response pattern with respect to the reference group ( Figure 1).
  • the present vaccine composition is compared with a composition in which the ECD-EGF-Rm is chemically coupled to KLH, and where uses ACF as an adjuvant, the antibody titres induced by the preparation are superior, and the subclass distribution tends more to a Th1 pattern, proving favorable for the efficacy of said vaccine.
  • mice immunized with ECD-EGF-Rm ⁇ / SSP-GM3 / AIF showed no signs of clinical toxicity, and the biochemical tests performed on the sera of these animals showed no differences with those performed on sera from non-immunized animals (Table 1) .
  • A431 line cells (10,000 cells / well) expressing the human epidermal growth factor receptor were incubated with preimmune serum from C57BL / 6 mice diluted 1/5 (A), ior egf-r3 monoclonal antibody against EGF-R as a positive control at a concentration of 10 ⁇ g / mL (B) and serum of immunized C57BL / 6 mice diluted 1/5 (C), for 30 minutes at room temperature.
  • the excess of antibodies not bound to the receptor or bound in a non-specific way was removed by washing with 0.5% buffered phosphate / calf serum solution.
  • A431 line cells (3x10 6 cells) were incubated with 51 Cr radioactive sodium chromate for 1h, and the excess radioactive salts were removed by three washes with culture medium.
  • Cells loaded with 51 Cr were incubated with: i) 50 ⁇ g / mL of the ior-t3 monoclonal antibody (AcM against CD3, as a negative control) ii) 50 ⁇ g / mL of the ior egf-r3 monoclonal antibody (AcM against EGF -R as a positive control) iii) preimmune serum from C57BL / 6 mice diluted 1/20 iv) serum from C57BL / 6 mice immunized with ECD-HER-1 / VSSP-GM3 / AIF diluted 1/20
  • Sera from mice immunized with the vaccine preparation referred to in the patent were tested for their ability to inhibit the binding of EGF to its receptor on the membrane of A431 cells.
  • A431 cells were grown in culture plates until confluence. Once confluent, an immune serum pool was added at different dilutions (1/5, 1/10, 1/20, 1/40) and then EGF- 125 I was added at a rate of 100,000 cpm / well. The volume of each well was completed up to 500 ⁇ L of PBS / 1% BSA in each well. The plates were incubated at room temperature for 1 hour and after this time the reaction was stopped by adding 2 mL of cold 1% PBS / BSA.
  • mice of the C57 / BL6 line, immunized with ECD-EGF-RmVSSP-GM3 / AIF were transplanted with 100,000 Lewis cells intramuscularly and were observed to determine the time Survival Lewis cells are derived from a lung adenocarcinoma of murine origin that express EGF-R. The survival of these mice was compared with that of a group immunized with ECD-EGF-Rm / ACF (three doses of 50 ⁇ g every fifteen days subcutaneously).
  • Example 10 Obtaining a vaccine composition containing the chimeric monoclonal antibody P3 (AcMq P3), VSSP (GM3) and AIF.
  • the VSSPs (GM3) were stored at a concentration of 4.8 mg / mL in Tris / HCI solution pH 8.9 and at a temperature of 4 ° C, until used.
  • a solution containing 2 mg / mL of the chimeric AcM P3 (US Patent No. 5,817,53) in saline phosphate buffer solution was mixed with the VSSP preparation (GM3) in a 1/1 (v / v) ratio.
  • the mixing process was performed by magnetic stirring at room temperature for 15 min.
  • the IDA was added in a 1/1 (v / v) ratio.
  • the mixture was stirred at room temperature for 15 minutes, until the emulsion was achieved.
  • a solution containing 2 mg / mL of AcMq P3 in saline phosphate buffer solution was mixed with the VSSP (GM3) in a 1/1 (v / v) ratio.
  • the mixing process was performed by magnetic stirring at room temperature for 15 min. and the resulting solution was sterilized by filtration through 0.2 ⁇ m cellulose acetate membranes.
  • the preparation was stored at 4 ° C for a period of up to one year.
  • the preparation was added to the AIF in a 1/1 (v / v) ratio and emulsification was performed by stirring at room temperature for 15 minutes.
  • Example 11 Obtaining a vaccine composition containing a peptide from the heavy chain variable region of AcMq P3 (CDR3 / VH-P3) and VSSP (GM3).
  • Proteoliposomes derived from the Neisseria meningitidis outer membrane protein complex including GM3 ganglioside [VSSP (GM3)], were obtained as described in Cuban patent 130/97 and in US patent 6,149,921.
  • the VSSPs (GM3) were stored at a concentration of 4.8 mg / mL in Tris / HCI solution pH 8.9 and at a temperature of 4 ° C, until used.
  • the immunogen was first prepared by dissolving lyophilized CDR3 VH-P3 peptide in saline phosphate buffer solution until a concentration of 4 mg / mL was achieved. Subsequently it was mixed with the VSSP preparation (GM3) in a 1/1 (v / v) ratio. The mixing process was performed by magnetic stirring at room temperature for 15 min.
  • lyophilized CDR3 VH-P3 peptide was first dissolved in saline phosphate buffer until a concentration of 4 mg / mL was achieved. Subsequently it was mixed with the VSSP preparation (GM3) in a 1/1 (v / v) ratio. The mixing process was performed by magnetic stirring at room temperature for 15 min. and the resulting solution was sterilized by filtration through 0.2 ⁇ m cellulose acetate membranes. After a dosing, packaging and sealing process the preparation was stored at 4 ° C for a period of up to one year.
  • Example 12 Obtaining a vaccine composition containing a melanoma oncolysate B16, VSSP (GM3) and AIF.
  • Proteoliposomes derived from the Neisseria meningitidis outer membrane protein complex including GM3 ganglioside [VSSP (GM3)], were obtained as described in Cuban patent 130/97 and in US patent 6,149,921.
  • the VSSPs (GM3) were stored at a concentration of 2.4 mg / mL in Tris / HCI solution pH 8.9 and at a temperature of 4 ° C, until used.
  • a suspension of B16 murine melanoma line cells 50x10 6 cells / mL was subjected to 5 freeze / thaw cycles, alternating incubations in liquid nitrogen baths and in distilled H 2 O baths at 37 ° C.
  • the resulting cell lysate was centrifuged at 500 xg for 10 minutes.
  • the resulting pellet was resuspended in VSSP (GM3) guaranteeing a proportion of cell pellet corresponding to 10 x 10 6 cells per 2.4 mg of GM3 in VSSP.
  • the mixture was stirred for 10 minutes at room temperature.
  • the preparation was then added to the IDA in a 1/1 (v / v) ratio.
  • the mixture was stirred at room temperature for approximately 15 minutes, until the emulsion was achieved.
  • Example 13 Obtaining a vaccine composition containing melanoma cells B16, VSSP (GM3) and AlF.
  • Proteoliposomes derived from the Neisseria meningitidis outer membrane protein complex, including GM3 ganglioside [VSSP (GM3)] were obtained as described in Cuban patent 130/97 and in US patent 6,149,921.
  • the VSSPs (GM3) were stored at a concentration of 2.4 mg / mL in Tris / HCI solution pH 8.9 and at a temperature of 4 ° C, until used.
  • To prepare the immunogen a suspension of B16 murine melanoma line cells (50 x 10 6 cells / mL) was centrifuged at 300 xg for 10 minutes.
  • the cell pellet was resuspended with the VSSPIGM3) guaranteeing a ratio of 10 x 10 6 cells per 2.4 mg of GM3 in VSSP.
  • the mixture was stirred for 10 minutes at room temperature.
  • the preparation was then added to the AlF in a 1/1 (v / v) ratio.
  • the mixture was stirred at room temperature for approximately 15 minutes, until the emulsion was achieved.
  • Example 14 Obtaining a vaccine composition containing a plasmid with the gene encoding the extracellular domain of the human EGF receptor (ECD-HER1), VSSP (GM3) and AlF.
  • Proteoliposomes derived from the Neisseria meningitidis outer membrane protein complex including GM3 ganglioside [VSSP (GM3)], were obtained as described in Cuban patent 130/97 and in US patent 6,149,921.
  • the VSSPs (GM3) were stored at a concentration of 4.8 mg / mL in Tris / HCI solution pH 8.9 and at a temperature of 4 ° C, until used.
  • the vector to insert the DNA of interest was the expression plasmid in mammals pcDNA3, which contains the origin of SV40 replication and the immediate early promoter of human cytomegalovirus (pCMVIT). In this plasmid the gene encoding the extracellular domain of the human EGF receptor (ECD-HER1) was inserted.
  • the resulting plasmid (ECD-HER1 / pcDNA3) was used in the preparation of the immunogen.
  • the ECD-HER1 / pcDNA3 plasmid solution was adjusted to a concentration of 2 mg / mL in saline phosphate buffer. Subsequently it was mixed with the VSSP preparation (GM3) in a 1/1 (v / v) ratio. The mixture was performed by stirring at room temperature for 5 min. Then the preparation was added to the AlF in a 1/1 (v / v) ratio. The mixture was stirred at room temperature for approximately 15 minutes, until the emulsion was achieved.
  • Example 15 In vitro induction of dendritic cell maturation by the VSSP preparation (GM3).
  • Human dendritic cells were obtained from monocytes isolated from peripheral blood that were cultured, for 7 days, in the presence of recombinant human GM-CSF (hr) (50 ng / ml) and hr-IL4 (1000 U / ml). On the 7th day the dendritic cells obtained were exposed or not, for 18 hours, to the VSSPs (GM3) (1 ⁇ g / mL).
  • GM3 recombinant human GM-CSF
  • hr-IL4 1000 U / ml
  • mice of the C57BL / 6 line were immunized with the vaccine composition referred to in Example 10.
  • 50 ⁇ g of the chimeric monoclonal was inoculated in each injection, applying 2 doses (one every 14 days) intramuscularly. 21 days after the first immunization serum samples were taken.
  • a group of mice of the same strain immunized in the same manner with the AcMq P3 adjuvant in AlF or Alumina was used. The sera obtained were tested by ELISA to determine the presence of anti-AcMq P3 antibodies.
  • mice immunized with the vaccine composition described in the present invention developed specific IgG antibody levels against the AcMq P3, higher than those of the reference groups. (Table 3).
  • Example 17 Induction of specific proliferative cell response to the CDR3 / VH-P3 peptide associated with the administration of the vaccine composition.
  • mice of the C57BL / 6 line were immunized with the vaccine composition described in Example 11. 100 ⁇ g of the peptide was inoculated in each injection, 4 doses (one every 14 days) being applied intramuscularly. A group of mice of the same strain immunized in the same manner with the CDR3 / VH-P3 peptide adjuvant in AlF or Alumina was used as reference. 7 days after the last dose the inguinal lymph nodes were removed from the animals and lymphocytes were isolated by perfusion of the organ. Lymphocytes were cultured for 96 hours with the CDR3 ⁇ / H-P3 peptide (50 ⁇ g / mL).
  • Example 18 Induction of specific cytotoxic cellular response to ECD-mEGFR associated with the administration of the vaccine composition containing
  • Proteoliposomes derived from the Neisseria meningitidis outer membrane protein complex including GM3 ganglioside [VSSP (GM3)], were obtained as described in Cuban patent 130/97 and in US Pat.
  • GM3 ganglioside [VSSP (GM3)] were obtained as described in Cuban patent 130/97 and in US Pat.
  • VSSPs (GM3) were stored at a concentration of 2.4 mg / mL in Tris / HCI solution pH 8.9 and at a temperature of 4 ° C, until used.
  • the viral vector to insert the DNA of interest was the Avian Smallpox Virus (FPV).
  • FPV Avian Smallpox Virus
  • ECD-mEGFR murine EGF receptor extracellular domain
  • the solution of ECD-mEGFR / FPV recombinant vector was adjusted to a concentration of 10 8 pfu / mL.
  • the VSSP emulsion (GM3) was prepared by adding the vehicle solution to the AlF in a 1/1 (v / v) ratio. The mixture was stirred at room temperature for approximately 15 minutes.
  • mice were immunized with 200 ⁇ L of the ECD-mEGFR / FPV solution intraperitoneally and with 100 ⁇ L of VSSP (GM3) / AIF intramuscularly, consecutively.
  • GM3 ECD-mEGFR / FPV solution
  • STFS saline phosphate buffer solution
  • T cells were stimulated for 5 days with bone marrow derived dendritic cells (bmDC), previously pulsed with the immunodominant peptide of the ECD-mEGFR 'NYGTNRTGL', in a 10: 1 ratio (T: bmDC) and in the presence of IL- 2 (50 u / mL).
  • bmDC bone marrow derived dendritic cells
  • IL- 2 50 u / mL
  • Example 19 Immunorestaurant properties of the VSSP vaccine vehicle.
  • the VSSP vaccine vehicle, described in this invention was administered intramuscularly (im) to patients with metastatic melanoma in the context of a trial.
  • Clinical Phase 1. Patients received 9 doses (200 ⁇ g of NGcGM3 in VSSP) within 6 months. The first 5 doses were administered in the first 2 months and the remaining 4 were given monthly. Blood was taken from the patients on day 0 (before administering the first dose) and on day 56 (fifth dose). In parallel, blood was taken from 8 healthy volunteers. From these samples the corresponding peripheral mononuclear cells (CMP) were obtained by the Ficoll gradient method and the% of CD3 +, CD4 + and CD8 + cells were determined by flow cytometry. As shown in Table 6, the relative expression of the CD3, CD4 and CD8 T cell markers, coming from the CMP of the 3 patients taken to exemplify, is lower than the average of healthy donor expression in the day 0.
  • CMP peripheral mononuclear
  • CD4 and CD8 in the CMP of the same patients were normalized by day 56 or after receiving 4 injections of VSSP (NGcGM3).
  • FIG. 1 Subclass distribution of antibodies induced from immunization with ECD-EGF-Rm / VSSP-GM3 / AIF. Sera from C57BL / 6 mice immunized with ECD-EGF-Rm / KLH / ACF (I) or ECD-EGF-Rm / VSSP-GM3 / AIF (II) were tested by ELISA for the determination of subclass distribution of induced IgG by immunization.
  • Figure 2. Recognition of sera from mice immunized with DEC-HER-1 ⁇ / SSP-GM3 / AIF to cells expressing EGF-R.
  • A431 line cells were incubated with preimmune serum from C57BL / 6 mice (A), ior egf-r3 monoclonal antibody as a positive control (B) and serum from immunized C57BL / 6 mice (C).
  • A preimmune serum from C57BL / 6 mice
  • B ior egf-r3 monoclonal antibody
  • C serum from immunized C57BL / 6 mice
  • A431 cells loaded with 51 Cr were incubated with complement and: I) ior-t3 monoclonal antibody (against CD3, as negative control), II) ioEGF-R-r3 monoclonal antibody (against EGF-R, as positive control), III) preimmune serum of C57B1 / 6 mice, IV) serum of C57BL / 6 mice immunized with ECD-HER-1 / VSSP-GM3 / AIF V) Equal number of cells that were used with detergents in the previous points as a measure of Total incorporation of 51 Cr. The results are presented in% specific lysis.
  • Figure 4 Neutralizing capacity of sera from mice immunized with ECD-HER-1 / VSSP-GM3 / AIF.
  • a 431 cells were incubated with dilutions 1/5, 1/10, 1/20 and 1/40 of a pool of sera from mice immunized with ECD-HER-1 / VSSP-GM3 / AIF or with the same dilutions of a pool of preimmune sera.
  • EGF- 125 I (100000 com) was added in each well and total binding was measured by incubating the cells with EGF125I.
  • CPMs were measured in a gamma radiation counter.
  • Figure 5 Survival of mice immunized with ECD-EGF-Rm / VSSP-GM3 / AIF transplanted with Lewis tumor.
  • mice of strain C57BL / 6 immunized as referred to in Example 9 were transplanted with 100,000 Lewis Tumor cells and observed to measure survival.
  • mice of the same strain were immunized with ECD-EGF-Rm / ACF.

Abstract

La presente invención se relaciona con la Inmunología y más específicamente con composiciones inmunogénicas que contienen péptidos, polipéptidos, proteínas, sus correspondientes secuencias de ADN, células o sus lisados y proteoliposomas de muy pequeña talla (VSSP), formados estos últimos al unir el complejo de proteínas de la membrana externa (CPME) de Neisseria meningitidis con gangliósidos, mediante enlaces hidrófobos. En particular esta invención muestra como preparar composiciones inmunoestimuladoras capaces de generar respuestas inmunes antígeno-específicas inclusive en huéspedes inmunocomprometidos, como son los que padecen de cáncer e infecciones de origen viral o bacterianas crónicas. En estos pacientes, la administración de las composiciones vacunales descritas permite restaurar la funcionalidad de sectores de su sistema inmunitario. Las composiciones vacunales de esta invención pueden ser utilizadas para proteger de o tratar enfermedades infecciosas, malignas o autoinmunes.

Description

COMPOSICIONES FARMACÉUTICAS PARA POTENCIAR LA INMUNOGENICIDAD DE ANTÍGENOS POCO INMUNOGÉNICOS. Sector Técnico.
La presente invención se relaciona con la rama de la medicina humana y en especial con vacunas protectoras y/o terapéuticas para enfermedades infecciosas, autoinmunes y el cáncer, y particularmente proporciona composiciones vacunales que permiten la generación o el incremento de la respuesta inmunitaria contra antígenos poco inmunogénicos. Técnica Anterior. El poco éxito logrado hasta ahora en la prevención y tratamiento de un grupo de enfermedades infecciosas, el cáncer y las enfermedades autoinmunes con vacunas se debe a combinaciones de factores diversos, principalmente la baja inmunogenicidad de antígenos relevantes, el desconocimiento de como manipular la regulación del sistema inmunitario y las estrategias de evasión de patógenos y tumores, entre ellas la inmunosupresión del hospedero.
Son conocidos dentro del estado de la técnica como antígenos poco inmunogénicos aquellos péptidos, polipéptidos y proteínas (o sus correspondientes secuencias de ADN) presentes en tumores y tejidos normales, o asociados a patógenos que producen infecciones crónicas mediante la evasión de la acción del sistema inmunitario.
Entre los antígenos poco inmunogénicos los receptores de factores de crecimiento con actividad quinasa en residuos de tirosina han mostrado tener una estrecha relación con el desarrollo de tumores y de metástasis tumorales, y se ha probado su valor en algunos casos como indicadores de mal pronóstico en cáncer. Tal es el caso de receptores como el receptor del factor de crecimiento epidérmico (EGF-R, siglas en inglés) o HER-1 , el receptor del factor de crecimiento epidérmico 2 (HER- 2), y el receptor del factor de crecimiento derivado de plaquetas (PDGF-R, siglas en inglés). La sobre expresión de estos receptores en algunos tipos de neoplasias, fundamentalmente de origen epitelial, ha sido blanco de atención en la inmunoterapia del cáncer. Tal es el caso de tumores de mama, vejiga, ovario, vulva, colon, pulmón, cerebro, próstata y tumores de cabeza y cuello. La presencia de EGF-R ha probado ser una indicación de mal pronóstico en cáncer de mama (Pérez R et al. 1984. Breast Cáncer and Treatment 4:189-193). Aún cuando no se conoce todavía el papel que juega el sistema del EGF/EGF-R en la regulación del crecimiento tumoral, se ha sugerido que la expresión del EGF-R en células tumorales proporciona un mecanismo para la estimulación autocrina que conduce a la proliferación descontrolada de dichas células (Schlessinger J et al. (1983) Crit Rev β/ocΛθ/n 14 (2):93-111 ).
Por su alta expresión en tumores, el receptor del Factor de Crecimiento Epidérmico ha sido blanco de inmunoterapia pasiva (IP) con anticuerpos monoclonales en forma nativa, asociados a drogas, toxinas, o isótopos radiactivos (Vollmar AM et al. (1987) J Cell Physiol 131 :418-425). Varios ensayos clínicos con anticuerpos monoclonales (AcMs) se están llevando a cabo y algunos han mostrado resultados promisorios, como es el caso del ensayo clínico con el AcM C225 en cáncer de mama, de células pancreáticas y de células renales en fase II y cabeza-cuello en fase III (Mendelsohn J et al. (1999) American Society of Clinical Oncology Meeting). Otro ensayo clínico de Fase II con buenos resultados es el ensayo efectuado con el AcM IOR egf/r3 en tumores de cabeza y cuello (Crombet T et al. (2000) Cáncer Biotherapy and Biopharmaceutical, manuscrito aceptado).
En cambio la inmunoterapia activa específica (IAE) utilizando como blanco el EGF-R no ha sido nunca desarrollada, siendo las causas de esto su baja inmunogenicidad como molécula propia y su amplia expresión en los tejidos del organismo, lo cual ha determinado el temor de los inmunólogos a considerar esta opción (Disis ML and Cheever MA (1996) Current Opinión in Immunology 8:637-642). La IAE tiene ventajas sobre la IP por cuanto ésta última no activa la rama efectora celular específica de la respuesta inmune, y su efecto depende de la vida media de los anticuerpos utilizados, siendo generalmente necesario reinfusiones continuadas para lograr los efectos deseados.
En el desarrollo de vacunas eficaces, los vehículos y adyuvantes son los responsables de superar la baja inmunogenicidad de antígenos relevantes mediante la regulación convenientemente el sistema inmunitario y la conjura de estrategias de evasión de patógenos y tumores. Es por ello que la búsqueda de nuevos sistemas de vehiculización y adyuvación constituyen hoy una importante área de investigación. En los últimos años las nuevas teorías y conocimientos emergentes sobre la regulación del sistema inmune han abierto nuevos campos de experimentación para la búsqueda de nuevos vehículos y adyuvantes de mayor eficiencia. Fearon, et al. (ScienceNol.272, pp 50-53, 1996) han enseñado que una inmunidad protectiva es el resultado de la interrelación de dos sistemas cardinales: la inmunidad innata y la inmunidad adquirida. Las células de la inmunidad adquirida no pueden distinguir las estructuras que requieren respuesta inmune de aquellas que no y por tanto necesitan ser instruidas por las células del sistema inmune innato. Un vínculo esencial entre la inmunidad innata y la adquirida es proporcionado por las Células Presentadoras de Antígenos (CPA), entre las cuales las Células Dendríticas (DC, siglas en inglés) son las más eficientes inductoras de respuestas inmunes tanto primarias como secundarias. En particular las DC son cruciales debido a que son las únicas CPA capaces de activar linfocitos T vírgenes. Recientemente se han identificado moléculas relacionadas con la inmunidad innata que podrían considerarse como una nueva generación de vehículos y adyuvantes, debido a que tienen la capacidad de madurar las DC y mediar la presentación cruzada de antígenos acoplados a ellas.
De interés en el estado del arte previo, se localizan una serie de trabajos. Giroir, (Crit. Care Med., Vol.5, pp 780-789, 1993), Celia, et al. (Nature, Vol.388, pp 782- 787. 1997) y Hailman, et al. (J. Exp. Med. , Vol. 79, pp 269-277. 1994) enseñan como la interacción del lipopolisacárido (LPS) con los sistemas de reconocimiento de la inmunidad innata es la más potente de todas, estimulando en monocitos, macrófagos y neutrófilos la producción de citoquinas y de mediadores proinflamatorios, aumentando además la expresión de moléculas de adhesión. Estas citoquinas inflamatorias son muy importantes en la respuesta a infecciones y tumores, pero una excesiva secreción de las mismas conduce al 'shock séptico', lo cual puede ser mortal para los pacientes e impide el uso del LPS como adyuvante vacunal. La respuesta está mediada por el complejo que forma el LPS con la proteína unidora de LPS (LBP, siglas en inglés), el cual a su vez interacciona con la molécula CD14. Esta molécula facilita la interacción del LPS con las moléculas de señalización llamadas receptores Toll (TLR). Numerosas evidencias apuntan al receptor Toll 4 (TLR4) como la molécula de la familia Toll involucrada en la transducción de la señal del LPS. Ulrich.et al (In Vaccine Design: The subunit and adjuvant approach p 495, edited by MF Powel and MJ Newman, Plenum Press, New York. 1995), Tholen, et al. (Vaccine, Vol.16, p 708. 1998), De Becker, et al. (Int. Immunol, Vol.12, pp 807-815. 2000) indican como existen derivados no tóxicos de LPS, como es el caso del Monofosforil Lípido A (MPLA, siglas en Inglés), que tiene actividad adyuvante para las ramas celular y humoral de la respuesta inmune y ha sido administrado a humanos en varios ensayos clínicos. Aunque se sostiene que el MPLA mantiene las propiedades inmunoestimuladoras del LPS, estos autores demostraron que el MPLA induce migración y maduración funcional de las DC in vivo, pero a niveles inferiores a los observados con el LPS.
Tamura, et al (Science, Vol. 278, pp 117-120. 1997) y Binder, et al (Nature Immunol.Nol. 1 , pp 151-155. 2000) han reportado como las proteínas de estrés térmico (HSP) son potentes vehículos para la estimulación de la inmunidad celular a través del fenómeno de presentación cruzada de sus antígenos acompañantes. Las HSP obtenidas de tumores han mostrado interesantes efectos antitumorales en distintos modelos. La identificación del CD91 como el receptor para la HSP gp96, podría reflejar la presencia de una vía específica de captura de HSP en las DC que ha evolucionado para reclutar eficientemente péptidos asociados a antígenos, agentes infecciosos o células dañadas, para su presentación en Complejo Mayor de Histocompatibilidad tipo I (MHC I, siglas en inglés). El empleo de HSP como vehículos para vacunas, sin embargo, tiene el inconveniente de que hay que obtenerlas de la fuente de origen, por ejemplo, de los tumores. Esto hace trabajoso y costoso el procedimiento y nunca se sabe realmente quien es el antígeno que ha sido responsable del efecto. Hartmann, et al. (Proc. Nati. Acad. Sci. USA, Vol. 96, pp 9305-9310. 1999), Hemmi, et al (Nature, Vol. 6813, pp 740-5. 2000), Sparwasser, et al. (Eur. J. lmmunol. Vol.12, pp 3591-3597. 2000), Hochreiter, et al. (Int. Arch. Allergy Immunol.Nol 124, pp 406-410. 2001) y Deng, et al. (Arthritis Res. Vol 3, pp 48-53. 2001) muestran como entre las moléculas asociadas a la inmunidad innata, identificadas como inductoras de maduración de las DC, se encuentran las secuencias CpG de ADΝ bacteriano. Recientemente se demostró que la respuesta celular ante las secuencias CpG es mediado por TLR9, lo que indica que este receptor es capaz de distinguir ADΝ bacteriano de ADΝ propio. La inducción de linfocitos T citotóxicos (CTL) contra distintos antígenos solubles ha sido reproducida en ratones modificados genéticamente negativos para los marcadores CD40, CD4 o MHC II. Esto implica que la activación de CTL mediada por CpG incluso ocurre en ausencia de la ayuda de las células T CD4, lo cual confiere a este tipo de molécula especiales propiedades adyuvantes. No obstante la capacidad "in vivo" de las secuencias CpG de desviar un patrón de respuesta Th2 a Th1 es totalmente dependiente de la naturaleza del anfígeno y de las condiciones de inmunización, siendo esto particularmente válido cuando son proteínas. Esto puede constituir una limitante al empleo eficaz de los oligonucleótidos de CpG como adyuvante, sobre todo en huéspedes inmunocomprometidos. También se ha descrito que las secuencias CpG bacterianas pueden inducir artritis.
Jeannin, et al. (Nature Immunol.Nol. 6, pp 502-509. 2000) y Miconnet, et al. (J. Immunol., Vol.166, pp 4612-4619. 2001) particularmente encontraron propiedades inmunoestimuladoras importantes de la proteína OmpA de la membrana externa de la bacteria Gram-negativa Klebsiella pneumoneae. Los experimentos realizados con esta proteína expresada de forma recombinante (kpOmpA) mostraron que ella se une e induce maduración completa de las DC, utilizando como vía de señalización la molécula TLR2. Otra propiedad importante que presenta esta proteína es su capacidad de conducir antígenos a la vía de presentación de clase I, siempre y cuando estos antígenos se le acoplen covalente o hidrofóbicamente. Esto es precisamente su mayor limitación como vehículo vacunal ya que las técnicas de conjugación covalente tienen el inconveniente de las modificaciones químicas tanto a la propia proteína como al antígeno y la unión hidrofóbica solo permite trabajar con el sub-conjunto de los antígenos hidrófobos. Loweil describió en la patente Νo. U.S. 5,726,292 un sistema inmunopotenciador para incrementar la inmunogenicidad de péptidos, polipéptidos y proteínas, la cual se puede considerar el prototipo más cercano a la presente invención. En la mencionada patente, las composiciones se caracterizan porque los antígenos son modificados químicamente mediante la adición de al menos un residuo de cisteína y posterior conjugación de una molécula de ácido graso alifático o un péptido hidrófobo. Posteriormente los antígenos modificados se acomplejan con un proteosoma mediante procesos de diálisis o liofilización. En particular estas composiciones no incluyen glicósidos. Divulgación de la invención.
La novedad de la presente invención consiste en proporcionar formulaciones que permiten hacer inmunogénicos péptidos, polipéptidos, proteínas, sus correspondientes secuencias de ADN y células blanco de interés vacunal, sin necesidad de introducir cambios estructurales en dichos antígenos, mediante su asociación con proteoliposomas de muy pequeña talla (Very Small Size Proteoliposomes, VSSP siglas en inglés) de la bacteria Neisseria meningitidis, que contienen incorporados potentes ligandos de la inmunidad innata y gangliósidos. Esta invención muestra como el vehículo inmunopotenciador consiste precisamente en los proteoliposomas de muy pequeña talla (VSSP) obtenidos a partir de la asociación del Complejo Proteico de la Membrana Externa (CPME) de la bacteria Gram-negativa Neisseria meningitidis con gangliósidos.
Mediante la presente invención se muestra como las formulaciones descritas son especialmente eficaces cuando se seleccionan antígenos poco inmunogénicos y se administran a huéspedes inmunocomprometidos.
Un objeto de esta invención es proporcionar composiciones inmunogénicas que contienen péptidos, polipéptidos, proteínas, sus correspondientes secuencias de ADN, células blanco o sus usados como antígenos, y proteoliposomas de muy pequeña talla (VSSP), los cuales se forman al unir el Complejo de Proteínas de la Membrana Externa (CPME) de la bacteria Neisseria meningitidis con gangliósidos, mediante enlaces hidrófobos. Adicionalmente se postula que estas composiciones pueden formularse solas o formando emulsiones con el adyuvante incompleto de Freund (AIF) y también ser liofilizadas. Otro objeto de la invención es proporcionar composiciones inmunoestimuladoras capaces de generar respuestas inmunes antígeno-específicas incluso en huéspedes inmunocomprometidos, como son los que padecen de cáncer e infecciones virales crónicas. En estos pacientes, la administración de las composiciones vacunales descritas en esta invención permite restaurar la funcionalidad de sectores de su sistema inmunitario. Adicionalmente las composiciones vacunales descritas en la presente invención, constituyen una solución al problema de la inmunogenicidad de los receptores de factores de crecimiento y su impacto en el tratamiento de los tumores, debido a que estos receptores con actividad tirosina quinasa y los gangliósidos que específicamente se asocian a éstos en forma de agrupaciones moleculares de membrana, se presentan simultáneamente al sistema inmune del hospedero en el contexto de las señales de peligro aportadas por el VSSP, necesarias para activar a las células dendríticas (DC, siglas en inglés) de forma efectiva, y producir presentación cruzada. Estas composiciones vacunales, además de presentarle sus componentes al sistema inmune, simulando las asociaciones moleculares en que ellos se encuentran naturalmente en las células tumorales, hacen innecesario el empleo de técnicas químicas de conjugación de proteínas que generan nuevos epítopes inmunodominantes espúreos. Por otro lado esta solución tecnológica permite usar las estructuras íntegras de los receptores, favoreciendo la solución del problema de la restricción genética de la inmunodominancia, a diferencia de otras que han usado péptidos derivados y que pueden presentar más limitaciones en este sentido. Más específicamente la invención proporciona composiciones vacunales para el tratamiento del cáncer. Dichas composiciones vacunales contienen como principio activo uno o más receptores de factores de crecimiento o sus dominios extracelulares, pudiendo o no contener estos últimos los dominios transmembranarios, empleando como vehículo vacunal proteoliposomas de muy baja talla derivados del complejo de proteínas de la membrana externa de Neisseria meningitidis (VSSP) y los gangliósidos que se asocian específicamente con dichos receptores, formando agrupaciones moleculares de membrana. Estas composiciones vacunales pueden contener adicionalmente un adyuvante apropiado. Las composiciones vacunales de la invención pueden ser usadas en la inmunoterapia activa específica de tumores como cáncer de próstata, colon, pulmón, mama, ovario, cabeza-cuello, vulva, vejiga, gliomas, así como en enfermedades crónicas no trasmisibles. Descripción detallada de la invención.
La presente invención se relaciona con composiciones farmacéuticas para potenciar la inmunogenicidad de antígenos poco inmunogénicos, cuyos componentes son: (A) uno o más antígenos poco inmunogénicos;
(B) un vehículo vacunal que consiste en proteoliposomas derivados del complejo de proteínas de la membrana externa de una bacteria Gram-negativa, los cuales contienen gangliósidos incorporados; y (C) eventualmente uno o más adyuvantes. Las composiciones de la invención permiten potenciar la inmunogenicidad de antígenos poco inmunogénicos, los cuales pueden ser péptidos, polipéptidos, proteínas, o sus correspondientes secuencias de ácidos nucleicos, así como células blanco de interés vacunal, o sus usados, o la mezcla de ellos.
Dentro de los antígenos poco inmunogénicos, los receptores de factores de crecimiento o sus dominios extracelulares pueden ser empleados. Dichos dominios extracelulares de los receptores de factores de crecimiento pueden contener o no su región transmembrana. Los receptores de factores de crecimiento que pueden ser empleados para incrementar su inmunogenicidad son el HER-1 , HER-2, R-PDGF o cualquiera de sus variantes que contenga el dominio extracelular con y sin región transmembrana. Los proteoliposomas del vehículo vacunal de la presente invención se obtienen del complejo de proteínas de la membrana externa de una bacteria gram-negativa, seleccionándose de forma preferida la bacteria Neisseria meningitidis, la cual puede ser una cepa salvaje o modificada genéticamente.
En las composiciones de la invención los proteoliposomas del vehículo vacunal con gangliósidos incorporados se obtienen mediante la incorporación hidrofóbica de dichos gangliósidos al complejo de proteínas de la membrana externa de Neisseria meningitidis, pudiéndose emplear para este fin los gangliósidos GM1, GM3 o sus variantes N-glicoliladas.
Las composiciones de la invención contienen adicionalmente un adyuvante, que puede ser de naturaleza oleosa o un polipéptido natural o recombinante. El adyuvante de naturaleza oleosa empleado es preferiblemente el Adyuvante Incompleto de Freund o Montanide ISA 51.
Asimismo cuando se emplea un adyuvante polipeptídico, éste puede ser una citosina como el factor de estimulación de colonias de granulocitos y macrófagos, o una quimiocina. Las composiciones de la invención son útiles para la prevención y tratamiento del cáncer, particularmente cáncer de próstata, colon, pulmón, mama, ovario, cabeza- cuello, vulva, vejiga, cerebro, gliomas, así como de enfermedades crónicas no trasmisibles. Igualmente puede ser empleadas para la prevención y tratamiento de enfermedades infecciosas de origen viral y bacteriano, y dentro de estas, puede ser empleada en el tratamiento del Síndrome de Inmunodeficiencia Adquirida, así como para el tratamiento de enfermedades autoinmunes. La presente invención aporta formulaciones que confieren inmunogenicidad a péptidos, proteínas recombinantes o naturales, usados celulares, células intactas y ácidos nucleicos, poco inmunogénicos. Las formulaciones inmunoestimuladoras pueden ser definidas como aquellas capaces de estimular tanto la respuesta humoral como la celular contra un antígeno en particular. Además, estas formulaciones tienen la característica peculiar de rescatar la inmunidad de individuos inmunocomprometidos, como son los que padecen de cáncer e infecciones virales crónicas o determinados tipos de enfermedades autoinmunes. Esta invención muestra como el vehículo inmunopotenciador consiste en proteoliposomas de muy pequeña talla (VSSP) obtenidos a partir de la asociación del Complejo Proteico de la Membrana Externa (CPME) de la bacteria Gram- negativa, Neisseria meningitidis con gangliósidos incorporados. Los componentes del CPME se someten a un proceso de diálisis que dura entre 2 y 15 días, durante el cual se le incorporan gangliósidos glicolilados y/o acetilados. Con la incorporación de los gangliósidos al complejo de membrana externa se obtiene una preparación no vesicular, de muy pequeña talla molecular, invisible al microscopio electrónico, soluble y de alta flotabilidad.
Los VSSP de la presente invención muestran propiedades inmunológicas sorprendentes tales como una marcada capacidad de madurar a las células dendríticas, y de inmunorrescatar pacientes inmunosuprimidos. Los VSSP se obtienen según se describe en las patentes cubanas 131/93 y 130/97, en las patentes USA 5,788,985 y USA 6,149,921 , así como en el artículo Estevez, et al. (Vaccine, Vol. 18, pp 190-197. 1999).
Los péptidos antigénicos de interés pueden ser sintéticos o extraídos de diversas fuentes. El tamaño preferido de los péptidos puede ser entre 7 y 25 aminoácidos, en dependencia del tipo de célula T que se desea estimular. No obstante la longitud puede variar entre 3 y 50 aminoácidos. Los péptidos utilizados pueden ser neutros o cargados. La naturaleza hidrofóbica de los péptidos también puede variar. De igual forma la presente invención establece que las proteínas recombinantes utilizadas pueden ser expresadas en diversos sistemas de expresión como son bacterias, levaduras, plantas y células superiores. En una materialización preferida de esta invención se postula la utilización de la N. meningitidis como sistema de expresión, donde las proteínas de interés se expresan en la membrana externa de la propia bacteria. Esto posibilita que la proteína de interés, directamente forme parte del CPME. En este caso es igualmente válida la expresión de la proteína completa, o la inserción de alguno de sus polipéptidos o péptidos en uno o más de los lazos de las proteínas de membrana externa de Neisseria meningitidis como la TBP, Opa, Opc y las porinas P1 , P2, P3.
En materializaciones particulares de la presente invención se muestra como los antígenos de las composiciones vacunales pueden ser receptores de factores de crecimiento con actividad tirosina quinasa sobreexpresados en tejidos tumorales y, alternativamente, sus dominios extracelulares, con o sin región transmembrana, y que tienen una relación específica con gangliósidos expresados en la membrana de las células tumorales. Este es el caso de HER-1 , HER-2 y el receptor del PDGF, entre otros.
Los receptores de factores de crecimiento que se refieren en la invención son proteínas obtenidas por vía recombinante a través de clonajes por Reacción en Cadena de la Polimerasa (PCR) según los procedimientos regulares de Biología Molecular (Sambrook J, Fritsch E.F, Maniatis T, Molecular Cloning A Laboratory Manual, second edition, Cold Spring Harbor Laboratory Press, 1989) en plasmidios de expresión en células superiores. Los plasmidios conteniendo los genes que codifican para los receptores o sus variantes son transfectados establemente en células superiores como HEK 293 (ATCC CRL 1573), NIH-3T3 (ATCC CRL 1658) y CHO. Los receptores o sus variantes son expresados por las líneas transfectadas en sus membranas o son secretados al sobrenadante según sea el caso. Estos antígenos son extraídos de la membrana de las células superiores que los expresan o del sobrenadante de cultivo de dichas células y purificados por cromatografía. Posteriormente son filtrados en condiciones estériles y liofilizados. Se conservan a 4°C. Las cantidades óptimas de éstos antígenos en las formulaciones vacunales oscilan entre 1 μg y 1000 μg por dosis. Para este tipo particular de antígenos, el VSSP empleado en las formulaciones vacunales contienen gangliósidos seleccionados entre aquellos que se asocian de manera específica con los receptores de factores de crecimiento formando agrupaciones moleculares de membrana, siendo éste el caso de GM3 y GM1 , entre otros.
Los VSSP se encuentran presentes en esta composición vacunal en un rango entre 1 μg y 1000 μg referidos a cantidad de gangliósidos por dosis vacunal. Las composiciones vacunales preferidas en esta invención, que son preparaciones vacunales que contienen como antígenos receptores de factores de crecimiento a los cuales se les desea incrementar su inmunogenicidad, pueden prepararse de diversas maneras: a) A los receptores de factores de crecimiento o sus dominios extracelulares (conteniendo o no, región transmembrana) liofilizados (1-100 mg de proteína), se añaden cantidades de soluciones de VSSP, que permitan garantizar una relación de masa receptor/gangliósido en un rango entre 0.1/1 a 1/1. Se procede a mezclar por agitación, entre 4°C y 20°C, durante un intervalo de tiempo entre 5 minutos y 24 horas. Esta preparación se conserva a una temperatura de 4°C hasta el momento de su administración al hospedero. Justo antes de administrarse al hospedero, el preparado anteriormente descrito se mezcla por agitación con AIF en relación volumen/volumen entre 40/60 y
60/40, durante un intervalo de tiempo entre 10 y 30 minutos, a temperatura ambiente. Las relaciones de volumen cubren el rango adecuado para el tipo de emulsión deseada según la vía de inoculación al hospedero. b) Otra manera de proceder, igualmente conveniente, consiste en conservar por separado recipientes conteniendo los receptores de factores de crecimiento o sus dominios extracelulares (conteniendo o no región transmembrana) liofilizados y las soluciones de VSSP, a 4°C. Justo antes de administrarse al correspondiente hospedero, a los receptores de factores de crecimiento se les añaden cantidades de soluciones de VSSP, se procede a preparar la composición vacunal de la misma manera descrita en el inciso a). c) Una tercera manera de proceder consiste en combinar más de un receptor de factor de crecimiento o sus dominios extracelulares (conteniendo o no región transmembrana) con las correspondientes soluciones de VSSP en la composición vacunal. Las cantidades de cada uno de los antígenos en la composición vacunal estarán en cualquier proporción que cubra el rango entre 1 μg y 1000 μg por dosis vacunal. Asimismo las cantidades de cada uno de los gangliósidos en forma de VSSP en la composición vacunal estarán entre 1 μg y 1000 μg por dosis vacunal.
Para preparar la vacuna combinada, los receptores de factores de crecimiento o sus dominios extracelulares (conteniendo o no región transmembrana) que formarán parte de ésta son liofilizados en las cantidades referidas en el inciso correspondiente. A continuación se les añaden cantidades de soluciones de VSSP que permitan garantizar una relación de masa receptores/gangliósidos en un rango entre 0.1/1 a 1/1. Se procede a mezclar por agitación, entre 4°C y 20°C, durante un intervalo de tiempo entre 5 minutos y 24 horas. Esta preparación se conserva a una temperatura de 4°C hasta el momento de su administración al hospedero. Justo antes de administrarse al hospedero, el preparado anteriormente descrito se mezcla por agitación con AIF en relación volumen/volumen entre 40/60 y
60/40, durante un intervalo de tiempo entre 10 y 30 minutos a temperatura ambiente. Las relaciones de volumen cubren el rango adecuado para el tipo de emulsión deseada, según la vía de inoculación al hospedero. d) Otra manera de preparar la vacuna combinada referida en el inciso c) es según se refiere en el inciso b).
Por otra parte, los sistemas multiantigénicos, como son células provenientes de líneas tumorales establecidas o aquellas obtenidas directamente de pacientes de cáncer, también se utilizan en las formulaciones descritas en la presente invención. La inactivación de las células se logra mediante el empleo de radiación gamma o por tratamiento con Mitomicina C. Otra alternativa igualmente conveniente es la utilización de oncolisados obtenidos por ruptura mecánica o infección con virus de las células tumorales.
Los preparados inmunopotenciadores de la presente invención pueden utilizarse ventajosamente en vacunas de ADN y ARN. También la inmunogenicidad de los vectores retro y adenovirales, usados como vehículos vacunales, se incrementa al combinarlos con las preparaciones descritas en la presente invención. Estos vectores contienen los genes que codifican para las proteínas antigénicas de interés.
Normalmente las diferentes formulaciones inmunogénícas se obtienen al combinar los distintos sistemas de antígenos con VSSP previamente producido. Los antígenos que se introducen directamente por vía recombinante en las membranas externas de la bacteria N. meningitidis, al igual que aquellos que se incorporan a los proteoliposomas durante el proceso de diálisis, salen ya incorporados del proceso de obtención de los VSSP. No obstante estos proteoliposomas modificados pueden utilizarse también con otros antígenos no incorporados. Esto permite la preparación de vacunas multivalentes.
Los preparados con antígenos proteicos, se obtienen a partir de mezclar entre 10 y 1000 μg del péptido o proteína antigénica con cantidades de VSSP que permiten garantizar una relación de masa proteína total/gangliósido en un rango entre 1 y 3. Las preparaciones se conservan a una temperatura de 4°C hasta el momento de su administración al hospedero. Otra manera de proceder, igualmente conveniente, consiste en conservar por separado las soluciones antigénicas y las soluciones de VSSP, a 4°C, y mezclarlos justo antes de administrarse.
Las formulaciones con ácidos nucleicos se obtienen mezclando directamente los VSSP con las soluciones de ADN o ARN. El proceso de mezclado se realiza a 4°C garantizando una proporción de 2-100 μg de ácido nucleico por cada 0,1 mg de gangliósido en VSSP. Este método es factible debido a la ausencia de nucleasas en las preparaciones de VSSP.
En un proceder particularmente ventajoso mostrado en la presente invención, los vectores virales vivos (virus vaccinia, fowlpox u otros), que contienen las secuencias de ADN de las proteínas de interés, son administrados al hospedero por vía endovenosa en cantidades que oscilan entre 106 y 5x107 pfu. Los VSSP se administran por vía intramuscular, subcutánea, intradérmica, oral o intranasal, entre 12 horas antes y 12 horas después de administrar el vector viral. Las preparaciones con células blanco de interés o sus usados se obtienen primero precipitando por centrifugación los respectivos cultivos y luego resuspendiendo el precipitado celular en cantidades de VSSP que permitan garantizar una relación entre 103 y 5x106 células por 0,1 mg de gangliósido. Estas cantidades se mezclan directamente por agitación, entre 4°C y 20°C, durante un intervalo de tiempo entre 5 y 24 horas. Las preparaciones se conservan a una temperatura de 4°C hasta el momento de administración al hospedero.
Otra manera de proceder, igualmente conveniente, consiste en conservar por separado las suspensiones celulares o sus correspondientes usados y las soluciones de VSSP, a 4°C, y mezclarlos justo antes de administrarse. Las preparaciones descritas en la presente invención, en las que los antígenos están mezclados o incorporados a los VSSP, pueden administrarse solas o emulsificadas con adyuvante incompleto de Freund (AIF). Las emulsiones se preparan justo antes de administrarse al hospedero. Cada preparación se mezcla por agitación con el adyuvante en relación volumen/volumen entre 40/60 y 60/40, durante un intervalo de tiempo entre 10 y 30 minutos, a temperatura ambiente. Las relaciones de volumen cubren el rango adecuado para el tipo de emulsión deseada según la vía de inoculación al hospedero. En otra materialización preferida de la presente invención las preparaciones descritas, en las que los antígenos están mezclados o incorporados a los VSSP, se liofilizan antes de administrarse solas o emulsificadas con adyuvante incompleto de Freund. Las composiciones vacunales de la presente invención se pueden introducir en el paciente por vía parenteral (intramuscular, intradérmica, subcutánea) o por aplicación directa sobre mucosas. Ejemplos de Realización.
Ejemplo 1. Obtención de un antígeno de la composición vacunal compuesto por Dominio extracelular (ECD, siglas en inglés) del EGF-R murino (ECD-EGF- Rm).
El gen que codifica para el ECD-EGF-Rm fue amplificado empleando la técnica de PCR, a partir de ADN complementario (ADNc) de hígado de ratón. El PCR se realizó mezclando 1 μg de DNAc con, 10 pmoles de cada cebador específico. Posteriormente se adicionó 0.2 mMolar de cada dNTP y 1 U de Taq polimeriza. Se realizaron 30 ciclos de PCR con temperaturas de 9°C, 1 min. (excepto en el primer ciclo que fueron 3 min.); 56°C, 1 min.; 72°C, 1 min. y 30 seg. (excepto en el último ciclo que fueron 5 min.). El gen amplificado fue clonado en el vector de expresión en células superiores pcDNA3 (AmpTori, ColE ori, CMV-Promotor, SV40 orí, SV40pa, Neomycin, Invitrogen), y posteriormente las células de la línea HEK-293 fueron transfectadas establemente con este plasmidio. Se llevó a cabo la transfección por los métodos convencionales y las células fueron crecidas en un medio selectivo. El ECD-EGF-Rm se obtiene a partir del sobrenadante de la línea HEK-293/ECD-EGF- Rm que expresa establemente el ECD-EGF-Rm.
El ECD-EGF-Rm obtenido en el sobrenadante de cultivo es purificado por técnicas de cromatografía de afinidad, acoplando el ligando a la matriz (Affinity Chromatography principies and methods 3:12, Pharmacia fine Chemicals); posteriormente es filtrado en condiciones estériles, y liofilizado.
Ejemplo 2. Obtención de una composición vacunal que comprende el ECD- EGF-Rm, VSSP-GM3 y adyuvante incompleto de Freund (AIF), combinando todos los componentes justo antes de la administración. Los proteoliposomas derivados del complejo de proteínas de la membrana externa de Neisseria meningitidis incluyendo el gangliósido GM3 incorporado fueron obtenidos según se refiere en la patente No. US 6,149,921.
Para ello, el complejo OMPC de N. meningitidis suministrado por el Instituto "Carlos J. Finlay" (C. Campa et al EP 301992) fue empleado. 10 mg de este complejo OMPC se dispersan en una solución de 0.5 % deoxicolato de sodio y 0.1 % dodecil sulfato sodio conteniendo además 10 mg de NAcGM3, mediante mezcla suave durante la noche a 4°C.
La separación del complejo soluble OMPC-NGCGM3 de los detergentes se llevó a cabo mediante diálisis, durante 14 días, empleando una membrana de 3.5 Kda.
El dializado fue ultracentrifugado a 100 000 g durante 1 h y el inmunógeno presente en el sobrenadante fue esterilizado por filtración.
El grado de incorporación del gangliósido a la proteína fue determinado usando el reactivo Bio-Rad para las proteínas y resorcinol para el ácido siálico. De esta forma se obtiene una incorporación de 1 mg de NGcGM3 por mg de OMPC. La cantidad empleada del vehículo vacunal anteriormente preparado es de 120 μg, referido a cantidad de gangliósidos incorporado en los proteoliposomas por dosis vacunal.
Para preparar el inmunógeno, 1 mg de ECD-EGF-Rm fue liofilizado y conservado a 4°C hasta el momento de la inmunización. Justo antes de la administración a los ratones, se añadieron al antígeno 2.4 mg de VSSP-GM3 (referidos a cantidad de gangliósido) en un volumen de 1 mL y se mezclaron ambos componentes a temperatura ambiente durante 15 minutos. Posteriormente se añadió 1 mL de AIF y se realizó la mezcla por agitación a temperatura ambiente durante 20 minutos. Ejemplo 3. Obtención de una composición vacunal que comprende el ECD- EGF-Rm, VSSP-GM3 y AIF combinando parte de los componentes y conservando la mezcla hasta el momento de la administración. Las proteoliposomas derivados del complejo de proteínas de la membrana externa de Neisseria meningitidis incluyendo el gangliósido GM3 fueron obtenidas según se refiere en la patente No. US 6,149,921. La cantidad de vehículo vacunal empleado fue de 120 μg referido a cantidad de gangliósidos por dosis vacunal. Para preparar el inmunógeno, 1 mg del ECD-EGF-Rm fue liofilizado, y a continuación se le añadieron 2.4 mg de VSSP-GM3 (referidos a cantidad de gangliósido incorporado), en un volumen de 1 mL. Se mezclaron ambos componentes a temperatura ambiente durante 15 minutos y fueron conservados a 4 °C hasta el momento de la inmunización. Justo antes de la administración a los ratones se añadió 1 mL de AIF y se realizó la mezcla por agitación a temperatura ambiente durante 20 minutos. Ejemplo 4. Obtención de una vacuna combinada comprendiendo el ECD-HER- 1 , el ECD-HER-2, VSSP-GM3 y AIF.
Las proteoliposomas derivados del complejo de proteínas de la membrana externa de Neisseria meningitidis incluyendo el gangliósido GM3 fueron obtenidos según se refiere en la patente No. US 6,149,921. La cantidad de vehículo vacunal empleado fue de 120 μg referido a cantidad de gangliósidos incorporado en los proteoliposomas por dosis vacunal.
Para preparar el inmunógeno, 1 mg del ECD-HER-1 y 1 mg del ECD-HER-2 fueron liofilizados juntos, y conservados a 4°C hasta el momento de la inmunización. Justo antes de la administración a los ratones, se añadieron 2.4 mg de VSSP-GM3 (referidos a cantidad de gangliósido) en un volumen de 1 mL. Se mezclaron todos los componentes a temperatura ambiente durante 15 minutos. Posteriormente se añadió 1 mL de AIF y se realizó la mezcla por agitación a temperatura ambiente durante 20 minutos. Ejemplo 5. Inducción de respuesta inmune específica al R-EGF autólogo por la composición vacunal.
Ratones de la línea C57BL/6 se inmunizaron con la composición vacunal que contiene el ECD-EGF-Rm/VSSP-GM3 y AIF, preparada según se refiere en el ejemplo 2. La dosis de inmunógeno fue de 50 μg por ratón referido a cantidad de antígeno en la composición. El esquema de inmunización seguido comprendió tres dosis por vía intramuscular cada quince días, con extracciones de sangre los días 0, 21, 35 y 56 después de la primera inmunización (Grupo II). Como referencia se tomó un grupo de ratones de la misma línea inmunizados con 50 μg del ECD-EGF-Rm conjugado químicamente a KLH y adyuvado en Adyuvante Completo de Freund (ACF) y AIF, siguiendo el mismo esquema de inmunización (Grupo I). Los sueros obtenidos fueron ensayados por ELISA para su reconocimiento al ECD-EGF-Rm. El ELISA se realizó recubriendo la placa con 10 μg/mL de ECD-EGF-Rm. Después de bloquearse la placa con PBS/suero de ternera 5%, fueron incubados los sueros de los animales inmunizados y controles a diferentes diluciones. A continuación se añadió un conjugado de anticuerpos anti-lgG de ratón (específico para el Fe) con fosfatasa alcalina (Sigma). Todas las incubaciones antes mencionadas se realizaron durante 1 hora a 37°C y después de cada uno de los pasos mencionados se realizaron tres lavados con PBS/Tween 20 0.05%. La reacción se reveló con la adición de 1 mg/mL de sustrato (p-nitrofenilfosfato) en tampón dietanolamina, pH 9.8. La absorbancia a 405 nm fue medida en un lector de ELISA a los 30 min. El 100% de los ratones inmunizados con la composición vacunal de la invención desarrolló una respuesta de anticuerpos específicos contra el ECD-EGF-Rm, que aumentó durante el curso de las inmunizaciones, llegando a alcanzar títulos de hasta 1/160000, mientras que los sueros preinmunes no reconocieron al ECD-EGF- Rm. El isotipo de la respuesta de anticuerpos desarrollada fue fundamentalmente de tipo IgG.
La distribución de subclases de la respuesta de anticuerpos inducida fue determinada por ELISA. El 20.21% de los anticuerpos fue lgG2a, un 36.03% lgG1 y un 38.93% fue lgG2b, apreciándose un corrimiento hacia el patrón de respuesta Th1 respecto al grupo de referencia (Figura 1 ).
A pesar de que la presente composición vacunal se compara con una composición en la que el ECD-EGF-Rm está acoplado químicamente a KLH, y en donde se emplea como adyuvante el ACF, los títulos de anticuerpos inducidos por la preparación son superiores, y la distribución de subclases tiende más a un patrón Th1 , resultando favorable para la eficacia de dicha vacuna.
Los ratones inmunizados con ECD-EGF-RmΛ/SSP-GM3/AIF no presentaron signos de toxicidad clínica, y las pruebas bioquímicas realizadas a los sueros de dichos animales no mostraron diferencias con las realizadas a los sueros de animales no inmunizados (Tabla 1).
Tabla 1
Figure imgf000020_0001
Grupo I - Animales inmunizados con ECD-EGF-Rm/KLH/ACF y AIF Grupo II - Animales inmunizados con ECD-EGF-Rm/VSSP-GM3/Montanide-ISA 51 Ejemplo 6. Reconocimiento de los sueros de ratones inmunizados con el DEC-HER-1/VSSP-GM3/AIF a células que expresan el EGF-R humano.
Células de la línea A431 (10000 células / pozo) que expresan el receptor del factor de crecimiento epidérmico humano fueron incubadas con suero preinmune de ratones C57BL/6 diluidos 1/5 (A), anticuerpo monoclonal ior egf-r3 contra el EGF-R como control positivo a una concentración de 10 μg/mL (B) y suero de ratones C57BL/6 inmunizados diluidos 1/5 (C), durante 30 minutos a temperatura ambiente. El exceso de anticuerpos no unido al receptor o unido de forma inespecífica fue removido realizando lavados con solución de fosfato tamponada/suero de ternera 0.5%. Para la inmunodetección las células fueron incubadas con un segundo anticuerpo anti-ratón conjugado a isotiocianato de fluoresceína diluido 1/50, 30 minutos a temperatura ambiente. La intensidad de la fluorescencia fue medida en un citómetro de flujo (FACS). El suero de los ratones inmunizados con el preparado vacunal reconocieron las células que expresan el EGF-R, con intensidades comparables a las del control positivo del experimento, a diferencia de los sueros preinmunes de los mismos animales (Figura 2).
Ejemplo 7. Actividad citolítica de los sueros de ratones inmunizados con DEC-HER-1 VSSP-GM3/AIF
Células de la línea A431 (3x106 células) fueron incubadas con cromato de sodio radioactivo 51Cr durante 1h, y el exceso de sales radiactivas fue eliminado mediante tres lavados con medio de cultivo. Las células cargadas con 51Cr fueron incubadas con: i) 50 μg/mL del anticuerpo monoclonal ior-t3 (AcM contra el CD3, como control negativo) ii) 50 μg/mL del anticuerpo monoclonal ior egf-r3 (AcM contra el EGF-R como control positivo) iii) suero preinmune de ratones C57BL/6 diluidos 1/20 iv) suero de ratones C57BL/6 inmunizados con ECD-HER-1/VSSP-GM3/AIF diluidos 1/20
Después de 1 hora de incubación a 37°C, se añadieron 40 μL de complemento de conejo dejándose en incubación a 37°C. Posteriormente se centrifugaron los tubos y 100 μL del sobrenadante se utilizaron para medir en un contador gamma de radiactividad la liberación de 51Cr, como una medida de la lisis celular ocurrida mediada por los anticuerpos y el complemento. La incorporación total se midió mediante lisis total con detergente.
Los sueros de los ratones inmunizados con el preparado vacunal referido usaron el 80 % de las células A431 que expresan el EGF-R, a diferencia de los sueros preinmunes de dichos ratones que solo alcanzaron a lisar un 35 % (Figura 3).
Ejemplo 8. Capacidad neutralizante de los sueros de ratones inmunizados con
DEC-HER-1/VSSP-GM3/AIF.
Los sueros de ratones inmunizados con el preparado vacunal referido en la patente fueron ensayados para su capacidad de inhibir la unión del EGF a su receptor en la membrana de las células A431. Para ello, las células A431 fueron crecidas en placas de cultivo hasta la confluencia. Una vez confluentes, fue añadido un pool de suero inmune a diferentes diluciones (1/5, 1/10, 1/20, 1/40) y a continuación se añadió EGF-125I a razón de 100000 cpm/pozo. El volumen de cada pozo fue completado hasta 500 μL de PBS/BSA 1 % en cada pozo. Las placas se incubaron a temperatura ambiente durante 1 hora y pasado este tiempo la reacción fue detenida añadiendo 2 mL de PBS/BSA 1% frío. Posteriormente se desechó el líquido de cada uno de los pozos, y después de un lavado suave con PBS/BSA 1%, se añadieron a los pozos 300 μL de NaOH 2M. Después de 30 minutos a temperatura ambiente, se recogieron 200 μL de cada uno de los pozos, y se leyeron en un contador de radiaciones gamma.
El pool de sueros inmunes mostró una inhibición de la unión del EGF-125I a su receptor en la membrana de las células A 431. Esta inhibición fue dependiente de la dilución del suero (Figura 4).
Ejemplo 9. Sobrevida de los ratones inmunizados con DEC-HER-1/VSSP-
GM3/AIF.
Ratones de la línea C57/BL6, inmunizados con ECD-EGF-RmVSSP-GM3/AIF (tres dosis de 50 μg cada quince días por vía intramuscular), se trasplantaron con 100000 células de Lewis por vía intramuscular y fueron observados para determinar el tiempo de sobrevida. Las células de Lewis son derivadas de un adenocarcinoma de pulmón de origen murino que expresan el EGF-R. La sobrevida de estos ratones se comparó con la de un grupo inmunizado con ECD-EGF-Rm/ACF (tres dosis de 50 μ g cada quince días por vía subcutánea). Los ratones inmunizados con el preparado vacunal ECD-EGF-Rm/VSSP-GM3/AIF tuvieron una sobrevida significativamente superior (p<0.05) que los ratones del grupo de referencia (Figura 5). Ejemplo 10. Obtención de una composición vacunal que contiene al anticuerpo monoclonal quimérico P3 (AcMq P3), VSSP(GM3) y AIF. Los proteoliposomas derivados del complejo de proteínas de la membrana externa de Neisseria meningitidis incluyendo el gangliósido GM3 [VSSP(GM3)j, fueron obtenidos según se refiere en la patente cubana 130/97 y en la patente USA 6,149,921. Los VSSP(GM3) se conservaron a concentración de 4,8 mg/mL en solución Tris/HCI pH 8.9 y a una temperatura de 4° C, hasta su utilización. Para preparar el inmunógeno, se mezcló una solución conteniendo 2 mg/mL del AcM quimérico P3 (Patente No. US 5,817,513) en solución tampón de fosfato salina con el preparado VSSP(GM3) en una proporción 1/1 (v/v). El proceso de mezclado se realizó por agitación magnética a temperatura ambiente durante 15 min. Posteriormente se añadió el AIF en una proporción 1/1 (v/v). La mezcla se agitó a temperatura ambiente durante 15 minutos, hasta lograr la emulsión. En otra forma de proceder igualmente conveniente se mezcló una solución conteniendo 2 mg/mL del AcMq P3 en solución tampón de fosfato salina con el preparado VSSP(GM3)en una proporción 1/1 (v/v). El proceso de mezclado se realizó por agitación magnética a temperatura ambiente durante 15 min. y la solución resultante se esterilizó por filtración a través de membranas de acetato de celulosa de 0,2 μm. Después de un proceso de dosificación, envasado y sellado el preparado se conservó a 4°C por un período de hasta un año. Justo antes de la administración al hospedero se añadió la preparación al AIF en una proporción 1/1 (v/v) y se realizó la emulsificación por agitación a temperatura ambiente durante 15 minutos.
Ejemplo 11. Obtención de una composición vacunal que contiene un péptido de la región variable de la cadena pesada del AcMq P3 (CDR3/VH-P3) y VSSP(GM3).
Los proteoliposomas derivados del complejo de proteínas de la membrana externa de Neisseria meningitidis incluyendo el gangliósido GM3 [VSSP(GM3)], fueron obtenidos según se refiere en la patente cubana 130/97 y en la patente USA 6,149,921. Los VSSP(GM3) se conservaron a concentración de 4,8 mg/mL en solución Tris/HCI pH 8.9 y a una temperatura de 4° C, hasta su utilización.
En el momento de aplicarlo al hospedero, el inmunógeno se preparó primeramente disolviendo péptido del CDR3 VH-P3 liofilizado en solución tampón de fosfato salina hasta lograr una concentración de 4 mg/mL. Posteriormente se mezcló con el preparado VSSP(GM3)en una proporción 1/1 (v/v). El proceso de mezclado se realizó por agitación magnética a temperatura ambiente durante 15 min.
En otra forma de proceder igualmente conveniente primeramente se disolvió péptido del CDR3 VH-P3 liofilizado en solución tampón de fosfato salina hasta lograr una concentración de 4 mg/mL. Posteriormente se mezcló con el preparado VSSP(GM3)en una proporción 1/1 (v/v). El proceso de mezclado se realizó por agitación magnética a temperatura ambiente durante 15 min. y la solución resultante se esterilizó por filtración a través de membranas de acetato de celulosa de 0,2 μm. Después de un proceso de dosificación, envasado y sellado el preparado se conservó a 4°C por un período de hasta un año. Ejemplo 12. Obtención de una composición vacunal que contiene un oncolisado de melanoma B16, VSSP(GM3) y AIF.
Los proteoliposomas derivados del complejo de proteínas de la membrana externa de Neisseria meningitidis incluyendo el gangliósido GM3 [VSSP(GM3)], fueron obtenidos según se refiere en la patente cubana 130/97 y en la patente USA 6,149,921. Los VSSP(GM3) se conservaron a concentración de 2,4 mg/mL en solución Tris/HCI pH 8.9 y a una temperatura de 4° C, hasta su utilización. Para preparar el inmunógeno, una suspensión de células de la línea de melanoma murino B16 (50x106 células/mL) se sometió a 5 ciclos de congelación / descongelación, alternando incubaciones en baños de nitrógeno líquido y en baños de H2O destilada a 37°C. El lisado celular resultante se centrifugó a 500 x g durante 10 minutos. El pellet resultante se resuspendió en VSSP(GM3) garantizando una proporción de pellet celular correspondiente a 10 x 106 células por cada 2,4 mg de GM3 en VSSP. La mezcla se agitó durante 10 minutos a temperatura ambiente. Seguidamente se añadió la preparación al AIF en una proporción 1/1 (v/v). La mezcla se agitó a temperatura ambiente aproximadamente durante 15 minutos, hasta lograr la emulsión.
Ejemplo 13. Obtención de una composición vacunal que contiene células de melanoma B16, VSSP(GM3) y AlF. Los proteoliposomas derivados del complejo de proteínas de la membrana externa de Neisseria meningitidis incluyendo el gangliósido GM3 [VSSP(GM3)], fueron obtenidos según se refiere en la patente cubana 130/97 y en la patente USA 6,149,921. Los VSSP(GM3) se conservaron a concentración de 2,4 mg/mL en solución Tris/HCI pH 8.9 y a una temperatura de 4° C, hasta su utilización. Para preparar el inmunógeno, una suspensión de células de la línea de melanoma murino B16 (50 x 106 células/mL) se centrifugó a 300 x g durante 10 minutos. El pellet de células se resuspendió con el VSSPÍGM3) garantizando una proporción de 10 x 106 células por cada 2,4 mg de GM3 en VSSP. La mezcla se agitó durante 10 minutos a temperatura ambiente. Seguidamente se añadió la preparación al AlF en una proporción 1/1 (v/v). La mezcla se agitó a temperatura ambiente aproximadamente durante 15 minutos, hasta lograr la emulsión. Ejemplo 14. Obtención de una composición vacunal que contiene un plasmidio con el gen que codifica para el dominio extracelular del receptor de EGF humano (ECD-HER1), VSSP(GM3) y AlF.
Los proteoliposomas derivados del complejo de proteínas de la membrana externa de Neisseria meningitidis incluyendo el gangliósido GM3 [VSSP(GM3)], fueron obtenidos según se refiere en la patente cubana 130/97 y en la patente USA 6,149,921. Los VSSP(GM3) se conservaron a concentración de 4,8 mg/mL en solución Tris/HCI pH 8.9 y a una temperatura de 4° C, hasta su utilización. El vector para insertar el ADN de interés fue el plasmidio de expresión en mamíferos pcDNA3, que contiene el origen de replicación de SV40 y el promotor inmediato temprano de citomegalovirus humano (pCMVIT). En este plasmidio se insertó el gen que codifica para el dominio extracelular del receptor de EGF humano (ECD-HER1 ). El plasmidio resultante (ECD-HER1/pcDNA3) fue utilizado en la preparación del inmunógeno. Para preparar el inmunógeno, la solución del plasmidio ECD-HER1/pcDNA3 se ajustó a una concentración de 2 mg/mL en solución tampón de fosfato salina. Posteriormente se mezcló con el preparado VSSP(GM3) en una proporción 1/1 (v/v). La mezcla se realizó por agitación a temperatura ambiente durante 5 min. Seguidamente la preparación se añadió al AlF en una proporción 1/1 (v/v). La mezcla se agitó a temperatura ambiente aproximadamente durante 15 minutos, hasta lograr la emulsión.
Ejemplo 15. Inducción in vitro de maduración de células dendríticas por el preparado VSSP(GM3). Las células dendríticas humanas se obtuvieron a partir de monocitos aislados de sangre periférica que fueron cultivados, durante 7 días, en presencia de GM-CSF humano recombinante (hr) (50 ng/ml) y hr-IL4 (1000 U/ml). Al 7mo día las células dendríticas obtenidas fueron expuestas o no, durante 18 horas, a los VSSP(GM3) (1 μg/mL). Como referencias las células dendríticas se incubaron con 0,1 μg/mL de LPS purificado a partir de la cepa 44/76 de Neisseria meningitidis o con MPLA (Sigma). El fenotipo de cada preparación se analizó por citometría de flujo.
Como se muestra en la Tabla 2, el tratamiento con VSSP(GM3) provocó un aumento en la expresión de CD11c y cambios considerables en el marcador de maduración de las DC CD83. Se observó un aumento en los niveles de expresión de la molécula HLA-DR. Los VSSP(GM3) indujeron un incremento en el número de células que expresan la molécula CD86. VSSP(GM3) y LPS mostraron igual capacidad de inducir maduración en las DC tratadas. En cambio la variante detoxificada del LPS, MPLA se mostró inferior. Tabla 2. Efecto de distintos preparados sobre la maduración de DC humanas.
Figure imgf000026_0001
Datos: medias de intensidad de fluorescencia de las mediciones de FACS Ejemplo 16. Inducción de respuesta inmune humoral específica al AcMq P3 asociada a la administración de la composición vacunal.
Ratones de la línea C57BL/6 se inmunizaron con la composición vacunal referida en el Ejemplo 10. Se inocularon 50 μg del monoclonal quimérico en cada inyección, aplicándose 2 dosis (una cada 14 días) por vía intramuscular. 21 días después de la primera inmunización se tomaron muestras de suero. Como referencia se usó un grupo de ratones de la misma cepa inmunizados del mismo modo con el AcMq P3 adyuvado en AlF o Alúmina. Los sueros obtenidos fueron ensayados por ELISA para determinar la presencia de anticuerpos anti-AcMq P3.
El 100% de los ratones inmunizados con la composición vacunal descrita en la presente invención desarrollaron niveles de anticuerpos IgG específicos contra el AcMq P3, superiores a los de los grupos de referencia. (Tabla 3).
Tabla 3. Respuesta de anticuerpos inducida contra el AcMq P3 en ratones C57BL/6 inmunizados con distintas formulaciones
Figure imgf000026_0002
Ejemplo 17. Inducción de respuesta celular proliferativa específica al péptido CDR3/VH-P3 asociada a la administración de la composición vacunal.
Ratones de la línea C57BL/6 se inmunizaron con la composición vacunal descrita en el Ejemplo 11. Se inocularon 100 μg del péptido en cada inyección, aplicándose 4 dosis (una cada 14 días) por vía intramuscular. Como referencia se usó un grupo de ratones de la misma cepa inmunizados del mismo modo con el péptido CDR3/VH- P3 adyuvado en AlF o Alúmina. 7 días después de la última dosis se extrajeron los ganglios linfáticos inguinales de los animales y se aislaron los linfocitos por perfusión del órgano. Los linfocitos se cultivaron por 96 horas con el péptido CDR3Λ/H-P3 (50 μg/mL). Durante las últimas 18 horas de cultivo, las células recibieron 1 μCi de timidina tritiada (Amersham, Reino Unido) y posteriormente fueron cosechadas y las emisiones β (cpm) detectadas en un contador de centelleo (LKB Wallac, Finlandia). Los niveles de proliferación celular se analizaron como índice de Estimulación (IE). Los resultados obtenidos en este ensayo se muestran en la Tabla 4. Tabla 4. Respuesta linfoproliferativa inducida contra el péptido CDR3Λ/H-P3 en ratones C57BL/6 inmunizados con distintas formulaciones
Figure imgf000027_0001
Datos: Valores de índice de estimulación
Notoriamente solo el péptido contenido en la formulación con VSSP(GM3) fue capaz de inducir proliferación antígeno especifica. Ejemplo 18. Inducción de respuesta celular citotóxica específica al ECD- mEGFR asociada a la administración de la composición vacunal que contiene
FPV recombinante ECD-mEGFR/FPV, VSSP(GM3) y AlF.
Los proteoliposomas derivados del complejo de proteínas de la membrana externa de Neisseria meningitidis incluyendo el gangliósido GM3 [VSSP(GM3)], fueron obtenidos según se refiere en la patente cubana 130/97 y en la patente USA
6,149,921. Los VSSP(GM3) se conservaron a concentración de 2,4 mg/mL en solución Tris/HCI pH 8.9 y a una temperatura de 4° C, hasta su utilización.
El vector viral para insertar el ADN de interés fue el Virus de Viruela Aviar (FPV). El gen que codifica para el dominio extracelular del receptor de EGF murino (ECD- mEGFR) fue insertado en el FPV por recombinación homologa. La solución del vector recombinante ECD-mEGFR/FPV se ajustó a una concentración de 108 pfu/mL.
En paralelo se preparó la emulsión de VSSP(GM3)añadiendo la solución del vehículo al AlF en una proporción 1/1 (v/v). La mezcla se agitó a temperatura ambiente aproximadamente durante 15 minutos.
Seguidamente se procedió a inmunizar ratones Balb/c con 200 μL de la solución de ECD-mEGFR/FPV por vía intraperitoneal y con 100 μL de VSSP(GM3)/AIF por vía intramuscular, consecutivamente. Como control fue utilizado un grupo de ratones a los que se les administró el ECD-mEGFR/FPV y solución tampón con fosfato salina (STFS). Se administraron 2 dosis bisemanales y 21 días después de iniciado el experimento los ratones se sacrificaron para obtener las correspondientes células esplénicas. De los esplenocitos se aislaron las células T CD8+ utilizando la tecnología de las perlas magnéticas. Estas células T se estimularon durante 5 días con células dendríticas derivadas de médula ósea (bmDC), previamente pulsadas con el péptido inmunodominante del ECD-mEGFR 'NYGTNRTGL' , en una proporción 10:1 (T:bmDC) y en presencia de IL-2 (50 u/mL). Al finalizar la estimulación se realizó un experimento de citotoxicidad donde se determinó la liberación de Cr51 al enfrentar diferentes cantidades de estas células a la línea P815 pulsada con el péptido 'NYGTNRTGL' (Tabla 5).
Tabla 5. Respuesta celular citotóxica específica al ECD-mEGFR
Figure imgf000028_0001
inducción de células T citotóxicas que tiene el FPV.
Ejemplo 19: Propiedades Inmunorestauradoras del vehículo vacunal VSSP. El vehículo vacunal VSSP, descrito en esta invención, se administró por vía intra muscular (i. m.) a pacientes de melanoma metastásico en el marco de un Ensayo Clínico de Fase 1. Los pacientes recibieron 9 dosis (200 μg de NGcGM3 en VSSP)en el lapso de 6 meses. Las 5 primeras dosis se administraron en los primeros 2 meses y las 4 restantes se dieron mensualmente. Se extrajo sangre de los pacientes el día 0 (antes de administrar la primera dosis) y el día 56 (quinta dosis). Paralelamente se tomó sangre de 8 voluntarios sanos. De estas muestras se obtuvieron las correspondientes células mononucleares periféricas (CMP) por el método de gradiente de Ficoll y se determinaron por citometría de flujo los % de células CD3+, CD4+ y CD8+. Como se muestra en la Tabla 6, la expresión relativa de los marcadores de células T CD3, CD4 y CD8, provenientes de las CMP de los 3 pacientes tomados para ejemplificar, es inferior a la media de la expresión de los donantes sanos en el día 0.
Tabla 6. Expresión relativa de los marcadores de células T provenientes de las CMP de pacientes de melanoma y controles sanos. Efecto de VSSP(NGcGM3) en la normalización de los marcadores.
Figure imgf000029_0001
Notoriamente los niveles relativos de expresión de marcadores de células T CD3,
CD4 y CD8 en las CMP de los mismos pacientes se normalizaron para el día 56 o sea después de haber recibido 4 inyecciones de VSSP(NGcGM3).
Breve descripción de las figuras:
Figura 1. Distribución de subclases de los anticuerpos inducidos a partir de la inmunización con ECD-EGF-Rm/VSSP-GM3/AIF. Sueros de ratones C57BL/6 inmunizados con ECD-EGF-Rm/KLH/ACF (I) o ECD- EGF-Rm/VSSP-GM3/AIF (II) fueron ensayados por ELISA para la determinación de la distribución de subclases de IgG inducida por la inmunización. Figura 2. Reconocimiento de los sueros de ratones inmunizados con el DEC-HER-1Λ/SSP-GM3/AIF a células que expresan el EGF-R.
Células de la línea A431 , fueron incubadas con suero preinmune de ratones C57BL/6 (A), anticuerpo monoclonal ior egf-r3 como control positivo (B) y suero de ratones C57BL/6 inmunizados (C). Para la inmunodetección, un segundo anticuerpo anti-ratón conjugado a un fluoróforo fue utilizado. La intensidad de la fluorescencia fue medida en un citómetro de flujo.
Figura 3. Actividad citolítica de los sueros de ratones inmunizados con ECD-HER-1/
VSSP-GM3/AIF.
Células A431 cargadas con 51Cr fueron incubadas con complemento y: I) Anticuerpo monoclonal ior-t3 (contra el CD3, como control negativo), II) Anticuerpo monoclonal ioEGF-R-r3 (contra el EGF-R, como control positivo), III) suero preinmune de ratones C57B1/6, IV) suero de ratones C57BL/6 inmunizados con ECD-HER- 1/VSSP-GM3/AIF V) Igual número de células que en los puntos anteriores fueron usadas con detergentes como medida de la incorporación total de 51Cr. Los resultados son presentados en % de lisis especificas. Figura 4. Capacidad neutralizante de los sueros de ratones inmunizados con ECD-HER-1/VSSP-GM3/AIF.
Células A 431 fueron incubadas con diluciones 1/5, 1/10, 1/20 y 1/40 de un pool de sueros de ratones inmunizados con ECD-HER-1/VSSP-GM3/AIF o con las mismas diluciones de un pool de sueros preinmunes. EGF-125I (100000 com) fue añadido en cada pozo y la unión total fue medida incubando las células con el EGF125I. Las CPM fueron medidas en un contador de radiaciones gamma. Figura 5. Sobrevida de los ratones inmunizados con el ECD-EGF- Rm/VSSP-GM3/AIF trasplantados con Tumor de Lewis. Ratones de la cepa C57BL/6 inmunizados según se refiere en el ejemplo 9, fueron trasplantados con 100000 células de Tumor de Lewis y observados para medir sobrevida. Como grupo de referencia fueron trasplantados ratones de la misma cepa inmunizados con ECD-EGF-Rm/ACF.

Claims

REIVINDICACIONES
1 . Una composición farmacéutica para potenciar la inmunogenicidad de antígenos poco inmunogénicos, que contiene: (A) uno o más antígenos poco inmunogénicos;
(B) un vehículo vacunal que consiste en proteoliposomas derivados del complejo de proteínas de la membrana externa de una bacteria Gram-negativa (Neisseria meningitidis) los cuales contienen gangliósidos incorporados; y
(C) eventualmente uno o más adyuvantes.
2. Una composición farmacéutica para potenciar la ¡nmunogenicidad de antígenos poco inmunogénicos, según la reivindicación 1 donde los antígenos poco inmunogénicos pueden ser péptidos, o polipéptidos, o proteínas, o sus correspondientes secuencias de ácidos nucleicos, o células blanco de interés vacunal, o sus usados, o la mezcla de ellos.
3. Una composición según la reivindicación 2 donde los antígenos poco inmunogénicos son receptores de factores de crecimiento o sus dominios extracelulares.
4. Una composición según la reivindicación 3 donde los dominios extracelulares de los receptores de factores de crecimiento pueden contener o no la región transmembrana.
5. Una composición según la reivindicaciones 3 y 4 donde los receptores de factores de crecimiento son el HER-1 , HER-2, R-PDGF o cualquiera de sus variantes que contenga el dominio extracelular con y sin región transmembrana.
6. Una composición según reivindicación 1 donde los proteoliposomas del vehículo vacunal se obtienen del complejo de proteínas de la membrana externa de
Neisseria meningitidis, tanto proveniente de una cepa salvaje o de una modificada genéticamente.
7. Una composición según la reivindicación 1 donde los proteoliposomas del vehículo vacunal con gangliósidos incorporados se obtienen mediante la incorporación hidrofóbica de dichos gangliósidos al complejo de proteínas de la membrana externa de Neisseria meningitidis.
8. Una composición según reivindicación 7 donde los gangliósidos que se incorporan hidrofóbicamente al complejo de proteínas de la membrana externa de Neisseria meningitidis son GM1 , GM3 o sus variantes N-glicoliladas.
9. Una composición según reivindicación 1 donde el adyuvante es de naturaleza 5 oleosa o es un polipéptido natural o recombinante.
10. Una composición según reivindicación 9 donde el adyuvante de naturaleza oleosa es el Adyuvante Incompleto de Freund.
11. Una composición según la reivindicación 10, donde el Adyuvante Incompleto de Freund empleado es Montanide ISA 51.
10 12. Una composición según reivindicación 9 donde el adyuvante polipeptídico es una citocina o una quimiocina.
13. Una composición según reivindicación 12 donde la citocina es el factor de estimulación de colonias de granulocitos y macrófagos.
14. Una composición según reivindicaciones de la 1 a la 13 para la prevención y 15 tratamiento del cáncer, particularmente cáncer de próstata, colon, pulmón, mama, ovario, cabeza-cuello, vulva, vejiga, cerebro, gliomas, así como de enfermedades crónicas no trasmisibles.
15. Una composición según las reivindicaciones de la 1 a la 13 para la prevención y tratamiento de enfermedades infecciosas de origen viral y bacteriano. 0
16. Una composición según la reivindicación 14 para el tratamiento del Síndrome de Inmunodeficiencia Adquirida.
17. Una composición según las reivindicaciones de la 1 a la 13 para el tratamiento de enfermedades autoinmunes.
18. Uso de la composición de las reivindicaciones de la 1 a la 17 para la prevención 5 y tratamiento del cáncer, particularmente cáncer de próstata, colon, pulmón, mama, ovario, cabeza-cuello, vulva, vejiga, cerebro, gliomas, así como de enfermedades crónicas no trasmisibles.
19. Uso de la composición de las reivindicaciones de la 1 a la 17 para la prevención y tratamiento de enfermedades infecciosas de origen viral y bacteriano. 0 20. Uso de la composición de las reivindicaciones de la 1 a la 17 para el tratamiento de enfermedades autoinmunes.
PCT/CU2001/000010 2000-12-06 2001-12-06 Composiciones farmaceuticas para potenciar la inmunogenicidad de antigenos poco inmunogenicos WO2002045746A2 (es)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2002547529A JP4210519B2 (ja) 2000-12-06 2001-12-06 低免疫原性抗原の免疫原性を増強する医薬組成物
AU2151902A AU2151902A (en) 2000-12-06 2001-12-06 Pharmaceutical compositions enhancing the immunogenicity of poorly immunogenic antigens
EA200300640A EA005138B1 (ru) 2000-12-06 2001-12-06 Фармацевтические композиции, усиливающие иммуногенность антигенов со слабой иммуногенностью
MXPA03005032A MXPA03005032A (es) 2000-12-06 2001-12-06 Composiciones farmaceuticas para potenciar inmunogenicidad de antigenos poco inmunogenicos.
EP01999387A EP1356822B1 (en) 2000-12-06 2001-12-06 Pharmaceutical compositions enhancing the immunogenicity of poorly immunogenic antigens
AU2002221519A AU2002221519B2 (en) 2000-12-06 2001-12-06 Pharmaceutical compositions enhancing the immunogenicity of poorly immunogenic antigens
AT01999387T ATE485833T1 (de) 2000-12-06 2001-12-06 Pharmazeutische zusammensetzungen, die die immunogenität von schwach immunogenen antigenen fördern
DK01999387.2T DK1356822T3 (da) 2000-12-06 2001-12-06 Farmaceutiske sammensætninger, der forøger immunogeniteten af svagt immunogene antigener
CA2431188A CA2431188C (en) 2000-12-06 2001-12-06 Pharmaceutical compositions enhancing the immunogenicity of poorly immunogenic antigens
DE60143363T DE60143363D1 (de) 2000-12-06 2001-12-06 Pharmazeutische zusammensetzungen, die die immunogenität von schwach immunogenen antigenen fördern
BRPI0116013-3 BRPI0116013B8 (pt) 2000-12-06 2001-12-06 composição farmacêutica para potenciar a imunogenicidade de antígenos pouco imunogênicos, e, uso da composição farmacêutica
KR1020037007634A KR100850473B1 (ko) 2000-12-06 2001-12-06 면역원성이 불량한 항원의 면역원성을 향상시키는 약제조성물
NZ526282A NZ526282A (en) 2000-12-06 2003-06-04 Pharmaceutical compositions enhancing the immunogenicity of poorly immunogenic antigens
HK04106497A HK1063726A1 (en) 2000-12-06 2004-08-30 Pharmaceutical compositions enhancing the immunogenicity of poorly immunogenic antigens

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CU285/2000 2000-12-06
CU20000285A CU23000A1 (es) 2000-12-06 2000-12-06 Composiciones vacunales para la inmunoterapia activa específica del cáncer
CU167/2001 2001-07-12
CU20010167A CU23009A1 (es) 2001-07-12 2001-07-12 Preparaciones para potenciar la inmunogenicidad depreparaciones para potenciar la inmunogenicidad de antígenos poco inmunogénicos antígenos poco inmunogénicos

Publications (2)

Publication Number Publication Date
WO2002045746A2 true WO2002045746A2 (es) 2002-06-13
WO2002045746A3 WO2002045746A3 (es) 2002-12-27

Family

ID=38812545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2001/000010 WO2002045746A2 (es) 2000-12-06 2001-12-06 Composiciones farmaceuticas para potenciar la inmunogenicidad de antigenos poco inmunogenicos

Country Status (20)

Country Link
US (1) US7776342B2 (es)
EP (1) EP1356822B1 (es)
JP (1) JP4210519B2 (es)
KR (1) KR100850473B1 (es)
CN (1) CN1291755C (es)
AR (1) AR031638A1 (es)
AT (1) ATE485833T1 (es)
AU (2) AU2151902A (es)
BR (1) BRPI0116013B8 (es)
CA (1) CA2431188C (es)
DE (1) DE60143363D1 (es)
DK (1) DK1356822T3 (es)
EA (1) EA005138B1 (es)
HK (1) HK1063726A1 (es)
MX (1) MXPA03005032A (es)
NZ (1) NZ526282A (es)
PE (1) PE20020572A1 (es)
UY (1) UY27059A1 (es)
WO (1) WO2002045746A2 (es)
ZA (1) ZA200304411B (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005032585A1 (es) * 2003-10-09 2005-04-14 Centro De Ingenieria Genetica Y Biotecnologia Composiciones farmacéuticas que contienen antígenos del virus de papiloma humano
WO2015014327A1 (es) * 2013-08-02 2015-02-05 Centro De Inmunología Molecular Composiciones vacunales bivalentes y su uso para la terapia de tumores

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367395A1 (de) * 2002-05-02 2003-12-03 B.R.A.H.M.S Aktiengesellschaft Diagnose von Neoplasmen mit Hilfe von anti-Gangliosid-Antikörpern
EP1358910A1 (de) * 2002-05-02 2003-11-05 B.R.A.H.M.S Aktiengesellschaft Verfahren und Mittel zur Prävention, Hemmung und Therapie von Krebserkrankungen
CU23257A1 (es) * 2003-02-27 2008-01-24 Centro Inmunologia Molecular COMPOSICIONES VACUNALES A BASE DE GANGLIOSIDOS PARA LA ADMINISTRACION SUBCUTáNEA
US8147840B2 (en) * 2004-05-14 2012-04-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human immunodeficiency virus (HIV) immunization strategies employing conformationally-stabilized, surface-occluded peptides comprising a gp41 2F5 epitope in association with lipid
WO2010003219A1 (en) * 2008-06-17 2010-01-14 Universite Laval Compositions comprising salmonella porins and uses thereof as adjuvants and vaccines
KR101940826B1 (ko) * 2010-12-22 2019-01-21 바이엘 인텔렉쳐 프로퍼티 게엠베하 소종 동물에서의 증대된 면역 반응
KR101323845B1 (ko) * 2011-01-21 2013-10-31 광주과학기술원 외막소포체를 유효성분으로 포함하는 항암용 약제학적 조성물
CU24070B1 (es) * 2011-12-27 2015-01-29 Ct De Inmunología Molecular Composiciones farmacéuticas para el tratamiento de tumores que expresan regf y gangliósidos n-glicolilados gm3 (neugcgm3)
RU2747857C2 (ru) * 2013-03-15 2021-05-17 Ин3Био Лтд. Самособирающиеся синтетические белки
US10105306B2 (en) * 2013-09-17 2018-10-23 Bestop Group Holdings Limited Method of preparing a growth factor concentrate
HK1194912A2 (en) * 2013-09-17 2014-10-24 Bestop Group Holdings Ltd Growth factor concentrate and the use thereof
JP6609565B2 (ja) * 2014-03-11 2019-11-20 ユニヴェルシテ デクス−マルセイユ 細胞膜ガングリオシドと相互作用するキメラペプチド
EP3597214A1 (en) 2017-03-15 2020-01-22 Centro de Inmunologia Molecular Method for the treatment of patients with carcinomas
WO2019067673A1 (en) * 2017-09-27 2019-04-04 L2 Diagnostics, Llc ERBB PEPTIDE-BASED PHARMACEUTICAL AND VACCINE COMPOSITIONS AND THEIR THERAPEUTIC USES FOR THE TREATMENT OF CANCER
CU24534B1 (es) * 2017-11-06 2021-07-02 Ct Inmunologia Molecular Adyuvantes nano-particulados que contienen variantes sintéticas del gangliósido gm3
CU20170173A7 (es) * 2017-12-27 2019-11-04 Ct Inmunologia Molecular Nano-partículas que contienen el gangliósido gm3 como inmunomoduladoras
CN109865137A (zh) * 2019-01-23 2019-06-11 天德悦(北京)生物科技有限责任公司 经碘代乙酰基活化的琼脂糖微球在提高多肽或蛋白类免疫原免疫原性中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0283443A2 (en) * 1987-02-18 1988-09-21 Istituto Farmacoterapico Italiano S.P.A. Process for extracting membrane antigens having immunogenic properties from human neoplastic cells and products thereby obtained
EP0657471A1 (en) * 1993-12-09 1995-06-14 Centro de Inmunologia Molecular Anti ganglioside monoclonal antibodies and their use in the specific active immunotherapy of malignant tumours
WO1999036085A1 (en) * 1998-01-16 1999-07-22 Biomira Usa Inc. Patient-specific white blood cell malignancy vaccine from membrane-proteoliposomes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857637A (en) * 1986-05-07 1989-08-15 Genentech, Inc. Methods and compositions for immunologically modulating growth hormone receptor activity
US5726292A (en) * 1987-06-23 1998-03-10 Lowell; George H. Immuno-potentiating systems for preparation of immunogenic materials
EP0651656A1 (en) 1992-07-08 1995-05-10 Schering Corporation Use of gm-csf as a vaccine adjuvant
US6149921A (en) * 1993-12-29 2000-11-21 Centro De Inmunologia Molecular Vaccine compositions for eliciting an immune response against N-acetylated gangliosides and their use for cancer treatment
CU22420A1 (es) 1993-12-29 1996-01-31 Centro Inmunologia Molecular Composicion vacunal para el desarrollo de una respuesta contra gangliosidos n glicolilados y su uso para el tratamiento del cancer
US5880141A (en) 1995-06-07 1999-03-09 Sugen, Inc. Benzylidene-Z-indoline compounds for the treatment of disease

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0283443A2 (en) * 1987-02-18 1988-09-21 Istituto Farmacoterapico Italiano S.P.A. Process for extracting membrane antigens having immunogenic properties from human neoplastic cells and products thereby obtained
EP0657471A1 (en) * 1993-12-09 1995-06-14 Centro de Inmunologia Molecular Anti ganglioside monoclonal antibodies and their use in the specific active immunotherapy of malignant tumours
WO1999036085A1 (en) * 1998-01-16 1999-07-22 Biomira Usa Inc. Patient-specific white blood cell malignancy vaccine from membrane-proteoliposomes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FRANCISCO ESTEVEZ ET AL.: "Enhancement of the Immune Response to Poorly Immunogenic Glangliosides after Incorporation into Very Small Size Proteotipo somer (USSP)" VACCINE, vol. 18 (2000), páginas 190-197, XP002195653 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005032585A1 (es) * 2003-10-09 2005-04-14 Centro De Ingenieria Genetica Y Biotecnologia Composiciones farmacéuticas que contienen antígenos del virus de papiloma humano
WO2015014327A1 (es) * 2013-08-02 2015-02-05 Centro De Inmunología Molecular Composiciones vacunales bivalentes y su uso para la terapia de tumores
AU2014298978B2 (en) * 2013-08-02 2019-05-23 Centro De Inmunologia Molecular Divalent vaccine compositions and the use thereof for treating tumours
EA034194B1 (ru) * 2013-08-02 2020-01-16 Сентро Де Инмунологиа Молекулар Вакцинная композиция и ее применение для лечения злокачественных опухолей

Also Published As

Publication number Publication date
CN1291755C (zh) 2006-12-27
EP1356822B1 (en) 2010-10-27
JP2004523494A (ja) 2004-08-05
KR100850473B1 (ko) 2008-08-07
ATE485833T1 (de) 2010-11-15
BR0116013A (pt) 2004-01-06
DE60143363D1 (de) 2010-12-09
UY27059A1 (es) 2002-04-26
HK1063726A1 (en) 2005-01-14
BRPI0116013B8 (pt) 2021-05-25
NZ526282A (en) 2005-01-28
ZA200304411B (en) 2004-07-29
AR031638A1 (es) 2003-09-24
KR20030061838A (ko) 2003-07-22
EA005138B1 (ru) 2004-12-30
CN1484532A (zh) 2004-03-24
CA2431188C (en) 2010-09-07
PE20020572A1 (es) 2002-07-31
AU2151902A (en) 2002-06-18
MXPA03005032A (es) 2004-09-10
AU2002221519B2 (en) 2006-11-23
DK1356822T3 (da) 2011-02-07
US20020136735A1 (en) 2002-09-26
CA2431188A1 (en) 2002-06-13
WO2002045746A3 (es) 2002-12-27
BRPI0116013B1 (pt) 2018-07-24
EP1356822A2 (en) 2003-10-29
JP4210519B2 (ja) 2009-01-21
US7776342B2 (en) 2010-08-17
EA200300640A1 (ru) 2003-12-25

Similar Documents

Publication Publication Date Title
WO2002045746A2 (es) Composiciones farmaceuticas para potenciar la inmunogenicidad de antigenos poco inmunogenicos
US7794729B2 (en) Methods and compositions for immunotherapy of cancer
JP4713638B2 (ja) ナチュラルキラーt細胞のリガンドと抗原を積載したb細胞を媒介とするワクチン
ES2262242T3 (es) Uso de ligandos de mhc de clase ii como adyuvantes para la vacunacion y lag-3 en el tratamiento del cancer.
KR20120098919A (ko) 암의 치료제
JP2004523494A6 (ja) 低免疫原性抗原の免疫原性を増強する医薬組成物
ES2398492T3 (es) Proteínas de fusión que comprenden los antígenos de rechazo tumoral NY-ESO-1 y LAGE-1
US11077177B2 (en) Universal cancer vaccine
ES2286104T3 (es) Vacuna contra tumores especificos del riñon dirigida contra el antigeno g-250 del tumor de riñon.
Livingston Active specific immunotherapy in the treatment of patients with cancer
CN111295200A (zh) 作为疫苗中的佐剂的包含合成的神经节苷脂gm3变体的纳米颗粒
US8003093B2 (en) B cell-based vaccine loaded with the ligand of natural killer T cell and antigen
ES2353857T3 (es) Composiciones farmacéuticas que mejoran la inmunogenicidad de antígenos poco inmunogénicos.
JP4223813B2 (ja) 免疫増強特性を有するムチンペプチド
Kinzler et al. Cancer vaccines
WO2015130488A2 (en) Mhc class i associated peptides for prevention and treatment of hepatitis b virus infection
WO2022083805A1 (es) Antígeno quimérico que comprende el dominio extracelular de pd-l1
CN113318225A (zh) 肿瘤免疫增强剂及其制法和应用
RU2420311C2 (ru) Вакцина на основе в-клеток, нагруженных лигандом т-клеток-природных киллеров и антигеном
COCHLOVIUS et al. N. 3 Expression of mutated p21 Ras-~ ptides in transfected EBV-Iymphoblasts elicit a strong specific en-response in an autologous
Chen Novel cancer vaccines
JP2011102320A (ja) ナチュラルキラーt細胞のリガンドと抗原を積載したb細胞を媒介とするワクチン
Hiroshi et al. A Novel Hydrophobized Polysaccharide/Oncoprotein Complex Vaccine for Her2 Gene Expressing Cancer
Zhang LAH4: A novel cell-penetrating peptide for application in tumor immunotherapy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 526282

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2003/04411

Country of ref document: ZA

Ref document number: 200304411

Country of ref document: ZA

Ref document number: PA/a/2003/005032

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2002547529

Country of ref document: JP

Ref document number: 2431188

Country of ref document: CA

Ref document number: 03048137

Country of ref document: CO

Ref document number: 887/DELNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020037007634

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018215602

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 200300640

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2001999387

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002221519

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020037007634

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2001999387

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 526282

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 526282

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 2002221519

Country of ref document: AU