WO2002042801A2 - Systeme et procede permettant de transferer une quantite d'informations beaucoup plus importante dans des cables a fibres optiques en augmentant sensiblement le nombre de fibres par cable - Google Patents

Systeme et procede permettant de transferer une quantite d'informations beaucoup plus importante dans des cables a fibres optiques en augmentant sensiblement le nombre de fibres par cable Download PDF

Info

Publication number
WO2002042801A2
WO2002042801A2 PCT/IL2001/001075 IL0101075W WO0242801A2 WO 2002042801 A2 WO2002042801 A2 WO 2002042801A2 IL 0101075 W IL0101075 W IL 0101075W WO 0242801 A2 WO0242801 A2 WO 0242801A2
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
pipe
fiber
flat
cable
Prior art date
Application number
PCT/IL2001/001075
Other languages
English (en)
Other versions
WO2002042801A9 (fr
WO2002042801A3 (fr
Inventor
Yaron Mayer
Al J. C. Baur
Boris Dechovich
Original Assignee
Yaron Mayer
Baur Al J C
Boris Dechovich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from IL13981000A external-priority patent/IL139810A0/xx
Application filed by Yaron Mayer, Baur Al J C, Boris Dechovich filed Critical Yaron Mayer
Priority to GB0301155A priority Critical patent/GB2379519B/en
Priority to CA002428128A priority patent/CA2428128A1/fr
Priority to AU2002220998A priority patent/AU2002220998A1/en
Publication of WO2002042801A2 publication Critical patent/WO2002042801A2/fr
Publication of WO2002042801A3 publication Critical patent/WO2002042801A3/fr
Priority to US10/307,422 priority patent/US20030174977A1/en
Publication of WO2002042801A9 publication Critical patent/WO2002042801A9/fr
Priority to US11/162,105 priority patent/US20070047885A1/en
Priority to US12/039,867 priority patent/US7899290B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles
    • G02B6/4411Matrix structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2852Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using tapping light guides arranged sidewardly, e.g. in a non-parallel relationship with respect to the bus light guides (light extraction or launching through cladding, with or without surface discontinuities, bent structures)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/421Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical component consisting of a short length of fibre, e.g. fibre stub
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4427Pressure resistant cables, e.g. undersea cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094019Side pumped fibre, whereby pump light is coupled laterally into the fibre via an optical component like a prism, or a grating, or via V-groove coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements

Definitions

  • the present invention relates to broadband information transfer through optic fibers, and more specifically to a System and method for transferring much more information in optic fiber cables by significantly increasing the number of fibers per cable.
  • Another solution is to hook up all of the fibers to an array of numbered sensors connected to a computer at each end of the cable and then let the two computers communicate and start testing automatically serially each fiber by sending a signal through it from one computer and registering on which sensor it came out at the other end.
  • the two computers can very quickly create a translation table that documents which element on each side corresponds to which element on the other side, but this is much less efficient.
  • a much better solution is to use multi-fiber flat jackets, as explained below (it is also possible to mark for example by separate colors or lines subsections on the jacket). Of course, various combinations of these solutions are also possible.
  • Another solution is to use for example a water-proof protective shield of smaller external diameter so that much more cable can fit on each wheel, and then preferably add dynamically an external stronger shield which comes open and can be externally added to the cable from around it and be sealed automatically during the process of laying the cable.
  • Another solution is to use multi-fiber flat jackets with delta-type connectors that connect by pressure or by welding, as explained below. Of course, various combinations of these solutions are also possible.
  • the fibers can stay relatively close to each other, but avoid contact, since the closer they get, their repulsion increases).
  • thinner fibers so that for example, if we use 1 micron fibers instead of 10 micron fibers, they will have more room to move around the inner space of the pipe (however, this would require, of course, using shorter wavelengths for the signals, as explained below).
  • a flat cable so that for example we have a cable 20 centimeters or even 1 meters wide and for example 2 millimeters high (internally), and the fibers are lying relatively flat or completely flat across the width of the cable. Of course, many sizes are possible.
  • Another solution is using for example ZBLAN fibers, which have much lower attenuation, as mentioned above, when they become cheaper.
  • Another solution shown by Alcatel is that if and when repeaters are eventually needed, the regeneration can be done optically for example by using SOA (Semiconductor Optical Amplifiers), such as a Mach-Zehnder interferometer for 2R regeneration (Reshaping) (because of its non-linear response) and two of these in a cascade for 3R regeneration (Reshaping & Retiming).
  • SOA semiconductor Optical Amplifiers
  • 2R regeneration Mach-Zehnder interferometer for 2R regeneration
  • 3R regeneration Reshaping & Retiming
  • larger nanofibers for example those a few hundreds of nanometers thick
  • smaller ones especially nanofibers with the size of just a few nanometers
  • nanotechnology methods which means “from the bottom up” by adding molecules, instead of starting with larger structures and using relatively crude methods to press or corrode them into the required form.
  • These nanotechnologies will preferably also enable us to create small nano-lasers for creating the lambdas and for the pumps to power the amplifiers or at least make the interface for reaching each individual fiber at the two ends of the cable and at the amplifiers.
  • Fig. 1 is a schematic illustration of typical elements in a standard state of the art longdistance submarine or overland optic fiber cable.
  • Fig. 12 which shows a 3-dimensional illustration of a preferable multi-fiber flat jacket.
  • these small laser pumps are typically semiconductor laser diodes, they can also be used one per each fiber. Another possible variation is to put for example thousands of such diodes within one or more chips, and have a very large number of fibers go through each chip so that preferably each fiber is interfaced with one mini laser pump.
  • the fibers are coupled to the chip by using flat mutli- fiber jackets and connectors, as described in Figs. 12a-b & 13a-c. It is also possible to use these small laser pumps with the fibers for example lying side by side (like in Fig. 8 below).
  • the fibers in this section are coupled to an elongated strip of glass that covers them at the top, so that the top of the glass has a flat surface that faces the laser beam, and the bottom of the glass has a wavy surface that complements exactly the upper curves of the fibers, in order to make the absorption of the beam from the laser light more efficient.
  • this glass piece is separate per each fiber, so that it's actually more like each fiber is covered with one glass tooth with a flat top and a concave bottom, and the flat tops of these teeth touch each other side by side.
  • the "teeth" are glued to each other in order to make the entire structure more stable.
  • these planes are also covered with a thin layer of semi-transparent one- directional glass, so that it allows only the laser light to go in but no light signals can be reflected back out of the fibers.
  • the laser light is directed (by its positioning and/or by additional prisms) to enter the fibers at acceptable angles that do not cause it to escape through the cladding.
  • the jacket is preferably opaque to light and preferably black or at least with dark color (including between the cells), in order to further decrease the chance of cross-talk between close fibers.
  • the space between each two adjacent fibers in the flat jacket is preferably larger (than in the examples given in Figs. 12a and b) and the jacket is thinner, for example 30 micron space between each two adjacent 10-micron fibers and a jacket thickness of 0.03 mm (30 micron).
  • This would make the flat jacket of 20,000 fibers with a width of about 800,000 micron 80 cm.
  • the diameter of the "rollada" will still be about 0.3 cm.
  • Such connectors can help for example at the connection with the lasers that insert the input signals into the fibers, at the connection with the signals detectors, at the area of the amplifiers, in small-distance point-to-point connections, and/or in various junctions or optical splitters at the routers.
  • connection with the laser diodes such an expanded connector is convenient because the laser diodes are typically each larger than the fiber.
  • the variation described in Fig. 13b is especially important if we move for example to thinner fibers, such as for example 5 micron instead of 10 micron.
  • the two connectors are mechanically coupled together from the sides, leaving free access from above and/or from below to the bear fibers between them, so that each two matching fibers are in very close contact, and then an automatic welding machine sensor can for example reach the connecting point of the two fibers from below or from above, encircle the matching fibers at the connection point (for example by closing a clump made of two or more half-rings), make automatic adjustments to make the connection optimal, and then weld the two glass fibers with the appropriate heat required.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Communication Cables (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Abstract

De nos jours, avec l'explosion de transfert d'informations, les fibres optiques deviennent toujours plus rapides. Pour la plupart, les derniers progrès concernant les quantités de données que ces fibres peuvent transmettre par unité de temps ont été réalisés en ajoutant de plus en plus de longueurs d'onde en même temps (appelées lambdas) à la même fibre, un procédé que l'on appelle DWDM (multiplexage en longueur d'onde dense). Actuellement, une seule fibre optique peut se voir attribuer 80 ou même 160 lambdas différentes en même temps et il est probable que ce nombre s'accroisse. A ce jour, les débits binaires les plus rapides pour chaque lambda se situent autour de 10 ou 40 gigabits par seconde, mais il sera difficile de faire beaucoup mieux, étant donné que les débits binaires élevés présentent une tolérance bien moindre au problèmes de dispersion. Néanmoins, la demande de communications en bande large, alimentée principalement par la croissance d'Internet, ne cesse d'augmenter à un taux bien plus rapide que les capacités des fibres optiques. Par exemple, ces dernières années cette demande se multipliait par cinq chaque année et il est probable qu'elle continue d'augmenter. Actuellement, les efforts se concentrent principalement sur l'accroissement du nombre de Lambdas par fibre, mais une fois qu'il aura été doublé quelques fois de plus, il deviendra difficile de l'accroître davantage. La présente invention vise à effectuer un grand bond dans ce domaine en atteignant un nombre beaucoup plus important de fibres par câble, par exemple 1000 ou 10.000 fois le nombre actuel, avec une diminution des coûts réduits de plusieurs ordres de grandeur. La présente invention permet de résoudre différents problèmes mécaniques, optiques et électroniques que pose la concentration d'un si grand nombre de fibres dans un seul câble. Une des principales caractéristiques de la présente invention consiste en l'utilisation de gaines plates flexibles multifibre qui peuvent se déplacer librement à l'intérieur du tuyau du câble, le tuyau étant de préférence divisé en au moins deux cellules, de sorte qu'il puisse s'infléchir uniquement dans la direction souhaitée et présenter un force structurelle maximale. Une autre caractéristique principale consiste en la possibilité qu'ont les connecteurs destinés à ces gaines de pouvoir également résoudre bon nombre d'autres problèmes. Une autre caractéristique importante concerne différents procédés permettant d'optimiser l'efficacité d'amplification de plusieurs fibres à la fois.
PCT/IL2001/001075 2000-11-21 2001-11-21 Systeme et procede permettant de transferer une quantite d'informations beaucoup plus importante dans des cables a fibres optiques en augmentant sensiblement le nombre de fibres par cable WO2002042801A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
GB0301155A GB2379519B (en) 2000-11-21 2001-11-21 System and method for transferring much more information in optic fiber cables by significantly increasing the number of fibers per cable
CA002428128A CA2428128A1 (fr) 2000-11-21 2001-11-21 Systeme et procede permettant de transferer une quantite d'informations beaucoup plus importante dans des cables a fibres optiques en augmentant sensiblement le nombre de fibres par cable
AU2002220998A AU2002220998A1 (en) 2000-11-21 2001-11-21 High capacity optical fiber cables
US10/307,422 US20030174977A1 (en) 2001-02-05 2002-11-27 System and method for transferring much more information in optic fiber cables by significantly increasing the number of fibers per cable
US11/162,105 US20070047885A1 (en) 2000-11-21 2005-08-29 System and method for transferring much more information in optic fiber cables by significantly increasing the number of fibers per cable
US12/039,867 US7899290B2 (en) 2000-11-21 2008-02-29 System and method for transferring much more information in optic fiber cables by significantly increasing the number of fibers per cable

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
IL139810 2000-11-21
IL13981000A IL139810A0 (en) 2000-11-21 2000-11-21 System and method for transferring much more information in optic fiber cables by significantly increasing the number of concurrent communication channels
US26673101P 2001-02-05 2001-02-05
US60/266,731 2001-02-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/307,422 Continuation-In-Part US20030174977A1 (en) 2000-11-21 2002-11-27 System and method for transferring much more information in optic fiber cables by significantly increasing the number of fibers per cable
US11/162,105 Continuation-In-Part US20070047885A1 (en) 2000-11-21 2005-08-29 System and method for transferring much more information in optic fiber cables by significantly increasing the number of fibers per cable

Publications (3)

Publication Number Publication Date
WO2002042801A2 true WO2002042801A2 (fr) 2002-05-30
WO2002042801A3 WO2002042801A3 (fr) 2002-10-24
WO2002042801A9 WO2002042801A9 (fr) 2003-03-27

Family

ID=26323990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2001/001075 WO2002042801A2 (fr) 2000-11-21 2001-11-21 Systeme et procede permettant de transferer une quantite d'informations beaucoup plus importante dans des cables a fibres optiques en augmentant sensiblement le nombre de fibres par cable

Country Status (4)

Country Link
AU (1) AU2002220998A1 (fr)
CA (1) CA2428128A1 (fr)
GB (1) GB2379519B (fr)
WO (1) WO2002042801A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10251975A1 (de) * 2002-09-19 2004-04-01 Norddeutsche Seekabelwerke Gmbh & Co. Kg Lichtwellenleiterkabel und Anordnung zur Übertragung von Daten mit einem Lichtwellenleiterkabel
CN112596175A (zh) * 2019-10-01 2021-04-02 Ii-Vi特拉华有限公司 用于光导线缆中的高功率激光应用的保护导管

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0517390D0 (en) * 2005-08-29 2005-10-05 Mayer Yaron System and method for transferring much more information in optic fiber cables by significantly increasing the number of fibers per cable
GB2383850B (en) * 2001-11-27 2006-08-30 Yaron Mayer Optic fibre cable with large numbers of fibres

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278835A (en) * 1977-12-16 1981-07-14 The Post Office Submarine communication cable including optical fibres within an electrically conductive tube
US4911525A (en) * 1988-10-05 1990-03-27 Hicks John W Optical communication cable
US5319730A (en) * 1990-07-19 1994-06-07 Nokia Kaapeli Oy Cable construction containing optical fibers and reinforcement means
US5668912A (en) * 1996-02-07 1997-09-16 Alcatel Na Cable Systems, Inc. Rectangular optical fiber cable
US5694510A (en) * 1995-03-20 1997-12-02 Sumitomo Electric Industries, Ltd. Tub-aggregated optical cable
US5857051A (en) * 1997-04-21 1999-01-05 Lucent Technologies Inc. High density riser and plenum breakout cables for indoor and outdoor cable applications
US5991485A (en) * 1997-04-14 1999-11-23 Swisscab S.A. Manufacturing method for an optical cable and cable obtained by such a method
US6229939B1 (en) * 1999-06-03 2001-05-08 Trw Inc. High power fiber ribbon laser and amplifier

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106954A (ja) * 1996-06-27 1998-01-13 Unisia Jecs Corp ポンプ装置およびブレーキ制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278835A (en) * 1977-12-16 1981-07-14 The Post Office Submarine communication cable including optical fibres within an electrically conductive tube
US4911525A (en) * 1988-10-05 1990-03-27 Hicks John W Optical communication cable
US5319730A (en) * 1990-07-19 1994-06-07 Nokia Kaapeli Oy Cable construction containing optical fibers and reinforcement means
US5694510A (en) * 1995-03-20 1997-12-02 Sumitomo Electric Industries, Ltd. Tub-aggregated optical cable
US5668912A (en) * 1996-02-07 1997-09-16 Alcatel Na Cable Systems, Inc. Rectangular optical fiber cable
US5991485A (en) * 1997-04-14 1999-11-23 Swisscab S.A. Manufacturing method for an optical cable and cable obtained by such a method
US5857051A (en) * 1997-04-21 1999-01-05 Lucent Technologies Inc. High density riser and plenum breakout cables for indoor and outdoor cable applications
US6229939B1 (en) * 1999-06-03 2001-05-08 Trw Inc. High power fiber ribbon laser and amplifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10251975A1 (de) * 2002-09-19 2004-04-01 Norddeutsche Seekabelwerke Gmbh & Co. Kg Lichtwellenleiterkabel und Anordnung zur Übertragung von Daten mit einem Lichtwellenleiterkabel
CN112596175A (zh) * 2019-10-01 2021-04-02 Ii-Vi特拉华有限公司 用于光导线缆中的高功率激光应用的保护导管
CN112596175B (zh) * 2019-10-01 2023-11-24 Ii-Vi特拉华有限公司 用于光导线缆中的高功率激光应用的保护导管

Also Published As

Publication number Publication date
CA2428128A1 (fr) 2002-05-30
AU2002220998A1 (en) 2002-06-03
GB0301155D0 (en) 2003-02-19
WO2002042801A9 (fr) 2003-03-27
WO2002042801A3 (fr) 2002-10-24
GB2379519B (en) 2005-08-31
GB2379519A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
US7899290B2 (en) System and method for transferring much more information in optic fiber cables by significantly increasing the number of fibers per cable
US20070047885A1 (en) System and method for transferring much more information in optic fiber cables by significantly increasing the number of fibers per cable
JP3987840B2 (ja) クラッディング励起光ファイバ利得装置
US7327920B2 (en) Optical fiber pump multiplexer
US7941022B1 (en) Single fiber optical links for simultaneous data and power transmission
US6483978B1 (en) Compact optical amplifier module
Nakajima et al. Multi-core fiber technology: next generation optical communication strategy
Jung et al. Multicore and multimode optical amplifiers for space division multiplexing
US20030174977A1 (en) System and method for transferring much more information in optic fiber cables by significantly increasing the number of fibers per cable
WO2002042801A2 (fr) Systeme et procede permettant de transferer une quantite d'informations beaucoup plus importante dans des cables a fibres optiques en augmentant sensiblement le nombre de fibres par cable
Papapavlou et al. Progress and demonstrations on space division multiplexing
JP4122699B2 (ja) 分散マネージメント光伝送路およびその構成方法
WO2003046949A2 (fr) Systeme et procede pour le transfert de nettement plus d'informations dans des cables a fibres optiques par l'augmentation sensible du nombre de fibres par cable
JP2022516521A (ja) 海底光中継器用のファイバポンプレーザシステムおよび方法
CN102081195A (zh) 一种双包层光纤激光耦合装置及方法
CA2610138A1 (fr) Systeme et methode permettant le transfert d'un plus grand nombre d'information dans des cables a fibre optique en augmentant de maniere importante le nombre de fibres par cable
CA2637914A1 (fr) Systeme et methode de transmission d'information bien plus abondante dans un cable a fibres optiques par multiplication des fibres dans le cable
Martinek et al. Power over fiber using a large core fiber and laser operating at 976 nm with 10 W power
GB2430044A (en) Optical fibre cable with large number of fibres
CN201402330Y (zh) 微型光分路器
JP4206623B2 (ja) 負分散光ファイバおよび光伝送路
Sinkin Strategies and Challenges in Designing Undersea Optical Links
Mizuno et al. High capacity dense SDM transmission using multi-core few-mode fiber
CN105305210B (zh) 一种基于多芯光纤的高功率全光纤激光器
CN210723677U (zh) 一种可实现高光束质量的光纤激光增益光纤冷却装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10307422

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/01234/DE

Country of ref document: IN

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: GB0301155.8

Country of ref document: GB

COP Corrected version of pamphlet

Free format text: PAGES 6/6, DRAWINGS, ADDED AND PAGES 1/5-5/5 RENUMBERED AS 1/6-5/6

WWE Wipo information: entry into national phase

Ref document number: 2428128

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002220998

Country of ref document: AU

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 11162105

Country of ref document: US

NENP Non-entry into the national phase in:

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

WWP Wipo information: published in national office

Ref document number: 11162105

Country of ref document: US