WO2002036252A1 - Two-fluid mixing device - Google Patents

Two-fluid mixing device Download PDF

Info

Publication number
WO2002036252A1
WO2002036252A1 PCT/JP2001/009148 JP0109148W WO0236252A1 WO 2002036252 A1 WO2002036252 A1 WO 2002036252A1 JP 0109148 W JP0109148 W JP 0109148W WO 0236252 A1 WO0236252 A1 WO 0236252A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
liquid
cylinder
gas
pressure
Prior art date
Application number
PCT/JP2001/009148
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuyuki Fujimura
Original Assignee
Invention.Co.,Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Invention.Co.,Ltd filed Critical Invention.Co.,Ltd
Priority to JP2002539054A priority Critical patent/JPWO2002036252A1/en
Priority to AU2001295957A priority patent/AU2001295957A1/en
Publication of WO2002036252A1 publication Critical patent/WO2002036252A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23123Diffusers consisting of rigid porous or perforated material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/042Introducing gases into the water, e.g. aerators, air pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23126Diffusers characterised by the shape of the diffuser element
    • B01F23/231265Diffusers characterised by the shape of the diffuser element being tubes, tubular elements, cylindrical elements or set of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/21Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers
    • B01F25/211Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers the injectors being surrounded by guiding tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/913Vortex flow, i.e. flow spiraling in a tangential direction and moving in an axial direction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Definitions

  • the present invention relates to a device for mixing a gas such as ozone or oxygen with a liquid such as water at a high concentration.
  • Ozone water production equipment using porous ceramic cylinders and oxygen supply equipment for water have been used for a long time and are widely used.
  • Each of these devices is limited to a device in which a gas such as ozone is fed into a ceramic cylinder at a high pressure, and is sent out as a bubble from a hole in the ceramic to an external liquid such as water to be dissolved therein.
  • a gas such as ozone
  • Efforts have been made to reduce the pore diameter of the ceramic in order to reduce the bubble diameter, and the performance has been improved.
  • the gas pressure required to break the surface tension and cause air bubbles to float in the liquid must be increased in inverse proportion to the square of the pore diameter when the pore diameter of the ceramic is reduced. was there.
  • the gas pressure requires several tens of atmospheres or more, which is impractical. For this reason, in practice, only ceramics having a pore diameter of several tens of microns or more are used, and there is an inconvenience that they are not sufficiently dissolved in a liquid due to large bubbles.
  • FIG 2 is an enlarged view of a state in which bubbles are coming out of the holes of the ceramic cylinder.
  • the pressure Pa on the gas side is set higher than the static pressure (-total pressure-one dynamic pressure) Ps on the liquid side, the bubbles will protrude toward the liquid side. It cannot grow beyond the state where the gas pressure is balanced.
  • the liquid is turbulent outside the ceramic cylinder so that the liquid flows at a high speed through a narrow flow path so as to exceed the critical Reynolds number. Breaks the surface tension of the bubbles. The gas becomes fine bubbles and gets caught in the liquid and is continuously discharged.
  • FIG. 6 is a diagram showing another embodiment of the present invention.
  • FIG. 6 is a diagram showing another embodiment of the present invention.
  • FIG. 6 is a diagram showing another embodiment of the present invention.
  • FIG. 3 shows an embodiment of the present invention.
  • Gas supply consisting of ozone production equipment 13 and pump 14
  • the apparatus is connected to the end 17 of the ceramic cylinder 16 by a pipe 15 and supplies ozone with a concentration of 5 PPm into the interior of the cylinder 16 at a pressure of about 5 kg / cm 2.
  • a ceramic cylinder with an outer diameter of 8 mm has a pore rate of about 1 micron with a pore rate of about 20. Infinitely formed with / o.
  • a metal cylinder 18 having an inner diameter of 10 mm is mounted concentrically with the cylinder 16.
  • a liquid inlet 19 is provided at an end of the cylinder 18, and is connected to a liquid supply device including a water tank 20 and a pump 21 by a pipe.
  • the other end of the cylinder 18 is opened as a discharge hole 22 for the gas-liquid mixture.
  • the liquid supply unit supplies about 20 liters of water per minute to the gap between the cylinders 16 and 19 at a pressure of about 5 kg / cm 2.
  • the average velocity of the water flowing through the gap 23 is about 12 m / sec, far above the critical Reynolds number.
  • the static pressure on the water side is about 2kg / sq cm, which is much lower than the pressure on the gas side.
  • the gas-liquid mixture from the discharge port X is discharged into a water tank 20 of about 50 liters and circulates. In this example, 50 liters of water turned completely opaque after about 1 minute and the ozone concentration reached supersaturation. Even if the water side pump was stopped and only the gas side pump was operated, no bubbles were generated.
  • FIG. 4 shows another embodiment.
  • a pump 24 is connected to an end 27 of the ceramic cylinder 26 by a pipe 25 and supplies room air to the inside of the cylinder 26 at a pressure of about 5 kg / cm 2.
  • a ceramic cylinder with an outer diameter of 8 mm has numerous holes 28 of about 1 micron with an opening ratio of about 20%. Outside the ceramic cylinder 2, a metal cylinder 28 having an inner diameter of 10 mm is mounted concentrically with the cylinder 26.
  • a liquid inlet 29 is provided at the end of the cylinder 28 and is connected to a water tap 30 by a pipe. The opposite end of the cylinder 28 is open as a discharge hole 31 for the gas-liquid mixture.
  • the water pressure was about 5 kg / sq cm and the water flow was about 12 liters per minute.
  • the flow velocity of the water flowing through the gap 32 is about 7 m / sec, exceeding the critical Reynolds number.
  • the gas-liquid mixture from the discharge hole 31 was discharged to an empty water tank 33.
  • the discharged gas-liquid mixture was cloudy and the oxygen concentration had reached a level of supersaturation.
  • FIG. 5 is an embodiment for further enhancing the gas-liquid mixing capacity, in which three sets of a ceramic cylinder and an outer cylinder are connected in parallel.
  • FIG. 6 is an embodiment for further strengthening the vortex of the liquid, in which fine spiral irregularities are formed on the inner surface of the outer cylinder.
  • the present invention is also applicable to mixing of hardly soluble liquids such as water and oil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

A two-fluid mixing device capable of suspending air bubbles in liquid by breaking a surface tension by the force of vortexes on a liquid side, not by a gas pressure, wherein, when a gas (9) side pressure is set higher than a static pressure on a liquid (10) side (= total pressure - dynamic pressure), the air bubbles are formed convex on the liquid (10) side but, when a hole (1) diameter is small, the air bubbles cannot be grown beyond the balanced state of the surface tension of the liquid (10) with the pressure of the gas (9), the liquid (10) flows through a narrow flow passage on the outside of a ceramic cylinder (3) at a high velocity so as to exceed a critical Reynolds number, and thus the flow of the liquid (10) becomes a turbulent flow and fine vortexes break the surface tension of the air bubbles, and the gas (9) becomes fine bubbles, entrapped into the liquid (10), and discharged continuously, whereby the device capable of dissolving the remarkably large amount of gas (9) into the liquid (10) can be provided easily at a low cost.

Description

明 細 書  Specification
2流体混合装置 技術分野  Two-fluid mixing equipment Technical field
本発明は、オゾンや酸素等の気体を、水等の液体に高濃度で混合せしめる装置に 係わるものです。  The present invention relates to a device for mixing a gas such as ozone or oxygen with a liquid such as water at a high concentration.
背景技術 Background art
多孔質のセラミック円筒を利用したオゾン水製造装置や、水中への酸素供給装置 は、古くから利用され広く普及している。これらの装置は何れもセラミック円筒内部に オゾン等の気体を高い圧力で送り込み、セラミックの孔から気泡として、外部の水等 の液体に送り出して溶け込ませるものに限られていた。気泡の径が小さい程、気体 が液体に溶け込み易いことは周知の通りであり、気泡の径を小さくするためにセ ラミックの孔径を小さくする努力が重ねられて性能の向上がはかられた。然るに、こ れも周知の如ぐ表面張力を打ち破って気泡を液中に浮遊せしめるための気体圧力 は、セラミックの孔径を小さくすると、概ね孔径の 2乗に反比例して大きくしなければ ならないという問題があった。例えば、空気と水の場合を例にとると、セラミックの孔 径を 1 0ミクロン以下にすると、気体圧力は数十気圧以上を要して、非現実的とな る。このために、実用上はセラミックの孔径が数十ミクロン以上のものが利用される に留まり、気泡が大きいために液体に十分に溶け込まないという不都合が有った。 また、気泡同士が結合して更に大きい気泡に成長して液体への溶解を妨げるという 不都合も有った。この不都合を解決するために、大きい気泡を回転羽根車や超音波 等で機械的に分断する等の技術が考案されているが十分な満足は得られていな い。また、気体圧力を極限まで高くせざるを得ないために、装置が過大で高価であ ることも指摘されている。  Ozone water production equipment using porous ceramic cylinders and oxygen supply equipment for water have been used for a long time and are widely used. Each of these devices is limited to a device in which a gas such as ozone is fed into a ceramic cylinder at a high pressure, and is sent out as a bubble from a hole in the ceramic to an external liquid such as water to be dissolved therein. It is well known that the smaller the bubble diameter is, the easier the gas is to dissolve in the liquid. Efforts have been made to reduce the pore diameter of the ceramic in order to reduce the bubble diameter, and the performance has been improved. However, as is well known, the gas pressure required to break the surface tension and cause air bubbles to float in the liquid must be increased in inverse proportion to the square of the pore diameter when the pore diameter of the ceramic is reduced. was there. For example, taking the case of air and water as an example, if the pore size of the ceramic is set to 10 microns or less, the gas pressure requires several tens of atmospheres or more, which is impractical. For this reason, in practice, only ceramics having a pore diameter of several tens of microns or more are used, and there is an inconvenience that they are not sufficiently dissolved in a liquid due to large bubbles. In addition, there is also an inconvenience that the bubbles are combined with each other and grow into larger bubbles, thereby preventing dissolution in a liquid. In order to solve this inconvenience, techniques for mechanically dividing large bubbles with a rotary impeller, ultrasonic waves, or the like have been devised, but no satisfactory results have been obtained. It has also been pointed out that the equipment is excessively expensive because the gas pressure has to be extremely high.
発明の開示 Disclosure of the invention
気泡の径が小さいほど気体は液体に溶け込み易いが気体圧力を高くしなければな らないという、従来技術のジレンマを、液体側の渦の力を利用することで解決して、 例えば、セラミックの孔径が数ミクロン以下の場合でも、気体圧力を数気圧以下と、 桁違いに低くすることができた。この発明により、高濃度オゾン水製造装置等、液体 に気体を飛躍的に大量に溶け込ませる装置を簡便安価に実現できることになつた。 本発明では、表面張力を打ち破って気泡を液中に浮遊せしめる手段を、従来のよう に気体圧力に依存するのではなぐ液体側の渦の力に依存せしめる。即ち、図 2 は、セラミック円筒の孔から気泡が出かかっている状態を拡大して図示したものであ る。 気体側の圧力 Paが、液体側の静圧(-全圧一動圧) Psよりも高く設定されていれ ば、気泡は液体側に凸になるが、孔径が小さい場合は、液体の表面張力と気体圧 力がバランスした状態以上には成長できないで留まる。然しながら、本発明では、セ ラミック円筒の外側には、臨界レイノルズ数を超えるように、狭い流路を速い速度で 液体が流れるように考案されているので、液体の流れは乱流となり、細かい渦が気 泡の表面張力を打ち破る。気体は細かい泡となって液体に巻き込まれて連続的に 吐出される。 The dilemma of the prior art, in which the smaller the bubble diameter, the easier the gas is to dissolve in the liquid but the higher the gas pressure, is to solve the prior art dilemma by using the vortex force on the liquid side. Even when the pore size was several microns or less, the gas pressure could be reduced to orders of magnitude below several atmospheres. According to the present invention, it is possible to easily and inexpensively realize a device for rapidly dissolving a large amount of gas into a liquid, such as a high-concentration ozone water production device. In the present invention, the means for breaking the surface tension and causing bubbles to float in the liquid depends on the force of the vortex on the liquid side instead of relying on the gas pressure as in the prior art. That is, FIG. 2 is an enlarged view of a state in which bubbles are coming out of the holes of the ceramic cylinder. If the pressure Pa on the gas side is set higher than the static pressure (-total pressure-one dynamic pressure) Ps on the liquid side, the bubbles will protrude toward the liquid side. It cannot grow beyond the state where the gas pressure is balanced. However, in the present invention, the liquid is turbulent outside the ceramic cylinder so that the liquid flows at a high speed through a narrow flow path so as to exceed the critical Reynolds number. Breaks the surface tension of the bubbles. The gas becomes fine bubbles and gets caught in the liquid and is continuously discharged.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1  Figure 1
本発明の基本構造を示す図である。  It is a figure showing the basic structure of the present invention.
図 2  Figure 2
本発明の基本原理を示す図である。  It is a figure showing the basic principle of the present invention.
図 3  Fig. 3
本発明の実施例を示す図である。  It is a figure showing an example of the present invention.
図 4  Fig. 4
本発明の別な実施例を示す図である。  FIG. 6 is a diagram showing another embodiment of the present invention.
図 5  Fig 5
本発明の別な実施例を示す図である。  FIG. 6 is a diagram showing another embodiment of the present invention.
図 6  Fig. 6
本発明の別な実施例を示す図である。  FIG. 6 is a diagram showing another embodiment of the present invention.
符号の説明  Explanation of reference numerals
1微細孔  1 micro hole
2流体 A入口  2 fluid A inlet
3セラミック製の筒  3 Ceramic tube
4流体 B入口  4 fluid B inlet
5AB混合流体出口  5AB mixed fluid outlet
6筒  6 cylinders
7流体 A供給装置  7 Fluid A supply device
8流体 B供給装置  8 fluid B supply device
9流体 A  9 Fluid A
10流体 B  10 Fluid B
1 1セラミック製の筒の片側断面の一部  1 1 Part of one side cross section of ceramic cylinder
1 2外側の筒の片側断面の一部 Pa 気体の圧力 1 2 Part of one side cross section of outer cylinder Pa gas pressure
Ps 液体の静圧  Ps Static pressure of liquid
1 3オゾン製造装置  1 3 Ozone production equipment
1 4ポンプ  1 4 pump
1 5パイプ  1 5 pipe
1 6セラミック製円筒  1 6 Ceramic cylinder
1 7才ゾン入口  1 7 years old zon entrance
1 8金属製円筒  1 8 metal cylinder
1 9水入口  1 9 water inlet
20水槽  20 aquarium
21水ポンプ  21 water pump
22オゾン水吐出孔  22 Ozone water discharge hole
23隙間 (水の流路)  23 gap (water flow path)
24空気ポンプ  24 air pump
25パイプ  25 pipes
26セラミック製円筒  26 ceramic cylinder
27空気入口  27 air inlet
28金属製円筒  28 metal cylinder
29水入口  29 water inlet
30水道  30 tap
31吐出孔  31 discharge holes
32隙間 (水の流路)  32 gaps (water flow path)
33水槽  33 aquarium
34セラミック製円筒  34 ceramic cylinder
35外側円筒  35 outer cylinder
36気体供給装置  36 gas supply device
37供給装置  37 Feeder
38セラミック製円筒連結管  38 ceramic cylindrical connecting pipe
39外側円筒連結管  39 Outer cylindrical connecting pipe
40セラミック製円筒  40 ceramic cylinder
1螺旋状突起を有する外側円筒  1 outer cylinder with spiral projection
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
図 3は本発明の実施例である。オゾン製造装置 1 3とポンプ 14か 成る気体供給 装置がパイプ 1 5でセラミック円筒 1 6の端部 1 7に連結され、濃度 5PPmのオゾンを 約 5kg/平方 cmの圧力で、円筒 1 6の内部に供給する。外径 8mmのセラミック円筒 には、約 1ミクロンの孔が開孔率約 20。/oで無数に形成されている。セラミック円筒 1 6の外側には、内径 10mmの金属製の円筒 1 8が、円筒 1 6と同心円上に装着さ れている。円筒 1 8の端部には液体入口 1 9が設けられ、水槽 20及びポンプ 21から 成る液体供給装置とパイプで連結されている。円筒 1 8の反対側の端部は気液混合 体の吐出孔 22として開放されている。液体供給装置は円筒 1 6と円筒 1 9の隙間口 に、約 5kg/平方 cmの圧力で毎分約 20リットルの水を供給する。隙間 23を流れる 水の平均流速は約 12m/secであり、臨界レイノルズ数を遥かに超えている。また、 水側の静圧は 2kg/平方 cm程度であり、気体側の圧力よりも十分に低し、。吐出孔 X からの気液混合体は約 50リットルの水槽 20に吐出されて循環する。この実施例で は、 50リットルの水は約 1分後に完全な不透明に白濁し、オゾン濃度は過飽和に達 した。なお、水側のポンプを停止して、気体側のポンプだけを作動させても、気泡は まったく生じなかった。 FIG. 3 shows an embodiment of the present invention. Gas supply consisting of ozone production equipment 13 and pump 14 The apparatus is connected to the end 17 of the ceramic cylinder 16 by a pipe 15 and supplies ozone with a concentration of 5 PPm into the interior of the cylinder 16 at a pressure of about 5 kg / cm 2. A ceramic cylinder with an outer diameter of 8 mm has a pore rate of about 1 micron with a pore rate of about 20. Infinitely formed with / o. Outside the ceramic cylinder 16, a metal cylinder 18 having an inner diameter of 10 mm is mounted concentrically with the cylinder 16. A liquid inlet 19 is provided at an end of the cylinder 18, and is connected to a liquid supply device including a water tank 20 and a pump 21 by a pipe. The other end of the cylinder 18 is opened as a discharge hole 22 for the gas-liquid mixture. The liquid supply unit supplies about 20 liters of water per minute to the gap between the cylinders 16 and 19 at a pressure of about 5 kg / cm 2. The average velocity of the water flowing through the gap 23 is about 12 m / sec, far above the critical Reynolds number. The static pressure on the water side is about 2kg / sq cm, which is much lower than the pressure on the gas side. The gas-liquid mixture from the discharge port X is discharged into a water tank 20 of about 50 liters and circulates. In this example, 50 liters of water turned completely opaque after about 1 minute and the ozone concentration reached supersaturation. Even if the water side pump was stopped and only the gas side pump was operated, no bubbles were generated.
図 4は別な実施例である。ポンプ 24がパイプ 25でセラミック円筒 26の端部 27に 連結されて、円筒 26の内部に室内空気を約 5kg/平方 cmの圧力で供給する。外径 8mmのセラミック円筒には、約 1ミクロンの孔 28が開孔率約 20%で無数に形成さ れている。セラミック円筒 2の外側には、内径 10mmの金属製の円筒 28が、円筒 26と同心円上に装着されている。円筒 28の端部には液体入口 29が設けられ、水 道蛇口 30とパイプで連結されている。円筒 28の反対側の端部は気液混合体の吐 出孔 31として開放されている。水道の圧力は約 5kg/平方 cm、水量は毎分約 12リ ットルであった。隙間 32を流れる水の流速は約 7m/secであり、臨界レイノルズ数 を超えている。吐出孔 31からの気液混合体は空の水槽 33に吐出された。吐出さ れた気液混合体は白濁しており、酸素濃度は過飽和のレベルに達していた。  FIG. 4 shows another embodiment. A pump 24 is connected to an end 27 of the ceramic cylinder 26 by a pipe 25 and supplies room air to the inside of the cylinder 26 at a pressure of about 5 kg / cm 2. A ceramic cylinder with an outer diameter of 8 mm has numerous holes 28 of about 1 micron with an opening ratio of about 20%. Outside the ceramic cylinder 2, a metal cylinder 28 having an inner diameter of 10 mm is mounted concentrically with the cylinder 26. A liquid inlet 29 is provided at the end of the cylinder 28 and is connected to a water tap 30 by a pipe. The opposite end of the cylinder 28 is open as a discharge hole 31 for the gas-liquid mixture. The water pressure was about 5 kg / sq cm and the water flow was about 12 liters per minute. The flow velocity of the water flowing through the gap 32 is about 7 m / sec, exceeding the critical Reynolds number. The gas-liquid mixture from the discharge hole 31 was discharged to an empty water tank 33. The discharged gas-liquid mixture was cloudy and the oxygen concentration had reached a level of supersaturation.
図 5は、気液混合能力をさらに高めるための実施例であり、セラミック円筒と外側 円筒のセットが 3組、並列に連結されている。  FIG. 5 is an embodiment for further enhancing the gas-liquid mixing capacity, in which three sets of a ceramic cylinder and an outer cylinder are connected in parallel.
また、図 6は、液体の渦をさらに強くするための実施例であり、外側円筒の内面に 螺旋状の細かい凹凸が形成されている。  FIG. 6 is an embodiment for further strengthening the vortex of the liquid, in which fine spiral irregularities are formed on the inner surface of the outer cylinder.
産業上の利用可能性 Industrial applicability
野菜等の殺菌,消毒、プールや浄化槽等の殺菌'消毒、熱帯魚や養殖魚の飼育、 河川や湖沼の浄化等に利用される。  It is used for disinfection and disinfection of vegetables, disinfection of pools and septic tanks, breeding of tropical and cultured fish, and purification of rivers and lakes.
また、水と油のように、溶解しにくい液体同士の混合にも適用可能である。  Further, the present invention is also applicable to mixing of hardly soluble liquids such as water and oil.

Claims

請求の範囲 複数の微細な孔 1と流体 A入口 2とを有するセラミック製の筒 3、該筒 3と略 同心円状に外側に配置され、流体 B入口 4と AB混合流体出口 5とを有する筒 6、 流体 A入口 2にパイプ等で接続された流体 A供給装置 7、流体 B入口 4にパイ プ等で接続された流体 B供給装置 8から成り、筒 3内部の流体 A9の圧力が、 筒 3と筒 6の隙間を流れる流体 B 10の静圧よりも高ぐ且つ該流体 B1 0のレ イノルズ数が臨界レイノルズ数以上となるように調整されていることを特徴と する 2流体混合装置。  Claims A ceramic cylinder 3 having a plurality of fine holes 1 and a fluid A inlet 2, a cylinder having a fluid B inlet 4 and an AB mixed fluid outlet 5 disposed substantially concentrically outside the cylinder 3. 6, a fluid A supply device 7 connected to the fluid A inlet 2 by a pipe, etc., and a fluid B supply device 8 connected to the fluid B inlet 4 by a pipe, etc. A two-fluid mixing device, characterized in that it is adjusted to be higher than the static pressure of the fluid B10 flowing in the gap between the cylinder 3 and the cylinder 6 and that the Reynolds number of the fluid B10 is equal to or greater than the critical Reynolds number.
2.流体 Aの主成分がオゾンまたは酸素または空気であり、流体 Bの主成分が水で あることを特徴とする、項 1記載の 2流体混合装置。  2. The two-fluid mixing device according to item 1, wherein the main component of fluid A is ozone, oxygen, or air, and the main component of fluid B is water.
3.筒 3と筒 6とが複数個並列に連結されたことを特徴とする、項 1記載の 2流体  3. The two-fluid according to item 1, wherein a plurality of cylinders 3 and 6 are connected in parallel.
混合装置。  Mixing equipment.
4.筒 6の内側表面に螺旋状突起等の細かい凹凸を付けたことを特徴とする、項 1 記載の 2流体混合装置。  4. The two-fluid mixing device according to item 1, wherein fine irregularities such as spiral projections are provided on the inner surface of the cylinder 6.
5.筒 3または筒 6の断面形状が、円形、楕円形、四角形、星型の何れかであるこ とを特徴とする、項 1記載の 2流体混合装置。  5. The two-fluid mixing device according to item 1, wherein the cross-sectional shape of the cylinder 3 or the cylinder 6 is any one of a circle, an ellipse, a square, and a star.
6.流体 Aが水であり、流体 Bが石油であることを特徴とする、項 1記載の 2  6. Fluid A is water and Fluid B is petroleum, characterized in that
流体混合装置。  Fluid mixing device.
PCT/JP2001/009148 2000-10-30 2001-10-18 Two-fluid mixing device WO2002036252A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002539054A JPWO2002036252A1 (en) 2000-10-30 2001-10-18 Two-fluid mixing device
AU2001295957A AU2001295957A1 (en) 2000-10-30 2001-10-18 Two-fluid mixing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000330374A JP2005052683A (en) 2000-10-30 2000-10-30 Apparatus for mixing two fluids
JP2000-330374 2000-10-30

Publications (1)

Publication Number Publication Date
WO2002036252A1 true WO2002036252A1 (en) 2002-05-10

Family

ID=18806909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009148 WO2002036252A1 (en) 2000-10-30 2001-10-18 Two-fluid mixing device

Country Status (3)

Country Link
JP (2) JP2005052683A (en)
AU (1) AU2001295957A1 (en)
WO (1) WO2002036252A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1590300A2 (en) * 2003-01-10 2005-11-02 Tersano Inc. Sanitization system and system components producing ozonated liquid
EP1615713A2 (en) * 2003-04-22 2006-01-18 Mykrolis Corporation Pleated construction for effecting gas transfer membrane
JP2010162432A (en) * 2009-01-13 2010-07-29 Nitta Moore Co Mixing device
US7767168B2 (en) 2003-06-26 2010-08-03 Tersano Inc. Sanitization system and system components
ITTO20110365A1 (en) * 2011-04-27 2012-10-28 Marta Jakob APPLIANCE FOR SANITIZING LIQUIDS, SPECIFICALLY STUDIED FOR SANITIZING LUBRICULAR EMULSIONS OF MACHINE TOOLS
CN105217710A (en) * 2015-10-26 2016-01-06 中国海洋石油总公司 A kind of can the micro bubble generation device of on-line cleaning
CN112007479A (en) * 2020-08-24 2020-12-01 中国石油化工股份有限公司 Atmospheric tower top oil gas washing and dechlorinating device and method
CN115885915A (en) * 2022-11-24 2023-04-04 武汉理工大学 Multi-point oxygen supply device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203204B (en) * 2013-03-05 2016-08-03 中国核电工程有限公司 A kind of blender for nuclear power station pipeline leakage rate test
CN107107000A (en) * 2014-12-29 2017-08-29 贝塚若菜 Mix process for dispersing and device
KR102442879B1 (en) * 2016-03-11 2022-09-14 몰레에르, 인크 Composition containing nano-bubbles in a liquid carrier

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4713213B1 (en) * 1969-07-11 1972-04-21
JPS4733351A (en) * 1971-03-25 1972-11-17
JPS5091062A (en) * 1973-12-18 1975-07-21
JPS5535901A (en) * 1978-08-31 1980-03-13 Fuorando Enaatetsuku Eru Tei D Emulsifying method and its device
JPS56172324U (en) * 1980-05-24 1981-12-19
JPS6137298U (en) * 1984-08-11 1986-03-07 岩尾磁器工業株式会社 Air diffuser pipe clogging prevention device
JPH11138191A (en) * 1997-11-11 1999-05-25 Toshiba Corp Aeration tank aerator
JP2000213681A (en) * 1999-01-27 2000-08-02 Toshiba Corp Fluid mixing coupler

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4713213B1 (en) * 1969-07-11 1972-04-21
JPS4733351A (en) * 1971-03-25 1972-11-17
JPS5091062A (en) * 1973-12-18 1975-07-21
JPS5535901A (en) * 1978-08-31 1980-03-13 Fuorando Enaatetsuku Eru Tei D Emulsifying method and its device
JPS56172324U (en) * 1980-05-24 1981-12-19
JPS6137298U (en) * 1984-08-11 1986-03-07 岩尾磁器工業株式会社 Air diffuser pipe clogging prevention device
JPH11138191A (en) * 1997-11-11 1999-05-25 Toshiba Corp Aeration tank aerator
JP2000213681A (en) * 1999-01-27 2000-08-02 Toshiba Corp Fluid mixing coupler

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1590300A2 (en) * 2003-01-10 2005-11-02 Tersano Inc. Sanitization system and system components producing ozonated liquid
EP1615713A2 (en) * 2003-04-22 2006-01-18 Mykrolis Corporation Pleated construction for effecting gas transfer membrane
EP1615713A4 (en) * 2003-04-22 2006-11-02 Entegris Inc Pleated construction for effecting gas transfer membrane
US7387661B2 (en) 2003-04-22 2008-06-17 Entegris, Inc. Pleated construction for effecting gas transfer membrane
US7767168B2 (en) 2003-06-26 2010-08-03 Tersano Inc. Sanitization system and system components
JP2010162432A (en) * 2009-01-13 2010-07-29 Nitta Moore Co Mixing device
ITTO20110365A1 (en) * 2011-04-27 2012-10-28 Marta Jakob APPLIANCE FOR SANITIZING LIQUIDS, SPECIFICALLY STUDIED FOR SANITIZING LUBRICULAR EMULSIONS OF MACHINE TOOLS
CN105217710A (en) * 2015-10-26 2016-01-06 中国海洋石油总公司 A kind of can the micro bubble generation device of on-line cleaning
CN105217710B (en) * 2015-10-26 2017-10-03 中国海洋石油总公司 It is a kind of can on-line cleaning micro bubble generation device
CN112007479A (en) * 2020-08-24 2020-12-01 中国石油化工股份有限公司 Atmospheric tower top oil gas washing and dechlorinating device and method
CN112007479B (en) * 2020-08-24 2023-05-09 中国石油化工股份有限公司 Normal-pressure tower top oil gas washing and dechlorination device and method
CN115885915A (en) * 2022-11-24 2023-04-04 武汉理工大学 Multi-point oxygen supply device

Also Published As

Publication number Publication date
AU2001295957A1 (en) 2002-05-15
JP2005052683A (en) 2005-03-03
JPWO2002036252A1 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
KR100843970B1 (en) Apparatus of generating microbubble
US7472893B2 (en) Swirling type micro-bubble generating system
JP4725707B2 (en) Swivel type fine bubble generator and bubble generation method
US9243653B2 (en) Vortex generator with vortex chamber
WO2002036252A1 (en) Two-fluid mixing device
BRPI0520314B1 (en) ballast water treatment apparatus
AU775215B2 (en) Dissolution of gas
JPWO2010107077A1 (en) Microbubble generator, activated sludge aeration system, and ballast water sterilization system
JP2010155243A (en) Swirling type fine-bubble generating system
CN105923745B (en) Water oxygenation system
JP3647731B2 (en) Gas-liquid supply device
CN102688709A (en) High-speed cyclic gas-liquid mixed micro-nano foam generating device
FI96388C (en) Method and apparatus for dissolving the gas
JPH1066962A (en) Sewage treating device
NZ193051A (en) Free turbines in tube divide bubbles
JP5685753B2 (en) Gas-liquid mixed dissolution method and apparatus
EP3747534A1 (en) Device and method for generating nanobubbles
JP3077417U (en) Two-fluid mixing device
JP2574736B2 (en) Gas-liquid pressurized mixing equipment and waste liquid treatment equipment using the same
JPH0568996A (en) Generation of dissolved gas and sewage treatment apparatus using dissolved gas
JP2005169269A (en) Bubble generator
JP4099200B2 (en) Gas-liquid mixing device
CN215626894U (en) Spiral-flow type air dissolving device for air floatation
KR200255929Y1 (en) Air bubble generating apparatus
JP3235141B2 (en) Wastewater treatment equipment

Legal Events

Date Code Title Description
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002539054

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase