JPH1072255A - Low expansion ceramic ladle for nonferrous molten metal - Google Patents

Low expansion ceramic ladle for nonferrous molten metal

Info

Publication number
JPH1072255A
JPH1072255A JP8248621A JP24862196A JPH1072255A JP H1072255 A JPH1072255 A JP H1072255A JP 8248621 A JP8248621 A JP 8248621A JP 24862196 A JP24862196 A JP 24862196A JP H1072255 A JPH1072255 A JP H1072255A
Authority
JP
Japan
Prior art keywords
ladle
hysteresis
aluminum titanate
sintered body
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8248621A
Other languages
Japanese (ja)
Inventor
Kiyohisa Hayama
清寿 羽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP8248621A priority Critical patent/JPH1072255A/en
Publication of JPH1072255A publication Critical patent/JPH1072255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a low expansion ceramic ladle capable of improving the productivity of a casting machine, etc., and the quality of castings as a ladle used for separating and feeding a nonferrous molten metal such as an Al alloy. SOLUTION: This ladle is made of an aluminum titanate sintered compact having a grain boundary phase made of Ti-Al-Si-O mixed crystals consisting of 9.4-12.2mol% Ti, 18.8-24.2mol% Al, 0.8-8.3mol% Si and the balance O and having 0-0.2% coefft. of linear expansion at the time of heating to 1,000 deg.C and $0.1% difference in the coefft. of linear expansion due to hysteresis at the time of cooling. The aluminum titanate sintered compact has high strength and superior thermal shock resistance because of its low thermal expandability and non-hysteresis.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアルミ合金等非鉄溶
融金属の分取、供給に用いるラドルに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ladle used for separating and supplying non-ferrous metal such as aluminum alloy.

【0002】[0002]

【従来の技術】アルミ合金等非鉄溶融金属の分取、供給
に用いられる容器としてラドルが一般に用いられてい
る。特にダイカストマシンには溶湯を汲み出してプラン
ジャースリーブ内に供給する機械作動式ラドルが使用さ
れ、それらは一般に鋳鉄製ラドルであり、アルミ溶湯に
よる浸蝕を防止するため金属酸化物粉末等を塗布する場
合が多い。しかしながらこの様な塗布剤は付着力が不十
分であり、表面に付着するアルミ酸化物等を除去する際
に剥がれやすく、剥がれた箇所はアルミ溶湯により浸蝕
されて鉄等が溶出し、鋳造製品の品質に悪影響を及ぼ
す。したがって頻繁な塗布作業が必要であるが、生産性
に少なからず支障を生ずることとなる。さらに鋳鉄の高
熱伝導率により溶湯温度の低下を招きやすく、このこと
も品質低下の要因となる。
2. Description of the Related Art Ladles are generally used as containers for separating and supplying nonferrous molten metals such as aluminum alloys. In particular, die-casting machines use mechanically-operated ladles that pump molten metal and supply it into the plunger sleeve.These ladles are generally cast iron ladles, and when metal oxide powder is applied to prevent erosion by molten aluminum. There are many. However, such a coating agent has insufficient adhesive force, and is easily peeled when removing aluminum oxide and the like adhering to the surface, and the peeled portion is eroded by the molten aluminum to elute iron, etc. Affects quality. Therefore, frequent coating operations are required, but this will cause some hindrance to productivity. Furthermore, the high thermal conductivity of cast iron tends to lower the temperature of the molten metal, which also causes quality deterioration.

【0003】これに対し、ラドル材質をセラミックス化
する試みがなされている。高い耐熱衝撃性と耐蝕性が必
要であり、窒化ケイ素またはサイアロンなどではすでに
実用化例がある。しかしこれらは製造コストが高く、高
価格になり易いため高耐用のメリットを現し難く、また
比較的熱伝導率が大きいため保温性に不足する場合があ
る。
On the other hand, attempts have been made to convert the ladle material into ceramic. High thermal shock resistance and corrosion resistance are required, and there are already practical examples of silicon nitride or sialon. However, these have high manufacturing costs and tend to be expensive, making it difficult to exhibit the advantage of high durability. In addition, they have a relatively large thermal conductivity and may be insufficient in heat retention.

【0004】一方、チタン酸アルミニウムセラミックス
もこれまで実用化が試みられてきた。元来チタン酸アル
ミニウムは熱膨脹率が低く、熱衝撃に非常に強いセラミ
ックスであると共に、融点が1850℃と高く高温に耐
える化合物である。また熱伝導率が窒化ケイ素やサイア
ロン等の1/5〜1/10であり、ラドルとしての保熱
効果が大きい。しかし、従来のチタン酸アルミニウム焼
結体は加熱・冷却時の熱膨脹・収縮履歴に生ずるヒステ
リシスが大きいため、高い耐熱衝撃性と充分な強度を有
する、実用に耐え得るチタン酸アルミニウム焼結体を得
ることは非常に困難であった。例えば、添加物により強
度を高め、ヒステリシスを抑制することは可能であるが
同時に熱膨脹率も高くなり耐熱衝撃性が低下するのであ
り、一方耐熱衝撃性維持のためには強度を大幅に犠牲に
せざるを得ず、ヒステリシスも大きく現れる。低強度の
ラドルでは機械作動の速い動き、及び荷重による応力で
破損等の問題を発生することになる。
[0004] On the other hand, aluminum titanate ceramics have been tried for practical use. Originally, aluminum titanate is a ceramic that has a low coefficient of thermal expansion and is very resistant to thermal shock, and has a high melting point of 1850 ° C. and can withstand high temperatures. Further, the thermal conductivity is 1/5 to 1/10 that of silicon nitride, sialon and the like, and the heat retention effect as a ladle is large. However, the conventional aluminum titanate sintered body has a large hysteresis generated in the history of thermal expansion and contraction during heating and cooling, so that an aluminum titanate sintered body having high thermal shock resistance and sufficient strength and capable of withstanding practical use is obtained. It was very difficult. For example, it is possible to increase the strength and suppress the hysteresis with additives, but at the same time, the coefficient of thermal expansion is increased and the thermal shock resistance is reduced. On the other hand, strength is not greatly sacrificed for maintaining the thermal shock resistance. And hysteresis also appears greatly. With a low-strength ladle, problems such as breakage occur due to the rapid movement of the machine operation and the stress caused by the load.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、アル
ミ合金等非鉄溶融金属の分取、供給に用いるラドルにお
いて、鋳造機等の生産性向上と鋳造物の品質向上を可能
とする、低膨脹性セラミックスより成るラドルを提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a ladle used for separating and supplying a non-ferrous metal such as an aluminum alloy, which is capable of improving the productivity of a casting machine and the like and improving the quality of a casting. An object of the present invention is to provide a ladle made of expandable ceramics.

【0006】[0006]

【課題を解決するための手段】本発明の低膨脹性セラミ
ックス質非鉄溶融金属用ラドルはその構成材料であるチ
タン酸アルミニウム焼結体において、焼結体の結晶粒界
がチタン:9.4〜12.2mol%,アルミニウム:
18.8〜24.2mol%,シリコン:0.8〜8.
3mol%,残部が酸素より成るTi−Al−Si−O
系混晶体より成り、1000℃加熱時に於ける線膨脹率
が0〜0.2%であり、且つ冷却時のヒステリシスによ
る膨脹率の差が0.1%以下であることによりその目的
を達成した。
The low-expansion ceramic non-ferrous metal ladle according to the present invention comprises a sintered aluminum titanate which is a constituent material thereof, wherein the crystal grain boundary of the sintered body is titanium: 9.4 to 9.4. 12.2 mol%, aluminum:
18.8-24.2 mol%, silicon: 0.8-8.
Ti-Al-Si-O consisting of 3 mol%, the balance being oxygen
The objective was achieved by the fact that the alloy was composed of a system mixed crystal and had a linear expansion coefficient of 0 to 0.2% when heated at 1000 ° C. and a difference of 0.1% or less due to hysteresis upon cooling. .

【0007】(作用)元来、チタン酸アルミニウムの低
熱膨脹性およびそれに伴う高耐熱衝撃性は各結晶軸方向
の膨脹率が極端に異なることから生ずる、いわゆるマイ
クロクラックの内在によりもたらされるものである。チ
タン酸アルミニウムは結晶の軸方向によって熱膨脹率が
非常に異なり、a軸、b軸方向にはそれぞれ11.8×
10−6,19.4×10−6の大きな正の値を持って
いるのに対し、c軸方向のみは−2.6×10−6と逆
に負の値を持っている。そのためにこのセラミックスを
高温度で焼結させた後冷却すると、互に結合している面
の結晶方位が一致していない限りそれらの界面で大きな
応力を生じ、それが余り大きくなりすぎると粒界にクラ
ックを生ずる。こうして生ずるマイクロクラックの存在
形態が焼結体の物理的・機械的特性を大きく支配するこ
とになり、マイクロクラックが大きくなるほど、機械的
強度は大きく低下する。またこの時、マイクロクラック
の開口・閉塞挙動により熱膨脹ヒステリシスの現象が大
きく現れる。すなわち加熱膨脹時にはマイクロクラック
の閉塞により見掛け上非常に小さい膨脹率を示すが、閉
塞時に焼き付いたクラックはその後の冷却行程で暫くは
開口せず、チタン酸アルミニウム本来の高膨脹率に従っ
た大きな収縮を生じ、その後600〜400℃において
応力に抗しきれず再びマイクロクラックを生じて膨脹を
示し初期状態に戻るものである。つまりヒステリシスの
大きなものは冷却時のクラック閉塞が著しく、中間温度
域で熱衝撃による破損を生じやすいのである。この様に
従来、チタン酸アルミニウム焼結体においては低熱膨脹
性とヒステリシスは共存し、高強度とは二律背反的特性
であることがこの材料の用途を狭めていた。
(Effect) Originally, the low thermal expansion and the high thermal shock resistance of aluminum titanate are caused by so-called microcracks, which are caused by extremely different expansion rates in the respective crystal axis directions. . Aluminum titanate has a very different coefficient of thermal expansion depending on the axial direction of the crystal.
While it has a large positive value of 10−6, 19.4 × 10−6, only the c-axis direction has a negative value of −2.6 × 10−6. Therefore, when this ceramic is sintered at a high temperature and then cooled, a large stress is generated at the interface between the two surfaces unless the crystal orientations of the bonded surfaces match each other. Cracks The existence form of the microcracks generated in this way largely governs the physical and mechanical properties of the sintered body, and the mechanical strength is greatly reduced as the microcracks increase. At this time, a phenomenon of thermal expansion hysteresis appears largely due to the opening / closing behavior of the microcracks. That is, during heating expansion, the microcracks show a very small expansion rate due to blockage of the microcracks. Then, at 600 to 400 ° C., it cannot withstand the stress, causes microcracks again, expands, and returns to the initial state. In other words, those having a large hysteresis are markedly closed by cracks during cooling, and are likely to be damaged by a thermal shock in an intermediate temperature range. As described above, conventionally, low thermal expansion and hysteresis coexist in an aluminum titanate sintered body, and high strength is a trade-off between the two properties.

【0008】これまで種々の改良が試みられているがい
ずれも十分とは言い難い。例えば添加物としてFe
23,MgO等により強度を高めることは可能であるが
同時に熱膨脹率も高くなり耐熱衝撃性は低下する。一方
耐熱衝撃性維持のための低熱膨脹率化には、焼結体内部
へ多くのマイクロクラックの導入が必要であり、強度を
大幅に犠牲にせざるを得ない。また低膨脹性であっても
上述の要因によるヒステリシスがあり、熱サイクルの繰
り返しにより破損が生じ易かった。例えば1200℃か
ら500℃に冷却し、再び急加熱した場合には必ず破損
するのである。
[0008] Various improvements have been attempted so far, but none of them is satisfactory. For example, Fe as an additive
Although it is possible to increase the strength with 2 O 3 , MgO or the like, the coefficient of thermal expansion also increases, and the thermal shock resistance decreases. On the other hand, in order to reduce the thermal expansion coefficient for maintaining the thermal shock resistance, it is necessary to introduce a large number of microcracks into the sintered body, and the strength has to be largely sacrificed. In addition, even if the expansion was low, there was hysteresis due to the above-mentioned factors, and breakage was liable to occur due to repeated thermal cycling. For example, when the temperature is cooled from 1200 ° C. to 500 ° C. and then heated rapidly again, it is inevitably damaged.

【0009】本発明は、このようなチタン酸アルミニウ
ム焼結体の本質的な特性に鑑み、亀裂の形態制御と焼付
き抑止の検討により焼結体の低熱膨脹性と非ヒステリシ
ス性を共存させ、ラドル材料として応用したものであ
る。すなわちチタン酸アルミニウム焼結体の粒界相組成
をチタン:9.4〜12.2mol%,アルミニウム:
18.8〜24.2mol%,シリコン:0.8〜8.
3mol%,残部が酸素より成るTi−Al−Si−O
系混晶体で構成することにより、膨脹異方性の緩和と同
時に結晶成長が抑制され、マイクロクラックの生成が最
小限に抑えられると共に、それらマイクロクラックは焼
付きが生じ難い性質を有することで1000℃加熱時に
於ける線膨脹率が0〜0.2%であり、且つ冷却時のヒ
ステリシスによる膨脹率の差が0.1%以下である、高
い強度と低熱膨脹性で優れた耐熱衝撃性を有するチタン
酸アルミニウム焼結体より成るラドルを得たのである。
In view of the essential characteristics of such an aluminum titanate sintered body, the present invention combines low thermal expansion and non-hysteresis properties of the sintered body by controlling crack morphology and suppressing seizure. It is applied as a ladle material. That is, the composition of the grain boundary phase of the aluminum titanate sintered body is as follows: titanium: 9.4 to 12.2 mol%, aluminum:
18.8-24.2 mol%, silicon: 0.8-8.
Ti-Al-Si-O consisting of 3 mol%, the balance being oxygen
By comprising a system mixed crystal, the crystal growth is suppressed at the same time as the expansion anisotropy is relaxed, the generation of microcracks is minimized, and the microcracks have a property that seizure hardly occurs. It has high strength, low thermal expansion and excellent thermal shock resistance with a linear expansion rate of 0 to 0.2% when heated at 0 ° C and a difference in expansion rate due to hysteresis at cooling of 0.1% or less. Thus, a ladle comprising the aluminum titanate sintered body was obtained.

【0010】請求項1において粒界相Ti−Al−Si
−O系混晶体としたのは、他の成分系、例えばTi−A
l−Zr−O、Ti−Al−Mg−O、Ti−Al−F
e−O系などでは結晶成長抑制効果が乏しいか或いは促
進作用を示し、結果としてヒステリシスを生じるからで
ある。これは結晶が大きく成長すると共に粒界に焼結促
進成分が濃縮され、閉塞時に焼付きを生じ易いマイクロ
クラックを多数発生するためと考えられる。またTi−
Al−Si−O系混晶体の組成をチタン:9.4〜1
2.2mol%,アルミニウム:18.8〜24.2m
ol%,シリコン:0.8〜8.3mol%,残部が酸
素より成るとしているが、シリコンは0.8mol%に
満たないと母相の膨脹異方性の緩和と結晶成長抑制が十
分でなく、また8.3mol%を超えるとムライト相が
過剰となり低熱膨脹性が損なわれるからである。チタン
とアルムニウムの比率は1:2であるが若干のチタン過
剰組成の方が良い。過剰なAl3+は高温にて拡散し結晶
成長を促進する可能性があるからである。結晶体の母相
はAl2TiO5であり、同様に若干のTiO2過剰組成
の方が良くAl23過剰は好ましくない。
The grain boundary phase according to claim 1, Ti-Al-Si
The -O-based mixed crystal is used for other component systems such as Ti-A
l-Zr-O, Ti-Al-Mg-O, Ti-Al-F
This is because the e-O type or the like has a poor or insufficient crystal growth suppressing effect, resulting in hysteresis. This is considered to be because the crystal grows large and the sintering promoting component is concentrated at the grain boundaries, and a large number of microcracks that easily cause seizure when clogging occur. Ti-
The composition of the Al—Si—O-based mixed crystal was determined to be titanium: 9.4 to 1
2.2 mol%, aluminum: 18.8 to 24.2 m
ol%, silicon: 0.8 to 8.3 mol%, and the balance is composed of oxygen. If the silicon content is less than 0.8 mol%, the relaxation of the expansion anisotropy of the mother phase and the suppression of crystal growth are not sufficient. On the other hand, if it exceeds 8.3 mol%, the mullite phase becomes excessive and the low thermal expansion property is impaired. Although the ratio of titanium to aluminum is 1: 2, a slight excess of titanium is better. This is because excess Al 3 + may diffuse at a high temperature and promote crystal growth. The parent phase of the crystal is Al 2 TiO 5 , and similarly, a slight TiO 2 excess composition is better and an Al 2 O 3 excess is not preferred.

【0011】母相としてのチタン酸アルミニウムはルチ
ル、アナターゼ、或いはブルッカイト等酸化チタンとコ
ランダム等酸化アルミニウムにより合成するが粒子が微
細なほど好ましく、1μm以下が望ましい。粒界相のT
i−Al−Si−O系混晶体は母相と同様のチタン酸ア
ルミニウム組成とSi化合物より合成するが平均粒子径
はさらに微細なものとする必要があり、望ましくは、
0.1μm以下である。Si化合物としては、例えばコ
ロイダルシリカ、エチルシリケート、ムライト、無定形
シリカ、および粘土類等があるがいずれを用いてもSi
が高度に分散されればTi−Al−Si−O系混晶体の
構成は可能である。
Aluminum titanate as a parent phase is synthesized from titanium oxide such as rutile, anatase or brookite and aluminum oxide such as corundum. The finer the particles, the more preferable it is 1 μm or less. Grain boundary phase T
The i-Al-Si-O-based mixed crystal is synthesized from the same aluminum titanate composition and Si compound as the parent phase, but the average particle diameter needs to be finer.
It is 0.1 μm or less. Examples of the Si compound include colloidal silica, ethyl silicate, mullite, amorphous silica, and clays.
Is highly dispersed, a Ti-Al-Si-O-based mixed crystal can be formed.

【0012】請求項2において1000℃加熱時に於け
る線膨脹率が0〜0.2%としたのは、0%未満すなわ
ち収縮性があるとラドルへの引っ張り応力による破損が
懸念され、0.2%を超えると耐熱衝撃性に劣るからで
ある。さらに冷却時のヒステリシスによる膨脹率の差が
0.1%以下としたのは0.1%を超えると中間温度域
において熱衝撃による破損を生じやすくなるからであ
る。以下実施例により本発明を具体的に説明する。
In the second aspect, the linear expansion coefficient at the time of heating at 1000 ° C. is set to 0 to 0.2%. If it exceeds 2%, the thermal shock resistance is poor. The reason why the difference in expansion rate due to hysteresis during cooling is 0.1% or less is that if it exceeds 0.1%, damage due to thermal shock is likely to occur in an intermediate temperature range. Hereinafter, the present invention will be described specifically with reference to examples.

【0013】[0013]

【実施例1】モル比1:1のAl23・TiO2混合物
より合成した母相となるチタン酸アルミニウム粉末に、
モル比1:1のAl23・TiO2混合物と添加成分
(本発明材にはカオリナイト、比較例にはZrO2,M
gO,Fe23)より合成した粒界相となる粉末を加
え、有機バインダー及び解膠剤を添加してボールミルに
より混合して得たスラリーを、石膏型に流し込んで成形
した。得られた成形体は乾燥後、電気炉にて1550℃
で焼成した。
Example 1 An aluminum titanate powder serving as a mother phase synthesized from an Al 2 O 3 .TiO 2 mixture having a molar ratio of 1: 1 was added to
A mixture of Al 2 O 3 and TiO 2 having a molar ratio of 1: 1 and additional components (kaolinite in the material of the present invention, ZrO 2 , M
gO, Fe 2 O 3 ), a powder to be a grain boundary phase was added, an organic binder and a deflocculant were added, and the mixture was mixed by a ball mill, and the resulting slurry was poured into a gypsum mold and molded. The obtained molded body is dried and then dried at 1550 ° C. in an electric furnace.
Was fired.

【0014】[0014]

【表1】 [Table 1]

【0015】表1に本発明材と比較材の粒界相組成と曲
げ強度、熱膨脹率及びヒステリシスを示す。図1に代表
的本発明材と比較材の熱膨脹収縮曲線を示す。本発明材
は、比較材に対して高強度且つ低膨脹性を維持しながら
ヒステリシスの発生が極めて小さい。(表1、図1参
照)このように強度が高く膨脹特性に優れるため、機械
動作の速い動きや溶湯の重量によりラドルにかかる応力
に十分耐えることができる。
Table 1 shows the composition of the grain boundary phase, bending strength, coefficient of thermal expansion and hysteresis of the material of the present invention and the comparative material. FIG. 1 shows the thermal expansion and contraction curves of a typical material of the present invention and a comparative material. The material of the present invention has extremely small occurrence of hysteresis while maintaining high strength and low expansion property with respect to the comparative material. (See Table 1 and FIG. 1) Since the strength is high and the expansion characteristics are excellent, it is possible to sufficiently withstand the stress applied to the ladle due to the rapid movement of the mechanical operation and the weight of the molten metal.

【0016】[0016]

【実施例2】図2に本発明焼結体によるラドル製品例を
示す。セラミックスラドルは一般に金属性の機械取り付
け部を伴い、ボルト等で固定して用いるが、特に従来の
低強度チタン酸アルミニウム材では慎重な固定方法が必
要となる。それに対し本発明焼結体は容量2kg程度の
ラドルならば図2に製品例のようなセラミックス一体品
として使用可能である。また金属製の機械取り付け部を
伴う場合でも固定構造が簡易となる。
Embodiment 2 FIG. 2 shows an example of a ladle product using the sintered body of the present invention. The ceramic ladle is generally provided with a metal mechanical mounting portion and is used by being fixed with bolts or the like. In particular, a conventional low-strength aluminum titanate requires a careful fixing method. On the other hand, the sintered body of the present invention can be used as a ceramic integrated product as shown in FIG. Also, the fixing structure can be simplified even when a metal mechanical mounting portion is involved.

【0017】[0017]

【実施例3】A社ダイカストマシン付属の1.0kgロ
ボットラドルにおいて、本発明ラドルは9カ月以上の高
耐用を示し、ラドル保護材塗布作業等のメンテナンスが
ほとんど不要となった。またアルミ合金保持20秒後の
温度は従来鋳鉄ラドルに対して+5℃の保熱効果を示
し、鋳造品の品質向上をもたらした。
Embodiment 3 With a 1.0 kg robot ladder attached to a company A die-casting machine, the ladder of the present invention has a high durability of 9 months or more, and maintenance such as a work for applying a ladder protection material is almost unnecessary. In addition, the temperature after holding the aluminum alloy for 20 seconds showed a heat retaining effect of + 5 ° C. with respect to the conventional cast iron ladle, and the quality of the cast product was improved.

【0018】[0018]

【発明の効果】係る発明によれば、実施例においても明
らかなように焼結体の低熱膨脹性と非ヒステリシス性の
共存により、高い強度と優れた耐熱衝撃性を有するチタ
ン酸アルミニウム焼結体より成るラドルを得ることがで
きる。
According to the present invention, as is clear from the examples, the aluminum titanate sintered body having high strength and excellent thermal shock resistance due to the coexistence of low thermal expansion and non-hysteresis of the sintered body. Laddle consisting of:

【図面の簡単な説明】[Brief description of the drawings]

【図1】代表的本発明材と比較材の熱膨脹収縮曲線を示
す図表である。
FIG. 1 is a chart showing the thermal expansion / shrinkage curves of a typical material of the present invention and a comparative material.

【図2】本発明焼結体によるラドル製品例を示すもので
ある。
FIG. 2 shows an example of a ladle product using the sintered body of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 焼結体の結晶粒界相組成においてチタ
ン:9.4〜12.2mol%,アルミニウム:18.
8〜24.2mol%,シリコン:0.8〜8.3mo
l%,残部が酸素より成るTi−Al−Si−O系混晶
体より構成されるチタン酸アルミニウム焼結体からなる
ことを特徴とする低膨脹性セラミックス質非鉄溶融金属
用ラドル。
1. The composition of a crystal grain boundary phase of a sintered body: titanium: 9.4 to 12.2 mol%;
8 to 24.2 mol%, silicon: 0.8 to 8.3 mol
A low-expansion ceramic non-ferrous metal ladder comprising an aluminum titanate sintered body composed of a Ti-Al-Si-O-based mixed crystal composed of 1% and the balance being oxygen.
【請求項2】 1000℃加熱時に於ける線膨脹率が0
〜0.2%であり、且つ冷却時のヒステリシスによる線
膨脹率の差が0.1%以下である請求項1に記載のチタ
ン酸アルミニウム焼結体からなることを特徴とする低膨
脹性セラミックス質非鉄溶融金属用ラドル。
2. The linear expansion coefficient at the time of heating at 1000 ° C. is 0.
A low-expansion ceramic comprising the aluminum titanate sintered body according to claim 1, wherein the difference in linear expansion coefficient due to hysteresis upon cooling is 0.1% or less. Ladle for quality non-ferrous metal.
JP8248621A 1996-08-29 1996-08-29 Low expansion ceramic ladle for nonferrous molten metal Pending JPH1072255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8248621A JPH1072255A (en) 1996-08-29 1996-08-29 Low expansion ceramic ladle for nonferrous molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8248621A JPH1072255A (en) 1996-08-29 1996-08-29 Low expansion ceramic ladle for nonferrous molten metal

Publications (1)

Publication Number Publication Date
JPH1072255A true JPH1072255A (en) 1998-03-17

Family

ID=17180845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8248621A Pending JPH1072255A (en) 1996-08-29 1996-08-29 Low expansion ceramic ladle for nonferrous molten metal

Country Status (1)

Country Link
JP (1) JPH1072255A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040203A1 (en) * 2000-11-20 2002-05-23 Japan Fine Ceramics Center Molten metal feeder and member made of aluminum titanate ceramic with improved unwettability
JP2003321286A (en) * 2001-02-02 2003-11-11 Japan Fine Ceramics Center Aluminum titanate ceramics-made member for improving non-wettability against aluminum alloy melt and manufacturing method therefor
JP2004261868A (en) * 2003-02-10 2004-09-24 Takumi Nishio Ladle, and method for using ladle
JP2010215416A (en) * 2009-03-12 2010-09-30 Japan Fine Ceramics Center Aluminum titanate sintered compact and refractory for aluminum alloy casting

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040203A1 (en) * 2000-11-20 2002-05-23 Japan Fine Ceramics Center Molten metal feeder and member made of aluminum titanate ceramic with improved unwettability
JPWO2002040203A1 (en) * 2000-11-20 2004-03-18 財団法人ファインセラミックスセンター Molten metal supply device and aluminum titanate ceramic member with improved non-wetting property
JP2003321286A (en) * 2001-02-02 2003-11-11 Japan Fine Ceramics Center Aluminum titanate ceramics-made member for improving non-wettability against aluminum alloy melt and manufacturing method therefor
JP4667611B2 (en) * 2001-02-02 2011-04-13 財団法人ファインセラミックスセンター Aluminum titanate ceramic member with improved non-wetting property against molten aluminum alloy and method for producing the same
JP2004261868A (en) * 2003-02-10 2004-09-24 Takumi Nishio Ladle, and method for using ladle
JP4490131B2 (en) * 2003-02-10 2010-06-23 内匠 西尾 Ladle
JP2010215416A (en) * 2009-03-12 2010-09-30 Japan Fine Ceramics Center Aluminum titanate sintered compact and refractory for aluminum alloy casting

Similar Documents

Publication Publication Date Title
JPH0675742B2 (en) Alumina-based core containing yttria
KR20080097137A (en) Reinforced refractory crucibles for melting titanium alloys
JP2010131665A (en) Facing material for casting
JP3096814B1 (en) Method for producing aluminum titanate sintered body
JPS5919067B2 (en) High durability casting nozzle
JPH1072255A (en) Low expansion ceramic ladle for nonferrous molten metal
CN109928770B (en) Preparation method of graphene refractory material for water gap
SE463415B (en) SINTERFORM BODY BASED ON ALUMINUM TITANATE AND PROCEDURES FOR ITS PREPARATION
CN1026028C (en) Combined metal-porcelain crucible and making method thereof
JP2874831B2 (en) Refractory for pouring
KR100263367B1 (en) Tundish stopper roo for continuous casting
JPH08164447A (en) Low expansion ceramic-made brake ring for horizontal continuous casting
JP6287918B2 (en) Manufacturing method of container for high temperature
JPH06305828A (en) Aluminum titanate composite material and its production
JP2001150095A (en) Thick and large size steel casting and mold
JPS63236759A (en) Ceramic material for casting
JPS6126561A (en) Zirconia ceramics
CN107324790B (en) Forsterite-silicon carbide composite ceramic material and synthesis method thereof
JPH0722666B2 (en) Filter material for molten aluminum
JPH026373A (en) Cast amorphous refractory
JP7130903B2 (en) Refractory materials for low-melting non-ferrous metals
JPS60186462A (en) Thermal impact-resistant refractories
CN109928781B (en) Preparation method of graphene ceramic membrane for metallurgical nozzle
JPH10281653A (en) Lining for induction furnace
JP3297337B2 (en) Method of manufacturing hot water supply ladle for molten aluminum alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060724