WO2002027893A1 - Rotor of electric motor - Google Patents

Rotor of electric motor Download PDF

Info

Publication number
WO2002027893A1
WO2002027893A1 PCT/JP2001/007916 JP0107916W WO0227893A1 WO 2002027893 A1 WO2002027893 A1 WO 2002027893A1 JP 0107916 W JP0107916 W JP 0107916W WO 0227893 A1 WO0227893 A1 WO 0227893A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotor core
punched
core
width
Prior art date
Application number
PCT/JP2001/007916
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiko Futami
Yoshiaki Inaba
Kiyotaka Kawamura
Original Assignee
Toshiba Carrier Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corporation filed Critical Toshiba Carrier Corporation
Priority to AU2001286203A priority Critical patent/AU2001286203A1/en
Priority to KR10-2003-7004234A priority patent/KR20030034208A/en
Publication of WO2002027893A1 publication Critical patent/WO2002027893A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Definitions

  • the present invention relates to a rotor of an electric motor in which a permanent magnet is fitted into a rotor core.
  • One of the concrete means is to improve the compressor that forms the refrigeration cycle. Furthermore, a brushless DC motor (electric motor) driven by digital control is used as the drive source of the compression mechanism.
  • Figure 6 shows the cross-sectional shape of the rotor of a motor, which is a brushless DC motor, conventionally developed based on the above circumstances.
  • the rotor core b is formed by laminating a plurality of thin steel plates a, and a plurality of punched holes penetrated through the rotor core and provided adjacent to each other along the outer periphery of the rotor core. and a permanent magnet d fitted into these punched holes and fixed integrally to the rotor core b.
  • the rotor core b is provided with a shaft hole e at the center thereof.
  • the center iron core f is defined between the periphery of the shaft hole and the inner periphery of the permanent magnet d
  • the magnetic pole core h is defined between the outer periphery of each permanent magnet d and the peripheral surface of the rotor core b
  • the end of the punched hole c is defined between the portion between the edge of the rotor core and the peripheral surface of the rotor core b.
  • the bridge i connects the center core f and the magnetic pole h.
  • the permanent magnet d By forming the permanent magnet d in an inverted arc shape, the flow of magnetic flux is smooth, and the harmonics are higher than in the previous structure in which the rotor jacket is covered with a stainless steel can. Eddy current loss caused by wave magnetic flux has been reduced, and efficiency has been improved.
  • another conventional rotor has a straight permanent magnet d 1 fitted into a plurality of straight punched holes c 1 provided in a rotor core b 1, and a central shaft hole e.
  • flat holes g which are holes, are continuously provided at both ends of each punched hole c1 to prevent short-circuiting of magnetic flux.
  • the portion between the edge and the peripheral surface of the rotor core b1 is referred to as a bridge portion i1.
  • the bridge portions i and i1 connect the central cores f and f1 with the magnetic pole cores h and h1, and the centrifugal force of the magnetic pole cores and the permanent magnets d and dl during rotation is reduced. I'm taking it. Therefore, the above-mentioned bridge parts i and i1 must secure a required minimum predetermined width dimension.
  • a magnetic flux for short-circuiting between the adjacent magnetic pole core h1 passes through the bridge portion i1. In order to prevent such a magnetic flux short circuit, it is desirable that the width of the bridge portion i1 be narrow.
  • the width dimension of the bridge portion i1 is set to a minimum enough to withstand centrifugal force during rotation. Nevertheless, there is still a certain amount of leakage magnetic flux, and the effective magnetic flux has decreased, and the motor characteristics have deteriorated.
  • an electromagnetic force other than the centrifugal force acts on the magnetic pole core h1.
  • this electromagnetic force also has a tangential component that is a driving torque and a moment that attempts to rotate the magnetic pole core. And the amount changes.
  • the force acting on the bridge portion i 1 is not uniform on both sides of the magnetic pole core h 1, and is a repetitive load, which easily causes breakage.
  • the width dimension of the bridge portion i1 needs to be larger than when only the centrifugal force is considered, while the effective magnetic flux is further reduced.
  • the present invention relates to a rotor in which a permanent magnet is fitted into a punched hole provided in a rotor core, with an increase in a width dimension of a bridge portion between an edge of the punched hole and a peripheral surface of the rotor core.
  • An object of the present invention is to provide a motor rotor that suppresses such an increase in leakage magnetic flux and causes less deterioration in motor characteristics.
  • a rotor core in which a plurality of thin steel plates are laminated and integrated, and a rotor core penetrated by the rotor core and provided adjacent to each other along the outer periphery of the rotor core.
  • the width between the outer circumferential surface and the circumferential surface is set to be larger (W1 ⁇ W2) than the width W1 at the end in the anti-rotation direction and the width W2 at the end in the rotation direction.
  • the permanent magnet a rare earth magnet such as neodymium, iron or boron may be used.
  • the bridge portions on both sides of the magnetic pole core are set such that the width in the rotation direction on which a larger force acts is set to be larger than the width in the opposite rotation direction.
  • FIG. 1 shows an embodiment of the present invention. View.
  • FIG. 2 is a cross-sectional view of the rotor, showing the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a rotor according to a second embodiment of the present invention.
  • FIG. 4 is a partially enlarged view of the rotor of the embodiment.
  • FIG. 5 is a view for explaining the electromagnetic force acting on the magnetic pole core of the embodiment.
  • Figure 6 is a cross-sectional view of a conventional rotor.
  • FIG. 7 is a cross-sectional view of a further different conventional rotor.
  • Figure 8 is a partially enlarged view of the conventional model.
  • Figure 1 shows the completed motor rotor.
  • a large number of thin steel plates 1 are stacked, and end plates 2 are stacked on upper and lower end surfaces thereof, and are fixed to the thin steel plates 1 by rivets 3.
  • a shaft hole 4 for fitting the rotation shaft is provided in the center portion so as to penetrate the upper and lower end surfaces.
  • FIG. 2 is a cross-sectional view of the rotor, in which a rotor core 5 formed by laminating thin steel plates 1 is integrated with each other along the outer periphery of the rotor core and penetrated by the rotor core. It is composed of a plurality (four) of punching holes 6 provided adjacent to each other, and a permanent magnet 7 fitted into each of the punching holes and fixed integrally to the rotor core.
  • the rotor core 5 is provided with a shaft hole 4 at the center thereof.
  • a center core 8 between the inner shaft hole peripheral portion and the permanent magnet 7 circumference of, and c referred to between the KakuHisashi permanent magnet 7 outer periphery and the rotor core 5 circumferential surface magnetic pole core 9, punching holes 6 end
  • the bridge between the edge of the rotor core and the peripheral surface of the rotor core 5 is called a bridge portion 10.
  • the bridge 10 connects the center core 8 and the magnetic pole core 9.
  • the permanent magnet 7 is formed in an anti-arc shape together with the punched hole 6, and due to a manufacturing problem, a slight gap is formed between both end edges of the punched hole 6 and both end edges of the permanent magnet 7. Gap exists.
  • FIG. 3 shows a rotor according to another embodiment.
  • the basic configuration in which a plurality of straight punched holes 61 are provided in the rotor core 51 formed by laminating thin steel plates and the straight permanent magnets 71 are fitted therein remains unchanged.
  • the center core 81 between the circumference of the shaft hole 41 and the inner circumference of the permanent magnet and the pole core 91 between the outer circumference of each permanent magnet and the circumference of the rotor core are also the same.
  • Holes called flux barriers 20 are continuously provided at both ends of each punched hole 61 to prevent short-circuit of magnetic flux.
  • a portion between the edge of the flux snare 20 and the peripheral surface of the rotor core 91 is called a bridge portion 100.
  • the magnetic pole core 9 1 is assumed to be rotated in the counterclockwise direction, which is the direction of the arrow.
  • the width dimension W2 of the bridge portion 100a on the rotation direction is the width dimension W of the bridge portion 100b on the opposite rotation direction. It is formed larger than 1 (W 1 and W 2).
  • the short-circuited magnetic flux between the magnetic pole cores 91 passing through the bridge portion 100 also passes through the narrower bridge portion 100b on the non-rotational direction side. Even if the width of the bridge portion 100a on the side is large, the short-circuit magnetic flux does not increase so much.
  • the rotor provided with the flux snare 20 at the end of the punched hole 61 into which the permanent magnet 71 of the rotor core 51 is fitted is used as the flux barrier. Comparatively provided on the periphery Because of the large holes, the strength around the black spear is low.
  • the width between the edge of the punched hole and the peripheral surface of the rotor core 51 is defined as the width of the end in the anti-rotational direction, W
  • rotors using rare earth magnets such as neodymium, iron, boron, etc. for the permanent magnets 7, 71 have a large torque for their size, but the same setting conditions are used. Therefore, it is possible to prevent breakage of the bridge portions 100 and 100, thereby improving reliability, suppressing an increase in leakage magnetic flux due to an increase in the width of the bridge portion, and lessening deterioration of motor characteristics. You can get the rotor.
  • the width of the ridge on both sides of the magnetic pole core is set to be larger in the rotational direction where a larger force is applied than in the opposite direction.
  • an increase in the leakage flux due to an increase in the width of the bridge portion is suppressed, and the effect of reducing the deterioration of the motor characteristics is achieved.
  • the present invention is effective in the technical field of the rotor of an electric motor in suppressing the increase in the leakage magnetic flux due to the increase in the width of the bridge portion and preventing the deterioration of the electric motor characteristics. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

A rotor of an electric motor, comprising a rotor core (5) formed integrally by stacking a plurality of steel sheets (1), a plurality of punched-out holes (6) passed through the rotor core adjacently to each other and along the outer periphery of the rotor core (5), and permanent magnets (7) fitted into the punched-out holes and integrally fixed to the rotor core (5), wherein the width dimensions of bridge parts (10) formed between the end edge of the punched-out holes and the peripheral surface of the rotor core (5) are set so that the width dimension (W2) of the bridge part (10a) on the rotating direction side is larger than that (W1) of the bridge part (10b) on the anti-rotating direction side (W1 < W2) at the end parts of the punched-out holes adjacent to each other, whereby an increase in leaked magnetic flux due to an increase in the width dimension of the bridge part can be suppressed to prevent the characteristics of the motor from deteriorating.

Description

明 細 書  Specification
電動機の回転子 Motor rotor
技術分野 Technical field
本発明は、 回転子鉄心に永久磁石を嵌め込んだ電動機の回 転子に関する。 , 背景技術  The present invention relates to a rotor of an electric motor in which a permanent magnet is fitted into a rotor core. , Background technology
近年の 日本の家庭用消費電力量の伸びが著しいこ と は、 周 知の事実である。 なかでも、 エアコ ン (空気調和機) が占め る割合は無視できない状態にあ り 、 この増加率は家庭用消費 電力量の伸ぴを上回っている。  It is a well-known fact that Japan's household power consumption has grown remarkably in recent years. Above all, the proportion occupied by air conditioners (air conditioners) cannot be ignored, and this growth rate exceeds the increase in household power consumption.
こ のため、 電力需要と地球環境問題に対応したエア コ ンの 省エネルギ化が、 なお一層求められていて、 総合的に電気代 が従来の約半分で済むエアコ ンの開発が実現されつつある。  For this reason, there is a growing demand for energy saving of air conditioners that responds to power demand and global environmental issues, and the development of air conditioners that generally require about half the electricity cost is being realized. .
その具体的な手段の一つに、 冷凍サイ クルを構成する圧縮 機の改良がある。 さ らには、 圧縮機構部の駆動源と してデジ タル制御で駆動するブラシレス直流モータ (電動機) が採用 されている。  One of the concrete means is to improve the compressor that forms the refrigeration cycle. Furthermore, a brushless DC motor (electric motor) driven by digital control is used as the drive source of the compression mechanism.
図 6 は、 上記事情にも とづいて従来開発された、 ブラシレ ス直流モータである電動機の回転子の横断面形状を示す。  Figure 6 shows the cross-sectional shape of the rotor of a motor, which is a brushless DC motor, conventionally developed based on the above circumstances.
これは、 複数枚の薄板鋼板 a を積層 して一体化した回転子 鉄心 b と、 この回転子鉄心に貫通され、 かっこの回転子鉄心 の外周に沿って互いに隣接して設けられる複数の打ち抜き孔 c と 、 これら打ち抜き孔に嵌め込まれ回転子鉄心 b に一体に 固着される永久磁石 d とから構成される。  The rotor core b is formed by laminating a plurality of thin steel plates a, and a plurality of punched holes penetrated through the rotor core and provided adjacent to each other along the outer periphery of the rotor core. and a permanent magnet d fitted into these punched holes and fixed integrally to the rotor core b.
上記回転子鉄心 b は、 その中心部に軸孔 e が設けられ、 こ の軸孔周部と永久磁石 d 内周間を中心部鉄心 f と呼び、 各永 久磁石 d外周 と 回転子鉄心 b 周面と の間を磁極鉄心 h と呼ぶ, そして、 打ち抜き孔 c端部の端縁と回転子鉄心 b周面と の間 をブリ ッジ部 i と呼ぶ。 こ のブリ ッジ部 i は中心部鉄心 f と 磁極鉄心 h を連結する こ と と なる。 The rotor core b is provided with a shaft hole e at the center thereof. The center iron core f is defined between the periphery of the shaft hole and the inner periphery of the permanent magnet d, the magnetic pole core h is defined between the outer periphery of each permanent magnet d and the peripheral surface of the rotor core b, and the end of the punched hole c. The portion between the edge of the rotor core and the peripheral surface of the rotor core b is called a bridge portion i. The bridge i connects the center core f and the magnetic pole h.
上記永久磁石 d を逆円弧状にする こ と によ り 磁束の流れが 円滑にな り 、 これ以前の形態である回転子の外被.をステンレ ス缶容器で覆う構造と比較して、 高調波磁束によ り 生じる渦 電流損失が低減され、 効率改善を図れる よ う になった。  By forming the permanent magnet d in an inverted arc shape, the flow of magnetic flux is smooth, and the harmonics are higher than in the previous structure in which the rotor jacket is covered with a stainless steel can. Eddy current loss caused by wave magnetic flux has been reduced, and efficiency has been improved.
図 7 に示す、 従来の他の形態の回転子は、 回転子鉄心 b 1 に設けられる複数の直状の打ち抜き孔 c 1 に直状の永久磁石 d 1 が嵌め込まれ、 中心部の軸孔 e 1 周部と永久磁石 d 1 内 周間を中心部鉄心 f 1 、 各永久磁石 d 1 外周 と 回転子鉄心 b 1 周面と の間を磁極鉄心 h 1 と.呼ぶこ と も同一である。  As shown in FIG. 7, another conventional rotor has a straight permanent magnet d 1 fitted into a plurality of straight punched holes c 1 provided in a rotor core b 1, and a central shaft hole e. The same applies to the center iron core f1 between one circumference and the inner circumference of the permanent magnet d1, and the magnetic pole core h1 between the outer circumference of each permanent magnet d1 and the circumference of the rotor core b1.
こ こでは、 各打ち抜き孔 c 1 の両端部に孔部であるフ ラ ッ タ スバ リ ア g が連設されていて、 磁束の短絡を防止している このフ ラ ッ ク スパ リ ア g の端縁と回転子鉄心 b 1 周面と の間 を、 ブリ ッジ部 i 1 と呼ぶこ と になる。  In this example, flat holes g, which are holes, are continuously provided at both ends of each punched hole c1 to prevent short-circuiting of magnetic flux. The portion between the edge and the peripheral surface of the rotor core b1 is referred to as a bridge portion i1.
と ころで、 図 6及ぴ図 7 のいずれの構成の回転子であって も、 以下に述べる よ う な問題を有している。  However, the rotor having any of the configurations shown in FIGS. 6 and 7 has the following problems.
すなわち、 上記ブリ ッジ部 i , i 1 は中心部鉄心 f , f 1 と磁極鉄心 h , h 1 と を連結してお り 、 回転時の磁極鉄心及 び永久磁石 d , d l の遠心力を受け止めている。 したがって 上記プリ ッジ部 i , i 1 は必要最小限の所定の幅寸法を確保 しなければならない。 その一方で、 図 7 の回転子一部を図 8 に拡大して示すよ う に、 ブリ ッジ部 i 1 には隣接する磁極鉄心 h 1 と の間を短絡 する磁束が通っている。 この よ う な磁束短絡を防止するため には、 ブリ ッジ部 i 1 の幅寸法は狭い方が望ま しい。 That is, the bridge portions i and i1 connect the central cores f and f1 with the magnetic pole cores h and h1, and the centrifugal force of the magnetic pole cores and the permanent magnets d and dl during rotation is reduced. I'm taking it. Therefore, the above-mentioned bridge parts i and i1 must secure a required minimum predetermined width dimension. On the other hand, as shown in an enlarged view of a part of the rotor in FIG. 7 in FIG. 8, a magnetic flux for short-circuiting between the adjacent magnetic pole core h1 passes through the bridge portion i1. In order to prevent such a magnetic flux short circuit, it is desirable that the width of the bridge portion i1 be narrow.
そこで、 ブ リ ッジ部 i 1 の幅寸法は、 回転時に遠心力に耐 える程度の最小に設定している。 しかしなが ら、 それでもな お一定の漏れ磁束が存在して、 有効磁束が減少し、 電動機特 性が悪化している。  Therefore, the width dimension of the bridge portion i1 is set to a minimum enough to withstand centrifugal force during rotation. Nevertheless, there is still a certain amount of leakage magnetic flux, and the effective magnetic flux has decreased, and the motor characteristics have deteriorated.
また、 電動機の運転中には、 磁極鉄心 h 1 において遠心力 以外に電磁力が作用する。 この電磁力には、 法線方向以外に 駆動 トルク である接線方向成分や、 磁極鉄心を回転させよ う とするモーメ ン ト も存在してお り 、 さ らには回転子の回転に と もなって、 その量が変化する。  Also, during operation of the motor, an electromagnetic force other than the centrifugal force acts on the magnetic pole core h1. In addition to the normal direction, this electromagnetic force also has a tangential component that is a driving torque and a moment that attempts to rotate the magnetic pole core. And the amount changes.
このため、 ブリ ッジ部 i 1 に作用する力は磁極鉄心 h 1 の 両側で均等ではなく 、 また繰り 返し荷重と なるため破断に至 り 易い。 ブリ ッジ部 i 1 の幅寸法は遠心力のみに考慮した場 合に比べて大き く する必要があ り 、 その一方で、 さ らに有効 磁束が減少する。  For this reason, the force acting on the bridge portion i 1 is not uniform on both sides of the magnetic pole core h 1, and is a repetitive load, which easily causes breakage. The width dimension of the bridge portion i1 needs to be larger than when only the centrifugal force is considered, while the effective magnetic flux is further reduced.
以上の事情は、 図 6 に示す、 反円弧状の永久磁石 d を備え た回転子であっても全く 同様である。 そ して、 特に、 図 7及 び図 8 に示す、 打ち抜き孔 c 1 の両端部にフ ラ ッ ク スバ リ ア g を設けた場合は、 ブリ ッジ部 i 1 の周長が長く な り 強度が 低下するため、 こ の幅寸法をさ らに大き く する必要がある。  The situation described above is exactly the same for the rotor having the anti-arc permanent magnet d shown in FIG. In particular, when the flux barriers g are provided at both ends of the punched hole c1 shown in FIGS. 7 and 8, the circumference of the bridge portion i1 becomes longer. Since the strength is reduced, it is necessary to further increase the width dimension.
また、 いずれの構成でも、 永久磁石 d , d l に希土類磁石 を使用 した場合は、 回転子の大き さ に比べて大きな トルク を 発生し、 ブリ ッジ部 i , i 1 に大きな力が発生し易く 、 プリ ッジ部の幅寸法を大き く しなければならない。 In each case, when a rare earth magnet is used for the permanent magnets d and dl, a large torque is generated compared to the size of the rotor. Occurs, and a large force is easily generated in the bridge portions i and i1, and the width dimension of the bridge portion must be increased.
本発明は、 回転子鉄心に設けられる打ち抜き孔に永久磁石 を嵌め込んだ回転子において、 打ち抜き孔端縁と回転子鉄心 周面との間をなすプリ ッジ部の幅寸法の増大に と もな う漏れ 磁束の増大を抑制 し、 電動機特性の悪化が少ない電動機の回 転子を提供する こ と を 目的とする。  The present invention relates to a rotor in which a permanent magnet is fitted into a punched hole provided in a rotor core, with an increase in a width dimension of a bridge portion between an edge of the punched hole and a peripheral surface of the rotor core. An object of the present invention is to provide a motor rotor that suppresses such an increase in leakage magnetic flux and causes less deterioration in motor characteristics.
発明の開示 Disclosure of the invention
本発明の電動機の回転子では、 複数枚の薄板鋼板を積層 し て一体'化した回転子鉄心と 、 この回転子鉄心に貫通され、 か つ回転子鉄心の外周に沿って互いに隣接して設けられる複数 の打ち抜き孔と 、 これら'打ち抜き孔に嵌め込まれ回転子鉄心 に固着される永久磁石と を具備 した電動機の回転子において、 打ち抜き孔相互の隣接する端部で打ち抜き孔端縁と回転子鉄 心周面と の間の幅寸法を、 反回転方向側端部の幅寸法 W 1 に 対して、 回転方向側端部の幅寸法 W 2 を大き く ( W 1 < W 2 ) 設定した。 永久磁石は、 ネオジゥム、 鉄、 ボロ ン等の希 土類磁石を用いても良い。  In the rotor of the electric motor of the present invention, a rotor core in which a plurality of thin steel plates are laminated and integrated, and a rotor core penetrated by the rotor core and provided adjacent to each other along the outer periphery of the rotor core. A plurality of perforated holes, and a permanent magnet fitted into the perforated holes and fixed to a rotor core, wherein the perforated hole edge and the rotor iron are formed at adjacent ends of the perforated holes. The width between the outer circumferential surface and the circumferential surface is set to be larger (W1 <W2) than the width W1 at the end in the anti-rotation direction and the width W2 at the end in the rotation direction. As the permanent magnet, a rare earth magnet such as neodymium, iron or boron may be used.
本発明によれば、 磁極鉄心両側のブリ ッジ部を、 よ り 大き な力が作用する回転方向側の幅寸法を反回転方向側の幅寸法 よ り 大き く 設定したこ と によ り 、 ブリ ッジ部の幅寸法の増大 によ る漏れ磁束の増大を抑制でき、 電動機特性が悪化する こ とが少ない。  According to the present invention, the bridge portions on both sides of the magnetic pole core are set such that the width in the rotation direction on which a larger force acts is set to be larger than the width in the opposite rotation direction. An increase in leakage flux due to an increase in the width of the bridge can be suppressed, and the motor characteristics are less likely to deteriorate.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 は本発明の実施の形態を示す、 電動機の回転子の外 観図。 FIG. 1 shows an embodiment of the present invention. View.
図 2 は本発明の第 1 の実施の形態を示す、 回転子の横断 面図。  FIG. 2 is a cross-sectional view of the rotor, showing the first embodiment of the present invention.
図 3 は本発明の第 2 の実施の形態の、 回転子の横断面図 図 4 は同実施の形態の、 回転子の部分的な拡大図。  FIG. 3 is a cross-sectional view of a rotor according to a second embodiment of the present invention. FIG. 4 is a partially enlarged view of the rotor of the embodiment.
図 5 は同実施の形態の、 磁極鉄心に作用する電磁力を説 明する図。  FIG. 5 is a view for explaining the electromagnetic force acting on the magnetic pole core of the embodiment.
図 6 は従来の、 回転子の横断面図。  Figure 6 is a cross-sectional view of a conventional rotor.
図 7 はさ らに異なる従来の、 回転子の横断面図。  FIG. 7 is a cross-sectional view of a further different conventional rotor.
図 8 は同従来の、 一部を拡大した図。 発明を実施するための最良の形態  Figure 8 is a partially enlarged view of the conventional model. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を図面にも とづいて説明する。 図 1 は、 完成された電動機の回転子を示す。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. Figure 1 shows the completed motor rotor.
上記回転子は、 多数枚の薄板鋼板 1 を積層 していて、 こ の 上下端面には端板 2 が重ねられ、 薄板鋼板 1 と一体に リ ベッ ト 3 によ る固着がなされている。 中心部には、 回転軸を嵌め 込むための軸孔 4 が上下端面に貫通して設け られている。  In the rotor, a large number of thin steel plates 1 are stacked, and end plates 2 are stacked on upper and lower end surfaces thereof, and are fixed to the thin steel plates 1 by rivets 3. A shaft hole 4 for fitting the rotation shaft is provided in the center portion so as to penetrate the upper and lower end surfaces.
図 2 は、 回転子の横断面図であ り 、 薄板鋼板 1 を積層 して 一体化した回転子鉄心 5 と、 この回転子鉄心に貫通され、 か つこの回転子鉄心の外周に沿って互いに隣接して設け られる 複数 ( 4つ) の打ち抜き孔 6 と、 これら打ち抜き孔にそれぞ れ嵌め込まれ回転子鉄心に一体に固着される永久磁石 7 と か ら構成される。  FIG. 2 is a cross-sectional view of the rotor, in which a rotor core 5 formed by laminating thin steel plates 1 is integrated with each other along the outer periphery of the rotor core and penetrated by the rotor core. It is composed of a plurality (four) of punching holes 6 provided adjacent to each other, and a permanent magnet 7 fitted into each of the punching holes and fixed integrally to the rotor core.
上記回転子鉄心 5 は、 その中心部に軸孔 4 が設けられ、 こ の軸孔周部と永久磁石 7 内周間を中心部鉄心 8 と呼び、 各永 久磁石 7外周 と 回転子鉄心 5周面と の間を磁極鉄心 9 と呼ぶ c そして、 打ち抜き孔 6端部の端縁と回転子鉄心 5周面と の間 をブリ ッジ部 1 0 と呼ぶ。 このブリ ッジ部 1 0 は、 中心部鉄 心 8 と磁極鉄心 9 を連結する。 The rotor core 5 is provided with a shaft hole 4 at the center thereof. Referred to as a center core 8 between the inner shaft hole peripheral portion and the permanent magnet 7 circumference of, and c referred to between the KakuHisashi permanent magnet 7 outer periphery and the rotor core 5 circumferential surface magnetic pole core 9, punching holes 6 end The bridge between the edge of the rotor core and the peripheral surface of the rotor core 5 is called a bridge portion 10. The bridge 10 connects the center core 8 and the magnetic pole core 9.
上記打ち抜き孔 6 と と もに永久磁石 7 は反円弧状に形成さ れていて、 製作上の問題から、 打ち抜き孔 6 の両端部端縁と 永久磁石 7 両端部端縁との間に、 若干の隙間が存在する。  The permanent magnet 7 is formed in an anti-arc shape together with the punched hole 6, and due to a manufacturing problem, a slight gap is formed between both end edges of the punched hole 6 and both end edges of the permanent magnet 7. Gap exists.
そ して、 回転子が矢印方向である反時計回 り 方向に回転す る こ と を前提に、 磁極鉄心 9 の両側のプリ ッジ部 1 0 a , 1 0 b の う ち、 回転方向側のプリ ッジ部 1 0 a の幅寸法 W '2 が 反回転方向のプ リ ッジ部 1 0 b の幅寸法 W 1 よ り も大き く  Then, assuming that the rotor rotates in the counterclockwise direction, which is the direction of the arrow, the rotation direction side of the prism portions 10a and 10b on both sides of the magnetic pole core 9 is assumed. The width W'2 of the bridge 10a is larger than the width W1 of the bridge 10b in the anti-rotation direction.
( W 1 < W 2 ) 形成されている。  (W 1 <W 2) are formed.
図 3 に、 他の実施の形態の回転子を示す。  FIG. 3 shows a rotor according to another embodiment.
こ こでも、 薄板鋼板を積層 してなる回転子鉄心 5 1 に、 複 数の直状の打ち抜き孔 6 1 が設けられ直状の永久磁石 7 1 が 嵌め込まれる基本構成が変わ り がなく 、 中心部の軸孔 4 1 周 部と永久磁石内周間を中心部鉄心 8 1 、 各永久磁石外周 と 回 転子鉄心周面と の間を磁極鉄心 9 1 と呼ぶこ と も同一である , なお、 各打ち抜き孔 6 1 の両端部にフ ラ ッ ク スバ リ ア 2 0 と呼ばれる孔部が連設されていて、 磁束の短絡を防止する。 このフ ラ ッ ク スノ リ ア 2 0 の端縁と回転子鉄心 9 1 周面と の 間を、 プリ ッジ部 1 0 0 と呼ぶ。  In this case as well, the basic configuration in which a plurality of straight punched holes 61 are provided in the rotor core 51 formed by laminating thin steel plates and the straight permanent magnets 71 are fitted therein remains unchanged. The center core 81 between the circumference of the shaft hole 41 and the inner circumference of the permanent magnet and the pole core 91 between the outer circumference of each permanent magnet and the circumference of the rotor core are also the same. Holes called flux barriers 20 are continuously provided at both ends of each punched hole 61 to prevent short-circuit of magnetic flux. A portion between the edge of the flux snare 20 and the peripheral surface of the rotor core 91 is called a bridge portion 100.
そ して、 図 4 に拡大して示すよ う に、 回転子が矢印方向で ある反時計回 り 方向に回転する こ と を前提に、 磁極鉄心 9 1 の両側のプリ ッジ部 1 0 0 の う ち、 回転方向側のブリ ッジ部 1 0 0 a の幅寸法 W 2 が、 反回転方向側のブリ ッジ部 1 0 0 b の幅寸法 W 1 よ り も大き く (W 1 く W 2 ) 形成されている。 つぎに、 図 3及び図 4で説明 した、 直状の永久磁石 7 1 を 備えた回転子の構成をも と に作用的な説明をなすが、 基本的 には、 図 2 で説明 した反円弧状の永久磁石 7 を用いた回転子 でも全く 同様である。 As shown in the enlarged view of FIG. 4, the magnetic pole core 9 1 is assumed to be rotated in the counterclockwise direction, which is the direction of the arrow. Of the bridge portions 100 on both sides, the width dimension W2 of the bridge portion 100a on the rotation direction is the width dimension W of the bridge portion 100b on the opposite rotation direction. It is formed larger than 1 (W 1 and W 2). Next, an operational description will be given based on the configuration of the rotor having the straight permanent magnets 71 described with reference to FIGS. 3 and 4, but basically, the anti-circle described with reference to FIG. The same is true for a rotor using an arc-shaped permanent magnet 7.
図 5 に概略的に示すよ う に、 回転子と して反時計周 り 方向 に回転する こ と を前提と して、 磁極鉄心 9 1 には遠心力のほ かに電磁力も加わる。 特に、 ブリ ッジ部 1 0 0 に集中 して応 力が加わっているが、 反回転方向側のプ リ ッジ部 1 0 0 b よ り も回転方向側のブリ ッジ部 1 0 0 a に、 よ り 大きな力が加 わる。  As schematically shown in FIG. 5, assuming that the rotor rotates counterclockwise as a rotor, an electromagnetic force is applied to the magnetic pole core 91 in addition to the centrifugal force. In particular, stress is concentrated on the bridge portion 100, but the bridge portion 100a on the rotation direction side is higher than the bridge portion 100b on the opposite rotation direction side. And more force is applied.
その一方で、 ブリ ッジ部 1 0 0 を通過する磁極鉄心 9 1 間 の短絡磁束は、 反回転方向側の幅寸法の狭いプリ ッジ部 1 0 0 b にも通っていく ため、 回転方向側のブリ ッジ部 1 0 0 a の幅寸法が大き く ても、 短絡磁束はさほど増加しない。  On the other hand, the short-circuited magnetic flux between the magnetic pole cores 91 passing through the bridge portion 100 also passes through the narrower bridge portion 100b on the non-rotational direction side. Even if the width of the bridge portion 100a on the side is large, the short-circuit magnetic flux does not increase so much.
したがって、 このよ う な回転方向側のプリ ッジ部 1 0 0 a の幅を反回転方向側のプリ ッジ部 1 0 0 b よ り 大き く した電 動機の回転子を構成する こ と によ り 、 電動機特性を大幅に低 下させる こ と なく 、 運転中の、 特に、 ブリ ッジ部 1 0 0 a , 1 0 0 b の信頼性が高め られる。  Therefore, it is possible to construct a rotor of an electric motor in which the width of the rotating portion 100a is larger than the width of the rotating portion 100b. As a result, the reliability of the bridge portions 100a and 100b during operation can be increased without significantly reducing the motor characteristics.
そ して、 回転子鉄心 5 1 の永久磁石 7 1 が嵌め込まれる打 ち抜き孔 6 1 端部にフラ ッ ク スノ リ ア 2 0 を設けた回転子は このフラ ッ ク スバリ ァが回転子鉄心周部に設けられる比較的 大きな孔部である と ころから、 フ ラ ッ ク スパリ ア周辺の強度 が低く なつて しま う。 Then, the rotor provided with the flux snare 20 at the end of the punched hole 61 into which the permanent magnet 71 of the rotor core 51 is fitted is used as the flux barrier. Comparatively provided on the periphery Because of the large holes, the strength around the black spear is low.
しかしなが ら、 上記打ち抜き孔 6 1 相互の隣接する端部で、 打ち抜き孔端縁と回転子鉄心 5 1 周面と の間の幅寸法を、 反 回転方向側端部の幅寸,法 W 1 に対して、 回転方向側端部の幅 寸法 W 2 を大き く (W 1 < W 2 ) 設定する こ と によ り 、 強度 が保証され、 信頼性が向上する。  However, at the adjacent ends of the punched holes 6 1, the width between the edge of the punched hole and the peripheral surface of the rotor core 51 is defined as the width of the end in the anti-rotational direction, W By setting the width dimension W 2 of the end in the rotation direction to be larger (W 1 <W 2) than in 1, the strength is assured and the reliability is improved.
また、 図 2 に示す、 反円弧状に形成される打ち抜き孔 6 と 、 同形状の永久磁石 7 を備えた回転子においても、 同様の設定 条件をなすこ と によ り 、 全く 同一の効果が得られる。  The same effect can be obtained in the rotor having the anti-arc-shaped punched hole 6 and the permanent magnet 7 having the same shape as shown in FIG. 2 by setting the same setting conditions. can get.
さ らに、 永久磁石 7 , 7 1 にネオジゥム、 鉄、 ボロ ン等の 希土類磁石を用いた回転子は、 大き さの割 り に トルクが大き いが、 同様の設定条件をなすこ と によ り 、 ブリ ッジ部 1 0 , 1 0 0 の破断を防止できて信頼性が向上し、 プリ ッジ部幅寸 法の増大によ る漏れ磁束の増大を抑制 し、 電動機特性の悪化 の少ない回転子を得られる。  Furthermore, rotors using rare earth magnets such as neodymium, iron, boron, etc. for the permanent magnets 7, 71 have a large torque for their size, but the same setting conditions are used. Therefore, it is possible to prevent breakage of the bridge portions 100 and 100, thereby improving reliability, suppressing an increase in leakage magnetic flux due to an increase in the width of the bridge portion, and lessening deterioration of motor characteristics. You can get the rotor.
以上説明 したよ う に本発明によれば、 磁極鉄心両側のプリ ッジ部は、 よ り 大きな力が作用する回転方向側の幅寸法を反 回転方向側の幅寸法よ り 大き く 設定したから、 ブリ ッジ部の 幅寸法の増大による漏れ磁束の増大を抑制 し、 電動機特性の 悪化が少なく てすむとい う効果を奏する。  As described above, according to the present invention, the width of the ridge on both sides of the magnetic pole core is set to be larger in the rotational direction where a larger force is applied than in the opposite direction. In addition, an increase in the leakage flux due to an increase in the width of the bridge portion is suppressed, and the effect of reducing the deterioration of the motor characteristics is achieved.
産業上の利用可能性 Industrial applicability
以上説明 したよ う にこ の発明は、 プリ ッジ部の幅寸法の増 大によ る漏れ磁束の増大を抑制 し、 電動機特性の悪化を防止 する上で電動機の回転子の技術分野に有効である。  As described above, the present invention is effective in the technical field of the rotor of an electric motor in suppressing the increase in the leakage magnetic flux due to the increase in the width of the bridge portion and preventing the deterioration of the electric motor characteristics. It is.

Claims

請 求 の 範 囲 The scope of the claims
1 . 複数枚の薄板鋼板を積層 して一体化した回転子鉄心と、 この回転子鉄心に貫通され、 かつ回転子鉄心の外周に沿って 互いに隣接して設け られも複数の打ち抜き孔と 、 これら打ち 抜き孔に嵌め込まれ回転子鉄心に固着される永久磁石と を具 備した電動機の回転子において、 1. A rotor core formed by laminating and integrating a plurality of thin steel plates, and a plurality of punched holes penetrated by the rotor core and provided adjacent to each other along the outer periphery of the rotor core. And a permanent magnet fitted into the punched hole and fixed to the rotor core.
上記打ち抜き孔相互の隣接する端部で、 打ち抜き孔端縁と 回転子鉄心周面と の間の幅寸法を、 反回転方向側端部の幅寸 法 W 1 に対して、 回転方向側端部の幅寸法 W 2 を大き く ( W 1 < W 2 ) 設定したこ と を特徴とする電動機の回転子。  At the adjacent ends of the above-mentioned punched holes, the width dimension between the punched hole edge and the rotor core peripheral surface is set to the rotational direction end with respect to the width dimension W1 of the anti-rotational side end A motor rotor characterized in that the width W2 of the motor is set large (W1 <W2).
2 . 上記永久磁石は、 ネオジゥム、 鉄、 ボロ ン等の希土類磁 石が用い られる こ と を特徴とする請求項 1 記載の電動機の回 転子。 2. The motor rotor according to claim 1, wherein the permanent magnet is made of a rare earth magnet such as neodymium, iron, boron or the like.
PCT/JP2001/007916 2000-09-25 2001-09-12 Rotor of electric motor WO2002027893A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2001286203A AU2001286203A1 (en) 2000-09-25 2001-09-12 Rotor of electric motor
KR10-2003-7004234A KR20030034208A (en) 2000-09-25 2001-09-12 Rotor of electric motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000291076A JP2002101586A (en) 2000-09-25 2000-09-25 Rotor of electric motor
JP2000-291076 2000-09-25

Publications (1)

Publication Number Publication Date
WO2002027893A1 true WO2002027893A1 (en) 2002-04-04

Family

ID=18774210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007916 WO2002027893A1 (en) 2000-09-25 2001-09-12 Rotor of electric motor

Country Status (5)

Country Link
JP (1) JP2002101586A (en)
KR (1) KR20030034208A (en)
CN (1) CN1466805A (en)
AU (1) AU2001286203A1 (en)
WO (1) WO2002027893A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004021544A2 (en) * 2002-08-28 2004-03-11 Emerson Electric Co. Interior permanent magnet machine with reduced magnet chattering
WO2004021551A3 (en) * 2002-08-28 2004-07-01 Emerson Electric Co Permanent magnet excited machine
US6946766B2 (en) 2002-08-28 2005-09-20 Emerson Electric Co. Permanent magnet machine
US20150137649A1 (en) * 2013-11-20 2015-05-21 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Wuerzburg Method for producing a rotor and electric machine having a rotor
EP2696472A3 (en) * 2012-08-10 2017-01-04 Aisin Seiki Kabushiki Kaisha Rotor core and motor provided with that rotor core

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10316831A1 (en) 2002-04-15 2003-11-27 Denso Corp Permanent magnet rotor for rotary electric machine with inner rotor has all permanent magnets magnetized in such a way that direction of magnetization is same looking in radial direction
JP2006014520A (en) * 2004-06-28 2006-01-12 Toshiba Corp External rotation type rotor of dynamo-electric machine
JP5114963B2 (en) * 2007-02-13 2013-01-09 ダイキン工業株式会社 Permanent magnet embedded rotor
JP4719183B2 (en) * 2007-05-31 2011-07-06 トヨタ自動車株式会社 Rotating electric machine
JP2010158085A (en) * 2008-12-26 2010-07-15 Mitsubishi Electric Corp Rotor of permanent-magnet motor
JP5260563B2 (en) * 2010-01-07 2013-08-14 株式会社日立製作所 Permanent magnet generator or motor
CN101964556B (en) * 2010-09-13 2013-05-01 精进电动科技(北京)有限公司 Rotor device of starting and power-generating integrated motor and rotor working system
KR102483226B1 (en) 2014-06-27 2023-01-03 삼성전자주식회사 Motor, rotor of motor
WO2016021651A1 (en) * 2014-08-06 2016-02-11 日本発條株式会社 Motor
CN106300729B (en) * 2015-05-29 2019-11-12 珠海格力电器股份有限公司 Permanent magnet motor rotor and permanent magnet synchronous motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271151A (en) * 1996-03-29 1997-10-14 Hitachi Ltd Permanent-magnet rotating electric machine and motor car using rotating electric thereof
JPH1127882A (en) * 1997-07-02 1999-01-29 Sanyo Electric Co Ltd Rotor of motor
JP2000184640A (en) * 1998-12-09 2000-06-30 Aichi Emerson Electric Co Ltd Permanent-magnet rotor
JP2000228850A (en) * 1999-02-05 2000-08-15 Matsushita Electric Ind Co Ltd Manufacture of rare-earth resin magnet-buried rotor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271151A (en) * 1996-03-29 1997-10-14 Hitachi Ltd Permanent-magnet rotating electric machine and motor car using rotating electric thereof
JPH1127882A (en) * 1997-07-02 1999-01-29 Sanyo Electric Co Ltd Rotor of motor
JP2000184640A (en) * 1998-12-09 2000-06-30 Aichi Emerson Electric Co Ltd Permanent-magnet rotor
JP2000228850A (en) * 1999-02-05 2000-08-15 Matsushita Electric Ind Co Ltd Manufacture of rare-earth resin magnet-buried rotor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004021544A2 (en) * 2002-08-28 2004-03-11 Emerson Electric Co. Interior permanent magnet machine with reduced magnet chattering
WO2004021544A3 (en) * 2002-08-28 2004-05-06 Emerson Electric Co Interior permanent magnet machine with reduced magnet chattering
WO2004021551A3 (en) * 2002-08-28 2004-07-01 Emerson Electric Co Permanent magnet excited machine
US6946766B2 (en) 2002-08-28 2005-09-20 Emerson Electric Co. Permanent magnet machine
EP2696472A3 (en) * 2012-08-10 2017-01-04 Aisin Seiki Kabushiki Kaisha Rotor core and motor provided with that rotor core
US20150137649A1 (en) * 2013-11-20 2015-05-21 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Wuerzburg Method for producing a rotor and electric machine having a rotor
US9673670B2 (en) * 2013-11-20 2017-06-06 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Wuerzburg Method for producing a rotor and electric machine having a rotor

Also Published As

Publication number Publication date
JP2002101586A (en) 2002-04-05
CN1466805A (en) 2004-01-07
KR20030034208A (en) 2003-05-01
AU2001286203A1 (en) 2002-04-08

Similar Documents

Publication Publication Date Title
US11277045B2 (en) Radially embedded permanent magnet rotor and methods thereof
JP4672083B2 (en) Induction motor rotor, induction motor, compressor, blower and air conditioner
KR100609331B1 (en) Permanent Magnet Motor
EP1624553B1 (en) Permanent magnet synchronous motor
JP4591085B2 (en) Permanent magnet type motor
JP5279777B2 (en) Synchronous motor rotor
EP2761725B1 (en) Permanent magnet electrical machine
WO2002027893A1 (en) Rotor of electric motor
JP2002084722A (en) Permanent magnet motor
JP2010207080A (en) Electric machinery
JP3832530B2 (en) Permanent magnet motor
JP4084889B2 (en) Permanent magnet motor rotor
CN109104014B (en) Four-phase double-winding vernier motor
CN208299561U (en) rotor, motor and compressor
JP3818341B2 (en) Permanent magnet motor
JP4080273B2 (en) Permanent magnet embedded motor
CN108832791B (en) Magnetic claw motor with high power density, high efficiency and high reliability
JP2000333390A (en) Permanent magnet motor
US20030020355A1 (en) Pole plate structure for a motor stator
CN208675081U (en) A kind of magnetic pawl motor of high power density high efficiency high reliability
JP4696642B2 (en) Motor, blower, compressor and air conditioner
CN110620452A (en) Rotor, motor and compressor
JPH1198730A (en) Permanent magnet motor
JP7224373B2 (en) rotors, motors and compressors
JP5679695B2 (en) Permanent magnet rotating electric machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020037004234

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018162223

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037004234

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
WWR Wipo information: refused in national office

Ref document number: 1020037004234

Country of ref document: KR