WO2002027226A1 - Linear solenoid and solenoid valve - Google Patents

Linear solenoid and solenoid valve Download PDF

Info

Publication number
WO2002027226A1
WO2002027226A1 PCT/JP2001/008632 JP0108632W WO0227226A1 WO 2002027226 A1 WO2002027226 A1 WO 2002027226A1 JP 0108632 W JP0108632 W JP 0108632W WO 0227226 A1 WO0227226 A1 WO 0227226A1
Authority
WO
WIPO (PCT)
Prior art keywords
plunger
suction
taper portion
solenoid
force
Prior art date
Application number
PCT/JP2001/008632
Other languages
French (fr)
Japanese (ja)
Inventor
Ichiro Hirata
Norio Uemura
Yoshinari Kasagi
Original Assignee
Nok Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corporation filed Critical Nok Corporation
Priority to AU2001292324A priority Critical patent/AU2001292324A1/en
Publication of WO2002027226A1 publication Critical patent/WO2002027226A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/061Sliding valves
    • F16K31/0613Sliding valves with cylindrical slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0668Sliding valves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/13Electromagnets; Actuators including electromagnets with armatures characterised by pulling-force characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding

Definitions

  • the present invention relates to a linear solenoid and a solenoid valve suitably used for various fluid pressure controls and the like, and is applied to, for example, a linear solenoid valve.
  • FIG. 7 is a schematic configuration sectional view of a solenoid valve according to the prior art.
  • the solenoid valve 200 is composed of a solenoid part 200 A and a valve part 200 B which are linear solenoids.
  • the vanoleb section 200B is a spoonolevanolev, and since the valve opening amount changes according to the stroke of the spoosole, the stroke amount of the spool is controlled by the solenoid section 20OA. This makes it possible to control the inflow and outflow of fluid.
  • the solenoid section 200 A is roughly composed of a coil 203, a plunger 201 magnetically attracted to the center boss 202 by energizing the coil 203, The port 2 ⁇ 4 connected to the plunger 201 for transmitting the movement of the plunger 201 to the valve section 200 B (specifically, the spool), and various solenoid components And a connector 211 connected to an external power supply to supply current to the coil 203.
  • the coaxiality of the plunger 201 ⁇ rod 204 that reciprocates A first bearing 205 and a second bearing 210 are provided for increasing the load, and the rod 204 fitted to the plunger 201 is connected to the first and second bearings 205, 21.
  • the first bearing 205 is supported by a sleeve 206.
  • the other second bearing 210 is held by a center bolt 202.
  • it has a fat plate 207 and a mouth plate 209 which form a magnetic path.
  • the plunger 201 is configured to be located away from the center post 202 in a normal state, that is, in a state where power is not supplied to the coil 203.
  • the plunger 201 is separated from the center post 202 by an urging member such as a spring.
  • an urging member such as a spring.
  • the plunger 201 is provided in the normal state by providing the valve part 200B with the spring 213 which urges the spool in the direction of the solenoid part 200A. It is configured to be separated from the center post 202 by the spring force of this.
  • the attraction force F which causes the plunger 201 to be magnetically attracted to the center post 202, becomes constant even if the stroke t between the plunger 201 and the center post 202 fluctuates. I have.
  • a linear solenoid has such a characteristic that the suction force F is constant with respect to the stroke amount St.
  • linear solenoid refers to a solenoid whose suction force increases linearly in proportion to the current (linear solenoid is also known as proportional solenoid). And also review).
  • this linear characteristic is the same linear characteristic (IF characteristic) in the strong stroke range (the part where the suction force F against the stroke is constant). It is generally called the linear region (the linear region is the control zone of the solenoid valve, and the characteristics using this linear region are linear characteristics).
  • the overall characteristics of the suction force F are constant in the middle control zone even if the stroke amount St fluctuates, but are higher than those in the control zone.
  • the suction force F decreases as the stroke amount St increases.
  • the plunger 201 approaches the center boss 202 beyond the control zone the suction force F increases as the plunger 201 approaches too far. For this reason, in the actual solenoid valve 200, the plunger 201 is set to be able to stroke only in the region of the control zone in FIG.
  • the suction force F is continuously controlled by the amount of current supplied to the coil 203, and as shown in the control zone of FIG. 6, the suction force F and the spring force of the spring 21 are controlled.
  • the stroke amount St By controlling the stroke amount St by stopping the plunger 201 at the balance position between the suction force F and the spring force, the stroke position of the spool is controlled.
  • various fluid pressure controls such as hydraulic control can be performed by controlling the flow rate of the fluid with the valve opening amount according to the stroke position of the spool.
  • the stroke amount S of the plunger 201 in the control nozzle zone is as described above.
  • a recess 2 2 1 is formed on the end face of the center bolt 202 on the side of the plunger 201 on which the plunger 201 enters and exits.
  • an annular suction portion 222 is formed on the outer periphery of the concave portion 221 as an outer peripheral tapered portion 222 a having a diameter reduced toward the plunger 201 side.
  • FIG. 8 is an explanatory view showing the operation of a solenoid valve according to the prior art to obtain a linear region.
  • the magnetic flux generated by the current supplied to the coil 203 is mainly the annular attraction of the center post 202.
  • the magnetic force M l acts between the center post 202 and the plunger 201 through the part 222, and the axial component M lcos ⁇ of the magnetic force M l moves the plunger 201 to the center post 210.
  • the suction force F to be sucked into 2 becomes
  • the cross-sectional area of the annular suction portion 222 on the plunger 201 side is gradually reduced by the outer peripheral tapered portion 222 2a, and the tip of the annular suction portion 222 on the side of the plunger 201 is gradually reduced. Since the passing magnetic flux is restricted, the magnetic force M 1 is small.
  • the magnetic force Ml is inclined in the direction toward the outer periphery as the plunger 201 enters the concave portion 221 of the center post 202, that is, the inclination angle 0 increases, so that the attractive force F
  • the axial component M lcos ⁇ of the magnetic force M l is maintained at the same magnitude as in FIG. 8 (a).
  • FIG. 8 (c) when the plunger 201 enters the concave portion 221 of the center post 202, the magnetic flux only passes through the annular attracting portion 222. Without passing between the concave end face 2 21 a and the plunger end face 201 a.
  • the magnetic force M l due to the magnetic flux passing through the annular suction part 2 2 2 tilts in the radial direction, the magnitude of the magnetic force M 1 itself is small, and the axial component M lcos 0 of the magnetic force M l is small, but
  • a magnetic force M 2 due to a magnetic flux passing between the concave end face 22 1 a and the plunger end face 201 a also acts. Therefore, the attractive force F is the sum of the axial component M lcos ⁇ of the magnetic force M 1 and the magnetic force M 2 having only the axial component, and is maintained at the same magnitude as in FIGS. 8 (a) and 8 (b). It is.
  • the increase in the magnetic force M 2 corresponds to the decrease in the axial component M lcos 0 of the magnetic force M l that further tilts in the radial direction, and the axial component M lcos ⁇ of the magnetic force M l and the magnetic force M 2
  • the suction force F which is the sum of the above, is maintained at the same magnitude as in FIGS. 8 (a), (b) ', and (c).
  • the present invention has been made to solve the above-mentioned problems of the prior art.
  • the purpose of the present invention is to obtain a linear characteristic, increase an attraction force, and further reduce the size and reliability of the device. It is to provide an excellent linear solenoid and a solenoid valve. Disclosure of the invention
  • a fixedly arranged center bolt and a plunger disposed axially opposite to the center bolt and attracted in the axial direction toward the center bolt by a magnetic force of an exciting unit.
  • a recess in which the plunger enters and exits is formed on the plunger-side end surface of the center boss.
  • An annular suction portion is provided on an outer peripheral portion of the recess.
  • a tapered portion on the inner periphery that expands in diameter toward the plunger side.
  • the plunger is characterized in that a suction taper portion is formed on the outer periphery of the center boss side, which is approximately equal to the inner taper portion. Therefore, while obtaining a linear characteristic in which the attraction force is constant even if the stroke amount fluctuates, the magnetic flux by the excitation means is passed between the inner peripheral taper portion of the annular attraction portion and the attraction taper portion of the plunger, and the magnetic force is reduced. By increasing the axial component of the force, the suction force for suctioning the plunger in the axial direction can be increased.
  • the outer peripheral taper is inclined approximately 20 degrees from the axial direction, and the inner peripheral taper is inclined within 10 degrees or less from the axial direction.
  • a solenoid valve in which a suction force for suctioning the plunger toward a center post in an axial direction has a linear characteristic.
  • a concave portion is formed in the center boss at an end surface of the plunger on the side of the plunger, and an annular suction portion is provided on an outer peripheral portion of the concave portion. And a tapered portion on the inner periphery that expands in diameter toward the plunger side.
  • the plunger is characterized in that a suction taper portion is formed on an outer periphery of the center boss side, which is inclined substantially equal to the inner peripheral taper portion. Therefore, while obtaining a linear characteristic in which the attraction force is constant even if the stroke amount fluctuates, the magnetic flux by the excitation means is passed between the inner peripheral taper portion of the annular attraction portion and the attraction taper portion of the plunger, and the magnetic force is reduced. By increasing the axial component of the force, the suction force for suctioning the plunger in the axial direction can be increased.
  • this effect is exerted even when the cross-sectional area at the root of the annular suction portion is smaller than the cross-sectional area of the plunger, so that the outer diameter of the center post (the outer diameter of the annular suction portion) can be reduced. Even if the size is reduced in the radial direction, the suction force can be increased while obtaining linear characteristics.
  • the outer peripheral taper is inclined approximately 20 degrees from the axial direction, and the inner peripheral taper is inclined within 10 degrees or less from the axial direction. This makes it possible to gradually reduce the cross-sectional area of the annular suction portion on the plunger side to reduce the magnetic flux and simultaneously increase the axial component of the magnetic force.
  • the more the outer peripheral taper part that reduces the magnetic flux by gradually reducing the cross-sectional area of the annular suction part on the plunger side the more the outer peripheral taper part is inclined toward the axis center, and the more the inner peripheral part Considering that the more the taper section is inclined toward the outer circumference, the greater the stroke of the plunger, the more the suction force will decrease. The suction force can be increased while obtaining linear characteristics, and further downsizing can be achieved.
  • FIG. 1 is a schematic configuration sectional view showing a solenoid valve according to an embodiment
  • FIG. 2 is an enlarged sectional view showing a main part of the solenoid valve according to the embodiment
  • FIG. 3 is an explanatory diagram showing the operation of the solenoid valve according to the embodiment to obtain a reuse area
  • FIG. 4 is a diagram showing a solenoid valve according to the embodiment, showing a relationship between a positional relationship between a center post and a plunger, a stroke amount-attraction force characteristic, and a current amount-attraction force characteristic.
  • FIG. 5 is a characteristic diagram showing the relationship between the suction force and the stroke amount by comparing the solenoid valve according to the embodiment with a comparative example.
  • FIG. 6 is an overall characteristic diagram showing a relationship between a suction force having a linear region and a stroke amount.
  • FIG. 7 is a schematic sectional view showing the construction of a solenoid valve according to the prior art.
  • FIG. 8 is an explanatory view showing the operation of a solenoid valve according to the prior art to obtain a linear region.
  • FIG. 1 is a schematic configuration sectional view of a solenoid valve according to an embodiment.
  • FIG. 2 is an enlarged cross-sectional view showing a main part of a solenoid valve according to the embodiment.
  • the solenoid valve 100 is composed of a solenoid part 100 A and a valve part 100 B which are linear solenoids.
  • valve portion 100B is a spool vano-reve, and a spool 15 is provided inside a valve sleeve 16 which is a main body of the vano-reb portion so as to be able to reciprocate freely. Since the opening area of the opening formed in the valve sleeve 16 in accordance with the stroke position, that is, the valve opening amount changes, the stroke amount of the spool 15 is controlled by the solenoid portion 10 OA. This makes it possible to control the inflow and outflow of fluid.
  • the solenoid section 10 OA is roughly composed of a coil 3 as an exciting means, a plunger 1 magnetically attracted to the center boss 2 by energizing the coil 3, and a movement of the attracted plunger 1.
  • Rod 7 connected to the plunger 1 for transmitting the pressure to the valve section 10 OB (specifically, the spool 15), and a casing for incorporating various solenoid components.
  • a connector 17 in which terminals 17a connected to an external power supply for supplying current to the coil 3 are insert-molded.
  • a bracket plate 11 for forming a magnetic path and fixing the solenoid valve 100 body at a predetermined position. It has.
  • the coil 3 By supplying a current to the coil 3, the coil 3 generates a magnetic field, and a magnetic path returning to the center post 2, the bracket plate 12, the case 9, the upper plate 11, the plunger 1, and the center post 2 is formed. Once formed, plunger 1 is magnetically attracted to center boss 2.
  • the attraction force F that causes the plunger 1 to be magnetically attracted to the center post 2 is constant even when the stroke amount St between the plunger 1 and the center post 2 fluctuates.
  • the linear solenoid with a constant suction force F is linear solenoid.
  • linear solenoid refers to a solenoid whose suction force increases linearly in proportion to the current.
  • the linear solenoid is also called the proportional solenoid.
  • linear characteristic (I-F characteristic) force S and the portion with similar linear characteristic (IF characteristic) in a certain stroke range (the suction force F to the stroke is constant)
  • the linear region is generally called a linear region (the linear region is a control zone of a solenoid-vanalev, and a characteristic using this linear region is a characteristic of the lower region).
  • the overall characteristics of the suction force F are constant in the middle control zone even if the stroke amount St fluctuates, but the plunger is larger than in the control zone.
  • the suction force F decreases as the stroke amount St increases.
  • the plunger 1 approaches the center post 2 beyond the control zone the suction force F increases as the plunger 1 approaches too far.
  • the plunger 1 is set to be able to stroke only in the region of the control zone in FIG.
  • the suction force F is continuously controlled by the amount of current supplied to the coil 3, and as shown in the control zone of FIG. 6, the suction force F and the spring force of the springs 14 are balanced.
  • the stroke position of the spool 15 is controlled by stopping the plunger 1 at the balance position between the suction force F and the spring force and controlling the stroke amount St, thereby controlling the stroke position of the spool 15.
  • Various fluid pressure controls such as hydraulic pressure control can be performed by controlling the fluid flow rate with the valve opening amount according to the stroke position. If possible, it will be something.
  • a concave portion 21 through which the plunger 1 enters and exits is formed on the end face of the center boss 2 on the side of the plunger 1, and an annular suction portion 2 2 is formed on the outer peripheral portion of the concave portion 21. Is provided.
  • the cross-sectional area at the root of the annular suction section 22 is set smaller than the cross-sectional area of the plunger 1.
  • the annular suction portion 22 has an outer peripheral tapered portion 22 a on the outer periphery that decreases in diameter toward the plunger 1, and an inner peripheral taper portion 2 2 b on the inner periphery that increases in diameter toward the plunger 1. Is formed. Further, the plunger 1 has a configuration in which a suction taper portion 1a that is inclined at the same angle as the inner peripheral taper portion 22b of the annular suction portion 22 is formed on the outer periphery of the center boss 2 side. The effect of obtaining the linear characteristics operating in the linear region in this case will be described.
  • FIG. 3 is an explanatory view showing the operation of the solenoid valve according to the embodiment for obtaining linear characteristics.
  • the magnetic flux generated by supplying current to the coil 3 is mainly generated by the annular suction portion 2 2 of the center post 2.
  • a magnetic force Ml acts between the center boss 2 and the plunger 1, and an axial component M 1 cos 0 of the magnetic force Ml becomes a suction force F for attracting the plunger 1 to the center post 2.
  • the cross-sectional area of the annular suction portion 22 on the plunger 1 side is gradually reduced by the outer peripheral taper portion 22a and the inner peripheral taper portion 22b, and the tip of the annular suction portion 22 on the plunger 1 side is gradually reduced. Since the magnetic flux passing through is narrowed, the magnetic force M 1 is small.
  • the cross-sectional area at the root of the annular suction portion 22 is Since the current is supplied to the coil 3, the overall magnetic flux generated by the coil 3 is smaller than the cross-sectional area of the lancer 1, but the magnetic flux is reduced by the inner peripheral taper portion 2 2 b of the annular suction portion 22 and the plunger 1. Since the magnetic force Ml passes through the space between the suction tapered portions 1a, the axial component Mlcos0 increases, and a large suction force F can be obtained.
  • the magnetic force Ml is inclined in the radial direction as the plunger 1 enters the concave portion 21 of the center post 2, that is, the inclination angle 0 increases, so that the axial direction of the magnetic force Ml as the attractive force F
  • the component M lcos 0 is kept the same size as in FIG. 3 (a).
  • the magnetic force Ml due to the magnetic flux passing through the annular suction part 22 is inclined in the radial direction, the magnitude itself of the magnetic force M1 is small, and the axial component M1cos0 of the magnetic force Ml is small.
  • a magnetic force M 2 due to the magnetic flux passing between the concave end face 21a and the plunger end face 1b also acts. Therefore, the attractive force F is the sum of the axial component Mlcos 0 of the magnetic force Ml and the magnetic force M2 having only the axial component, and is maintained at the same magnitude as in FIGS. 3 (a) and 3 (b). It is.
  • the increase corresponds to a small amount of the axial component M 1 cos of the magnetic force M 1 that tilts further in the radial direction, and the suction force F is the same as in Figs. 3 (a), (b), and (c). Size is kept.
  • the positional relationship between the center boss 2 and the plunger 1 in the suction section, the stroke amount St—the suction force F characteristic, and the current amount I—the suction force Fig. 4 shows the relationship between the F characteristic and.
  • the attraction force F increases in proportion to the current amount I.
  • the rate of increase of the attractive force with respect to the current is small, actually.
  • the outer taper portion 22a and the inner taper portion 22b are located in a region wider than the control stroke range (linear region) for controlling the solenoid valve 10 °. Is provided.
  • the linear region in which the suction force F is constant even when the stroke amount fluctuates is used in the control zone, that is, in the strokeable region of the plunger 1.
  • the magnetic flux is applied to the inner peripheral taper portion 2 2 b of the annular suction portion 22 and the suction taper of the plunger 1.
  • the axial component M lcos ⁇ of the magnetic force M l can be increased, and the suction force F for sucking the plunger 1 in the axial direction can be increased.
  • the inner peripheral taper portion 2 2b of the annular suction portion 22 gradually reduces the cross-sectional area of the annular suction portion 22 on the side of the plunger 1 to reduce the magnetic flux and the axial component M lcos of the magnetic force M l. Since the action of increasing 0 is performed at the same time, it is necessary to gradually reduce the cross-sectional area of the annular suction portion 22 on the plunger 1 side and satisfy the correlation with the outer peripheral taper portion that performs the action of reducing the magnetic flux.
  • the annular suction portion 22 is provided with both the outer tapered portion 22 a and the inner tapered portion 22 b. It is necessary to set it with an appropriate setting.
  • the outer taper portion 22a is inclined approximately 20 degrees from the axial direction, and the inner taper portion 22b is inclined 10 degrees or less from the axial direction. It is.
  • FIG. 5 illustrates the setting of the angle between the outer peripheral tapered portion 22a and the inner peripheral tapered portion 22b at the upper part. That is, in FIG. 5, the outer taper portion 22a is set to a degree from the axial direction, and the inner taper portion 22b is set to b degree from the axial direction.
  • (1) shows a case in which the value of “a” is approximately 20 degrees and the value of “b” is approximately 3 degrees in the case where the above-described range of the present embodiment is particularly defined.
  • (2) to (5) are comparative examples, (2) shows characteristics in which a is less than 20 degrees and b is about 3 degrees, (3) shows that a is more than 20 degrees, (4) shows the characteristic when a is about 20 degrees, b is more than 10 degrees, and (5) shows the characteristic when a is about 20 degrees and b is about 0 degree. It shows the characteristics as follows. (2) to (5) The dashed lines are used for easy comparison. The characteristics of (1) were also shown.
  • the outer peripheral taper portion 22a is inclined approximately 20 degrees from the axial direction, and the inner peripheral taper portion 22b is inclined within 10 degrees or less from the axial direction.
  • the distance between the inner taper portion 22 b and the suction taper portion 1 a of the plunger 1 is increased. Since the distances facing each other are all equal, the magnetic flux passing through one location is not concentrated, unnecessary leakage of the magnetic flux is prevented, and the magnetic flux is efficiently converted to magnetic force M 1 Can be.
  • the cross-sectional area at the root of the annular suction section 22 is smaller than the cross-sectional area of the plunger 1, the linear characteristics using the linear area are obtained. The suction force F can be increased.
  • the solenoid valve 100 of the present embodiment can be reduced in size as compared with the conventional technology.
  • the solenoid valve 100 of the present embodiment was set so that the cross-sectional area of the root of the annular suction part 22 was set to 60% of the cross-sectional area of the plunger 1 and the outer diameter of the plunger 1 was the same as that of the prior art. (When ⁇ »1 O mm The outer diameter of the solenoid valve 100 was ⁇ 31 mm in the prior art, whereas it was reduced to ⁇ 28 mm in the present embodiment.
  • the solenoid valve 100 of the present embodiment has a magnetic flux acting as a magnetic force because the cross-sectional area of the root of the annular suction part 22 is set to 60% of the cross-sectional area of the plunger 1. It is thought that the suction force F applied to the plunger 1 increased by 20% as compared with the conventional technology, although it is considered that the pressure decreased.
  • the intake and exhaust valves of the engine are opened and closed by rotation of camshafts.
  • the valve timing appropriately according to the operating conditions (high speed / low speed), fuel efficiency can be reduced. It becomes possible to obtain high exhaust gas purification.
  • This valve timing control can be performed by shifting the camshaft in the rotation direction and changing the phase, and a technique for performing this by a solenoid valve is known as a known technique.
  • the above-described solenoid valve according to the present embodiment is replaced with a linear solenoid for such a valve timing control (VTC). It can be suitably used as a valve.
  • VTC valve timing control
  • the solenoid valve 100 of the present embodiment is effective as a linear solenoid valve having a high stroke amount (1.5 mm or more), such as the above-mentioned spoon rebag rev type.
  • the solenoid portion 100A of the solenoid valve 100 is used not only for the solenoid valve as in the present embodiment but also for a device for adjusting the axial position. It can be used as a linear solenoid as a driving source. Industrial applicability
  • the center post is provided with a concave portion on the plunger side end surface where the plunger enters and exits, an annular suction portion is provided on the outer peripheral portion of the concave portion, and the annular suction portion is provided on the outer periphery toward the plunger side.
  • An outer taper portion that reduces the diameter and an inner taper portion that expands toward the plunger side on the inner circumference are formed.
  • this effect is exerted even when the cross-sectional area at the root of the annular suction portion is smaller than the cross-sectional area of the plunger, so that the outer diameter of the center post (the outer diameter of the annular suction portion) can be reduced. Even if the size is reduced in the radial direction, the suction force can be increased while obtaining linear characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)

Abstract

A linear solenoid exhibiting linear characteristics and having an increased attractive force, a small size, and an excellent reliability. The solenoid comprises an annular attracting section (22) and a plunger (1). The annular attracting section (22) has an outer taper portion (22a) the diameter of which decreases toward the plunger (1) on its outer periphery and an inner taper portion (22b) the diameter of which increases toward the plunger (1) on its inner periphery. The plunger (1) has an attraction taper portion (1a) on the outer periphery near the center post (2). The surface of the attraction taper portion (1a) inclines similarly to the inner taper portion (22b) of the annular attraction section (22). The magnetic flux M1 passes between the inner taper portion (22b) and the attraction taper portion (1a). Consequently, the axial component of the magnetic force M1 increases, and therefore a strong attractive force F is produced. A solenoid valve is also disclosed.

Description

明細書 リ エァソ レノィ ド及びソ レノィ ドバルブ  Description Rear solenoid and solenoid valve
技術分野 Technical field
この発明は、 各種流体圧力制御等に好適に使用される リ ニアソ レ ノィ ド及びソレノィ ドバルブに関するもので、 例えばリニアソレノ ィ ドバルブに適用される ものである。 背景技術  The present invention relates to a linear solenoid and a solenoid valve suitably used for various fluid pressure controls and the like, and is applied to, for example, a linear solenoid valve. Background art
従来、 この種のソレノィ ドバルブと しては、 例えば、 第 7図に示 すものがある。 第 7図は従来技術に係るソ レノィ ドバルブの概略構 成断面図である。  Conventionally, as this type of solenoid valve, for example, there is one shown in FIG. FIG. 7 is a schematic configuration sectional view of a solenoid valve according to the prior art.
ソ レノィ ドバルブ 2 0 0は、 リ ニアソ レノィ ドである ソ レノィ ド 部 2 0 0 Aとバルブ部 2 0 0 Bとから構成される。  The solenoid valve 200 is composed of a solenoid part 200 A and a valve part 200 B which are linear solenoids.
ここで、 バノレブ部 2 0 0 Bはスプーノレバノレブであ り 、 スプーゾレの ス トロークに応じて開弁量が変化するため、 ソレノィ ド部 2 0 O A によ りスプールのス ト ローク量を制御することによって、 流体の流 入量や流出量を制御できる構成となっている。  Here, the vanoleb section 200B is a spoonolevanolev, and since the valve opening amount changes according to the stroke of the spoosole, the stroke amount of the spool is controlled by the solenoid section 20OA. This makes it possible to control the inflow and outflow of fluid.
ソ レノ イ ド部 2 0 0 Aは、 概略、 コ ィ ノレ 2 0 3 と、 コィ ノレ 2 0 3 への通電によってセンタボス 卜 2 0 2に磁気的に吸引されるプラン ジャ 2 0 1 と、 吸引されたプラ ンジャ 2 0 1 の移動をバルブ部 2 0 0 B (具体的にはスプール) に伝達するためにプランジャ 2 0 1 に 連結された口 ッ ド 2 ◦ 4 と、 各種ソ レノィ ド構成部材が組込まれる ケース 2 0 8 と、 コ イ ル 2 0 3 に電流を供給するために外部電源に 接続されるコネクタ 2 1 1 と、 を備えている。  The solenoid section 200 A is roughly composed of a coil 203, a plunger 201 magnetically attracted to the center boss 202 by energizing the coil 203, The port 2 ◦ 4 connected to the plunger 201 for transmitting the movement of the plunger 201 to the valve section 200 B (specifically, the spool), and various solenoid components And a connector 211 connected to an external power supply to supply current to the coil 203.
また、 往復動を行うプランジャ 2 0 1ゃロ ッ ド 2 0 4の同軸度を 高めるための第 1軸受 2 0 5及び第 2軸受 2 1 0 とを備えており、 プランジャ 2 0 1 に嵌合されたロ ッ ド 2 0 4を第 1及び第 2軸受 2 0 5 , 2 1 0で支持し、 一方の第 1軸受 2 0 5はス リーブ 2 0 6で 保持されている。 他方の第 2軸受 2 1 0はセンタボス ト 2 0 2で保 持されている。 また、 磁路を形成するァツバプレー ト 2 0 7及び口 アブレ一 ト 2 0 9等を備えている。 Also, the coaxiality of the plunger 201 ゃ rod 204 that reciprocates A first bearing 205 and a second bearing 210 are provided for increasing the load, and the rod 204 fitted to the plunger 201 is connected to the first and second bearings 205, 21. The first bearing 205 is supported by a sleeve 206. The other second bearing 210 is held by a center bolt 202. In addition, it has a fat plate 207 and a mouth plate 209 which form a magnetic path.
ここで、 プランジャ 2 0 1 は、 通常状態、 即ちコイル 2 0 3に通 電していない状態では、 センタボス ト 2 0 2から離間する方向に位 置する構成となっている。  Here, the plunger 201 is configured to be located away from the center post 202 in a normal state, that is, in a state where power is not supplied to the coil 203.
なお、 プランジャ 2 0 1 をセンタポス ト 2 0 2から離間させる方 向に位置させる構成と しては、 一般的にはスプリ ング等の付勢部材 によってプランジャ 2 0 1 をセンタポス ト 2 0 2から離間する方向 に付勢する。 図示の例では、 バルブ部 2 0 0 Bにスプールをソ レノ イ ド部 2 0 0 A方向に付勢するスプリ ング 2 1 3を設けることによ つて、 通常状態でプランジャ 2 0 1 はスプリ ングのスプリ ング力で センタポス ト 2 0 2から離間されるよ うに構成されている。  In addition, as a configuration in which the plunger 201 is positioned to be separated from the center post 202, generally, the plunger 201 is separated from the center post 202 by an urging member such as a spring. Energize in the direction of In the example shown in the figure, the plunger 201 is provided in the normal state by providing the valve part 200B with the spring 213 which urges the spool in the direction of the solenoid part 200A. It is configured to be separated from the center post 202 by the spring force of this.
そして、 コィノレ 2 0 3に電流を供給することによって、 センタポ ス ト 2 0 2, ロアプレー ト 2 0 9 , ケース 2 0 8 , アツパプレー ト 2 0 7 , スリーブ 2 0 6 , プランジャ 2 0 1そしてセンタポス ト 2 0 2に戻るよ うな磁路が形成され、 プランジャ 2 0 1 はセンタボス ト 2 0 2に磁気的に吸引される。  By supplying current to the coil 203, the center post 202, the lower plate 209, the case 208, the upper plate 207, the sleeve 206, the plunger 201 and the center post A magnetic path is formed so as to return to 202, and the plunger 201 is magnetically attracted to the center boss 202.
プランジャ 2 0 1がセンタポス ト 2 0 2に磁気的に吸引される吸 引力 Fは、 プランジャ 2 0 1 とセンタポス ト 2 0 2間のス トローク tが変動しても吸引力 Fが一定となっている。 このよ うなス ト ローク量 S t に対して吸引力 Fが一定のリ ユア特性を有するものが リニアソレノィ ドである。  The attraction force F, which causes the plunger 201 to be magnetically attracted to the center post 202, becomes constant even if the stroke t between the plunger 201 and the center post 202 fluctuates. I have. A linear solenoid has such a characteristic that the suction force F is constant with respect to the stroke amount St.
ここで、 リ ニアソレノイ ドについて説明すると、 リニア ( L I N E A R ) とは、 直線性を意味し、 リ ニアソレノイ ドは電流に比例し て直線的に吸引力が増加するソレノイ ドのことを指している (リ ニ ァソ レノイ ドは別名、 比例ソ レノイ ドと もレヽう) 。 Here, the linear solenoid is explained. EAR) means linearity, linear solenoid refers to a solenoid whose suction force increases linearly in proportion to the current (linear solenoid is also known as proportional solenoid). And also review).
また、 この直線的な特性 ( I _ F特性) 力 あるス ト ローク範囲 で同様な直線的特性 ( I — F特性) となっている部分 (ス ト ローク に対する吸引力 Fが一定な部分) をリ ニア域と一般に呼んでいる ( リ ニア域は、 ソ レノイ ドバルブのコ ン ト ロ ーノレゾーンであり、 この リニア域を用いた特性がリニア特性である) 。  In addition, this linear characteristic (I_F characteristic) is the same linear characteristic (IF characteristic) in the strong stroke range (the part where the suction force F against the stroke is constant). It is generally called the linear region (the linear region is the control zone of the solenoid valve, and the characteristics using this linear region are linear characteristics).
なお、 吸引力 Fの全体特性は、 第 6図に示すよ うに、 途中のコン ト ロールゾーンではス トローク量 S t が変動しても吸引力 Fが一定 となるが、 コン トロールゾーンよ り もプランジャ 2 0 1がセンタポ ス ト 2 0 2から遠く離れた側では、 ス ト ローク量 S tが増加する程 吸引力 Fが低下する。 また、 コン トロールゾーンを超えてプランジ ャ 2 0 1がセンタボス ト 2 0 2に近づく側では、 近づき過ぎる程吸 引力 Fが増加する。 このため、 実際のソ レノイ ドバルブ 2 0 0では 、 プランジャ 2 0 1 は第 6図のコン ト ロールゾーンの領域だけをス トローク可能に設定されている。  As shown in Fig. 6, the overall characteristics of the suction force F are constant in the middle control zone even if the stroke amount St fluctuates, but are higher than those in the control zone. On the side where the plunger 201 is far from the center post 202, the suction force F decreases as the stroke amount St increases. On the side where the plunger 201 approaches the center boss 202 beyond the control zone, the suction force F increases as the plunger 201 approaches too far. For this reason, in the actual solenoid valve 200, the plunger 201 is set to be able to stroke only in the region of the control zone in FIG.
そして、 コイル 2 0 3に供給する電流の量によって吸引力 Fを連 続的に制御し、 第 6図のコン ト ロールゾーンに示すよ うに、 吸引力 Fとスプリ ング 2 1 3のスプリ ング力とをバランスさせ、 これによ り吸引力 F とスプリ ング力とのバランス位置でプランジャ 2 0 1 を 停止させてス トローク量 S t を制御することで、 スプールのス トロ ーク位置を制御し、 スプールのス トローク位置に応じた開弁量で流 体の流量を制御し、 油圧制御などの各種流体圧力制御等を行う こと ができるとレヽぅ ものである。  Then, the suction force F is continuously controlled by the amount of current supplied to the coil 203, and as shown in the control zone of FIG. 6, the suction force F and the spring force of the spring 21 are controlled. By controlling the stroke amount St by stopping the plunger 201 at the balance position between the suction force F and the spring force, the stroke position of the spool is controlled. However, it is considered that various fluid pressure controls such as hydraulic control can be performed by controlling the flow rate of the fluid with the valve opening amount according to the stroke position of the spool.
ここで、 従来技術のソレノイ ドバルブ 2 0 0においては、 上記の よ う にコン ト ローノレゾーン内でプラ ンジャ 2 0 1 のス ト ローク量 S tにかかわらず吸引力 Fが一定である リニア域を用いたリ ニア特性 とするため、 センタボス ト 2 0 2のプランジャ 2 0 1側端面にプラ ンジャ 2 0 1 が出入りする凹部 2 2 1 を形成し、 凹部 2 2 1 の外周 部に外周がプランジャ 2 0 1側に向けて縮径する外周テーパ部 2 2 2 a となっている環状吸引部 2 2 2を設けた構成と している。 Here, in the conventional solenoid valve 200, as described above, the stroke amount S of the plunger 201 in the control nozzle zone is as described above. In order to achieve linear characteristics using a linear region where the suction force F is constant regardless of t, a recess 2 2 1 is formed on the end face of the center bolt 202 on the side of the plunger 201 on which the plunger 201 enters and exits. In addition, an annular suction portion 222 is formed on the outer periphery of the concave portion 221 as an outer peripheral tapered portion 222 a having a diameter reduced toward the plunger 201 side.
次に、 ス トローク量 S tが変動しても吸引力 Fが一定となる リ ニ ァ域を得る作用について説明する。 第 8図は従来技術に係るソ レノ ィ ドバルブがリ 二ァ域を得る作用を示す説明図である。  Next, the operation of obtaining a linear region in which the suction force F is constant even if the stroke amount St fluctuates will be described. FIG. 8 is an explanatory view showing the operation of a solenoid valve according to the prior art to obtain a linear region.
まず、 第 8図 ( a ) に示すよ うに、 ス トローク量 S tが大きい場 合には、 コイル 2 0 3に電流が供給されて発生した磁束が主にセン タポス ト 2 0 2の環状吸引部 2 2 2を通過してセンタポス ト 2 0 2 とプランジャ 2 0 1の間に磁気力 M l が働き、 その磁気力 M lの軸 方向成分 M l c o s Θがプランジャ 2 0 1 をセンタポス ト 2 0 2に 吸引する吸引力 Fとなる。  First, as shown in Fig. 8 (a), when the stroke amount St is large, the magnetic flux generated by the current supplied to the coil 203 is mainly the annular attraction of the center post 202. The magnetic force M l acts between the center post 202 and the plunger 201 through the part 222, and the axial component M lcos の of the magnetic force M l moves the plunger 201 to the center post 210. The suction force F to be sucked into 2 becomes
この時、 外周テーパ部 2 2 2 aで環状吸引部 2 2 2のプランジャ 2 0 1側の断面積を徐々に小さ く しており、 環状吸引部 2 2 2のプ ランジャ 2 0 1側先端を通過する磁束が絞られているので、 磁気力 M 1は小さい。  At this time, the cross-sectional area of the annular suction portion 222 on the plunger 201 side is gradually reduced by the outer peripheral tapered portion 222 2a, and the tip of the annular suction portion 222 on the side of the plunger 201 is gradually reduced. Since the passing magnetic flux is restricted, the magnetic force M 1 is small.
そして、 第 8図 ( b ) に示すよ うに、 プランジャ 2 0 1が吸引さ れ、 ある程度センタポス ト 2 0 2の凹部 2 2 1 にプランジャ 2 0 1 が入り込んだ場合には、 プランジャ 2 0 1 が入り込んだ位置までの 環状吸引部 2 2 2の断面積は大きく なつて行き、 環状吸引部 2 2 2 を通過する磁束が増加するので、 磁気力 M l も大きく なる。  Then, as shown in FIG. 8 (b), when the plunger 201 is sucked and the plunger 201 enters into the concave portion 221 of the center post 202 to some extent, the plunger 201 is moved. The cross-sectional area of the ring-shaped suction part 222 increases to the position where it enters, and the magnetic flux passing through the ring-shaped suction part 222 increases, so that the magnetic force Ml also increases.
しかし、 磁気力 M l は、 プランジャ 2 0 1 がセンタポス ト 2 0 2 の凹部 2 2 1 に入り込む程外周に向かう方向に傾く、 即ち、 傾斜角 度 0が大きく なるため、 吸引力 Fと しての磁気力 M lの軸方向成分 M l c o s Θ は第 8図 ( a ) と同様な大きさに保たれる。 さ らに、 第 8図 ( c ) に示すよ うに、 センタポス ト 2 0 2の凹部 2 2 1 にプランジャ 2 0 1が入り込んだ場合には、 磁束は環状吸引 部 2 2 2を通過するだけでなく 凹部端面 2 2 1 a とプランジャ端面 2 0 1 a間も通過するようになる。 However, the magnetic force Ml is inclined in the direction toward the outer periphery as the plunger 201 enters the concave portion 221 of the center post 202, that is, the inclination angle 0 increases, so that the attractive force F The axial component M lcos の of the magnetic force M l is maintained at the same magnitude as in FIG. 8 (a). Further, as shown in FIG. 8 (c), when the plunger 201 enters the concave portion 221 of the center post 202, the magnetic flux only passes through the annular attracting portion 222. Without passing between the concave end face 2 21 a and the plunger end face 201 a.
このため、 環状吸引部 2 2 2を通過する磁束による磁気力 M l は 径方向に傾き、 磁気力 M 1の大きさ 自体も小さ く、 磁気力 M lの軸 方向成分 M l c o s 0は少ないが、 凹部端面 2 2 1 a とプランジャ 端面 2 0 1 a 間を通過する磁束による磁気力 M 2 も働く。 よって、 吸引力 Fは磁気力 M 1の軸方向成分 M l c o s Θ と軸方向成分だけ を有する磁気力 M 2の総和となり、 第 8図 ( a ) , ( b ) と同様な 大きさに保たれる。  For this reason, the magnetic force M l due to the magnetic flux passing through the annular suction part 2 2 2 tilts in the radial direction, the magnitude of the magnetic force M 1 itself is small, and the axial component M lcos 0 of the magnetic force M l is small, but However, a magnetic force M 2 due to a magnetic flux passing between the concave end face 22 1 a and the plunger end face 201 a also acts. Therefore, the attractive force F is the sum of the axial component M lcos の of the magnetic force M 1 and the magnetic force M 2 having only the axial component, and is maintained at the same magnitude as in FIGS. 8 (a) and 8 (b). It is.
なお、 第 8図 ( c ) 力、ら、 さ らにセンタポス ト 2 0 2の凹部 2 2 1 にプランジャ 2 0 1が入り込む場合には、 凹部端面 2 2 1 a とプ ランジャ端面 2 0 1 a間の隙間が狭ま り磁気力 M 2が大き く なるが 、 コイル 2 0 3 に電流が供給されて発生する磁束が飽和しており、 凹部 2 2 1 にプランジャ 2 0 1 が入り込む程環状吸引部 2 2 2を通 過する磁束の割合が増加し凹部端面 2 2 1 a とプランジャ端面 2 0 1 a間を通過する磁束の割合が減少するので、 磁気力 M 2の増加が 適度に抑えられ、 磁気力 M 2の増加分がさ らに径方向に傾く磁気力 M lの軸方向成分 M l c o s 0 の減少分に相当 し、 磁気力 M l の軸 方向成分 M l c o s Θ と磁気力 M 2の総和である吸引力 Fは第 8図 ( a ) , ( b ) ' , ( c ) と同様な大きさに保たれる。  In addition, in FIG. 8 (c), when the plunger 201 enters the concave portion 221 of the center post 202, the concave end surface 221a and the plunger end surface 201a The magnetic force M2 increases due to the narrowing of the gap between them.However, the magnetic flux generated by supplying current to the coil 203 is saturated, and the more the plunger 201 enters the recessed portion 210, the more the circular suction occurs. Since the ratio of the magnetic flux passing through the part 2 222 increases and the ratio of the magnetic flux passing between the recess end surface 2 21 a and the plunger end surface 201 a decreases, the increase in the magnetic force M 2 is moderately suppressed. The increase in the magnetic force M 2 corresponds to the decrease in the axial component M lcos 0 of the magnetic force M l that further tilts in the radial direction, and the axial component M lcos の of the magnetic force M l and the magnetic force M 2 The suction force F, which is the sum of the above, is maintained at the same magnitude as in FIGS. 8 (a), (b) ', and (c).
そして、 過剰にセンタポス ト 2 0 2の凹部 2 2 1 にプランジャ 2 0 1 が入り込み過ぎることは、 リニア域 (コン トロールゾーン) を 超えてしまい、 急激に吸引力 Fが増加して、 バルブコン トロールが できなく なるため、 凹部 2 2 1 に第 2軸受 2 1 0を介在させて、 プ ランジャ 2 0 1 が過剰に入り込み過ぎることを防止している。 近年では、 搭載スペースの削減等のためにソレノ ィ ドバルブの小 型化が要求されている。 If the plunger 201 excessively enters the concave portion 221 of the center post 202 excessively, the plunger 201 exceeds the linear region (control zone), and the suction force F sharply increases, and the valve control is reduced. Since it becomes impossible, the second bearing 2100 is interposed in the recess 2221 to prevent the plunger 201 from entering too much. In recent years, downsizing of solenoid valves has been required to reduce the mounting space.
しかしながら、 上記従来技術のソレノィ ドバルブ 2 0 0の径方向 を単純に小型化した場合には、 センタポス ト 2 0 2 の環状吸引部 2 2 2やプランジャ 2 0 1 の断面積が小さく なつてしまレ、、 多く の磁 束を流すために必要となる大きな磁路断面積が十分取れなくなり、 通過する磁束が減少して磁気力が減少することによって、 吸引力 F が減少する。  However, if the radial direction of the conventional solenoid valve 200 is simply reduced in size, the cross-sectional area of the annular suction portion 222 and the plunger 201 of the center post 202 becomes small. However, a large magnetic path cross-sectional area required for flowing a large amount of magnetic flux cannot be obtained sufficiently, and the magnetic flux passing therethrough decreases to decrease the magnetic force, thereby reducing the attractive force F.
このため、 コィノレ 2 0 3 に高電流を供給したり、 コィノレ 2 0 3 の 巻数を增加したりする対策がある。 しかし、 高電流をコイル 2 0 3 に供給する対策では、 搭載装置に過度の負担を強いることになり、 さ らに高電流領域では磁束が増加し難く電流変化に対する吸引力 F 変化が小さく なつてしま う。 また、 コイル 2 0 3 の卷数を増加する 対策では、 卷数の増加によ り コイル 2 0 3の外径或いは軸長が大き く なつてしまい、 小型化と相反してしまう。  For this reason, there are measures to supply a high current to the coil 203 and to increase the number of turns of the coil 203. However, measures to supply a high current to the coil 203 impose an excessive load on the mounted device, and furthermore, the magnetic flux does not easily increase in the high current region, and the change in the attractive force F with respect to the current change becomes small. I will. In addition, in the measures for increasing the number of turns of the coil 203, the outer diameter or the axial length of the coil 203 increases due to the increase in the number of turns, which is contrary to miniaturization.
本発明は上記の従来技術の課題を解決するためになされたもので 、 その目的とすると ころは、 リニア特性を得つつ、 吸引力の増大を 図り、 さ らに小型化が可能な信頼性に優れたリ ニアソレノィ ド及び ソレノィ ドバルブを提供することにある。 発明の開示  The present invention has been made to solve the above-mentioned problems of the prior art. The purpose of the present invention is to obtain a linear characteristic, increase an attraction force, and further reduce the size and reliability of the device. It is to provide an excellent linear solenoid and a solenoid valve. Disclosure of the invention
本発明のリニアソレノィ ドは、  The linear solenoid of the present invention
固定配置されたセンタボス ト と、 該センタボス ト と軸方向に対向 配置されて励磁手段による磁気力によって前記センタボス トへ向け て軸方向に吸引されるプランジャと、 を備え、  A fixedly arranged center bolt; and a plunger disposed axially opposite to the center bolt and attracted in the axial direction toward the center bolt by a magnetic force of an exciting unit.
前記プランジャをセンタポス トへ向けて軸方向に吸引する吸引力 がリニア特性であるリニアソレノィ ドにおいて、 前記センタボス トに、 前記プランジャ側端面に前記ブランジャが 出入りする凹部を形成し、 該凹部の外周部に環状吸引部を設け、 該環状吸引部に、 外周にブランジャ側に向けて縮径する外周テー パ部と、 内周にプランジャ側に向けて拡径する内周テーパ部と、 を 形成し、 In a linear solenoid, wherein a suction force for suctioning the plunger toward a center post in an axial direction has a linear characteristic, A recess in which the plunger enters and exits is formed on the plunger-side end surface of the center boss. An annular suction portion is provided on an outer peripheral portion of the recess. And a tapered portion on the inner periphery that expands in diameter toward the plunger side.
前記プランジャに、 前記センタボス 卜側外周に前記内周テーパ部 とほぼ等しく傾斜する吸引テーパ部を形成したことを特徴とする。 したがって、 ス トローク量が変動しても吸引力が一定となる リ ニ ァ特性を得つつ、 励磁手段による磁束を環状吸引部の内周テーパ部 とプランジャの吸引テーパ部間を通過させて、 磁気力の軸方向成分 を増加させ、 プランジャを軸方向に吸引する吸引力を大き くするこ とができる。  The plunger is characterized in that a suction taper portion is formed on the outer periphery of the center boss side, which is approximately equal to the inner taper portion. Therefore, while obtaining a linear characteristic in which the attraction force is constant even if the stroke amount fluctuates, the magnetic flux by the excitation means is passed between the inner peripheral taper portion of the annular attraction portion and the attraction taper portion of the plunger, and the magnetic force is reduced. By increasing the axial component of the force, the suction force for suctioning the plunger in the axial direction can be increased.
また、 この効果は、 環状吸引部の根元の断面積をプランジャ断面 積よ り も小さ く しても発揮されるので、 センタボス トの外径 (環状 吸引部の外径) を小さくするこ とができる分、 径方向に小型化して も、 リニア特性を得つつ、 吸引力を大きくすることができる。  Also, this effect is exhibited even when the cross-sectional area at the root of the annular suction section is smaller than the cross-sectional area of the plunger, so that the outer diameter of the center boss (the outer diameter of the annular suction section) can be reduced. As much as possible, even if the size is reduced in the radial direction, the suction force can be increased while obtaining linear characteristics.
前記外周テーパ部を軸方向から略 2 0度前後傾け、 前記内周テー パ部を軸方向から 1 0度以下の範囲で傾けた設定と したことが好適 である。  It is preferable that the outer peripheral taper is inclined approximately 20 degrees from the axial direction, and the inner peripheral taper is inclined within 10 degrees or less from the axial direction.
これにより、 環状吸引部のプランジャ側の断面積を徐々に小さ く して磁束を絞る作用と磁気力の軸方向成分を増加させる作用を同時 に行う環状吸引部の内周テーパ部と、 環状吸引部のプランジャ側の 断面積を徐々に小さ く して磁束を絞る作用を行う外周テーパ部との 相関関係を考慮すると共に、 外周テーパ部を軸中心に向かう方向に 傾ける程、 及び内周テーパ部を外周に向かう方向に傾ける程、 ブラ ンジャのス トローク量が大きいと吸引力が減少する特性となってし ま う ことを考慮して、 外周テーパ部及び内周テーパ部の傾きを設定 することができ、 リニア特性を得つつ、 吸引力を大き くすることが でき、 さ らに小型化が可能となる。 This makes it possible to gradually reduce the cross-sectional area of the annular suction section on the plunger side, thereby reducing the magnetic flux and simultaneously increasing the axial component of the magnetic force. In consideration of the correlation with the outer tapered part that reduces the magnetic flux by gradually reducing the cross-sectional area of the part on the plunger side, the more the outer tapered part is inclined toward the axis center, and the more the inner tapered part becomes The inclination of the outer peripheral taper and inner peripheral taper is set in consideration of the fact that as the angle of inclination of the plunger toward the outer circumference increases, the suction force will decrease if the stroke of the plunger increases. The suction force can be increased while obtaining linear characteristics, and further downsizing can be achieved.
本発明のソレノィ ドバルブは、  The solenoid valve of the present invention
固定配置されたセンタボス ト と、 該センタポス ト と軸方向に対向 配置されて励磁手段による磁気力によつて前記センタボス トへ向け て軸方向に吸引されるプランジャと、 を備え、  A fixedly arranged center post, and a plunger disposed axially opposite to the center post and axially attracted toward the center post by a magnetic force of an exciting means,
前記プランジャをセンタポス トへ向けて軸方向に吸引する吸引力 がリニア特性であるソレノイ ドバルブにおいて、  A solenoid valve in which a suction force for suctioning the plunger toward a center post in an axial direction has a linear characteristic.
前記センタボス トに、 前記ブランジャ側端面に前記プランジャが 出入りする凹部を形成し、 該凹部の外周部に環状吸引部を設け、 該環状吸引部に、 外周にブランジャ側に向けて縮径する外周テー パ部と、 内周にプランジャ側に向けて拡径する内周テーパ部と、 を 形成し、  A concave portion is formed in the center boss at an end surface of the plunger on the side of the plunger, and an annular suction portion is provided on an outer peripheral portion of the concave portion. And a tapered portion on the inner periphery that expands in diameter toward the plunger side.
前記プランジャに、 前記センタボス ト側外周に前記内周テーパ部 とほぼ等しく傾斜する吸引テーパ部を形成したことを特徴とする。 したがって、 ス トローク量が変動しても吸引力が一定となる リ ニ ァ特性を得つつ、 励磁手段による磁束を環状吸引部の内周テーパ部 とプランジャの吸引テーパ部間を通過させて、 磁気力の軸方向成分 を増加させ、 プランジャを軸方向に吸引する吸引力を大き くするこ とができる。  The plunger is characterized in that a suction taper portion is formed on an outer periphery of the center boss side, which is inclined substantially equal to the inner peripheral taper portion. Therefore, while obtaining a linear characteristic in which the attraction force is constant even if the stroke amount fluctuates, the magnetic flux by the excitation means is passed between the inner peripheral taper portion of the annular attraction portion and the attraction taper portion of the plunger, and the magnetic force is reduced. By increasing the axial component of the force, the suction force for suctioning the plunger in the axial direction can be increased.
また、 この効果は、 環状吸引部の根元の断面積をプランジャ断面 積よ り も小さ く しても発揮されるので、 センタポス トの外径 (環状 吸引部の外径) を小さくすることができる分、 径方向を小型化して も、 リニア特性を得つつ、 吸引力を大きくすることができる。  In addition, this effect is exerted even when the cross-sectional area at the root of the annular suction portion is smaller than the cross-sectional area of the plunger, so that the outer diameter of the center post (the outer diameter of the annular suction portion) can be reduced. Even if the size is reduced in the radial direction, the suction force can be increased while obtaining linear characteristics.
前記外周テーパ部を軸方向から略 2 0度前後傾け、 前記内周テー パ部を軸方向から 1 0度以下の範囲で傾けた設定と したことが好適 である。 これによ り、 環状吸引部のプランジャ側の断面積を徐々に小さ く して磁束を絞る作用と磁気力の軸方向成分を増加させる作用を同時 に行う環状吸引部の内周テーパ部と、 環状吸引部のプランジャ側の 断面積を徐々に小さ く して磁束を絞る作用を行う外周テーパ部との 相関関係を考慮すると共に、 外周テーパ部を軸中心に向かう方向に 傾ける程、 及び内周テーパ部を外周に向かう方向に傾ける程、 ブラ ンジャのス トローク量が大きいと吸引力が減少する特性となってし ま う ことを考慮して、 外周テ一パ部及び内周テーパ部の傾きを設定 することができ、 リ ニア特性を得つつ、 吸引力を大き くすることが でき、 さ らに小型化が可能となる。 図面の簡単な説明 It is preferable that the outer peripheral taper is inclined approximately 20 degrees from the axial direction, and the inner peripheral taper is inclined within 10 degrees or less from the axial direction. This makes it possible to gradually reduce the cross-sectional area of the annular suction portion on the plunger side to reduce the magnetic flux and simultaneously increase the axial component of the magnetic force. In consideration of the correlation with the outer peripheral taper part that reduces the magnetic flux by gradually reducing the cross-sectional area of the annular suction part on the plunger side, the more the outer peripheral taper part is inclined toward the axis center, and the more the inner peripheral part Considering that the more the taper section is inclined toward the outer circumference, the greater the stroke of the plunger, the more the suction force will decrease. The suction force can be increased while obtaining linear characteristics, and further downsizing can be achieved. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 実施の形態に係るソ レノィ ドバルブを示す概略構成断 面図であり、  FIG. 1 is a schematic configuration sectional view showing a solenoid valve according to an embodiment,
第 2図は、 実施の形態に係るソレノィ ドバルブの要部を示す拡大 断面図であり、  FIG. 2 is an enlarged sectional view showing a main part of the solenoid valve according to the embodiment,
第 3図は、 実施の形態に係る ソレノィ ドバルブがリ ユア域を得る 作用を示す説明図であり、  FIG. 3 is an explanatory diagram showing the operation of the solenoid valve according to the embodiment to obtain a reuse area;
第 4図は、 実施の形態に係るソレノイ ドバルブで、 センタポス ト とプランジャの位置関係と、 ス トローク量一吸引力特性と、 電流量 一吸引力特性と、 の関係を示す図であり、  FIG. 4 is a diagram showing a solenoid valve according to the embodiment, showing a relationship between a positional relationship between a center post and a plunger, a stroke amount-attraction force characteristic, and a current amount-attraction force characteristic.
第 5図は、 実施の形態に係るソレノィ ドバルブと比較例とを比較 して吸引力とス トローク量との関係を示す特性図であり、  FIG. 5 is a characteristic diagram showing the relationship between the suction force and the stroke amount by comparing the solenoid valve according to the embodiment with a comparative example.
第 6図は、 リニア域を有する吸引力とス トローク量との関係を示 す全体特性図であり、  FIG. 6 is an overall characteristic diagram showing a relationship between a suction force having a linear region and a stroke amount.
第 7図は、 従来技術に係るソ レノィ ドバルブを示す概略構成断面 図であり、 第 8図は、 従来技術に係るソレノィ ドバルブがリ二ァ域を得る作 用を示す説明図である。 発明を実施するための最良の形態 FIG. 7 is a schematic sectional view showing the construction of a solenoid valve according to the prior art. FIG. 8 is an explanatory view showing the operation of a solenoid valve according to the prior art to obtain a linear region. BEST MODE FOR CARRYING OUT THE INVENTION
以下に図面を参照して、 この発明の最良な実施の形態を例示的に 詳しく説明する。 ただし、 この実施の形態に記載されている構成部 品の寸法、 材質、 形状、 その相対配置などは、 特に特定的な記載が ない限り は、 この発明の範囲をそれらのみに限定する趣旨のもので はない。  DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Exemplary embodiments of the present invention will be described in detail below with reference to the accompanying drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are intended to limit the scope of the present invention only to them. is not.
第 1図を参照して、 本発明の実施の形態に係るソレノィ ドバルブ について説明する。 第 1 図 1 は実施の形態に係るソレノィ ドバルブ の概略構成断面図である。 第 2 図は実施の形態に係るソレノィ ドバ ルブの要部を示す拡大断面図である。  A solenoid valve according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration sectional view of a solenoid valve according to an embodiment. FIG. 2 is an enlarged cross-sectional view showing a main part of a solenoid valve according to the embodiment.
ソ レノ ィ ドバルブ 1 0 0 は、 リ ニアソ レノィ ドである ソ レノィ ド 部 1 0 0 Aとバルブ部 1 0 0 Bとから構成される。  The solenoid valve 100 is composed of a solenoid part 100 A and a valve part 100 B which are linear solenoids.
こ こで、 バルブ部 1 0 0 Bはスプールバノレブであ り 、 バノレブ部本 体となるバルブス リーブ 1 6の内部にスプール 1 5が往復動自在に 備えられており、 このスプール 1 5 のス ト ローク位置に応じてバル プス リーブ 1 6に形成した開口部の開口面積、 即ち開弁量が変化す るため、 ソレノィ ド部 1 0 O Aによ り スプール 1 5 のス ト ローク量 を制御することによって、 流体の流入量や流出量を制御できる構成 となっている。  Here, the valve portion 100B is a spool vano-reve, and a spool 15 is provided inside a valve sleeve 16 which is a main body of the vano-reb portion so as to be able to reciprocate freely. Since the opening area of the opening formed in the valve sleeve 16 in accordance with the stroke position, that is, the valve opening amount changes, the stroke amount of the spool 15 is controlled by the solenoid portion 10 OA. This makes it possible to control the inflow and outflow of fluid.
ソ レノ ィ ド部 1 0 O Aは、 概略、 励磁手段と してのコイル 3 と、 コイル 3への通電によってセンタボス ト 2に磁気的に吸引されるプ ランジャ 1 と、 吸引されたプランジャ 1の移動をバルブ部 1 0 O B (具体的にはスプール 1 5 ) に伝達するためにプランジャ 1 に連結 されたロ ッ ド 7 と、 各種ソレノィ ド構成部材を組み込むためのケ一 ス 9 と、 コイル 3に電流を給電するために外部電源に接続される端 子 1 7 a をィンサー トモールドしたコネクタ 1 7 と、 を備えている また、 コイル 3が巻かれるボビン 6 と、 ボビン 6 の内側に配置さ れてプランジャ 1 をガイ ドするス リーブ 4 と、 プランジャ 1がセン タポス ト 2から離間し易くするためのシム 8 と、 バルブ部 1 0 0 B 内部からコイル 3側への流体の漏れを防止するパッキン 1 0 と、 磁 路を形成するァツバプレー ト 1 1 と、 同じく磁路を形成すると共に ソレノィ ドバルブ 1 0 0本体を所定の位置に固定するためのブラケ ッ トプレート 1 2 とを備えている。 The solenoid section 10 OA is roughly composed of a coil 3 as an exciting means, a plunger 1 magnetically attracted to the center boss 2 by energizing the coil 3, and a movement of the attracted plunger 1. Rod 7 connected to the plunger 1 for transmitting the pressure to the valve section 10 OB (specifically, the spool 15), and a casing for incorporating various solenoid components. 9 and a connector 17 in which terminals 17a connected to an external power supply for supplying current to the coil 3 are insert-molded.The bobbin 6 around which the coil 3 is wound, and the bobbin 6 Sleeve 4 that guides the plunger 1 and is positioned inside the valve, a shim 8 that makes it easier for the plunger 1 to separate from the center post 2, and a fluid that flows from inside the valve section 100B to the coil 3 side. And a bracket plate 11 for forming a magnetic path and fixing the solenoid valve 100 body at a predetermined position. It has.
更に、 ロッ ド 7の軸受 1 3 と、 スプール 1 5に固定された E型リ ング 1 8を付勢することによつてスプール 1 5 と共にロッ ド 7 を介 してプランジャ 1 をセンタボス ト 2から離間させる方向に付勢する スプリ ング 1 4 と、 を備えている。  Further, by urging the bearing 13 of the rod 7 and the E-ring 18 fixed to the spool 15, the plunger 1 is moved together with the spool 15 through the rod 7 from the center post 2. And a spring 14 for urging in a direction to separate the spring.
ここで、 プランジャ 1 は、 通常状態、 即ちコィノレ 3に通電してい ない状態では、 E型リ ング 1 8 を介してスプール 1 5をソレノィ ド 部 1 0 O A方向に付勢することによって、 プランジャ 1はセンタポ ス ト 2から離間され、 センタボス ト 2から離間する方向に位置する 構成となっている。  Here, in a normal state, that is, in a state where power is not supplied to the coil 3, the plunger 15 is urged in the direction of the solenoid section 10 OA through the E-shaped ring 18, whereby the plunger 1 is moved. Are separated from the center post 2 and located in a direction away from the center post 2.
そして、 コィノレ 3に電流を供給することによってコイル 3が磁界 を発生し、 センタポス ト 2, ブラケッ トプレー ト 1 2, ケース 9 , アツパプレー ト 1 1 , プランジャ 1 , センタポス ト 2に戻るよ うな 磁路が形成され、 プランジャ 1 はセンタボス ト 2に磁気的に吸引さ れる。  By supplying a current to the coil 3, the coil 3 generates a magnetic field, and a magnetic path returning to the center post 2, the bracket plate 12, the case 9, the upper plate 11, the plunger 1, and the center post 2 is formed. Once formed, plunger 1 is magnetically attracted to center boss 2.
プランジャ 1がセンタボス ト 2に磁気的に吸引される吸引力 Fは 、 プランジャ 1 とセンタポス ト 2間のス トロ一ク量 S tが変動して も吸引力 Fが一定となっている。 このよ うなス トローク量 S t に対 して吸引力 Fが一定のリニア特性を有するものがリ ニアソ レノイ ド である。 The attraction force F that causes the plunger 1 to be magnetically attracted to the center post 2 is constant even when the stroke amount St between the plunger 1 and the center post 2 fluctuates. With respect to such a stroke amount St, The linear solenoid with a constant suction force F is linear solenoid.
ここで、 リ ニアソ レノイ ドについて説明すると、 リニア ( L I N E A R ) とは、 直線性を意味し、 リ ニアソ レノイ ドは電流に比例し て直線的に吸引力が増加するソ レノイ ドのことを指している (リ ニ ァソ レノイ ドは別名、 比例ソ レノイ ドともいう) 。  Here, to explain the linear solenoid, LINEAR means linearity, and linear solenoid refers to a solenoid whose suction force increases linearly in proportion to the current. (The linear solenoid is also called the proportional solenoid).
また、 この直線的な特性 ( I — F特性) 力 S、 あるス ト ローク範囲 で同様な直線的特性 ( I — F特性) となっている部分 (ス トロ一ク に対する吸引力 Fが一定な部分) をリニア域と一般に呼んでいる ( リ ニア域は、 ソ レノイ ドバノレブのコン ト ローノレゾーンであ り 、 この リニア域を用いた特性がリユア特性である) 。  In addition, this linear characteristic (I-F characteristic) force S, and the portion with similar linear characteristic (IF characteristic) in a certain stroke range (the suction force F to the stroke is constant) The linear region is generally called a linear region (the linear region is a control zone of a solenoid-vanalev, and a characteristic using this linear region is a characteristic of the lower region).
なお、 吸引力 Fの全体特性は、 第 6図に示すよ うに、 途中のコン トロールゾーンではス トローク量 S tが変動しても吸引力 Fが一定 となるが、 コン トロールゾーンよ り もプランジャ 1 がセンタボス ト 2から遠く離れた側では、 ス トローク量 S tが増加する程吸引力 F が低下する。 また、 コン トロールゾーンを超えてプランジャ 1 がセ ンタポス ト 2に近づく側では、 近づき過ぎる程吸引力 Fが増加する 。 このため、 実際のソレノイ ドバルブ 1 0 0では、 プランジャ 1 は 第 6図のコン トロールゾーンの領域だけをス トローク可能に設定さ れている。  As shown in Fig. 6, the overall characteristics of the suction force F are constant in the middle control zone even if the stroke amount St fluctuates, but the plunger is larger than in the control zone. On the side where 1 is far from the center boss 2, the suction force F decreases as the stroke amount St increases. On the side where the plunger 1 approaches the center post 2 beyond the control zone, the suction force F increases as the plunger 1 approaches too far. For this reason, in the actual solenoid valve 100, the plunger 1 is set to be able to stroke only in the region of the control zone in FIG.
そして、 コイル 3に供給する電流の量によって吸引力 Fを連続的 に制御し、 第 6図のコン ト ロールゾーンに示すよ うに、 吸引力 F と スプリ ング 1 4のスプリ ング力とをバランスさせ、 これによ り吸引 力 Fとスプリ ング力とのバランス位置でプランジャ 1 を停止させて ス トローク量 S t を制御することで、 スプール 1 5 のス トローク位 置を制御し、 スプール 1 5のス ト ローク位置に応じた開弁量で流体 の流量を制御し、 油圧制御などの各種流体圧力制御等を行う ことが できるとレヽぅ ものである。 Then, the suction force F is continuously controlled by the amount of current supplied to the coil 3, and as shown in the control zone of FIG. 6, the suction force F and the spring force of the springs 14 are balanced. Thus, the stroke position of the spool 15 is controlled by stopping the plunger 1 at the balance position between the suction force F and the spring force and controlling the stroke amount St, thereby controlling the stroke position of the spool 15. Various fluid pressure controls such as hydraulic pressure control can be performed by controlling the fluid flow rate with the valve opening amount according to the stroke position. If possible, it will be something.
次に、 本実施の形態に係るソ レノィ ドバルブ 1 0 0のス トローク 量 S tが変動しても吸引力 Fが一定となる リニア域を用いたリ ニア 特性を得る構成について説明する。  Next, a configuration for obtaining linear characteristics using a linear region in which the suction force F is constant even if the stroke amount St of the solenoid valve 100 according to the present embodiment fluctuates will be described.
本実施の形態に係るソレノィ ドバルブ 1 0 0の場合には、 センタ ボス ト 2のプランジャ 1側端面にプランジャ 1が出入りする凹部 2 1 を形成し、 凹部 2 1の外周部に環状吸引部 2 2を設けている。 こ の環状吸引部 2 2の根元の断面積は、 プランジャ 1断面積よ り も小 さく設定される。  In the case of the solenoid valve 100 according to the present embodiment, a concave portion 21 through which the plunger 1 enters and exits is formed on the end face of the center boss 2 on the side of the plunger 1, and an annular suction portion 2 2 is formed on the outer peripheral portion of the concave portion 21. Is provided. The cross-sectional area at the root of the annular suction section 22 is set smaller than the cross-sectional area of the plunger 1.
そして、 環状吸引部 2 2には、 外周にプランジャ 1側に向けて縮 径する外周テーパ部 2 2 a と、 内周にプランジャ 1側に向けて拡径 する内周テーパ部 2 2 b と、 を形成した構成である。 また、 プラン ジャ 1は、 センタボス ト 2側外周に環状吸引部 2 2の内周テーパ部 2 2 b と等しく傾斜する吸引テーパ部 1 a を形成した構成である。 この場合のリニア域で動作させる リ ニア特性を得る作用について 説明する。 第 3図は実施の形態に係るソレノィ ドバルブがリニア特 性を得る作用を示す説明図である。  The annular suction portion 22 has an outer peripheral tapered portion 22 a on the outer periphery that decreases in diameter toward the plunger 1, and an inner peripheral taper portion 2 2 b on the inner periphery that increases in diameter toward the plunger 1. Is formed. Further, the plunger 1 has a configuration in which a suction taper portion 1a that is inclined at the same angle as the inner peripheral taper portion 22b of the annular suction portion 22 is formed on the outer periphery of the center boss 2 side. The effect of obtaining the linear characteristics operating in the linear region in this case will be described. FIG. 3 is an explanatory view showing the operation of the solenoid valve according to the embodiment for obtaining linear characteristics.
まず、 第 3図 ( a ) に示すよ うに、 ス ト ローク量 S tが大きい場 合には、 コイル 3に電流が供給されて発生した磁束が主にセンタポ ス ト 2の環状吸引部 2 2を通過してセンタボス ト 2 とプランジャ 1 の間に磁気力 M lが働き、 その磁気力 M l の軸方向成分 M 1 c o s 0がプランジャ 1 をセンタポス ト 2に吸引する吸引力 F となる。 この時、 外周テーパ部 2 2 a及び内周テーパ部 2 2 bで環状吸引 部 2 2のプランジャ 1側の断面積を徐々に小さ く しており、 環状吸 引部 2 2のプランジャ 1側先端を通過する磁束が絞られているので 、 磁気力 M 1は小さレ、。  First, as shown in FIG. 3 (a), when the stroke amount St is large, the magnetic flux generated by supplying current to the coil 3 is mainly generated by the annular suction portion 2 2 of the center post 2. , A magnetic force Ml acts between the center boss 2 and the plunger 1, and an axial component M 1 cos 0 of the magnetic force Ml becomes a suction force F for attracting the plunger 1 to the center post 2. At this time, the cross-sectional area of the annular suction portion 22 on the plunger 1 side is gradually reduced by the outer peripheral taper portion 22a and the inner peripheral taper portion 22b, and the tip of the annular suction portion 22 on the plunger 1 side is gradually reduced. Since the magnetic flux passing through is narrowed, the magnetic force M 1 is small.
ここで、 本実施の形態では、 環状吸引部 2 2の根元の断面積がプ ランジャ 1断面積よ り も小さいために、 コイル 3に電流が供給され て発生する全体の磁束が減少しているが、 磁束は環状吸引部 2 2の 内周テーパ部 2 2 b とプランジャ 1 の吸引テーパ部 1 a間を通過す るため、 磁気力 M l は軸方向成分 M l c o s 0 が増加し、 大きな吸 引力 Fを得ることができる。 Here, in the present embodiment, the cross-sectional area at the root of the annular suction portion 22 is Since the current is supplied to the coil 3, the overall magnetic flux generated by the coil 3 is smaller than the cross-sectional area of the lancer 1, but the magnetic flux is reduced by the inner peripheral taper portion 2 2 b of the annular suction portion 22 and the plunger 1. Since the magnetic force Ml passes through the space between the suction tapered portions 1a, the axial component Mlcos0 increases, and a large suction force F can be obtained.
そして、 第 3図 ( b ) に示すよ うに、 プランジャ 1 が吸引され、 ある程度センタボス ト 2の凹部 2 1 にプランジャ 1 が入り込んだ場 合には、 プランジャ 1が入り込んだ位置までの環状吸引部 2 2の断 面積は大きく なつて行き、 環状吸引部 2 2を通過する磁束が増加す るので、 磁気力 M l も大きく なる。  Then, as shown in FIG. 3 (b), when the plunger 1 is sucked and the plunger 1 enters the recess 21 of the center boss 2 to some extent, the annular suction portion 2 reaches the position where the plunger 1 enters. The cross-sectional area of No. 2 increases, and the magnetic flux passing through the annular suction portion 22 increases, so that the magnetic force Ml also increases.
しかし、 磁気力 M l は、 プランジャ 1がセンタポス ト 2の凹部 2 1 に入り込む程径方向に傾く 、 即ち、 傾斜角度 0が大きく なるため 、 吸引力 F と しての磁気力 M l の軸方向成分 M l c o s 0 は第 3図 ( a ) と同様な大きさに保たれる。  However, the magnetic force Ml is inclined in the radial direction as the plunger 1 enters the concave portion 21 of the center post 2, that is, the inclination angle 0 increases, so that the axial direction of the magnetic force Ml as the attractive force F The component M lcos 0 is kept the same size as in FIG. 3 (a).
さ らに、 第 3図 ( c ) に示すよ うに、 センタポス ト 2の凹部 2 1 にプランジャ 1が入り込んだ場合には、 磁束は環状吸引部 2 2を通 過するだけでなく凹部端面 2 1 a とプランジャ端面 1 b間も通過す るよ うになる。  Further, as shown in FIG. 3 (c), when the plunger 1 enters the concave portion 21 of the center post 2, the magnetic flux not only passes through the annular suction portion 22 but also the concave end surface 21. It will also pass between a and the plunger end face 1b.
このため、 環状吸引部 2 2を通過する磁束による磁気力 M l は径 方向に傾き、 磁気力 M 1の大きさ自体も小さく 、 磁気力 M lの軸方 向成分 M 1 c o s 0 は少ないが、 凹部端面 2 1 a とプランジャ端面 1 b間を通過する磁束による磁気力 M 2 も働く。 よって、 吸引力 F は磁気力 M l の軸方向成分 M l c o s 0 と軸方向成分だけを有する 磁気力 M 2の総和となり、 第 3図 ( a ) , ( b ) と同様な大き さに 保たれる。  For this reason, the magnetic force Ml due to the magnetic flux passing through the annular suction part 22 is inclined in the radial direction, the magnitude itself of the magnetic force M1 is small, and the axial component M1cos0 of the magnetic force Ml is small. However, a magnetic force M 2 due to the magnetic flux passing between the concave end face 21a and the plunger end face 1b also acts. Therefore, the attractive force F is the sum of the axial component Mlcos 0 of the magnetic force Ml and the magnetic force M2 having only the axial component, and is maintained at the same magnitude as in FIGS. 3 (a) and 3 (b). It is.
なお、 第 3図 ( c ) から、 さ らにセンタポス ト 2の凹部 2 1 にプ ランジャ 1が入り込む場合には、 凹部端面 2 1 a とプランジャ端面 1 b間の隙間が狭ま り磁気力 M 2が大きく なるが、 コイル 3に電流 が供給されて発生した全体の磁束が飽和しており、 凹部 2 1 にプラ ンジャ 1 が入り込む程環状吸引部 2 2を通過する磁束の割合が増加 し凹部端面 2 1 a とプランジャ端面 1 b間を通過する磁束の割合が 減少するので、 磁気力 M 2 の増加が適度に抑えられ、 磁気力 M 2 の 増加分がさ らに径方向に傾く磁気力 M 1 の軸方向成分 M 1 c o s Θ の减少分に相当 し、 吸引力 Fは第 3図 ( a ) , ( b ) , ( c ) と同 様な大きさに保たれる。 In addition, from FIG. 3 (c), when the plunger 1 further enters the concave portion 21 of the center post 2, the concave end surface 21a and the plunger end surface Although the gap between 1b becomes narrower and the magnetic force M2 becomes larger, the entire magnetic flux generated by supplying current to the coil 3 is saturated, and the more the plunger 1 enters the recess 2 Since the ratio of magnetic flux passing through 22 increases and the ratio of magnetic flux passing between concave end face 21a and plunger end face 1b decreases, the increase in magnetic force M2 is moderately suppressed, and magnetic force M2 is reduced. The increase corresponds to a small amount of the axial component M 1 cos of the magnetic force M 1 that tilts further in the radial direction, and the suction force F is the same as in Figs. 3 (a), (b), and (c). Size is kept.
そして、 過剰にセンタポス ト 2の凹部 2 1 にプランジャ 1が入り 込み過ぎることは、 リニア域 (コン ト ロールゾーン) を超えてしま レ、、 急激に吸引力 Fが増加して、 バルブコン トロールができなく な るため、 凹部 2 1 に非磁性体のシム 8を介在させて、 プランジャ 1 が過剰に入り込み過ぎることを防止している。  Excessive penetration of the plunger 1 into the concave portion 2 1 of the center post 2 will exceed the linear range (control zone), and the suction force F will rapidly increase, and valve control will occur. In order to prevent the plunger 1 from becoming excessive, the plunger 1 is prevented from entering too much by interposing the nonmagnetic shim 8 in the recess 21.
なお、 本実施の形態に係るソ レノィ ドバルブ 1 0 0で、 吸引部に おけるセンタボス ト 2 と プランジャ 1 の位置関係と、 ス ト ローク量 S t —吸引力 F特性と、 電流量 I 一吸引力 F特性と、 の関係は、 第 4図に示すよ うになる。 第 4図の左上に示す電流量 I 一吸引力 F特 性では、 電流量 I に比例して吸引力 Fが増加する。 ただし、 実際は 低電流域にて、 少しであるが電流に対する吸引力の増加の割合が小 さ く なっている。  In the solenoid valve 100 according to the present embodiment, the positional relationship between the center boss 2 and the plunger 1 in the suction section, the stroke amount St—the suction force F characteristic, and the current amount I—the suction force Fig. 4 shows the relationship between the F characteristic and. In the characteristic of the current amount I-attraction force F shown in the upper left of FIG. 4, the attraction force F increases in proportion to the current amount I. However, in the low current region, the rate of increase of the attractive force with respect to the current is small, actually.
また、 第 4図から分かるよ うに、 ソレノ ィ ドバルブ 1 0 ◦を制御 する制御ス トローク範囲 (リニア域) よ り も広い領域に、 外周テ一 パ部 2 2 a及び内周テーパ部 2 2 bが設けられている。  Also, as can be seen from FIG. 4, the outer taper portion 22a and the inner taper portion 22b are located in a region wider than the control stroke range (linear region) for controlling the solenoid valve 10 °. Is provided.
このよ うに、 本実施の形態では、 コ ン ト ロールゾーン内、 即ちプ ランジャ 1 のス ト ローク可能領域で、 ス ト ローク量が変動しても吸 引力 Fが一定となる リニア域を用いたリニァ特性を得つつ、 磁束を 環状吸引部 2 2 の内周テーパ部 2 2 b とプランジャ 1 の吸引テーパ 部 1 a間を通過させて、 磁気力 M l の軸方向成分 M l c o s Θ を増 加させ、 プランジャ 1 を軸方向に吸引する吸引力 Fを大き くするこ とができる。 As described above, in the present embodiment, the linear region in which the suction force F is constant even when the stroke amount fluctuates is used in the control zone, that is, in the strokeable region of the plunger 1. While obtaining linear characteristics, the magnetic flux is applied to the inner peripheral taper portion 2 2 b of the annular suction portion 22 and the suction taper of the plunger 1. By passing between the parts 1a, the axial component M lcos の of the magnetic force M l can be increased, and the suction force F for sucking the plunger 1 in the axial direction can be increased.
なお、 環状吸引部 2 2 の内周テーパ部 2 2 bが、 環状吸引部 2 2 のプランジャ 1側の断面積を徐々に小さく して磁束を絞る作用と磁 気力 M l の軸方向成分 M l c o s 0 を増加させる作用を同時に行う ことから、 環状吸引部 2 2のプランジャ 1側の断面積を徐々に小さ く して磁束を絞る作用を行う外周テーパ部との相関関係を満たす必 要がある。  The inner peripheral taper portion 2 2b of the annular suction portion 22 gradually reduces the cross-sectional area of the annular suction portion 22 on the side of the plunger 1 to reduce the magnetic flux and the axial component M lcos of the magnetic force M l. Since the action of increasing 0 is performed at the same time, it is necessary to gradually reduce the cross-sectional area of the annular suction portion 22 on the plunger 1 side and satisfy the correlation with the outer peripheral taper portion that performs the action of reducing the magnetic flux.
このため、 リ ニア域を得つつ、 吸引力 Fを大きく得るためには、 上記の性質を考慮し、 環状吸引部 2 2に外周テーパ部 2 2 a と内周 テーパ部 2 2 bの両方を適正な設定で設ける必要がある。  For this reason, in order to obtain a large suction force F while obtaining a linear region, in consideration of the above properties, the annular suction portion 22 is provided with both the outer tapered portion 22 a and the inner tapered portion 22 b. It is necessary to set it with an appropriate setting.
特に良好であるのは、 外周テーパ部 2 2 a を軸方向から略 2 0度 前後傾け、 内周テーパ部 2 2 b を軸方向から 1 0度以下の範囲で傾 けた設定とすることが好適である。  It is particularly preferable that the outer taper portion 22a is inclined approximately 20 degrees from the axial direction, and the inner taper portion 22b is inclined 10 degrees or less from the axial direction. It is.
この場合について、 第 5図を用いて説明する。 第 5図では、 上部 にて外周テーパ部 2 2 a と内周テーパ部 2 2 bの角度の設定を説明 している。 すなわち、 第 5図では、 外周テーパ部 2 2 a を軸方向か ら a度と設定し、 内周テーパ部 2 2 bを軸方向から b度と設定して レヽる。  This case will be described with reference to FIG. FIG. 5 illustrates the setting of the angle between the outer peripheral tapered portion 22a and the inner peripheral tapered portion 22b at the upper part. That is, in FIG. 5, the outer taper portion 22a is set to a degree from the axial direction, and the inner taper portion 22b is set to b degree from the axial direction.
そして、 ( 1 ) が本実施の形態の上記で特に定めた範囲に該当す る場合で、 a を略 2 0度、 bを略 3度と した特性を示している。 これに対し、 ( 2 ) 〜 ( 5 ) は比較例であり、 ( 2 ) は a を 2 0 度以下、 bを略 3度と した特性を示し、 ( 3 ) は a を 2 0度以上、 bを略 3度と した特性を示し、 ( 4 ) は a を略 2 0度、 bを 1 0度 以上と した特性を示し、 ( 5 ) は a を略 2 0度、 b を略 0度と した 特性を示している。 ( 2 ) 〜 ( 5 ) 〖こは、 比較し易いよ うに、 破線 で ( 1 ) の特性も示した。 Then, (1) shows a case in which the value of “a” is approximately 20 degrees and the value of “b” is approximately 3 degrees in the case where the above-described range of the present embodiment is particularly defined. On the other hand, (2) to (5) are comparative examples, (2) shows characteristics in which a is less than 20 degrees and b is about 3 degrees, (3) shows that a is more than 20 degrees, (4) shows the characteristic when a is about 20 degrees, b is more than 10 degrees, and (5) shows the characteristic when a is about 20 degrees and b is about 0 degree. It shows the characteristics as follows. (2) to (5) The dashed lines are used for easy comparison. The characteristics of (1) were also shown.
このよ うに、 ( 2 ) 〜 ( 5 ) はコン トロールゾーンのリ ニア域の 確保が困難となってしま う。 また、 ( 5 ) では、 磁気力が低下して 吸引力が全体的に低く なるか、 または部分的にリ ニア域ができない ものとなってしま う。  As described above, in (2) to (5), it is difficult to secure the linear area of the control zone. Also, in (5), the magnetic force is reduced and the suction force is reduced as a whole, or the linear region cannot be partially formed.
以上の第 5図の説明からも明らかのよ うに、 外周テーパ部 2 2 a を軸方向から略 2 0度前後傾け、 内周テーパ部 2 2 b を軸方向から 1 0度以下の範囲で傾けた設定とすることで、 良好なリニア特性を 大きな吸引力で得ることができる。  As is clear from the above description of FIG. 5, the outer peripheral taper portion 22a is inclined approximately 20 degrees from the axial direction, and the inner peripheral taper portion 22b is inclined within 10 degrees or less from the axial direction. With this setting, good linear characteristics can be obtained with a large suction force.
一方、 環状吸引部 2 2の内周テーパ部 2 2 b とプランジャ 1 の吸 引テーパ部 1 a とが等しく傾いていることで、 内周テ一パ部 2 2 b と吸引テーパ部 1 a 間の対向する距離が全て均等となるので、 1箇 所に通過する磁束を集中させてしま う ことがなく、 磁束の余計な漏 れが防止され、 磁束を効率的に磁気力 M 1 とすることができる。 以上説明した本実施の形態では、 環状吸引部 2 2の根元の断面積 をプランジャ 1断面積よ り も小さく しているにもかかわらず、 リ ニ ァ域を用いたリ ニア特性を得つつ、 吸引力 Fを大き くすることがで さる。  On the other hand, since the inner taper portion 2 2 b of the annular suction portion 22 and the suction taper portion 1 a of the plunger 1 are equally inclined, the distance between the inner taper portion 22 b and the suction taper portion 1 a is increased. Since the distances facing each other are all equal, the magnetic flux passing through one location is not concentrated, unnecessary leakage of the magnetic flux is prevented, and the magnetic flux is efficiently converted to magnetic force M 1 Can be. In the present embodiment described above, although the cross-sectional area at the root of the annular suction section 22 is smaller than the cross-sectional area of the plunger 1, the linear characteristics using the linear area are obtained. The suction force F can be increased.
これによると、 従来技術と本実施の形態のソレノィ ドバルブを比 較した場合、 両方のプランジャが等しい外径であっても、 本実施の 形態ではプランジャ 1 よ り も一回り大きいセンタポス ト 2の外径 ( 環状吸引部 2 2の外径) を小さ くすることができる分、 本実施の形 態のソレノィ ドバルブ 1 0 0 を従来技術に比較して小型化すること ができる。  According to this, when comparing the conventional technology and the solenoid valve of the present embodiment, even if both plungers have the same outer diameter, the outer diameter of the center post 2 which is slightly larger than the plunger 1 in the present embodiment. Since the diameter (the outer diameter of the annular suction portion 22) can be reduced, the solenoid valve 100 of the present embodiment can be reduced in size as compared with the conventional technology.
実際の検証では、 本実施の形態のソレノィ ドバルブ 1 0 0を環状 吸引部 2 2の根元の断面積をブランジャ 1 断面積の 6 0 %に設定し 、 プランジャ 1 の外径を従来技術と同様の(ί» 1 O m mと した場合で は、 ソレノィ ドバルブ 1 0 0の外径は、 従来技術では φ 3 1 m mで あつたのに対して本実施の形態では Φ 2 8 m mと小型化することが できた。 In the actual verification, the solenoid valve 100 of the present embodiment was set so that the cross-sectional area of the root of the annular suction part 22 was set to 60% of the cross-sectional area of the plunger 1 and the outer diameter of the plunger 1 was the same as that of the prior art. (When ί »1 O mm The outer diameter of the solenoid valve 100 was φ31 mm in the prior art, whereas it was reduced to φ28 mm in the present embodiment.
そして、 この検証では、 本実施の形態のソレノイ ドバルブ 1 0 0 は、 環状吸引部 2 2の根元の断面積をブランジャ 1断面積の 6 0 % に設定したことから磁気力と して働く磁束は従来技術に比して減少 したと考えられるが、 プランジャ 1 に作用する吸引力 Fは従来技術 に比して 2 0 %上昇した。  According to this verification, the solenoid valve 100 of the present embodiment has a magnetic flux acting as a magnetic force because the cross-sectional area of the root of the annular suction part 22 is set to 60% of the cross-sectional area of the plunger 1. It is thought that the suction force F applied to the plunger 1 increased by 20% as compared with the conventional technology, although it is considered that the pressure decreased.
次に、 本実施の形態に係るソ レノィ ドバルブ 1 0 0の好適な適用 例について説明する。  Next, a preferred application example of the solenoid valve 100 according to the present embodiment will be described.
自動車等のエンジンにおいては、 エンジンの吸排気バルブをカム シャフ トの回転によってバルブ開閉を行うが、 運転状態 (高速 · 低 速) によって、 バルブのタイ ミ ングを適切に制御することによって 、 燃費が向上し、 高い排ガス清浄化を得ることが可能になる。  In engines such as automobiles, the intake and exhaust valves of the engine are opened and closed by rotation of camshafts. However, by controlling the valve timing appropriately according to the operating conditions (high speed / low speed), fuel efficiency can be reduced. It becomes possible to obtain high exhaust gas purification.
このバルブタイ ミ ングの制御は、 カムシャフ トを回転方向にずら して、 位相を変えることによ り行う ことができ、 これをソレノィ ド バルブによって行う技術が公知技術と して知られている。  This valve timing control can be performed by shifting the camshaft in the rotation direction and changing the phase, and a technique for performing this by a solenoid valve is known as a known technique.
こ こで、 カムシャフ トを回転方向にずらすために、 ソ レノイ ドバ ルブによる油圧制御を行う ことになるが、 配置スペース等の関係か らエンジンオイルの流路の経路上にソレノイ ドバルブが設置されて Here, in order to shift the cam shaft in the rotation direction, hydraulic control using a solenoid valve is performed.However, a solenoid valve is installed on the path of the engine oil flow path due to the layout space and other factors.
、 エンジンオイルを利用するのが一般的である。 It is common to use engine oil.
従来、 オンオフ制御を行う ソレノィ ドバルブを用いることによつ て、 高速時と低速時の 2種類の状態に分けて制御を行う ことがなさ れていたが、 近年、 よ り高精細な制御を行うべく、 リ ニア制御が可 能なソレノィ ドバルブが用いられるよ うになつている。  Conventionally, a solenoid valve that performs on / off control has been used to perform control in two different states, high speed and low speed.In recent years, more precise control has been performed. For this reason, solenoid valves capable of linear control have been used.
そこで、 上述した本実施の形態に係るソレノィ ドバルブをこのよ うなバルブタイ ミングコン ト ロール (V T C ) 用のリ ニアソレノ ィ ドバルブと して好適に用いることが可能となる。 Therefore, the above-described solenoid valve according to the present embodiment is replaced with a linear solenoid for such a valve timing control (VTC). It can be suitably used as a valve.
このよ うに、 本実施の形態のソレノィ ドバルブ 1 0 0は、 例えば 上記のスプーノレバグレブタイプ等の高ス トローク量 ( 1 . 5 m m以上 ) のリニアソレノイ ドバルブと して有効である。  As described above, the solenoid valve 100 of the present embodiment is effective as a linear solenoid valve having a high stroke amount (1.5 mm or more), such as the above-mentioned spoon rebag rev type.
なお、 本実施の形態に係るソ レノィ ドバルブ 1 0 0のソ レノィ ド 部 1 0 0 Aは、 本実施の形態のよ うにソレノィ ドバルブに用いるだ けでなく、 軸方向位置の調整を行う装置の駆動源である リ ニアソ レ ノィ ドと して用いることができる。 産業上の利用の可能性  The solenoid portion 100A of the solenoid valve 100 according to the present embodiment is used not only for the solenoid valve as in the present embodiment but also for a device for adjusting the axial position. It can be used as a linear solenoid as a driving source. Industrial applicability
以上説明したよ うに、 本発明は、 センタポス トに、 プランジャ側 端面にプランジャが出入りする凹部を形成し、 凹部の外周部に環状 吸引部を設け、 環状吸引部に、 外周にプランジャ側に向けて縮径す る外周テーパ部と、 内周にプランジャ側に向けて拡径する内周テ一 パ部と、 を形成し、 プランジャに、 センタポス ト側外周に内周テー パ部とほぼ等しく傾斜する吸引テーパ部を形成したことで、 ス ト口 —ク量が変動しても吸引力が一定となる リ ニァ特性を得つつ、 励磁 手段による磁束を環状吸引部の内周テーパ部とプランジャの吸引テ 一パ部間を通過させて、 磁気力の軸方向成分を増加させ、 プランジ ャを軸方向に吸引する吸引力を大きくすることができる。  As described above, according to the present invention, the center post is provided with a concave portion on the plunger side end surface where the plunger enters and exits, an annular suction portion is provided on the outer peripheral portion of the concave portion, and the annular suction portion is provided on the outer periphery toward the plunger side. An outer taper portion that reduces the diameter and an inner taper portion that expands toward the plunger side on the inner circumference are formed. By forming the suction taper part, the magnetic flux by the excitation means is attracted to the inner peripheral taper part of the annular suction part and the plunger while obtaining the linear characteristic that the suction force is constant even if the storage amount varies. By passing between the taper portions, the axial component of the magnetic force can be increased, and the suction force for suctioning the plunger in the axial direction can be increased.
また、 この効果は、 環状吸引部の根元の断面積をプランジャ断面 積よ り も小さ く しても発揮されるので、 センタポス トの外径 (環状 吸引部の外径) を小さくすることができる分、 径方向を小型化して も、 リニア特性を得つつ、 吸引力を大き くすることができる。  In addition, this effect is exerted even when the cross-sectional area at the root of the annular suction portion is smaller than the cross-sectional area of the plunger, so that the outer diameter of the center post (the outer diameter of the annular suction portion) can be reduced. Even if the size is reduced in the radial direction, the suction force can be increased while obtaining linear characteristics.

Claims

請求の範囲 The scope of the claims
1 . 固定配置されたセンタポス トと、 該センタポス ト と軸方向に対 向配置されて励磁手段による磁気力によって前記センタポス トへ向 けて軸方向に吸引されるプランジャと、 を備え、  1. A fixedly arranged center post, and a plunger arranged in the axial direction with respect to the center post and attracted in the axial direction toward the center post by the magnetic force of the exciting means,
前記プランジャをセンタボス トへ向けて軸方向に吸引する吸引力 がリニア特性である リ ニアソレノィ ドおいて、  In a linear solenoid, the suction force of drawing the plunger toward the center boss in the axial direction has a linear characteristic.
前記センタボス トに、 前記ブランジャ側端面に前記ブランジャが 出入りする凹部を形成し、 該凹部の外周部に環状吸引部を設け、 該環状吸引部に、 外周にブランジャ側に向けて縮径する外周テー パ部と、 内周にプランジャ側に向けて拡径する内周テーパ部と、 を 形成し、  A concave portion is formed in the center boss at the end surface of the plunger on the side of the plunger, and an annular suction portion is provided at an outer peripheral portion of the concave portion. And a tapered portion on the inner periphery that expands in diameter toward the plunger side.
前記プランジャに、 前記センタボス ト側外周に前記内周テーパ部 とほぼ等しく傾斜する吸引テーパ部を形成したことを特徴とする リ ニァソレノィ ド。  A linear solenoid, wherein the plunger is formed with a suction taper portion on the outer periphery of the center boss side, which is inclined substantially equal to the inner peripheral taper portion.
2 . 前記外周テーパ部を軸方向から略 2 0度前後傾け、 前記内周テ 一パ部を軸方向から 1 0度以下の範囲で傾けた設定と したことを特 徴とする請求の範囲第 1項に記載のリニアソレノィ ド。  2. The outer peripheral taper portion is inclined approximately 20 degrees from the axial direction, and the inner peripheral taper portion is inclined within 10 degrees or less from the axial direction. The linear solenoid described in item 1.
3 . 固定配置されたセンタボス トと、 該センタボス ト と軸方向に対 向配置されて励磁手段による磁気力によって前記センタポス トへ向 けて軸方向に吸引されるプランジャと、 を備え、  3. A fixedly arranged center post, and a plunger that is arranged in the axial direction with respect to the center post and is attracted in the axial direction toward the center post by the magnetic force of the exciting means.
前記ブランジャをセンタボス トへ向けて軸方向に吸引する吸引力 がリニア特性であるソ レノイ ドバルブにおいて、  In a solenoid valve, the suction force for suctioning the plunger in the axial direction toward the center boss has a linear characteristic.
前記センタボス トに、 前記プランジャ側端面に前記プランジャが 出入りする凹部を形成し、 該凹部の外周部に環状吸引部を設け、 該環状吸引部に、 外周にブランジャ側に向けて縮径する外周テー パ部と、 内周にプランジャ側に向けて拡径する内周テーパ部と、 を 形成し、 前記プランジャに、 前記センタボス ト側外周に前記内周テーパ部 とほぼ等しく傾斜する吸引テーパ部を形成したことを特徴とするソ レノ ィ ドバノレブ。 A recess is formed in the center boss at the plunger side end surface so that the plunger can move in and out. An annular suction portion is provided on the outer periphery of the recess. And a tapered portion on the inner periphery that expands in diameter toward the plunger side. A solenoid taper, wherein a suction taper portion is formed on the plunger at an outer periphery of the center boss side, the suction taper portion being inclined substantially equal to the inner peripheral taper portion.
4 . 前記外周テーパ部を軸方向から略 2 0度前後傾け、 前記内周テ 一パ部を軸方向から 1 0度以下の範囲で傾けた設定と したことを特 徴とする請求の範囲第 3項に記載のソレノ ィ ドバルブ。  4. The outer peripheral taper portion is inclined approximately 20 degrees from the axial direction, and the inner peripheral taper portion is inclined within 10 degrees or less from the axial direction. The solenoid valve according to item 3.
PCT/JP2001/008632 2000-09-29 2001-10-01 Linear solenoid and solenoid valve WO2002027226A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001292324A AU2001292324A1 (en) 2000-09-29 2001-10-01 Linear solenoid and solenoid valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000300664A JP2005098310A (en) 2000-09-29 2000-09-29 Linear solenoid and solenoid valve
JP2000-300664 2000-09-29

Publications (1)

Publication Number Publication Date
WO2002027226A1 true WO2002027226A1 (en) 2002-04-04

Family

ID=18782310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008632 WO2002027226A1 (en) 2000-09-29 2001-10-01 Linear solenoid and solenoid valve

Country Status (3)

Country Link
JP (1) JP2005098310A (en)
AU (1) AU2001292324A1 (en)
WO (1) WO2002027226A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1391589A2 (en) * 2002-08-16 2004-02-25 Delphi Technologies, Inc. Solenoid assembly for a hydraulic valve
WO2004051107A2 (en) * 2002-11-30 2004-06-17 Euro-Am Systems Llc Viscous fluid shear clutches
WO2008061719A1 (en) * 2006-11-22 2008-05-29 Thomas Magnete Gmbh Electromagnet for actuating valves
DE10295941B3 (en) * 2001-01-31 2014-12-18 Eagle Industry Co., Ltd. solenoid valve

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4627114B2 (en) * 2001-01-31 2011-02-09 イーグル工業株式会社 Solenoid valve
JP4627115B2 (en) * 2001-01-31 2011-02-09 イーグル工業株式会社 Solenoid valve
JP4627116B2 (en) * 2001-01-31 2011-02-09 イーグル工業株式会社 Solenoid valve
JP2007056910A (en) * 2005-08-22 2007-03-08 Aisin Aw Co Ltd Solenoid drive mechanism and linear solenoid valve
JP5291548B2 (en) * 2009-06-24 2013-09-18 株式会社ケーヒン Linear solenoid and valve device using the same
JP2011077355A (en) * 2009-09-30 2011-04-14 Keihin Corp Linear solenoid and valve device using the same
JP2015105707A (en) * 2013-11-29 2015-06-08 アイシン精機株式会社 Electromagnetic valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256449Y2 (en) * 1971-12-29 1977-12-20
JPS5790475A (en) * 1980-11-26 1982-06-05 Aisin Seiki Co Ltd Solenoid control valve
JPS6032735Y2 (en) * 1980-07-15 1985-09-30 シ−ケ−デイコントロ−ルズ株式会社 oil immersion solenoid
JPH0196583U (en) * 1987-12-21 1989-06-27
JPH04119271A (en) * 1990-09-07 1992-04-20 Saginomiya Seisakusho Inc Electromagnetic control valve
JPH06224033A (en) * 1993-01-27 1994-08-12 Matsushita Electric Ind Co Ltd Electromagnetic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256449Y2 (en) * 1971-12-29 1977-12-20
JPS6032735Y2 (en) * 1980-07-15 1985-09-30 シ−ケ−デイコントロ−ルズ株式会社 oil immersion solenoid
JPS5790475A (en) * 1980-11-26 1982-06-05 Aisin Seiki Co Ltd Solenoid control valve
JPH0196583U (en) * 1987-12-21 1989-06-27
JPH04119271A (en) * 1990-09-07 1992-04-20 Saginomiya Seisakusho Inc Electromagnetic control valve
JPH06224033A (en) * 1993-01-27 1994-08-12 Matsushita Electric Ind Co Ltd Electromagnetic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10295941B3 (en) * 2001-01-31 2014-12-18 Eagle Industry Co., Ltd. solenoid valve
EP1391589A2 (en) * 2002-08-16 2004-02-25 Delphi Technologies, Inc. Solenoid assembly for a hydraulic valve
EP1391589A3 (en) * 2002-08-16 2007-12-05 Delphi Technologies, Inc. Solenoid assembly for a hydraulic valve
WO2004051107A2 (en) * 2002-11-30 2004-06-17 Euro-Am Systems Llc Viscous fluid shear clutches
WO2004051107A3 (en) * 2002-11-30 2004-09-02 Euro Am Systems Llc Viscous fluid shear clutches
WO2008061719A1 (en) * 2006-11-22 2008-05-29 Thomas Magnete Gmbh Electromagnet for actuating valves

Also Published As

Publication number Publication date
AU2001292324A1 (en) 2002-04-08
JP2005098310A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP4285354B2 (en) Linear solenoid and solenoid valve
JP4244805B2 (en) solenoid valve
JP5239965B2 (en) Fuel injection valve
JP2010169080A (en) High pressure pump
KR100301880B1 (en) Electric drive valve of internal combustion engine
JP2006222199A (en) Proportional solenoid and flow control valve using the same
WO2002027226A1 (en) Linear solenoid and solenoid valve
JP2008089080A (en) Electromagnetic driving device and solenoid valve using the same
JP4161217B2 (en) Fuel injection valve
JP4492649B2 (en) Bleed valve device
JP2006307831A (en) Fuel injection valve
JP5644757B2 (en) Pressure control device
JP4022855B2 (en) Solenoid valve device
JP2020088143A (en) solenoid
JP2018123826A (en) Fuel injection valve
JP4741778B2 (en) Solenoid and solenoid valve
JP6311540B2 (en) solenoid valve
JP2002372164A (en) Solenoid valve
WO2023203898A1 (en) Solenoid valve
JP2010223279A (en) Solenoid valve
WO2021149659A1 (en) Fuel injection valve
JP4158038B2 (en) solenoid valve
JP2955527B2 (en) solenoid valve
JP4151335B2 (en) solenoid valve
JPH0450567A (en) Proportional flow control valve

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase