JP2010158085A - Rotor of permanent-magnet motor - Google Patents

Rotor of permanent-magnet motor Download PDF

Info

Publication number
JP2010158085A
JP2010158085A JP2008333391A JP2008333391A JP2010158085A JP 2010158085 A JP2010158085 A JP 2010158085A JP 2008333391 A JP2008333391 A JP 2008333391A JP 2008333391 A JP2008333391 A JP 2008333391A JP 2010158085 A JP2010158085 A JP 2010158085A
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
outer peripheral
rotor core
insertion hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008333391A
Other languages
Japanese (ja)
Inventor
Kazuhiko Baba
和彦 馬場
Isato Yoshino
勇人 吉野
Atsushi Matsuoka
篤 松岡
Koji Yabe
浩二 矢部
Masahiro Nigo
昌弘 仁吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008333391A priority Critical patent/JP2010158085A/en
Publication of JP2010158085A publication Critical patent/JP2010158085A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor of a permanent-magnet motor wherein, even when a rotor core plate (magnetic steel sheet) which is relatively large in diameter is press-worked, warpage in the rotor core plate can be prevented. <P>SOLUTION: The rotor of the permanent-magnet motor includes a rotor core 20 formed by laminating multiple pieces of a magnetic steel sheet punched out in a predetermined shape; multiple magnet insertion holes 22, formed along the outer circumferential portion of the rotor core 20; two leakage flux suppression holes 23a, 23b positioned at both ends of each magnet insertion hole 22 in the circumferential direction; a permanent magnet 21, inserted between the two leakage flux suppression holes 23a, 23b inside each magnet insertion hole 22; and two outer circumferential thinned portions 25a, 25b, formed between the outer circumferential portion of the rotor core 20 and each two leakage flux suppressing holes 23a, 23b. The radial dimension of one of each two outer circumferential thinned portions 25a, 25b is set to exceed twice the radial dimension of the other. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、圧縮機やファンモータなどに用いられる永久磁石型モータの回転子に関する。   The present invention relates to a rotor of a permanent magnet type motor used for a compressor, a fan motor or the like.

従来、ステータコアと、同ステータコア内に配置されたロータコア(磁石埋込型界磁鉄心)とを含み、ロータコアには1極当たり1つの永久磁石が同ロータコアの円周方向にその極数に応じて等間隔に埋設されている永久磁石型モータにおいて、各永久磁石は、ロータコアの軸線と直交する垂直断面がバスタブ形状であり、各永久磁石の両端部には磁束の漏洩、短絡磁束防止用のフラックスバリアが設けられることにより、リラクタンストルクとマグネットトルクの向上を図った永久磁石型モータが提案されている(例えば、特許文献1参照)。
特開2000−228836号公報
2. Description of the Related Art Conventionally, a stator core and a rotor core (magnet embedded field core) disposed in the stator core are included, and one permanent magnet per pole in the rotor core according to the number of poles in the circumferential direction of the rotor core In permanent magnet type motors embedded at equal intervals, each permanent magnet has a bathtub-shaped vertical cross section perpendicular to the axis of the rotor core, and flux for preventing magnetic flux leakage and short-circuit magnetic flux at both ends of each permanent magnet There has been proposed a permanent magnet type motor in which reluctance torque and magnet torque are improved by providing a barrier (see, for example, Patent Document 1).
JP 2000-228836 A

しかしながら、上記特許文献1に記載された永久磁石型モータは、磁石両端部に軸対称のフラックスバリアを設けているため、比較的大きな径の回転子(例えば、直径100mm程度)を構成する回転子鉄心板(電磁鋼板)をプレス加工した場合、回転子鉄心板が反り返るという課題があった。   However, since the permanent magnet type motor described in Patent Document 1 is provided with axially symmetrical flux barriers at both ends of the magnet, the rotor constituting a relatively large diameter rotor (for example, a diameter of about 100 mm). When an iron core plate (magnetic steel plate) is pressed, there is a problem that the rotor core plate is warped.

この発明は、上記のような課題を解決するためになされたもので、比較的大きな径の回転子鉄心板(電磁鋼板)をプレス加工した場合でも、回転子鉄心板の反り返りを防止できる永久磁石型モータの回転子を提供することを目的とする。   The present invention has been made to solve the above-described problems, and even when a rotor core plate (electromagnetic steel plate) having a relatively large diameter is pressed, a permanent magnet that can prevent the rotor core plate from warping. An object of the present invention is to provide a rotor for a mold motor.

この発明に係る永久磁石型モータの回転子は、所定の形状に打ち抜いた電磁鋼板を所定枚数積層して構成される回転子鉄心と、
回転子鉄心の外周部に沿って形成された複数の磁石挿入孔と、
磁石挿入孔の周方向両端部に位置する二つの漏れ磁束抑制孔と、
磁石挿入孔内の二つの漏れ磁束抑制孔の間に挿入される永久磁石と、
回転子鉄心の外周部と二つの漏れ磁束抑制孔との間に形成される二つの外周薄肉部と、を備え、
二つの外周薄肉部のうちの一方の径方向寸法を、他方の径方向寸法の2倍以上としたものである。
The rotor of the permanent magnet type motor according to the present invention comprises a rotor core configured by laminating a predetermined number of electromagnetic steel sheets punched into a predetermined shape,
A plurality of magnet insertion holes formed along the outer periphery of the rotor core;
Two leakage flux suppression holes located at both circumferential ends of the magnet insertion hole;
A permanent magnet inserted between two leakage flux suppression holes in the magnet insertion hole;
Two outer peripheral thin portions formed between the outer periphery of the rotor core and the two leakage flux suppression holes,
One of the two outer peripheral thin portions has a radial dimension that is at least twice as large as the other radial dimension.

この発明に係る永久磁石型モータの回転子は、二つの外周薄肉部のうちの一方の径方向寸法を、他方の径方向寸法の2倍以上としたことにより、比較的大きな径の回転子鉄心板(電磁鋼板)をプレス加工した場合でも、回転子鉄心板の反り返りを防止できる。   In the rotor of the permanent magnet type motor according to the present invention, a rotor core having a relatively large diameter is obtained by setting one of the two outer thin portions to a radial dimension that is twice or more the other radial dimension. Even when a plate (electromagnetic steel plate) is pressed, the warp of the rotor core plate can be prevented.

実施の形態1.
図1乃至図22は実施の形態1を示す図で、図1は永久磁石型モータ100の横断面図、図2は図1のA部拡大図、図3は回転子200の横断面図、図4は図3のB部拡大図、図5は図4から永久磁石21を省いた図、図6は変形例1の図4相当図、図7は図6から永久磁石21を省いた図、図8は変形例2の回転子200の横断面図、図9は図8のC部拡大図、図10は図9から永久磁石21を省いた図、図11は変形例3の図9相当図、図12は図11から永久磁石21を省いた図、図13は変形例4の回転子200の横断面図、図14は図13のD部拡大図、図15は図14から永久磁石21を省いた図、図16は変形例5の図11相当図、図17は図16から永久磁石21を省いた図、図18は変形例6の回転子200の横断面図、図19は図18のE部拡大図、図20は図19から永久磁石21を省いた図、図21は変形例7の図16相当図、図22は図21から永久磁石21を省いた図である。
Embodiment 1 FIG.
1 to 22 are diagrams showing the first embodiment. FIG. 1 is a cross-sectional view of the permanent magnet type motor 100, FIG. 2 is an enlarged view of a portion A in FIG. 1, and FIG. 4 is an enlarged view of a portion B in FIG. 3, FIG. 5 is a diagram in which the permanent magnet 21 is omitted from FIG. 4, FIG. 6 is a diagram corresponding to FIG. 8 is a cross-sectional view of the rotor 200 of the second modification, FIG. 9 is an enlarged view of a portion C of FIG. 8, FIG. 10 is a diagram in which the permanent magnet 21 is omitted from FIG. FIG. 12 is a diagram in which the permanent magnet 21 is omitted from FIG. 11, FIG. 13 is a cross-sectional view of the rotor 200 according to the modified example 4, FIG. 14 is an enlarged view of a portion D in FIG. FIG. 16 is a view corresponding to FIG. 11 of the modified example 5, FIG. 17 is a view omitting the permanent magnet 21 from FIG. 16, and FIG. 18 is a transverse sectional view of the rotor 200 of the modified example 6. 19 is an enlarged view of a portion E in FIG. 18, FIG. 20 is a diagram in which the permanent magnet 21 is omitted from FIG. 19, FIG. 21 is a diagram corresponding to FIG. is there.

本実施の形態は、永久磁石型モータの回転子に特徴がある。永久磁石型モータの回転子は、永久磁石が磁石挿入孔に埋め込まれる磁石埋込型回転子である。   This embodiment is characterized by a rotor of a permanent magnet type motor. The rotor of the permanent magnet motor is a magnet-embedded rotor in which a permanent magnet is embedded in a magnet insertion hole.

回転子鉄心の外周縁部に沿って形成される磁石挿入孔は、通常周方向の両端に永久磁石の漏れ磁束を抑制する漏れ磁束抑制孔を備える。   Magnet insertion holes formed along the outer peripheral edge of the rotor core are usually provided with leakage flux suppression holes that suppress leakage flux of the permanent magnets at both ends in the circumferential direction.

漏れ磁束抑制孔と回転子鉄心の外周との間の回転子鉄心外周薄肉部の径方向寸法は、通常回転子鉄心を構成する回転子鉄心板(電磁鋼板)の板厚程度の厚さである。   The radial dimension of the thin portion of the outer periphery of the rotor core between the leakage magnetic flux suppression hole and the outer periphery of the rotor core is usually about the thickness of the rotor core plate (electromagnetic steel plate) constituting the rotor core. .

このような構成で、比較的大きな径の回転子(例えば、直径100mm程度)では、漏れ磁束抑制孔と回転子鉄心の外周との間の回転子鉄心外周薄肉部の強度が不十分なため、回転子鉄心板をプレス加工した場合、回転子鉄心板が反り返るという課題がある。   In such a configuration, in a rotor having a relatively large diameter (for example, about 100 mm in diameter), the strength of the rotor core outer peripheral thin portion between the leakage magnetic flux suppression hole and the outer periphery of the rotor core is insufficient. When the rotor core plate is pressed, there is a problem that the rotor core plate is warped.

そこで、本実施の形態では、磁石挿入孔の両端の漏れ磁束抑制孔と回転子鉄心の外周との間の回転子鉄心外周薄肉部のいずれか一方の径方向寸法を他方の径方向寸法よりも大きくすることにより、回転子鉄心板をプレス加工する場合の回転子鉄心板の反り返りを抑制するものである。   Therefore, in the present embodiment, the radial dimension of one of the rotor core outer circumferential thin portions between the leakage magnetic flux suppression holes at both ends of the magnet insertion hole and the outer circumference of the rotor core is set to be larger than the other radial dimension. By increasing the size, the warp of the rotor core plate when the rotor core plate is pressed is suppressed.

先ず、図1、図2を参照しながら永久磁石型モータ100の構成を説明する。図1に示す永久磁石型モータ100は、固定子300と、回転子200とを備える。   First, the configuration of the permanent magnet motor 100 will be described with reference to FIGS. A permanent magnet motor 100 shown in FIG. 1 includes a stator 300 and a rotor 200.

固定子300は、略円筒形の固定子鉄心10と、巻線12とを備える。   The stator 300 includes a substantially cylindrical stator core 10 and a winding 12.

固定子鉄心10は、板厚0.2〜0.5mm程度の電磁鋼板を所定の形状に打ち抜いた固定子鉄心板を所定枚数、所定の方法(溶接、かしめ等)いより積層して構成される。   The stator core 10 is configured by laminating a predetermined number of stator core plates obtained by punching electromagnetic steel plates having a thickness of about 0.2 to 0.5 mm into a predetermined shape by a predetermined method (welding, caulking, etc.). The

固定子鉄心10は、内周部に沿って36個のスロット11が略等間隔に配置されている。スロット11の外周側のリング状の鉄心部分をコアバック16という。また、スロット11の間の鉄心部分をティース17という。   In the stator core 10, 36 slots 11 are arranged at substantially equal intervals along the inner periphery. A ring-shaped iron core portion on the outer peripheral side of the slot 11 is referred to as a core back 16. The iron core portion between the slots 11 is referred to as a tooth 17.

スロット11に絶縁部材であるスロットセル13が挿入され、巻線12がスロット開口部11aからスロット11内に収納される。スロットセル13には、通常PET(ポリエチレンテレフタレート)等を材料とする絶縁フィルムが用いられる。   A slot cell 13, which is an insulating member, is inserted into the slot 11, and the winding 12 is accommodated in the slot 11 from the slot opening 11 a. For the slot cell 13, an insulating film made of a material such as PET (polyethylene terephthalate) is usually used.

図示はしないが、巻線12は分布巻方式の三相巻線である。但し、巻線方式は分布巻に限定されない。   Although not shown, the winding 12 is a distributed winding type three-phase winding. However, the winding method is not limited to distributed winding.

巻線12をスロット11内に収納後、巻線12がスロット11の外へ漏れないように、ウエッジ14を各スロット11内のスロット開口部11a近傍に挿入する。   After the winding 12 is housed in the slot 11, the wedge 14 is inserted in the vicinity of the slot opening 11 a in each slot 11 so that the winding 12 does not leak out of the slot 11.

固定子300と回転子200との間に、所定の径方向寸法gの空隙15が設けられる。   A gap 15 having a predetermined radial dimension g is provided between the stator 300 and the rotor 200.

回転子200は、固定子300の内側に空隙15を介して配置される。   The rotor 200 is disposed inside the stator 300 via the gap 15.

以下、回転子200の構成を、図1、図3〜図5を参照しながら説明する。   Hereinafter, the configuration of the rotor 200 will be described with reference to FIGS. 1 and 3 to 5.

回転子200は、回転子鉄心20と、6個の永久磁石21とを備える。   The rotor 200 includes a rotor core 20 and six permanent magnets 21.

回転子鉄心20も、板厚0.2〜0.5mm程度の電磁鋼板を所定の形状に打ち抜いた回転子鉄心板を所定枚数、所定の方法(溶接、かしめ等)により積層して構成される。   The rotor core 20 is also configured by laminating a predetermined number of rotor core plates obtained by punching electromagnetic steel plates having a thickness of about 0.2 to 0.5 mm into a predetermined shape by a predetermined method (welding, caulking, etc.). .

固定子鉄心板及び回転子鉄心板を同時にプレス加工してもよいし、夫々別個にプレス加工してもよい。   The stator core plate and the rotor core plate may be pressed at the same time, or may be pressed separately.

回転子鉄心20には、外周部に沿って永久磁石21を挿入する磁石挿入孔22が周方向に略等間隔に6個形成されている。   In the rotor core 20, six magnet insertion holes 22 for inserting the permanent magnets 21 along the outer periphery are formed at substantially equal intervals in the circumferential direction.

磁石挿入孔22の両端部には、永久磁石21が存在しない部分(空間)があり、ここを漏れ磁束抑制孔23a,23bとする。   There are portions (spaces) where the permanent magnet 21 does not exist at both ends of the magnet insertion hole 22, which are referred to as leakage flux suppressing holes 23 a and 23 b.

漏れ磁束抑制孔23a,23bは、永久磁石21の周方向端部の漏れ磁束を抑制するために設けられる。   Leakage magnetic flux suppression holes 23 a and 23 b are provided to suppress leakage magnetic flux at the circumferential end of permanent magnet 21.

漏れ磁束抑制孔23aと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部25aとする。外周薄肉部25aの径方向寸法をLaとする。   The core portion between the leakage flux suppressing hole 23a and the outer peripheral portion of the rotor core 20 is defined as an outer peripheral thin portion 25a. Let La be the radial dimension of the outer peripheral thin portion 25a.

漏れ磁束抑制孔23bと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部25bとする。外周薄肉部25bの径方向寸法をLbとする。   The core portion between the leakage flux suppressing hole 23b and the outer peripheral portion of the rotor core 20 is defined as an outer peripheral thin portion 25b. The radial dimension of the outer peripheral thin portion 25b is Lb.

回転子鉄心20の略中心部に、軸が嵌合する軸孔24が形成されている。   A shaft hole 24 into which the shaft is fitted is formed at a substantially central portion of the rotor core 20.

図1、図3に示す矢印は、回転子200の回転方向を示す。漏れ磁束抑制孔23aは、磁石挿入孔22に対して反回転方向に位置する。また、漏れ磁束抑制孔23bは、磁石挿入孔22に対して回転方向に位置する。   The arrows shown in FIGS. 1 and 3 indicate the rotation direction of the rotor 200. Leakage magnetic flux suppression hole 23 a is located in the counter-rotating direction with respect to magnet insertion hole 22. Further, the leakage flux suppressing hole 23 b is located in the rotational direction with respect to the magnet insertion hole 22.

そして、外周薄肉部25aの径方向寸法をLaと、外周薄肉部25bの径方向寸法をLbとは、(1)式の関係を満たす。
Lb≧2La (1)
And the radial direction dimension of the outer periphery thin part 25a and the radial direction dimension of the outer periphery thin part 25b satisfy | fill the relationship of (1) Formula.
Lb ≧ 2La (1)

漏れ磁束抑制孔23aと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部25aの径方向寸法は、回転子鉄心20を構成する電磁鋼板の板厚程度にするのが一般的である。電磁鋼板の板厚は、0.2〜0.5mmである。   Generally, the radial dimension of the outer peripheral thin wall portion 25a of the iron core portion between the leakage flux suppressing hole 23a and the outer peripheral portion of the rotor core 20 is about the thickness of the electromagnetic steel sheet constituting the rotor core 20. is there. The thickness of the electromagnetic steel sheet is 0.2 to 0.5 mm.

本実施の形態では、漏れ磁束抑制孔23bと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部25bの径方向寸法Lbを、漏れ磁束抑制孔23aと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部25aの径方向寸法Laの2倍以上とすることにより、外周薄肉部25bの強度が上がる。   In the present embodiment, the radial dimension Lb of the outer peripheral thin wall portion 25b of the iron core portion between the leakage flux suppressing hole 23b and the outer peripheral portion of the rotor core 20 is set as the outer peripheral portion of the leakage flux suppressing hole 23a and the rotor core 20. The strength of the outer peripheral thin portion 25b is increased by setting the iron core portion between the outer peripheral thin portion 25a to be twice or more the radial dimension La of the peripheral thin portion 25a.

外周薄肉部25bの強度が上がることにより、回転子鉄心板をプレス加工する場合の回転子鉄心板の反り返りを抑制することができる。この場合、外周薄肉部25aの径方向寸法Laは、通常の電磁鋼板の板厚程度であるから、Lb=Laのときよりは、若干永久磁石21の漏れ磁束は増えるが、永久磁石型モータ100の特性に悪影響を及ぼす恐れは少ない。   By increasing the strength of the outer peripheral thin portion 25b, it is possible to suppress warping of the rotor core plate when the rotor core plate is pressed. In this case, since the radial dimension La of the outer peripheral thin portion 25a is about the thickness of a normal electromagnetic steel plate, the leakage magnetic flux of the permanent magnet 21 slightly increases as compared with when Lb = La, but the permanent magnet motor 100 There is little fear of adversely affecting the characteristics of

また、漏れ磁束抑制孔23bと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部25bの径方向寸法Lbを、漏れ磁束抑制孔23aと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部25aの径方向寸法Laの2倍以上とする方が、その逆の外周薄肉部25aの径方向寸法Laを外周薄肉部25bの径方向寸法Lbの2倍以上とするよりも、永久磁石型モータ100の特性が良くなる。   Further, the core portion between the leakage flux suppressing hole 23b and the outer peripheral portion of the rotor core 20 has a radial dimension Lb of the outer peripheral thin portion 25b, and between the leakage flux suppressing hole 23a and the outer peripheral portion of the rotor core 20. When the iron core portion is at least twice the radial dimension La of the outer peripheral thin part 25a, the radial dimension La of the opposite outer thin part 25a is more than twice the radial dimension Lb of the outer thin part 25b. In addition, the characteristics of the permanent magnet motor 100 are improved.

但し、漏れ磁束抑制孔23aと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部25aの径方向寸法Laを、漏れ磁束抑制孔23bと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部25bの径方向寸法Lbの2倍以上とする形態も、本実施の形態は含むものとする。   However, the core portion between the leakage flux suppressing hole 23a and the outer peripheral portion of the rotor core 20 is the same as the radial dimension La of the outer thin portion 25a, and between the leakage flux suppressing hole 23b and the outer peripheral portion of the rotor core 20. The present embodiment also includes a mode in which the iron core portion is at least twice the radial dimension Lb of the outer peripheral thin portion 25b.

図6、図7により、変形例1の回転子200について説明する。変形例1の回転子200は、図1〜図5に示す回転子200と同様、漏れ磁束抑制孔23bと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部25bの径方向寸法Lbを、漏れ磁束抑制孔23aと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部25aの径方向寸法Laの2倍以上とする。   The rotor 200 of the modification 1 is demonstrated with FIG. 6, FIG. The rotor 200 of the first modification is similar to the rotor 200 shown in FIGS. 1 to 5 in that the core portion between the leakage flux suppressing hole 23b and the outer periphery of the rotor core 20 is the radial dimension of the outer thin portion 25b. Lb is set so that the iron core portion between the leakage flux suppressing hole 23a and the outer peripheral portion of the rotor core 20 is twice or more the radial dimension La of the outer thin portion 25a.

また、漏れ磁束抑制孔23aが磁石挿入孔22に対して反回転方向に位置し、漏れ磁束抑制孔23bが磁石挿入孔22に対して回転方向に位置するのが好ましい点も、図1〜図5に示す回転子200と同様である。但し、図1〜図5に示す回転子200と同様、その逆の漏れ磁束抑制孔23aが磁石挿入孔22に対して回転方向に位置し、漏れ磁束抑制孔23bが磁石挿入孔22に対して反回転方向に位置する形態も含むものとする。   In addition, it is also preferable that the leakage flux suppressing hole 23a is positioned in the counter-rotating direction with respect to the magnet insertion hole 22 and the leakage flux suppressing hole 23b is positioned in the rotating direction with respect to the magnet insertion hole 22. This is the same as the rotor 200 shown in FIG. However, like the rotor 200 shown in FIGS. 1 to 5, the opposite leakage flux suppression hole 23 a is positioned in the rotational direction with respect to the magnet insertion hole 22, and the leakage flux suppression hole 23 b is relative to the magnet insertion hole 22. A form located in the counter-rotating direction is also included.

図6、図7に示すように、漏れ磁束抑制孔23aと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部25aの周方向の角度をθa、漏れ磁束抑制孔23bと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部25bの周方向の角度をθbとする。   As shown in FIGS. 6 and 7, the iron core portion between the leakage flux suppressing hole 23 a and the outer peripheral portion of the rotor core 20 is θa, and the circumferential angle of the outer thin portion 25 a is θa, and the leakage flux suppressing hole 23 b and the rotor are. An angle in the circumferential direction of the thin outer peripheral portion 25b is defined as θb at the core portion between the outer peripheral portion of the iron core 20 and θb.

周方向の角度θaとは、回転子鉄心20の中心と外周薄肉部25aの周方向の両端部とを結ぶ二つの直線がなす角度をいう。   The circumferential angle θa refers to an angle formed by two straight lines connecting the center of the rotor core 20 and both ends in the circumferential direction of the outer thin portion 25a.

同様に、周方向の角度θbとは、回転子鉄心20の中心と外周薄肉部25bの周方向の両端部とを結ぶ二つの直線がなす角度をいう。   Similarly, the circumferential angle θb refers to an angle formed by two straight lines connecting the center of the rotor core 20 and both ends in the circumferential direction of the thin outer peripheral portion 25b.

変形例1の回転子200は、外周薄肉部25bの周方向の角度θbを、外周薄肉部25aの周方向の角度θaの2倍以上とした。そのため、外周薄肉部25bの周方向の長さが、図1〜図5に示す回転子200の外周薄肉部25bの周方向の長さよりも2倍以上長くなる。   In the rotor 200 of the first modification, the circumferential angle θb of the outer thin portion 25b is set to be twice or more the circumferential angle θa of the outer thin portion 25a. Therefore, the circumferential length of the outer peripheral thin portion 25b is twice or more longer than the circumferential length of the outer peripheral thin portion 25b of the rotor 200 shown in FIGS.

従って、変形例1の回転子200の外周薄肉部25bの磁気抵抗は、図1〜図5に示す回転子200の外周薄肉部25bの磁気抵抗よりも大きくなり、外周薄肉部25bの径方向寸法Lbを外周薄肉部25aの径方向寸法Laの2倍以上としても、永久磁石21の周方向端部における磁束の漏れをより一層抑制することができる。   Therefore, the magnetic resistance of the outer peripheral thin portion 25b of the rotor 200 of the first modification is larger than the magnetic resistance of the outer peripheral thin portion 25b of the rotor 200 shown in FIGS. 1 to 5, and the radial dimension of the outer peripheral thin portion 25b. Even if Lb is set to be twice or more the radial dimension La of the outer peripheral thin portion 25a, leakage of magnetic flux at the circumferential end of the permanent magnet 21 can be further suppressed.

図8乃至図10により、変形例2の回転子200について説明する。変形例2の回転子200は、磁石挿入孔26がバスタブ形状となっている点に特徴がある。   A rotor 200 according to the second modification will be described with reference to FIGS. The rotor 200 of Modification 2 is characterized in that the magnet insertion hole 26 has a bathtub shape.

図10に示すように、磁石挿入孔26は、周方向に延びる永久磁石挿入部26cの両端の漏れ磁束抑制孔26a,26bが、回転子鉄心20の外周側に屈曲している。   As shown in FIG. 10, in the magnet insertion hole 26, leakage magnetic flux suppression holes 26 a and 26 b at both ends of the permanent magnet insertion portion 26 c extending in the circumferential direction are bent toward the outer peripheral side of the rotor core 20.

磁石挿入孔26を、両端の漏れ磁束抑制孔26a,26bが回転子鉄心20の外周側に屈曲しているバスタブ形状とすると、永久磁石21は回転子鉄心20の中心側に移動することになる。   If the magnet insertion hole 26 has a bathtub shape in which leakage magnetic flux suppression holes 26 a and 26 b at both ends are bent toward the outer peripheral side of the rotor core 20, the permanent magnet 21 moves to the center side of the rotor core 20. .

図9に示す「磁石埋込深さ」が、図1〜図7の長孔形状の磁石挿入孔22に比べて、深くなる。   The “magnet embedding depth” shown in FIG. 9 is deeper than the long hole-shaped magnet insertion hole 22 shown in FIGS.

磁石埋込深さは、永久磁石型モータ100のトルク特性と密接な関係がある。磁界解析により、磁石埋込深さを変化させてトルク特性を求めると、或る磁石埋込深さでトルクが最大となる。   The magnet embedding depth is closely related to the torque characteristics of the permanent magnet type motor 100. When the torque characteristics are obtained by changing the magnet embedding depth by magnetic field analysis, the torque becomes maximum at a certain magnet embedding depth.

磁石埋込深さが、トルクが最大となる磁石埋込深さよりも浅くなると、トルクは低下する。   When the magnet embedding depth becomes shallower than the magnet embedding depth at which the torque is maximized, the torque decreases.

また、磁石埋込深さが、トルクが最大となる磁石埋込深さよりも深くなると、トルクは徐々に低下する。   Further, when the magnet embedding depth becomes deeper than the magnet embedding depth at which the torque is maximized, the torque gradually decreases.

従って、磁石埋込深さをトルクが最大となる磁石埋込深さとするのが好ましい。   Therefore, it is preferable to set the magnet embedding depth to a magnet embedding depth that maximizes the torque.

さらに、磁石埋込深さが深くなると、磁石挿入孔26の外側の鉄心部分の面積が増える。そのため、固定子300の巻線12に電流が流れることにより発生する固定子磁束が、磁石挿入孔26の外側の鉄心部分を通りやすくなり、リラクタンストルクが大きくなると利点もある。   Furthermore, as the magnet embedding depth increases, the area of the iron core portion outside the magnet insertion hole 26 increases. Therefore, there is an advantage that the stator magnetic flux generated by the current flowing through the winding 12 of the stator 300 easily passes through the iron core portion outside the magnet insertion hole 26 and the reluctance torque is increased.

図8乃至図10に示す矢印は、回転子200の回転方向を示す。漏れ磁束抑制孔26aは、磁石挿入孔22に対して反回転方向に位置する。また、漏れ磁束抑制孔26bは、磁石挿入孔22に対して回転方向に位置する。   The arrows shown in FIGS. 8 to 10 indicate the rotation direction of the rotor 200. Leakage magnetic flux suppression hole 26 a is located in the counter-rotating direction with respect to magnet insertion hole 22. Further, the leakage flux suppressing hole 26 b is positioned in the rotational direction with respect to the magnet insertion hole 22.

図8乃至図10に示す変形例2の回転子200においても、漏れ磁束抑制孔26bと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部27bの径方向寸法Lbを、漏れ磁束抑制孔26aと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部27aの径方向寸法Laの2倍以上とすることにより、外周薄肉部27bの強度を上げることができる。   Also in the rotor 200 of the second modification shown in FIGS. 8 to 10, the radial dimension Lb of the outer peripheral thin portion 27b is set as the leakage magnetic flux in the iron core portion between the leakage flux suppressing hole 26b and the outer periphery of the rotor iron core 20. By setting the iron core portion between the suppression hole 26a and the outer peripheral portion of the rotor core 20 to be twice or more the radial dimension La of the outer thin portion 27a, the strength of the outer thin portion 27b can be increased.

漏れ磁束抑制孔26bと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部27bの径方向寸法Lbを、漏れ磁束抑制孔26aと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部27aの径方向寸法Laの2倍以上とする方が、その逆の外周薄肉部27aの径方向寸法Laを外周薄肉部27bの径方向寸法Lbの2倍以上とするよりも、永久磁石型モータ100の特性が良くなるのは同じである。   The core portion between the leakage flux suppression hole 26b and the outer periphery of the rotor core 20 is the radial dimension Lb of the outer peripheral thin portion 27b, and the core portion between the leakage flux suppression hole 26a and the outer periphery of the rotor core 20 is the same. Is more than twice the radial dimension La of the outer peripheral thin part 27a, rather than the radial dimension La of the opposite outer peripheral thin part 27a is more than twice the radial dimension Lb of the outer peripheral thin part 27b. The characteristics of the permanent magnet motor 100 are the same.

但し、漏れ磁束抑制孔23aと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部25aの径方向寸法Laを、漏れ磁束抑制孔23bと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部25bの径方向寸法Lbの2倍以上とする形態も、本実施の形態は含むものとする。   However, the core portion between the leakage flux suppressing hole 23a and the outer peripheral portion of the rotor core 20 is the same as the radial dimension La of the outer thin portion 25a, and between the leakage flux suppressing hole 23b and the outer peripheral portion of the rotor core 20. The present embodiment also includes a mode in which the iron core portion is at least twice the radial dimension Lb of the outer peripheral thin portion 25b.

図11、図12により、変形例3の回転子200について説明する。変形例3の回転子200は、図8乃至図10に示す変形例2の回転子200と同様、漏れ磁束抑制孔26bと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部27bの径方向寸法Lbを、漏れ磁束抑制孔26aと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部27aの径方向寸法Laの2倍以上とする。   A rotor 200 according to Modification 3 will be described with reference to FIGS. 11 and 12. The rotor 200 of the third modification is similar to the rotor 200 of the second modification shown in FIGS. 8 to 10 in that the iron core portion between the leakage flux suppressing hole 26b and the outer periphery of the rotor core 20 is the outer thin portion 27b. The core dimension between the leakage flux suppressing hole 26a and the outer periphery of the rotor core 20 is set to be twice or more the radial dimension La of the outer peripheral thin portion 27a.

また、漏れ磁束抑制孔26aが磁石挿入孔22に対して反回転方向に位置し、漏れ磁束抑制孔26bが磁石挿入孔22に対して回転方向に位置するのが好ましい点も、図8乃至図10に示す変形例2の回転子200と同様である。但し、図8乃至図10に示す変形例2の回転子200と同様、その逆の漏れ磁束抑制孔23aが磁石挿入孔22に対して回転方向に位置し、漏れ磁束抑制孔23bが磁石挿入孔22に対して反回転方向に位置する形態も含むものとする。   In addition, it is preferable that the leakage flux suppressing hole 26a is positioned in the counter-rotating direction with respect to the magnet insertion hole 22 and the leakage flux suppressing hole 26b is positioned in the rotating direction with respect to the magnet insertion hole 22. This is the same as the rotor 200 of the second modification shown in FIG. However, similarly to the rotor 200 of Modification 2 shown in FIGS. 8 to 10, the opposite leakage flux suppression hole 23a is positioned in the rotational direction with respect to the magnet insertion hole 22, and the leakage flux suppression hole 23b is the magnet insertion hole. It is also assumed that a configuration located in the counter-rotating direction with respect to 22 is included.

図11、図12に示すように、漏れ磁束抑制孔26aと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部27aの周方向の角度をθa、漏れ磁束抑制孔26bと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部27bの周方向の角度をθbとする。   As shown in FIGS. 11 and 12, the core portion between the leakage flux suppressing hole 26a and the outer peripheral portion of the rotor core 20 is the circumferential angle of the outer peripheral thin portion 27a, θa, and the leakage flux suppressing hole 26b and the rotor. An angle in the circumferential direction of the outer peripheral thin portion 27b is defined as θb at the core portion between the outer periphery of the iron core 20 and θb.

周方向の角度θaとは、回転子鉄心20の中心と外周薄肉部27aの周方向の両端部とを結ぶ二つの直線がなす角度をいう。   The circumferential angle θa refers to an angle formed by two straight lines connecting the center of the rotor core 20 and both ends in the circumferential direction of the outer peripheral thin portion 27a.

同様に、周方向の角度θbとは、回転子鉄心20の中心と外周薄肉部27bの周方向の両端部とを結ぶ二つの直線がなす角度をいう。   Similarly, the circumferential angle θb refers to an angle formed by two straight lines connecting the center of the rotor core 20 and both circumferential ends of the outer peripheral thin portion 27b.

変形例3の回転子200は、外周薄肉部27bの周方向の角度θbを、外周薄肉部27aの周方向の角度θaの2倍以上とした。そのため、外周薄肉部27bの周方向の長さが、図8乃至図10に示す変形例2の回転子200の外周薄肉部27bの周方向の長さよりも2倍以上長くなる。   In the rotor 200 of the third modification, the circumferential angle θb of the outer peripheral thin portion 27b is set to be twice or more the circumferential angle θa of the outer peripheral thin portion 27a. Therefore, the circumferential length of the outer peripheral thin portion 27b is at least twice as long as the circumferential length of the outer peripheral thin portion 27b of the rotor 200 of Modification 2 shown in FIGS.

従って、変形例3の回転子200の外周薄肉部27bの磁気抵抗は、図8乃至図10に示す変形例2の回転子200の外周薄肉部25bの磁気抵抗よりも大きくなり、外周薄肉部27bの径方向寸法Lbを外周薄肉部27aの径方向寸法Laの2倍以上としても、永久磁石21の周方向端部における磁束の漏れをより一層抑制することができる。   Therefore, the magnetic resistance of the outer thin portion 27b of the rotor 200 of the third modification is larger than the magnetic resistance of the outer thin portion 25b of the rotor 200 of the second modification shown in FIGS. 8 to 10, and the outer thin portion 27b. Even if the radial dimension Lb is set to be twice or more the radial dimension La of the outer peripheral thin portion 27a, the leakage of magnetic flux at the circumferential end of the permanent magnet 21 can be further suppressed.

図13乃至図15により、変形例4の回転子200について説明する。変形例4の回転子200は、図8乃至図10に示す変形例2の回転子200に、磁石挿入孔26の外側の鉄心部分で、漏れ磁束抑制孔26a,26bの近傍に長穴形状のスリット28を追加したものである。   A rotor 200 according to Modification 4 will be described with reference to FIGS. The rotor 200 of the fourth modification is similar to the rotor 200 of the second modification shown in FIGS. 8 to 10 in the shape of a long hole in the vicinity of the leakage flux suppressing holes 26a and 26b at the iron core portion outside the magnet insertion hole 26. A slit 28 is added.

図13乃至図15に示すように、変形例4の回転子200は、スリット28以外は、図8乃至図10に示す変形例2の回転子200と同じである。   As shown in FIGS. 13 to 15, the rotor 200 of the fourth modification is the same as the rotor 200 of the second modification shown in FIGS. 8 to 10 except for the slit 28.

図13乃至図15に示す例では、磁石挿入孔26の外側の鉄心部分で、漏れ磁束抑制孔26a,26bの近傍に2個づつの長穴形状のスリット28を設けている。   In the example shown in FIG. 13 to FIG. 15, two long-hole shaped slits 28 are provided in the vicinity of the leakage flux suppressing holes 26 a and 26 b in the iron core portion outside the magnet insertion hole 26.

スリット28の向きは概略は径方向である。正確には、図14及び図15に示すように、スリット28は極中心側に所定角度傾いている。   The direction of the slit 28 is roughly the radial direction. Precisely, as shown in FIGS. 14 and 15, the slit 28 is inclined at a predetermined angle toward the pole center.

スリット28が極中心側に所定角度傾いていることにより、スリット28の間の鉄心部分も極中心側に所定角度傾くので、永久磁石21から固定子300に向かう磁束が極中心に集中し永久磁石型モータ100の特性が向上する。   Since the slit 28 is inclined at a predetermined angle toward the pole center, the iron core portion between the slits 28 is also inclined at a predetermined angle toward the pole center, so that the magnetic flux from the permanent magnet 21 toward the stator 300 is concentrated at the pole center. The characteristics of the mold motor 100 are improved.

スリット28と、回転子鉄心20の外周部、磁石挿入孔26及び漏れ磁束抑制孔26a,26bとの間の鉄心部分は、外周薄肉部27a,27bと同様に電磁鋼板の板厚程度の寸法か、それより若干小さい。   The core portion between the slit 28 and the outer peripheral portion of the rotor core 20, the magnet insertion hole 26 and the leakage magnetic flux suppression holes 26a and 26b has a size about the thickness of the electromagnetic steel plate as in the outer thin portions 27a and 27b. , Slightly smaller than that.

磁石挿入孔26の外側の鉄心部分で、漏れ磁束抑制孔26a,26bの近傍に長穴形状のスリット28を設けることにより、図8乃至図10に示す変形例2の回転子200よりも永久磁石21の両端部における磁束の漏れをさらに抑制することができる。   Permanent magnets than the rotor 200 of the second modification shown in FIGS. 8 to 10 are provided in the iron core portion outside the magnet insertion hole 26 in the vicinity of the leakage flux suppressing holes 26a and 26b by providing a slot 28 having a long hole shape. It is possible to further suppress the leakage of magnetic flux at both ends of 21.

図16、図17により、変形例5の回転子200について説明する。変形例5の回転子200は、図11、図12の変形例3の回転子200に、図13乃至図15の変形例4の回転子200のスリット28を追加したものである。   A rotor 200 according to Modification 5 will be described with reference to FIGS. 16 and 17. The rotor 200 of Modification 5 is obtained by adding the slit 28 of the rotor 200 of Modification 4 of FIGS. 13 to 15 to the rotor 200 of Modification 3 of FIGS. 11 and 12.

磁石挿入孔26の外側の鉄心部分で、漏れ磁束抑制孔26a,26bの近傍に長穴形状のスリット28を設けることにより、図11、図12の変形例3の回転子200永久磁石21の両端部における磁束の漏れをさらに抑制することができる。   11 and 12 is provided at both ends of the rotor 200 permanent magnet 21 in the iron core portion outside the magnet insertion hole 26 in the vicinity of the leakage flux suppressing holes 26a and 26b. The leakage of the magnetic flux in the part can be further suppressed.

図18乃至図20により変形例6の回転子200について説明する。変形例6の回転子200は、磁石挿入孔26の外側の鉄心部分で、漏れ磁束抑制孔26bの近傍に長穴形状のスリット28を設けたものである。   A rotor 200 according to Modification 6 will be described with reference to FIGS. The rotor 200 according to the modified example 6 is provided with a slit 28 having a long hole shape in the vicinity of the leakage flux suppressing hole 26b in the iron core portion outside the magnet insertion hole 26.

即ち、漏れ磁束抑制孔26bと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部27bの径方向寸法Lbを、漏れ磁束抑制孔26aと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部27aの径方向寸法Laの2倍以上としているので、外周薄肉部27bを通る永久磁石21の漏れ磁束は、外周薄肉部27aを通る永久磁石21の漏れ磁束よりも大きくなる。   That is, the radial direction dimension Lb of the outer peripheral thin wall portion 27 b is set between the leakage magnetic flux suppression hole 26 b and the outer peripheral portion of the rotor core 20, and the radial dimension Lb between the leakage magnetic flux suppression hole 26 a and the outer peripheral portion of the rotor core 20. Since the iron core portion is set to be twice or more the radial dimension La of the outer peripheral thin portion 27a, the leakage magnetic flux of the permanent magnet 21 passing through the outer peripheral thin portion 27b is larger than the leakage magnetic flux of the permanent magnet 21 passing through the outer peripheral thin portion 27a. .

磁石挿入孔26の外側の鉄心部分で、漏れ磁束抑制孔26bの近傍に長穴形状のスリット28を設けることにより、漏れ磁束抑制孔26bと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部27bの径方向寸法Lbを、漏れ磁束抑制孔26aと回転子鉄心20の外周部との間の鉄心部分を外周薄肉部27aの径方向寸法Laの2倍以上としても、外周薄肉部27bを通る永久磁石21の漏れ磁束を抑制することができる。   By providing a long hole-shaped slit 28 in the vicinity of the leakage flux suppressing hole 26b in the outer core portion of the magnet insertion hole 26, the iron core portion between the leakage flux suppressing hole 26b and the outer peripheral portion of the rotor core 20 is provided. Even if the radial dimension Lb of the outer circumferential thin portion 27b is set to be not less than twice the radial dimension La of the outer circumferential thin portion 27a, the core portion between the leakage flux suppressing hole 26a and the outer circumferential portion of the rotor core 20 is reduced. The leakage magnetic flux of the permanent magnet 21 passing through 27b can be suppressed.

図21、図22により変形例7の回転子200について説明する。変形例7の回転子200は、図11、図12の変形例3の回転子200において、磁石挿入孔26の外側の鉄心部分で、漏れ磁束抑制孔26bの近傍に長穴形状のスリット28を設けたものである。   The rotor 200 of the modification 7 is demonstrated with FIG. 21, FIG. The rotor 200 of the modified example 7 is the same as the rotor 200 of the modified example 3 of FIGS. 11 and 12, in which an elongated hole-shaped slit 28 is provided in the vicinity of the leakage flux suppressing hole 26 b in the iron core portion outside the magnet insertion hole 26. It is provided.

磁石挿入孔26の外側の鉄心部分で、漏れ磁束抑制孔26bの近傍に長穴形状のスリット28を設けることにより、図11、図12の変形例3の回転子200永久磁石21の漏れ磁束抑制孔26b側端部における磁束の漏れをさらに抑制することができる。   By providing an elongated slit 28 in the vicinity of the leakage flux suppressing hole 26b in the iron core portion outside the magnet insertion hole 26, leakage flux suppression of the rotor 200 permanent magnet 21 of the third modification shown in FIGS. Magnetic flux leakage at the end of the hole 26b can be further suppressed.

実施の形態1を示す図で、永久磁石型モータ100の横断面図。FIG. 3 shows the first embodiment and is a cross-sectional view of the permanent magnet type motor 100. 実施の形態1を示す図で、図1のA部拡大図。FIG. 2 shows the first embodiment, and is an enlarged view of a part A in FIG. 1. 実施の形態1を示す図で、回転子200の横断面図。FIG. 5 shows the first embodiment and is a cross-sectional view of the rotor 200. 実施の形態1を示す図で、図3のB部拡大図。FIG. 4 shows the first embodiment, and is an enlarged view of a portion B in FIG. 3. 実施の形態1を示す図で、図4から永久磁石21を省いた図。FIG. 5 shows the first embodiment, and is a diagram in which the permanent magnet 21 is omitted from FIG. 4. 実施の形態1を示す図で、変形例1の図4相当図。FIG. 5 shows the first embodiment, and is a view corresponding to FIG. 実施の形態1を示す図で、図6から永久磁石21を省いた図。FIG. 7 shows the first embodiment, and is a diagram in which the permanent magnet 21 is omitted from FIG. 6. 実施の形態1を示す図で、変形例2の回転子200の横断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view of a rotor 200 of a second modification. 実施の形態1を示す図で、図8のC部拡大図。FIG. 9 shows the first embodiment and is an enlarged view of a C part in FIG. 8. 実施の形態1を示す図で、図9から永久磁石21を省いた図。FIG. 10 shows the first embodiment and is a diagram in which the permanent magnet 21 is omitted from FIG. 9. 実施の形態1を示す図で、変形例3の図9相当図。FIG. 9 shows the first embodiment, and is a diagram corresponding to FIG. 実施の形態1を示す図で、図11から永久磁石21を省いた図。FIG. 12 shows the first embodiment and is a diagram in which the permanent magnet 21 is omitted from FIG. 11. 実施の形態1を示す図で、変形例4の回転子200の横断面図。FIG. 10 shows the first embodiment, and is a transverse cross-sectional view of a rotor 200 of a fourth modification. 実施の形態1を示す図で、図13のD部拡大図。FIG. 14 shows the first embodiment and is an enlarged view of a D part in FIG. 13. 実施の形態1を示す図で、図14から永久磁石21を省いた図。FIG. 15 shows the first embodiment, and is a diagram in which the permanent magnet 21 is omitted from FIG. 14. 実施の形態1を示す図で、変形例5の図11相当図。FIG. 11 shows the first embodiment, and is a diagram corresponding to FIG. 実施の形態1を示す図で、図16から永久磁石21を省いた図。FIG. 17 shows the first embodiment and is a diagram in which the permanent magnet 21 is omitted from FIG. 16. 実施の形態1を示す図で、変形例6の回転子200の横断面図。FIG. 10 shows the first embodiment, and is a transverse cross-sectional view of a rotor 200 of a sixth modification. 実施の形態1を示す図で、図18のE部拡大図。FIG. 19 shows the first embodiment and is an enlarged view of a portion E in FIG. 18. 実施の形態1を示す図で、図19から永久磁石21を省いた図。FIG. 20 shows the first embodiment and is a diagram in which the permanent magnet 21 is omitted from FIG. 19. 実施の形態1を示す図で、変形例7の図16相当図。FIG. 16 shows the first embodiment and is a diagram corresponding to FIG. 実施の形態1を示す図で、図21から永久磁石21を省いた図。FIG. 22 shows the first embodiment and is a diagram in which the permanent magnet 21 is omitted from FIG. 21.

符号の説明Explanation of symbols

10 固定子鉄心、11 スロット、11a スロット開口部、12 巻線、13 スロットセル、14 ウエッジ、15 空隙、16 コアバック、17 ティース、20 回転子鉄心、21 永久磁石、22 磁石挿入孔、23a 漏れ磁束抑制孔、23b 漏れ磁束抑制孔、24 軸孔、25a 外周薄肉部、25b 外周薄肉部、26 磁石挿入孔、26a 漏れ磁束抑制孔、26b 漏れ磁束抑制孔、26c 永久磁石挿入部、27a 外周薄肉部、27b 外周薄肉部、28 スリット、100 永久磁石型モータ、200 回転子、300 固定子。   10 Stator Core, 11 Slot, 11a Slot Opening, 12 Winding, 13 Slot Cell, 14 Wedge, 15 Void, 16 Core Back, 17 Teeth, 20 Rotor Core, 21 Permanent Magnet, 22 Magnet Insertion Hole, 23a Leakage Magnetic flux suppression hole, 23b Leakage magnetic flux suppression hole, 24 shaft hole, 25a Outer peripheral thin part, 25b Outer peripheral thin part, 26 Magnet insertion hole, 26a Leakage magnetic flux suppression hole, 26b Leakage magnetic flux suppression hole, 26c Permanent magnet insertion part, 27a Outer peripheral thin wall Part, 27b outer peripheral thin part, 28 slit, 100 permanent magnet type motor, 200 rotor, 300 stator.

Claims (5)

所定の形状に打ち抜いた電磁鋼板を所定枚数積層して構成される回転子鉄心と、
前記回転子鉄心の外周部に沿って形成された複数の磁石挿入孔と、
前記磁石挿入孔の周方向両端部に位置する二つの漏れ磁束抑制孔と、
前記磁石挿入孔内の前記二つの漏れ磁束抑制孔の間に挿入される永久磁石と、
前記回転子鉄心の外周部と前記二つの漏れ磁束抑制孔との間に形成される二つの外周薄肉部と、を備え、
前記二つの外周薄肉部のうちの一方の径方向寸法を、他方の径方向寸法の2倍以上としたことを特徴とする永久磁石型モータの回転子。
A rotor core configured by laminating a predetermined number of electromagnetic steel sheets punched into a predetermined shape;
A plurality of magnet insertion holes formed along the outer periphery of the rotor core;
Two leakage flux suppression holes located at both circumferential ends of the magnet insertion hole;
A permanent magnet inserted between the two leakage flux suppression holes in the magnet insertion hole;
Two outer peripheral thin portions formed between the outer peripheral portion of the rotor core and the two leakage flux suppressing holes,
A rotor of a permanent magnet type motor characterized in that one of the two outer peripheral thin portions has a radial dimension that is at least twice as large as the other radial dimension.
前記二つの外周薄肉部のうちの一方の径方向寸法を、他方の径方向寸法の2倍以上とするとともに、前記二つの外周薄肉部のうちの一方の周方向の角度を、他方の周方向の角度の2倍以上とすることを特徴とする請求項1記載の永久磁石型モータの回転子。   The radial dimension of one of the two outer thin parts is at least twice the radial dimension of the other, and the angle of one of the two outer thin parts is set to the other circumferential direction. 2. The rotor of a permanent magnet type motor according to claim 1, wherein the rotor is at least twice the angle. 前記磁石挿入孔に対して当該永久磁石型モータの回転子の回転方向側の前記外周薄肉部を、前記二つの外周薄肉部のうちの一方とし、前記磁石挿入孔に対して当該永久磁石型モータの回転子の反回転方向側の前記外周薄肉部を、前記二つの外周薄肉部のうちの他方とすることを特徴とする請求項1又は請求項2記載の永久磁石型モータの回転子。   The outer thin part on the rotation direction side of the rotor of the permanent magnet type motor with respect to the magnet insertion hole is set as one of the two outer thin parts, and the permanent magnet type motor with respect to the magnet insertion hole The rotor of the permanent magnet type motor according to claim 1, wherein the thin outer peripheral portion on the counter-rotating direction side of the rotor is the other of the two thin outer peripheral portions. 前記磁石挿入孔は、前記永久磁石を挿入する周方向に延びる永久磁石挿入部の両端に前記二つの漏れ磁束抑制孔が形成されるとともに、前記二つの漏れ磁束抑制孔が前記回転子鉄心の外周側に屈曲しているバスタブ形状であることを特徴とする請求項1乃至3のいずれかに記載の永久磁石型モータの回転子。   In the magnet insertion hole, the two leakage flux suppression holes are formed at both ends of a permanent magnet insertion portion extending in the circumferential direction in which the permanent magnet is inserted, and the two leakage flux suppression holes are formed on the outer periphery of the rotor core. The rotor of a permanent magnet type motor according to any one of claims 1 to 3, wherein the rotor has a bathtub shape bent sideways. 前記磁石挿入孔の外側の鉄心部分で、少なくとも前記他方の外周薄肉部側の前記漏れ磁束抑制孔の近傍にスリット設けることを特徴とする請求項4記載の永久磁石型モータの回転子。   5. The rotor of a permanent magnet type motor according to claim 4, wherein a slit is provided at least in the vicinity of the leakage magnetic flux suppressing hole on the side of the other outer thin portion at the outer iron core portion of the magnet insertion hole.
JP2008333391A 2008-12-26 2008-12-26 Rotor of permanent-magnet motor Pending JP2010158085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008333391A JP2010158085A (en) 2008-12-26 2008-12-26 Rotor of permanent-magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008333391A JP2010158085A (en) 2008-12-26 2008-12-26 Rotor of permanent-magnet motor

Publications (1)

Publication Number Publication Date
JP2010158085A true JP2010158085A (en) 2010-07-15

Family

ID=42575552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008333391A Pending JP2010158085A (en) 2008-12-26 2008-12-26 Rotor of permanent-magnet motor

Country Status (1)

Country Link
JP (1) JP2010158085A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092817A (en) * 2014-12-03 2015-05-14 三菱電機株式会社 Compressor
JPWO2013179375A1 (en) * 2012-05-28 2016-01-14 株式会社日立産機システム Compound torque type rotating electrical machine
JP2017085821A (en) * 2015-10-29 2017-05-18 株式会社富士通ゼネラル Rotor and permanent magnet motor
WO2019146006A1 (en) * 2018-01-24 2019-08-01 三菱電機株式会社 Electric motor, compressor, and air-conditioner device
WO2021039930A1 (en) * 2019-08-28 2021-03-04 日本電産株式会社 Rotor, motor, and drive device
WO2022210609A1 (en) * 2021-03-31 2022-10-06 日本製鉄株式会社 Rotor core, rotor, and rotating electrical machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285851A (en) * 1997-04-07 1998-10-23 Mitsubishi Electric Corp Permanent magnet type motor
JPH10285845A (en) * 1997-03-31 1998-10-23 Mitsubishi Electric Corp Permanent magnet type motor and its manufacture
JP2000069695A (en) * 1998-08-21 2000-03-03 Matsushita Electric Ind Co Ltd Permanent magnet rotor
JP2001218393A (en) * 2000-02-04 2001-08-10 Matsushita Electric Ind Co Ltd Permanent magnet electric motor
JP2002101586A (en) * 2000-09-25 2002-04-05 Toshiba Kyaria Kk Rotor of electric motor
JP2004357468A (en) * 2003-05-30 2004-12-16 Matsushita Electric Ind Co Ltd Motor
JP2005210826A (en) * 2004-01-22 2005-08-04 Fujitsu General Ltd Electric motor
JP2005245148A (en) * 2004-02-27 2005-09-08 Mitsubishi Electric Corp Permanent magnet motor, enclosed compressor, and fan motor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285845A (en) * 1997-03-31 1998-10-23 Mitsubishi Electric Corp Permanent magnet type motor and its manufacture
JPH10285851A (en) * 1997-04-07 1998-10-23 Mitsubishi Electric Corp Permanent magnet type motor
JP2000069695A (en) * 1998-08-21 2000-03-03 Matsushita Electric Ind Co Ltd Permanent magnet rotor
JP2001218393A (en) * 2000-02-04 2001-08-10 Matsushita Electric Ind Co Ltd Permanent magnet electric motor
JP2002101586A (en) * 2000-09-25 2002-04-05 Toshiba Kyaria Kk Rotor of electric motor
JP2004357468A (en) * 2003-05-30 2004-12-16 Matsushita Electric Ind Co Ltd Motor
JP2005210826A (en) * 2004-01-22 2005-08-04 Fujitsu General Ltd Electric motor
JP2005245148A (en) * 2004-02-27 2005-09-08 Mitsubishi Electric Corp Permanent magnet motor, enclosed compressor, and fan motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013179375A1 (en) * 2012-05-28 2016-01-14 株式会社日立産機システム Compound torque type rotating electrical machine
JP2015092817A (en) * 2014-12-03 2015-05-14 三菱電機株式会社 Compressor
JP2017085821A (en) * 2015-10-29 2017-05-18 株式会社富士通ゼネラル Rotor and permanent magnet motor
US11171525B2 (en) 2015-10-29 2021-11-09 Fujitsu General Limited Rotor and permanent magnet electric motor
WO2019146006A1 (en) * 2018-01-24 2019-08-01 三菱電機株式会社 Electric motor, compressor, and air-conditioner device
JPWO2019146006A1 (en) * 2018-01-24 2020-11-19 三菱電機株式会社 Electric motors, compressors and air conditioners
WO2021039930A1 (en) * 2019-08-28 2021-03-04 日本電産株式会社 Rotor, motor, and drive device
WO2022210609A1 (en) * 2021-03-31 2022-10-06 日本製鉄株式会社 Rotor core, rotor, and rotating electrical machine

Similar Documents

Publication Publication Date Title
JP5370433B2 (en) Permanent magnet embedded electric motor
JP5394756B2 (en) Permanent magnet type rotating electrical machine rotor
JP5259927B2 (en) Permanent magnet rotating electric machine
JP2008206308A (en) Permanent-magnet rotating electric machine
JP4844570B2 (en) Permanent magnet type motor
JP2006223052A (en) Permanent-magnet motor
JP5347588B2 (en) Embedded magnet motor
EP2485371A2 (en) Rotating electrical machine
JP2008148391A (en) Rotor for rotary electric machine, and the rotary electric machine
JP5240592B2 (en) Rotating electric machine
JP2010158085A (en) Rotor of permanent-magnet motor
JP2007330030A (en) Structure for fixing ring magnet in rotor and motor for electric power steering
JP6748852B2 (en) Brushless motor
JP2010183800A (en) Rotor of electric motor, electric motor, air blower and compressor
JP2009118687A (en) Permanent magnet type rotating machine
JP2010130885A (en) Rotating electric machine
JP2005323498A (en) Permanent magnet type dynamo-electric machine
JP4855747B2 (en) Permanent magnet type reluctance rotating electric machine
JP5954279B2 (en) Rotating electric machine
JP2006333656A (en) Rotor of rotary electric machine and rotary electric machine using same
JP2009106001A (en) Rotary electric machine
JP2011091917A (en) Method of adjusting output of rotating machine and the rotating machine
JP2015033245A (en) Rotor for permanent magnet motor
JP2007228771A (en) Permanent magnet type motor
JP2013183536A (en) Electric motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402