WO2002036394A1 - Gas generator - Google Patents

Gas generator Download PDF

Info

Publication number
WO2002036394A1
WO2002036394A1 PCT/JP2001/009358 JP0109358W WO0236394A1 WO 2002036394 A1 WO2002036394 A1 WO 2002036394A1 JP 0109358 W JP0109358 W JP 0109358W WO 0236394 A1 WO0236394 A1 WO 0236394A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
transfer
nozzle
combustion chamber
gas
Prior art date
Application number
PCT/JP2001/009358
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Ochi
Seigo Taguchi
Yoshiyuki Kishino
Original Assignee
Nippon Kayaku Kabushiki-Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Kabushiki-Kaisha filed Critical Nippon Kayaku Kabushiki-Kaisha
Priority to AU2002212681A priority Critical patent/AU2002212681A1/en
Publication of WO2002036394A1 publication Critical patent/WO2002036394A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/264Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic
    • B60R21/2644Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/263Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using a variable source, e.g. plural stage or controlled output
    • B60R2021/2633Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using a variable source, e.g. plural stage or controlled output with a plurality of inflation levels

Definitions

  • the present invention relates to a gas generator suitable for inflating and deploying a passenger airbag.
  • gas generators for inflating and deploying an airbag
  • Japanese Patent Application Laid-Open No. Sho 56-124455 US Pat. No. 5,799,973, US Pat. No. 5,931,499.
  • No. 6, JP-A-7-215170 These gas generators (or, mainly, airbags for passenger seats) are inflated and developed.
  • This gas generator has a plurality of tubular igniters in a long cylindrical housing, In this gas generator, first, the ignition material in the first igniter segment is burned, and then the igniter segments connected by the squib are used. The igniting material in the igniter segment 2 burns with a time difference to burn the gas generating propellant pellets in the housing, whereby the airbag is inflated and deployed in two stages.
  • the conventional passenger-side gas generator has a structure in which the igniter segments are connected by a squib, and the gas generating agent loaded in the long cylindrical housing is burned.
  • the structure of the vessel was complicated.
  • An object of the present invention is to provide a gas generator capable of instantaneously shifting to general combustion of a gas generating agent while simplifying the structure and reducing the manufacturing cost. Disclosure of invention,
  • the gas generator according to claim 1 of the present invention includes a long cylindrical housing having both ends closed, ignition means mounted on at least one shaft end of the housing, and ignition means.
  • a first transfer agent that is provided on at least one of the axial ends of the housing and is ignited and burned by the ignition means; and a heat transfer agent that extends in the axial direction inside the housing and is heated by the combustion heat of the first transfer agent. It comprises a second transfer agent that is ignited and burned, and a gas generating agent that is loaded along the axial direction inside the housing and is burned by the combustion heat of the second transfer agent.
  • the first transfer agent is ignited and burned by the ignition means, and then the second transfer agent is ignited and burned by the heat of combustion of the first transfer agent.
  • the heat energy such as flame in the axial direction of the housing, it instantaneously shifts to the overall combustion of the gas generating agent.
  • the entire combustion of the gas generating agent can be performed only by the first and second transfer agents, and there is no need to bury a squib in the ignition material as in a conventional gas generator.
  • the structure can be simplified and the manufacturing cost can be reduced.
  • an ignition means, a first and a second transfer agent are provided at each shaft end of the housing, respectively, and the structure can also be adopted.
  • the gas generator according to claim 2 of the present invention comprises: a long cylindrical housing having both ends closed; ignition means mounted on at least one shaft end of the housing; A pressure combustion chamber provided at at least one of the shaft ends of the housing and sealed from inside and outside of the housing; a transmission nozzle communicating with the pressure combustion chamber and extending in the housing in the axial direction; A plurality of fire holes formed in the axial direction of the fire nozzle to communicate the inside of the fire nozzle with the housing; a first transfer agent charged in the pressure combustion chamber and ignited and burned by the ignition means; A second transfer agent loaded axially in the fire nozzle and ignited and burned by the combustion heat of the first transfer agent, and a second transfer agent loaded axially in the housing and passed through each transfer hole of the transfer nozzle Erupted That it is made and a gas generating agent is combusted by combustion heat of the second transfer charge agent.
  • the first transfer agent in the pressure combustion chamber is ignited and burned by the ignition means, and then the second transfer agent in the transfer nozzle is heated by the heat of combustion of the first transfer agent.
  • Ignition combustion causes the thermal energy, such as flame from the ignition means, to propagate in the axial direction of the housing, instantaneously shifting to the overall combustion of the gas generating agent.
  • the entire combustion of the gas generating agent can be performed only by the pressure combustion chamber, the transfer nozzle, the first and second transfer agents, and a squib is provided in the ignition material as in a conventional gas generator. Since there is no need to bury them, the structure can be simplified and the manufacturing cost can be reduced. '
  • the gas generator described in claim 2 also employs a structure in which an ignition means, a pressure combustion chamber, a fire nozzle, and first and second transfer agents are provided at each shaft end of the housing. It can. Thus, by igniting each ignition means simultaneously or with a time difference, it is possible to adjust the gas generation amount and the pressure rise, and to control the deployment form of the air pug.
  • a gas generator according to claim 3 of the present invention is the gas generator according to claim 2, wherein the inner diameter of the transfer nozzle is smaller than the inner diameter of the pressure combustion chamber.
  • the gas generator according to claim 4 of the present invention is the gas generator according to claim 2 or claim 3, wherein a plurality of the heat transfer holes are formed at a pitch between the holes near the pressure combustion chamber. It is formed so that the distance between holes and Sochi increases as the distance from the pressure combustion chamber increases.
  • the gas generator according to claim 5 of the present invention is the gas generator according to claim 1 or claim 2, wherein at least one of the first and second transfer agents is used.
  • the calorific value by ignition combustion is 350 JZg or more, and the number of moles of gas generated by combustion is 0.5 Nio1Z100 g or more.
  • FIG. 1 is a sectional view showing a gas generator according to an embodiment of the present invention.
  • FIG. 2 is a view as viewed from an arrow AA in FIG.
  • FIG. 3 is a sectional view showing a modification of the gas generator in the embodiment of the present invention.
  • FIG. 4 is a sectional view showing a modification of the gas generator in the embodiment of the present invention.
  • a gas generator according to an embodiment of the present invention will be described with reference to FIG. 1 to FIG.
  • the gas generator according to the embodiment of the present invention mainly inflates and deploys a passenger airbag, and burns a gas generating agent by one ignition means (see FIGS. 1 and 2).
  • a description will be given of an apparatus in which a gas generating agent is burned by a plurality of ignition means (see FIGS. 3 and 4).
  • the gas generator P 1 shown in FIG. 1 includes a housing 1, a filling material 2, a pressure combustion chamber 3, a firing nozzle 4, a gas generating agent 5, an ignition means 6, a first and a And second transfer agents 7 and 8.
  • the housing 1 includes an outer cylindrical member 9 having both ends opened, and two lid members 10 and 11 for closing both ends of the outer cylindrical member 9.
  • the housing 1 is configured such that each of the lid members 10, 11 is fitted into each opening of the outer cylinder 9, and each opening of the outer cylinder 9 is bent radially inward to form a sealed space inside. This is the structure that forms S.
  • the housing 1 is formed in a long cylindrical shape having both ends closed with the lid members 10 and 11 serving as shaft ends.
  • the outer cylinder 9 has a sealed space S and an airbag.
  • a plurality of communicating gas discharge holes 9a are formed.
  • the gas discharge holes 9a are formed at predetermined intervals in the axial direction and the circumferential direction of the outer cylindrical member .9.
  • Each of the gas discharge holes 9 a is closed by a burst plate 12 attached to the inner periphery of the outer cylinder 9.
  • the paste plate 12 is formed of a metal foil such as aluminum, and plays a role in preventing moisture inside the housing 1 and adjusting the internal pressure.
  • the lid member 10 has a stepped space S1 forming the pressure combustion chamber 3.
  • the stepped space S 1 has a large-diameter space 13 and a small-diameter space 14 connected from the sealed space S side, and is formed by forming a screw on the inner periphery of the large-diameter space 13.
  • the lid member 11 is formed with a storage space S2 that opens into the sealed space S and extends toward the shaft end of the housing 1.
  • the filler material 2 is formed into a cylindrical shape by, for example, an aggregate of knitted wire mesh and crimp-woven metal wire.
  • the filler material 2 is inserted into the housing 1 and is located between the lid members 10 and 11 '.
  • the shaft end of the filter member 2 on the side of the lid member 11 is closed by a sheet packing 16 interposed between the filter member 2 and the lid member 11.
  • a cylindrical filter support member 15 is inserted into the inner periphery of the filter member 2.
  • the filter material 2 is installed in the stepped space S1 and the storage space S2 at both ends of the filter support material 15 to form an annular gas passage space between the filter material 2 and the outer cylindrical material 9. Forming S3.
  • a plurality of gas passage holes 15 a communicating with the inside of the filter material 2 are formed in the filter support material 15. As shown in FIG. 2, the gas passage holes 15a are formed at predetermined intervals in the axial direction and the circumferential direction of the filter support member 15.
  • the filter support material 15 is made of a porous steel plate (punched It is manufactured by forming a metal) or an expandable material into a cylindrical shape. .
  • the pressure combustion chamber 3 is formed in a stepped space S1 in the lid member 10.
  • This pressure combustion chamber 3 is stepped with a holder 1 2 1.
  • the pressure combustion chamber 3 is constituted by a small-diameter cavity 14 of a cavity S 1, and the holder 21 is screwed onto the inner periphery of the large-diameter cavity 13. It is defined by the sealed space S of the housing 1.
  • a stepped hole 22 extending in the axial direction coaxially with the axis of the housing 1 is formed in the holder 12.
  • the stepped hole 22 of the holder 21 is closed by a rupture plate 23.
  • the rupture plate 23 is formed of a metal foil such as aluminum, and seals the inside of the pressure combustion chamber 3 from inside and outside of the housing 1.
  • the transfer nozzle 4 is formed in a bottomed cylindrical shape whose one end is open.
  • the heat transfer nozzle 4 is mounted in the stepped hole 22 of the holder 1 2 1 on the enclosing side, and is concentric with the axis of the housing 1 and extends in the filter support material 1.5 in the axial direction. Have been.
  • the open end of the transfer nozzle 4 is in contact with the rupture plate 23, and the rupture of the plate 23 enables communication with the pressure combustion chamber 3.
  • the inner diameter d of the transfer nozzle 4 is set to be smaller than the inner diameter of the small-diameter space 14 of the pressure combustion chamber 3, and the extension length L of the transfer nozzle 4 is between each lid member 101. It has an arbitrary length.
  • the length between the lid members 10 and 11 is set to a length of less than 1-2, and the firing nozzle 4 is disposed in the pressure combustion chamber 3 in a well-balanced manner.
  • a plurality of fire holes 31 are formed in the fire nozzle 4. As shown in FIG. 2, each of the heat transfer holes 31 is arranged in the axial direction and the circumferential direction of the heat transfer nozzle 4, and communicates with the inside of the heat transfer nozzle 4 within the filter support member 15.
  • each of the heat transfer holes 31 has a smaller pitch Pc between the holes near the pressure combustion chamber 3, and has a hole as the distance from the pressure combustion chamber 3 increases. The intermediate pitch Pc is formed to be large.
  • Each of these fire holes 31 is closed by a rupture plate 32 attached to the outer periphery of the fire nozzle 4.
  • the rupture plate 32 is formed of a metal foil such as aluminum, and seals the inside of the firing nozzle 4 from the inside of the filter support 15.
  • the gas generating agent 5 generates a high-temperature gas by combustion, and is loaded along the axial direction in the filter support 15 of the housing 1.
  • the gas generating agent 5 is also loaded between the filler material 15 and the firing nozzle 4 until the filling time.
  • the gas generating agent 5 is prevented from being powdered due to vibration by the pressing member 35 and the cushion member 36 mounted between the gas generating agent 5 and the lid member 11.
  • the pressing member 35 is formed in a cylindrical shape, and is stored in the storage space S2 in contact with the lid member 11.
  • the cushion member 36 is disposed between the holding member 35 and the gas generating agent 5, and has a communication hole 36 a communicating the inside of the holding member 35 with the gas generating agent 5 side.
  • the cushion member 36 As the cushion member 36, a soft material such as silicone rubber or silicone foam material is used.
  • an ignition veret (AI pellet) 8 is loaded in the mounting hole 37 of the lid member 11 opening into the holding member 35.
  • the gas generator P 1 When the gas generator P 1 is exposed to a high temperature such as 150 ° C. or higher, the igniting pellet 38 ignites spontaneously and burns the gas generating agent 5.
  • the igniting means 6 is composed of, for example, only an igniter (hereinafter, referred to as “igniter 6”) that ignites when energized, and is attached to the lid member 10 from inside the pressure combustion chamber 3. ing.
  • the igniter 6 is protruded into the pressure combustion chamber 3, and is generally ignited based on a collision detection signal from a collision sensor, and emits a flame into the pressure combustion chamber 3.
  • the first transfer agent 7 is loaded into the pressure combustion chamber 3 so as to cover the tip side of the igniter 6.
  • This transfer agent 7 It contains a composition that is ignited and burned by the flame of the device 8 and generates heat by the ignited combustion to generate high-temperature gas.
  • the calorific value by combustion is 3500 J / g or more and the number of moles of gas generated by combustion is 0.5molZl 00g or more.
  • Molybdenum trioxide and nitric acid rim can be used in prescribed amounts.
  • the second transfer agent 8 is loaded in the transfer nozzle 4 in the axial direction.
  • the transfer agent 8 contains a composition that is ignited and burned by the heat of combustion of the first transfer agent 7 and generates heat by the ignited combustion.
  • the second transfer agent 8 may be a 5-aminotetrazole or a borate so that the calorific value is 3500 J / mol number is 0.5mo1 / 100g or more.
  • Tin fine powder, molybdenum trioxide and nitric acid can be used in a predetermined amount.
  • the first transfer agent 7 and the second transfer agent 8 may have the same composition.
  • the composition can be appropriately adjusted.
  • the first transfer agent 7 includes a composition that generates heat by ignition combustion
  • the second transfer agent 8 includes a composition that generates heat by ignition combustion and generates a high-temperature gas. Is also good.
  • the gas generator P1 When the collision sensor detects the collision of the automobile, the gas generator P1 energizes and ignites the igniter 6, as shown in FIG. By ignition of igniter 6 The flame is jetted into the pressure combustion chamber 3 to ignite and burn the first transfer agent 7.
  • the combustion of the transfer agent 7 generates heat such as a flame and a high-temperature gas in the pressure combustion chamber 3, and the transfer agent 7 is instantaneously burned toward the transfer nozzle 4 by the heat energy.
  • the rupture plate 23 ruptures and burns, and the inside of the pressure combustion chamber 3 communicates with the inside of the transfer nozzle 4.
  • the heat and high-temperature gas generated in the pressure combustion chamber 3 propagate and flow into the ignition nozzle 4 to ignite and burn the second transfer agent 8 at the opening side of the ignition nozzle 4. .
  • the heat and high-temperature gas generated in the pressure combustion chamber 3 are restricted to the opening side of the ignition nozzle 4. It is concentrated and instantaneously ignites and burns the second transfer agent 8.
  • the ignition and combustion of the transfer agent 8 generates heat such as a flame in the transfer nozzle 4, and the heat transfers the transfer agent 8 instantaneously in the axial direction of the transfer nozzle 4.
  • the rupture plate 32 is burned by the combustion of the second transfer agent 8, and each transfer hole 31 of the transfer nozzle 4 is opened in the filter support member 15.
  • Each of the heat transfer holes 31 is sequentially opened by the axial combustion of the second transfer agent 8, and the heat such as the flame generated in the transfer nozzle 4 is sequentially injected into the filter support 15. Let it. Further, as shown in FIG. 2, the heat of the flame and the like is jetted into the filler support 15 over the circumference of the transfer nozzle 4.
  • the gas generating agent 5 is ignited and burned in the axial direction from the lid member 10 side of the housing 1 by heat of a flame or the like sequentially ejected from each of the heat transfer holes 31 of the heat transfer nozzle 4 and instantaneously. However, it is shifted to overall combustion. Then, the ignition combustion of the gas generating agent 5 generates a large amount of high-temperature gas in the housing 1.
  • the high-temperature gas flowing from the pressure combustion chamber 3 into the ignition nozzle 4 is The fuel is released into the holding material 15 through the filler holes 31 near the power combustion chamber 3 until the fill.
  • the high-temperature gas generated in the housing 1 flows into the filter material 2 from each gas passage hole 15 a of the filter support material 15, where it passes through the slag collection and cooling to form a gas passage space S 3 Spilled into. Then, the combustion of the gas generating agent 5 proceeds, and when the pressure inside the housing 1 rises to a predetermined pressure, the burst plate 12 ruptures, and the clean gas uniformized in the gas passage space S3 is discharged into each gas. Discharged into the air pug through hole 9a. The airbag is rapidly inflated and deployed by the clean gas released from each gas discharge hole 9a.
  • the flame caused by the ignition of the igniter 6 is propagated in the axial direction inside the housing 1 by the ⁇ 1 and the second transfer agent 7, 8, and the transfer nozzle 4 Since the heat such as the flame is blown out from each of the heat transfer holes 31 into the filter support 15, the combustion of the gas generating agent 5 can be instantaneously transferred to the overall combustion of the housing 1. As a result, the entire combustion of the gas generating agent can be performed only by the pressure combustion chamber 3, the firing nozzle 4, the first and second firing agents 7, 8, and the ignition material, as in the conventional gas generator, can be used. There is no need to embed a squib inside, simplifying the structure and reducing manufacturing costs.
  • the combustion of the gas generating agent as a whole can be enhanced by the propagation of the flame and the like by the first and second transfer agents 7, 8, and the airbag is instantly inflated and deployed. This is possible. Also, by setting the inner diameter d of the transfer nozzle 4 to be smaller than the inner diameter of the pressure combustion chamber 3, heat such as flame generated in the pressure combustion chamber 3 and high-temperature gas can be transferred to the transfer nozzle 4. It can propagate and flow in a concentrated manner, and the second transfer agent 8 can be ignited and burned instantaneously.
  • the loading amounts of the first and second transfer agents 7, 8 can be reduced. Can be adjusted to the most suitable for burning.
  • at least one of the first and second transfer agents 7, 8 has a heat generation value of more than 350 J / g by ignition combustion, and the number of moles of gas generated by combustion is 0.5 mo. If the weight is 1/100 g or more, the flame from the igniter 6 can be instantaneously propagated in the axial direction of the housing 1, so that the gas generating agent 5 can be instantaneously discharged without using a squib. Can transition to overall combustion.
  • FIG. 3 the same reference numerals as those in FIGS. 1 and 2 denote the same members.
  • the gas generator P 2 shown in FIG. 3 makes it possible to control the expansion and deployment of the air bag, and the two igniters 6 burn the gas generating agent 5.
  • the sealed space S of the housing 1 is defined by left and right two combustion chambers 53, 54 by a partition plate 55 fitted into the inner periphery of the outer tubular member 9.
  • a filler material 15 and a filler material 2 are inserted, respectively, as in FIG. It is loaded.
  • an igniter 6 and a pressure combustion chamber 3 are respectively mounted and formed on each lid member: L 0, 11 in the same manner as in FIG. 1, and a first transfer agent is provided in each pressure combustion chamber 3. 7 is loaded Have been.
  • a firing nozzle 4 is mounted on a holder 21 constituting the pressure transfer chamber 3 of each of the lid members 10, 11, and the transfer nozzle 4 is arranged inside each combustion chamber 53, 54.
  • the housing 1 extends in the axial direction.
  • a second transfer agent 8 is loaded in each of the transfer nozzles 4, a second transfer agent 8 is loaded.
  • a plurality of fire holes 31 are formed in each fire nozzle 4, and each fire hole 31 is closed by a rupture plate 32.
  • the expansion of the airbag can be controlled.
  • the two igniters 6 are energized and ignited with a small time difference in response to the collision of the vehicle, so that the airbag starts in the early stage of development, for example, a small amount of clean gas generated in the combustion chamber 53.
  • a large amount of clean gas generated in each of the combustion chambers 53 and 54 rapidly expands and deploys.
  • the gas generating agent 5 in each of the combustion chambers 53, 54 and the first igniting agent 7 in each of the lid members 10, 11 in the same manner as the gas generator P1 in FIG.
  • the two transfer nozzles The second transfer agent 7 and 8 in the unit immediately transfer to the overall combustion, and control the inflation and deployment of the airbag in an optimal time (millisecond). Becomes possible.
  • the gas generator P3 shown in FIG. 4 will be described.
  • the same members as those in FIGS. 1 to 3 are denoted by the same reference numerals.
  • the gas generator P3 in FIG. 4 is different from the gas generator P2 in FIG. 3 in that the partition plate 55 does not define two combustion chambers 53, 54 on the left and right sides. It was a firing room.
  • the firing nozzle 4 is It is disposed between the members 10 and 11 and is mounted on each holder 21 so as to enable continuous communication in the pressure combustion chamber 3 of each lid member 10 and 11.
  • the ignition of each igniter 6 with a small time difference can be controlled in the same manner as in FIG.
  • the gas generating agent 5 in the filter support material 15 is the same as the gas generator P 1 in FIG. 1, and the first transfer agent 7 in each of the lid members 10 and 11 is With the second transfer agent 8 in one transfer nozzle 4, the entire combustion is instantaneously shifted to the entire combustion, and the expansion and deployment of the air bag can be controlled in an optimum time (millisecond). .
  • a gas generator of a nitrogen-containing organic compound can be employed in addition to the gas generator of the metal azide compound.
  • the combustion of the gas generating agent 5 can be instantaneously made overall, and the combustion of the gas generating agent 5 can be enhanced. Even if a gas generator of a nitrogen-containing organic compound, which has lower ignition performance than that of a gas generator, is used, ignition and combustion can be performed instantaneously and stably.
  • a compound having a nitrogen-containing organic compound such as a tetrazole compound, a triazole compound, an amide compound, or a guanidine compound as a combustion component can be used.
  • gas generators P1 to P3 are not limited to those shown in FIGS. 1 to 4, and may take the following forms, for example.
  • the configuration is not limited to a configuration in which the combustion chamber 3 and the ignition nozzle 4 are separated from each other, and a configuration in which the pressure combustion chamber 3 is integrally formed on the opening side of the ignition nozzle 4 can be adopted.
  • the housing 1 is not limited to the one composed of the outer cylinder member 9 and the two lid members 1Q and 11; an outer cylinder member having a bottom with an opening at one end and an opening of the outer cylinder member are provided. It can also be composed of one lid member that closes the side.
  • the first explosive agent is ignited and burned by the ignition means, and the second explosive agent is ignited and burned by the heat of combustion of the first explosive agent.
  • the entire combustion of the gas generating agent can be performed only by the first and second transfer agents, and there is no need to bury a squib in the ignition material as in a conventional gas generator. Simplification and reduction of manufacturing costs.

Abstract

A gas generator (P1), comprising a long cylindrical housing (1), gas generating agent (5) charged into the housing (1), an ignitor (6) fitted to the cover member (10) of the housing (1), a pressurized combustion chamber (3) provided in the cover member (10) and sealed from the inside and outside of the housing (1), an inflammation nozzle (4) allowed to communicate with the inside of the pressurized combustion chamber (3) and axially extended through the inside of the housing, inflammation holes (31) allowing the inside of the inflammation nozzle (4) to communicate with the inside of the housing, a first inflammation chemical (7) charged into the pressurized combustion chamber (3) and ignited and burned by the ignitor (6), and a second inflammation chemical (8) axially charged in the inflammation nozzle (4) and ignited and burned by the combustion heat of the first inflammation chemical (7).

Description

明 細 書  Specification
ガス発生器 技術分野 Gas generator technical field
本発明は、 助手席用のエアバッグを膨張展開させるために好適なガ ス発生器に関する。 背景技術  The present invention relates to a gas generator suitable for inflating and deploying a passenger airbag. Background art
エアバッグを膨張展開させるガス発生器の一例としては、 特開昭 5 6 - 1 2 4 5 3 5号公報、 米国特許第 5 7 9 9 9 7 3号、 米国特許第 5 9 3 1 4 9 6号、 特開平 7— 2 1 5 1 7 0号に記載されたものがあ る。 これらのガス発生器 (ま、 主として助手席用のエアバッグを膨張展 闢させるものである。 このガス発生器は、 長尺円筒状のハウジング内 に、 複数の管状の点火器 グメントを有し、 夫々の点火器セグメント を可燃性導火線手段で連結されたものである。 このガス発生器におい ては、 先ず第 1の点火器セグメント内の点火材料を燃焼させ、 次いで 、 導火線によって連結されている第 2の点火器セグメント内の点火材 料 時間差をもって燃焼し、 ハウジング内のガス発生用推薬のペレヅ トを燃焼させる。 これによつてエアバッグは 2段階で膨張展開される o  As an example of a gas generator for inflating and deploying an airbag, see Japanese Patent Application Laid-Open No. Sho 56-124455, US Pat. No. 5,799,973, US Pat. No. 5,931,499. No. 6, JP-A-7-215170. These gas generators (or, mainly, airbags for passenger seats) are inflated and developed. This gas generator has a plurality of tubular igniters in a long cylindrical housing, In this gas generator, first, the ignition material in the first igniter segment is burned, and then the igniter segments connected by the squib are used. The igniting material in the igniter segment 2 burns with a time difference to burn the gas generating propellant pellets in the housing, whereby the airbag is inflated and deployed in two stages.
従来の助手席用のガス発生器では、 前述のように、 導火線によって 点火器セグメントを連結し、 長尺円筒状のハウジング内に装填されて いるガス発生剤を燃焼させる構造となっていたため、 点火器の構造が 複雑になっていた。 また、 導火線を点火材料中に埋設するという煩雑 な作業を要することから、 ガス発生器の製造コストを低減することも 困難であった。 本発明は、 構造の簡素化、 製造コストの低減を図りつつ、 瞬時に、 ガス発生剤の全体的な燃焼に移行することのできるガス発生器を提供 することを目的とするものである。 発明の開示, As described above, the conventional passenger-side gas generator has a structure in which the igniter segments are connected by a squib, and the gas generating agent loaded in the long cylindrical housing is burned. The structure of the vessel was complicated. In addition, since a complicated operation of embedding the squib in the ignition material was required, it was difficult to reduce the production cost of the gas generator. An object of the present invention is to provide a gas generator capable of instantaneously shifting to general combustion of a gas generating agent while simplifying the structure and reducing the manufacturing cost. Disclosure of invention,
本発明の請求の範囲第 1項に記載のガス発生器は、 両端が閉鎖され る長尺円筒状のハウジングと、 ハウジングの少なくとも一方の軸端部 に装着される点火手段と、 点火手段のあるハウジングの軸端部の少な くとも一方に設けられ、 点火手段により着火燃焼される第 1の伝火薬 剤と、 ハウジング内の軸方向へ延在され、 第 1の伝火薬剤の燃焼熱に より着火燃焼される第 2の伝火薬剤と、 ハウジング内の軸方向にわた つて装填され、 第 2の伝火薬剤の燃焼熱により燃焼されるガス発生剤 とを備えてなるものである。  The gas generator according to claim 1 of the present invention includes a long cylindrical housing having both ends closed, ignition means mounted on at least one shaft end of the housing, and ignition means. A first transfer agent that is provided on at least one of the axial ends of the housing and is ignited and burned by the ignition means; and a heat transfer agent that extends in the axial direction inside the housing and is heated by the combustion heat of the first transfer agent. It comprises a second transfer agent that is ignited and burned, and a gas generating agent that is loaded along the axial direction inside the housing and is burned by the combustion heat of the second transfer agent.
このガス発生器では、 点火手段にて第 1の伝火薬剤を着火燃焼し、 続いて第 1の伝火薬剤の燃焼熱にて第 2の伝火薬剤を着火燃焼して、 点火手段からの火炎等の熱エネルギーをハウジングの軸方向へ伝播す 'ることにより、 瞬時に、 ガス発生剤の全体的な燃焼に移行させる。  In this gas generator, the first transfer agent is ignited and burned by the ignition means, and then the second transfer agent is ignited and burned by the heat of combustion of the first transfer agent. By transmitting the heat energy such as flame in the axial direction of the housing, it instantaneously shifts to the overall combustion of the gas generating agent.
これにより、 ガス発生剤の全体的な燃焼を、 第 1及び第 2の伝火薬 剤のみで行え、 従来のガス発生器のように、 点火材料中に導火線を埋 設する必要がなくなることから、 構造の簡素化、 製造コストの低減を 図ることができる。  As a result, the entire combustion of the gas generating agent can be performed only by the first and second transfer agents, and there is no need to bury a squib in the ignition material as in a conventional gas generator. The structure can be simplified and the manufacturing cost can be reduced.
なお、 請求の範囲第 1項に記載のガス発生器では、 ハウジングの各 軸端部に夫々、 点火手段、 第 1及び第 2の伝火薬剤を設け ¾構造も採 用できる。 これにより、 各点火手段の発火を同時、 時間差.をもって行 うことで、 ガスの発生量や圧力上昇 ¾調整でき、 エアバッグの展開形 態を制御可能となせる。 本発明の請求の範囲第 2項に記載のガス発生器は、 両端が閉鎖され る長尺円筒状のハウジングと、 ハウジングの少なくと 一方の軸端部 に装着される点火手段と、 点火手段のある前記ハウジングの軸端部の 少なくとも一方に設けられ、 該ハウジングの内外から密封される圧力 燃焼室と、 圧力燃焼室内に連通され、 ハウジング内を軸方向へ延在さ れる伝火ノズルと、 伝火ノズルの軸方向へ複数形成され、 該伝火ノズ ル内をハウジング内に連通させる伝火穴と、 圧力燃焼室内に装填され 、 点火手段により着火燃焼される第 1の伝火薬剤と、 伝火ノズル内の 軸方向にわたって装填され、 第 1の伝火薬剤の燃焼熱により着火燃焼 される第 2の伝火薬剤と、 ハウジング内の軸方向にわたって装填され 、 伝火ノズルの各伝火穴を通して噴出される第 2の伝火薬剤の燃焼熱 により燃焼されるガス発生剤とを備えてなるものである。 In the gas generator described in claim 1, an ignition means, a first and a second transfer agent are provided at each shaft end of the housing, respectively, and the structure can also be adopted. As a result, by simultaneously firing the ignition means with a time difference, it is possible to adjust the amount of generated gas and the pressure rise, thereby enabling the deployment state of the airbag to be controlled. The gas generator according to claim 2 of the present invention comprises: a long cylindrical housing having both ends closed; ignition means mounted on at least one shaft end of the housing; A pressure combustion chamber provided at at least one of the shaft ends of the housing and sealed from inside and outside of the housing; a transmission nozzle communicating with the pressure combustion chamber and extending in the housing in the axial direction; A plurality of fire holes formed in the axial direction of the fire nozzle to communicate the inside of the fire nozzle with the housing; a first transfer agent charged in the pressure combustion chamber and ignited and burned by the ignition means; A second transfer agent loaded axially in the fire nozzle and ignited and burned by the combustion heat of the first transfer agent, and a second transfer agent loaded axially in the housing and passed through each transfer hole of the transfer nozzle Erupted That it is made and a gas generating agent is combusted by combustion heat of the second transfer charge agent.
このガス発生器では、 点火手段にて圧力燃焼室内の第 1の伝火薬剤 を着火燃焼し、 続いて第 1の伝火薬剤の燃焼熱にて伝火ノズル内の第 2の伝火藥剤を着火燃焼して、 点火手段からの火炎等の熱エネルギー をハウジングの軸方向へ伝播することにより、 瞬時に、 ガス発生剤の 全体的な燃焼に移行させる。  In this gas generator, the first transfer agent in the pressure combustion chamber is ignited and burned by the ignition means, and then the second transfer agent in the transfer nozzle is heated by the heat of combustion of the first transfer agent. Ignition combustion causes the thermal energy, such as flame from the ignition means, to propagate in the axial direction of the housing, instantaneously shifting to the overall combustion of the gas generating agent.
これにより、 ガス発生剤の全体的な燃焼を、 圧力燃焼室、 伝火ノズ ル、 第 1及び第 2の伝火薬剤のみで行え、 従来のガス発生器のように 、 点火材料中に導火線を埋設する必要がなくなることから、 構造の簡 素化、 製造コストの低減を図ることができる。 '  As a result, the entire combustion of the gas generating agent can be performed only by the pressure combustion chamber, the transfer nozzle, the first and second transfer agents, and a squib is provided in the ignition material as in a conventional gas generator. Since there is no need to bury them, the structure can be simplified and the manufacturing cost can be reduced. '
なお、 請求の範囲第 2項に記載のガス発生器では、 ハウジングの各 軸端部に夫々、 点火手段、 圧力燃焼室、 伝火ノズル、 第 1及び第 2の 伝火薬剤を設ける構造も採用できる。 これにより、 各点火手段の発火 を同時又は時間差をもって行うことで、 ガスの発生量や圧力上昇を調 整でき、 エアパヅグの展開形態を制御可能となせる。 本発明の請求の範囲第 3項に記載のガス発生器は、 請求の範囲第 2 項のものにおいて、 伝火ノズルの内径を圧力燃焼室の内径より.小さく したものである。 The gas generator described in claim 2 also employs a structure in which an ignition means, a pressure combustion chamber, a fire nozzle, and first and second transfer agents are provided at each shaft end of the housing. it can. Thus, by igniting each ignition means simultaneously or with a time difference, it is possible to adjust the gas generation amount and the pressure rise, and to control the deployment form of the air pug. A gas generator according to claim 3 of the present invention is the gas generator according to claim 2, wherein the inner diameter of the transfer nozzle is smaller than the inner diameter of the pressure combustion chamber.
これにより、 圧力燃焼室内での第 1の伝火薬剤の燃焼により発生し た火炎、 高温ガス等の熱エネルギーを伝火ノズル内に集中して伝播、 流入でき、 第 2の伝火剤を瞬時に着火燃焼させることが可能となる。 本発明の請求の範囲第 4項に記載のガス発生器は、 '請求の範囲第 2 項又は請求の範囲第 3項のものにおいて、 複数の伝火穴を圧力燃焼室 の近傍で穴間ピッチを小さくし、 圧力燃焼室から離れるにつれて穴間 ピ、ソチを大きくなるように形成したものである。  As a result, the heat energy of the flame and high-temperature gas generated by the combustion of the first transfer agent in the pressure combustion chamber can be concentrated and propagated into the transfer nozzle and flow into the transfer nozzle. Ignited and burned. The gas generator according to claim 4 of the present invention is the gas generator according to claim 2 or claim 3, wherein a plurality of the heat transfer holes are formed at a pitch between the holes near the pressure combustion chamber. It is formed so that the distance between holes and Sochi increases as the distance from the pressure combustion chamber increases.
これにより、 伝火ノズルの圧力燃焼室近傍において、 多数の伝火穴 を形成することで、 圧力燃焼室から伝火ノズル内に流入した高温ガス 等を素早くハウジング内に逃がすことができ、 圧力燃焼室内で発生す る高温ガスの圧力等による伝火ノズルの破損を防止することが可能と なる。  As a result, a large number of heat transfer holes are formed in the vicinity of the pressure combustion chamber of the transfer nozzle, so that high-temperature gas and the like flowing into the transfer nozzle from the pressure combustion chamber can be quickly released into the housing. It is possible to prevent damage to the transfer nozzle due to the pressure of the high-temperature gas generated in the room.
本発明の請求の範囲第 5項に記載のガス発生器は、 請求の範囲第 1 項又は請求の範囲第 2項のものにおいて、 第 1及び第 2の伝火剤の、 少なぐとも一方が、 着火燃焼による発熱量が 3 5 0 0 JZg以上、 燃 焼により発生するガスのモル数が 0 , 5 ni o 1 Z 1 0 0 g以上である ものである。  The gas generator according to claim 5 of the present invention is the gas generator according to claim 1 or claim 2, wherein at least one of the first and second transfer agents is used. The calorific value by ignition combustion is 350 JZg or more, and the number of moles of gas generated by combustion is 0.5 Nio1Z100 g or more.
これにより、 第 の伝火薬剤を、 着火した後、 発熱によって瞬時に —燃焼させれることから、 第 2の伝火薬剤を瞬時に着火燃焼できる'。 ま た、 第 2の伝火薬剤も、 第 1の伝火薬剤により着火された後、 発熱に よって瞬時に燃焼させれることから、 ガス発生剤を瞬時に燃焼できる 。 したがって、 点火手段の発火による火炎を伝播する導火心線なるも のを用いることなく、 ガス発生剤を瞬時に全体的な燃焼に移行するこ とが可能となる。 図面の簡単な説明 ' 第 1図は、 本発明の実施形態におけるガス発生器を示す断面図であ る。 第 2図は、 第 1図の A— Aから見た矢視図である。 第 3図は、 本 発明の実施形態におけるガス発生器の変形例を示す断面図である。 第 4図は、 本発明の実施形態におけるガス発生器の変形例を示す断面図 である。 発明を実施するための最良の形態 As a result, the second charge can be ignited and burned instantly because the second charge is ignited and then immediately burned by heat generation. In addition, the second igniting agent is also ignited by the first igniting agent and immediately burned by heat generation, so that the gas generating agent can be instantaneously burned. Therefore, the gas generating agent can be instantaneously transferred to the overall combustion without using a fuse that propagates the flame generated by the ignition means. It becomes possible. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a gas generator according to an embodiment of the present invention. FIG. 2 is a view as viewed from an arrow AA in FIG. FIG. 3 is a sectional view showing a modification of the gas generator in the embodiment of the present invention. FIG. 4 is a sectional view showing a modification of the gas generator in the embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施形態におけるガス発生器について、 第 1図〜第 4図を 参照して説明する。 本発明の実施形態におけるガス発生器は、 主とし て助手席用のエアバッグを膨張展開させるもので、 1つの点火手段に てガス発生剤を燃焼させるもの (第 1図及び第 2図参照)、 複数の点火 手段にてガス発生剤を燃焼させるもの (第 3図及び第 4図参照) につ いて説明する。  A gas generator according to an embodiment of the present invention will be described with reference to FIG. 1 to FIG. The gas generator according to the embodiment of the present invention mainly inflates and deploys a passenger airbag, and burns a gas generating agent by one ignition means (see FIGS. 1 and 2). A description will be given of an apparatus in which a gas generating agent is burned by a plurality of ignition means (see FIGS. 3 and 4).
第 1図に示すガス発生器 P 1は、 ハ.ウジング 1と、 フィル夕材 2と 、 圧力燃焼室 3と、 伝火ノズル 4と、 ガス発生剤 5と、 点火手段 6と 、 第 1及び第 2の伝火剤 7 , 8とを備えてなる。 第 1図に示すように 、 ハウジング 1は、 両端が開口する外筒材 9と、 外筒材 9の両端側を 閉鎖する 2つの蓋部材 1 0 , 1 1とで構成されている。 このハウジン グ 1は、 各蓋部材 1 0 , 1 1を外筒材 9内の各開口惻に嵌挿して、 外 筒材 9の各開口側を径内方へ折り曲げることで、 内部に密封空間 Sを 形成する構造である。 そして、 ハウジング 1は、 各蓋部材 1 0 , 1 1 を各軸端部として、 両端を閉鎖した長尺円筒状にされている。  The gas generator P 1 shown in FIG. 1 includes a housing 1, a filling material 2, a pressure combustion chamber 3, a firing nozzle 4, a gas generating agent 5, an ignition means 6, a first and a And second transfer agents 7 and 8. As shown in FIG. 1, the housing 1 includes an outer cylindrical member 9 having both ends opened, and two lid members 10 and 11 for closing both ends of the outer cylindrical member 9. The housing 1 is configured such that each of the lid members 10, 11 is fitted into each opening of the outer cylinder 9, and each opening of the outer cylinder 9 is bent radially inward to form a sealed space inside. This is the structure that forms S. The housing 1 is formed in a long cylindrical shape having both ends closed with the lid members 10 and 11 serving as shaft ends.
第 1図に示すように、 外筒材 9には、 密封空間 Sとエアバッグとを 連通する複数のガス放出穴 9 aが形成されている。 各ガス放出穴 9 a は、 第 2図にも示す如く、 外筒材.9の軸方向及び周方向に所定間隔ご とに形成されている。 これら各ガス放出穴 9 aは、 外筒材 9の内周に 貼着されるバーストプレート 1 2により閉鎖されている。 パ一ストプ レート 1 2は、 アルミ等の金属箔により形成され、 ハウジング 1内の 防湿と内圧調整の役割を果たす。 As shown in FIG. 1, the outer cylinder 9 has a sealed space S and an airbag. A plurality of communicating gas discharge holes 9a are formed. As shown in FIG. 2, the gas discharge holes 9a are formed at predetermined intervals in the axial direction and the circumferential direction of the outer cylindrical member .9. Each of the gas discharge holes 9 a is closed by a burst plate 12 attached to the inner periphery of the outer cylinder 9. The paste plate 12 is formed of a metal foil such as aluminum, and plays a role in preventing moisture inside the housing 1 and adjusting the internal pressure.
第 1図に示すように、 蓋部材 1 0には、 圧力燃焼室 3を構成する段 付き空所 S 1が形成されている。 段付き空所 S 1は、 密封空間 S内に 開口して、 ハウジング 1の軸心 aに同心として軸端側へ延びている? この段付き空所 S 1は、 密封空間 S側から大径空所 1 3及び小径空所 1 4とが連続しており、 該大径空所 1 3の内周にネジを形成してなる 。 また、 蓋部材 1 1には、 密封空閬 S内に開口して、 ハウジング 1の 軸端側へ延びる収納空所 S 2が形成されている。  As shown in FIG. 1, the lid member 10 has a stepped space S1 forming the pressure combustion chamber 3. As shown in FIG. Does the stepped space S1 open into the sealed space S and extend toward the shaft end side concentrically with the shaft center a of the housing 1? The stepped space S 1 has a large-diameter space 13 and a small-diameter space 14 connected from the sealed space S side, and is formed by forming a screw on the inner periphery of the large-diameter space 13. . The lid member 11 is formed with a storage space S2 that opens into the sealed space S and extends toward the shaft end of the housing 1.
第 1図に示すように、 フィル夕材 2は、 例えば、 メリヤス編み金網 ゃクリンプ織り金属線材の集合体によって円筒状に成形されている。 このフィル夕材 2は、 ハウジング 1内に挿入され、 各蓋部材 1 0, 1 1の'間にわたって位置している。 ま 、 フィルタ材 2の蓋部材 1 1側 の軸端は、 蓋部材 1 1との間に介装されるシートパヅキン 1 6によつ ' て閉鎖されている。 フィルタ材 2の内周には、 円筒状のフィル夕支持 材 1 5が挿入されている。 そして、 フィルタ材 2は、 フィル夕支持材 1 5の両端側を段付き空所 S 1内及び収納空所 S 2内に装着すること で、 外筒材 9との間で環状のガス通過空間 S 3を形成している。 フィ ル夕支持材 1 5には、 フィルタ材 2内に連通する複数のガ^通過穴 1 5 aが形成されている。 各ガス通過穴 1 5 aは、 第 2図にも示す如く 、 フィル夕支持材 1 5の軸方向及び周方向に所定間隔ごとに形成され ている。 このフィルタ支持材 1 5としては、 多孔質鋼板 (パンチング メタル)、 或いはエキスパンディヅドメ夕ルを円筒状に形成することで 製造する。 . As shown in FIG. 1, the filler material 2 is formed into a cylindrical shape by, for example, an aggregate of knitted wire mesh and crimp-woven metal wire. The filler material 2 is inserted into the housing 1 and is located between the lid members 10 and 11 '. The shaft end of the filter member 2 on the side of the lid member 11 is closed by a sheet packing 16 interposed between the filter member 2 and the lid member 11. A cylindrical filter support member 15 is inserted into the inner periphery of the filter member 2. The filter material 2 is installed in the stepped space S1 and the storage space S2 at both ends of the filter support material 15 to form an annular gas passage space between the filter material 2 and the outer cylindrical material 9. Forming S3. A plurality of gas passage holes 15 a communicating with the inside of the filter material 2 are formed in the filter support material 15. As shown in FIG. 2, the gas passage holes 15a are formed at predetermined intervals in the axial direction and the circumferential direction of the filter support member 15. The filter support material 15 is made of a porous steel plate (punched It is manufactured by forming a metal) or an expandable material into a cylindrical shape. .
第 1図に示すように、 圧力燃焼室 3は、 蓋部材 1 0内の段付き空所 S 1に形成されている。 この圧力燃焼室 3は、 ホルダ一 2 1と段付き. 空所 S 1の小径空所 1 4とで構成され、 該ホルダー 2 1を大径空所 1 3の内周に螺着することによりハウジング 1の密封空間 Sから画成さ れている。 このホルダ一2 Ίには、 ハウジング 1の軸心に同心として 軸方向へ延びる段付き穴 2 2が形成されている。 また、 ホルダー 2 1 の段付き穴 2 2は、 破裂プレート 2 3にて閉鎖されている。 破裂プレ —ト 2 3は、 アルミ等の金属箔によって形成され、 圧力燃焼室 3内を ハウジング 1の内外から密封している。  As shown in FIG. 1, the pressure combustion chamber 3 is formed in a stepped space S1 in the lid member 10. This pressure combustion chamber 3 is stepped with a holder 1 2 1. The pressure combustion chamber 3 is constituted by a small-diameter cavity 14 of a cavity S 1, and the holder 21 is screwed onto the inner periphery of the large-diameter cavity 13. It is defined by the sealed space S of the housing 1. A stepped hole 22 extending in the axial direction coaxially with the axis of the housing 1 is formed in the holder 12. The stepped hole 22 of the holder 21 is closed by a rupture plate 23. The rupture plate 23 is formed of a metal foil such as aluminum, and seals the inside of the pressure combustion chamber 3 from inside and outside of the housing 1.
第 1図に示すように、 伝火ノズル 4は、 一端が開口する有底の円筒 状に形成されている。 この伝火ノズル 4は、 閧ロ側をホルダ一 2 1の 段付き穴 2 2内に装着して、 ハウジング 1の軸心と同心にしてフィル 夕支持材 1. 5内を軸方向へ延在されている。 伝火ノズル 4の開口端は 、 破裂プレート 2 3に当接しており、.該プレート 2 3の破裂によって 圧力燃焼室 3内に連通可能にされている。 また、 伝火ノズル 4の内径 dは、 圧力燃焼室 3の小径空所 1 4の内径より小さい寸法とされ、 伝 火ノズル 4の延在長さ Lは、 各蓋部材 1 0 1 1間の任意の長さ寸法 にされている。 好ましくは、 各蓋部材 1 0, 1 1間の距離の 1ノ2未 満の長さに設定し、 伝火ノズル 4を圧力燃焼室 3内にバランス良く配 置する。 さらに、 伝火ノズル 4には、 複数の伝火穴 3 1が形成されて いる。 各伝火穴 3 1は、 第 2図にも示す如く、 伝火ノズル 4の軸方向 及び周方向にわたって配置され、 該伝火ノズル 4内をフィルタ支持材 1 5内に連通している。 また、 各伝火穴 3 1は、 圧力燃焼室 3の近傍 で穴間ピッチ P cを小さくし、 該圧力燃焼室 3から離れるにつれて穴 間ビヅチ P cが大きくなるように形成されている。 これら各伝火穴 3 1は、 伝火ノズル 4の外周に貼着される破裂プレート 3 2により閉鎖 されている。 破裂プレート 3 2は、 アルミ等の金属箔により形成され 、 伝火ノズル 4内をフィルタ支持材 1 5内から密封している。 As shown in FIG. 1, the transfer nozzle 4 is formed in a bottomed cylindrical shape whose one end is open. The heat transfer nozzle 4 is mounted in the stepped hole 22 of the holder 1 2 1 on the enclosing side, and is concentric with the axis of the housing 1 and extends in the filter support material 1.5 in the axial direction. Have been. The open end of the transfer nozzle 4 is in contact with the rupture plate 23, and the rupture of the plate 23 enables communication with the pressure combustion chamber 3. The inner diameter d of the transfer nozzle 4 is set to be smaller than the inner diameter of the small-diameter space 14 of the pressure combustion chamber 3, and the extension length L of the transfer nozzle 4 is between each lid member 101. It has an arbitrary length. Preferably, the length between the lid members 10 and 11 is set to a length of less than 1-2, and the firing nozzle 4 is disposed in the pressure combustion chamber 3 in a well-balanced manner. Further, a plurality of fire holes 31 are formed in the fire nozzle 4. As shown in FIG. 2, each of the heat transfer holes 31 is arranged in the axial direction and the circumferential direction of the heat transfer nozzle 4, and communicates with the inside of the heat transfer nozzle 4 within the filter support member 15. In addition, each of the heat transfer holes 31 has a smaller pitch Pc between the holes near the pressure combustion chamber 3, and has a hole as the distance from the pressure combustion chamber 3 increases. The intermediate pitch Pc is formed to be large. Each of these fire holes 31 is closed by a rupture plate 32 attached to the outer periphery of the fire nozzle 4. The rupture plate 32 is formed of a metal foil such as aluminum, and seals the inside of the firing nozzle 4 from the inside of the filter support 15.
第 1図に示すように、 ガス発生剤 5は、 燃焼により高温ガスを発生 させるもので、 ハウジング 1のフィル夕支持材 1 5内の軸方向にわた つて装填されている。 また、 ガス発生剤 5は、 フィル夕ま持材 1 5と 伝火ノズル 4の間にも装填されている。 このガス発生剤 5は、 蓋部材 1 1との間に装着される押え部材 3 5、 及びクッション部材 3 6によ つて振動による粉状化が防止されている。 この押え部材 3 5は、 円筒 状に形成され、 蓋部材 1 1に当接して収納空間 S 2内に収納されてい る。 クッション部材 3 6は、 押え部材 3 5とガス発生剤 5との間に配 置され、 押え部材 3 5内をガス発生剤 5側に連通する連通穴 3 6 aが 形成されている。 このクッション部材 3 6としては、 シリコンゴムや シリコン発泡材等の弹性材を用いる。 また、 押え部材 3 5内に開口す る蓋部材 1 1の装着穴 3 7には、 発火べレヅト (A Iペレヅト) 8 が装填されている。 この発火ペレット 3 8は、 ガス発生器 P 1が 1 5 0 °C以上のような高温に晒されると、 自然に発火し、 ガス発生剤 5を 燃焼させるためのものである。  As shown in FIG. 1, the gas generating agent 5 generates a high-temperature gas by combustion, and is loaded along the axial direction in the filter support 15 of the housing 1. In addition, the gas generating agent 5 is also loaded between the filler material 15 and the firing nozzle 4 until the filling time. The gas generating agent 5 is prevented from being powdered due to vibration by the pressing member 35 and the cushion member 36 mounted between the gas generating agent 5 and the lid member 11. The pressing member 35 is formed in a cylindrical shape, and is stored in the storage space S2 in contact with the lid member 11. The cushion member 36 is disposed between the holding member 35 and the gas generating agent 5, and has a communication hole 36 a communicating the inside of the holding member 35 with the gas generating agent 5 side. As the cushion member 36, a soft material such as silicone rubber or silicone foam material is used. In addition, an ignition veret (AI pellet) 8 is loaded in the mounting hole 37 of the lid member 11 opening into the holding member 35. When the gas generator P 1 is exposed to a high temperature such as 150 ° C. or higher, the igniting pellet 38 ignites spontaneously and burns the gas generating agent 5.
第 1図に示すように、 点火手段 6は、 例えば、 通電により発火する 点火器(以下 「点火器 6」 という。) のみで構成され、 圧力燃焼室 3の 内側から蓋部材 1 0に装着されている。 この点火器 6は、 圧力燃焼室 3内に突出されており、 衝突センサからの衝突検出信号に基づいて通 鼋発火されて、 火炎を圧力燃焼室 3内に噴出する。  As shown in FIG. 1, the igniting means 6 is composed of, for example, only an igniter (hereinafter, referred to as “igniter 6”) that ignites when energized, and is attached to the lid member 10 from inside the pressure combustion chamber 3. ing. The igniter 6 is protruded into the pressure combustion chamber 3, and is generally ignited based on a collision detection signal from a collision sensor, and emits a flame into the pressure combustion chamber 3.
第 1図に示すように、 第 1の伝火薬剤 7は、 点火器 6の先端側を覆 う状態で圧力燃焼室 3内に装填されている。 この伝火薬剤 7は、 点火 器 8の発火による火炎で着火燃焼され、 着火燃焼により発熱し、 高温 ガスを発生させる組成を含有するものである。 As shown in FIG. 1, the first transfer agent 7 is loaded into the pressure combustion chamber 3 so as to cover the tip side of the igniter 6. This transfer agent 7 It contains a composition that is ignited and burned by the flame of the device 8 and generates heat by the ignited combustion to generate high-temperature gas.
第 1の伝火薬剤 7としては、 燃焼による発熱量が 3500 J/g以 上、 燃焼により発生するガスのモル数が 0. 5mo lZl 00g以上 となるように、 5—アミノテトラゾール、 ボロン微粉末、 三酸化モリ ブデン、 硝酸力リゥムを所定量ずつ配合したものを使用することがで きる。  As the first transfer agent 7, 5-aminotetrazole and boron fine powder are used so that the calorific value by combustion is 3500 J / g or more and the number of moles of gas generated by combustion is 0.5molZl 00g or more. , Molybdenum trioxide and nitric acid rim can be used in prescribed amounts.
第 1図に示すように、 第 2の伝火薬剤 8は、 伝火ノズル 4内の軸方 向にわたって装填されている。 この伝火薬剤 8は、 第 1の伝火薬剤 7 の燃焼熱によって着火燃焼され、 着火燃焼により発熱する組成を含有 するものである。  As shown in FIG. 1, the second transfer agent 8 is loaded in the transfer nozzle 4 in the axial direction. The transfer agent 8 contains a composition that is ignited and burned by the heat of combustion of the first transfer agent 7 and generates heat by the ignited combustion.
第 2の伝火薬剤 8としては、 第 1の伝火薬剤 7と同様に、 発熱量が 3500 J/ モル数が 0. 5mo 1/100 g以上となるように 、 5—アミノテトラゾ一ル、 ボ tiン微粉末、 三酸化モリブデン、 硝酸 力リゥムを所定量ずつ配合したものを使用することができる。  Similar to the first transfer agent 7, the second transfer agent 8 may be a 5-aminotetrazole or a borate so that the calorific value is 3500 J / mol number is 0.5mo1 / 100g or more. Tin fine powder, molybdenum trioxide and nitric acid can be used in a predetermined amount.
なお、 この第 1の伝火薬剤 7と第 2の伝火薬剤 8は、 同一組成のも のを使用することも可能である。 また、 その組成を適宜調整すること もできる。 例えば、 第 1の伝火薬剤 7を、 着火燃焼により発熱する組 成を含有するものとし、 第 2の伝火薬剤 8を、 着火燃焼により発熱し 、 高温ガスを発生させる組成を含有するものとしてもよい。 まだ、 第 1及び第 2の伝火薬剤 7, 8の両方を、 着火燃焼により発熱し、 高温 ガスを発生させる組成を含有するものも採用することができる。  The first transfer agent 7 and the second transfer agent 8 may have the same composition. In addition, the composition can be appropriately adjusted. For example, it is assumed that the first transfer agent 7 includes a composition that generates heat by ignition combustion, and the second transfer agent 8 includes a composition that generates heat by ignition combustion and generates a high-temperature gas. Is also good. Still, it is possible to employ a composition containing a composition that generates heat and generates high-temperature gas for both the first and second transfer agents 7, 8 by ignition and combustion.
次に、 ガス発生器 P1の作動について、 第 1図及び第 2図により説 明する。  Next, the operation of the gas generator P1 will be described with reference to FIGS.
衝突センサが自動車の衝突を検出すると、 第 1図に示すように、 ガ ス発生器 P 1は、 点火器 6を通電発火させる。 点火器 6の発火による 火炎は、 圧力燃焼室 3内に噴出され、 第 1の伝火薬剤 7を着火燃焼さ せる。 この伝火薬剤 7の燃焼によって、 圧力燃焼室 3内には、 火炎等 の熱及び高温ガスが発生し、 これらの熱エネルギーにて伝火薬剤 7を 伝火ノズル 4側へ瞬時に燃焼させる。 第 1の伝火薬剤 7の燃焼が進ん で、 圧力燃焼室 3内が所定圧力になると、 破裂プレート 2 3が破裂、 燃焼して、 圧力燃焼室 3内を伝火ノズル 4内に連通させる。 When the collision sensor detects the collision of the automobile, the gas generator P1 energizes and ignites the igniter 6, as shown in FIG. By ignition of igniter 6 The flame is jetted into the pressure combustion chamber 3 to ignite and burn the first transfer agent 7. The combustion of the transfer agent 7 generates heat such as a flame and a high-temperature gas in the pressure combustion chamber 3, and the transfer agent 7 is instantaneously burned toward the transfer nozzle 4 by the heat energy. When the combustion of the first transfer agent 7 proceeds and the pressure inside the pressure combustion chamber 3 reaches a predetermined pressure, the rupture plate 23 ruptures and burns, and the inside of the pressure combustion chamber 3 communicates with the inside of the transfer nozzle 4.
圧力燃焼室 3内に発生し ,た熱、 及び高温ガスは、 伝火ノズル 4内に 伝播、 流入して、 伝火ノズル 4の開口側にある第 2の伝火薬剤 8を着 火燃焼させる。 このとき、 伝火ノズル 4の内径を圧力燃焼室 3より小 さい寸法としているので、 圧力燃焼室 3内で発生した熱、 及び高温ガ スは、 伝火ノズル 4の開口側に絞られる状態で集中され、 瞬時に第 2 の伝火薬剤 8を着火燃焼させる。  The heat and high-temperature gas generated in the pressure combustion chamber 3 propagate and flow into the ignition nozzle 4 to ignite and burn the second transfer agent 8 at the opening side of the ignition nozzle 4. . At this time, since the inner diameter of the ignition nozzle 4 is smaller than that of the pressure combustion chamber 3, the heat and high-temperature gas generated in the pressure combustion chamber 3 are restricted to the opening side of the ignition nozzle 4. It is concentrated and instantaneously ignites and burns the second transfer agent 8.
この伝火薬剤 8の着火燃焼によって、 伝火ノズル 4内には火炎等の 熱が発生し、 この熱で伝火薬剤 8を伝火ノズル 4の軸方向へ瞬時に燃 焼させる。 そして、 第 2の伝火薬剤 8の燃焼によって、 破裂プレート 3 2が燃焼し、 伝火ノズル 4の各伝火穴 3 1をフィルタ支持材 1 5内 に開口させる。 これら各伝火穴 3 1は、 第 2の伝火薬剤 8の軸方向へ の燃焼によって順次開口され、 伝火ノズル 4内で発生した火炎等の熱 を順次、 フィルタ支持材 1 5内に噴出させる。 また、 この火炎等の熱 は、 第 2図に示す如く、 伝火ノズル 4の周方向にわたってフィル夕支 持材 1 5内に噴出される。 これにより、 ガス発生剤 5は、 伝火ノズル 4の各伝火穴 3 1から順次噴出される火炎等の熱によって、 ハウジン グ 1の蓋部材 1 0側から軸方向へ着火燃焼され、 瞬時に、 全体的な燃 焼に移行される。 そして、 ガス発生剤 5の着火燃焼によって、 ハウジ ング 1内には多量の高温ガスが発生する。  The ignition and combustion of the transfer agent 8 generates heat such as a flame in the transfer nozzle 4, and the heat transfers the transfer agent 8 instantaneously in the axial direction of the transfer nozzle 4. Then, the rupture plate 32 is burned by the combustion of the second transfer agent 8, and each transfer hole 31 of the transfer nozzle 4 is opened in the filter support member 15. Each of the heat transfer holes 31 is sequentially opened by the axial combustion of the second transfer agent 8, and the heat such as the flame generated in the transfer nozzle 4 is sequentially injected into the filter support 15. Let it. Further, as shown in FIG. 2, the heat of the flame and the like is jetted into the filler support 15 over the circumference of the transfer nozzle 4. As a result, the gas generating agent 5 is ignited and burned in the axial direction from the lid member 10 side of the housing 1 by heat of a flame or the like sequentially ejected from each of the heat transfer holes 31 of the heat transfer nozzle 4 and instantaneously. However, it is shifted to overall combustion. Then, the ignition combustion of the gas generating agent 5 generates a large amount of high-temperature gas in the housing 1.
また、 圧力燃焼室 3から伝火ノズル 4内に流入した高温ガスは、 圧 力燃焼室 3近傍の各伝火穴 3 1からフィル夕ま持材 1 5内に逃がされ る。 これは、 伝火六 3 1を、 伝火室 3近傍に対して穴間ピッチ P cを 小さくして多数形成することにより、 高温ガスを伝火ノズル 4内にこ もらせることなく、 素早くフィルタ支持材 1 5内に流出させる構造と したからである。 これにより、 圧力燃焼室 3内で発生する高温ガスの 圧力等によって 火ノズル 4を破損等することを防止できる。 The high-temperature gas flowing from the pressure combustion chamber 3 into the ignition nozzle 4 is The fuel is released into the holding material 15 through the filler holes 31 near the power combustion chamber 3 until the fill. This is because a large number of heat transfer tubes 31 are formed by reducing the pitch Pc between the holes with respect to the vicinity of the heat transfer chamber 3 so that high-temperature gas is not trapped in the heat transfer nozzles 4 and the filter can be quickly filtered. This is because the structure was made to flow into the support material 15. Thus, it is possible to prevent the fire nozzle 4 from being damaged by the pressure of the high-temperature gas generated in the pressure combustion chamber 3 or the like.
ハウジング 1内で発生した高温ガスは、 フィルタ支持材 1 5の各ガ ス通過穴 1 5 aからフィル夕材 2内に流入し、 ここでスラグ捕集と冷 却を経て、 ガス通過空間 S 3内に流出される。 そして、 ガス発生剤 5 の燃焼が進んで、 ハウジング 1内が所定圧力まで上昇すると、 バース トプレート 1 2が破裂して、 ガス通過空間 S 3内で均一にされた清浄 なガスが各ガス放出穴 9 aを通してエアパヅグ内に放出される。 エア バッグは、 各ガス放出穴 9 aから放出される清浄なガスにより急速に 膨張展開される。  The high-temperature gas generated in the housing 1 flows into the filter material 2 from each gas passage hole 15 a of the filter support material 15, where it passes through the slag collection and cooling to form a gas passage space S 3 Spilled into. Then, the combustion of the gas generating agent 5 proceeds, and when the pressure inside the housing 1 rises to a predetermined pressure, the burst plate 12 ruptures, and the clean gas uniformized in the gas passage space S3 is discharged into each gas. Discharged into the air pug through hole 9a. The airbag is rapidly inflated and deployed by the clean gas released from each gas discharge hole 9a.
このように、 ガス発生器: P 1によれば、 点火器 6の発火による火炎 を、 ^ 1及び第 2の伝火薬剤 7 , 8によってハウジング 1内の軸方向 へ伝播し、 伝火ノズル 4の各伝火穴 3 1から火炎等の熱をフィルタ支 持材 1 5内に噴出させるようにしたので、 ガス発生剤 5の燃焼を瞬時 にハウジング 1の全体的な燃焼に移行できることになる。 この結果、 ガス発生剤の全体的な燃焼を、 圧力燃焼室 3、 伝火ノズル 4、 第 1及 び第 2の伝火薬剤 7, 8のみ行え、 従来のガス発生器のように、 点火 材料中に導火線を埋設する必要がなくなり、 構造の簡素化、 製造コス 卜の低減を図ることができる。 そして、 ガス発生器 P 1では、 第 1及 び第 2の伝火薬剤 7 , 8による火炎等の伝播によって、 ガス発生剤全 体の燃焼を高めることができ、 エアバッグを瞬時に膨張展開させるこ とが可 となる。 また、 伝火ノズル 4の内径 dを、 圧力燃焼室 3の内径より小さな寸 法とすることで、 圧力燃焼室 3内で発生した火炎等の熱、 及び高温ガ スを伝火ノズル 4内に集中して伝播、 流入でき、 第 2の伝火藥剤 8を 瞬時に着火燃焼させることが可能となる。 しかも、 伝火ノズル 4の圧 力燃焼室 3近傍において、 多数の伝火穴 3 1を形成することで、 圧力 燃焼窒 3内で発生する高温ガスの圧力等による伝火ノズル 4の破損等 を防止することも可能となる。 Thus, according to the gas generator: P 1, the flame caused by the ignition of the igniter 6 is propagated in the axial direction inside the housing 1 by the ^ 1 and the second transfer agent 7, 8, and the transfer nozzle 4 Since the heat such as the flame is blown out from each of the heat transfer holes 31 into the filter support 15, the combustion of the gas generating agent 5 can be instantaneously transferred to the overall combustion of the housing 1. As a result, the entire combustion of the gas generating agent can be performed only by the pressure combustion chamber 3, the firing nozzle 4, the first and second firing agents 7, 8, and the ignition material, as in the conventional gas generator, can be used. There is no need to embed a squib inside, simplifying the structure and reducing manufacturing costs. In the gas generator P1, the combustion of the gas generating agent as a whole can be enhanced by the propagation of the flame and the like by the first and second transfer agents 7, 8, and the airbag is instantly inflated and deployed. This is possible. Also, by setting the inner diameter d of the transfer nozzle 4 to be smaller than the inner diameter of the pressure combustion chamber 3, heat such as flame generated in the pressure combustion chamber 3 and high-temperature gas can be transferred to the transfer nozzle 4. It can propagate and flow in a concentrated manner, and the second transfer agent 8 can be ignited and burned instantaneously. Moreover, by forming a large number of heat transfer holes 31 in the vicinity of the pressure combustion chamber 3 of the heat transfer nozzle 4, damage to the heat transfer nozzle 4 due to the pressure of the high-temperature gas generated in the pressure combustion nitrogen 3 and the like can be prevented. It is also possible to prevent it.
さらに、 圧力燃焼室 3の容積や、 伝火ノズルの内径、.延在長さを適 宜変更することで、 第 1及び第 2の伝火薬剤 7 , 8の装填量を、 ガス 発生剤 5を燃焼させるのに最適なものに調整できる。 しかも、 第 1及 び第 2の伝火薬剤 7, 8の、 少なくとも一方を、 着火燃焼による発熱 量が 3 5 0 0 J / g以上で、 燃焼により発生するガスのモル数が 0 . 5 m o 1 / 1 0 0 g以上であるものにすると、 点火器 6からの火炎を 瞬時に、 ハウジング 1の軸方向へ伝播できることから、 導火心線を用 いることなく、 ガス発生剤 5を瞬時に全体的な燃焼に移行できる。  Further, by appropriately changing the volume of the pressure combustion chamber 3, the inner diameter of the transfer nozzle, and the extension length, the loading amounts of the first and second transfer agents 7, 8 can be reduced. Can be adjusted to the most suitable for burning. In addition, at least one of the first and second transfer agents 7, 8 has a heat generation value of more than 350 J / g by ignition combustion, and the number of moles of gas generated by combustion is 0.5 mo. If the weight is 1/100 g or more, the flame from the igniter 6 can be instantaneously propagated in the axial direction of the housing 1, so that the gas generating agent 5 can be instantaneously discharged without using a squib. Can transition to overall combustion.
次に、 第 3図に示すガス発生器 P 2について説明する。 なお、 第 3 図において、 第 1図及び第 2図と同一符号は同一部材を示す。  Next, the gas generator P2 shown in FIG. 3 will be described. In FIG. 3, the same reference numerals as those in FIGS. 1 and 2 denote the same members.
第 3図のガス発生器 P 2は、 エアバヅグの膨張展開を制御可能とす るもので、 2つの点火手 6にてガス発生剤 5を燃焼させるものであ る。 第 3図に示すように、 ハウジング 1の密封空間 Sは、 外筒材 9の 内周に嵌挿される仕切プレート 5 5によって左右 2つの燃焼室 5 3 , 5 4に画成されている。 各燃焼室 5 3, 5 4内には、 第 1図と同様に してフィル夕支持材 1 5及びフィル夕材 2が夫々挿入され、 各フィル 夕支持材 1 5内にガス発生剤 5が装填されている。 また、 各蓋部材: L 0 , 1 1には、 第 1図と同様にして、 点火器 6及び圧力燃焼室 3が 夫々装着、 形成され、 各圧力燃焼室 3内に第 1の伝火薬剤 7が装填さ れている。 また、 各蓋部材 1 0 , 1 1の圧力伝火室 3を構成するホル ダー 2 1には、 伝火ノズル 4が装着され、 各伝火ノズル 4は各燃焼室 5 3 , 5 4内をハウジング 1の軸方向へ延在されている。 各伝火ノズ ル 4内には、 第 2の伝火薬剤 8が夫々装填されている。 また、 各伝火 ノズル 4には、 複数の伝火穴 3 1が形成され、 各伝火穴 3 1を破裂プ レート 3 2·によって閉鎖している。 The gas generator P 2 shown in FIG. 3 makes it possible to control the expansion and deployment of the air bag, and the two igniters 6 burn the gas generating agent 5. As shown in FIG. 3, the sealed space S of the housing 1 is defined by left and right two combustion chambers 53, 54 by a partition plate 55 fitted into the inner periphery of the outer tubular member 9. In each of the combustion chambers 53, 54, a filler material 15 and a filler material 2 are inserted, respectively, as in FIG. It is loaded. Further, an igniter 6 and a pressure combustion chamber 3 are respectively mounted and formed on each lid member: L 0, 11 in the same manner as in FIG. 1, and a first transfer agent is provided in each pressure combustion chamber 3. 7 is loaded Have been. Further, a firing nozzle 4 is mounted on a holder 21 constituting the pressure transfer chamber 3 of each of the lid members 10, 11, and the transfer nozzle 4 is arranged inside each combustion chamber 53, 54. The housing 1 extends in the axial direction. In each of the transfer nozzles 4, a second transfer agent 8 is loaded. Further, a plurality of fire holes 31 are formed in each fire nozzle 4, and each fire hole 31 is closed by a rupture plate 32.
このように、 ガス発生器 P 2に対して、 2つの点火器 6を装着し、 各点火器 6の発火による火炎を、 第 1及び第 2の伝火薬剤 7 , 8の 夫、々によって伝播することで、 ガス発生剤 5の燃焼を高めることが可 能となる。  In this way, two igniters 6 are attached to the gas generator P2, and the flame generated by the ignition of each igniter 6 is propagated by the first and second transfer agents 7, 8, respectively. By doing so, it is possible to enhance the combustion of the gas generating agent 5.
また、 各点火器 6の通電発火を調整することで、 エアバッグの膨張 展闢を制御可能となせる。 具体的には、 自動車の衝突対応に応じて、 2つの点火器 6を微小時間差をもって通電発火することで、 エアバッ グを展闢初期において、 例えば燃焼室 5 3内で発生した少量の清浄な ガスで緩やかに膨張展開させ、 微小時間差後に、 各燃焼室 5 3 , 5 4 内で発生した多量の清浄なガスにて急速に膨張展開させるものである 。 このとき、 各燃焼室 5 3, 5 4内のガス発生剤 5は、 第 1図のガス 発生器 P 1と同様にして、 各蓋部材 1 0, 1 1内の第1 伝火薬剤7 と、 2本の伝火ノズル :内の第 2の伝火薬剤 7 , 8とによって瞬時に 全体的な燃焼に移行され、 エアバッグの膨張展開の制御を最適な時間 (ミリ秒) にて行うことが可能となる。  In addition, by adjusting the energization and firing of each igniter 6, the expansion of the airbag can be controlled. Specifically, the two igniters 6 are energized and ignited with a small time difference in response to the collision of the vehicle, so that the airbag starts in the early stage of development, for example, a small amount of clean gas generated in the combustion chamber 53. Then, after a minute time difference, a large amount of clean gas generated in each of the combustion chambers 53 and 54 rapidly expands and deploys. At this time, the gas generating agent 5 in each of the combustion chambers 53, 54 and the first igniting agent 7 in each of the lid members 10, 11 in the same manner as the gas generator P1 in FIG. , The two transfer nozzles: The second transfer agent 7 and 8 in the unit immediately transfer to the overall combustion, and control the inflation and deployment of the airbag in an optimal time (millisecond). Becomes possible.
最後に、 第 4図に示すガス発生器 P 3について説明する。 なお、 第 4図において、 第 1図〜第 3図と同一部材は同一符号を示す。 第 4図 のガス発生器 P 3は、 第 3図のガス発生器 P 2に対して、 仕切プレー ト 5 5で左右 2つの燃焼室 5 3, 5 4に画成することなく、 1つの燃 焼室としたものである。 第 4図に示すように、 伝火ノズル 4は各蓋部 材 1 0 , 1 1の間にわたって配置され、 各蓋部材 1 0, 1 1の圧力燃 焼室 3内に連逋可能として各ホルダ一 2 1に装着されている。 Finally, the gas generator P3 shown in FIG. 4 will be described. In FIG. 4, the same members as those in FIGS. 1 to 3 are denoted by the same reference numerals. The gas generator P3 in FIG. 4 is different from the gas generator P2 in FIG. 3 in that the partition plate 55 does not define two combustion chambers 53, 54 on the left and right sides. It was a firing room. As shown in FIG. 4, the firing nozzle 4 is It is disposed between the members 10 and 11 and is mounted on each holder 21 so as to enable continuous communication in the pressure combustion chamber 3 of each lid member 10 and 11.
このガス発生器 P 3では、 2つの点火器 6を装着し、 各点火器 6の 発火による火炎を、 第 1及び第 2の伝火藥剤 7, 8の夫々によって伝 播することで、 ガス発生剤 5の燃焼を高めることが可能となる。 また 、 ガス発生器: P 3では、 各点火器 6を微小時間差をもって逋電発火す ることにより、 第 3図と同様にして、 エアバッグの膨張展開を制御可 能となせる。 このとき、 フィル夕支持材 1 5内のガス発生剤 5は、 第 1図のガス発生器 P 1と同様にして、 各蓋部材 1 0, 1 1内の第 1の 伝火薬剤 7と、 1本の伝火ノズル 4内の第 2の伝火薬剤 8とによって 瞬時に全体的な燃焼に移行され、 エアパッグの膨張展開の制御を最適 な時間 (ミリ秒) にて行うことが可能となる。  In this gas generator P3, two igniters 6 are mounted, and the flame generated by the ignition of each igniter 6 is propagated by the first and second transfer agents 7, 8 to generate gas. It becomes possible to increase the combustion of the agent 5. Further, in the gas generator P3, the ignition of each igniter 6 with a small time difference can be controlled in the same manner as in FIG. At this time, the gas generating agent 5 in the filter support material 15 is the same as the gas generator P 1 in FIG. 1, and the first transfer agent 7 in each of the lid members 10 and 11 is With the second transfer agent 8 in one transfer nozzle 4, the entire combustion is instantaneously shifted to the entire combustion, and the expansion and deployment of the air bag can be controlled in an optimum time (millisecond). .
そして、 ガス発生器 P. 1〜P 3では、 アジ化金属化合物のガス発生 剤の他に、 含窒素有機化合物のガス発生剤を採用できる。 上述の如く 、 各ガス発生器 P 1〜P 3では、 ガス発生剤 5の燃焼を瞬時に全体的 なものとな,し、 ガス発生剤 5の燃焼を高めることができることから、 アジ化金属化合物のガス発生剤より着火性能の劣る含窒素有機化合物 のガス発生剤を採用しても、 瞬時に、 安定して着火燃焼できる。 なお 、 ガス発生剤としては、 テトラゾール系化合物、 トリァゾール系化合 物、 アミド系化合物、 グァニジン系化合物等の含窒素有機化合物を燃 焼成分とするものを用いることができる。  In the gas generators P.1 to P3, a gas generator of a nitrogen-containing organic compound can be employed in addition to the gas generator of the metal azide compound. As described above, in each of the gas generators P1 to P3, the combustion of the gas generating agent 5 can be instantaneously made overall, and the combustion of the gas generating agent 5 can be enhanced. Even if a gas generator of a nitrogen-containing organic compound, which has lower ignition performance than that of a gas generator, is used, ignition and combustion can be performed instantaneously and stably. In addition, as a gas generating agent, a compound having a nitrogen-containing organic compound such as a tetrazole compound, a triazole compound, an amide compound, or a guanidine compound as a combustion component can be used.
なお、 本発明の実施形態におけるガス発生器 P 1〜P 3では、 第 1 図〜第 4図に示すものに限定されず、 例えば、 次のような形態をとる ことができる。  The gas generators P1 to P3 according to the embodiment of the present invention are not limited to those shown in FIGS. 1 to 4, and may take the following forms, for example.
( 1 ) 圧力燃焼室 3を蓋部材 1 0内に形成し、 伝火ノズル 4をホル ダ一 2 1によって圧力燃焼室 3内に連通可能とする構成、 即ち、 庄カ 燃焼室 3と伝火ノズル 4を別体とするものに限定されず、 伝火ノズル 4の開口側に圧力燃焼室 3を一体に形成した構成も採用できる。 (1) A configuration in which the pressure combustion chamber 3 is formed in the lid member 10 and the firing nozzle 4 can be communicated with the pressure combustion chamber 3 by the holder 21; The configuration is not limited to a configuration in which the combustion chamber 3 and the ignition nozzle 4 are separated from each other, and a configuration in which the pressure combustion chamber 3 is integrally formed on the opening side of the ignition nozzle 4 can be adopted.
( 2 ) ハウジング 1は、 外筒材 9と、 2つの蓋部材 1 Q , 1 1で構 成するものに限定されず、 一端開口の有底の外筒材と、 該外筒材の開 口側を閉鎖する 1つの蓋部材で構成することもできる。  (2) The housing 1 is not limited to the one composed of the outer cylinder member 9 and the two lid members 1Q and 11; an outer cylinder member having a bottom with an opening at one end and an opening of the outer cylinder member are provided. It can also be composed of one lid member that closes the side.
( 3 ) 複数の点火手段 6を有するガス発生器において、 一部の点火 手段のある軸端部にのみ圧力燃焼室 3及び伝火ノズル 4を設ける構成 も採用できる。 産業上の利用可能性 '  (3) In a gas generator having a plurality of ignition means 6, a configuration in which the pressure combustion chamber 3 and the transmission nozzle 4 are provided only at the shaft end where some of the ignition means are provided can be adopted. Industrial applicability ''
本発明のガス発生器では、 点火手段にて第 1の伝火薬剤を着火燃焼 し、 鐃いて第 1の伝火薬剤の燃焼熱にて第 2の伝火薬剤を着火燃焼し て、 点^手段からの火炎等 熱エネルギーをハウジングの軸方向へ伝 播することにより、 瞬時に、 ガス発生剤の全体的な燃焼に移行させる ことができる。 この結果、 ガス発生剤の全体的な燃焼を、 第 1及び第 2の伝火薬剤のみで行え、 従来のガス発生器のように、 点火材料中に 導火線を埋設する必要がなくなることから、 構造の簡素化、 製造コス トの低減を図ることができる。 そして、 ガス発生器では、 第 1及び第 2の伝火薬剤による火炎等の伝播によって、 ガス発生剤全体の')^焼を 高めることができ、 エアバッグを瞬時に膨張展開させることが可能と なる。  In the gas generator of the present invention, the first explosive agent is ignited and burned by the ignition means, and the second explosive agent is ignited and burned by the heat of combustion of the first explosive agent. By transmitting heat energy such as flame from the means in the axial direction of the housing, it is possible to instantaneously shift to the overall combustion of the gas generating agent. As a result, the entire combustion of the gas generating agent can be performed only by the first and second transfer agents, and there is no need to bury a squib in the ignition material as in a conventional gas generator. Simplification and reduction of manufacturing costs. In the gas generator, it is possible to enhance the ') ^ burning of the entire gas generating agent by the propagation of the flame and the like by the first and second transfer agents, and to inflate and deploy the airbag instantaneously. Become.

Claims

請 求 の 範 囲 The scope of the claims
1 , 両端が閉鎖される長尺円筒状のハウジングと、  1, a long cylindrical housing whose both ends are closed,
前記ハウジングの少なくとも一方の軸端部に装着される点火手段と 前記点火手段のある前記ハウジングの軸端部の少なくとも一方に設 けられ、 該点火手段により着火燃焼される第 1の伝火薬剤と、  An ignition means mounted on at least one shaft end of the housing; and a first transfer agent provided on at least one of the shaft ends of the housing having the ignition means and ignited and burned by the ignition means. ,
前記ハウジング内の軸方向へ延在され、 前記第 1の伝火薬剤の燃焼 熱により着火燃焼される第 2の伝火薬剤と、  A second transfer agent extending in the axial direction within the housing and ignited and burned by combustion heat of the first transfer agent;
前記ハゥジング内の軸方向にわたって装填され、 前記第 2の伝火薬 剤の燃焼熱により燃焼されるガス発生剤と、  A gas generating agent that is loaded in the housing in the axial direction and that is burned by the heat of combustion of the second transfer agent;
を備えてなることを特徴とするガス発生器。  A gas generator comprising:
2. 両端が閉鎖される長尺円筒状のハウジングと、  2. A long cylindrical housing with both ends closed,
前記ハウジングの少なくとも一方の軸端部に装着される点火手段と 前記点火手段のある前記ハウジングの軸端部の少なくとも一方に設 けられ、 該ハウジングの内外から密封される圧力燃焼室と、  An ignition means mounted on at least one shaft end of the housing; a pressure combustion chamber provided on at least one of the shaft ends of the housing having the ignition means, and sealed from inside and outside of the housing;
前記圧力燃焼室内に連通され、 前記ハゥジング内を軸方向へ延在さ れる伝火ノズルと、 .  A heat transfer nozzle communicating with the pressure combustion chamber and extending axially in the housing;
前記伝火ノズルの軸方向へ複数形成され、 該伝火ノズル内を前記ハ ウジング内に連通させる伝火穴と、.  A plurality of transmission holes formed in the axial direction of the transmission nozzle, and a communication hole communicating the inside of the transmission nozzle with the inside of the housing.
前記圧力燃焼室内に装填され、 前記点火手段により着火燃焼される 第 1の伝火薬剤と、 '  A first transfer agent charged into the pressure combustion chamber and ignited and burned by the ignition means;
前記伝火ノズル内の軸方向にわた て装填され、 前記第 1の伝火薬 剤の燃焼熱により着火燃焼される第 2の伝火薬剤と、  A second transfer agent charged axially in the transfer nozzle and ignited and burned by the heat of combustion of the first transfer agent;
前記ハウジング内の軸方向にわたって装填され、 前記伝火ノズルの 各伝火穴を通して噴出される俞記第 2の伝火藥剤の燃焼熱により燃焼 されるガス発生剤と、 を備えてなることを特徴とするガス発生器。The fuel is loaded in the housing in the axial direction and is ejected through each of the heat transfer holes of the heat transfer nozzle. A gas generator comprising: a gas generating agent;
3. 前記伝火ノズルの内径を、 前記圧力燃焼室の内径より小さくし たことを特徴とする請求の範囲第 2項に記載のガス発生器。 3. The gas generator according to claim 2, wherein an inner diameter of the transfer nozzle is smaller than an inner diameter of the pressure combustion chamber.
4. 前記複数の伝火穴を、 前記圧力燃焼室の近傍で穴間ピッチを小 さくし、 該圧力燃焼室から離れるにつれて穴間ピッチを大きくなるよ うに形成したことを特徴とする請求の範囲第 2項又は請求の範囲第 3 項に記載のガス発生器。 ,  4. The plurality of heat transfer holes are formed so as to reduce the pitch between holes near the pressure combustion chamber and to increase the pitch between holes as the distance from the pressure combustion chamber increases. The gas generator according to claim 2 or claim 3. ,
5. 前記第 1及び第 2の伝火薬剤の、 少なくとも一方が、 着火燃焼 による発熱量が 3500 J/g以上、 燃焼により発生するガスのモル 数が 0. 5mo 1/100 g以上であることを特徴とする請求の範囲 第 1項又は請求の範 H第 2項に記載のガス発生器。  5. At least one of the first and second transfer agents must have a calorific value of 3500 J / g or more due to ignition and combustion, and a mole number of gas generated by combustion of 0.5mo1 / 100 g or more. The gas generator according to claim 1 or claim H, characterized by the following.
PCT/JP2001/009358 2000-10-30 2001-10-25 Gas generator WO2002036394A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002212681A AU2002212681A1 (en) 2000-10-30 2001-10-25 Gas generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-330987 2000-10-30
JP2000330987A JP4533524B2 (en) 2000-10-30 2000-10-30 Gas generator

Publications (1)

Publication Number Publication Date
WO2002036394A1 true WO2002036394A1 (en) 2002-05-10

Family

ID=18807406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009358 WO2002036394A1 (en) 2000-10-30 2001-10-25 Gas generator

Country Status (3)

Country Link
JP (1) JP4533524B2 (en)
AU (1) AU2002212681A1 (en)
WO (1) WO2002036394A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7097203B2 (en) * 2002-09-13 2006-08-29 Automotive Systems Laboratory, Inc. Inflator
US6935655B2 (en) * 2003-04-08 2005-08-30 Autoliv Asp, Inc. Pyrotechnic inflator for a vehicular airbag system
JP4643283B2 (en) * 2005-01-28 2011-03-02 ダイセル化学工業株式会社 Gas generator for airbag
JP6946097B2 (en) * 2017-07-21 2021-10-06 株式会社ダイセル Gas generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441441U (en) * 1990-08-09 1992-04-08
US5348344A (en) * 1991-09-18 1994-09-20 Trw Vehicle Safety Systems Inc. Apparatus for inflating a vehicle occupant restraint using a mixture of gases
JPH06298035A (en) * 1993-04-20 1994-10-25 Nippon Oil & Fats Co Ltd Airbag unfolding gas generator
WO1995020508A1 (en) * 1994-01-27 1995-08-03 Daicel Chemical Industries, Ltd. Gas generator for air bag
JPH10138862A (en) * 1996-11-13 1998-05-26 Nissan Motor Co Ltd Gas generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19541924A1 (en) * 1995-11-10 1997-05-15 Diehl Gmbh & Co Two stage gas generator for vehicle occupant safety airbag

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441441U (en) * 1990-08-09 1992-04-08
US5348344A (en) * 1991-09-18 1994-09-20 Trw Vehicle Safety Systems Inc. Apparatus for inflating a vehicle occupant restraint using a mixture of gases
JPH06298035A (en) * 1993-04-20 1994-10-25 Nippon Oil & Fats Co Ltd Airbag unfolding gas generator
WO1995020508A1 (en) * 1994-01-27 1995-08-03 Daicel Chemical Industries, Ltd. Gas generator for air bag
JPH10138862A (en) * 1996-11-13 1998-05-26 Nissan Motor Co Ltd Gas generator

Also Published As

Publication number Publication date
AU2002212681A1 (en) 2002-05-15
JP4533524B2 (en) 2010-09-01
JP2002127864A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
KR100479307B1 (en) Dual stage airbag inflator
KR950009343B1 (en) Two stage automotive gas bag inflator using igniter material to delay second stage ignition
US7784829B2 (en) Gas generator for airbag
JP5226853B2 (en) Gas generator
JP3038474U (en) Inflator and low pressure fire device for inflator
JPH11509154A (en) Two-chamber non-azide gas generator
US7404574B2 (en) Gas generator for airbag
JPH08332911A (en) Gas generator for air bag
WO2000046078A1 (en) Gas generator
WO2003042010A1 (en) Gas generator
US20040244632A1 (en) Multi-stage ignition type gas generator
JP4190353B2 (en) Multistage ignition gas generator
JP4079329B2 (en) Gas generator
JP4633918B2 (en) Gas generator
WO2002036394A1 (en) Gas generator
JP2008094259A (en) Gas generator
WO2001074633A1 (en) Gas generator
JP4660018B2 (en) Gas generator
JP7361660B2 (en) gas generator
JP5242228B2 (en) Gas generator for personnel restraint system
WO2001072560A1 (en) Gas generator
JP4612232B2 (en) Gas generator
JP2002362298A (en) Gas generator and filter material used therefor
JP2023175583A (en) air bag device
JP2010269796A (en) Gas generator

Legal Events

Date Code Title Description
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase