JP3077417U - Two-fluid mixing device - Google Patents

Two-fluid mixing device

Info

Publication number
JP3077417U
JP3077417U JP2000007826U JP2000007826U JP3077417U JP 3077417 U JP3077417 U JP 3077417U JP 2000007826 U JP2000007826 U JP 2000007826U JP 2000007826 U JP2000007826 U JP 2000007826U JP 3077417 U JP3077417 U JP 3077417U
Authority
JP
Japan
Prior art keywords
fluid
liquid
cylinder
gas
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000007826U
Other languages
Japanese (ja)
Inventor
藤村靖之
Original Assignee
株式会社発明工房
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社発明工房 filed Critical 株式会社発明工房
Priority to JP2000007826U priority Critical patent/JP3077417U/en
Application granted granted Critical
Publication of JP3077417U publication Critical patent/JP3077417U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】 (修正有) 【課題】セラミックの孔径が数ミクロン以下の場合で
も、気体圧力を数気圧以下に留めることができ、液体に
気体を大量に溶け込ませる装置を簡便安価に実現できる
こと。 【解決手段】表面張力を打ち破って気泡を液中に浮遊せ
しめる手段を、液体側の渦の力に依存せしめる。即ち、
気体側の圧力Pa が、液体側の静圧(=全圧−動圧)Ps
よりも高く設定されていれば、セラミック円筒11の
孔から出かかっている気泡は液体側に凸になるが、孔径
が小さい場合は、液体の表面張力と気体圧力がバランス
した状態以上には成長できないで留まる。セラミック円
筒の外側には、臨界レイノルズ数を超えるように、狭い
流路を速い速度で液体が流れるようにして、液体の流れ
が乱流となり、細かい渦が気泡の表面張力を打ち破り、
気体は細かい泡となって液体に巻き込まれて連続的に吐
出されるようにした。
(57) [Summary] (Modifications required) [Problem] Even if the pore diameter of ceramic is several microns or less, the gas pressure can be kept to several atmospheres or less, and a simple and inexpensive device for dissolving a large amount of gas in liquid can be realized. What you can do. A means for breaking a surface tension and causing bubbles to float in a liquid depends on the force of a vortex on the liquid side. That is,
The pressure Pa on the gas side is the static pressure (= total pressure-dynamic pressure) Ps on the liquid side.
If it is set higher than this, the bubbles coming out of the holes of the ceramic cylinder 11 will be convex toward the liquid side, but if the hole diameter is small, the bubbles will grow beyond the state where the surface tension of the liquid and the gas pressure are balanced. I can't stay. On the outside of the ceramic cylinder, the liquid flows in a narrow flow path at a high speed so as to exceed the critical Reynolds number, the flow of the liquid becomes turbulent, fine vortices break the surface tension of bubbles,
The gas was made into fine bubbles and was caught in the liquid so as to be continuously discharged.

Description

【考案の詳細な説明】[Detailed description of the invention]

【産業上の利用分野】本発明は、オゾンや酸素等の気体を、水等の液体に高 濃度で混合せしめる装置に係わるものであり、野菜等の殺菌・消毒、プールや浄 化槽等の殺菌・消毒、熱帯魚や養殖魚の飼育、河川や湖沼の浄化等に利用される 。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for mixing a gas such as ozone or oxygen with a liquid such as water at a high concentration. It is used for disinfection and disinfection, breeding of tropical fish and cultured fish, and purification of rivers and lakes.

【従来の技術】 多孔質のセラミック円筒を利用したオゾン水製造装置や、 水中への酸素供給装置は、古くから利用され広く普及している。これらの装置は 何れもセラミック円筒内部にオゾン等の気体を高い圧力で送り込み、セラミック の孔から気泡として、外部の水等の液体に送り出して溶け込ませるものに限られ ていた。気泡の径が小さい程、気体が液体に溶け込み易いことは周知の通りであ り、気泡の径を小さくするためにセラミックの孔径を小さくする努力が重ねられ て性能の向上がはかられた。然るに、これも周知の如く、表面張力を打ち破って 気泡を液中に浮遊せしめるための気体圧力は、セラミックの孔径を小さくすると 、概ね孔径の2乗に反比例して大きくしなければならないという問題があった。 例えば、空気と水の場合を例にとると、セラミックの孔径を10ミクロン以下に すると、気体圧力は数十気圧以上を要して、非現実的となる。このために、実用 上はセラミックの孔径が数十ミクロン以上のものが利用されるに留まり、気泡が 大きいために液体に十分に溶け込まないという不都合が有った。また、気泡同士 が結合して更に大きい気泡に成長して液体への溶解を妨げるという不都合も有っ た。この不都合を解決するために、大きい気泡を回転羽根車や超音波等で機械的 に分断する等の技術が考案されているが十分な満足は得られていない。また、気 体圧力を極限まで高くせざるを得ないために、装置が過大で高価であることも指 摘されている。2. Description of the Related Art An ozone water production apparatus using a porous ceramic cylinder and an oxygen supply apparatus for water have been used for a long time and have been widely used. Each of these devices was limited to a device in which a gas such as ozone was fed into a ceramic cylinder at a high pressure, and sent out as a bubble from a hole in the ceramic to an external liquid such as water to be dissolved therein. It is well known that the smaller the bubble diameter, the easier the gas is to dissolve in the liquid. Efforts have been made to reduce the pore size of the ceramic in order to reduce the bubble diameter, resulting in improved performance. However, as is well known, there is a problem that the gas pressure for breaking the surface tension and causing bubbles to float in the liquid must be increased in inverse proportion to the square of the pore diameter when the pore diameter of the ceramic is reduced. there were. For example, taking the case of air and water as an example, if the pore size of the ceramic is 10 μm or less, the gas pressure requires several tens of atmospheres or more, which is impractical. For this reason, in practice, only ceramics having a pore diameter of several tens of microns or more are used, and there is an inconvenience that they are not sufficiently dissolved in liquid due to large bubbles. In addition, there is also a disadvantage that the bubbles are bonded to each other and grow into larger bubbles, which hinders dissolution in a liquid. In order to solve this inconvenience, techniques have been devised such as mechanical separation of large air bubbles with a rotary impeller or ultrasonic waves, but no satisfactory results have been obtained. Also, it has been pointed out that the apparatus is excessively large and expensive because the gas pressure has to be extremely high.

【考案の実施例】 第3図は本考案の実施例である。オゾン製造装置13とポ ンプ14から成る気体供給装置がパイプ15でセラミック円筒16の端部17に 連結され、濃度5ppmのオゾンを約5kg/平方cmの圧力で、円筒16の内部 に供給する。外径8mmのセラミック円筒には、約1ミクロンの孔が開孔率約2 0%で無数に形成されている。セラミック円筒16の外側には、内径10mmの金 属製の円筒18が、円筒16と同心円上に装着されている。円筒18の端部には 液体入口19が設けられ、水槽20及びポンプ21から成る液体供給装置とパイ プで連結されている。円筒18の反対側の端部は気液混合体の吐出孔22として 開放されている。液体供給装置は円筒16と円筒19の隙間ロに、約5kg/平方c mの圧力で毎分約20リットルの水を供給する。隙間23を流れる水の平均流速 は約12m/secであり、臨界レイノルズ数を遥かに超えている。また、水側の 静圧は2kg/平方cm程度であり、気体側の圧力よりも十分に低い。吐出孔Xか らの気液混合体は約50リットルの水槽20に吐出されて循環する。この実施例 では、50リットルの水は約1分後に完全な不透明に白濁し、オゾン濃度は過飽 和に達した。なお、水側のポンプを停止して、気体側のポンプだけを作動させて も、気泡はまったく生じなかった。 第4図は別な実施例である。ポンプ24がパイプ25でセラミック円筒26の 端部27に連結されて、円筒26の内部に室内空気を約5kg/平方cmの圧力で 供給する。外径8mmのセラミック円筒には、約1ミクロンの孔28が開孔率約 20%で無数に形成されている。セラミック円筒26の外側には、内径10mmの 金属製の円筒28が、円筒26と同心円上に装着されている。円筒28の端部に は液体入口29が設けられ、水道蛇口30とパイプで連結されている。 円筒2 8の反対側の端部は気液混合体の吐出孔31として開放されている。水道の圧力 は約5kg/平方cm、水量は毎分約12リットルであった。隙間32を流れる水の 流速は約7m/secであり、臨界レイノルズ数を超えている。吐出孔31から の気液混合体は空の水槽33に吐出された。吐出された気液混合体は白濁してお り、酸素濃度は過飽和のレベルに達していた。 第5図は、気液混合能力をさらに高めるための実施例であり、セラミック円筒 と外側円筒のセットが3組、並列に連結されている。 また、第6図は、液体の渦をさらに強くするための実施例であり、外側円筒の内 面に螺旋状の細かい凹凸が形成されている。FIG. 3 shows an embodiment of the present invention. A gas supply device comprising an ozone producing device 13 and a pump 14 is connected to an end portion 17 of a ceramic cylinder 16 by a pipe 15 and supplies ozone having a concentration of 5 ppm into the cylinder 16 at a pressure of about 5 kg / cm 2. In a ceramic cylinder having an outer diameter of 8 mm, an infinite number of holes of about 1 micron are formed with a porosity of about 20%. Outside the ceramic cylinder 16, a metal cylinder 18 having an inner diameter of 10 mm is mounted concentrically with the cylinder 16. A liquid inlet 19 is provided at an end of the cylinder 18, and is connected to a liquid supply device including a water tank 20 and a pump 21 by a pipe. The opposite end of the cylinder 18 is opened as a discharge hole 22 for the gas-liquid mixture. The liquid supply device supplies about 20 liters of water per minute to the gap between the cylinder 16 and the cylinder 19 at a pressure of about 5 kg / cm 2. The average flow velocity of the water flowing through the gap 23 is about 12 m / sec, far exceeding the critical Reynolds number. The static pressure on the water side is about 2 kg / square cm, which is sufficiently lower than the pressure on the gas side. The gas-liquid mixture from the discharge hole X is discharged into a water tank 20 of about 50 liters and circulates. In this example, 50 liters of water became completely opaque after about 1 minute and the ozone concentration reached oversaturation. Even when the pump on the water side was stopped and only the pump on the gas side was operated, no bubbles were generated. FIG. 4 shows another embodiment. A pump 24 is connected to the end 27 of the ceramic cylinder 26 by a pipe 25 and supplies room air to the inside of the cylinder 26 at a pressure of about 5 kg / cm 2. In a ceramic cylinder having an outer diameter of 8 mm, an infinite number of holes 28 of about 1 micron are formed with a porosity of about 20%. Outside the ceramic cylinder 26, a metal cylinder 28 having an inner diameter of 10 mm is mounted concentrically with the cylinder 26. A liquid inlet 29 is provided at an end of the cylinder 28 and is connected to a water tap 30 by a pipe. The opposite end of the cylinder 28 is opened as a discharge hole 31 for the gas-liquid mixture. The water pressure was about 5 kg / cm 2 and the water flow was about 12 liters per minute. The flow velocity of the water flowing through the gap 32 is about 7 m / sec, which exceeds the critical Reynolds number. The gas-liquid mixture from the discharge hole 31 was discharged to an empty water tank 33. The discharged gas-liquid mixture was cloudy and the oxygen concentration had reached a level of supersaturation. FIG. 5 shows an embodiment for further enhancing the gas-liquid mixing ability, in which three sets of a ceramic cylinder and an outer cylinder are connected in parallel. FIG. 6 shows an embodiment for further strengthening the vortex of the liquid, in which fine spiral irregularities are formed on the inner surface of the outer cylinder.

【考案の効果】 気泡の径が小さいほど気体は液体に溶け込み易いが気体圧力を 高くしなければならないという、従来技術のジレンマを、液体側の渦の力を利用 することで解決して、例えば、セラミックの孔径が数ミクロン以下の場合でも、 気体圧力を数気圧以下と、桁違いに低くすることができた。この考案により、高 濃度オゾン水製造装置等、液体に気体を飛躍的に大量に溶け込ませる装置を簡便 安価に実現できることになった。[Effects of the Invention] The dilemma of the prior art in which the smaller the bubble diameter is, the easier the gas is to dissolve in the liquid but the gas pressure must be increased. However, even when the pore size of the ceramic was several microns or less, the gas pressure could be reduced by several orders of magnitude to several atmospheres or less. With this idea, it has become possible to easily and inexpensively realize a device that dramatically dissolves a large amount of gas into a liquid, such as a high-concentration ozone water production device.

【図面の簡単な説明】[Brief description of the drawings]

【第1図】本考案の基本構造を示す図である。 1微細孔 6筒 2流体A入口 7流体A供給装置 3セラミック製の筒 8流体B供給装置 4流体B入口 9流体A 5AB混合流体出口 10流体BFIG. 1 is a diagram showing a basic structure of the present invention. 1 Micropore 6 Tube 2 Fluid A Inlet 7 Fluid A Supply Device 3 Ceramic Tube 8 Fluid B Supply Device 4 Fluid B Inlet 9 Fluid A 5 AB Mixed Fluid Outlet 10 Fluid B

【第2図】本考案の基本原理を示す図である。 11セラミック製の筒の片側断面の一部 12外側の筒の片側断面の一部 Pa 気体の圧力 Ps 液体の静圧FIG. 2 is a diagram showing a basic principle of the present invention. 11 Part of one side cross section of ceramic cylinder 12 Part of one side cross section of outer cylinder Pa Gas pressure Ps Static pressure of liquid

【第3図】本考案の実施例を示す図である。 13オゾン製造装置 19水入口 14ポンプ 20水槽 15パイプ 21水ポンプ 16セラミック製円筒 22オゾン水吐出孔 17オゾン入口 23隙間(水の流路) 18金属製円筒FIG. 3 is a diagram showing an embodiment of the present invention. 13 Ozone production apparatus 19 Water inlet 14 Pump 20 Water tank 15 Pipe 21 Water pump 16 Ceramic cylinder 22 Ozone water discharge hole 17 Ozone inlet 23 Clearance (water flow path) 18 Metal cylinder

【第4図】本考案の別な実施例を示す図である。 24空気ポンプ 29水入口 25パイプ 30水道 26セラミック製円筒 31吐出孔 27空気入口 32隙間(水の流路) 28金属製円筒 33水槽FIG. 4 is a diagram showing another embodiment of the present invention. 24 air pump 29 water inlet 25 pipe 30 water supply 26 ceramic cylinder 31 discharge hole 27 air inlet 32 gap (flow path of water) 28 metal cylinder 33 water tank

【第5図】本考案の別な実施例を示す図である。 34セラミック製円筒 38セラミック製円筒
連結管 35外側円筒 39外側円筒連結管 36気体供給装置 37供給装置
FIG. 5 is a view showing another embodiment of the present invention. 34 ceramic cylinder 38 ceramic cylinder connecting pipe 35 outer cylinder 39 outer cylindrical connecting pipe 36 gas supply device 37 supply device

【第6図】本考案の別な実施例を示す図である。 40セラミック製円筒 41螺旋状突起を有する外側円筒FIG. 6 is a view showing another embodiment of the present invention. 40 ceramic cylinder 41 outer cylinder with spiral projection

Claims (6)

【実用新案登録請求の範囲】 第1図に示すように、[Claims for utility model registration] As shown in FIG. 【請求項1】 複数の微細な孔1と流体A入口2とを有
するセラミック製の筒3、該筒3と略同心円状に外側に
配置され、流体B入口4とAB混合流体出口5とを有する
筒6、流体A入口2にパイプ等で接続された流体A供給装
置7、流体B入口4にパイプ等で接続された流体B供給装
置8から成り、筒3内部の流体A9の圧力が、筒3と筒
6の隙間を流れる流体B10の静圧よりも高く、且つ該
流体B10のレイノルズ数が臨界レイノルズ数以上とな
るように調整されていることを特徴とする2流体混合装
置。
1. A ceramic cylinder 3 having a plurality of fine holes 1 and a fluid A inlet 2. The ceramic cylinder 3 is disposed substantially concentrically outside the cylinder 3 and has a fluid B inlet 4 and an AB mixed fluid outlet 5. A fluid A supply device 7 connected to the fluid A inlet 2 by a pipe or the like, and a fluid B supply device 8 connected to the fluid B inlet 4 by a pipe or the like. A two-fluid mixing apparatus characterized in that the fluid B10 is adjusted to be higher than the static pressure of the fluid B10 flowing through the gap between the cylinder 3 and the cylinder 6, and the Reynolds number of the fluid B10 is equal to or greater than the critical Reynolds number.
【請求項2】 流体Aの主成分がオゾンまたは酸素また
は空気であり、流体Bの主成分が水であることを特徴と
する、請求項1記載の2流体混合装置。
2. The two-fluid mixing device according to claim 1, wherein the main component of the fluid A is ozone, oxygen, or air, and the main component of the fluid B is water.
【請求項3】 筒3と筒6とが複数個並列に連結された
ことを特徴とする、請求項1記載の2流体混合装置。
3. The two-fluid mixing apparatus according to claim 1, wherein a plurality of cylinders 3 and 6 are connected in parallel.
【請求項4】 筒6の内側表面に螺旋状突起等の細かい
凹凸を付けたことを特徴とする、請求項1記載の2流体
混合装置。
4. The two-fluid mixing device according to claim 1, wherein fine irregularities such as spiral projections are provided on the inner surface of the cylinder.
【請求項5】 筒3または筒6の断面形状が、円形、楕
円形、四角形、星型の何れかであることを特徴とする、
請求項1記載の2流体混合装置。
5. The sectional shape of the cylinder 3 or 6 is any one of a circle, an ellipse, a square, and a star.
The two-fluid mixing device according to claim 1.
【請求項6】流体Aが水であり、流体Bが石油であること
を特徴とする、請求項1記載の2流体混合装置。
6. The two-fluid mixing device according to claim 1, wherein the fluid A is water and the fluid B is petroleum.
JP2000007826U 2000-11-01 2000-11-01 Two-fluid mixing device Expired - Fee Related JP3077417U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000007826U JP3077417U (en) 2000-11-01 2000-11-01 Two-fluid mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000007826U JP3077417U (en) 2000-11-01 2000-11-01 Two-fluid mixing device

Publications (1)

Publication Number Publication Date
JP3077417U true JP3077417U (en) 2001-05-18

Family

ID=43210433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000007826U Expired - Fee Related JP3077417U (en) 2000-11-01 2000-11-01 Two-fluid mixing device

Country Status (1)

Country Link
JP (1) JP3077417U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234275A (en) * 2009-03-31 2010-10-21 Mitsui Eng & Shipbuild Co Ltd Foam diameter controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234275A (en) * 2009-03-31 2010-10-21 Mitsui Eng & Shipbuild Co Ltd Foam diameter controller

Similar Documents

Publication Publication Date Title
CN105923799B (en) The micro-nano aeration system of water body
CN205803105U (en) The double shower nozzle self-excited pulse water jet aerator device of a kind of two-stage
JPWO2002036252A1 (en) Two-fluid mixing device
JP6104399B2 (en) Contaminated water purification system provided with fine bubble generating device and fine bubble generating device
WO2006137265A1 (en) Discharge flow passage of pressure dissolving device
CN102688709A (en) High-speed cyclic gas-liquid mixed micro-nano foam generating device
CN105923745B (en) Water oxygenation system
CN207632551U (en) A kind of Hydrodynamic cavitation equipment
JP2007000848A (en) Method for generating fine bubble
CN105688674A (en) Membrane treatment process device and processing method thereof
JP3077417U (en) Two-fluid mixing device
JP2010535627A5 (en)
JPH11333491A (en) Microbubble jet water purifying apparatus
CN112957936A (en) Novel micro-nano bubble takes place device
JPH1066962A (en) Sewage treating device
CN208727200U (en) Liqiud-gas mixing device
JP2554608B2 (en) Gas-liquid dissolution mixing method and gas-liquid dissolution mixing device
CN205727688U (en) Whirlpool aeration pipe is made for water oxygenation
CN109987726A (en) A kind of breaking micro-nano bubble method for generation of multistage rotary-cut and device
CN113680226A (en) Micro-nano bubble dissolved oxygen generator
CN207929021U (en) It is a kind of based on the device for largely generating nanometer microvesicle in water
CN205740483U (en) A kind of water oxygenation system
JP2005169269A (en) Bubble generator
JP2003056500A (en) Ejector
JP3235141B2 (en) Wastewater treatment equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees