WO2002040203A1 - Molten metal feeder and member made of aluminum titanate ceramic with improved unwettability - Google Patents

Molten metal feeder and member made of aluminum titanate ceramic with improved unwettability Download PDF

Info

Publication number
WO2002040203A1
WO2002040203A1 PCT/JP2001/005571 JP0105571W WO0240203A1 WO 2002040203 A1 WO2002040203 A1 WO 2002040203A1 JP 0105571 W JP0105571 W JP 0105571W WO 0240203 A1 WO0240203 A1 WO 0240203A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
aluminum alloy
aluminum
contact
molten
Prior art date
Application number
PCT/JP2001/005571
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Kitaoka
Kazumi Kashiwagi
Fusayuki Nanjo
Hiroshi Kawamoto
Katsutoshi Noda
Toshio Kume
Masane Kimura
Masaharu Kimura
Yuji Kawasaki
Itsuo Suzuki
Sadahiko Suzuki
Original Assignee
Japan Fine Ceramics Center
Kmc Co., Ltd.
Root Co., Ltd.
Kimura Co., Ltd.
Yushin Kosan Co., Ltd.
Marusu Glaze Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000353386A external-priority patent/JP2002153969A/en
Priority claimed from JP2001027436A external-priority patent/JP4667611B2/en
Application filed by Japan Fine Ceramics Center, Kmc Co., Ltd., Root Co., Ltd., Kimura Co., Ltd., Yushin Kosan Co., Ltd., Marusu Glaze Co., Ltd. filed Critical Japan Fine Ceramics Center
Priority to JP2002542560A priority Critical patent/JPWO2002040203A1/en
Priority to CA002429344A priority patent/CA2429344A1/en
Publication of WO2002040203A1 publication Critical patent/WO2002040203A1/en
Priority to US10/440,148 priority patent/US20050035504A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D35/00Equipment for conveying molten metal into beds or moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D37/00Controlling or regulating the pouring of molten metal from a casting melt-holding vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D39/00Equipment for supplying molten metal in rations
    • B22D39/003Equipment for supplying molten metal in rations using electromagnetic field
    • B22D39/006Electromagnetic conveyors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5029Magnesia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5031Alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5046Spinels, e.g. magnesium aluminate spinels
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/06Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with tangential admission
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • C04B2111/00879Non-ferrous metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/1056Silica-free or very low silica-content materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9676Resistance against chemicals, e.g. against molten glass or molten salts against molten metals such as steel or aluminium

Definitions

  • the present invention relates to a molten metal supply device that conveys and supplies, for example, molten metal aluminum and molten metal sodium.
  • the present invention also relates to a technique for imparting and maintaining non-wetting properties of a ceramic member that comes into contact with a molten metal such as a molten aluminum alloy.
  • a linear induction electromagnetic pump that applies thrust to molten metal by electromagnetic induction is used to transport molten metal such as molten aluminum in a molten metal storage facility in a fast breeder reactor. .
  • a molten metal supply device particularly in a molten metal supply device in a manufacturing facility, it is important to supply a fixed amount of molten metal to a manufacturing cavity in order to ensure manufacturing accuracy.
  • the transfer speed and transfer time of the molten metal are adjusted by various current controls such as the frequency of the current supplied to the electromagnetic pump, the current density, and the current supply time. Molten metal was supplied to the cylinder.
  • the supply accuracy of the molten metal by the electromagnetic pump eventually becomes a problem. Even if an orifice or valve is provided in the supply path to the cavity, the supply amount of the molten metal depends on the supply accuracy of the molten metal.
  • the members of the molten metal supply device need to be formed of ceramics having low thermal expansion and excellent thermal shock resistance.
  • a fixed amount of aluminum alloy Ladles made of aluminum titanate ceramics are often used as measuring devices to transfer to molding machines.
  • Such a ladle is made of aluminum titanate ceramics having excellent low thermal expansion and thermal shock resistance.
  • aluminum titanate ceramics have low thermal expansion properties and are excellent in thermal shock resistance.
  • the low thermal expansion of aluminum titanate ceramics is apparent due to cracks at the grain boundaries. Therefore, there was a problem that the mechanical strength was remarkably weak due to the grain boundary crack.
  • silica of several wt% to 1 O wt% is generally added.
  • grain growth during the sintering process of aluminum titanate is suppressed, and as a result, the grain boundary stress generated in the cooling process after sintering is reduced, and the generation of cracks is suppressed.
  • the mechanical strength of Lamix is improved.
  • the solidified aluminum alloy mass attached to the spout of the ladle comes into contact with the forging system equipment, causing the destruction of the ladle itself or damage to the ladle machine.
  • a method is used in which the molten metal supply ladder device is stopped after the non-wetting property is reduced, and the aluminum alloy attached to the ladle is mechanically peeled off.
  • non-wetting be maintained at least at 100,000 times of pumping.
  • the present inventors have created the following inventions as means for solving the above problems.
  • the present inventors have developed an electromagnetic pump type molten metal supply device with a high supply accuracy. That is, the present invention relates to a molten metal supply device,
  • a rotating blade that is provided in the transport pipeline and rotates with the movement of the molten metal; and a detector that detects the number of rotations of the rotating blade,
  • a molten metal supply device comprising:
  • the transport conduit includes a means for detecting the amount of molten metal in the transport conduit. According to this aspect, it is possible to compensate for the accuracy and precision in detecting and controlling the transport amount caused by a change in the amount of molten metal in the transport pipeline.
  • a method for controlling the supply amount of the molten metal by the rotation speed is also provided.
  • the weighing device further includes a means for detecting the amount of molten metal in the transport line provided in the transport line.
  • the transport amount of the molten metal can be accurately measured.
  • the present inventors examined the reduction of non-wettability of aluminum titanate ceramics to molten aluminum alloy, and found that silica added to aluminum titanate ceramics depends on A 1 and Mg in the aluminum alloy molten metal. It was found that Si particles were generated on the surface of the aluminum titanate ceramics after the reduction, and that the presence of the Si particles reduced the non-wetting property. Further, with the reduction of the silica, the surface of the aluminum titanate ceramics, to generate the M g O and A 1 2 ⁇ 3, further from these, M g A 1 2 ⁇ 4 on the surface of the aluminum titanate ceramic produced I knew I was doing it.
  • the present inventors have found that the presence of Si on the surface of aluminum titanate ceramics in contact with the molten aluminum alloy is necessary to suppress or avoid a decrease in non-wetting and to impart or maintain non-wetting. Alternatively, it has been found that this can be achieved by avoiding generation.
  • the A member provided with a layer having a low Si content is also provided for the substrate made of aluminum titanate ceramics.
  • the contact member is an aluminum alloy molten metal contact member made of aluminum titanate ceramics
  • a member provided with an aluminum titanate layer having a lower Si content than the aluminum titanate ceramics base material at least in a portion in contact with the aluminum alloy melt.
  • a molten metal supply device provided with these contact members is provided.
  • At least a portion in contact with the molten aluminum alloy, A 1 2 ⁇ ,, M g O and A 1 2 T i 0 is selected from the group consisting of 5 aluminum titanate ceramic member Forming a layer containing one or more of the above-mentioned materials and having a lower Si content than the aluminum titanate ceramics base material;
  • a 1 2 0 3, M g O and or A 1 2 ⁇ ⁇ 0 5 reacted with beauty Z or aluminum Oyo magnesium layer containing by step of generating a M g A 1 2 0 4, comprises a capital, A method is provided.
  • Shall apply at the site where two or more members made of aluminum titanate ceramics are joined, in a zone that is in contact with at least the molten aluminum alloy, consisting of A 1 2 0 3, M g O and A 1 2 T i 0 5 Forming a layer containing one or more selected from the group and having a lower Si content than the aluminum titanate ceramics base material;
  • a method for producing aluminum alloys comprising:
  • a portion in contact with at least the molten aluminum alloy, A 1 2 0 3, M g O and A 1 contains 2 T I_ ⁇ one or more members selected from the group consisting of 5, the titanium aluminum ceramics
  • the aluminum alloy melt contacting member made of aluminum titanate ceramic having a layer having a lower Si content than the base material is contacted with the aluminum alloy melt containing Mg in at least a part of the fabrication process. , the step of generating a M g a ⁇ 4 in the layer containing the a 1 2 0 3, M g O , and Z or a 1 2 T i 0 5,
  • a manufacturing method of an aluminum alloy melt contact member in a zone that is in contact with at least the molten aluminum alloy, A l 2 ⁇ 3, M g O and A 1 2 T i 0 the group consisting of 5
  • a contact member made of aluminum titanate ceramics aluminum alloy comprising one or more selected from the group consisting of: and a layer having a lower Si content than the aluminum titanate ceramics base material; In at least a part of the fabrication process, it is brought into contact with molten aluminum alloy containing Mg. Te, A 1 2 0 3, M g O and / or A 1 step of generating a M g A 1 2 0 4 in the layer containing the 2 T i 0 5,
  • FIG. 4 is a diagram when the transfer pipeline and the electromagnetic pump are viewed from above.
  • FIGS. 4A and 4B are cross-sectional views illustrating a preferred arrangement of an electromagnetic pump with respect to a transport pipeline.
  • FIG. 6A is a cross-sectional view of the arrangement state of the rotating blades in the transfer pipeline in a direction along the flow path of the molten metal.
  • FIG. 6 (b) is a cross-sectional view of the arrangement state of the rotating blades in the transport pipeline in a direction crossing the flow path.
  • FIG. 6 (c) is a diagram showing the arrangement state of the rotating blades in the transport pipeline as viewed from above.
  • FIG. 7 is a diagram showing a means for detecting the amount of molten metal in a transport pipeline.
  • FIG. 4 is a perspective view showing a structure of a fitting hole and a cap for mounting a rotating blade to a transport pipeline.
  • FIGS. 13 (a) and 13 (b) show the form of the ceramic ladle produced in the example.
  • FIG. 13 (a) is a plan view
  • FIG. 13 (b) is a cross-sectional view taken along line A_A of FIG. 13 (a).
  • FIG. 14 (a) is a longitudinal sectional view showing a state where the joined body set is vertically separated
  • FIG. 14 (b) is a plan view of a lower member.
  • An electromagnetic pump-type molten metal supply device includes: a rotating blade that rotates with the movement of the molten metal; and a rotating blade that rotates with the movement of the molten metal.
  • the rotating blade and the detector constitute a weighing device according to the present invention.
  • FIG. 1 shows the overall configuration of the present molten metal supply device 2.
  • a molten metal supply device hereinafter, also referred to as the present supply device
  • a device for supplying a molten metal (molten metal) for production a production device
  • a molten metal sodium supplied to a fast breeder reactor a device for supplying
  • it is preferably a molten metal supply device for production.
  • the supply device 2 is a device for supplying a molten metal for production, and includes a transfer pipe 4, an electromagnetic pump 10 arranged along the pipe, and a measuring device 20.
  • the shape of the transport line 4 for transporting the molten metal provided in the supply device 2 is particularly limited. However, it is preferably flat. In the case of a flat shape, an electromagnetic pump is efficiently constructed by arranging an inductor along the long side surface. In other words, a sufficient driving torque for the molten metal can be obtained without providing a core in the pipeline. Specifically, a flat rectangular tube or an elliptical cylinder can be used as the transfer conduit 4.
  • the material of the transfer conduit 4 may be a non-magnetic material through which a magnetic flux passes, and ceramics can be used.
  • the ceramic is a low thermal expansion ceramic having a thermal expansion coefficient of 1 ⁇ 1 o ⁇ : (room temperature to 100 000) or less. If the coefficient of thermal expansion exceeds this value, there is a high possibility that the molten metal will be broken by thermal shock during transportation.
  • An example of such a material is aluminum titanate.
  • the transfer pipeline 4 it is necessary to prevent the molten metal from being cooled and solidified. For this reason, it is preferable that the transfer pipeline 4 be kept warm so that the melting temperature is maintained. In particular, it is preferable to form a concave groove on the surface of the transfer pipe 4 to improve the thermal conductivity and wind the tubular heater around the transfer pipe 4.
  • the electromagnetic pump 10 disposed around the transfer line 4 must be cooled in order to maintain its operation.
  • a heat insulating layer is formed on the outer periphery of the transport pipe that is heated and kept warm.
  • the heat insulation layer is preferably composed of a heat insulation material and a gas (air) layer. Ceramics, glass, etc. can be used as the heat insulating material. Further, the gas layer can be formed by forcibly passing air through the ventilation path. It is preferable that such a heat insulating structure is provided in the entirety of the transport pipeline 4.
  • Various structures can be adopted as the structure of the electromagnetic pump 10 in the supply device 2. Any of an external type, an immersion type, and the like may be used, and modified ones thereof may be used.
  • the inductor 12 is arranged so that a moving torque is generated in the molten metal in the transfer pipeline 4.
  • the inductor 12 includes at least a steel core 14 and a coil 16 as components.
  • FIG. 2 shows a diagram of the transfer pipeline 4 and the electromagnetic pump 10 as viewed from above.
  • a sufficient drive torque is generated in the molten metal in the transfer line only by the stay core 14 and the coil 16;
  • the core may be provided inside the transport pipeline 4.
  • the case where only the stay core 14 and the coil 16 are provided means that the stay core 14 and the coil 16 are provided on the outside of the transfer pipe 4 via the transfer pipe 4 so as to face each other.
  • the conductor 12 does not require a separate core inside the transfer pipe 4 because the width of the transfer pipe 4 is sufficiently small.
  • the inductor 12 composed of the stay core 14 and the coil 16 can be provided inside the transfer pipeline 4.
  • the transfer pipe 4 has a double structure of an outer pipe and an inner pipe, and the inner pipe is provided with a stay core 14 and a coil 16, and the outer pipe itself is formed of a magnetic material to form a core. It can also be.
  • the inductor 12 can be arranged in various forms with respect to the transport pipeline 4, but is preferably arranged as shown in FIG.
  • the transfer pipe 4 is placed on both sides of the vertically long transfer pipe 4 in a horizontal state (same height). It is preferable that they are arranged at an angle of 15 degrees from horizontal. If the temperature exceeds 15 degrees, there is a high possibility that the components of the electromagnetic pump 10 will be damaged when the molten metal leaks from the transfer pipeline 4. More preferably, it is inclined horizontally or in an angle range from horizontal to 6 degrees. As shown in FIGS.
  • the transfer line 4 and the inductors 12 on both sides of the transfer line 4 are viewed from a cross section perpendicular to the axial direction of the transfer line 4. It is preferable that the horizontal center line and the horizontal centers of the inductors 12 on both sides coincide.
  • the present supply device 2 may also include a melting and holding furnace 18 for maintaining the molten metal in a molten state.
  • a melting and holding furnace 18 for maintaining the molten metal in a molten state.
  • the supply device 2 includes a measuring mechanism (equipment) for the molten metal conveyed by the electromagnetic pump 10.
  • the rotating blades 22 rotate with the movement of the molten metal, and the detector 32 detects the number of rotations of the rotating blades.
  • FIG. 4 shows a detailed structure of the weighing device 20.
  • FIG. 5 shows an embodiment of the rotating blade 22.
  • the rotating blades 22 are formed in a shape and structure that can be rotated by molten metal that moves in the transport pipeline 4.
  • the shape of the blade is not particularly limited, but may be a screw type, an impeller, or the like. Preferably, it is an impeller type.
  • the rotating blade 22 is constituted by a shaft 24 and a blade 26 provided on the shaft 24. Pressure is applied to the blade 26 due to the movement of the molten metal, whereby the blade 26 and the shaft 24 are rotated.
  • the constituent material of the rotary blade 22 has a non-wetting property, a contact resistance, a thermal shock resistance, and the like with respect to the molten metal applied to the supply device 2.
  • thermal expansion coefficient is less than 1 X 10- 6 Z ° C (room temperature ⁇ 100 0 ° C). If the coefficient of thermal expansion is exceeded, the risk of breakage of the rotating blades 22 increases significantly.
  • the nonmagnetic material having such a thermal expansion coefficient such as a ceramic, in particular, mention may be made of ceramic mainly composed of aluminum titanate (T i A 1 2 0 5 ) or sialon.
  • Sialon is a kind of solid solution of Si 3 N 4 ). There are two types of sialon: 3′-sialon and ⁇ -sialon.
  • Sialon is a compound represented by S i 6 — ⁇ ⁇ l z O z N 6 — z , where ⁇ is greater than 0 and can take a value up to 4.2.
  • ⁇ -sialon is a compound represented by M x (S i, Al) 12 (N, O) 16 , and X is larger than 0 and equal to or smaller than 2.0.
  • M is at least one selected from the group consisting of Li, Mg, Ca, and rare earth elements (including Y, Nd, Yb, etc.).
  • the rotating blades 22 are preferably arranged in the transport pipeline 4 such that a rotating shaft (shaft) 24 is orthogonal to the moving direction of the molten metal. More preferably, the rotation axis 24 is vertical. In particular, this is preferable when the inductors 12 are arranged on both sides of the transfer pipeline 4.
  • FIG. 6 shows a state of the rotating blades 22 arranged in the transport pipeline 4. As shown in FIGS. 6 (a) and 6 (b), when the rotating shaft 24 of the rotating blade 22 is arranged orthogonally and perpendicularly to the moving direction of the molten metal, FIG.
  • the rotary shaft 24 is disposed eccentrically with respect to the longitudinal center of the transport pipeline 4, that is, the rotary shaft 22 and the side wall of the transport pipeline 4 It is preferable to arrange the molten metal channels formed therebetween so that the width of the channels is not uniform. With such a configuration, the uneven movement of the molten metal causes an uneven pressure difference to be applied to the rotating blades 22, so that the rotation of the rotating blades 22 is smoothly started and continued. In this case, a greater pressure is applied to the blade 26 on the side where the width of the flow path of the molten metal becomes large, and the rotating blade 22 is rotated so that the blade 26 on the side moves downstream. Become.
  • the inductor 12 is also disposed at the position where the rotary blade 22 is disposed. In this case, it is preferable that the inductor 12 is disposed so as to sandwich both sides of the rotary shaft 24 of the rotary blade 22, and more preferably, the inductor 12 is transported between the inductors 12 facing the rotary blade 22. It is eccentric in line 4. With this arrangement, the molten metal is driven by the inductor 12, and the rotating blades 22 are effectively rotated.
  • the rotating blades 22 can be directly driven by an external motor 40 (see FIG. 4). As a result, a sufficient rotational force is supplied to the rotating blades 22, and the rotating blades can be reliably rotated to transport the molten metal.
  • driving by the external motor 40 is preferable for starting rotation of the rotary blade 22.
  • the rotation number detector is configured to directly or indirectly detect the rotation transmitted to the shaft 24 of the rotary blade 22.
  • the detection mechanism various conventionally known methods can be adopted.
  • the rotation number detector is a pulse generator provided to detect the rotation of the shaft 24 inside the conveying pipeline 4 when the rotation is transmitted and generate a pulse.
  • 3 can be 2.
  • the pulse generated by the pulse generator 32 is further transmitted to a device having a pulse counter mechanism, so that the pulse is generated. The number of turns can be easily detected.
  • the transport amount of the molten metal when the rotating blades 22 provided as described above makes one rotation can be calculated by calculation.
  • the transport amount may fluctuate due to structural errors and operational conditions. Therefore, it is preferable to set the parameters based on the fluctuation factors based on the actual measurement, and to be able to display the supply amount based on the parameters at the time of actual weighing.
  • the rotary blade 22 can be formed to be rotatable from the outside. Thereby, sufficient rotational force can be applied to the rotating blade.
  • a rotating body 34 (preferably a plate-like body) that rotates with the rotation of the shaft 24 outside the conveying pipeline 4 is provided;
  • the rotation (number) can be detected by the photoelectric sensor 36 by providing the rotation detecting hole in the rotating body 34.
  • an abnormality of the rotary blade 22 can be detected by comparing the number of rotations by the sensor 36 with the number of rotations to be generated in the evening. Therefore, when the rotating blades 22 are driven by an external motor or the like, the rotating body 34 and the sensor 36 effectively function as an abnormality detector in the rotating blades 22 and Z or the transport pipeline 4.
  • the rotating body 34 and the sensor 36 function as a mechanism for checking the rotating state of the rotating blades 22.
  • the rotating body 34 can also be used as a heat insulating material. In this case, it is preferable that the rotating body 34 is formed of a material having high heat insulating properties and has a large surface area. Further, by forming an outlet 38 of a cooling means such as air supplied from a gas supply source to the rotating body 34 so as to blow the cooling means such as air, a more effective effect can be obtained. Thermal insulation is possible.
  • a means for detecting the molten metal amount in the transport pipeline 4 is provided.
  • the means is not particularly limited, but is preferably a means for detecting the level of the molten metal by detecting the liquid level of the molten metal in the transport pipeline 4.
  • a float having buoyancy with respect to the molten metal can be provided in the transfer conduit 4, and the displacement of the float can be provided so as to be detectable from outside.
  • the float may be provided with a detecting member that is linked to the displacement of the float.
  • FIG. 7 shows a state in which the float 28 is attached to the transport pipeline 4 via the attachment portion 30.
  • the float 28 has a locking portion 28 a that is locked to the upper edge of the mounting portion 30, and a contact portion 28 b that comes into contact with the molten metal in the transport pipeline 4.
  • the locking portion 28a has an indicating portion 29 for indicating the displacement of the float 28.
  • the mounting portion 30 is configured to hold the float 32 in a swingable manner by locking the locking portion 28a of the float 28 to the upper end edge thereof, and to swing the float 28. It has a hollow section 30a that can handle the maximum displacement without hindering movement.
  • the float 28 itself also serves as a detection member, and the displacement generated at the contact portion 28b is transmitted to the locking portion 28a and the indication portion 29 as it is, and It is easily grasped from. It should be noted that the displacement of the float can be transmitted to the outside by a separate detection member.
  • the amount of displacement of the float transmitted to the outside can be detected by various conventionally known detecting means, converting means, and the like, and can be detected as the amount of molten metal.
  • it can be detected by a differential transformer, a magnetic sensor, or the like.
  • the transported amount of the molten metal which is determined from the rotation speed of the rotary blades 22, is corrected based on the obtained molten metal amount.
  • Float and the mounting portion, and the detection member are both non-wettable, excellent heat shock resistance, it is preferred thermal expansion coefficient (room temperature to 1 0 0 0) is less than in 1 X 1 0- 6.
  • the composition be mainly composed of aluminum titanate.
  • the rotary blades 22 need to be disposed in the transport pipeline 4 with good sealing properties, and are preferably mounted so that they can be easily removed from the transport pipeline 4 for maintenance and replacement. In addition, it is preferable that the device is mounted so that the influence of thermal expansion can be avoided as much as possible.
  • the mounting of the transfer pipeline 4 and the rotary blades 22 is mainly performed by fitting with the tapered uneven portion. More specifically, a tapered fitting hole 42 having a smaller diameter is provided in the transfer pipe 4 on the inner side of the pipe, and a taper-shaped fitting corresponding to the fitting hole 42 is provided. A cap 44 having a convex portion 46 is used, and a through hole 48 in which the shaft 24 can be mounted is provided in the convex portion 46. By this, the fitting of the fitting hole 42 and the cap 44 allows the rotating blades 22 to be mounted in the transport pipeline 4, and the hermeticity of the pipeline 4 is improved by mechanical fitting. Can be secured.
  • the transport conduit 4 and the cap 4 4 is preferably composed of a material 1 X 1 0 _ 6 Z ° C ( Atsushi Muro ⁇ 1 0 0 0)
  • the following thermal expansion coefficient More specifically, it is preferable that the composition be mainly composed of aluminum titanate.
  • the rotating blades are also preferably made of a material having a thermal expansion coefficient of 1 ⁇ 10 ⁇ / (room temperature to 1000) or less, and are preferably made of aluminum titanate ceramics.
  • the means for fixing the cap 44 to the transfer conduit 4 is not particularly limited. It can be fixed with a heat-resistant material, for example, a fastening member (stainless steel band or the like) such as stainless steel or a screw member.
  • a fastening member stainless steel band or the like
  • one end of an endless belt-shaped stainless steel band 50 is placed over the edge of the cap 44, and the other end of the band 50 is fixed to a predetermined portion. It can be fixed by locking to the band locking portion 52.
  • the fastening member preferably has a coefficient of thermal expansion of 2 X 10 " VoC (room temperature to 800V) or less.However, in order to prevent the fastening member from loosening due to thermal expansion of the fastening member. It is preferable that a fixed tension is applied to the fastening member, for example, in the band locking portion 52, the fastening member 50 locked by the locking portion 52 is fixed.
  • the band can be attached so that the pressed state can be maintained irrespective of thermal expansion.
  • the band locking portion 52 is arranged at a predetermined position via the elastic body 54 in the stretched state. So that In this case, the band locking portion 52 is always urged by the restoring force of the elastic body 54 in the direction in which the elastic body 54 tries to restore.
  • the direction in which the node locking portion 52 is urged matches the direction in which the tightening state by the fastening member 50 can be strengthened.
  • the fastening member 50 is constantly urged in the pressing direction. As a result, even if the fastening member 50 thermally expands, the influence thereof is avoided, and a stable pressure-tight state is secured.
  • the fastening member 50 can be urged in the pressing direction by using a compressed elastic body.
  • the restoring force of the elastic body to expand and contract is used to bias the fastening member.
  • an elastic body is fixed in a compressed state inside the wedge-shaped fastening member, and the fastening member is mounted in piles on the restoring force of the elastic body. In this case, even if the fastening member thermally expands, the looseness of the pressed state can be offset by the restoring force of the elastic body.
  • the elastic body an elastomer can be used in addition to springs of various shapes. However, it is preferable to have heat resistance and low thermal expansion property. It should be noted that such a fixing structure is particularly preferable when the shaft 24 is inserted from above the transport pipeline 4.
  • the position of the rotary blade 22 can be adjusted by height adjusting means provided above the shaft 4 outside the conduit 4.
  • the adjusting means may be a screw mechanism or a structure in which roller bearings having different heights are formed to be exchangeable.
  • the rotary blade 22 be provided with a heat insulating material on the shaft 24 in order to prevent the heat of the rotary blade 22 from being transmitted outside the transfer pipeline 4.
  • a backflow prevention device may be provided.
  • the backflow prevention device is located on the downstream side of the rotating blades, on the rear side in the rotational direction of the rotating blades, that is, on the downstream side of the rotating blades 22 as shown in FIG.
  • a wall-like body 60 may be provided at a location corresponding to about a quarter turn that rotates in a reverse direction, so as to approximately follow the rotation locus of the tip of the blade 26. According to such a wall-like body 60, between the rotating blades 26 The held molten metal is prevented from moving in the reverse direction as it is with the rotation of the rotary blades 22, and is moved downstream along the original flow of the molten metal.
  • the form of the wall-like body 60 is not particularly limited, but it is sufficient that the wall-like body 60 has a wall at least approximately along the rotation locus of the tip of the blade 26.
  • the molten metal in the melting and holding furnace 18 is supplied to the manufacturing cavity by operating the electromagnetic pump 10.
  • the rotating blades 22 provided in the transport pipeline 4 rotate, and the number of rotations is detected by the detector 32. If the rotation speed and the supply amount of molten metal are linked, the operating time and supply current of the electromagnetic pump 10 are adjusted based on this rotation speed so that a certain amount of molten metal is supplied to the cavity. Then, a desired rotation time and / or number of rotations of the rotary blade 22 can be obtained.
  • an accurate amount of molten metal can always be supplied to the fabrication cavity, and a highly accurate product can be manufactured.
  • the molten metal obtained from the rotation speed of the rotary blades 22 based on the detected amount of molten metal is provided. Fluctuations in the supply amount (caused by the amount of molten metal (molten metal level)) are compensated, and more accurate and more accurate supply amount control becomes possible.
  • the pressure caused by the uneven movement of the molten metal is applied to the rotating blades 22 so that the rotating blades 22 in the transfer pipeline 4 rotate smoothly.
  • the operation of the electromagnetic pump 10 is controlled. That is, it is preferable that the thrust of the same pressure is not applied to the blade 26 provided in the rotary blade 22 by the movement of the molten metal.
  • the inductors 12 arranged opposite to the shaft 24 of the rotary blade 22 are not operated simultaneously. In particular, as shown in FIG.
  • the inductor 1 2 on the side where the clearance between the rotary blade 22 and the inner wall of the transport pipeline 4 is large is 1 2
  • the rotation of the rotating blades 22 caused by the operation of the inductors 12 is checked by the detector 32.
  • the inductor 12 on the opposite side is also operated, and the electromagnetic pump 1 is turned on. 0 is the normal operating state.
  • Such a differential method is particularly effective when the thrust by electromagnetic induction is small.
  • the components of the present invention described above can be applied individually or in combination to the molten metal supply device, the weighing device, the method of manufacturing a solid product, and the manufacturing device according to the present invention.
  • the present invention can adopt the following aspects.
  • a rotating blade that is provided in the transport pipeline and rotates with the movement of the molten metal; and a detector that detects the number of rotations of the rotating blade,
  • the molten metal supply device wherein a rotating shaft of the rotating blade is eccentrically arranged in the transport pipeline.
  • a rotating blade that is provided in the transport pipeline and rotates with the movement of the molten metal; and a detector that detects the number of rotations of the rotating blade,
  • the rotating blade has a shaft and a blade provided on the shaft, and the jsci shaft
  • a molten metal supply device attached to the transport conduit via a cap member having the following.
  • the shaft, the rotating blades, the transport conduit, and the cap member are each mainly made of aluminum titanate. This is a preferred form.
  • a conduit for conveying the molten metal with an electromagnetic pump A rotating blade that is provided in the transport pipeline and rotates with the movement of the molten metal; and a detector that detects the number of rotations of the rotating blade,
  • the molten metal supply device wherein the cap member is press-fastened to the transfer conduit by a fastening member.
  • the fastening member is a low thermal expansion metal such as stainless steel.
  • a rotating blade that is provided in the transport pipeline and rotates with the movement of the molten metal; and a detector that detects the number of rotations of the rotating blade,
  • a molten metal supply device wherein the cap member is clamped to the transfer conduit by a clamping member, and a tension is applied to the clamping member to a degree that can offset thermal expansion of the clamping member.
  • the tension is preferably applied by an elastic body such as a spring member.
  • a rotating blade that is provided in the transport pipeline and rotates with the movement of the molten metal; and a detector that detects the number of rotations of the rotating blade,
  • the molten metal supply device wherein the rotating blades are mainly made of a low thermal expansion ceramic such as aluminum titanate or silicon porcelain.
  • the supply precision of molten metal can be improved in the electromagnetic pump type molten metal supply apparatus.
  • a molten metal supply device comprising: means for detecting an amount of molten metal in a transport pipeline. According to. Device, it is possible to supply control high melting metal precision c
  • the aluminum alloy in the present invention means an alloy containing aluminum as a main component. Specifically, in addition to aluminum, it contains at least one or more metals that can form an alloy with aluminum, such as Cu, Si, Mg, Zn, Fe, Mn, Ni, and Ti. Just do it. Preferably, it contains Mg. Mg is preferably contained in an amount of not more than 20%.
  • Examples of the aluminum alloy that can be used in the present invention include those listed in Table 1 (unit: wt%).
  • the molten alloy contact member of the present invention is preferably applied to a molten metal member having a portion that may come into contact with the molten alloy.
  • a molten metal member having a portion that may come into contact with the molten alloy.
  • Specific examples include a ladle, a molten metal conveying pipeline, a stirrer, and the like. Maintenance of such a portion is facilitated, and the accuracy of drawing the molten metal is improved. In particular, it is preferable to apply to a ladle.
  • the present invention can be preferably applied to a member having a joint portion of aluminum titanate ceramics, such as a pipe and a forming die. This is because the non-wetting property of the interface at the joint portion is improved, so that the intrusion of the molten metal by the capillary force into the gap at the joint portion can be effectively suppressed. This facilitates maintenance of the joint.
  • the molten alloy contact member of the present invention is preferably applied to an electromagnetic pump type molten metal supply device.
  • the present invention is preferably applied to the rotating blade, the blade, the shaft, the cap member, the float, and the float mounting portion in the molten metal supply device of the present invention.
  • the aluminum titanate ceramic serving as the base material of the contact member of the present invention is a ceramic mainly composed of aluminum titanate (Al 2 Ti 0 5 ) and contains Si. S i is typically contained in the form of silica (S i 0 2 ). However, the present invention is not limited to this mode.
  • the metal element may also be in the form of a double oxide with another metal.
  • the content of silica in the present aluminum titanate ceramics is not particularly limited, but is usually about 1 to 10% by weight. Preferably, it is 4 to 8 wt%.
  • the aluminum titanate ceramics may contain Fe 2 ⁇ 3 , MgO and the like.
  • Aluminum titanate ceramic of the contact member, the site come in contact with at least the molten alloy, A 1 2 0 3, MgO and Mg A 1 2 ⁇ one or more kinds of components selected from the group consisting of 4 Is provided. Providing such a layer effectively suppresses the diffusion of Si in the aluminum titanate ceramics to the contact side with the molten alloy in the case of contact with the molten aluminum alloy.
  • a 1 2 0 3, MgO and MGA 1 2 0 layer containing one or two or more components 4 is selected from the group consisting consists essentially of layers of these single component, Oh Rui A layer substantially composed of a combination of these components can also be formed. In any case, it is preferable that these components are substantially constituted or consist only of these components. More preferably, it is a single phase of one type of ceramic component substantially free of other ceramic components. Further, the layer may have a laminated structure including a plurality of layers.
  • a 1 2 0 3 is preferably is preferably a- A 1 2 0 3.
  • the MgO layer can be obtained by dissolving a magnesium salt in water, dip-coating, and firing in air (preferably at 1100 to 1500). Preferably, it is obtained by dip-coating an aqueous solution of magnesium nitrate, followed by baking in air (preferably at 1100 to 1500).
  • the MGA l 2 ⁇ 4 layer after the formation of the A 1 2 0 3 layer and Z or MgO layer, obtained by the Mg or MgO to be membrane, and Z or, exert A 1 or A 1 2 ⁇ 3
  • the raw material of the film prepared so as to obtain the MGA 0 4 And spinel is produced by firing.
  • magnesium melt the molten metal (e.g. aluminum alloy melt) containing Mg, it is possible to in situ by dipping the member fixed time.
  • alpha-A 1 2 0 after 3 layer formed is in situ a MgA 1 2 0 4 layer.
  • a 1 2 0 3, 1 ⁇ 0 and 8 eight 1 2 0 4 containing layer to have the following (1) any one of the diffusion suppression function of the three kinds of - (3) preferable.
  • the diffusion of Si in the aluminum titanate ceramics means the diffusion of Si in the outward direction (the molten metal side) of the aluminum titanate ceramics.
  • the layer can suppress the diffusion of A1 and Mg in the molten aluminum alloy toward the aluminum titanate ceramics. More specifically, the density and Z or film thickness are set to such an extent that the diffusion suppressing function can be exhibited.
  • the film thickness is preferably from 0.1 lm to 1000 zm. If the thickness is less than 0.1 ⁇ m, the coating is worn away early due to the flow of the molten metal in repeated contact with the molten alloy, and the diffusion inhibiting effect and the substantially non-wetting property cannot be realized.
  • the thickness exceeds l OOO zm, cracks and peeling occur in the cooling process after coating baking due to the difference in the coefficient of thermal expansion between the aluminum titanate ceramics and the coating, and the diffusion prevention effect cannot be exhibited. It is. More preferably, it is 1 m to 500 m. Further, it is preferably from 10 m to 100 m.
  • a 1 2 0 3, MgO and MgA 1 2 0 4 containing layer have shifted also preferably 30% or less porosity. If the porosity exceeds 30%, it becomes difficult to suppress the diffusion of A, Mg, and Si in the aluminum alloy melt and the diffusion of Si in the aluminum titanate ceramics.
  • the protective layer may be an aluminum titanate (Al 2 Ti 5 ) layer having a lower Si content than the base titanate ceramics.
  • Al 2 Ti 5 aluminum titanate
  • the surface of the layer by contact with the molten alloy, shed - A 1 2 0 3 and MgO, MgA 1 2 0 4 protective layer which can impart and maintain the generated non-wettability Is generated on the fly.
  • the content of Si is 3 wt% or less, more preferably, 1 wt% or less, and further preferably, Si is substantially not contained.
  • the thickness is preferably 0.1 to 1000 / m, more preferably 1 to 500 111, and the porosity is preferably 30% or less.
  • Si "Substantially does not contain" is preferably 0.1 wt% or less, more preferably 0.01 wt% or less. Note that contain one or more components selected from the group consisting essentially it is preferable that a single phase of aluminum titanate force A 1 2 0 3, MgO and MGA 1 2 0 4 May be.
  • a 1 2 0 3, MgO , MgA 1 2 0 4 and Z or A 1 2 T i 0 5 by providing a surface layer portion containing, in either case of the coating, thereby suppressing the diffusion of the aluminum titanate ceramic surface S i by contact with the secondary aluminum ⁇ beam molten alloy, ensure non-wetting can, furthermore, subsequently, by Mg a 1 2 0 4 film finally obtained by contact or the like with the molten aluminum alloy, the non get wet Re resistance of the contact portion can be efficiently ensured. Therefore, the non-wetting property can be maintained for a long time.
  • MgA 1 2 0 4 layer finally obtained is also for suppressing the penetration diffusion of S i, can maintain a stable non-wettable.
  • the aluminum titanate ceramics member comprising MGA 1 2 ⁇ four layers according to the present invention, forms the shape of the A 1 2 0 3, MgO and Z or A 1 2 T i 0 5 containing layer in a predetermined region, use in ⁇ process of actual aluminum alloy, these sites by contacting the molten aluminum alloy containing Mg and Z or Mg_ ⁇ , can be obtained by forming a MgA 1 2 0 4 layer.
  • MgA 1 2 0 4 layer forms a shape of the A 1 2 0 3, MgO and Z or A 1 2 T i 0 5 containing layer in a predetermined region, use in ⁇ process of actual aluminum alloy, these sites by contacting the molten aluminum alloy containing Mg and Z or Mg_ ⁇ , can be obtained by forming a MgA 1 2 0 4 layer.
  • MgA 1 2 0 4 layer without forming a MgA 1 2 0 4 layer, only form a A 1 2 0 3 layer and the like, can easily be obtained M
  • the green compacts were of two types: a ladle-shaped one as shown in Fig. 13 and a container-like bonded body set (two members) having the joints shown in Fig. 14.
  • the ladle-shaped body 102 is a hemispherical container provided with one gate as shown in FIGS. 13 (a) and (b), and the joined body set is vertically arranged as shown in FIG. 14 (a).
  • the container 106 is made up of two members.
  • the opening of the lower member 108 has a tapered inner peripheral surface 110, and the upper member 112 is the inner peripheral surface. It is formed in a substantially annular body having an outer peripheral surface portion 114 fitted to 110. The upper and lower two members 1 12 and 108 are fitted together to form an integral container.
  • Example 2 Formation of A 1 2 0 3 layer and MGA 1 2 ⁇ four layers
  • the resulting A 1 2 T i 0 5 ceramics sintered body (a total of three) to alumina sol (Nissan Chemical Industries, Ltd., trade name: Alumina Sol 200 or Alumina Sol 520) after was dip coated and dried at room temperature. Thereafter, by baking 1 hour at 1 100 in air to form a alpha-A 1 2 0 3 layers of whole 5 PI thickness surface of each A 1 2 T i 0 5 ceramic sintered body.
  • a 4C composition is shown in Table 1
  • a 1 2 T i 0 5 ⁇ - A 1 2 0 3 layers of ceramic surface reacts with Mg in A4 C molten, MGA 1 2 ⁇ four layers of a single phase A 1 2 T i 0 5 In- situ formation on ceramic surface.
  • a 4 C the surface of the molten metal before and after immersion of the A 1 2 T I_ ⁇ 5 ceramic sintered body, by X-ray diffraction analysis, single A l 2 ⁇ 3 (molten metal before immersion) shed or MGA l 2 ⁇ 4 (After immersion in the molten metal) was confirmed.
  • the thickness of each layer was measured by energy dispersive X-ray diffraction analysis.
  • the A 1 2 T I_ ⁇ 5 ceramic test piece used are the following three types. That is, i) After cutting the surface of the sintered body prepared in Example 1 into 25mmX25mmX6mm, the surface was finished with 25mmX25mm surface with a # 800 diamond grinding stone (thickness 5mm), and the surface roughness (center line) that the average roughness) of about 3 m, ii) the example 2 using the sintered body the surface finish, Fei thickness of 5 m on the surface - that to form a 1 2 0 3 layer , iii) further a- a 1 2 0 3 layer a 1 having formed a 2 T i 0 5 ceramic sintered body in the aluminum alloy melt (A4C, 720 ° C) to be immersed for 50 hours, the surface of the ⁇ - It was used with varying a 1 2 0 3 layers of MgA 1 2 0 4 layer.
  • MH-type induction-linked observation machine manufactured by Union Optics Co., Ltd. was used. After placing the above test piece on the heating part of this equipment with the final treated surface (25 mm x 25 mm surface) facing up, a cylindrical aluminum alloy block (A4C) with a diameter of 10 mm and a length of 10 mm is placed on that surface. . Then, in an argon gas atmosphere (flow rate 2500 cc / min), the temperature is raised from room temperature to 700 at a rate of 5 / min, and then maintained for 30 seconds. Thereafter, at 700 ° C, a lamp beam was applied to the aluminum alloy and the test piece to project a shadow on the screen, and the contact angle between the test piece surface and the aluminum alloy was measured from the image.
  • argon gas atmosphere flow rate 2500 cc / min
  • This invention can be utilized in the industrial field which manufactures the process or apparatus which conveys and measures a molten metal, or produces a solid with a molten metal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A solenoid pump type molten metal feeder with high feeding accuracy of molten metal, comprising rotary blades rotating with the movement of molten metal in a molten metal transport pipe, wherein the rpm of the rotary blades is detected, thereby making it possible to measure the transport rate of molten metal.

Description

明細書 溶融金属供給装置及び  Description molten metal supply device and
非濡れ性が改善されたチタン酸アルミニゥムセラミックス製部材  Aluminum titanate ceramics members with improved non-wetting properties
〔技術分野〕 〔Technical field〕
この発明は、 例えば、 溶融金属アルミニウムや溶融金属ナトリウムを搬送 ·供 給する溶融金属供給装置に関する。 また、 アルミニウム合金溶湯等の溶融金属に 接触するセラミックス部材の非濡れ性を付与及び維持するための技術に関する。 The present invention relates to a molten metal supply device that conveys and supplies, for example, molten metal aluminum and molten metal sodium. The present invention also relates to a technique for imparting and maintaining non-wetting properties of a ceramic member that comes into contact with a molten metal such as a molten aluminum alloy.
〔背景技術〕 (Background technology)
たとえば、 高速増殖炉における溶融金属ナ卜リゥムゃ铸造施設における溶融 金属アルミニウム等の溶融金属を搬送するのには、 電磁誘導作用によって溶融金 属に推力を付与するリニア誘導電磁ポンプが利用されている。  For example, a linear induction electromagnetic pump that applies thrust to molten metal by electromagnetic induction is used to transport molten metal such as molten aluminum in a molten metal storage facility in a fast breeder reactor. .
溶融金属の供給装置、 特に銬造施設における溶湯供給装置においては、 錶造用 のキヤビティに一定量の溶湯を供給することが、 铸造精度を確保するのに重要で ある。  In a molten metal supply device, particularly in a molten metal supply device in a manufacturing facility, it is important to supply a fixed amount of molten metal to a manufacturing cavity in order to ensure manufacturing accuracy.
電磁ポンプを備える溶湯供給装置の場合、電磁ポンプに供給する電流の周波数、 電流密度、 及び電流供給時間等の各種電流制御によって、 溶湯の移送速度や移送 時間を調節することにより、 錶造キヤビティないしシリンダに溶湯を供給するよ うにしていた。  In the case of a molten metal supply device equipped with an electromagnetic pump, the transfer speed and transfer time of the molten metal are adjusted by various current controls such as the frequency of the current supplied to the electromagnetic pump, the current density, and the current supply time. Molten metal was supplied to the cylinder.
しかしながら、 電磁ポンプでは、 流体である溶湯に推力を付与するものである ため、 電流制御によつてその移送量を正確に制御するのは困難であった。  However, since the electromagnetic pump applies thrust to the molten metal as a fluid, it was difficult to accurately control the transfer amount by current control.
キヤビティへの供給に際して、 吐出用のシリンダが設けられている場合であつ ても、 最終的には電磁ポンプによる溶湯の供給精度が問題となる。 また、 キヤビ ティへの供給路にオリフィスや弁を設けたとしても、 溶湯の供給量は溶湯の供給 精度に依存する。  When supplying to the cavity, even if a discharge cylinder is provided, the supply accuracy of the molten metal by the electromagnetic pump eventually becomes a problem. Even if an orifice or valve is provided in the supply path to the cavity, the supply amount of the molten metal depends on the supply accuracy of the molten metal.
また、 溶融金属供給装置の、 特に溶融金属と接触する部材は、 低熱膨張性でか つ耐熱衝撃性に優れるセラミックスで形成される必要がある。 例えば、 アルミ二 ゥム合金鍩造設備においては、 アルミニウム合金溶湯を一定量、 溶 保持炉から 成形機に移すのに、 チタン酸アルミニウムセラミックス製のラドルが計量装置と して使用されていることが多い。 かかるラドルは、 低熱膨張性と耐熱衝撃性に優 れるチタン酸アルミニウムセラミックスで形成されている。 In addition, the members of the molten metal supply device, particularly those that come into contact with the molten metal, need to be formed of ceramics having low thermal expansion and excellent thermal shock resistance. For example, in aluminum alloy production facilities, a fixed amount of aluminum alloy Ladles made of aluminum titanate ceramics are often used as measuring devices to transfer to molding machines. Such a ladle is made of aluminum titanate ceramics having excellent low thermal expansion and thermal shock resistance.
ここで、 チタン酸アルミニウムセラミックスは低熱膨張性を有し、 耐熱衝撃性 に優れることが知られている。 しかしながら、 チタン酸アルミニウムセラミック スにおける低熱膨張性は、 結晶粒界に生じる亀裂による見かけ上のものである。 したがって、 この粒界亀裂により機械的強度が著しく弱いことが問題となってい た。  Here, it is known that aluminum titanate ceramics have low thermal expansion properties and are excellent in thermal shock resistance. However, the low thermal expansion of aluminum titanate ceramics is apparent due to cracks at the grain boundaries. Therefore, there was a problem that the mechanical strength was remarkably weak due to the grain boundary crack.
そこで、 見かけの低熱膨張性を維持しながら機械的強度を高めるために、 一般 に数 w t %〜1 O w t %のシリカが添加されている。 これにより、 チタン酸アル ミニゥムの焼結過程における粒成長が抑制され、 その結果として、 焼結させた後 の冷却過程で発生する結晶粒界応力が低減され、 亀裂の発生が抑制されるためセ ラミックスの機械的強度が向上する。  Therefore, in order to increase the mechanical strength while maintaining the apparent low thermal expansion property, silica of several wt% to 1 O wt% is generally added. As a result, grain growth during the sintering process of aluminum titanate is suppressed, and as a result, the grain boundary stress generated in the cooling process after sintering is reduced, and the generation of cracks is suppressed. The mechanical strength of Lamix is improved.
しかしながら、 チタン酸アルミニウムセラミックス製のラドルは、 溶湯汲み取 り回数が 1 0 0 0回程度の連続使用により非濡れ性が大きく低下し、 ラドル内と その注ぎ口にアルミニウムが残留するようになる。 その結果、 成形機への定量供 給が困難となり、 铸造部品重量の変動に起因する不良品発生率の増大をもたらす ことにもなる。  However, with aluminum titanate ceramics ladles, the non-wettability is greatly reduced due to continuous use of the molten metal with about 1000 times, and aluminum remains in the ladles and in the spouts. As a result, it becomes difficult to supply a constant amount to the molding machine, and the rejection rate increases due to fluctuations in the weight of the manufactured parts.
さらに、 ラドル注ぎ口に付着固化したアルミニウム合金塊が錶造システム装置 と接触し、 ラドル自身の破壊あるいはラドルマシンの損傷に至る。  In addition, the solidified aluminum alloy mass attached to the spout of the ladle comes into contact with the forging system equipment, causing the destruction of the ladle itself or damage to the ladle machine.
現状では、 非濡れ性低下後に溶湯供給用ラドル装置を止めて、 ラドルに付着し たアルミニウム合金を機械的に剥ぎ取る等の方法が取られている。 生産性の向上 のためには、 少なくとも汲み取り回数が 1 0 0 0 0回での非濡れ性を維持してい ることが要求されている。  At present, a method is used in which the molten metal supply ladder device is stopped after the non-wetting property is reduced, and the aluminum alloy attached to the ladle is mechanically peeled off. In order to improve productivity, it is required that non-wetting be maintained at least at 100,000 times of pumping.
以上のことから、 溶融金属の供給精度の良好な溶融金属供給装置が要望されて いた。 そして、 特に、 アルミニウム合金溶湯に対する非濡れ性及びその持続性の 付与により溶湯の供給精度の良好な溶湯接触部材が要望されていた。  In view of the above, there has been a demand for a molten metal supply device with good molten metal supply accuracy. In particular, there has been a demand for a molten metal contact member having good supply accuracy of the molten metal by imparting non-wettability to the molten aluminum alloy and its durability.
上記した課題を解決するための手段として、 本発明者らは、 以下の発明を創出 した。 本発明者らは、 供給精度のよい電磁ポンプ式溶融金属供給装置を開発した。 すなわち、 本発明は、 溶融金属供給装置であって、 The present inventors have created the following inventions as means for solving the above problems. The present inventors have developed an electromagnetic pump type molten metal supply device with a high supply accuracy. That is, the present invention relates to a molten metal supply device,
電磁ポンプを備える溶融金属の搬送管路と、  A conduit for conveying the molten metal with an electromagnetic pump,
この搬送管路内に設けられる、 溶融金属の移動に伴って回転する回転羽根と、 この回転羽根の回転数を検出する検出器、  A rotating blade that is provided in the transport pipeline and rotates with the movement of the molten metal; and a detector that detects the number of rotations of the rotating blade,
とを備える、 溶融金属供給装置を提供する。 A molten metal supply device comprising:
この装置によれば、 搬送管路内を電磁誘導により搬送される溶融金属の搬送量 を、検出器により検出される回転羽根の回転数に基づいて計測することができる。 あるいは回転数に基づいて搬送量を調節することもできる。 このため、 溶融金属 の供給量を精度よく制御することができる。 この装置においては、 前記搬送管路 には、 搬送管路内の溶融金属量の検出手段を備えていることが好ましい態様であ る。 かかる態様によれば、 搬送管路内の溶湯量の変化により生じる搬送量の検出 や制御における正確性や精度を補償できる。  According to this device, it is possible to measure the transport amount of the molten metal transported in the transport pipeline by electromagnetic induction based on the rotation speed of the rotating blades detected by the detector. Alternatively, the transport amount can be adjusted based on the number of rotations. For this reason, the supply amount of the molten metal can be accurately controlled. In this apparatus, it is a preferable embodiment that the transport conduit includes a means for detecting the amount of molten metal in the transport conduit. According to this aspect, it is possible to compensate for the accuracy and precision in detecting and controlling the transport amount caused by a change in the amount of molten metal in the transport pipeline.
また、 本発明の一つの態様によれば、  According to one aspect of the present invention,
電磁ポンプを用いて溶融金属を供給して錶物を製造する方法であって、 錶造用のキヤビティへ溶融金属を搬送する搬送管路に回転羽根を備え、 溶融金属の搬送時における回転羽根の回転数を検出し、  A method of manufacturing molten metal by supplying molten metal using an electromagnetic pump, comprising a rotating blade in a transport pipeline for transporting the molten metal to a manufacturing cavity, wherein the rotating blade is moved during transport of the molten metal. Detect the rotation speed,
この回転数により溶融金属の供給量を制御する、 方法も提供される。  A method for controlling the supply amount of the molten metal by the rotation speed is also provided.
この方法によると、 錶造精度の高い錶物を容易に得ることができる。  According to this method, it is possible to easily obtain a high-precision animal.
さらに、 本発明の他の態様によれば、  Further, according to another aspect of the present invention,
電磁ポンプ式溶融金属供給装置の計量装置であつて、 A measuring device for an electromagnetic pump type molten metal supply device,
溶融金属の搬送管路に備えられ、 溶融金属の移動に伴って回転される回転羽根 と、  Rotating blades provided in a molten metal conveying pipe and rotated with the movement of the molten metal;
この回転羽根の回転数を検出する検出器、  A detector for detecting the number of rotations of the rotating blades,
とを有する、 装置も提供される。 この計量装置においては、 さらに、 搬送管路に 備えられる、 搬送管路内の溶融金属量の検出手段を備えていることが好ましい態 様である。 An apparatus having: In a preferred embodiment, the weighing device further includes a means for detecting the amount of molten metal in the transport line provided in the transport line.
この装置によれば、 溶融金属の搬送量を精度良く計量することができる。 また、 本発明者らが、 チタン酸アルミニウムセラミックスのアルミニウム合金 溶湯に対する非濡れ性の低下について検討したところ、 チタン酸アルミニウムセ ラミックスに添加されるシリカがアルミニウム合金溶湯中の A 1や M gによって 還元されチタン酸アルミニウムセラミックスの表面に S i粒子が生成され、 この S i粒子の存在によって非濡れ性の低下が生じることがわかった。 また、 シリカ の還元に伴って、 チタン酸アルミニウムセラミックスの表面では、 M g Oや A 1 23が生成し、 さらにこれらから、 チタン酸アルミニウムセラミックスの表面に M g A 1 24が生成していることもわかった。 According to this device, the transport amount of the molten metal can be accurately measured. In addition, the present inventors examined the reduction of non-wettability of aluminum titanate ceramics to molten aluminum alloy, and found that silica added to aluminum titanate ceramics depends on A 1 and Mg in the aluminum alloy molten metal. It was found that Si particles were generated on the surface of the aluminum titanate ceramics after the reduction, and that the presence of the Si particles reduced the non-wetting property. Further, with the reduction of the silica, the surface of the aluminum titanate ceramics, to generate the M g O and A 1 23, further from these, M g A 1 24 on the surface of the aluminum titanate ceramic produced I knew I was doing it.
すなわち、 本発明者らは、 非濡れ性低下を抑制あるいは回避し、 非濡れ性を付 与しあるいは持続させるには、 アルミニウム合金溶湯と接触するチタン酸アルミ ニゥムセラミックスの表面における S iの存在あるいは生成を回避することによ つて達成されることを見出した。  That is, the present inventors have found that the presence of Si on the surface of aluminum titanate ceramics in contact with the molten aluminum alloy is necessary to suppress or avoid a decrease in non-wetting and to impart or maintain non-wetting. Alternatively, it has been found that this can be achieved by avoiding generation.
よって、 本発明によれば、 以上の知見により、 以下の手段が提供される。  Therefore, according to the present invention, the following means are provided based on the above findings.
すなわち、 チタン酸アルミニゥムセラミックス製アルミニゥム合金溶湯接触部 材であって、  That is, a contact material for an aluminum alloy melt made of aluminum titanate ceramics,
少なくともアルミニウム合金溶湯と接触する部位に、 A 1 203、 M g O、 およ び M g A 1 204からなる群から選択される 1種あるいは 2種以上の成分を含有し、 前記チタン酸アルミニウムセラミックス製基材ょりも S i含有量が少ない層を備 える部材が提供される。 At least a portion in contact with the molten aluminum alloy, containing A 1 2 0 3, M g O, and M g A 1 2 0 1 kind or 2 or more components selected from the group consisting of 4, the A member provided with a layer having a low Si content is also provided for the substrate made of aluminum titanate ceramics.
また、 チタン酸アルミニウムセラミックス製アルミニウム合金溶湯接触部材で あって、  In addition, the contact member is an aluminum alloy molten metal contact member made of aluminum titanate ceramics,
少なくともアルミニウム合金溶湯と接触する部位に、 前記チタン酸アルミニゥ ムセラミックス製基材よりも S i含有量が少ないチタン酸アルミニウム層を備え る部材が提供される。  There is provided a member provided with an aluminum titanate layer having a lower Si content than the aluminum titanate ceramics base material at least in a portion in contact with the aluminum alloy melt.
また、 これらの接触部材を備える溶湯供給装置も提供される。  Also, a molten metal supply device provided with these contact members is provided.
チタン酸アルミニウムセラミックス製アルミニウム合金溶湯接触部材の製造方 法であって、  A method for producing an aluminum alloy molten metal contact member made of aluminum titanate ceramics,
チタン酸アルミニウムセラミックス製部材の少なくともアルミニウム合金溶湯 と接触する部位に、 A 1 2〇,、 M g Oおよび A 1 2T i 05からなる群から選択さ れる 1種あるいは 2種以上を含有し、 前記チタン酸アルミニウムセラミックス製 基材よりも S i含有量が少ない層を形成する工程と、 At least a portion in contact with the molten aluminum alloy, A 1 2 〇 ,, M g O and A 1 2 T i 0 is selected from the group consisting of 5 aluminum titanate ceramic member Forming a layer containing one or more of the above-mentioned materials and having a lower Si content than the aluminum titanate ceramics base material;
A 1 203、 M g Oおよび 又は A 1 2Τ ϊ 05を含有する層にマグネシウムおよ び Zまたはアルミニウムを作用させて M g A 1 204を生成させる工程、 とを備える、 方法が提供される。 A 1 2 0 3, M g O and or A 1 2 Τ ϊ 0 5 reacted with beauty Z or aluminum Oyo magnesium layer containing by step of generating a M g A 1 2 0 4, comprises a capital, A method is provided.
また、 アルミニウム合金溶湯接触部材の製造方法であって、  Also, the method for manufacturing a contact member for molten aluminum alloy,
チタン酸アルミニウムセラミックス製の 2以上の部材が接合される部位であつ て、 少なくともアルミニウム合金溶湯と接触する部位に、 A 1 203、 M g Oおよ び A 1 2T i 05からなる群から選択される 1種あるいは 2種以上を含有し、 前記 チタン酸アルミニウムセラミックス製基材よりも S i含有量が少ない層を形成す る工程と、 Shall apply at the site where two or more members made of aluminum titanate ceramics are joined, in a zone that is in contact with at least the molten aluminum alloy, consisting of A 1 2 0 3, M g O and A 1 2 T i 0 5 Forming a layer containing one or more selected from the group and having a lower Si content than the aluminum titanate ceramics base material;
A 1 203、 M g〇および/又は A 1 2T i 05を含有する層にマグネシウムおよ び Zまたはアルミニウムを作用させて M g A 1 204を生成させる工程、 を備える 方法も提供される。 How comprising the step, to generate M g A 1 2 0 4 by the action of magnesium and Z or aluminum layer containing the A 1 2 0 3, M G_〇 and / or A 1 2 T i 0 5 Is also provided.
また、 アルミニウム合金鍩物の製造方法であって、  Also, a method for producing aluminum alloys, comprising:
少なくともアルミニウム合金溶湯と接触する部位に、 A 1 203、 M g Oおよび A 1 2T i〇5からなる群から選択される 1種あるいは 2種以上を含有し、 前記チ タン酸アルミニウムセラミックス製基材よりも S i含有量が少ない層を備えるチ 夕ン酸アルミニウムセラミックス製のアルミニゥム合金溶湯接触部材を、 铸造ェ 程の少なくとも一部において、 M gを含有するアルミニウム合金溶湯に接触させ て、 A 1 203、 M g Oおよび Z又は A 1 2T i 05を含有する層において M g A 〇4を生成させる工程、 A portion in contact with at least the molten aluminum alloy, A 1 2 0 3, M g O and A 1 contains 2 T I_〇 one or more members selected from the group consisting of 5, the titanium aluminum ceramics The aluminum alloy melt contacting member made of aluminum titanate ceramic having a layer having a lower Si content than the base material is contacted with the aluminum alloy melt containing Mg in at least a part of the fabrication process. , the step of generating a M g a 〇 4 in the layer containing the a 1 2 0 3, M g O , and Z or a 1 2 T i 0 5,
とを有する、 方法も提供される。 And a method comprising:
さらに、本発明によれば、アルミニウム合金溶湯接触部材の製造方法であって、 少なくともアルミニウム合金溶湯と接触する部位に、 A l 23、 M g Oおよび A 1 2T i 05からなる群から選択される 1種あるいは 2種以上を含有し、 前記チ タン酸アルミニウムセラミックス製基材よりも S i含有量が少ない層を備えるチ 夕ン酸アルミニウムセラミックス製のアルミニゥム合金溶湯接触部材を、 錶造ェ 程の少なくとも一部において、 M gを含有するアルミニウム合金溶湯に接触させ て、 A 1 203、 M g Oおよび/又は A 1 2T i 05を含有する層において M g A 1 2 04を生成させる工程、 Furthermore, according to the present invention, a manufacturing method of an aluminum alloy melt contact member, in a zone that is in contact with at least the molten aluminum alloy, A l 23, M g O and A 1 2 T i 0 the group consisting of 5 A contact member made of aluminum titanate ceramics aluminum alloy, comprising one or more selected from the group consisting of: and a layer having a lower Si content than the aluminum titanate ceramics base material; In at least a part of the fabrication process, it is brought into contact with molten aluminum alloy containing Mg. Te, A 1 2 0 3, M g O and / or A 1 step of generating a M g A 1 2 0 4 in the layer containing the 2 T i 0 5,
とを有する、 方法が提供される。 And a method comprising:
〔図面の簡単な説明〕  [Brief description of drawings]
図 1 Figure 1
本発明に係る溶融金属供給装置の全体構成を示す図である。  It is a figure showing the whole molten metal supply device composition concerning the present invention.
図 2 Figure 2
搬送管路と電磁ポンプとを上方視した場合の図である。  FIG. 4 is a diagram when the transfer pipeline and the electromagnetic pump are viewed from above.
図 3 Fig. 3
搬送管路に対する電磁ポンプの好ましい配置状態を示す断面図(a )及び(b ) である。  FIGS. 4A and 4B are cross-sectional views illustrating a preferred arrangement of an electromagnetic pump with respect to a transport pipeline.
図 4 Fig. 4
溶融金属供給装置における計量装置の全体を示す断面図である。  It is sectional drawing which shows the whole measuring device in a molten metal supply apparatus.
図 5 Fig 5
回転羽根の構造の一例を示す図である。  It is a figure which shows an example of the structure of a rotating blade.
図 6 Fig. 6
図 6 ( a ) は、 搬送管路における回転羽根の配置状態を、 溶融金属の流路に添 う方向における断面図で表した図である。 図 6 ( b ) は、 搬送管路における回転 羽根の配置状態を、 流路を横断する方向における断面図で示した図である。 図 6 ( c ) は、 搬送管路における回転羽根の配置状態を上方視で示した図である。 図 7 搬送管路における溶融金属量を検出する手段を示す図である。  FIG. 6A is a cross-sectional view of the arrangement state of the rotating blades in the transfer pipeline in a direction along the flow path of the molten metal. FIG. 6 (b) is a cross-sectional view of the arrangement state of the rotating blades in the transport pipeline in a direction crossing the flow path. FIG. 6 (c) is a diagram showing the arrangement state of the rotating blades in the transport pipeline as viewed from above. FIG. 7 is a diagram showing a means for detecting the amount of molten metal in a transport pipeline.
図 8 Fig. 8
回転羽根の搬送管路内への装着構造の一例を示す断面図である。  It is sectional drawing which shows an example of the mounting structure of a rotating blade in a conveyance pipe.
図 9 Fig. 9
回転羽根の搬送管路への装着のための嵌合孔とキャップの構造を示す斜視図で ある。  FIG. 4 is a perspective view showing a structure of a fitting hole and a cap for mounting a rotating blade to a transport pipeline.
図 1 0 Fig. 10
キャップの搬送管路に対する固定構造の一例を示す断面図である。 逆流防止装置の一例を示す図である。 It is sectional drawing which shows an example of the fixing structure with respect to the conveyance pipe of a cap. It is a figure showing an example of a backflow prevention device.
図 12  Fig. 12
溶融金属の搬送開始時の電磁ポンプの制御方法を示す図である。  It is a figure which shows the control method of the electromagnetic pump at the time of the conveyance start of a molten metal.
図 13 Fig. 13
実施例で作製したセラミックス製ラドルの形態を示す図 13 (a) 及び図 1 3 (b) である。 図 13 (a) は平面図であり、 図 13 (b) は、 図 13 (a) の A_A線断面図である。  FIGS. 13 (a) and 13 (b) show the form of the ceramic ladle produced in the example. FIG. 13 (a) is a plan view, and FIG. 13 (b) is a cross-sectional view taken along line A_A of FIG. 13 (a).
図 14 Fig. 14
実施例で作製したセラミックス製接合体セッ卜の形態を示す図 (a)及び(b) である。 図 14 (a) は、 接合体セットを上下に分離した状態の縦断面図であり、 図 14 (b) は、 下部部材の平面図である。  (A) and (b) showing the form of the joined body set made of ceramics produced in the example. FIG. 14 (a) is a longitudinal sectional view showing a state where the joined body set is vertically separated, and FIG. 14 (b) is a plan view of a lower member.
(発明を実施するための最良の形態)  (Best mode for carrying out the invention)
以下、 本発明の実施の形態について詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail.
本発明に係る電磁ポンプ式溶融金属供給装置は、 少なくとも、 電磁ポンプによ つて搬送される溶融金属の搬送管路内に、 溶融金属の移動に伴って回転する回転 羽根と、 この回転羽根の回転数を検出する検出器、 とを備えている。 当該回転羽 根と検出器とは、 本願発明に係る計量装置を構成する。  An electromagnetic pump-type molten metal supply device according to the present invention includes: a rotating blade that rotates with the movement of the molten metal; and a rotating blade that rotates with the movement of the molten metal. A detector for detecting the number. The rotating blade and the detector constitute a weighing device according to the present invention.
また、 本願発明に係る銬物の製造方法は、 本供給装置を用いることが好ましい 態様である。  In addition, in the method for producing a food according to the present invention, it is a preferable aspect to use the present supply device.
以下、 本発明に係る溶融金属供給装置を例示して、 本発明の実施形態について 具体的に説明する。  Hereinafter, an embodiment of the present invention will be specifically described with reference to a molten metal supply device according to the present invention.
本溶融金属供給装置 2の全体構成を図 1に示す。 本発明における溶融金属供給 装置 (以下、 本供給装置ともいう。 ) としては、 錶造用の溶融金属 (溶湯) を供 給する装置 (铸造装置) でも、 また、 高速増殖炉に溶融金属ナトリウムを供給す る装置であってもよいが、 好ましくは、 銬造用溶湯供給装置である。  FIG. 1 shows the overall configuration of the present molten metal supply device 2. As the molten metal supply device (hereinafter, also referred to as the present supply device) in the present invention, a device for supplying a molten metal (molten metal) for production (a production device), or a molten metal sodium supplied to a fast breeder reactor. Although it may be a device for supplying, it is preferably a molten metal supply device for production.
本供給装置 2は、 踌造用溶湯供給用の装置であり、 搬送管路 4とこの管路に沿 つて配置される電磁ポンプ 10と、 計量装置 20とを備えている。  The supply device 2 is a device for supplying a molten metal for production, and includes a transfer pipe 4, an electromagnetic pump 10 arranged along the pipe, and a measuring device 20.
(搬送管路)  (Transport pipeline)
本供給装置 2に備えられる溶融金属を搬送する搬送管路 4の形状は、 特に限定 しないが、 好ましくは扁平形状である。 扁平形状の場合、 その長辺側の側面に沿 つて、 誘導子を配置することによって効率的に電磁ポンプが構成される。 すなわ ち、管路内にコアを備えなくても溶融金属に対して十分な駆動トルクが得られる。 搬送管路 4としては、 具体的には、 扁平状の角筒あるいは楕円形状の円筒を用い ることができる。 The shape of the transport line 4 for transporting the molten metal provided in the supply device 2 is particularly limited. However, it is preferably flat. In the case of a flat shape, an electromagnetic pump is efficiently constructed by arranging an inductor along the long side surface. In other words, a sufficient driving torque for the molten metal can be obtained without providing a core in the pipeline. Specifically, a flat rectangular tube or an elliptical cylinder can be used as the transfer conduit 4.
搬送管路 4の材質は、 磁束が通過される非磁性体であればよく、 セラミックス を使用できる。 好ましくは、 低熱膨張性のセラミックスであり、 熱膨張係数が 1 X 1 o - : (室温〜 1 0 0 0 ) 以下である。 熱膨張係数がこの数値を超え ると、 溶融金属の搬送時における熱衝撃で破壊するおそれが高くなる。 かかる材 料としては、 チタン酸アルミニウムを挙げることができる。  The material of the transfer conduit 4 may be a non-magnetic material through which a magnetic flux passes, and ceramics can be used. Preferably, the ceramic is a low thermal expansion ceramic having a thermal expansion coefficient of 1 × 1 o −: (room temperature to 100 000) or less. If the coefficient of thermal expansion exceeds this value, there is a high possibility that the molten metal will be broken by thermal shock during transportation. An example of such a material is aluminum titanate.
搬送管路 4内においては、 溶融金属が冷却されて固化するのを防止する必要が ある。 このため、 搬送管路 4は、 溶融温度が維持されるように保温されることが 好ましい。 特に、 搬送管路 4の表面に凹状溝を形成することにより、 熱伝導性を 向上させるとともに、 管状ヒータを搬送管路 4に巻き付けることが好ましい。 一方、 搬送管路 4の周囲に配置される電磁ポンプ 1 0は、 その作動を維持する ために、 冷却されなければならない。 このため加熱保温される搬送管路の外周に は、 断熱層が形成されることが好ましい。 断熱層は、 断熱材とガス (空気) 層で 構成することが好ましい。 断熱材としては、 セラミックス、 ガラス等を使用でき る。 また、 ガス層としては、 通気路に空気を強制通過させるようにして形成する ことができる。 なお、 かかる断熱構造は、 搬送管路 4の全体において付与される ことが好ましい。  In the transfer pipeline 4, it is necessary to prevent the molten metal from being cooled and solidified. For this reason, it is preferable that the transfer pipeline 4 be kept warm so that the melting temperature is maintained. In particular, it is preferable to form a concave groove on the surface of the transfer pipe 4 to improve the thermal conductivity and wind the tubular heater around the transfer pipe 4. On the other hand, the electromagnetic pump 10 disposed around the transfer line 4 must be cooled in order to maintain its operation. For this reason, it is preferable that a heat insulating layer is formed on the outer periphery of the transport pipe that is heated and kept warm. The heat insulation layer is preferably composed of a heat insulation material and a gas (air) layer. Ceramics, glass, etc. can be used as the heat insulating material. Further, the gas layer can be formed by forcibly passing air through the ventilation path. It is preferable that such a heat insulating structure is provided in the entirety of the transport pipeline 4.
(電磁ポンプ)  (Electromagnetic pump)
本供給装置 2における、 電磁ポンプ 1 0の構造としては、 各種構造を採用する ことができる。 外置型や浸漬型等のいずれでもよく、 これらを改変したものであ つてもよい。  Various structures can be adopted as the structure of the electromagnetic pump 10 in the supply device 2. Any of an external type, an immersion type, and the like may be used, and modified ones thereof may be used.
電磁ポンプ 1 0は、 搬送管路 4内の溶融金属に移動トルクが発生するように、 誘導子 1 2が配置される。 誘導子 1 2は、 少なくとも、 ステ一夕コア 1 4と、 コ ィル 1 6とを構成要素とする。  In the electromagnetic pump 10, the inductor 12 is arranged so that a moving torque is generated in the molten metal in the transfer pipeline 4. The inductor 12 includes at least a steel core 14 and a coil 16 as components.
図 2に搬送管路 4と電磁ポンプ 1 0とを上方視した図を示す。 搬送管路 4の形状によっては、 ステ一夕コア 1 4とコイル 1 6のみによって搬 送管路内の溶融金属に十分な駆動トルクが生じるが、 さらに、 さらにこのステー 夕コアに対向するようにコアを搬送管路 4の内部に備えるようにすることもでき る。 FIG. 2 shows a diagram of the transfer pipeline 4 and the electromagnetic pump 10 as viewed from above. Depending on the shape of the transfer line 4, a sufficient drive torque is generated in the molten metal in the transfer line only by the stay core 14 and the coil 16; The core may be provided inside the transport pipeline 4.
ステ一夕コア 1 4とコイル 1 6のみを備える場合とは、 搬送管路 4の外側に搬 送管路 4を介して対向状に備えられるステ一夕コア 1 4とコイル 1 6からなる誘 導子 1 2が、 搬送管路 4の幅が十分に狭いために、 別途搬送管路 4の内部にコア を要しない場合である。  The case where only the stay core 14 and the coil 16 are provided means that the stay core 14 and the coil 16 are provided on the outside of the transfer pipe 4 via the transfer pipe 4 so as to face each other. In this case, the conductor 12 does not require a separate core inside the transfer pipe 4 because the width of the transfer pipe 4 is sufficiently small.
また、 ステ一夕コア 1 4とコイル 1 6からなる誘導子 1 2は、 搬送管路 4の内 側に設けることもできる。 例えば、 搬送管路 4を外管と内管との二重構造とし、 この内管にステ一夕コア 1 4とコイル 1 6とを備えるようにし、 外管自体を磁性 体で形成してコアとすることもできる。  Further, the inductor 12 composed of the stay core 14 and the coil 16 can be provided inside the transfer pipeline 4. For example, the transfer pipe 4 has a double structure of an outer pipe and an inner pipe, and the inner pipe is provided with a stay core 14 and a coil 16, and the outer pipe itself is formed of a magnetic material to form a core. It can also be.
なお、誘導子 1 2は、搬送管路 4に対して各種形態で配置することができるが、 図 3に示すように配置することが好ましい。 すなわち、 搬送管路 4の外側にステ 一夕コア 1 4とコイル 1 6とを備える場合、縦長の方形状の搬送管路 4の両側に、 搬送管路 4をはさんで水平状態 (同じ高さ位置) あるいは水平から 1 5度までの 角度に傾斜した状態で配置されることが好ましい。 1 5度を超えると、 搬送管路 4からの溶融金属の漏出が発生した場合において、 電磁ポンプ 1 0の構成部分を 損なう恐れが高くなる。 より好ましくは、 水平あるいは水平から 6度までの角度 範囲で傾斜するようにする。 なお、 図 3 ( a ) 及び (b ) に示すように、 搬送管 路 4とその両側の誘導子 1 2は、 搬送管路 4の軸方向に垂直な断面からみて、 搬 送管路 4の横中心線と両側の誘導子 1 2の横中心は、 一致していることが好まし い。  In addition, the inductor 12 can be arranged in various forms with respect to the transport pipeline 4, but is preferably arranged as shown in FIG. In other words, when the stay core 14 and the coil 16 are provided outside the transfer pipe 4, the transfer pipe 4 is placed on both sides of the vertically long transfer pipe 4 in a horizontal state (same height). It is preferable that they are arranged at an angle of 15 degrees from horizontal. If the temperature exceeds 15 degrees, there is a high possibility that the components of the electromagnetic pump 10 will be damaged when the molten metal leaks from the transfer pipeline 4. More preferably, it is inclined horizontally or in an angle range from horizontal to 6 degrees. As shown in FIGS. 3 (a) and (b), the transfer line 4 and the inductors 12 on both sides of the transfer line 4 are viewed from a cross section perpendicular to the axial direction of the transfer line 4. It is preferable that the horizontal center line and the horizontal centers of the inductors 12 on both sides coincide.
本供給装置 2は、 溶融金属が溶融状態で維持される溶融保持炉 1 8を併せて備 えていることもできる。 この場合、 溶融保持炉 1 8の底部付近から上方を指向し て接続された搬送管路 4を備えることが好ましい。 さらに、铸造装置の場合には、 この搬送管路の先端は、 铸造用キヤビティ 5に接続される。  The present supply device 2 may also include a melting and holding furnace 18 for maintaining the molten metal in a molten state. In this case, it is preferable to provide the transfer pipeline 4 connected upward from the vicinity of the bottom of the melting and holding furnace 18. Further, in the case of the manufacturing apparatus, the tip of the transfer pipeline is connected to the manufacturing cavity 5.
(計量機構)  (Measuring mechanism)
本供給装置 2は、 電磁ポンプ 1 0によって搬送される溶融金属の計量機構 (装 置) として、 溶融金属の移動に伴って回転する回転羽根 22と、 この回転羽根の 回転数を検出する検出器 32とを備えている。 図 4に、 計量装置 20の詳細な構 造を示す。 The supply device 2 includes a measuring mechanism (equipment) for the molten metal conveyed by the electromagnetic pump 10. The rotating blades 22 rotate with the movement of the molten metal, and the detector 32 detects the number of rotations of the rotating blades. FIG. 4 shows a detailed structure of the weighing device 20.
(回転羽根)  (Rotating blade)
回転羽根 22の一形態を図 5に示す。 回転羽根 22は、 搬送管路 4内を移動す る溶融金属により回転可能な形状及び構造に形成されている。 羽根の形態は、 特 に限定しないが、 スクリュー型、 羽根車等とすることができる。 好ましくは、 羽 根車型である。  FIG. 5 shows an embodiment of the rotating blade 22. The rotating blades 22 are formed in a shape and structure that can be rotated by molten metal that moves in the transport pipeline 4. The shape of the blade is not particularly limited, but may be a screw type, an impeller, or the like. Preferably, it is an impeller type.
本装置 2においては、 回転羽根 22は、 シャフト 24とシャフト 24に備えら れる羽根 26によって構成される。 溶融金属の移動により羽根 26に圧力がかか り、 これにより、 羽根 26とシャフト 24とが回転される。  In the present device 2, the rotating blade 22 is constituted by a shaft 24 and a blade 26 provided on the shaft 24. Pressure is applied to the blade 26 due to the movement of the molten metal, whereby the blade 26 and the shaft 24 are rotated.
回転羽根 22の構成材料は、 本供給装置 2に適用される溶融金属に対して、 非 濡れ性、 耐触性、 耐熱衝撃性等を備えていることが好ましい。 特に、 溶融金属ァ ルミ二ゥムに適用される場合、 熱膨張係数が 1 X 10— 6Z°C (室温〜 100 0°C) 以下であることが好ましい。 かかる熱膨張係数を超えると、 回転羽根 22 が破壊する恐れが顕著に増大するからである。 かかる熱膨張係数等を備える非磁 性の材料としては、 セラミックスであり、 特に、 チタン酸アルミニウム (T i A 1205) やサイアロンを主体とするセラミックスを挙げることができる。 なお、 サイアロンとは、 S i 3N4の固溶体の一種であり、 )3'—サイアロンと、 α—サ ィァロンとの 2種類がある。 サイアロンとは、 S i 6_ΖΑ lzOzN6_zで表 される化合物であり、 ζは 0より大きく、 最大 4. 2までの数値を取りうるもの である。 また、 α—サイアロンとは、 Mx (S i、 A l) 12 (N, O) 16で表さ れる化合物であり、 Xは、 0より大きく 2. 0以下である。 Mは、 L i、 Mg、 Ca、 及び希土類元素 (Y, Nd、 Yb等を含む) からなる群から選択される 1 種以上である。 It is preferable that the constituent material of the rotary blade 22 has a non-wetting property, a contact resistance, a thermal shock resistance, and the like with respect to the molten metal applied to the supply device 2. In particular, when applied to the molten metal § Rumi two © beam, it is preferable thermal expansion coefficient is less than 1 X 10- 6 Z ° C (room temperature ~ 100 0 ° C). If the coefficient of thermal expansion is exceeded, the risk of breakage of the rotating blades 22 increases significantly. The nonmagnetic material having such a thermal expansion coefficient such as a ceramic, in particular, mention may be made of ceramic mainly composed of aluminum titanate (T i A 1 2 0 5 ) or sialon. Sialon is a kind of solid solution of Si 3 N 4 ). There are two types of sialon: 3′-sialon and α-sialon. Sialon is a compound represented by S i 6 — Ζ Α l z O z N 6 — z , where ζ is greater than 0 and can take a value up to 4.2. Further, α-sialon is a compound represented by M x (S i, Al) 12 (N, O) 16 , and X is larger than 0 and equal to or smaller than 2.0. M is at least one selected from the group consisting of Li, Mg, Ca, and rare earth elements (including Y, Nd, Yb, etc.).
回転羽根 22は、 溶融金属の移動方向に対して回転軸 (シャフト) 24が直交 するように搬送管路 4内に配置されることが好ましい。 さらに好ましくは、 回転 軸 24が垂直となる形態とする。 特に、 搬送管路 4の両側部に誘導子 12が配置 されている場合において好ましい。 図 6に、 搬送管路 4内に配置された回転羽根 2 2の状態を示す。 図 6 ( a ) 及 び図 6 ( b ) に示すように、 回転羽根 2 2の回転軸 2 4が、 溶融金属の移動方向 に対して直交しかつ垂直に配置される場合、 図 6 ( b ) に示すように、 その回転 軸 2 4が、搬送管路 4の縦中心に対して偏心して配置されていることが好ましレ^ すなわち、 回転羽根 2 2と搬送管路 4の側壁との間に形成される溶融金属の流路 の幅が均等にならないように配置されていることが好ましい。 このように形成す ると、 溶融金属の移動により回転羽根 2 2に不均一な差圧がかかるため、 回転羽 根 2 2の回転がスムーズに開始され継続される。 この場合、 溶融金属の流路の幅 が大きくなる側の羽根 2 6により大きな圧力が係り、 当該側の羽根 2 6が下流方 向に移動するように、 回転羽根 2 2が回転されることになる。 The rotating blades 22 are preferably arranged in the transport pipeline 4 such that a rotating shaft (shaft) 24 is orthogonal to the moving direction of the molten metal. More preferably, the rotation axis 24 is vertical. In particular, this is preferable when the inductors 12 are arranged on both sides of the transfer pipeline 4. FIG. 6 shows a state of the rotating blades 22 arranged in the transport pipeline 4. As shown in FIGS. 6 (a) and 6 (b), when the rotating shaft 24 of the rotating blade 22 is arranged orthogonally and perpendicularly to the moving direction of the molten metal, FIG. ), It is preferable that the rotary shaft 24 is disposed eccentrically with respect to the longitudinal center of the transport pipeline 4, that is, the rotary shaft 22 and the side wall of the transport pipeline 4 It is preferable to arrange the molten metal channels formed therebetween so that the width of the channels is not uniform. With such a configuration, the uneven movement of the molten metal causes an uneven pressure difference to be applied to the rotating blades 22, so that the rotation of the rotating blades 22 is smoothly started and continued. In this case, a greater pressure is applied to the blade 26 on the side where the width of the flow path of the molten metal becomes large, and the rotating blade 22 is rotated so that the blade 26 on the side moves downstream. Become.
また、 回転羽根 2 2の配置部位においても、 誘導子 1 2が配置されていること が好ましい。 この場合、 回転羽根 2 2の回転軸 2 4の両側を挟むように誘導子 1 2が配置されていることが好ましく、 より好ましくは、 回転羽根 2 2が対向され る誘導子 1 2間において搬送管路 4内で偏心されている。 このように配置される と、 誘導子 1 2によって溶融金属が駆動されることにより、 効果的に回転羽根 2 2が回転される。  In addition, it is preferable that the inductor 12 is also disposed at the position where the rotary blade 22 is disposed. In this case, it is preferable that the inductor 12 is disposed so as to sandwich both sides of the rotary shaft 24 of the rotary blade 22, and more preferably, the inductor 12 is transported between the inductors 12 facing the rotary blade 22. It is eccentric in line 4. With this arrangement, the molten metal is driven by the inductor 12, and the rotating blades 22 are effectively rotated.
さらに、 回転羽根 2 2の回転を容易にするために、 外部モータ 4 0により直接 駆動するようにすることもできる (図 4参照) 。 これにより、 回転羽根 2 2に十 分な回転力を供給し、 確実に回転羽根を回転させて溶融金属を搬送させることが できるようになる。 特に、 外部モー夕 4 0による駆動は、 回転羽根 2 2の回転の 開始のために好ましい。  Furthermore, in order to facilitate the rotation of the rotating blades 22, it can be directly driven by an external motor 40 (see FIG. 4). As a result, a sufficient rotational force is supplied to the rotating blades 22, and the rotating blades can be reliably rotated to transport the molten metal. In particular, driving by the external motor 40 is preferable for starting rotation of the rotary blade 22.
(回転数検出器)  (Rotation detector)
回転数検出器は、 回転羽根 2 2のシャフト 2 4に伝達される回転を、 直接ある いは間接的に検出するようになっている。 検出機構としては、 各種従来公知の方 法を採用することができる。  The rotation number detector is configured to directly or indirectly detect the rotation transmitted to the shaft 24 of the rotary blade 22. As the detection mechanism, various conventionally known methods can be adopted.
例えば、 図 4に示すように、 回転数検出器は、 搬送管路 4内部のシャフト 2 4 の回転が伝達されるとその回転を検出してパルスを発生するように備えられたパ ルス発生器 3 2とすることができる。 なお、 このパルス発生器 3 2で発生するパ ルスをさらに、 パルスのカウンター機構を備える装置に伝達することにより、 回 転数を容易に検出することができる。 For example, as shown in FIG. 4, the rotation number detector is a pulse generator provided to detect the rotation of the shaft 24 inside the conveying pipeline 4 when the rotation is transmitted and generate a pulse. 3 can be 2. The pulse generated by the pulse generator 32 is further transmitted to a device having a pulse counter mechanism, so that the pulse is generated. The number of turns can be easily detected.
このように設けた回転羽根 2 2が 1回転するときの溶融金属の搬送量は、 計算 により算出することができる。 しかしながら、 構造上の誤差や作動上の条件によ つて、 当該搬送量は変動しうる。 したがって、 実測に基づいてかかる変動要因に よるパラメ一夕を設定し、 実際の計量時にかかるパラメータに基づいて供給量を 表示できるようになっていることが好ましい。  The transport amount of the molten metal when the rotating blades 22 provided as described above makes one rotation can be calculated by calculation. However, the transport amount may fluctuate due to structural errors and operational conditions. Therefore, it is preferable to set the parameters based on the fluctuation factors based on the actual measurement, and to be able to display the supply amount based on the parameters at the time of actual weighing.
さらに、 図 4に示すように、 外部モータ 4 0の駆動力をシャフト 2 4に伝達す るようにして、 回転羽根 2 2を外部から回転駆動可能に形成することができる。 これにより、 回転羽根に十分な回転力を付与することができる。  Further, as shown in FIG. 4, by transmitting the driving force of the external motor 40 to the shaft 24, the rotary blade 22 can be formed to be rotatable from the outside. Thereby, sufficient rotational force can be applied to the rotating blade.
外部モー夕 4 0等により回転羽根 2 2を回転駆動する場合には、 搬送管路 4の 外部においてシャフト 2 4の回転に伴って回転する回転体 3 4 (好ましくは、 板 状体) と、 この回転体 3 4の回転を遠隔的に検出するセンサ 3 6、 とを備えるこ ともできる。 この場合、 回転体 3 4に回転検出孔を設けることにより、 光電セン サ 3 6により、 その回転 (数) を検出することができる。 このような回転体 3 4 とセンサ 3 6とを備えると、 搬送管路 4内の回転羽根 2 2と前記回転体 3 4とは 一体的に構成されているため、 回転羽根 2 2の回転に異常が発生すると、 外部の 回転体 3 4の回転にも異常が発生する。 このとき、 センサ 3 6による回転数とモ —夕によって発生するべき回転数とを対比することにより、 回転羽根 2 2の異常 を検出できる。 したがって、 外部モータ等により回転羽根 2 2を駆動する場合に は、 回転体 3 4及びセンサ 3 6は、 回転羽根 2 2及び Z又は搬送管路 4内の異常 検出器として有効に機能する。  When the rotary blades 22 are driven to rotate by an external motor 40 or the like, a rotating body 34 (preferably a plate-like body) that rotates with the rotation of the shaft 24 outside the conveying pipeline 4 is provided; A sensor 36 for remotely detecting the rotation of the rotating body 34. In this case, the rotation (number) can be detected by the photoelectric sensor 36 by providing the rotation detecting hole in the rotating body 34. When such a rotating body 34 and the sensor 36 are provided, the rotating blades 22 in the transport pipeline 4 and the rotating body 34 are integrally formed, so that the rotating blades 22 can rotate. When an abnormality occurs, an abnormality also occurs in the rotation of the external rotating body 34. At this time, an abnormality of the rotary blade 22 can be detected by comparing the number of rotations by the sensor 36 with the number of rotations to be generated in the evening. Therefore, when the rotating blades 22 are driven by an external motor or the like, the rotating body 34 and the sensor 36 effectively function as an abnormality detector in the rotating blades 22 and Z or the transport pipeline 4.
なお、 外部モー夕 4 0により回転羽根を駆動しない場合であっても、 回転体 3 4やセンサ 3 6は、回転羽根 2 2の回転状態をチェックする機構として作用する。 回転体 3 4は、 断熱材として兼用することができる。 この場合、 回転体 3 4を、 断熱性の高い材料で、 また、 表面積を大きぐ形成することが好ましい。 さらに、 この回転体 3 4に対して、 ガス供給源から供給されるエアー等の冷却手段の噴出 口 3 8を指向させて、 エアー等の冷却手段が吹き付けられるように形成すること により、 より効果的に断熱することが可能である。  Even when the rotating blades are not driven by the external motor 40, the rotating body 34 and the sensor 36 function as a mechanism for checking the rotating state of the rotating blades 22. The rotating body 34 can also be used as a heat insulating material. In this case, it is preferable that the rotating body 34 is formed of a material having high heat insulating properties and has a large surface area. Further, by forming an outlet 38 of a cooling means such as air supplied from a gas supply source to the rotating body 34 so as to blow the cooling means such as air, a more effective effect can be obtained. Thermal insulation is possible.
(搬送管路内における溶融金属の量の検出) 回転羽根 2 2の回転数から搬送管路 4内で搬送される溶融金属量を計測する際、 搬送管路 4内の溶融金属の湯量によって、 回転数あたりで搬送される溶融金属量 は変化する。 溶融金属の湯量に起因する搬送量の変動を補償するには、 搬送管路 4内の溶融金属の湯量を検出する手段を備えるようにする。 当該手段は、 特に限 定しないが、 好ましくは、 搬送管路 4内の溶融金属の液面位を検出することによ り、 溶融金属量を検出する手段である。 例えば、溶融金属に対して浮力を備える 浮子を搬送管路 4内に備え、 この浮子の変位量を外部から検出可能に備えること ができる。 浮子の変動量を外部から検出するには、 浮子の変位に連動する検出部 材を浮子に備えるようにすることができる。 (Detection of the amount of molten metal in the transport pipeline) When measuring the amount of molten metal conveyed in the conveying line 4 from the number of rotations of the rotary blades 22, the amount of molten metal conveyed per number of rotations changes depending on the amount of molten metal in the conveying line 4 . In order to compensate for the change in the transport amount caused by the molten metal amount, a means for detecting the molten metal amount in the transport pipeline 4 is provided. The means is not particularly limited, but is preferably a means for detecting the level of the molten metal by detecting the liquid level of the molten metal in the transport pipeline 4. For example, a float having buoyancy with respect to the molten metal can be provided in the transfer conduit 4, and the displacement of the float can be provided so as to be detectable from outside. In order to detect the variation of the float from outside, the float may be provided with a detecting member that is linked to the displacement of the float.
好ましい構成を図 7に例示する。 図 7には、 浮子 2 8が、 搬送管路 4に対して 装着部 3 0を介して取り付けられている状態が示されている。 この例では、 浮子 2 8は、 装着部 3 0の上端縁に係止される係止部 2 8 aと、 搬送管路 4内の溶融 金属に接触する接触部 2 8 bとを有し、 係止部 2 8 aには、 浮子 2 8の変位を明 示する指示部 2 9を有している。 装着部 3 0は、 その上端縁に浮子 2 8の係止部 2 8 aが係止されることにより、 浮子 2 8を揺動可能に保持するようになってい るとともに、 浮子 2 8の揺動を妨げないで最大変位にまで対応可能な中空部 3 0 aを備えている。 この例では、 浮子 2 8自体が検出部材を兼ねた構成となってお り、 接触部位 2 8 bに発生する変位は、 そのまま、 係止部 2 8 a及び指示部 2 9 に伝達され、 外部から容易に把握される。 なお、 浮子の変位を別個の検出部材に よって外部に伝達することも当然可能である。  A preferred configuration is illustrated in FIG. FIG. 7 shows a state in which the float 28 is attached to the transport pipeline 4 via the attachment portion 30. In this example, the float 28 has a locking portion 28 a that is locked to the upper edge of the mounting portion 30, and a contact portion 28 b that comes into contact with the molten metal in the transport pipeline 4. The locking portion 28a has an indicating portion 29 for indicating the displacement of the float 28. The mounting portion 30 is configured to hold the float 32 in a swingable manner by locking the locking portion 28a of the float 28 to the upper end edge thereof, and to swing the float 28. It has a hollow section 30a that can handle the maximum displacement without hindering movement. In this example, the float 28 itself also serves as a detection member, and the displacement generated at the contact portion 28b is transmitted to the locking portion 28a and the indication portion 29 as it is, and It is easily grasped from. It should be noted that the displacement of the float can be transmitted to the outside by a separate detection member.
外部に伝達された浮子の変位量は、 従来公知の各種の検出手段、 変換手段等に より検知し、 溶湯量として検知することができる。 例えば、 差動トランス、 磁気 センサー等にて検出することができる。 さらに、 得られた溶湯量により、 回転羽 根 2 2の回転数から把握される溶融金属の搬送量が補正されるようになっている。 浮子及び装着部、 ならびに検出部材は、 いずれも、 非濡れ性、 耐熱ショック性 に優れ、 熱膨張係数 (室温〜 1 0 0 0 ) が 1 X 1 0— 6 で以下であることが 好ましい。 具体的には、 チタン酸アルミニウムを主体として構成されることが好 ましい。 The amount of displacement of the float transmitted to the outside can be detected by various conventionally known detecting means, converting means, and the like, and can be detected as the amount of molten metal. For example, it can be detected by a differential transformer, a magnetic sensor, or the like. Further, the transported amount of the molten metal, which is determined from the rotation speed of the rotary blades 22, is corrected based on the obtained molten metal amount. Float and the mounting portion, and the detection member are both non-wettable, excellent heat shock resistance, it is preferred thermal expansion coefficient (room temperature to 1 0 0 0) is less than in 1 X 1 0- 6. Specifically, it is preferable that the composition be mainly composed of aluminum titanate.
(回転羽根の固定構造) 回転羽根 2 2は、 密閉性よく搬送管路 4内に配置される必要があるとともに、 そのメインテナンスゃ交換等のため容易に搬送管路 4から取り外しできるように 装着されていることが好ましい。 また、 熱膨張の影響をできるだけ回避できるよ うに装着されていることが好ましい。 (Rotating blade fixed structure) The rotary blades 22 need to be disposed in the transport pipeline 4 with good sealing properties, and are preferably mounted so that they can be easily removed from the transport pipeline 4 for maintenance and replacement. In addition, it is preferable that the device is mounted so that the influence of thermal expansion can be avoided as much as possible.
このため、 図 8及び図 9に示すように、 搬送管路 4と、 回転羽根 2 2との装着 は、 テーパ形状凹凸部による嵌合を主体とするように構成することが好ましい。 具体的には、 搬送管路 4に、 管路内部側に口径が小さくなるテーパ状の嵌合孔 4 2を設け、 この嵌合孔 4 2に対応して嵌合されるテ一パ状の凸状部 4 6を有する キャップ 4 4を用い、 この凸状部 4 6内には、 シャフト 2 4を装着可能な貫通孔 4 8を備えるようにする。 これにより、 前記嵌合孔 4 2と前記キャップ 4 4との はめ合いにより、 搬送管路 4内に回転羽根 2 2を装着にできるとともに、 管路 4 の密閉性が機械的嵌合により精度良く確保できる。  For this reason, as shown in FIGS. 8 and 9, it is preferable that the mounting of the transfer pipeline 4 and the rotary blades 22 is mainly performed by fitting with the tapered uneven portion. More specifically, a tapered fitting hole 42 having a smaller diameter is provided in the transfer pipe 4 on the inner side of the pipe, and a taper-shaped fitting corresponding to the fitting hole 42 is provided. A cap 44 having a convex portion 46 is used, and a through hole 48 in which the shaft 24 can be mounted is provided in the convex portion 46. By this, the fitting of the fitting hole 42 and the cap 44 allows the rotating blades 22 to be mounted in the transport pipeline 4, and the hermeticity of the pipeline 4 is improved by mechanical fitting. Can be secured.
熱膨張を考慮すれば、 搬送管路 4及びキャップ 4 4は、 1 X 1 0 _6Z°C (室 温〜 1 0 0 0で) 以下の熱膨張係数の材料で構成されることが好ましく、 具体的 には、 チタン酸アルミニウムを主体として構成されることが好ましい。 また、 回 転羽根も 1 X 1 0/ (室温〜 1 0 0 0 ) 以下の熱膨張係数の材料である ことが好ましく、 チタン酸アルミニゥムセラミックスとすることが好ましい。 なお、 このキャップ 4 4の搬送管路 4への固定手段は特に限定しない。 耐熱性 材料、 例えばステンレス等の締着部材 (ステンレスバンド等) や螺子部材等によ り固定することができる。 たとえば、 図 1 0に示すような、 無端ベルト状のステ ンレスバンド 5 0の一方のわ状部をキャップ 4 4の端縁にかけて、 このバンド 5 0の他方のわ状部を、 所定部位に固定したバンド係止部 5 2に係止することによ り固定することができる。 Considering the thermal expansion, the transport conduit 4 and the cap 4 4 is preferably composed of a material 1 X 1 0 _ 6 Z ° C ( Atsushi Muro ~ 1 0 0 0) The following thermal expansion coefficient More specifically, it is preferable that the composition be mainly composed of aluminum titanate. The rotating blades are also preferably made of a material having a thermal expansion coefficient of 1 × 10 / (room temperature to 1000) or less, and are preferably made of aluminum titanate ceramics. The means for fixing the cap 44 to the transfer conduit 4 is not particularly limited. It can be fixed with a heat-resistant material, for example, a fastening member (stainless steel band or the like) such as stainless steel or a screw member. For example, as shown in FIG. 10, one end of an endless belt-shaped stainless steel band 50 is placed over the edge of the cap 44, and the other end of the band 50 is fixed to a predetermined portion. It can be fixed by locking to the band locking portion 52.
締着部材は、 熱膨張係数が 2 X 1 0 " VoC (室温〜 8 0 0 V) 以下であるこ とが好ましいが、締着部材の熱膨張によって固定状態が緩むのを回避するために、 締着部材には、 一定の張力が付加されていることが好ましい。 例えば、 前記バン ド係止部 5 2において、 この係止部 5 2に係止される締着部材 5 0が一定の圧締 め状態を熱膨張にかかわらず維持できるように装着することができる。 具体的に は、 バンド係止部 5 2を伸縮状態にある弾性体 5 4を介して所定部位に配置され るようにする。 この場合、 バンド係止部 5 2は、 弾性体 5 4の復元力によって弾 性体 5 4が復元しょうとする方向に常時付勢されていることになる。 ここで、 ノ ンド係止部 5 2が付勢される方向が締着部材 5 0による圧締め状態を強化できる 方向に一致するようにする。 かかるバンド係止部 5 2に締着部材 5 0を係止する ことにより、 締着部材 5 0は、 常時圧締め方向に付勢されることになる。 この結 果、 締着部材 5 0が熱膨張しても、 その影響が回避されて、 安定した圧締め状態 が確保される。 The fastening member preferably has a coefficient of thermal expansion of 2 X 10 " VoC (room temperature to 800V) or less.However, in order to prevent the fastening member from loosening due to thermal expansion of the fastening member. It is preferable that a fixed tension is applied to the fastening member, for example, in the band locking portion 52, the fastening member 50 locked by the locking portion 52 is fixed. The band can be attached so that the pressed state can be maintained irrespective of thermal expansion.Specifically, the band locking portion 52 is arranged at a predetermined position via the elastic body 54 in the stretched state. So that In this case, the band locking portion 52 is always urged by the restoring force of the elastic body 54 in the direction in which the elastic body 54 tries to restore. Here, the direction in which the node locking portion 52 is urged matches the direction in which the tightening state by the fastening member 50 can be strengthened. By locking the fastening member 50 to the band locking portion 52, the fastening member 50 is constantly urged in the pressing direction. As a result, even if the fastening member 50 thermally expands, the influence thereof is avoided, and a stable pressure-tight state is secured.
また、 例えば、 圧縮した弾性体を利用して、 締着部材 5 0を圧締め方向に付勢 することもできる。 この場合、 弾性体が伸縮しょうとする復元力を締着部材の付 勢に利用する。 具体的には、 わ状の締着部材の当該わの内側に弾性体を圧縮した 状態で固定させて、 この弾性体の復元力に杭して締着部材が装着されるようにす る。 このようにすると、 締着部材が熱膨張しても、 弾性体の復元力により圧締め 状態の緩みは相殺されうる。 なお、 弾性体としては、 各種形状のばねの他、 エラ ストマ一も使用できる。ただし、耐熱性及び低熱膨張性を有することが好ましい。 なお、 このような固定構造は、 シャフト 2 4を搬送管路 4の上方から挿入する 場合において特に好ましい。  In addition, for example, the fastening member 50 can be urged in the pressing direction by using a compressed elastic body. In this case, the restoring force of the elastic body to expand and contract is used to bias the fastening member. Specifically, an elastic body is fixed in a compressed state inside the wedge-shaped fastening member, and the fastening member is mounted in piles on the restoring force of the elastic body. In this case, even if the fastening member thermally expands, the looseness of the pressed state can be offset by the restoring force of the elastic body. As the elastic body, an elastomer can be used in addition to springs of various shapes. However, it is preferable to have heat resistance and low thermal expansion property. It should be noted that such a fixing structure is particularly preferable when the shaft 24 is inserted from above the transport pipeline 4.
なお、 回転羽根 2 2の位置は、 シャフト 2 4の管路 4外部上方に備えられた高 さ調整手段により調製可能とすることができる。 例えば、 かかる調整手段として は、 ねじ機構であってもよいし、 異なる高さのローラ軸受けを交換可能に形成し た構造としてもよい。  The position of the rotary blade 22 can be adjusted by height adjusting means provided above the shaft 4 outside the conduit 4. For example, the adjusting means may be a screw mechanism or a structure in which roller bearings having different heights are formed to be exchangeable.
さらに、 回転羽根 2 2は、 搬送管路 4外において、 回転羽根 2 2の熱を外方に 伝達しないために、 シャフト 2 4に断熱材を備えるようにすることが好ましい。  Further, it is preferable that the rotary blade 22 be provided with a heat insulating material on the shaft 24 in order to prevent the heat of the rotary blade 22 from being transmitted outside the transfer pipeline 4.
(逆流防止装置)  (Backflow prevention device)
回転羽根 2 2が回転することによる溶融金属の逆流を防止するために、 逆流防 止装置を設けることもできる。 逆流防止装置は、 回転羽根の下流側で、 回転羽根 の回転方向後方側、 すなわち、 図 1 1に示すように、 回転羽根 2 2の下流側であ つて、 羽根 2 6が溶融金属の流れに逆行して回転するおおよそ 4分の 1回転程度 に対応する個所に、 羽根 2 6の先端の回転軌跡におおよそ沿うような壁状体 6 0 として設けることができる。 かかる壁状体 6 0によれば、 回転する羽根 2 6間に 保持された溶融金属が、 回転羽根 2 2の回転に伴ってそのまま逆行方向に移動す るのが防止され、 溶融金属本来の流れに沿って、 下流側に移動される。 In order to prevent the backflow of the molten metal due to the rotation of the rotating blades 22, a backflow prevention device may be provided. The backflow prevention device is located on the downstream side of the rotating blades, on the rear side in the rotational direction of the rotating blades, that is, on the downstream side of the rotating blades 22 as shown in FIG. A wall-like body 60 may be provided at a location corresponding to about a quarter turn that rotates in a reverse direction, so as to approximately follow the rotation locus of the tip of the blade 26. According to such a wall-like body 60, between the rotating blades 26 The held molten metal is prevented from moving in the reverse direction as it is with the rotation of the rotary blades 22, and is moved downstream along the original flow of the molten metal.
壁状体 6 0の形態は特に限定しないが、 少なくとも羽根 2 6の先端の回転軌跡 におおよそ沿って壁部を備えていればよい。  The form of the wall-like body 60 is not particularly limited, but it is sufficient that the wall-like body 60 has a wall at least approximately along the rotation locus of the tip of the blade 26.
次に、 このような溶融金属供給装置 2を用いて溶融金属を錶造用のキヤビティ 等に供給して、 錶物を製造する方法について説明する。  Next, a method of manufacturing a product by supplying a molten metal to a fabrication cavity or the like using the molten metal supply device 2 will be described.
まず、 溶解保持炉 1 8内の溶融金属を、 電磁ポンプ 1 0を作動させることによ り、 錶造用キヤビティに溶融金属を供給する。 溶融金属の搬送に伴って、 搬送管 路 4内に設けられる回転羽根 2 2が回転し、 その回転数が検出器 3 2により検出 される。 回転数と溶融金属の供給量とを関連付けられていれば、 この回転数に基 づいて、 一定量の溶融金属がキヤビティに供給されるように、 電磁ポンプ 1 0の 作動時間や供給電流を調整し、 所望の回転羽根 2 2の回転時間及び/又は回転数 等を得られるようにする。 これにより、 常時正確な量の溶融金属を錶造用キヤビ ティに供給することができ、 精度の高い錶物を製造することができる。  First, the molten metal in the melting and holding furnace 18 is supplied to the manufacturing cavity by operating the electromagnetic pump 10. With the transport of the molten metal, the rotating blades 22 provided in the transport pipeline 4 rotate, and the number of rotations is detected by the detector 32. If the rotation speed and the supply amount of molten metal are linked, the operating time and supply current of the electromagnetic pump 10 are adjusted based on this rotation speed so that a certain amount of molten metal is supplied to the cavity. Then, a desired rotation time and / or number of rotations of the rotary blade 22 can be obtained. As a result, an accurate amount of molten metal can always be supplied to the fabrication cavity, and a highly accurate product can be manufactured.
さらに、 搬送管路 4内を流れる溶融金属量 (溶湯位) の検出手段を備えている 場合には、 検知された溶融金属量に基づいて、 回転羽根 2 2の回転数から得られ た溶融金属供給量における変動 (溶融金属量 (溶湯位) に起因する) を補償し、 より正確性が高く、 精度も良好な供給量制御が可能となる。  Further, when a means for detecting the amount of molten metal (molten metal level) flowing in the transport pipeline 4 is provided, the molten metal obtained from the rotation speed of the rotary blades 22 based on the detected amount of molten metal is provided. Fluctuations in the supply amount (caused by the amount of molten metal (molten metal level)) are compensated, and more accurate and more accurate supply amount control becomes possible.
なお、 電磁ポンプ 1 0の駆動開始時に、 搬送管路 4内の回転羽根 2 2がスムー ズに回転するように、 回転羽根 2 2に不均一な溶融金属の移動による圧力がかか るように電磁ポンプ 1 0の作動を制御することが好ましい。 すなわち、 回転羽根 2 2に備えられる羽根 2 6に溶融金属の移動によって同圧の推力がかからないよ うにすることが好ましい。 具体的には、 回転羽根 2 2のシャフト 2 4に対して対 向状に配置される誘導子 1 2を、 同時に作動させないようにする。 特に、 図 1 2 に示すように、 シャフト 2 4を搬送管路内に偏心させて配置する場合に、 回転羽 根 2 2と搬送管路 4の内壁との隙間が大きい側の誘導子 1 2をまず作動させ、 か かる誘導子 1 2の作動による回転羽根 2 2の回転を検出器 3 2にて確認する。 こ こで、 安定した回転羽根 2 2の回転を確認後、 例えば、 1 0回転 (1 0パルス) 以上の回転を確認後、 次いで、 反対側の誘導子 1 2も作動させて、 電磁ポンプ 1 0の正常な作動状態とする。 かかる差動方式は、 特に、 電磁誘導による推力が小 さい場合に有効である。 At the start of driving of the electromagnetic pump 10, the pressure caused by the uneven movement of the molten metal is applied to the rotating blades 22 so that the rotating blades 22 in the transfer pipeline 4 rotate smoothly. Preferably, the operation of the electromagnetic pump 10 is controlled. That is, it is preferable that the thrust of the same pressure is not applied to the blade 26 provided in the rotary blade 22 by the movement of the molten metal. Specifically, the inductors 12 arranged opposite to the shaft 24 of the rotary blade 22 are not operated simultaneously. In particular, as shown in FIG. 12, when the shaft 24 is eccentrically arranged in the transport pipeline, the inductor 1 2 on the side where the clearance between the rotary blade 22 and the inner wall of the transport pipeline 4 is large is 1 2 First, the rotation of the rotating blades 22 caused by the operation of the inductors 12 is checked by the detector 32. Here, after confirming the stable rotation of the rotating blades 22, for example, after confirming the rotation of 10 rotations (10 pulses) or more, the inductor 12 on the opposite side is also operated, and the electromagnetic pump 1 is turned on. 0 is the normal operating state. Such a differential method is particularly effective when the thrust by electromagnetic induction is small.
なお、 上記した本発明の各構成要素は、 それぞれ単独、 あるいは組み合わされ て、 本願発明に係る溶融金属供給装置、 計量装置、 铸物の製造方法及び錶造装置 に適用することができる。  The components of the present invention described above can be applied individually or in combination to the molten metal supply device, the weighing device, the method of manufacturing a solid product, and the manufacturing device according to the present invention.
以上、 説明したことから、 本発明は、 以下の各態様を採ることができる。  As described above, the present invention can adopt the following aspects.
( 1 ) 電磁ポンプ式溶融金属供給装置であって、  (1) An electromagnetic pump type molten metal supply device,
電磁ポンプを備える溶融金属の搬送管路と、  A conduit for conveying the molten metal with an electromagnetic pump,
この搬送管路内に設けられる、 溶融金属の移動に伴って回転する回転羽根と、 この回転羽根の回転数を検出する検出器、  A rotating blade that is provided in the transport pipeline and rotates with the movement of the molten metal; and a detector that detects the number of rotations of the rotating blade,
とを備え、 With
前記回転羽根の回転軸は、 前記搬送管路内において偏心して配置されている、 溶融金属供給装置。  The molten metal supply device, wherein a rotating shaft of the rotating blade is eccentrically arranged in the transport pipeline.
( 2 ) 電磁ポンプ式溶融金属供給装置であって、  (2) An electromagnetic pump type molten metal supply device,
電磁ポンプを備える溶融金属の搬送管路と、  A conduit for conveying the molten metal with an electromagnetic pump,
この搬送管路内に設けられる、 溶融金属の移動に伴って回転する回転羽根と、 この回転羽根の回転数を検出する検出器、  A rotating blade that is provided in the transport pipeline and rotates with the movement of the molten metal; and a detector that detects the number of rotations of the rotating blade,
とを備え、 With
前記回転羽根は、 シャフトとこのシャフトに供えられる羽根とを有し、 jsciシャフ卜【ま、  The rotating blade has a shaft and a blade provided on the shaft, and the jsci shaft
前記搬送管路に設けられるテ一パ状の嵌合孔に嵌合される凸状部と、 この凸状部を貫通し、 前記シャフトが嵌合可能な貫通孔、  A convex portion fitted into a tapered fitting hole provided in the transport conduit; a through hole which penetrates the convex portion and into which the shaft can be fitted;
とを有するキャップ部材を介して、 前記搬送管路に装着される、 溶融金属供給装 なお、 この装置において、 シャフト、 回転羽根、 搬送管路、 及びキャップ部材 は、 いずれもチタン酸アルミニウムを主体として構成されることが好ましい形態 である。 And a molten metal supply device attached to the transport conduit via a cap member having the following. In this apparatus, the shaft, the rotating blades, the transport conduit, and the cap member are each mainly made of aluminum titanate. This is a preferred form.
( 3 ) 電磁ポンプ式溶融金属供給装置であって、  (3) An electromagnetic pump type molten metal supply device,
電磁ポンプを備える溶融金属の搬送管路と、 この搬送管路内に設けられる、 溶融金属の移動に伴って回転する回転羽根と、 この回転羽根の回転数を検出する検出器、 A conduit for conveying the molten metal with an electromagnetic pump, A rotating blade that is provided in the transport pipeline and rotates with the movement of the molten metal; and a detector that detects the number of rotations of the rotating blade,
とを備え、  With
前記キャップ部材は、 締着部材によって前記搬送管路に圧締めされている、 溶 融金属供給装置。  The molten metal supply device, wherein the cap member is press-fastened to the transfer conduit by a fastening member.
この形態において、 前記締着部材は、 ステンレス等の低熱膨張性金属であるこ とが好ましい。  In this embodiment, it is preferable that the fastening member is a low thermal expansion metal such as stainless steel.
( 4 ) 電磁ポンプ式溶融金属供給装置であって、  (4) An electromagnetic pump type molten metal supply device,
電磁ポンプを備える溶融金属の搬送管路と、  A conduit for conveying the molten metal with an electromagnetic pump,
この搬送管路内に設けられる、 溶融金属の移動に伴って回転する回転羽根と、 この回転羽根の回転数を検出する検出器、  A rotating blade that is provided in the transport pipeline and rotates with the movement of the molten metal; and a detector that detects the number of rotations of the rotating blade,
とを備え、 With
前記キヤップ部材は、 締着部材によって前記搬送管路に圧締めされ、 前記締着部材に対して、 当該締着部材の熱膨張を相殺可能な程度の張力が付加 されている、 溶融金属供給装置。 この形態においては、 張力が、 ばね部材等の弾 性体により付加されていることが好ましい。  A molten metal supply device, wherein the cap member is clamped to the transfer conduit by a clamping member, and a tension is applied to the clamping member to a degree that can offset thermal expansion of the clamping member. . In this embodiment, the tension is preferably applied by an elastic body such as a spring member.
( 5 ) 電磁ポンプ式溶融金属供給装置であって、  (5) An electromagnetic pump type molten metal supply device,
電磁ポンプを備える溶融金属の搬送管路と、  A conduit for conveying the molten metal with an electromagnetic pump,
この搬送管路内に設けられる、 溶融金属の移動に伴って回転する回転羽根と、 この回転羽根の回転数を検出する検出器、  A rotating blade that is provided in the transport pipeline and rotates with the movement of the molten metal; and a detector that detects the number of rotations of the rotating blade,
とを備え、 With
前記回転羽根はチタン酸アルミニウムやサイァ口ン等の低熱膨張性セラミック スを主材とする、 溶融金属供給装置。  The molten metal supply device, wherein the rotating blades are mainly made of a low thermal expansion ceramic such as aluminum titanate or silicon porcelain.
本発明によれば、 電磁ポンプ式溶融金属供給装置において、 溶融金属の供給精 度の向上させることができる。 また、 溶融金属の供給精度の良好な銬造装置を提 供することができる。  ADVANTAGE OF THE INVENTION According to this invention, the supply precision of molten metal can be improved in the electromagnetic pump type molten metal supply apparatus. In addition, it is possible to provide a manufacturing apparatus having a high molten metal supply accuracy.
また、 本発明の装置によれば、 精度の良好な铸物を製造することができる。 Further, according to the apparatus of the present invention, it is possible to produce a highly accurate animal.
( 6 ) 上記した (1 ) 〜 (5 ) のいずれかの装置であって、 (6) The device according to any one of (1) to (5) above,
搬送管路内の溶融金属量を検出する手段を備える、 溶融金属供給装置。 .の装置によれば、 精度の高い溶融金属の供給制御が可能となる c A molten metal supply device, comprising: means for detecting an amount of molten metal in a transport pipeline. According to. Device, it is possible to supply control high melting metal precision c
(アルミニゥム合金溶湯接触部材) (Aluminum alloy molten metal contact member)
次に、 アルミニウム合金溶湯接触部材について説明する。  Next, the aluminum alloy molten metal contact member will be described.
本発明におけるアルミニウム合金は、 アルミニウムを主成分とする合金を意味 する。 具体的には、 アルミニウムの他、 C u、 S i、 M g、 Z n、 F e、 M n、 N i、 T i等のアルミニウムと合金を構成可能な金属を少なくとも 1種以上を含 有していればよい。 好ましくは、 M gを含む。 M gは好ましくは全体に対して 2 0 \^%以下含有されている。  The aluminum alloy in the present invention means an alloy containing aluminum as a main component. Specifically, in addition to aluminum, it contains at least one or more metals that can form an alloy with aluminum, such as Cu, Si, Mg, Zn, Fe, Mn, Ni, and Ti. Just do it. Preferably, it contains Mg. Mg is preferably contained in an amount of not more than 20%.
本発明 ίこおいて使用できるアルミニウム合金としては、 例えば、 表 1 (単位: w t %) に例示されるものがある。  Examples of the aluminum alloy that can be used in the present invention include those listed in Table 1 (unit: wt%).
【表 1】 【table 1】
Figure imgf000021_0001
本発明の合金溶湯接触部材は、 合金溶湯に接触する可能性のある部位を備える 溶湯用部材に適用することが好ましい。 具体的には、 ラドル、 溶湯搬送管路、 攪 拌機等を挙げることができる。 かかる部位のメインテナンスが容易となり、 溶湯 汲み取り精度が向上される。 特にラドルに適用することが好ましい。
Figure imgf000021_0001
The molten alloy contact member of the present invention is preferably applied to a molten metal member having a portion that may come into contact with the molten alloy. Specific examples include a ladle, a molten metal conveying pipeline, a stirrer, and the like. Maintenance of such a portion is facilitated, and the accuracy of drawing the molten metal is improved. In particular, it is preferable to apply to a ladle.
また、 管路ゃ成形型材等、 チタン酸アルミニウムセラミックスの接合部位を備 える部材においても好ましく適用できる。 接合部位界面の非濡れ性が向上される 結果、 接合部位の隙間への毛細管力による溶湯の侵入を効果的に抑制できるから である。 これにより、 接合部位のメインテナンスが容易となる。  Also, the present invention can be preferably applied to a member having a joint portion of aluminum titanate ceramics, such as a pipe and a forming die. This is because the non-wetting property of the interface at the joint portion is improved, so that the intrusion of the molten metal by the capillary force into the gap at the joint portion can be effectively suppressed. This facilitates maintenance of the joint.
なお、 本発明の合金溶湯接触部材は、 電磁ポンプ式の金属溶湯供給装置に適用 されることが好ましい。 特に、 本発明の溶融金属供給装置における回転羽根、 羽 根、 シャフト、 キャップ部材、 浮子、浮子装着部に適用することが好ましい。 本発明の接触部材の基材となるチタン酸アルミニウムセラミックスは、 チタン 酸アルミニウム (A l 2T i 05) を主体とするセラミックスであり、 S iを含有 している。 なお、 S iは、 典型的には、 シリカ (S i 02) の形態で含有されて いるが、 この形態に限定されるものではない。 金属元素でも、 他の金属との複酸 化物との形態もありうる。 本チタン酸アルミニウムセラミックスにおけるシリカ の含有量は、 特に限定しないが、 通常 1〜10wt%程度である。 好ましくは、 4〜8wt %である。 なお、 チタン酸アルミニウムセラミックスには、 Fe23、 MgO等を含んでいてもよい。 The molten alloy contact member of the present invention is preferably applied to an electromagnetic pump type molten metal supply device. In particular, the present invention is preferably applied to the rotating blade, the blade, the shaft, the cap member, the float, and the float mounting portion in the molten metal supply device of the present invention. The aluminum titanate ceramic serving as the base material of the contact member of the present invention is a ceramic mainly composed of aluminum titanate (Al 2 Ti 0 5 ) and contains Si. S i is typically contained in the form of silica (S i 0 2 ). However, the present invention is not limited to this mode. The metal element may also be in the form of a double oxide with another metal. The content of silica in the present aluminum titanate ceramics is not particularly limited, but is usually about 1 to 10% by weight. Preferably, it is 4 to 8 wt%. The aluminum titanate ceramics may contain Fe 23 , MgO and the like.
チタン酸アルミニウムセラミックス製の接触部材の、 少なくとも合金溶湯と接 触する部位には、 A 1203, MgO及び Mg A 124からなる群から選択される 1種あるいは 2種以上の成分を含有層を備える。 かかる層を供えることにより、 アルミニウム合金溶湯と接触する場合において、 効果的に、 チタン酸アルミニゥ ムセラミックス中の S iの合金溶湯接触側への拡散を抑制できる。 Aluminum titanate ceramic of the contact member, the site come in contact with at least the molten alloy, A 1 2 0 3, MgO and Mg A 1 2 〇 one or more kinds of components selected from the group consisting of 4 Is provided. Providing such a layer effectively suppresses the diffusion of Si in the aluminum titanate ceramics to the contact side with the molten alloy in the case of contact with the molten aluminum alloy.
また、 合金溶湯中に S iが含まれる場合に、 その S iとチタン酸アルミニウム セラミックスとの接触を回避できる。  Further, when Si is contained in the molten alloy, contact between the Si and the aluminum titanate ceramic can be avoided.
A 1203, MgO及び MgA 1204からなる群から選択される 1種あるいは 2 種以上の成分を含有する層は、 これらの単独成分から実質的に構成される層、 あ るいはこれらの成分の組み合わせから実質的に構成される層とすることもできる。 いずれにしても、 これらの成分で実質的に構成されるかあるいはこれらの成分の みからなることが好ましい。 より好ましくは、 他のセラミックス成分を実質的に 含まない一の種類のセラミックス成分の単相となっていることが好ましレ 。また、 層は、 複数の層を含む積層構造とすることもできる。 A 1 2 0 3, MgO and MGA 1 2 0 layer containing one or two or more components 4 is selected from the group consisting consists essentially of layers of these single component, Oh Rui A layer substantially composed of a combination of these components can also be formed. In any case, it is preferable that these components are substantially constituted or consist only of these components. More preferably, it is a single phase of one type of ceramic component substantially free of other ceramic components. Further, the layer may have a laminated structure including a plurality of layers.
A 1203は、 好ましくは、 a— A 1203であることが好ましい。 ひ _A 1203層 は、 アルミナゾルのディップコーティング等によりアルミナ膜を形成した後、 大 気中で焼成 (好ましくは 1 100〜 1500 ) することにより得られる。 A 1 2 0 3 is preferably is preferably a- A 1 2 0 3. Non _A 1 2 0 3 layer, after forming the alumina film by sol dip coating, etc., calcined in the atmosphere (preferably 1 100 to 1500) obtained by.
MgO層は、 マグネシウム塩を水に溶かし、 ディップコーティングした後、 大 気中で焼成 (好ましくは 1 100〜1 500で) することにより得ることができ る。 好ましくは、 硝酸マグネシウム水溶液をディップコーティングした後、 大気 中で焼成 (好ましくは 1 100〜1 500で) によって得るようにする。  The MgO layer can be obtained by dissolving a magnesium salt in water, dip-coating, and firing in air (preferably at 1100 to 1500). Preferably, it is obtained by dip-coating an aqueous solution of magnesium nitrate, followed by baking in air (preferably at 1100 to 1500).
MgA l24層は、 A 1203層および Zまたは MgO層を形成した後、 この被 膜に Mgあるいは MgO、 および Zまたは、 A 1あるいは A 123を作用させる ことにより得られる。 また、 MgA 04を得られるように調製した原料の被膜 を形成し、 焼成によりスピネルを生成させることによつても得られる。 好ましく は、 α_Α 123層あるいは MgO層を形成した後に、 溶融マグネシウム、 Mg を含む溶湯 (例えばアルミニウム合金溶湯) 中に、 当該部材を一定時間浸漬する ことによりその場生成させることができる。 最も好ましくは、 α— A 1203層 形成後に、 MgA 1204層をその場生成させる。 The MGA l 24 layer, after the formation of the A 1 2 0 3 layer and Z or MgO layer, obtained by the Mg or MgO to be membrane, and Z or, exert A 1 or A 1 23 Can be Further, the raw material of the film prepared so as to obtain the MGA 0 4 And spinel is produced by firing. Preferably, after forming the α_Α 1 2three layers or MgO layer, magnesium melt, the molten metal (e.g. aluminum alloy melt) containing Mg, it is possible to in situ by dipping the member fixed time. Most preferably, alpha-A 1 2 0 after 3 layer formed, is in situ a MgA 1 2 0 4 layer.
A 1203, MgO及び MgA 1204からなる群から選択される 1種あるいは 2 種以上の成分を含有する層は、 基材であるチタン酸セラミックスよりも S i含有 量が低くなつている。好ましくは、 3wt %以下であり、より好ましくは lwt % 以下である。 さらに、 実質的に S iを含有しないことが好ましい。 ここで S iを 実質的に含有しないとは、 S iの含有量が 0. 1 w t %以下であることを意味し、 より好ましくは 0. 0 1\ %以下である。 Contains one or more components selected from the group consisting of A 1 2 0 3, MgO and MGA 1 2 0 4 layers, summer low S i content than titanate ceramic which is a base material ing. It is preferably at most 3 wt%, more preferably at most lwt%. Further, it is preferable that Si is not substantially contained. Here, “substantially free of Si” means that the content of Si is 0.1 wt% or less, and more preferably 0.01% or less.
A 1203、 1^^0及び 8八 1204含有層は、 以下の (1) 〜 (3) の 3種類 のうちいずれか 1種の拡散抑制機能を有していることが好ましい。 A 1 2 0 3, 1 ^^ 0 and 8 eight 1 2 0 4 containing layer to have the following (1) any one of the diffusion suppression function of the three kinds of - (3) preferable.
(1) A 1203、 MgO及び MgA 1204含有層は、 チタン酸アルミニウムセラ ミックス中の S i (S iの他、 シリカ (S i〇2) 力典型的である) の拡散を抑 制できる。 より具体的には、 当該拡散抑制機能を発揮できる程度の緻密度および または膜厚を備えるようにする。 (1) A 1 2 0 3 , MgO and MGA 1 2 0 4 containing layer (other S i, silica (S I_〇 2) is force typical) S i in aluminum titanate ceramics diffusion Can be suppressed. More specifically, it is required to have a denseness and / or a film thickness enough to exert the diffusion suppressing function.
なお、 チタン酸アルミニウムセラミックス中の S iの拡散とは、 S iのチタン 酸アルミニウムセラミックスの外方向 (溶湯側) への拡散を意味する。  The diffusion of Si in the aluminum titanate ceramics means the diffusion of Si in the outward direction (the molten metal side) of the aluminum titanate ceramics.
(2) また、 当該層は、 アルミニウム合金溶湯中の A 1及び Mgのチタン酸アル ミニゥムセラミックス側への拡散を抑制できる。 より具体的には、 当該拡散抑制 機能を発揮できる程度の緻密度および Zまたは膜厚を備えるようにする。  (2) The layer can suppress the diffusion of A1 and Mg in the molten aluminum alloy toward the aluminum titanate ceramics. More specifically, the density and Z or film thickness are set to such an extent that the diffusion suppressing function can be exhibited.
(3) アルミニウム合金溶湯中に S iを含む場合に、 この S iのチタン酸セラミ ックス側への拡散を抑制できる。 より具体的には、 当該拡散抑制機能を発揮でき る程度の緻密度および または膜厚を備えるようにする。  (3) When Si is contained in the aluminum alloy melt, the diffusion of this Si to the titanate ceramics side can be suppressed. More specifically, it is required to have a denseness and / or a film thickness that can exert the diffusion suppressing function.
以上のうち、 より好ましくは、 2種類以上を有している。特に、 (1)及び(2) を有していることが好ましい。また、 アルミニウム合金中に S iを含む場合には、 (3) を備えていることが好ましい。 最も好ましくは、 いずれの拡散抑制機能も 備える。 このような拡散抑制機能を発揮するには、 膜厚が 0. l m〜1000 zmで あることが好ましい。 0. 1 ^ m未満であると、 合金溶湯との繰り返しの接触に おける溶湯流れにより被膜が早期に磨耗し、 拡散阻止効果及び実質的に非濡れ性 を実現できないからである。 まだ、 l O O O zmを超えると、 チタン酸アルミ二 ゥムセラミックスと被膜との熱膨張係数の差により、 コーティング焼付け後の冷 却工程で被膜に亀裂や剥離が生じ、 拡散阻止効果を発揮できないからである。 よ り好ましくは、 1 m〜500 mである。 さらに、 好ましくは、 10 m〜l 00 mである。 Among them, more preferably, two or more types are provided. In particular, it is preferable to have (1) and (2). Further, when Si is contained in the aluminum alloy, it is preferable to provide (3). Most preferably, it has any diffusion suppression function. In order to exhibit such a diffusion suppressing function, the film thickness is preferably from 0.1 lm to 1000 zm. If the thickness is less than 0.1 ^ m, the coating is worn away early due to the flow of the molten metal in repeated contact with the molten alloy, and the diffusion inhibiting effect and the substantially non-wetting property cannot be realized. If the thickness exceeds l OOO zm, cracks and peeling occur in the cooling process after coating baking due to the difference in the coefficient of thermal expansion between the aluminum titanate ceramics and the coating, and the diffusion prevention effect cannot be exhibited. It is. More preferably, it is 1 m to 500 m. Further, it is preferably from 10 m to 100 m.
また、 緻密度の観点からは、 A 1203、 MgO及び MgA 1204含有層は、 い ずれも、 気孔率 30%以下であることが好ましい。 気孔率が 30%を超えるとァ ルミニゥム合金溶湯中の Aし Mg、 S iの拡散や、 チタン酸アルミニウムセラ ミックス中の S iの拡散を抑制し難くなる。 Further, from the viewpoint of denseness, A 1 2 0 3, MgO and MgA 1 2 0 4 containing layer, have shifted also preferably 30% or less porosity. If the porosity exceeds 30%, it becomes difficult to suppress the diffusion of A, Mg, and Si in the aluminum alloy melt and the diffusion of Si in the aluminum titanate ceramics.
保護層としては、 基材のチタン酸セラミックスよりも S iの含有量が少ないチ タン酸アルミニウム (A l2T i〇5) 層であってもよい。 当該層を形成すること により、 当該層の表面において、 合金溶湯と接触することにより、 ひ— A 1203 や MgO、 MgA 1204が生成し非濡れ性を付与及び維持できる保護層がその場 生成されるからである。 好ましくは、 S iの含有量は 3 w t %以下であり、 より 好ましくは lw t %以下であり、 さらに好ましくは、 S iを実質的に含有しない。 かかるチタン酸アルミニウム層においても、 アルミニウム合金溶湯中の Aし Mg, あるいは S iの拡散抑制、 チタン酸アルミニウムセラミックス中の S iの 拡散を抑制できる程度の緻密さおよび Zまたは膜厚を備えるように形成されるこ とが好ましい。 すなわち、 0. 1〜 1000 / mの厚みであることが好ましく、 より好ましくは、 1〜500 111であり、 気孔率は 30%以下であることが好ま しく、 チタン酸アルミニウム層においても、 S iを実質的に含有しないとは、 好 ましくは、 0. lwt %以下であり、 より好ましくは、 0. 0 1wt %以下であ る。なお、実質的にチタン酸アルミニウムの単相となっていることが好ましい力 A 1203, MgO及び MgA 1204からなる群から選択される 1種あるいは 2種 以上の成分を含有していてもよい。 The protective layer may be an aluminum titanate (Al 2 Ti 5 ) layer having a lower Si content than the base titanate ceramics. By forming the layer, the surface of the layer, by contact with the molten alloy, shed - A 1 2 0 3 and MgO, MgA 1 2 0 4 protective layer which can impart and maintain the generated non-wettability Is generated on the fly. Preferably, the content of Si is 3 wt% or less, more preferably, 1 wt% or less, and further preferably, Si is substantially not contained. Also in such an aluminum titanate layer, it is necessary to have a density and a Z or film thickness that can suppress the diffusion of A, Mg, or Si in the molten aluminum alloy and the diffusion of Si in the aluminum titanate ceramics. It is preferably formed. That is, the thickness is preferably 0.1 to 1000 / m, more preferably 1 to 500 111, and the porosity is preferably 30% or less. Even in the aluminum titanate layer, Si "Substantially does not contain" is preferably 0.1 wt% or less, more preferably 0.01 wt% or less. Note that contain one or more components selected from the group consisting essentially it is preferable that a single phase of aluminum titanate force A 1 2 0 3, MgO and MGA 1 2 0 4 May be.
本発明における、 A 1203、 MgO, MgA 1204および Zまたは A 12T i 05を含有する表層部を備えることにより、 いずれの被膜の場合でも、 アルミ二 ゥム合金溶湯との接触による S iのチタン酸アルミニウムセラミックス表面への 拡散を抑制して、 非濡れ性を確保でき、 さらに、 引き続いて、 アルミニウム合金 溶湯との接触等により最終的に得られる Mg A 1204膜により、 接触部位の非濡 れ性を効率的に確保できる。 よって長期にわたって非濡れ性を維持することがで さる。 In the present invention, A 1 2 0 3, MgO , MgA 1 2 0 4 and Z or A 1 2 T i 0 5 by providing a surface layer portion containing, in either case of the coating, thereby suppressing the diffusion of the aluminum titanate ceramic surface S i by contact with the secondary aluminum © beam molten alloy, ensure non-wetting can, furthermore, subsequently, by Mg a 1 2 0 4 film finally obtained by contact or the like with the molten aluminum alloy, the non get wet Re resistance of the contact portion can be efficiently ensured. Therefore, the non-wetting property can be maintained for a long time.
また、 最終的に得られる MgA 1204層も、 S iの浸透拡散を抑制するため、 安定して非濡れ性を維持できる。 Further, MgA 1 2 0 4 layer finally obtained is also for suppressing the penetration diffusion of S i, can maintain a stable non-wettable.
したがって、 これらのいずれかの層をアルミニウム合金溶湯との接触部位に供 える部材を用いて、 アルミニウム合金鍩物を製造すると、 精度が高い鐯造を効率 よく達成できる。  Therefore, when an aluminum alloy material is manufactured using a member that provides any one of these layers at a contact portion with the aluminum alloy melt, a highly accurate structure can be efficiently achieved.
また、 本発明に係る MgA 124層を備えるチタン酸アルミニウムセラミック ス部材は、 所定部位に A 1203、 MgOおよび Zまたは A 12T i 05含有層を形 成して、実際のアルミニウム合金の铸造工程において使用して、 これらの部位を、 Mgおよび Zまたは Mg〇を含むアルミニウム合金溶湯に接触させることにより、 MgA 1204層を形成することによって得ることができる。 これにより、 特に、 MgA 1204層を形成することなく、 A 1203層等を形成するだけで、 容易に M gA 1204層を得ることができる。 Further, the aluminum titanate ceramics member comprising MGA 1 2four layers according to the present invention, forms the shape of the A 1 2 0 3, MgO and Z or A 1 2 T i 0 5 containing layer in a predetermined region, use in铸造process of actual aluminum alloy, these sites by contacting the molten aluminum alloy containing Mg and Z or Mg_〇, can be obtained by forming a MgA 1 2 0 4 layer. Thus, in particular, without forming a MgA 1 2 0 4 layer, only form a A 1 2 0 3 layer and the like, can easily be obtained M gA 1 2 0 4 layer.
また、 錶造工程中において、 当初は、 A 1203層等により非濡れ性が確保され るが、 接触時間の増大に伴い、 引き続き、 MgA 1204層がその場生成され、 こ の MgA 1204層によって非濡れ性が確保されるため、 チタン酸アルミニウムセ ラミックス製部材の非濡れ性寿命を効率よく延長することができる。 Further, during錶造process, initially, A 1 2 0 Although non-wettable by the third layer or the like Ru is secured, with increasing contact time, subsequently, MgA 1 2 0 4 layer is generated in situ, this since the non-wetting by MgA 1 2 0 4 layer is ensured, it is possible to extend the non-wetting life of aluminum titanate ceramics member made efficiently.
〔実施例〕 〔Example〕
実施例 1 :チタン酸アルミニウムセラミックスの作製 Example 1: Preparation of aluminum titanate ceramics
チタン酸アルミニウム (A l2T i〇5) の原料粉末として、 丸ス釉薬合資会社 製の TA—2 (S i 02添加量 5w t %) を使用した。 この原料粉末に、 水とァ ルミナボールを、 原料:アルミナボール:水 (1 : 1 : 0. 7) の重量比になる ように調整して 63時間ボールミル混合した。 その後、 この A l2T i 05スラリ 一を篩い (200メッシュ) に通した後、 フィルタープレス機による脱水を行い A 12T i〇5のプレスケーキを得た。 As raw material powder of aluminum titanate (A l 2 T I_〇 5), it was used Mars glaze joint stock company manufactured TA-2 (S i 0 2 amount 5w t%). Water and alumina balls were mixed with the raw material powder in a ball mill for 63 hours by adjusting the weight ratio of the raw material: alumina ball: water (1: 1: 0.7). Then, this Al 2 Ti 0 5 slurry After passing one sieve (200 mesh) to obtain a press cake of A 1 2 T I_〇 5 performs dehydration by a filter press.
このプレスケーキに、 水、 解こう剤 (中京油脂製、 商品名: D— 305) 、 バ インダー (中京油脂製、 商品名 WE— 51 8) を適当量添加し、 スラリー比重が 2. :!〜 2. 3 g/cm3になるように調整した。 To this press cake, add appropriate amounts of water, a deflocculant (manufactured by Chukyo Yushi, trade name: D-305) and a binder (manufactured by Chukyo Yushi, trade name: WE-518), and the specific gravity of the slurry is 2.:! 2.2.3 g / cm 3 .
その後、 このスラリーを石膏型に流し込み、 錶込み成形した後、 室温にて乾燥 させてグリーン成形体を得た。 グリーン成形体は、 図 1 3に示すラドル形状のも のと図 14に示す接合部位を備える容器状の接合体セット (2部材) のものの 2 種とした。 ラドル形状体 102は、 図 13 (a) 及び (b) に示すように、 一つ の湯口を備える半球状の容器であり、 接合体セットは、 図 14 (a) に示すよう に、 上下に 2部材からなる容器 106であり、 図 14 (b) に示すように、 下部 部材 108の開口部にはテーパ状の内周面部 1 10を有し、 上部部材 1 1 2がこ の内周面部 1 10に嵌め合う外周面部 1 14を備える略環状体に形成される。 上 下 2部材 1 12、 108が嵌め合わされることにより一体の容器をなすようにな つている。  Thereafter, the slurry was poured into a gypsum mold, molded and formed, and then dried at room temperature to obtain a green molded body. The green compacts were of two types: a ladle-shaped one as shown in Fig. 13 and a container-like bonded body set (two members) having the joints shown in Fig. 14. The ladle-shaped body 102 is a hemispherical container provided with one gate as shown in FIGS. 13 (a) and (b), and the joined body set is vertically arranged as shown in FIG. 14 (a). As shown in FIG. 14 (b), the container 106 is made up of two members. The opening of the lower member 108 has a tapered inner peripheral surface 110, and the upper member 112 is the inner peripheral surface. It is formed in a substantially annular body having an outer peripheral surface portion 114 fitted to 110. The upper and lower two members 1 12 and 108 are fitted together to form an integral container.
さらに、 このグリーン成形体を、 1600 の大気中において 1時間焼成する ことにより、 A 12T i 05セラミックス焼結体を得た。 実施例 2 : A 1203層及び MgA 124層の形成 Moreover, the green molded body, by baking 1 hour in a 1600 air, to obtain a A 1 2 T i 0 5 ceramic sintered body. Example 2: Formation of A 1 2 0 3 layer and MGA 1 2four layers
得られた A 12T i 05セラミックス焼結体 (計 3種類) にアルミナゾル (日産 化学株式会社製、 商品名:アルミナゾル 200あるいはアルミナゾル 520) を ディップコーティングした後、 室温にて乾燥した。 その後、 1 100 の大気中 で 1時間焼成することにより、 各 A 12T i 05セラミックス焼結体の表面全体に 5 ΠΊの厚みの α— A 1203層を形成させた。 The resulting A 1 2 T i 0 5 ceramics sintered body (a total of three) to alumina sol (Nissan Chemical Industries, Ltd., trade name: Alumina Sol 200 or Alumina Sol 520) after was dip coated and dried at room temperature. Thereafter, by baking 1 hour at 1 100 in air to form a alpha-A 1 2 0 3 layers of whole 5 PI thickness surface of each A 1 2 T i 0 5 ceramic sintered body.
その後、微量の Mg (0. 5wt %) を含むアルミニウム合金溶湯中 (A4C : 組成は表 1に示されている) 、 700°C) に 1時間浸漬させる。 これにより、 A 12T i 05セラミックス表面の α— A 1203層が A4 C溶湯中の Mgと反応して、 単一相の MgA 124層が A 12T i 05セラミックス表面にその場形成した。 M g A 1204層の厚さは、 A 4 C溶湯含浸前のひ— A 1203層と同様 5 mであつ た。 Then, it is immersed in a molten aluminum alloy containing a trace amount of Mg (0.5wt%) (A4C: composition is shown in Table 1) at 700 ° C for 1 hour. Thus, A 1 2 T i 0 5 α- A 1 2 0 3 layers of ceramic surface reacts with Mg in A4 C molten, MGA 1 2four layers of a single phase A 1 2 T i 0 5 In- situ formation on ceramic surface. The thickness of M g A 1 2 0 4 layer, A 4 C melt impregnation before Fei - filed by the same and A 1 2 0 3 layer 5 m Was.
なお、 A 4 C溶湯浸漬前後の A 12T i〇5セラミックス焼結体の表面を、 X線 回折分析することで、 ひ一 A l23 (溶湯浸漬前) あるいは MgA l24 (溶湯 浸漬後) の存在を確認した。 また、 各層の厚さは、 エネルギー分散型 X線回折分 析により測定した。 実施例 3 :非濡れ性の評価 Incidentally, A 4 C the surface of the molten metal before and after immersion of the A 1 2 T I_〇 5 ceramic sintered body, by X-ray diffraction analysis, single A l 23 (molten metal before immersion) shed or MGA l 24 (After immersion in the molten metal) was confirmed. The thickness of each layer was measured by energy dispersive X-ray diffraction analysis. Example 3: Evaluation of non-wetting property
(1) 濡れ角  (1) Wetting angle
アルミニウム合金溶湯 (A4C) に対する A 12T i 05セラミックス焼結体の非 濡れ性評価として濡れ角の測定を行った。 For molten aluminum alloy (A4C) was measured wetting angle as non-wetting Evaluation of A 1 2 T i 0 5 ceramic sintered body.
使用した A 12T i〇5セラミックス試験片としては以下の 3種類である。 すな わち、 i)実施例 1で作製した焼結体の表面を 25mmX25mmX6mmに切断した後、 #800のダイヤモンド砥石により 25mmX25mm面を表面仕上げし (厚さ 5mm) 、 表 面粗さ (中心線平均粗さ)を約 3 mにしたもの、 ii)この表面仕上げした焼結体を 用いて実施例 2により、 その表面に 5 mの厚みのひ— A 1203層を形成させた もの、 iii) さらに a— A 1203層を形成させた A 12T i 05セラミックス焼結体を アルミニウム合金溶湯中 (A4C、 720°C) に 50時間浸漬させて、 表面の α— A 1203層を MgA 1204層に変化させたものを使用した。 The A 1 2 T I_〇 5 ceramic test piece used are the following three types. That is, i) After cutting the surface of the sintered body prepared in Example 1 into 25mmX25mmX6mm, the surface was finished with 25mmX25mm surface with a # 800 diamond grinding stone (thickness 5mm), and the surface roughness (center line) that the average roughness) of about 3 m, ii) the example 2 using the sintered body the surface finish, Fei thickness of 5 m on the surface - that to form a 1 2 0 3 layer , iii) further a- a 1 2 0 3 layer a 1 having formed a 2 T i 0 5 ceramic sintered body in the aluminum alloy melt (A4C, 720 ° C) to be immersed for 50 hours, the surface of the α- It was used with varying a 1 2 0 3 layers of MgA 1 2 0 4 layer.
濡れ角の測定には、 ユニオン光学(株) 製の MH型誘導連動観測機を使用した。 本装置加熱部に上記の試験片を最終処理面 (25mmX25mm面)を上にして設置した 後、 その面に直径 10mm、 長さ 10mmの円柱状のアルミニウム合金塊 (A 4 C)を載 せる。 その後、 アルゴンガス雰囲気中 (流量 2500 c c /min) において、 室温から 700 まで 5 / /minで昇温した後、 30秒間保持する。 その後、 700°Cにおいて、 ランプ光線をアルミニウム合金と試験片にあてて生じた影をスクリーンに投影し、 その画像から試験片表面とアルミニウム合金との接触角を測定した。 For the measurement of the wetting angle, an MH-type induction-linked observation machine manufactured by Union Optics Co., Ltd. was used. After placing the above test piece on the heating part of this equipment with the final treated surface (25 mm x 25 mm surface) facing up, a cylindrical aluminum alloy block (A4C) with a diameter of 10 mm and a length of 10 mm is placed on that surface. . Then, in an argon gas atmosphere (flow rate 2500 cc / min), the temperature is raised from room temperature to 700 at a rate of 5 / min, and then maintained for 30 seconds. Thereafter, at 700 ° C, a lamp beam was applied to the aluminum alloy and the test piece to project a shadow on the screen, and the contact angle between the test piece surface and the aluminum alloy was measured from the image.
700でにおける濡れ角は以下の通りである。 A 12T i 05焼結体 = 120° 、 a— A 1203コーティング A 12T i 05焼結体 = 135° 、 MgA l204コーティン グ A 12T i 05焼結体 = 128° となり、 α—Α 1203コーティングおよび MgA 12 0 コ一ティングによって、 A 12T i 05焼結体のアルミニウム合金に対する非 濡れ性が向上することがわかつた。 The wetting angles at 700 are as follows: A 1 2 T i 0 5 sintered = 120 °, a- A 1 2 0 3 coating A 1 2 T i 0 5 sintered = 135 °, MgA l 2 0 4 Kotin grayed A 1 2 T i 0 5 sintered = 128 °, and the by α-Α 1 2 0 3 coating and MGA 1 2 0 co one coating, non to aluminum alloys a 1 2 T i 0 5 sintered body It was found that the wettability was improved.
(2) 非濡れ性寿命  (2) Non-wetting life
ラドル形態の A 12T i 05セラミックス焼結体 (ひ— A 1203層を備えるもの) の内側に、 700 のアルミニウム合金 (A4C) 溶湯を 2 kg注入し、 50秒 間保持した後、 ラドル内の溶湯を排出する、 という工程を、 溶湯排出時に溶湯が ラドル内壁に付着し残留するようになるまで繰り返した。 その結果、 実施例で作 製したラドルによれば、 この工程を 1 2000回終了するまでは、 溶湯の付着は 全く認められなかった。 このことから、 当該ラドルは、 良好な非濡れ性を保有し かつ維持できることがわかった。 また、 1 2000回終了の時点において、 ラド ル内壁には、 MgA 124層の生成が確認された。 A 1 2 T i 0 5 sintered ceramic ladle form - on the inside (non-A 1 2 0 3 Layers comprising one), and 2 kg injected 700 aluminum alloy (A4C) melt was held for 50 seconds Thereafter, the process of discharging the molten metal in the ladle was repeated until the molten metal adhered to the inner wall of the ladle and remained when the molten metal was discharged. As a result, according to the ladle produced in the example, no adhesion of the molten metal was observed until this step was completed 12,000 times. This indicated that the ladle could retain and maintain good non-wetting properties. Further, at the time of termination 1 2,000 times, the rads Le inner wall, generation of MGA 1 2four layers was confirmed.
対照として、 A 1203層形成前の A 12T i 05セラミックス製ラドルにて同様 の注入排出工程を実施したところ、 2000回程度で溶湯の付着が認められた。As a control, it was subjected to a similar injection discharge step at A 1 2 0 3 layer formed prior to the A 1 2 T i 0 5 ceramic ladle, adhesion of the melt was observed at about 2000 times.
(3) 接合部位を備える接合体のシール性 (3) Sealability of the joined body with the joint
ひ一 A 1203層を備える A 12T i 05セラミックスの接合体セットの各部材を 接合部位において嵌め合わせして接合体とし、 接合部位の外周をアルミナ繊維シ ート (三井鉱山マテリアル (株) 製、 商品名: ALMAX) を介して、 ステンレ ス製のバンド (幅 2 Omm) で締め付けた。 この接合体内部にアルミニウム合金 塊 (A4C) を入れた後、 アルゴン雰囲気中 (流量 100 c cZm i n) にて 7 20でまで昇温 (20°C/m i n) して溶解した。 溶解後、 1時間 720 保持 した後、 降温 (20ΤΖη ί η) する工程を 50回繰り返した。 Hiichi Each member of the joined body set of A 1 2 Ti 0 5 ceramics with A 1 0 2 3 layers is fitted together at the joining portion to form a joined body, and the outer periphery of the joined portion is an alumina fiber sheet (Mitsui Mining) It was tightened with a stainless steel band (width 2 Omm) via Material Co., Ltd., trade name: ALMAX). After the aluminum alloy lump (A4C) was put inside the joined body, the temperature was increased to 720 (20 ° C / min) and melted in an argon atmosphere (flow rate 100 cZmin). After dissolution, the temperature was kept at 720 for 1 hour, and the process of lowering the temperature (20ΤΖηίη) was repeated 50 times.
この結果、 この繰り返し工程中、 接合部位から溶湯漏れは全く観察されなかつ た。 また、 接合体内壁の溶湯接触部位に、 溶湯の付着は全く認められず、 良好な 非濡れ性を維持しているのを確認した。 なお、 接合体内部の溶湯接触部位には、 表面に MgA 1204層が形成されていることが確認された。 As a result, during this repetition process, no molten metal leak was observed from the joint site. In addition, no adhesion of the molten metal was found at the molten metal contact site on the inner wall of the joined body, and it was confirmed that good non-wetting property was maintained. Note that the molten metal contact portion of the joint body part, it was confirmed that MgA 1 2 0 4 layer is formed on the surface.
本発明によれば、 チタン酸アルミニウムセラミックスのアルミニウム合金溶湯 に対する非濡れ性の付与及び維持が容易に達成される。  ADVANTAGE OF THE INVENTION According to this invention, provision and maintenance of the non-wetting property with respect to a molten aluminum alloy of aluminum titanate ceramics are easily achieved.
〔産業上の利用可能性〕  [Industrial applicability]
本発明は、 溶融金属を搬送し計量する工程あるいは装置を製造し、 あるいは溶 融金属で铸物を銬造する産業分野において利用できる。  INDUSTRIAL APPLICATION This invention can be utilized in the industrial field which manufactures the process or apparatus which conveys and measures a molten metal, or produces a solid with a molten metal.

Claims

請求の範囲 The scope of the claims
1 . 電磁ポンプ式溶融金属供給装置であって、  1. An electromagnetic pump type molten metal supply device,
電磁ポンプを備える溶融金属の搬送管路と、  A conduit for conveying the molten metal with an electromagnetic pump,
この搬送管路内に設けられる、 溶融金属の移動に伴って回転する回転羽根と、 この回転羽根の回転数を検出する検出器、  A rotating blade that is provided in the transport pipeline and rotates with the movement of the molten metal; and a detector that detects the number of rotations of the rotating blade,
とを備える、 溶融金属供給装置。 A molten metal supply device comprising:
2 .前記回転羽根の回転軸は、前記搬送管路内において偏心して配置されている、 前記 1記載の溶融金属供給装置。  2. The molten metal supply device according to the item 1, wherein a rotation axis of the rotary blade is eccentrically arranged in the transport pipeline.
3 . 前記回転羽根は、 シャフトとこのシャフトに備えられる羽根とを有し、 前記シャフトは、  3. The rotating blade has a shaft and a blade provided on the shaft.
前記搬送管路に設けられるテーパ状の嵌合孔に嵌合される凸状部と、 この凸状部を貫通し、 前記シャフトが嵌合可能な貫通孔、  A convex portion fitted in a tapered fitting hole provided in the transport conduit; a through hole which penetrates the convex portion and into which the shaft can be fitted;
とを有するキャップ部材を介して、 前記搬送管路に装着される、 1又は 2記載の 溶融金属供給装置。 3. The molten metal supply device according to 1 or 2, which is attached to the transport conduit via a cap member having:
4 . 前記キャップ部材は、 締着部材によって前記搬送管路に圧締めされている、 3記載の溶融金属供給装置。 4. The molten metal supply device according to 3, wherein the cap member is clamped to the transfer conduit by a fastening member.
5 . 前記締着部材に対して、 当該締着部材の熱膨張を相殺可能な程度の張力が付 加されている、 4記載の溶融金属供給装置。  5. The molten metal supply device according to 4, wherein a tension is applied to the fastening member so that thermal expansion of the fastening member can be offset.
6 . 前記搬送管路には、 搬送管路内の溶融金属量の検出手段を備えている、 1〜 5記載の溶融金属供給装置。  6. The molten metal supply device according to any one of 1 to 5, wherein the transport conduit includes a means for detecting the amount of molten metal in the transport conduit.
7 . 前記回転羽根はチタン酸アルミニウムを主材とする、 1〜6記載の溶融金属 供給装置。  7. The molten metal supply device according to any one of 1 to 6, wherein the rotary blade is mainly made of aluminum titanate.
8 . 電磁ポンプを用いて溶融金属を供給して錶物を製造する方法であって、 铸造用のキヤビティへ溶融金属を搬送する搬送管路に回転羽根を備え、 この回転羽根の回転数を検出し、  8. A method for producing molten material by supplying molten metal using an electromagnetic pump, comprising a rotating blade in a conveying pipe for transporting the molten metal to a manufacturing cavity, and detecting a rotation speed of the rotating blade. And
この回転数により溶融金属の供給量を制御する、 方法。  A method of controlling the supply amount of the molten metal by the rotation speed.
9 . 電磁ポンプ式溶融金属供給装置の計量装置であって、  9. A metering device for an electromagnetic pump type molten metal supply device,
溶融金属の搬送管路に備えられ、 溶融金属の移動に伴って回転される回転羽根 と、 この回転羽根の回転数を検出する検出器、 Rotating blades provided in a molten metal conveying pipe and rotated with the movement of the molten metal; A detector for detecting the number of rotations of the rotating blades,
とを有する、 装置。  An apparatus comprising:
10. 前記搬送管路に備えられ、 搬送管路内の溶融金属量の検出手段を備えてい る、 9記載の計量装置。  10. The weighing device according to 9, wherein the weighing device is provided in the transport pipeline, and further includes means for detecting an amount of molten metal in the transport pipeline.
1 1. :!〜 7のいずれかに記載の溶融金属供給装置を備える、 铸造装置。  1 1. A manufacturing apparatus comprising the molten metal supply apparatus according to any one of! To 7.
12. チタン酸アルミニウムセラミックス製のアルミニウム合金溶湯接触部材で あって、  12. An aluminum alloy molten metal contact member made of aluminum titanate ceramics,
少なくともアルミニウム合金溶湯と接触する部位に、 A 1203、 Mg〇および MgA 1204からなる群から選択される 1種あるいは 2種以上の成分を含有し、 前記チタン酸アルミニウムセラミックス製基材よりも S i含有量が少ない層を備 える部材。 A portion in contact with at least the molten aluminum alloy, A 1 2 0 3, containing one or more kinds of components selected from the group consisting of Mg_〇 and MGA 1 2 0 4, wherein the aluminum titanate ceramics group A member with a layer containing less Si than the material.
13. チタン酸アルミニウムセラミックス製アルミニウム合金溶湯接触部材であ つて、  13. A contact member for molten aluminum alloy made of aluminum titanate ceramics,
少なくともアルミニウム合金溶湯と接触する部位に、 前記チタン酸アルミニゥ ムセラミックス基材よりも S i含有量が少ないチタン酸アルミニウム層を備える 部材。  A member comprising an aluminum titanate layer having a Si content lower than that of the aluminum titanate ceramics base material at least in a portion in contact with the aluminum alloy melt.
14. 12又は 13に記載の合金溶湯接触部材を備えるアルミニウム合金錶造装 置。  14. An aluminum alloy 錶 apparatus equipped with the alloy melt contact member according to 12 or 13.
15. チタン酸アルミニウムセラミックス製のアルミニウム合金溶湯接触部材の 製造方法であって、  15. A method for producing an aluminum alloy molten metal contact member made of aluminum titanate ceramics,
チタン酸アルミニウムセラミックス製部材の少なくともアルミニウム合金溶湯 と接触する部位に、 A 1203、 MgOおよび A 12T i 05からなる群から選択さ れる 1種あるいは 2種以上を含有し、 前記チタン酸アルミニウムセラミックス製 基材よりも S i含有量が少ない層を形成する工程と、 A portion in contact with at least an aluminum alloy melt of aluminum titanate ceramic member, contain one or more members selected from the group consisting of A 1 2 0 3, MgO and A 1 2 T i 0 5, wherein Forming a layer having a lower Si content than a substrate made of aluminum titanate ceramics;
A 1203、 MgOおよぴン又は A 12T i 05を含有する層を備えるチタン酸ァ ルミニゥムセラミックス製部材にマグネシウムおよび またはアルミニウムを作 用させて MgA 1204を生成させる工程、 A 1 2 0 3, MgO Oyopin or A 1 2 T i 0 5 is for work magnesium and or aluminum titanium Sana Le mini © arm ceramic member comprising a layer containing by MgA 1 2 0 4 Generating a,
とを備える、 方法。 A method comprising:
16. アルミニウム合金溶湯接触部材の製造方法であって、 少なくともアルミニウム合金溶湯と接触する部位に、 A l23、 MgOおよび A 12T i〇5からなる群から選択される 1種あるいは 2種以上を含有し、 前記チ タン酸アルミニウムセラミックス製基材よりも S i含有量が少ない層を備えるチ タン酸アルミニウムセラミックス製のアルミニウム合金溶湯接触部材を、 アルミ ニゥム合金の錶造工程の少なくとも一部において、 Mgを含有するアルミニウム 合金溶湯に接触させて、 前記 A 1203、 MgOおよび Zまたは A 12T i 05を含 有する層において MgA 1204を生成させる工程、 16. A method for manufacturing an aluminum alloy molten metal contact member, A portion in contact with at least the molten aluminum alloy, A l 23, MgO and A 1 contains 2 T I_〇 one or more members selected from the group consisting of 5, the titanium aluminum ceramics group An aluminum alloy contact member made of aluminum titanate ceramic having a layer having a lower Si content than a material is brought into contact with a magnesium-containing aluminum alloy melt in at least a part of the aluminum alloy fabrication process. the a 1 2 0 3, step of generating a MgA 1 2 0 4 in the MgO and Z or a 1 2 T i 0 5 a layer having free,
とを備える、 方法。 A method comprising:
17. アルミニウム合金溶湯接触部材の製造方法であって、  17. A method for manufacturing an aluminum alloy molten metal contact member,
チタン酸アルミニゥムセラミックス製の 2以上の部材が接合される部位であつ て、 少なくともアルミニウム合金溶湯と接触する部位に、 A 1203、 MgOおよ び A 12T i 05からなる群から選択される 1種あるいは 2種以上を含有し、 前記 チタン酸アルミニウムセラミックス製基材ょりも S i含有量が少ない層を備える チタン酸アルミニウムセラミックス製のアルミニウム合金溶湯接触部材を、 当該 部位をアルミニウム合金の銬造工程の少なくとも一部において、 Mgを含有する アルミニウム合金溶湯に接触させて、 A 1203、 MgOおよび または A 12T i 05の含有層において MgA 124を生成させる工程、 Shall apply at the site where two or more members made of titanate Arumini © beam ceramics are joined, in a zone that is in contact with at least the molten aluminum alloy, consisting of A 1 2 0 3, MgO and A 1 2 T i 0 5 The aluminum titanate ceramics base material made of one or more selected from the group, and the aluminum titanate ceramic base material also includes a layer having a low Si content. in at least some of銬造process of aluminum alloy, in contact with the molten aluminum alloy containing Mg, MGA 1 24 in a 1 2 0 3, MgO and or containing layers a 1 2 T i 0 5 Generating a,
を備える方法。 A method comprising:
18. アルミニウム合金錶物の製造方法であって、  18. A method of manufacturing aluminum alloy products,
少なくともアルミニウム合金溶湯と接触する部位に、 A 1203、 MgOおよび A 12T i 05からなる群から選択される 1種あるいは 2種以上を含有し、 前記チ タン酸アルミニウムセラミックス製基材よりも S i含有量が少ない層を備えるチ タン酸アルミニウムセラミックス製のアルミ二ゥム合金溶湯接触部材を、 アルミ ニゥム合金の銬造工程の少なくとも一部において、 Mgを含有するアルミニウム 合金溶湯に接触させて、 前記 A 1203、 ^[8〇ぉょび 又は八 12T i〇5の含有 層において MgA 1204を生成させる工程、 A portion in contact with at least the molten aluminum alloy, A 1 2 0 3, MgO and A 1 2 T i 0 1 kind selected from the group consisting of 5 or comprise two or more, the titanium aluminum ceramics group The aluminum titanium alloy melt contact member made of aluminum titanate ceramics, which has a layer with a lower Si content than the aluminum alloy, is used in at least a part of the aluminum alloy fabrication process to convert the Mg-containing aluminum alloy melt. in contact, wherein a 1 2 0 3, ^ [8_Rei Oyobi or eight 1 2 T I_〇 5 step of generating a MgA 1 2 0 4 in the containing layer,
とを有する、 方法。 And having a method.
PCT/JP2001/005571 2000-11-20 2001-06-28 Molten metal feeder and member made of aluminum titanate ceramic with improved unwettability WO2002040203A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002542560A JPWO2002040203A1 (en) 2000-11-20 2001-06-28 Molten metal supply device and aluminum titanate ceramic member with improved non-wetting property
CA002429344A CA2429344A1 (en) 2000-11-20 2001-06-28 Molten metal feeder and member made of aluminum titanate ceramic with improved unwettability
US10/440,148 US20050035504A1 (en) 2000-11-20 2003-05-19 Molten metal supply device and aluminum titanate ceramic member having improved non-wettability

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-353386 2000-11-20
JP2000353386A JP2002153969A (en) 2000-11-20 2000-11-20 Device for supplying molten metal provided with weighting mechanism
JP2001-27436 2001-02-02
JP2001027436A JP4667611B2 (en) 2001-02-02 2001-02-02 Aluminum titanate ceramic member with improved non-wetting property against molten aluminum alloy and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/440,148 Continuation US20050035504A1 (en) 2000-11-20 2003-05-19 Molten metal supply device and aluminum titanate ceramic member having improved non-wettability

Publications (1)

Publication Number Publication Date
WO2002040203A1 true WO2002040203A1 (en) 2002-05-23

Family

ID=26604303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005571 WO2002040203A1 (en) 2000-11-20 2001-06-28 Molten metal feeder and member made of aluminum titanate ceramic with improved unwettability

Country Status (4)

Country Link
US (1) US20050035504A1 (en)
JP (1) JPWO2002040203A1 (en)
CA (1) CA2429344A1 (en)
WO (1) WO2002040203A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215416A (en) * 2009-03-12 2010-09-30 Japan Fine Ceramics Center Aluminum titanate sintered compact and refractory for aluminum alloy casting

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2459509B (en) * 2008-04-25 2011-05-11 Goodwin Plc An apparatus for casting and a method of casting
BR112019016999A2 (en) 2017-02-17 2020-04-14 Southwire Co Llc ultrasonic grain refining and degassing procedures and systems for metal casting including enhanced vibrational coupling
CN111995417B (en) * 2020-08-21 2022-10-25 浙江锦诚新材料股份有限公司 Magnesium aluminate spinel castable for aluminum melting furnace

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57201812A (en) * 1981-06-05 1982-12-10 Hitachi Zosen Corp Flow rate measuring device for molten slag
JPS5895975A (en) * 1981-12-03 1983-06-07 Hitachi Ltd Conductive fluid conveying device using electromagnetic pump
US4635706A (en) * 1985-06-06 1987-01-13 The Dow Chemical Company Molten metal handling system
JPS6463816A (en) * 1987-05-19 1989-03-09 Tokyo Keiso Kk Impeller-type apparatus for measuring flow rate
JPH02248362A (en) * 1989-03-17 1990-10-04 Inax Corp Aluminum titanate ceramics
JPH1072255A (en) * 1996-08-29 1998-03-17 Tokyo Yogyo Co Ltd Low expansion ceramic ladle for nonferrous molten metal
JP2001139369A (en) * 1999-11-08 2001-05-22 Tsutomu Fukuda Method for manufacturing aluminum titanate sintered compact

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168264A (en) * 1986-12-23 1988-07-12 ザ・ダウ・ケミカル・カンパニ− Molten metal treating system
JPH03230857A (en) * 1990-02-02 1991-10-14 Toyota Motor Corp Method for inserting aluminum titanate-made parts as internal cast

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57201812A (en) * 1981-06-05 1982-12-10 Hitachi Zosen Corp Flow rate measuring device for molten slag
JPS5895975A (en) * 1981-12-03 1983-06-07 Hitachi Ltd Conductive fluid conveying device using electromagnetic pump
US4635706A (en) * 1985-06-06 1987-01-13 The Dow Chemical Company Molten metal handling system
JPS6463816A (en) * 1987-05-19 1989-03-09 Tokyo Keiso Kk Impeller-type apparatus for measuring flow rate
JPH02248362A (en) * 1989-03-17 1990-10-04 Inax Corp Aluminum titanate ceramics
JPH1072255A (en) * 1996-08-29 1998-03-17 Tokyo Yogyo Co Ltd Low expansion ceramic ladle for nonferrous molten metal
JP2001139369A (en) * 1999-11-08 2001-05-22 Tsutomu Fukuda Method for manufacturing aluminum titanate sintered compact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215416A (en) * 2009-03-12 2010-09-30 Japan Fine Ceramics Center Aluminum titanate sintered compact and refractory for aluminum alloy casting

Also Published As

Publication number Publication date
US20050035504A1 (en) 2005-02-17
JPWO2002040203A1 (en) 2004-03-18
CA2429344A1 (en) 2002-05-23

Similar Documents

Publication Publication Date Title
US6322729B2 (en) Method of forming monolithic ceramic gas diffuser
US20090250337A1 (en) Tubular target having a connecting layer arranged between the target tube and the carrier tube
CN107350472A (en) A kind of ultrasonic 3D printing system and Method of printing for being used to prepare glassy metal part
CN107849675B (en) Thermal spray powder, thermal spray method, and thermally sprayed coating
BRPI0617249A2 (en) tubular target
CN100494466C (en) Roll for molten metal plating bath
KR20110102290A (en) Molten glass carrier facility element and glass production system
WO2002040203A1 (en) Molten metal feeder and member made of aluminum titanate ceramic with improved unwettability
CN115055699A (en) Particle reinforced aluminum-based composite material molten drop composite electric arc additive manufacturing device and method
US4946082A (en) Transfer tube with in situ heater
WO2019164485A1 (en) Sintered weld rod for laser braze repair of nickel base components
JP6343161B2 (en) Centrifugal spray powder manufacturing disc
JP3774696B2 (en) Method for manufacturing inner surface coated cylinder
US4993607A (en) Transfer tube with in situ heater
KR101392749B1 (en) Method for reparing target for sputtering and target for sputtering
CN101574761A (en) Powder-cored welding wire used for surface cladding of high-temperature thermocouple protection tube and preparation method thereof
EP2255904A1 (en) Refractory purging porous block
JP5014755B2 (en) Rotary feeder for powder
JP4667611B2 (en) Aluminum titanate ceramic member with improved non-wetting property against molten aluminum alloy and method for producing the same
JP2740354B2 (en) Method for manufacturing a heating device for transferring liquid metal, heating device and casting machine
JP2005298839A (en) Roll for continuous hot-dip metal plating
JP4294920B2 (en) Molten metal supply apparatus and molten metal supply method
JP3652915B2 (en) Corrosion-resistant coating forming method on inner surface of cylindrical container and apparatus for forming the same
JP2004182486A (en) Roll for continuous molten metal plating
JP4088885B2 (en) Roll for continuous molten metal plating

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA DE JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002542560

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2429344

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10440148

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642