JP2018123826A - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP2018123826A
JP2018123826A JP2017229426A JP2017229426A JP2018123826A JP 2018123826 A JP2018123826 A JP 2018123826A JP 2017229426 A JP2017229426 A JP 2017229426A JP 2017229426 A JP2017229426 A JP 2017229426A JP 2018123826 A JP2018123826 A JP 2018123826A
Authority
JP
Japan
Prior art keywords
flow passage
throttle
movable
passage
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2017229426A
Other languages
Japanese (ja)
Inventor
誠 西前
Makoto Nishimae
誠 西前
松本 修一
Shuichi Matsumoto
修一 松本
啓太 今井
Keita Imai
啓太 今井
後藤 守康
Moriyasu Goto
守康 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Soken Inc filed Critical Denso Corp
Priority to CN201880007921.7A priority Critical patent/CN110199108B/en
Priority to DE112018000562.3T priority patent/DE112018000562B4/en
Priority to PCT/JP2018/002040 priority patent/WO2018139469A1/en
Publication of JP2018123826A publication Critical patent/JP2018123826A/en
Priority to US16/508,369 priority patent/US11319911B2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0685Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0054Check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/08Fuel-injection apparatus having special means for influencing magnetic flux, e.g. for shielding or guiding magnetic flux
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/28Details of throttles in fuel-injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8084Fuel injection apparatus manufacture, repair or assembly involving welding or soldering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9053Metals
    • F02M2200/9069Non-magnetic metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0675Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages
    • F02M51/0678Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages all portions having fuel passages, e.g. flats, grooves, diameter reductions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection valve capable of adjusting braking force acting on a valve body while suppressing an effect on magnetic force.SOLUTION: A fuel injection valve comprises: a movable structure which has a coil 70, a fixed core 50, a movable core 40 and a valve body 30; and a body which houses the movable structure therein so as to allow the movable structure to move. The movable structure has: a movable flow passage F20 formed therein; and an orifice 32a (narrowed section) which restricts a flow rate with a flow passage area of the movable flow passage F20 locally narrowed. The flow passage has: a narrowed flow passage F22 narrowed by the orifice 32a; and a sliding flow passage F27s (additional flow passage) which allows fuel to flow independently from the narrowed flow passage F22 and is formed between the movable structure and the body. The flow passage area of the sliding flow passage F27s is smaller than that of the narrowed flow passage F22. A position of a sliding face 33a in a vertical direction with respect to a sliding direction of the movable structure is different from an outermost peripheral position of the movable core 40.SELECTED DRAWING: Figure 2

Description

本発明は、噴孔から燃料を噴射する燃料噴射弁に関する。   The present invention relates to a fuel injection valve that injects fuel from an injection hole.

従来の燃料噴射弁は、コイルへの通電により生じた磁気力で可動コアを移動させ、可動コアに取り付けられた弁体により噴孔を開閉させている。   In a conventional fuel injection valve, a movable core is moved by a magnetic force generated by energizing a coil, and an injection hole is opened and closed by a valve body attached to the movable core.

弁体の開弁速度が速いほど、コイルへの通電時間と噴射量との関係を表す噴射量特性の傾きが大きくなる。特に、通電時間を短くして噴射量を微少にするべく、弁体がフルリフト位置に達する前に閉弁作動を開始させるパーシャルリフト噴射を実施する場合には、開弁速度が噴射量特性の傾きに大きく影響し、通電時間に対する噴射量のバラツキが大きくなる。また、弁体の閉弁速度が速いほど、弁体が着座面でバウンスしやすくなり、バウンスが生じると意図しない噴射が発生する。このため弁体の開弁速度および閉弁速度を適切に抑制する技術のニーズがある。   The higher the valve opening speed of the valve body, the larger the inclination of the injection amount characteristic representing the relationship between the energization time to the coil and the injection amount. In particular, in order to shorten the energization time and minimize the injection amount, when performing partial lift injection that starts the valve closing operation before the valve element reaches the full lift position, the valve opening speed is the slope of the injection amount characteristic. The injection amount varies with respect to the energization time. Further, the faster the valve closing speed of the valve body, the easier it is for the valve body to bounce on the seating surface, and unintended injection occurs when the bounce occurs. For this reason, there exists a need of the technique which suppresses the valve opening speed and valve closing speed of a valve body appropriately.

上記バウンスの課題に対し特許文献1には、可動コアの移動方向に貫通する貫通穴を可動コアに形成し、その貫通穴にオリフィスを配置する旨が開示されている。これによれば、貫通穴を流通する燃料がオリフィスで絞られるので、可動コアに対してブレーキ力が作用する。よって、閉弁作動する弁体に対してブレーキ力が作用して、弁体が着座面でバウンスすることを抑制できる。   In response to the above bounce problem, Patent Document 1 discloses that a through-hole penetrating in the moving direction of the movable core is formed in the movable core, and an orifice is disposed in the through-hole. According to this, since the fuel flowing through the through hole is throttled by the orifice, a braking force acts on the movable core. Therefore, it is possible to suppress the braking force from acting on the valve body that performs the valve closing operation and the bounce of the valve body on the seating surface.

特開2016−48066号公報JP 2016-48066 A

上述の如くオリフィスを設けた構造では、オリフィスおよび摺動面を含む境界面に対して、噴孔側の圧力領域(下流側領域)と反噴孔側の圧力領域(上流側領域)とに区分され、オリフィスを通る流れがあるときは両領域で圧力差が生じることになる。以下の説明では、可動コアが上流側領域から燃料の圧力を受ける面を上流側受圧面と呼び、下流側領域から燃料の圧力を受ける面を噴孔側受圧面と呼ぶ。   In the structure provided with the orifice as described above, the pressure area on the injection hole side (downstream area) and the pressure area on the counter-injection hole side (upstream area) are divided with respect to the boundary surface including the orifice and the sliding surface. When there is a flow through the orifice, there will be a pressure difference in both areas. In the following description, the surface on which the movable core receives fuel pressure from the upstream region is referred to as an upstream pressure receiving surface, and the surface that receives fuel pressure from the downstream region is referred to as an injection hole side pressure receiving surface.

上流側受圧面の面積に上流側領域の圧力を乗算して得られる値と、下流側受圧面の面積に下流側領域の圧力を乗算して得られる値との差分に応じて、開閉作動時の弁体に作用するブレーキ力は特定される。よって、上流側受圧面および下流側受圧面の面積を調整、或いはオリフィスによる絞り度合を調整すれば、上記ブレーキ力を所望の大きさに調整できる。   Depending on the difference between the value obtained by multiplying the area of the upstream pressure receiving surface by the pressure in the upstream region and the value obtained by multiplying the area of the downstream pressure receiving surface by the pressure in the downstream region, during opening / closing operation The braking force acting on the valve body is specified. Therefore, the brake force can be adjusted to a desired magnitude by adjusting the areas of the upstream pressure receiving surface and the downstream pressure receiving surface or adjusting the degree of restriction by the orifice.

しかしながら、特許文献1に記載の燃料噴射弁の構造では、上記面積は可動コアの外径寸法で決まるので、上記面積を調整しようとすると可動コアの外径寸法が変わってしまい、可動コアに作用する磁気力が大きく変化する。よって、上記面積を調整してブレーキ力を調整することは困難である。そのため、ブレーキ力を調整するためにはオリフィスの絞り度合いを変化させるしかなく、圧力損失、ブレーキ力、脈動による意図しない開弁など、複数の特性を同時に満たすように絞り度合を調整することは困難である。   However, in the structure of the fuel injection valve described in Patent Document 1, the area is determined by the outer diameter of the movable core. Therefore, when the area is adjusted, the outer diameter of the movable core changes and acts on the movable core. The magnetic force to change greatly. Therefore, it is difficult to adjust the braking force by adjusting the area. Therefore, the only way to adjust the braking force is to change the degree of restriction of the orifice, and it is difficult to adjust the degree of restriction to simultaneously satisfy multiple characteristics such as pressure loss, braking force, and unintentional valve opening due to pulsation. It is.

本発明は、上記問題を鑑みてなされたもので、その目的は、磁気力への影響を抑制しつつ弁体に作用するブレーキ力を調整できる燃料噴射弁を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a fuel injection valve capable of adjusting a braking force acting on a valve body while suppressing an influence on a magnetic force.

ここに開示される発明は上記目的を達成するために以下の技術的手段を採用する。なお、特許請求の範囲およびこの項に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであって、発明の技術的範囲を限定するものではない。   The invention disclosed herein employs the following technical means to achieve the above object. Note that the reference numerals in parentheses described in the claims and in this section indicate the correspondence with the specific means described in the embodiments described later, and do not limit the technical scope of the invention. .

開示される第1発明は、
燃料を噴射する噴孔(23a)、および噴孔へ燃料を流通させる流通路(F)を有する燃料噴射弁において、
通電により磁束を生じさせるコイル(70)と、
磁束の通路を形成して磁気力を生じさせる固定コア(50)と、
磁気力で移動する可動コア(40)、および可動コアにより駆動されて噴孔を開閉する弁体(30)を有し、流通路の一部となる可動流通路(F20)が内部に形成された可動構造体(M、M1、M2)と、
可動構造体を移動可能な状態で内部に収容し、流通路の一部が内部に形成されたボデー(B)と、
を備え、
可動構造体は、可動流通路の通路面積を部分的に狭くして流量を絞る絞り部(32a)を有し、
流通路は、絞り部による流通路である絞り流通路(F22)と、絞り流通路と独立して燃料を流す通路であって可動構造体とボデーとの間で形成される別流通路(F27s)と、を含み、
別流通路の通路面積は、絞り流通路の通路面積よりも小さく、
可動構造体の移動方向に対して垂直な方向における別流通路の位置は、可動コアの最外周位置と異なる燃料噴射弁である。
The first invention disclosed is
In a fuel injection valve having an injection hole (23a) for injecting fuel and a flow passage (F) for flowing fuel to the injection hole,
A coil (70) for generating magnetic flux when energized;
A fixed core (50) that creates a magnetic force by forming a path of magnetic flux;
A movable flow path (F20) that has a movable core (40) that moves by magnetic force and a valve body (30) that is driven by the movable core to open and close the nozzle hole is formed inside. Movable structures (M, M1, M2),
A body (B) in which the movable structure is housed in a movable state and a part of the flow path is formed inside;
With
The movable structure has a throttle part (32a) that partially narrows the passage area of the movable flow passage to restrict the flow rate,
The flow passage is a restriction flow passage (F22) which is a flow passage by the restriction portion, and a passage through which fuel flows independently of the restriction flow passage and is formed between the movable structure and the body (F27s). ), And
The passage area of the separate flow passage is smaller than the passage area of the throttle flow passage,
The position of the separate flow path in the direction perpendicular to the moving direction of the movable structure is a fuel injection valve different from the outermost peripheral position of the movable core.

上記第1発明では、「絞り流通路と別流通路とは独立し、かつ、別通路の通路面積は絞り流通路の通路面積よりも小さい」といった構成を備える。そのため、流通路は、絞り部を境に、上流側領域と下流側領域とに区分される。上流側領域は、絞り部に対して、フルリフト噴射時の燃料流れ上流側の領域であり、下流側領域は、絞り部に対して、フルリフト噴射時の燃料流れ下流側の領域である。そして、可動構造体の移動時には絞り流通路で燃料の流量が絞られることに起因して、両領域で圧力差が生じることになる。以下の説明では、可動構造体が上流側領域から閉弁側に燃料の圧力を受ける面を上流側受圧面と呼び、下流側領域から燃料の圧力を開弁側に受ける面を下流側受圧面と呼ぶ。   In the first aspect of the invention, the throttle flow passage and the separate flow passage are independent, and the passage area of the separate flow passage is smaller than the passage area of the narrow flow passage. For this reason, the flow passage is divided into an upstream region and a downstream region with the throttle portion as a boundary. The upstream region is a region on the upstream side of the fuel flow at the time of full lift injection with respect to the throttle portion, and the downstream region is a region on the downstream side of the fuel flow at the time of full lift injection with respect to the throttle portion. When the movable structure is moved, a pressure difference is generated in both regions due to the fuel flow rate being throttled in the throttle flow passage. In the following description, the surface on which the movable structure receives the fuel pressure from the upstream region to the valve closing side is referred to as the upstream pressure receiving surface, and the surface that receives the fuel pressure from the downstream region on the valve opening side is the downstream pressure receiving surface. Call it.

さらに上記第1発明では、「可動構造体の摺動方向に対して垂直な方向における別流通路の位置は、可動コアの最外周位置と異なる」といった構成を備える。そのため、磁気力への影響を抑制しつつ、上述した上流側受圧面および下流側受圧面の面積を調整できる。そして、移動する可動構造体にかかる燃料のブレーキ力は、上流側受圧面の面積、下流側受圧面の面積および両領域の差圧に基づいて特定されることは先述した通りである。   Further, in the first aspect of the invention, there is provided a configuration in which “the position of the separate flow path in the direction perpendicular to the sliding direction of the movable structure is different from the outermost peripheral position of the movable core”. Therefore, the areas of the upstream pressure receiving surface and the downstream pressure receiving surface described above can be adjusted while suppressing the influence on the magnetic force. As described above, the braking force of the fuel applied to the moving movable structure is specified based on the area of the upstream pressure receiving surface, the area of the downstream pressure receiving surface, and the pressure difference between the two regions.

よって、上記第1発明によれば、別流通路の位置を調整することで、磁気力への影響を抑制しつつ上流側受圧面の面積および下流側受圧面の面積を調整できる。よって、可動コアに作用する磁気力の変化を抑制しつつ、上記ブレーキ力を調整できる。   Therefore, according to the said 1st invention, the area of an upstream pressure receiving surface and the area of a downstream pressure receiving surface can be adjusted, suppressing the influence on a magnetic force by adjusting the position of a separate flow path. Therefore, the brake force can be adjusted while suppressing a change in magnetic force acting on the movable core.

開示される第2発明は、
燃料を噴射する噴孔(23a)、および噴孔へ燃料を流通させる流通路(F)を有する燃料噴射弁において、
通電により磁束を生じさせるコイル(70)と、
磁束の通路を形成して磁気力を生じさせる固定コア(50)と、
磁気力で移動する可動コア(40)、および可動コアにより駆動されて噴孔を開閉する弁体(30)を有し、流通路の一部となる可動流通路(F20)が内部に形成された可動構造体(M、M1、M2)と、
可動構造体を移動可能な状態で内部に収容し、流通路の一部が内部に形成されたボデー(B)と、
を備え、
可動構造体は、可動流通路の通路面積を部分的に狭くして流量を絞る絞り部(32a)、およびボデーとの摺動面(33a)を有し、
流通路は、絞り部による流通路である絞り流通路(F22)を含み、
可動構造体の摺動方向に対して垂直な方向における摺動面の位置は、可動コアの最外周位置と異なる燃料噴射弁である。
The second invention disclosed is
In a fuel injection valve having an injection hole (23a) for injecting fuel and a flow passage (F) for flowing fuel to the injection hole,
A coil (70) for generating magnetic flux when energized;
A fixed core (50) that creates a magnetic force by forming a path of magnetic flux;
A movable flow path (F20) that has a movable core (40) that moves by magnetic force and a valve body (30) that is driven by the movable core to open and close the nozzle hole is formed inside. Movable structures (M, M1, M2),
A body (B) in which the movable structure is housed in a movable state and a part of the flow path is formed inside;
With
The movable structure has a throttle part (32a) that partially narrows the passage area of the movable flow passage to restrict the flow rate, and a sliding surface (33a) with the body,
The flow path includes a throttle flow path (F22) that is a flow path by the throttle unit,
The position of the sliding surface in the direction perpendicular to the sliding direction of the movable structure is a fuel injection valve different from the outermost peripheral position of the movable core.

上記第2発明によれば、流通路は、絞り部を境に上流側領域と下流側領域とに区分される。上流側領域は、絞り部に対して、フルリフト噴射時の燃料流れ上流側の領域であり、下流側領域は、絞り部に対して、フルリフト噴射時の燃料流れ下流側の領域である。そして、可動構造体の移動時には絞り流通路で燃料の流量が絞られることに起因して、両領域で圧力差が生じることになる。以下の説明では、可動構造体が上流側領域から閉弁側に燃料の圧力を受ける面を上流側受圧面と呼び、下流側領域から燃料の圧力を開弁側に受ける面を下流側受圧面と呼ぶ。   According to the second aspect of the invention, the flow path is divided into an upstream region and a downstream region with the throttle portion as a boundary. The upstream region is a region on the upstream side of the fuel flow at the time of full lift injection with respect to the throttle portion, and the downstream region is a region on the downstream side of the fuel flow at the time of full lift injection with respect to the throttle portion. When the movable structure is moved, a pressure difference is generated in both regions due to the fuel flow rate being throttled in the throttle flow passage. In the following description, the surface on which the movable structure receives the fuel pressure from the upstream region to the valve closing side is referred to as the upstream pressure receiving surface, and the surface that receives the fuel pressure from the downstream region on the valve opening side is the downstream pressure receiving surface. Call it.

さらに上記第2発明では、「可動構造体の摺動方向に対して垂直な方向における別流通路の位置は、可動コアの最外周位置と異なる」といった構成を備える。そのため、磁気力への影響を抑制しつつ、上述した上流側受圧面および下流側受圧面の面積を調整できる。そして、移動する可動構造体にかかる燃料のブレーキ力は、上流側受圧面の面積、下流側受圧面の面積および両領域の差圧に基づいて特定されることは先述した通りである。   Furthermore, in the second aspect of the invention, the configuration is such that “the position of the separate flow path in the direction perpendicular to the sliding direction of the movable structure is different from the outermost peripheral position of the movable core”. Therefore, the areas of the upstream pressure receiving surface and the downstream pressure receiving surface described above can be adjusted while suppressing the influence on the magnetic force. As described above, the braking force of the fuel applied to the moving movable structure is specified based on the area of the upstream pressure receiving surface, the area of the downstream pressure receiving surface, and the pressure difference between the two regions.

よって、上記第2発明によれば、摺動面の位置を調整することで、磁気力への影響を抑制しつつ上流側受圧面の面積および下流側受圧面の面積を調整できる。よって、可動コアに作用する磁気力の変化を抑制しつつ、上記ブレーキ力を調整できる。   Therefore, according to the second aspect, by adjusting the position of the sliding surface, the area of the upstream pressure receiving surface and the area of the downstream pressure receiving surface can be adjusted while suppressing the influence on the magnetic force. Therefore, the brake force can be adjusted while suppressing a change in magnetic force acting on the movable core.

本発明の第1実施形態に係る燃料噴射弁の断面図。Sectional drawing of the fuel injection valve which concerns on 1st Embodiment of this invention. 図1を拡大した断面図。Sectional drawing which expanded FIG. 第1実施形態に係る可動構造体Mの断面図。Sectional drawing of the movable structure M which concerns on 1st Embodiment. 本発明の第2実施形態に係る燃料噴射弁の断面図であって、移動部材が固定部材に着座した状態を示す断面図。It is sectional drawing of the fuel injection valve which concerns on 2nd Embodiment of this invention, Comprising: Sectional drawing which shows the state in which the moving member was seated on the fixed member. 第2実施形態に係る燃料噴射弁の断面図であって、移動部材が固定部材から離座した状態を示す断面図。It is sectional drawing of the fuel injection valve which concerns on 2nd Embodiment, Comprising: Sectional drawing which shows the state which the moving member separated from the fixed member. 本発明の第3実施形態に係る燃料噴射弁の断面図。Sectional drawing of the fuel injection valve which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る燃料噴射弁の断面図。Sectional drawing of the fuel injection valve which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る燃料噴射弁の断面図。Sectional drawing of the fuel injection valve which concerns on 5th Embodiment of this invention.

以下、図面を参照しながら発明を実施するための複数の形態を説明する。各形態において、先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において、構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を参照し適用することができる。   Hereinafter, a plurality of modes for carrying out the invention will be described with reference to the drawings. In each embodiment, portions corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals and redundant description may be omitted. In each embodiment, when only a part of the configuration is described, the other configurations described above can be applied to other portions of the configuration.

(第1実施形態)
図1に示す燃料噴射弁は、点火式の内燃機関(ガソリンエンジン)に搭載されており、多気筒エンジンの各燃焼室へ直接燃料を噴射するものである。燃料噴射弁へ供給される燃料は、図示しない燃料ポンプにより圧送され、燃料ポンプはエンジンの回転駆動力により駆動する。燃料噴射弁は、ケース10、ノズルボデー20、弁体30、可動コア40、固定コア50、非磁性部材60、コイル70、配管接続部80等を備えて構成されている。
(First embodiment)
The fuel injection valve shown in FIG. 1 is mounted on an ignition internal combustion engine (gasoline engine), and directly injects fuel into each combustion chamber of a multi-cylinder engine. The fuel supplied to the fuel injection valve is pumped by a fuel pump (not shown), and the fuel pump is driven by the rotational driving force of the engine. The fuel injection valve includes a case 10, a nozzle body 20, a valve body 30, a movable core 40, a fixed core 50, a nonmagnetic member 60, a coil 70, a pipe connection portion 80, and the like.

ケース10は、金属製であり、コイル70の環状中心線Cが延びる方向(以下、軸線方向と記載)に延びる円筒形状である。なお、コイル70の環状中心線Cと、ケース10、ノズルボデー20、弁体30、可動コア40、固定コア50および非磁性部材60の中心軸線とは一致する。   The case 10 is made of metal and has a cylindrical shape extending in a direction in which the annular center line C of the coil 70 extends (hereinafter referred to as an axial direction). The annular center line C of the coil 70 coincides with the center axes of the case 10, the nozzle body 20, the valve body 30, the movable core 40, the fixed core 50, and the nonmagnetic member 60.

ノズルボデー20は、金属製であり、ケース10内に挿入配置されてケース10と係合する本体部21と、本体部21からケース10外部に延出するノズル部22とを有する。ノズル部22は軸線方向に延びる円筒形状であり、ノズル部22の先端には噴孔部材23が取り付けられている。   The nozzle body 20 is made of metal, and has a main body portion 21 that is inserted into the case 10 and engages with the case 10, and a nozzle portion 22 that extends from the main body portion 21 to the outside of the case 10. The nozzle portion 22 has a cylindrical shape extending in the axial direction, and an injection hole member 23 is attached to the tip of the nozzle portion 22.

噴孔部材23は、金属製であり、ノズル部22に溶接で固定されている。噴孔部材23は軸線方向に延びる有底の円筒形状であり、噴孔部材23の先端には、燃料を噴射する噴孔23aが形成されている。噴孔部材23の内周面には、弁体30が離着座する着座面23sが形成されている。   The nozzle hole member 23 is made of metal and is fixed to the nozzle portion 22 by welding. The injection hole member 23 has a bottomed cylindrical shape extending in the axial direction, and an injection hole 23 a for injecting fuel is formed at the tip of the injection hole member 23. A seating surface 23 s on which the valve body 30 is seated is formed on the inner peripheral surface of the injection hole member 23.

弁体30は、金属製であり、軸線方向に沿って延びる円柱形状である。弁体30は、軸線方向に移動可能な状態でノズルボデー20の内部に組み付けられており、弁体30の外周面30aとノズルボデー20の内周面22aとの間で、軸線方向に延びる環状の流通路(下流通路F30)が形成されている。弁体30の噴孔23a側の端部には、着座面23sに離着座する、環状のシート面30sが形成されている。   The valve body 30 is made of metal and has a cylindrical shape extending along the axial direction. The valve body 30 is assembled in the nozzle body 20 so as to be movable in the axial direction, and an annular flow extending in the axial direction between the outer peripheral surface 30a of the valve body 30 and the inner peripheral surface 22a of the nozzle body 20. A path (downstream path F30) is formed. An annular seat surface 30s is formed at the end of the valve body 30 on the nozzle hole 23a side so as to be separated from and seated on the seating surface 23s.

弁体30のうち噴孔23aの反対側(以下、反噴孔側と記載)の端部には、連結部材31が溶接等により固定して取り付けられている。さらに、連結部材31の反噴孔側端部には、オリフィス32a(絞り部)が形成されたオリフィス部材32および可動コア40が取り付けられている。   A connecting member 31 is fixedly attached to the end of the valve body 30 opposite to the injection hole 23a (hereinafter referred to as the anti-injection hole side) by welding or the like. Furthermore, an orifice member 32 having an orifice 32a (throttle portion) and a movable core 40 are attached to the end of the connecting member 31 on the side opposite to the injection hole.

図2に示すように、連結部材31は軸線方向に延びる円筒形状であり、オリフィス部材32は、連結部材31の円筒内周面に溶接等により固定され、可動コア40は、連結部材31の円筒外周面に溶接等により固定されている。連結部材31の反噴孔側端部には、径方向に拡大する拡径部31aが形成されている。拡径部31aの噴孔側端面が可動コア40と係合することで、連結部材31が可動コア40に対して噴孔側に抜け出ることを防止している。   As shown in FIG. 2, the connecting member 31 has a cylindrical shape extending in the axial direction, the orifice member 32 is fixed to the inner circumferential surface of the connecting member 31 by welding or the like, and the movable core 40 is a cylinder of the connecting member 31. It is fixed to the outer peripheral surface by welding or the like. A diameter-enlarged portion 31 a that expands in the radial direction is formed at the end of the connecting member 31 opposite to the injection hole. The end surface on the injection hole side of the enlarged diameter portion 31 a is engaged with the movable core 40, thereby preventing the connecting member 31 from coming out toward the injection hole with respect to the movable core 40.

オリフィス部材32は軸線方向に延びる円筒形状であり、円筒内部が燃料を流通させる流通路F21として機能する。オリフィス部材32の噴孔側端部には、流通路F21の通路面積を部分的に狭くして流量を絞るオリフィス32a(絞り部)が形成されている。流通路F21のうちオリフィス32aにより絞られた部分を絞り流通路F22と呼ぶ。   The orifice member 32 has a cylindrical shape extending in the axial direction, and the inside of the cylinder functions as a flow passage F21 through which fuel flows. At the nozzle hole side end of the orifice member 32, an orifice 32a (throttle portion) for narrowing the flow area by partially narrowing the passage area of the flow passage F21 is formed. A portion of the flow passage F21 that is restricted by the orifice 32a is referred to as a restriction flow passage F22.

絞り流通路F22は弁体30の中心軸線上に位置する。絞り流通路F22の流路長さは絞り流通路F22の直径よりも短い。オリフィス部材32の反噴孔側端部には、径方向に拡大する拡径部32bが形成されている。拡径部32bの噴孔側端面が連結部材31と係合することで、オリフィス部材32が連結部材31に対して噴孔側に抜け出ることを防止している。   The throttle flow path F <b> 22 is located on the central axis of the valve body 30. The flow path length of the throttle flow path F22 is shorter than the diameter of the throttle flow path F22. A diameter-enlarged portion 32 b that expands in the radial direction is formed at the end of the orifice member 32 opposite to the injection hole. Since the end surface on the injection hole side of the enlarged diameter portion 32 b engages with the connecting member 31, the orifice member 32 is prevented from slipping out toward the injection hole with respect to the connecting member 31.

可動コア40は、金属製の円盤形状であり、本体部21の円筒内部に収容配置されている。可動コア40は、連結部材31、弁体30、オリフィス部材32、および以下に説明する摺動部材33と一体となって軸線方向に移動する。これらの可動コア40、連結部材31、弁体30、オリフィス部材32および摺動部材33は、一体となって軸線方向に移動する可動構造体Mに相当する。   The movable core 40 has a metal disk shape, and is accommodated in the cylinder of the main body 21. The movable core 40 moves in the axial direction integrally with the connecting member 31, the valve body 30, the orifice member 32, and the sliding member 33 described below. The movable core 40, the connecting member 31, the valve body 30, the orifice member 32, and the sliding member 33 correspond to a movable structure M that moves integrally in the axial direction.

摺動部材33は、可動コア40とは別体であり、密着用弾性部材SP2の弾性力により可動コア40に密着するように押し付けられている。このように摺動部材33を可動コア40と別体にすることで、摺動部材33の材質を可動コア40の材質と異ならせることを容易に実現できるようにしている。可動コア40には、摺動部材33に比べて高磁性の材質が用いられており、摺動部材33には、可動コア40に比べて耐摩耗性の高い材質が用いられている。   The sliding member 33 is separate from the movable core 40 and is pressed against the movable core 40 by the elastic force of the contact elastic member SP2. Thus, by making the sliding member 33 separate from the movable core 40, it is possible to easily realize that the material of the sliding member 33 is different from the material of the movable core 40. The movable core 40 is made of a highly magnetic material compared to the sliding member 33, and the sliding member 33 is made of a material having higher wear resistance than the movable core 40.

摺動部材33は円筒形状であり、摺動部材33の円筒外周面は、本体部21の内周面に対して摺動する摺動面33aとして機能する。摺動面33aの外径寸法は、可動コア40の外径寸法よりも小さい。つまり、摺動部材33の摺動方向に対して垂直な方向における摺動面33aの位置は、可動コア40の最外周位置よりも内側、つまり環状中心線Cの側に位置する。   The sliding member 33 has a cylindrical shape, and the cylindrical outer peripheral surface of the sliding member 33 functions as a sliding surface 33 a that slides with respect to the inner peripheral surface of the main body 21. The outer diameter dimension of the sliding surface 33 a is smaller than the outer diameter dimension of the movable core 40. That is, the position of the sliding surface 33 a in the direction perpendicular to the sliding direction of the sliding member 33 is located on the inner side of the outermost peripheral position of the movable core 40, that is, on the annular center line C side.

摺動部材33の反噴孔側の面は、可動コア40の噴孔側の面に密着して燃料を通過させないようにシールするシール面33bとして機能する。摺動部材33の円筒内部にはコイル形状の密着用弾性部材SP2が配置されている。密着用弾性部材SP2は、軸線方向に弾性変形して弾性力を摺動部材33へ付与し、摺動部材33のシール面33bは、可動コア40の反噴孔側の面に弾性力で押し付けられて密着する。   The surface of the sliding member 33 on the side opposite to the injection hole functions as a sealing surface 33b that is in close contact with the surface of the movable core 40 on the injection hole side and seals the fuel from passing therethrough. Inside the cylinder of the sliding member 33, a coil-shaped elastic member SP2 for contact is disposed. The contact elastic member SP2 is elastically deformed in the axial direction to apply an elastic force to the sliding member 33, and the sealing surface 33b of the sliding member 33 is pressed against the surface of the movable core 40 on the side opposite to the injection hole with the elastic force. Be in close contact.

摺動部材33の反噴孔側端部には、径方向に縮小する縮径部33cが形成されている。縮径部33cの上面はシール面33bの一部として機能し、縮径部33cの下面は密着用弾性部材SP2の一端を支持する。本体部21の底面には支持部材24が固定されており、支持部材24には、径方向に縮小する縮径部24aが形成されている。この縮径部24aに、密着用弾性部材SP2の他端は支持されている。   A diameter-reduced portion 33 c that decreases in the radial direction is formed at the end of the sliding member 33 on the side opposite to the injection hole. The upper surface of the reduced diameter portion 33c functions as a part of the seal surface 33b, and the lower surface of the reduced diameter portion 33c supports one end of the contact elastic member SP2. A support member 24 is fixed to the bottom surface of the main body 21, and the support member 24 is formed with a reduced diameter portion 24 a that decreases in the radial direction. The other end of the contact elastic member SP2 is supported by the reduced diameter portion 24a.

摺動部材33は、可動コア40に対して径方向に相対移動可能な状態である。可動構造体Mのうち摺動部材33を除く部分には、ノズルボデー20に対して可動構造体Mを軸線方向に移動可能に摺動させつつ径方向に支持するガイド部が設けられている。ガイド部は、軸線方向の2箇所に設けられており、軸線方向のうち噴孔23aの側に位置するガイド部を噴孔側ガイド部30bと呼び、反噴孔側に位置するガイド部を反噴孔側ガイド部31bと呼ぶ(図1、図2参照)。噴孔側ガイド部30bは、弁体30の外周面に形成され、噴孔部材23の内周面に摺動可能に支持される。反噴孔側ガイド部31bは、連結部材31の外周面に形成され、支持部材24の内周面に摺動可能に支持される。   The sliding member 33 is in a state in which it can move relative to the movable core 40 in the radial direction. A portion of the movable structure M excluding the sliding member 33 is provided with a guide portion that supports the nozzle body 20 in the radial direction while sliding the movable structure M so as to be movable in the axial direction. The guide portions are provided at two locations in the axial direction, and the guide portion located on the injection hole 23a side in the axial direction is referred to as the injection hole side guide portion 30b, and the guide portion located on the counter injection hole side is opposite. This is referred to as a nozzle hole side guide portion 31b (see FIGS. 1 and 2). The injection hole side guide portion 30 b is formed on the outer peripheral surface of the valve body 30 and is slidably supported on the inner peripheral surface of the injection hole member 23. The anti-injection hole side guide portion 31 b is formed on the outer peripheral surface of the connecting member 31 and is slidably supported on the inner peripheral surface of the support member 24.

固定コア50は、ケース10の内部に固定して配置されている。固定コア50は、軸線方向の周りに延びる環状の金属製である。非磁性部材60は、固定コア50と本体部21との間に配置された環状であり、固定コア50および可動コア40よりも磁性が弱い材質である。一方、固定コア50、可動コア40および本体部21は磁性を有する材質で形成されている。   The fixed core 50 is fixedly disposed inside the case 10. The fixed core 50 is made of an annular metal extending around the axial direction. The nonmagnetic member 60 is an annular material disposed between the fixed core 50 and the main body 21, and is made of a material that is weaker than the fixed core 50 and the movable core 40. On the other hand, the fixed core 50, the movable core 40, and the main body 21 are made of a magnetic material.

固定コア50の内周面には、円筒形状かつ金属製のストッパ51が固定されている。ストッパ51は、連結部材31と当接することで連結部材31が反噴孔側へ移動することを規制する。連結部材31の拡径部31aの上端面がストッパ51の下端面に接触した状態では、固定コア50の下端面は可動コア40の上端面に接触せず、これら下端面と上端面との間で所定のギャップが形成された状態となる。   A cylindrical and metal stopper 51 is fixed to the inner peripheral surface of the fixed core 50. The stopper 51 restricts the connecting member 31 from moving toward the anti-injection hole side by contacting the connecting member 31. In a state where the upper end surface of the enlarged diameter portion 31 a of the connecting member 31 is in contact with the lower end surface of the stopper 51, the lower end surface of the fixed core 50 does not contact the upper end surface of the movable core 40, and between these lower end surface and the upper end surface. Thus, a predetermined gap is formed.

非磁性部材60および固定コア50の径方向外側には、コイル70が配置されている。コイル70は、樹脂製のボビン71に巻き回されている。ボビン71は、軸線方向を中心とした円筒形状である。したがって、コイル70は、軸線方向の周りに延びる環状に配置されることとなる。   A coil 70 is disposed on the radially outer side of the nonmagnetic member 60 and the fixed core 50. The coil 70 is wound around a resin bobbin 71. The bobbin 71 has a cylindrical shape centering on the axial direction. Therefore, the coil 70 is disposed in an annular shape extending around the axial direction.

固定コア50の反噴孔側には、燃料の流入口80aを形成して外部の配管と接続される配管接続部80が配置されている。配管接続部80は金属製であり、固定コア50と一体の金属部材で形成されている。高圧ポンプで加圧された燃料は、流入口80aから燃料噴射弁へ供給される。配管接続部80の内部には、軸線方向に延びる燃料の流通路F11が形成されており、その流通路F11には圧入部材81が圧入固定されている。   On the side of the fixed core 50 opposite to the injection hole, there is disposed a pipe connection portion 80 that forms a fuel inlet 80a and is connected to an external pipe. The pipe connection portion 80 is made of metal and is formed of a metal member integrated with the fixed core 50. The fuel pressurized by the high pressure pump is supplied to the fuel injection valve from the inflow port 80a. A fuel flow passage F11 extending in the axial direction is formed inside the pipe connection portion 80, and a press-fitting member 81 is press-fitted and fixed in the flow passage F11.

圧入部材81の噴孔側には、弾性部材SP1が配置されている。弾性部材SP1の一端は圧入部材81に支持され、弾性部材SP1の他端はオリフィス部材32の拡径部32bに支持される。したがって、圧入部材81の圧入量、つまり軸線方向における固定位置に応じて、弁体30がフルリフト位置まで開弁した時、つまりストッパ51に連結部材31が当接した時における弾性部材SP1の弾性変形量が特定される。つまり、弾性部材SP1による閉弁力(セット荷重)が、圧入部材81の圧入量で調整されている。   An elastic member SP1 is disposed on the injection hole side of the press-fitting member 81. One end of the elastic member SP1 is supported by the press-fitting member 81, and the other end of the elastic member SP1 is supported by the enlarged diameter portion 32b of the orifice member 32. Therefore, the elastic deformation of the elastic member SP1 when the valve body 30 opens to the full lift position, that is, when the connecting member 31 contacts the stopper 51, according to the press-fitting amount of the press-fitting member 81, that is, the fixed position in the axial direction. The amount is specified. That is, the valve closing force (set load) by the elastic member SP1 is adjusted by the press-fitting amount of the press-fitting member 81.

配管接続部80の外周面には、締結部材83が配置されている。締結部材83の外周面に形成されたネジ部を、ケース10の内周面に形成されたネジ部に締結することで、締結部材83はケース10に締結される。この締結で生じる軸力により、ケース10の底面と締結部材83との間で、配管接続部80、固定コア50、非磁性部材60および本体部21が挟み付けられている。   A fastening member 83 is disposed on the outer peripheral surface of the pipe connection portion 80. The fastening member 83 is fastened to the case 10 by fastening the screw portion formed on the outer peripheral surface of the fastening member 83 to the screw portion formed on the inner peripheral surface of the case 10. Due to the axial force generated by the fastening, the pipe connection portion 80, the fixed core 50, the nonmagnetic member 60, and the main body portion 21 are sandwiched between the bottom surface of the case 10 and the fastening member 83.

これらの配管接続部80、固定コア50、非磁性部材60、ノズルボデー20および噴孔部材23は、流入口80aへ供給された燃料を噴孔23aへ流通させる流通路Fを有するボデーBに相当する。先述した可動構造体Mは、ボデーBの内部に摺動可能な状態で収容されていると言える。   The pipe connection part 80, the fixed core 50, the nonmagnetic member 60, the nozzle body 20, and the injection hole member 23 correspond to a body B having a flow passage F through which the fuel supplied to the inflow port 80a flows to the injection hole 23a. . It can be said that the movable structure M described above is accommodated in the body B in a slidable state.

次に、燃料噴射弁の作動について説明する。   Next, the operation of the fuel injection valve will be described.

コイル70へ通電すると、コイル70の周りに磁界が発生する。つまり、固定コア50、可動コア40および本体部21に磁束が通る磁界回路が通電に伴い形成され、磁気回路により生じた磁気力により可動コア40が固定コア50へ吸引される。可動構造体Mには、弾性部材SP1による閉弁力と、燃料圧力による閉弁力と、上述した磁気力による開弁力とが作用する。これらの閉弁力よりも開弁力の方が大きくなるように設定されているため、通電に伴い磁気力を生じさせると、可動コア40は、弁体30とともに固定コア50の側へ移動する。これにより、弁体30が開弁作動して、シート面30sが着座面23sから離座し、高圧燃料が噴孔23aから噴射されることとなる。   When the coil 70 is energized, a magnetic field is generated around the coil 70. That is, a magnetic field circuit through which magnetic flux passes through the fixed core 50, the movable core 40, and the main body portion 21 is formed with energization, and the movable core 40 is attracted to the fixed core 50 by the magnetic force generated by the magnetic circuit. On the movable structure M, the valve closing force by the elastic member SP1, the valve closing force by the fuel pressure, and the valve opening force by the magnetic force described above act. Since the valve opening force is set to be greater than the valve closing force, the movable core 40 moves toward the fixed core 50 together with the valve body 30 when a magnetic force is generated with energization. . As a result, the valve body 30 is opened to seat the seat surface 30s away from the seating surface 23s, and the high-pressure fuel is injected from the injection hole 23a.

コイル70への通電を停止させると、上述した磁気力による開弁力が無くなるので、弾性部材SP1による閉弁力で、可動コア40とともに弁体30は閉弁作動して、シート面30sが着座面23sに着座する。これにより、弁体30が閉弁作動して、噴孔23aからの燃料噴射が停止される。   When the energization of the coil 70 is stopped, the valve opening force due to the magnetic force described above is lost, so that the valve element 30 is closed together with the movable core 40 by the valve closing force of the elastic member SP1, and the seat surface 30s is seated. Sitting on the surface 23s. As a result, the valve body 30 is closed, and fuel injection from the injection hole 23a is stopped.

次に、噴孔23aから燃料が噴射されている時の、燃料の流れについて説明する。   Next, the flow of fuel when fuel is being injected from the injection hole 23a will be described.

高圧ポンプから燃料噴射弁へ供給される高圧燃料は、流入口80aから流入し、配管接続部80の円筒内周面に沿う流通路F11、圧入部材81の円筒内周面に沿う流通路F12、弾性部材SP1が収容されている流通路F13を順に流れる(図1参照)。これらの流通路F11、F12、F13を総称して上流通路F10と呼び、上流通路F10は、燃料噴射弁の内部に存在する流通路F全体のうち可動構造体Mの外部かつ上流側に位置する。また、流通路F全体のうち、可動構造体Mにより形成される流通路を可動流通路F20と呼び、可動流通路F20の下流側に位置する流通路を下流通路F30と呼ぶ。   The high-pressure fuel supplied from the high-pressure pump to the fuel injection valve flows in from the inflow port 80a and flows along the cylindrical inner peripheral surface of the pipe connection portion 80, the flow passage F12 along the cylindrical inner peripheral surface of the press-fit member 81, It flows sequentially through the flow path F13 in which the elastic member SP1 is accommodated (see FIG. 1). These flow passages F11, F12, and F13 are collectively referred to as an upstream passage F10. The upstream passage F10 is located outside and on the upstream side of the movable structure M in the entire flow passage F existing inside the fuel injection valve. To position. Further, in the entire flow path F, a flow path formed by the movable structure M is referred to as a movable flow path F20, and a flow path positioned on the downstream side of the movable flow path F20 is referred to as a downstream path F30.

可動流通路F20は、流通路F13から流出した燃料を以下に説明するメイン通路およびサブ通路に分岐して流れる。メイン通路およびサブ通路は独立して配置されている。具体的にはメイン通路およびサブ通路は並列して配置され、各々に分岐して流れた燃料は下流通路F30で合流する。   The movable flow path F20 flows by dividing the fuel flowing out from the flow path F13 into a main path and a sub path described below. The main passage and the sub passage are arranged independently. Specifically, the main passage and the sub passage are arranged in parallel, and the fuel that has branched and flowed into each of them merges in the downstream passage F30.

メイン通路は、オリフィス部材32の円筒内周面に沿う流通路F21、オリフィス32aによる絞り流通路F22、連結部材31の円筒内周面に沿う流通路F23の順に燃料を流通させる通路である。そして、流通路F23の燃料は、連結部材31を径方向に貫通する貫通穴を通じて、連結部材31の円筒外周面に沿う流通路F31である下流通路F30へ流入する。   The main passage is a passage through which fuel flows in the order of a flow passage F21 along the cylindrical inner peripheral surface of the orifice member 32, a throttle flow passage F22 by the orifice 32a, and a flow passage F23 along the cylindrical inner peripheral surface of the connecting member 31. And the fuel of the flow path F23 flows into the downstream path F30 which is the flow path F31 along the cylindrical outer peripheral surface of the connection member 31 through the through-hole penetrating the connection member 31 in the radial direction.

サブ通路は、オリフィス部材32の円筒外周面に沿う流通路F24s、可動コア40と固定コア50とのギャップである流通路F25s、可動コア40の外周面40aに沿う流通路F26s、摺動面33aに沿う流通路の順に燃料を流通させる通路である。そして、摺動面33aに沿う流通路は摺動流通路F27sまたは別流通路と呼ばれ、摺動流通路F27sの燃料は、連結部材31の円筒外周面に沿う流通路F31である下流通路F30へ流入する。可動コア40の最外周と本体部21との間で形成される流通路F26sの通路面積は、摺動流通路F27sの通路面積よりも大きい。つまり、摺動流通路F27sでの絞り度合は流通路F26sでの絞り度合よりも大きく設定されている。   The sub-passage includes a flow passage F24s along the cylindrical outer peripheral surface of the orifice member 32, a flow passage F25s that is a gap between the movable core 40 and the fixed core 50, a flow passage F26s along the outer peripheral surface 40a of the movable core 40, and a sliding surface 33a. Is a passage through which fuel flows in the order of the flow passages along the line. The flow passage along the sliding surface 33 a is called a sliding flow passage F 27 s or a separate flow passage, and the fuel in the sliding flow passage F 27 s is a downstream passage F 30 that is a flow passage F 31 along the cylindrical outer peripheral surface of the connecting member 31. Flow into. The passage area of the flow passage F26s formed between the outermost periphery of the movable core 40 and the main body 21 is larger than the passage area of the sliding flow passage F27s. That is, the degree of restriction in the sliding flow path F27s is set larger than the degree of restriction in the flow path F26s.

ここで、サブ通路の上流側は、絞り流通路F22よりも上流側と接続されている。具体的には、摺動流通路F27s(別流通路)の反噴孔側の部分は、絞り流通路F22の反噴孔側の流通路と接続されている。そして、サブ流路の下流側は、絞り流通路F22の下流側と接続されている。具体的には、摺動流通路F27s(別流通路)の噴孔側の部分は、絞り流通路F22の噴孔側の流通路と接続されている。すなわち、サブ流路は絞り流通路F22を介さずに、絞り流通路F22の上流側と下流側とを接続している。また、摺動流通路F27s(別流通路)は、可動コア40よりも噴孔側に設けられている。   Here, the upstream side of the sub passage is connected to the upstream side of the throttle flow passage F22. Specifically, the portion of the sliding flow passage F27s (separate flow passage) on the side opposite to the injection hole is connected to the flow passage on the side opposite to the injection hole of the throttle flow passage F22. The downstream side of the sub flow path is connected to the downstream side of the throttle flow path F22. Specifically, the portion on the injection hole side of the sliding flow passage F27s (separate flow passage) is connected to the flow passage on the injection hole side of the throttle flow passage F22. That is, the sub-flow path connects the upstream side and the downstream side of the throttle flow path F22 without passing through the throttle flow path F22. Further, the sliding flow passage F27s (separate flow passage) is provided closer to the injection hole than the movable core 40.

また、流通路F23の上流側は、絞り流通路F22よりも上流側と接続されている。流通路F23の下流側は、絞り流通路F22よりも下流側と接続されている。すなわち、流通路F23は絞り流通路F22を介さずに、絞り流通路F22の上流側と下流側とを接続している。   Further, the upstream side of the flow passage F23 is connected to the upstream side of the throttle flow passage F22. The downstream side of the flow passage F23 is connected to the downstream side of the throttle flow passage F22. That is, the flow path F23 connects the upstream side and the downstream side of the throttle flow path F22 without passing through the throttle flow path F22.

要するに、上流通路F10である流通路F13から可動流通路F20へ流入した燃料は、メイン通路の上流端である流通路F21とサブ通路の上流端である流通路F24sとに分岐し、その後、下流通路F30である流通路F31で合流する。   In short, the fuel that has flowed into the movable flow path F20 from the flow path F13 that is the upstream path F10 branches into a flow path F21 that is the upstream end of the main path and a flow path F24s that is the upstream end of the sub-passage, It merges in the flow path F31 which is the downstream path F30.

また、可動コア40、連結部材31およびオリフィス部材32の各々には、径方向に貫通する貫通穴41が形成されている。これらの貫通穴41は、オリフィス部材32の内周面に沿う流通路F21と可動コア40外周面に沿う流通路F26sとを連通させる流通路F28sとして機能する。この流通路F28sは、ストッパ51に連結部材31が当接して流通路F24sと流通路F25sとの連通が遮断された場合に、摺動流通路F27sを流れる燃料の流量、つまりサブ通路の流量を確保するための通路である。流通路F28sが流通路F22の上流側に位置することで、流通路F25s、F26s、F28sが後述する上流側領域となり、下流側領域との圧力差が生じる。   Each of the movable core 40, the connecting member 31, and the orifice member 32 is formed with a through hole 41 that penetrates in the radial direction. These through holes 41 function as a flow passage F28s that connects the flow passage F21 along the inner peripheral surface of the orifice member 32 and the flow passage F26s along the outer peripheral surface of the movable core 40. The flow passage F28s is configured to control the flow rate of fuel flowing through the sliding flow passage F27s, that is, the flow rate of the sub-passage when the connection member 31 comes into contact with the stopper 51 and the communication between the flow passage F24s and the flow passage F25s is blocked. It is a passage for securing. Since the flow passage F28s is positioned on the upstream side of the flow passage F22, the flow passages F25s, F26s, and F28s become upstream regions, which will be described later, and a pressure difference from the downstream region is generated.

可動流通路F20から流出した燃料は、連結部材31の円筒外周面に沿う流通路F31へ流入し、その後、支持部材24の縮径部24aを軸線方向に貫通する貫通穴である流通路F32、弁体30の外周面に沿う流通路F33を順に流れる(図2参照)。そして、以下に説明するように弁体30が開弁作動すると、流通路F33内の高圧燃料が、シート面30sおよび着座面23sの間を通過して、噴孔23aから噴射される。   The fuel flowing out of the movable flow path F20 flows into the flow path F31 along the cylindrical outer peripheral surface of the connecting member 31, and then the flow path F32, which is a through hole penetrating the reduced diameter portion 24a of the support member 24 in the axial direction. It flows through the flow path F33 along the outer peripheral surface of the valve body 30 in order (see FIG. 2). When the valve body 30 is opened as described below, the high-pressure fuel in the flow passage F33 passes between the seat surface 30s and the seating surface 23s and is injected from the injection hole 23a.

上述した摺動面33aに沿う流通路を摺動流通路F27sと呼び、摺動流通路F27sの通路面積は、絞り流通路F22の通路面積よりも小さい。つまり、摺動流通路F27sでの絞り度合は絞り流通路F22での絞り度合よりも大きく設定されている。そして、メイン通路では絞り流通路F22の通路面積が最も小さく、サブ通路では摺動流通路F27sでの通路面積が最も小さい。   The flow path along the sliding surface 33a described above is called a sliding flow path F27s, and the passage area of the sliding flow path F27s is smaller than the passage area of the throttle flow path F22. That is, the degree of restriction in the sliding flow path F27s is set to be larger than the degree of restriction in the restriction flow path F22. The main passage has the smallest passage area of the throttle flow passage F22, and the sub passage has the smallest passage area in the sliding flow passage F27s.

したがって、可動流通路F20内におけるメイン通路とサブ通路とでは、メイン通路の方が流れやすくなっており、メイン通路の絞り度合はオリフィス32aでの絞り度合により特定され、メイン通路の流量はオリフィス32aにより調整される。換言すれば、可動流通路F20の絞り度合はオリフィス32aでの絞り度合により特定され、可動流通路F20の流量はオリフィス32aにより調整される。   Therefore, the main passage is easier to flow between the main passage and the sub passage in the movable flow passage F20, and the restriction degree of the main passage is specified by the restriction degree of the orifice 32a, and the flow rate of the main passage is determined by the orifice 32a. It is adjusted by. In other words, the degree of restriction of the movable flow path F20 is specified by the degree of restriction at the orifice 32a, and the flow rate of the movable flow path F20 is adjusted by the orifice 32a.

流通路Fのうちシート面30sでの通路面積であって、弁体30が開弁方向へ最も移動したフルリフト状態での通路面積をシート通路面積と呼ぶ。オリフィス32aによる絞り流通路F22の通路面積は、シート通路面積よりも大きく設定されている。つまり、オリフィス32aによる絞り度合は、フルリフト時のシート面30sでの絞り度合よりも小さく設定されている。   The passage area in the seat surface 30s of the flow passage F, and the passage area in the full lift state in which the valve body 30 has moved most in the valve opening direction is referred to as a seat passage area. The passage area of the throttle flow passage F22 by the orifice 32a is set larger than the sheet passage area. That is, the degree of restriction by the orifice 32a is set smaller than the degree of restriction on the seat surface 30s during full lift.

また、シート通路面積は、噴孔23aの通路面積よりも大きく設定されている。つまり、オリフィス32aによる絞り度合およびシート面30sでの絞り度合は、噴孔23aでの絞り度合よりも小さく設定されている。なお、噴孔23aが複数形成されている場合には、全ての噴孔23aの通路面積の合計よりもシート通路面積は大きく設定されている。   The seat passage area is set larger than the passage area of the nozzle hole 23a. That is, the degree of restriction by the orifice 32a and the degree of restriction at the sheet surface 30s are set to be smaller than the degree of restriction at the nozzle hole 23a. When a plurality of nozzle holes 23a are formed, the seat passage area is set larger than the total passage area of all the nozzle holes 23a.

次に、可動構造体Mが移動する際に、可動構造体Mが燃料から受けるブレーキ力について説明する。   Next, the braking force that the movable structure M receives from the fuel when the movable structure M moves will be described.

本実施形態では、絞り流通路F22と摺動流通路F27sとは並列し、かつ、摺動流通路F27sの通路面積は絞り流通路F22の通路面積よりも小さく設定されている。そのため、流通路Fは、オリフィス32a(絞り部)および摺動流通路F27sを境に上流側領域と下流側領域とに区分される。   In this embodiment, the throttle flow passage F22 and the sliding flow passage F27s are arranged in parallel, and the passage area of the sliding flow passage F27s is set smaller than the passage area of the throttle flow passage F22. Therefore, the flow passage F is divided into an upstream region and a downstream region with the orifice 32a (throttle portion) and the sliding flow passage F27s as a boundary.

上流側領域は、オリフィス32aに対して、噴射時の燃料流れ上流側の領域である。なお、可動流通路F20のうち摺動面33aの上流側も上流側領域に属する。よって、可動流通路F20のうちの流通路F21、F24s、F25s、F26s、F28s、および上流通路F10が上流側領域に該当する。下流側領域は、オリフィス32aに対して、噴射時の燃料流れ下流側の領域である。なお、可動流通路F20のうち摺動面33aの下流側も下流側領域に属する。よって、可動流通路F20のうちの流通路F23および下流通路F30が下流側領域に該当する。   The upstream region is a region on the upstream side of the fuel flow at the time of injection with respect to the orifice 32a. Note that the upstream side of the sliding surface 33a in the movable flow path F20 also belongs to the upstream region. Therefore, the flow passages F21, F24s, F25s, F26s, F28s and the upstream passage F10 in the movable flow passage F20 correspond to the upstream region. The downstream region is a region on the downstream side of the fuel flow at the time of injection with respect to the orifice 32a. Note that the downstream side of the sliding surface 33a in the movable flow path F20 also belongs to the downstream region. Therefore, the flow passage F23 and the downstream passage F30 in the movable flow passage F20 correspond to the downstream region.

要するに、絞り流通路F22を燃料が流れると、可動流通路F20を流れる燃料の流量がオリフィス32aで絞られることに起因して、上流側領域の燃料圧力(つまり上流燃圧PH)と下流側領域の燃料圧力(つまり下流燃圧PL)との圧力差が生じる。したがって、弁体30が閉弁状態から開弁状態に変化している時、開弁状態から閉弁状態に変化している時、および弁体30がフルリフト位置に保持されている時には、絞り流通路F22に燃料が流れて上記圧力差が生じる。   In short, when the fuel flows through the throttle flow passage F22, the flow rate of the fuel flowing through the movable flow passage F20 is throttled by the orifice 32a, so that the fuel pressure in the upstream region (that is, the upstream fuel pressure PH) and the downstream region are reduced. A pressure difference with the fuel pressure (that is, the downstream fuel pressure PL) occurs. Accordingly, when the valve body 30 is changing from the closed state to the open state, when the valve body 30 is changing from the open state to the closed state, and when the valve body 30 is held at the full lift position, the throttle flow is reduced. The fuel flows in the path F22 and the pressure difference is generated.

そして、弁体30の開弁により生じる上記圧力差は、開弁から閉弁に切り替わると同時に無くなるわけではなく、閉弁してから所定時間が経過すると、上流燃圧PHと下流燃圧PLとは同じになる。一方、上記圧力差が生じていない状態で閉弁から開弁に切り替わると、その切り替わったタイミングで上記圧力差が直ぐに生じる。   And the said pressure difference produced by valve opening of the valve body 30 does not disappear simultaneously with switching from valve opening to valve closing, but when the predetermined time passes after valve closing, the upstream fuel pressure PH and the downstream fuel pressure PL are the same. become. On the other hand, when switching from valve closing to valve opening in a state where the pressure difference does not occur, the pressure difference immediately occurs at the switching timing.

図3に示すように、可動構造体Mが移動する際に、可動構造体Mのうち上流燃圧PHを閉弁側に受ける面を上流側受圧面SHと呼び、下流燃圧PLを開弁側に受ける面を下流側受圧面SLと呼ぶ。   As shown in FIG. 3, when the movable structure M moves, the surface of the movable structure M that receives the upstream fuel pressure PH on the valve closing side is called the upstream pressure receiving surface SH, and the downstream fuel pressure PL is set on the valve opening side. The receiving surface is referred to as a downstream pressure receiving surface SL.

見かけ上の上流側受圧面SH1は、可動コア40、連結部材31およびオリフィス部材32の上端面であって、上流側領域に露出した部分の面に相当する。但し、両領域の境界となる摺動面33aが、可動コア40の外周面40aよりも径方向内側に位置するため、可動コア40の下端面のうち摺動面33aの外側に位置する受圧面SH2は、開弁方向に上流燃圧PHを受ける。よって、見かけ上の上流側受圧面SH1の面積から、開弁方向に燃圧を受ける受圧面SH2の面積を差し引いた面積が、実質的な上流側受圧面SHの面積であると言える。   The apparent upstream pressure receiving surface SH1 is the upper end surface of the movable core 40, the connecting member 31, and the orifice member 32, and corresponds to the surface of the portion exposed in the upstream region. However, since the sliding surface 33a serving as the boundary between the two regions is located radially inside the outer peripheral surface 40a of the movable core 40, the pressure receiving surface located outside the sliding surface 33a of the lower end surface of the movable core 40. SH2 receives the upstream fuel pressure PH in the valve opening direction. Therefore, it can be said that the area obtained by subtracting the area of the pressure receiving surface SH2 that receives the fuel pressure in the valve opening direction from the apparent area of the upstream pressure receiving surface SH1 is the substantial area of the upstream pressure receiving surface SH.

下流側受圧面SLは、摺動部材33、連結部材31およびオリフィス部材32の下端面であって、下流側領域に露出した部分の面に相当する。下流側受圧面SLの面積は上流側受圧面SHと同じである。   The downstream pressure receiving surface SL is the lower end surface of the sliding member 33, the connecting member 31, and the orifice member 32, and corresponds to the surface of the portion exposed in the downstream region. The area of the downstream pressure receiving surface SL is the same as that of the upstream pressure receiving surface SH.

上流側受圧面SHに上流燃圧PHを乗算した値が、可動構造体Mに対して閉弁側に作用する力に相当し、下流側受圧面SLに下流燃圧PLを乗算した値が、可動構造体Mに対して開弁側に作用する力に相当する。これらの力の差が、移動する可動構造体Mにブレーキ力として作用する。   The value obtained by multiplying the upstream pressure receiving surface SH by the upstream fuel pressure PH corresponds to a force acting on the movable structure M on the valve closing side, and the value obtained by multiplying the downstream pressure receiving surface SL by the downstream fuel pressure PL is the movable structure. This corresponds to the force acting on the valve opening side with respect to the body M. A difference between these forces acts as a braking force on the movable structure M that moves.

可動構造体Mが開弁方向に移動する最中では、上流側領域の燃料が可動構造体Mに押されて圧縮されるので、上流燃圧PHが上昇する。その一方で、可動構造体Mに押された上流側領域の燃料は、オリフィス32aで絞られながら下流側領域へ押し出されるので、下流燃圧PLの方が上流燃圧PHよりも低くなる。よって、両領域での圧力差ΔPによるブレーキ力は、開弁方向に移動する可動構造体Mを閉弁方向に押し返す向きに作用することになる。要するに、開弁作動時には絞り流通路F22を噴孔側へ燃料が流れ、その時に絞られて生じる圧力差ΔPに、上流側受圧面SHまたは下流側受圧面SLの面積Sを乗算した力が、ブレーキ力として可動構造体Mに作用する。   During the movement of the movable structure M in the valve opening direction, the fuel in the upstream region is pushed and compressed by the movable structure M, so the upstream fuel pressure PH increases. On the other hand, the fuel in the upstream region pushed by the movable structure M is pushed out to the downstream region while being throttled by the orifice 32a, so the downstream fuel pressure PL is lower than the upstream fuel pressure PH. Therefore, the braking force due to the pressure difference ΔP in both regions acts in a direction in which the movable structure M that moves in the valve opening direction is pushed back in the valve closing direction. In short, when the valve is opened, the fuel flows through the throttle flow passage F22 toward the nozzle hole, and the force obtained by multiplying the pressure difference ΔP generated by the throttle by the area S of the upstream pressure receiving surface SH or the downstream pressure receiving surface SL is It acts on the movable structure M as a braking force.

可動構造体Mが閉弁方向に移動する最中では、下流側領域の燃料が可動構造体Mに押されて圧縮されるので、下流燃圧PLが上昇する。その一方で、可動構造体Mに押された下流側領域の燃料は、オリフィス32aで絞られながら上流側領域へ押し出されるので、上流燃圧PHの方が下流燃圧PLよりも低くなる。よって、両領域での圧力差ΔPによるブレーキ力は、閉弁方向に移動する可動構造体Mを開弁方向に押し返す向きに作用することになる。要するに、閉弁作動時には絞り流通路F22を反噴孔側へ燃料が流れ、その時に絞られて生じる圧力差ΔPに上記面積Sを乗算した力が、ブレーキ力として可動構造体Mに作用する。   While the movable structure M moves in the valve closing direction, the fuel in the downstream region is pushed and compressed by the movable structure M, so the downstream fuel pressure PL rises. On the other hand, since the fuel in the downstream region pushed by the movable structure M is pushed out to the upstream region while being throttled by the orifice 32a, the upstream fuel pressure PH becomes lower than the downstream fuel pressure PL. Therefore, the braking force due to the pressure difference ΔP in both regions acts in a direction in which the movable structure M that moves in the valve closing direction is pushed back in the valve opening direction. In short, when the valve is closed, fuel flows through the throttle flow passage F22 toward the counter-injection hole, and a force obtained by multiplying the pressure difference ΔP generated by the throttle at that time by the area S acts on the movable structure M as a braking force.

したがって、オリフィス32aによる絞り度合および上記面積Sの少なくとも一方を調整すれば、上記ブレーキ力を調整できる。そして上記面積Sの大きさは、摺動面33aの直径寸法を調整することで調整できる。   Therefore, the braking force can be adjusted by adjusting at least one of the degree of restriction by the orifice 32a and the area S. The size of the area S can be adjusted by adjusting the diameter of the sliding surface 33a.

次に、本実施形態が採用する構成による作用および効果について説明する。   Next, the operation and effect of the configuration adopted by the present embodiment will be described.

本実施形態によれば、絞り流通路F22と摺動流通路F27sとは並列し、かつ、摺動流通路F27sの通路面積は絞り流通路F22の通路面積よりも小さく設定されている。そのため、流通路Fは、オリフィス32a(絞り部)を境に、上流側領域と下流側領域とに区分される。そして、可動構造体Mの移動時には絞り流通路F22で燃料の流量が絞られることに起因して、両領域で圧力差ΔPが生じることになり、この圧力差ΔPに起因して、ブレーキ力が可動構造体Mに作用する。   According to the present embodiment, the throttle flow passage F22 and the sliding flow passage F27s are arranged in parallel, and the passage area of the sliding flow passage F27s is set smaller than the passage area of the throttle flow passage F22. Therefore, the flow path F is divided into an upstream region and a downstream region with the orifice 32a (throttle portion) as a boundary. When the movable structure M moves, a pressure difference ΔP is generated in both regions due to the fuel flow rate being reduced in the throttle flow passage F22, and the braking force is reduced due to the pressure difference ΔP. It acts on the movable structure M.

そのため、閉弁作動する可動構造体Mに対してブレーキ力が作用するので、弁体30が着座面23sでバウンスすることを抑制でき、意図に反した噴射状態になるおそれを軽減できる。また、開弁作動する可動構造体Mに対してブレーキ力が作用するので、連結部材31がストッパ51に衝突する時の衝撃を緩和でき、連結部材31およびストッパ51の摩耗を抑制できる。   Therefore, since the braking force acts on the movable structure M that performs the valve closing operation, it is possible to suppress the bounce of the valve body 30 on the seating surface 23s, and it is possible to reduce the possibility of an unintended injection state. Further, since the braking force acts on the movable structure M that opens the valve, the impact when the connecting member 31 collides with the stopper 51 can be reduced, and the wear of the connecting member 31 and the stopper 51 can be suppressed.

加えて、本実施形態では、可動構造体Mの摺動方向に対して垂直な方向(つまり径方向)における摺動面33aの位置は、可動コア40の最外周位置と異なる。そのため、可動コア40の最外周位置を変更することなく、上流側受圧面SHおよび下流側受圧面SLの面積Sを調整できる。よって、摺動面33aの位置を調整することで、可動コア40の最外周位置を変更することなく上記面積Sを調整できる。よって、可動コア40に作用する磁気力に大きな変化を招くこと無く、上記ブレーキ力を調整できる。   In addition, in the present embodiment, the position of the sliding surface 33a in the direction perpendicular to the sliding direction of the movable structure M (that is, the radial direction) is different from the outermost peripheral position of the movable core 40. Therefore, the area S of the upstream pressure receiving surface SH and the downstream pressure receiving surface SL can be adjusted without changing the outermost peripheral position of the movable core 40. Therefore, the area S can be adjusted without changing the outermost peripheral position of the movable core 40 by adjusting the position of the sliding surface 33a. Therefore, the braking force can be adjusted without causing a large change in the magnetic force acting on the movable core 40.

さらに本実施形態では、可動コア40には、絞り流通路F22の上流部分と摺動流通路F27sの上流部分とを連通する貫通穴41が形成されている。そのため、ストッパ51にオリフィス部材32が当接して流通路F24sと流通路F25sとの連通が遮断された場合であっても、貫通穴41を通じて、開弁方向に上流燃圧PHを受ける受圧面SH2へ燃料を送ることができる。よって、実質的な上流側受圧面SHの面積を所望の大きさにすることの確実性を向上できる。   Further, in the present embodiment, the movable core 40 is formed with a through hole 41 that communicates the upstream portion of the throttle flow passage F22 and the upstream portion of the sliding flow passage F27s. Therefore, even if the orifice member 32 abuts on the stopper 51 and the communication between the flow passage F24s and the flow passage F25s is blocked, the pressure receiving surface SH2 that receives the upstream fuel pressure PH in the valve opening direction through the through hole 41. Fuel can be sent. Therefore, the certainty of making the area of the substantial upstream pressure receiving surface SH a desired size can be improved.

さらに本実施形態では、摺動面33aを形成する摺動部材33の材質は、可動コア40の材質とは異なる。そのため、摺動面33aについては高耐久優先の材質にでき、可動コア40については低磁気抵抗優先の材質にできる。   Furthermore, in this embodiment, the material of the sliding member 33 that forms the sliding surface 33 a is different from the material of the movable core 40. Therefore, the sliding surface 33a can be made of a material with high durability priority, and the movable core 40 can be made of a material with low magnetic resistance priority.

さらに本実施形態では、絞り流通路F22は弁体30の中心軸線上に位置する。これによれば、中心軸線に対して垂直な方向(つまり径方向)におけるオリフィス32a(絞り部)の位置が、仮に、所望の位置からずれていたとしても、オリフィス32aが受ける流体抵抗は中心軸線に近い位置に作用する。一方、本実施形態に反して、中心軸線から外れた位置に複数の絞り流通路を対象となるように配置すると、絞り流通路の位置ずれに起因して、流体抵抗が可動構造体Mに傾倒力として作用する。したがって、絞り流通路F22を弁体30の中心軸線上に位置させる本実施形態によれば、可動構造体Mに作用する上記傾倒力を小さくできる。   Furthermore, in this embodiment, the throttle flow path F22 is located on the central axis of the valve body 30. According to this, even if the position of the orifice 32a (throttle portion) in the direction perpendicular to the central axis (that is, the radial direction) is deviated from the desired position, the fluid resistance received by the orifice 32a is the central axis. Acts at a position close to. On the other hand, contrary to the present embodiment, when a plurality of throttle flow passages are arranged at positions away from the central axis, the fluid resistance is inclined to the movable structure M due to the positional deviation of the throttle flow passages. Acts as a force. Therefore, according to the present embodiment in which the throttle flow passage F22 is positioned on the central axis of the valve body 30, the tilting force acting on the movable structure M can be reduced.

さらに本実施形態では、摺動面33aを形成する摺動部材33を可動コア40に押し付けて密着させる密着用弾性部材SP2を備える。これによれば、摺動部材33を可動コア40に固定することなく可動コア40との間をシールできるので、摺動部材33は、可動コア40に対して径方向に相対移動可能な状態で、流通路Fを上流側領域と下流側領域とに区分できる。そして、仮に本実施形態に反して摺動部材33を可動コア40に固定すると、摺動部材33の軸中心と可動コア40の軸中心とを高精度で一致させることが要求される。しかし、本実施形態によれば、上記固定を不要にできるので、可動構造体Mに要求される寸法精度を緩くできる。   Furthermore, in this embodiment, the elastic member SP2 for contact | adhesion which presses the sliding member 33 which forms the sliding surface 33a against the movable core 40, and is stuck is provided. According to this, since the space between the movable core 40 can be sealed without fixing the sliding member 33 to the movable core 40, the sliding member 33 can be moved relative to the movable core 40 in the radial direction. The flow path F can be divided into an upstream region and a downstream region. If the sliding member 33 is fixed to the movable core 40 contrary to the present embodiment, it is required that the axial center of the sliding member 33 and the axial center of the movable core 40 be matched with high accuracy. However, according to the present embodiment, since the fixing can be made unnecessary, the dimensional accuracy required for the movable structure M can be relaxed.

さらに本実施形態では、弁体30は、相対移動不能な状態で可動コア40に固定されている。ここで、本実施形態に反して、可動コア40に対して相対移動可能な状態で弁体を可動コアに組み付ける構成にすると、以下の懸念が生じる。すなわち、閉弁直後に可動コアが相対移動するのでバウンスが生じにくくなるものの、相対移動する可動コアが静止するまでは次の噴射を開始できなくなるので、短インターバルでの噴射の実現が妨げられることが懸念される。   Furthermore, in this embodiment, the valve body 30 is fixed to the movable core 40 in a state in which relative movement is impossible. Here, contrary to the present embodiment, if the valve body is assembled to the movable core in a state where it can move relative to the movable core 40, the following concerns arise. That is, since the movable core moves relative to the valve immediately after the valve is closed, it is difficult for bounce to occur.However, the next injection cannot be started until the relatively moving movable core comes to a standstill, which impedes the implementation of injection in a short interval. Is concerned.

これに対し本実施形態では、相対移動不能な状態で弁体30を可動コア40に固定させるので、可動コアの相対移動が静止するまで待つことにより短インターバル化が妨げられることを回避できる。それでいて、径方向における摺動面33aの位置を可動コア40の最外周位置と異ならせることによりブレーキ力を調整できるといった上記効果が発揮されるので、弁体30のバウンス抑制も図ることができる。つまり、短インターバル化とバウンス抑制の両立を図ることができる。   On the other hand, in this embodiment, since the valve body 30 is fixed to the movable core 40 in a state in which the relative movement is impossible, it is possible to avoid the short interval from being hindered by waiting until the relative movement of the movable core stops. Nevertheless, since the above-described effect that the braking force can be adjusted by making the position of the sliding surface 33a in the radial direction different from the outermost peripheral position of the movable core 40, the bounce of the valve body 30 can be suppressed. That is, it is possible to achieve both shortening of the interval and suppression of bounce.

さらに本実施形態では、摺動面33aの最外径寸法は、可動コア40の最外径寸法よりも小さい。つまり、摺動流通路F27sは、可動コア40の最外周位置よりも内側に設けられている。近年、燃料噴射弁に供給される燃料の高圧化が進む傾向にあり、それに伴い、弁体30に作用する油圧力が大きくなり、ひいては開弁に要する磁気吸引力が大きくなる傾向にある。そのため、可動コア40の最外径寸法も大型化する傾向にある。したがって、本実施形態に反して可動コア40の最外径位置を摺動面として機能させると、下流側受圧面SLの面積が必要以上に大きくなり、ブレーキ力が必要以上に大きくなることが懸念される。これに対し本実施形態では、可動コア40の最外径位置とは異なる位置に摺動面33aを設け、摺動面33aの最外径寸法を可動コア40の最外径寸法より小さくしているので、上記懸念を抑制できる。   Furthermore, in the present embodiment, the outermost diameter dimension of the sliding surface 33 a is smaller than the outermost diameter dimension of the movable core 40. That is, the sliding flow passage F27s is provided on the inner side of the outermost peripheral position of the movable core 40. In recent years, the pressure of fuel supplied to the fuel injection valve tends to increase, and along with this, the oil pressure acting on the valve body 30 increases, and as a result, the magnetic attractive force required to open the valve tends to increase. Therefore, the outermost diameter dimension of the movable core 40 tends to increase. Therefore, when the outermost diameter position of the movable core 40 is made to function as a sliding surface contrary to the present embodiment, there is a concern that the area of the downstream pressure receiving surface SL becomes larger than necessary and the braking force becomes larger than necessary. Is done. In contrast, in the present embodiment, the sliding surface 33a is provided at a position different from the outermost diameter position of the movable core 40, and the outermost diameter dimension of the sliding surface 33a is made smaller than the outermost diameter dimension of the movable core 40. Therefore, the above concerns can be suppressed.

(第2実施形態)
本実施形態に係る燃料噴射弁の可動構造体M1は、流通路Fでの流量の絞り度合を変化させる可変絞り機構を有する。可変絞り機構は、第1実施形態と同様のオリフィス部材32(固定部材)と、以下に説明する移動部材100および押付用弾性部材SP3と、を有する。移動部材100は、オリフィス部材32に対して軸線方向に相対移動可能な状態で、連結部材31内部の流通路F23に配置されている。
(Second Embodiment)
The movable structure M1 of the fuel injection valve according to the present embodiment has a variable throttle mechanism that changes the throttle degree of the flow rate in the flow passage F. The variable throttle mechanism includes an orifice member 32 (fixed member) similar to that of the first embodiment, and a moving member 100 and a pressing elastic member SP3 described below. The moving member 100 is disposed in the flow path F <b> 23 inside the connecting member 31 so as to be movable relative to the orifice member 32 in the axial direction.

移動部材100は、軸線方向に延びる金属製の円柱形状であり、オリフィス部材32の下流側に配置されている。移動部材100の円柱中心部分には軸線方向に貫通する貫通穴が形成されている。この貫通穴は、流通路Fの一部であり絞り流通路F22と連通し、絞り流通路F22よりも通路面積が小さいサブ絞り流通路103として機能する。移動部材100は、絞り流通路F22を覆うシール面101aが形成されたシール部101と、押付用弾性部材SP3と係合する係合部102とを有する。   The moving member 100 has a metal cylindrical shape extending in the axial direction, and is disposed on the downstream side of the orifice member 32. A through-hole penetrating in the axial direction is formed in the central portion of the cylinder of the moving member 100. This through hole is a part of the flow passage F, communicates with the throttle flow passage F22, and functions as a sub-throttle flow passage 103 having a smaller passage area than the throttle flow passage F22. The moving member 100 includes a seal portion 101 formed with a seal surface 101a that covers the throttle flow passage F22, and an engagement portion 102 that engages with the pressing elastic member SP3.

係合部102はシール部101よりも小径であり、コイル形状の押付用弾性部材SP3が係合部102に嵌め込まれている。これにより、押付用弾性部材SP3の径方向への移動が係合部102で規制される。押付用弾性部材SP3の一端はシール部101の下端面に支持され、押付用弾性部材SP3の他端は連結部材31に支持される。押付用弾性部材SP3は、軸線方向に弾性変形して弾性力を移動部材100へ付与し、移動部材100のシール面101aは、オリフィス部材32の下端面に弾性力で押し付けられて密着する。   The engaging portion 102 has a smaller diameter than the seal portion 101, and a coil-shaped pressing elastic member SP <b> 3 is fitted into the engaging portion 102. Thereby, the movement of the pressing elastic member SP3 in the radial direction is restricted by the engaging portion 102. One end of the pressing elastic member SP3 is supported by the lower end surface of the seal portion 101, and the other end of the pressing elastic member SP3 is supported by the connecting member 31. The pressing elastic member SP3 is elastically deformed in the axial direction to apply an elastic force to the moving member 100, and the seal surface 101a of the moving member 100 is pressed against the lower end surface of the orifice member 32 by the elastic force and is in close contact therewith.

弁体30が開弁方向へ移動することに伴い、移動部材100の上流側燃圧が下流側燃圧よりも所定以上高くなると、押付用弾性部材SP3の弾性力に抗して移動部材100はオリフィス部材32から離座する(図5参照)。弁体30が閉弁方向へ移動することに伴い、移動部材100の下流側燃圧が上流側燃圧よりも所定以上高くなると、移動部材100はオリフィス部材32に着座する(図4参照)。   When the upstream side fuel pressure of the moving member 100 becomes higher than the downstream side fuel pressure by a predetermined amount or more as the valve body 30 moves in the valve opening direction, the moving member 100 becomes an orifice member against the elastic force of the pressing elastic member SP3. It separates from 32 (refer FIG. 5). When the downstream side fuel pressure of the moving member 100 becomes higher than the upstream side fuel pressure by a predetermined amount or more as the valve body 30 moves in the valve closing direction, the moving member 100 is seated on the orifice member 32 (see FIG. 4).

移動部材100が離座している状態では、移動部材100の外周面と連結部材31の内周面との隙間に、燃料が流れる流通路(外周側流通路F23a)が形成される。外周側流通路F23aとサブ絞り流通路103とは並列に位置し、移動部材100が離座している状態では、絞り流通路F22から流通路F23へ流出した燃料は、サブ絞り流通路103と外周側流通路F23aとに分岐して流れる。サブ絞り流通路103と外周側流通路F23aとを合わせた通路面積は、絞り流通路F22の通路面積よりも大きい。よって、移動部材100が離座している状態では、可動流通路F20の流量は絞り流通路F22での絞り度合により特定される。   In a state in which the moving member 100 is separated, a flow passage (outer peripheral flow passage F23a) through which fuel flows is formed in the gap between the outer peripheral surface of the moving member 100 and the inner peripheral surface of the connecting member 31. When the outer peripheral side flow passage F23a and the sub throttle flow passage 103 are positioned in parallel and the moving member 100 is separated, the fuel that has flowed out of the throttle flow passage F22 into the flow passage F23 is separated from the sub throttle flow passage 103. It branches and flows to the outer peripheral flow passage F23a. The total passage area of the sub-throttle flow passage 103 and the outer peripheral flow passage F23a is larger than the passage area of the restriction flow passage F22. Therefore, in the state where the moving member 100 is separated, the flow rate of the movable flow passage F20 is specified by the degree of restriction in the restriction flow passage F22.

一方、移動部材100が着座している状態では、絞り流通路F22から流通路F23へ流出した燃料は、サブ絞り流通路103を流れ、外周側流通路F23aには流れない。そして、サブ絞り流通路103の通路面積は絞り流通路F22の通路面積よりも小さい。よって、移動部材100が着座している状態では、可動流通路F20の流量はサブ絞り流通路103での絞り度合により特定される。したがって、移動部材100は、オリフィス部材32に着座することで絞り流通路F22を覆って絞り度合を大きくし、オリフィス部材32から離座することで絞り流通路F22を開放して絞り度合を小さくする。   On the other hand, in the state where the moving member 100 is seated, the fuel that has flowed out from the throttle flow passage F22 to the flow passage F23 flows through the sub-throttle flow passage 103 and does not flow into the outer peripheral flow passage F23a. The passage area of the sub-throttle flow passage 103 is smaller than the passage area of the restriction flow passage F22. Therefore, in the state where the moving member 100 is seated, the flow rate of the movable flow passage F <b> 20 is specified by the degree of restriction in the sub-throttle flow passage 103. Accordingly, the moving member 100 is seated on the orifice member 32 to cover the throttle flow passage F22 to increase the degree of throttle, and by moving away from the orifice member 32, the throttle flow passage F22 is opened to reduce the throttle degree. .

弁体30が開弁方向へ移動中の状態であれば、移動部材100の上流側燃圧が下流側燃圧よりも所定以上高くなって移動部材100が離座する蓋然性が高い。但し、弁体30が開弁方向へ最も移動したフルリフト状態となり弁体30が移動停止した状態であれば、移動部材100が着座する蓋然性が高い。   If the valve body 30 is moving in the valve opening direction, there is a high probability that the upstream side fuel pressure of the moving member 100 is higher than the downstream side fuel pressure by a predetermined amount or more and the moving member 100 is separated. However, if the valve body 30 is in the full lift state in which the valve body 30 has moved most in the valve opening direction and the valve body 30 has stopped moving, the probability that the moving member 100 will be seated is high.

弁体30が閉弁方向へ移動中の状態であれば、移動部材100の下流側燃圧が上流側燃圧よりも所定以上高くなって移動部材100が着座する蓋然性が高い。但し、開弁期間を短くして噴孔23aからの噴射量を少なくする場合等、弁体30がフルリフト位置まで移動せずに開弁作動から閉弁作動に切り替える噴射(パーシャルリフト噴射)を実施する場合がある。この場合には、閉弁作動に切り替わった直後には移動部材100が離座している蓋然性が高い。但し、その後の閉弁直前の期間においては、移動部材100の下流側燃圧が上流側燃圧よりも所定以上高くなって移動部材100が着座する蓋然性が高い。   If the valve body 30 is moving in the valve closing direction, the downstream side fuel pressure of the moving member 100 is higher than the upstream side fuel pressure by a predetermined amount or more, and the probability that the moving member 100 is seated is high. However, when the valve opening period is shortened to reduce the injection amount from the nozzle hole 23a, injection (partial lift injection) is performed to switch the valve body 30 from the valve opening operation to the valve closing operation without moving to the full lift position. There is a case. In this case, there is a high probability that the moving member 100 is separated immediately after switching to the valve closing operation. However, in the period immediately before the valve closing after that, the downstream fuel pressure of the moving member 100 is higher than the upstream fuel pressure by a predetermined amount or more, and the probability that the moving member 100 is seated is high.

要するに、弁体30の開弁作動中に移動部材100が常時開弁しているとは限らず、弁体30が開弁方向へ移動する上昇期間のうち少なくとも開弁直後の期間では、移動部材100は着座している。また、弁体30の閉弁作動中に移動部材100が常時着座しているとは限らず、弁体30が閉弁方向へ移動する下降期間のうち少なくとも閉弁直前の期間では、移動部材100は着座している。したがって、開弁直後の期間および閉弁直前の期間では、移動部材100は着座して、燃料の全量がサブ絞り流通路103を流通するので、移動部材100が離座している期間に比べて可動流通路F20での絞り度合が大きくなる。   In short, the moving member 100 is not always open during the valve opening operation of the valve body 30, and the moving member is at least in the period immediately after the valve opening in the rising period in which the valve body 30 moves in the valve opening direction. 100 is seated. Further, the moving member 100 is not always seated during the valve closing operation of the valve body 30, and the moving member 100 is at least in the period immediately before the valve closing in the descending period in which the valve body 30 moves in the valve closing direction. Is seated. Therefore, in the period immediately after the valve opening and in the period immediately before the valve closing, the moving member 100 is seated and the entire amount of fuel flows through the sub-throttle flow passage 103, so that the moving member 100 is separated from the period. The degree of restriction in the movable flow path F20 increases.

以上により、本実施形態によれば、可動構造体M1は、流通路Fでの流量の絞り度合を変化させる可変絞り機構を有する。そのため、可動構造体M1に作用する燃料によるブレーキ力を変化させることができる。   As described above, according to the present embodiment, the movable structure M1 has the variable throttle mechanism that changes the throttle degree of the flow rate in the flow passage F. Therefore, it is possible to change the braking force by the fuel that acts on the movable structure M1.

さらに本実施形態によれば、弁体30が閉弁方向へ移動する閉弁作動期間のうち少なくとも閉弁直前の期間では、フルリフト状態の時に比べて、可変絞り機構による絞り度合が大きくなる。そのため、閉弁直前の期間では、絞り度合が大きくなることにより両領域の圧力差が大きくなるので、ブレーキ力が増大して弁体30の閉弁作動速度が遅くなり、弁体30が着座面23sでバウンスするおそれを低減できる。一方、フルリフト開弁期間では、絞り度合が小さくなることにより噴射期間における圧力損失を低減できる。   Furthermore, according to the present embodiment, in the valve closing operation period in which the valve body 30 moves in the valve closing direction, at least the period immediately before the valve closing, the degree of throttle by the variable throttle mechanism is greater than in the full lift state. Therefore, in the period immediately before the valve closing, the pressure difference between the two regions is increased due to the increase in the degree of throttle, so that the braking force is increased and the valve closing operation speed of the valve body 30 is decreased, and the valve body 30 is seated. The possibility of bouncing in 23 s can be reduced. On the other hand, in the full lift valve opening period, the pressure loss in the injection period can be reduced by reducing the throttle degree.

さらに本実施形態によれば、弁体30が開弁方向へ移動する開弁作動期間のうち少なくとも開弁直後の期間では、フルリフト状態の時に比べて、可変絞り機構による絞り度合が大きくなる。そのため、開弁直後の期間では、絞り度合が大きくなることにより両領域の圧力差が大きくなるので、ブレーキ力が増大して弁体の開弁速度が遅くなる。よって、先述したパーシャルリフト噴射の際に、コイル70への通電時間に対する噴孔23aからの噴射量を少なくできる。そのため、通電時間に対する噴射量の特性がばらつくことを低減できる。   Furthermore, according to the present embodiment, in the valve opening operation period in which the valve body 30 moves in the valve opening direction, at least the period immediately after the valve opening, the degree of throttling by the variable throttle mechanism is greater than in the full lift state. For this reason, in the period immediately after the opening of the valve, the degree of throttling increases, so that the pressure difference between the two regions increases. Therefore, the braking force increases and the valve opening speed of the valve body decreases. Therefore, at the time of the partial lift injection described above, the injection amount from the nozzle hole 23a with respect to the energization time to the coil 70 can be reduced. Therefore, it is possible to reduce variations in the characteristics of the injection amount with respect to the energization time.

さらに本実施形態では、可変絞り機構は、オリフィス32a(絞り部)が形成されたオリフィス部材32(固定部材)、およびオリフィス部材32に対して相対移動する移動部材100を有する。移動部材100は、オリフィス部材32に着座することで絞り流通路F22を覆って絞り度合を大きくし、オリフィス部材32から離座することで絞り流通路F22を開放して絞り度合を小さくする。そのため、移動部材100の離着座で絞り度合を可変にできるので、簡素な構造で可変絞り機構を実現できる。   Further, in the present embodiment, the variable throttle mechanism includes the orifice member 32 (fixed member) in which the orifice 32 a (throttle portion) is formed, and the moving member 100 that moves relative to the orifice member 32. The moving member 100 is seated on the orifice member 32 to cover the throttle flow passage F22 to increase the degree of throttle, and by moving away from the orifice member 32, the throttle flow passage F22 is opened to reduce the throttle degree. Therefore, the degree of restriction can be made variable by the seating of the moving member 100, so that the variable restriction mechanism can be realized with a simple structure.

さらに本実施形態では、移動部材100はオリフィス部材32の下流側に配置される。そして、弁体30が開弁方向へ移動するに伴い移動部材100の上流側燃圧が下流側燃圧よりも所定以上高くなることで移動部材100は離座する。また、弁体30が閉弁方向へ移動するに伴い下流側燃圧が上流側燃圧よりも所定以上高くなることで移動部材は着座する。これによれば、移動部材100を移動させるためのアクチュエータを不要にしつつ、移動部材100を移動させて絞り度合を可変にできる。   Further, in the present embodiment, the moving member 100 is disposed on the downstream side of the orifice member 32. As the valve body 30 moves in the valve opening direction, the upstream side fuel pressure of the moving member 100 becomes higher than the downstream side fuel pressure by a predetermined amount or more, so that the moving member 100 is separated. Further, as the valve body 30 moves in the valve closing direction, the moving member is seated when the downstream side fuel pressure becomes higher than the upstream side fuel pressure by a predetermined amount or more. According to this, the diaphragm member can be made variable by moving the moving member 100 while eliminating the need for an actuator for moving the moving member 100.

さらに本実施形態では、移動部材100には、流通路Fの一部であるサブ絞り流通路103が形成され、サブ絞り流通路103の通路面積は絞り流通路F22の通路面積よりも小さい。本実施形態に反してサブ絞り流通路103が形成されていない場合には、移動部材100がオリフィス部材32に張り付いて剥がれにくくなり、移動部材100が離座しにくくなることが懸念される。これに対し本実施形態では、移動部材100にサブ絞り流通路103が形成されているので、上記貼り付きの懸念を抑制できる。   Furthermore, in this embodiment, the sub-throttle flow passage 103 that is a part of the flow passage F is formed in the moving member 100, and the passage area of the sub-throttle flow passage 103 is smaller than the passage area of the narrow flow passage F22. Contrary to this embodiment, when the sub-throttle passage 103 is not formed, there is a concern that the moving member 100 will stick to the orifice member 32 and will not easily peel off, and the moving member 100 will be difficult to separate. On the other hand, in this embodiment, since the sub-throttle flow passage 103 is formed in the moving member 100, the concern about sticking can be suppressed.

また、弁体30が着座面23sに着座して閉弁した直後には、下流燃圧PLに脈動が生じるため、本実施形態に反してサブ絞り流通路103が形成されていない場合には、上記脈動に応じて移動部材100が着座と離座を繰り返すバタツキが懸念される。これに対し本実施形態では、移動部材100にサブ絞り流通路103が形成されているので、上記バタツキの懸念を抑制できる。   Immediately after the valve body 30 is seated on the seating surface 23s and closed, pulsation occurs in the downstream fuel pressure PL. Therefore, in contrast to the present embodiment, when the sub throttle flow passage 103 is not formed, There is a concern that the moving member 100 repeatedly flutters and leaves according to the pulsation. On the other hand, in this embodiment, since the sub-throttle flow passage 103 is formed in the moving member 100, the concern about the fluttering can be suppressed.

(第3実施形態)
上記第2実施形態に係る可動構造体M1の移動部材100にはサブ絞り流通路103が形成されているのに対し、本実施形態に係る可動構造体M2の移動部材100Aには、図6に示すように、サブ絞り流通路103が形成されていない。
(Third embodiment)
The sub-throttle passage 103 is formed in the moving member 100 of the movable structure M1 according to the second embodiment, whereas the moving member 100A of the movable structure M2 according to the present embodiment is shown in FIG. As shown, the sub-throttle flow passage 103 is not formed.

したがって、移動部材100Aが離座している状態では、絞り流通路F22から流通路F23へ流出した燃料の全量が外周側流通路F23aを流れる。外周側流通路F23aの通路面積は、絞り流通路F22の通路面積よりも大きい。よって、移動部材100Aが離座している状態では、可動流通路F20の流量は絞り流通路F22での絞り度合により特定される。   Therefore, in the state where the moving member 100A is separated, the entire amount of fuel flowing out from the throttle flow passage F22 to the flow passage F23 flows through the outer peripheral flow passage F23a. The passage area of the outer peripheral flow passage F23a is larger than the passage area of the throttle flow passage F22. Therefore, in the state where the moving member 100A is separated, the flow rate of the movable flow passage F20 is specified by the degree of restriction in the restriction flow passage F22.

一方、移動部材100Aが着座している状態では、移動部材100Aは絞り流通路F22を閉塞し、絞り流通路F22から連結部材31の内部の流通路F23へ燃料が流れなくなる。よって、移動部材100Aが着座している状態では、可動流通路F20の流量はゼロとなり、絞り度合が最大の状態であるとも言える。したがって、移動部材100Aは、オリフィス部材32に着座することで絞り流通路F22を閉塞して可動流通路F20の流れを止め、言わば、絞り度合が最大の状態にする。一方、移動部材100Aは、オリフィス部材32から離座することで絞り流通路F22を開放して、可動流通路F20に燃料が流れるようにし、言わば、絞り度合が最大の状態から小さい状態にする。   On the other hand, in a state where the moving member 100A is seated, the moving member 100A closes the throttle flow passage F22, and fuel does not flow from the throttle flow passage F22 to the flow passage F23 inside the connecting member 31. Therefore, in a state where the moving member 100A is seated, it can be said that the flow rate of the movable flow path F20 is zero and the degree of throttling is the maximum. Therefore, the moving member 100A is seated on the orifice member 32 so as to close the throttle flow passage F22 and stop the flow of the movable flow passage F20. On the other hand, the moving member 100A is separated from the orifice member 32 to open the throttle flow passage F22 so that the fuel flows into the movable flow passage F20, that is, the throttle degree is reduced from the maximum state to the small state.

以上により、本実施形態によれば、移動部材100Aは、オリフィス部材32に着座した状態で絞り流通路F22を閉塞するので、移動部材100Aの着座時における下流燃圧PLを高くできる。よって、オリフィス32aを境にした上流側領域と下流側領域との圧力差ΔPを大きくできる。そのため、移動部材100Aの着座状態におけるブレーキ力が、移動部材100にサブ絞り流通路103が形成されている場合に比べて大きくなる。よって、弁体30の閉弁作動速度を遅くすることを促進でき、弁体30のバウンス低減の効果を向上できる。   As described above, according to the present embodiment, the moving member 100A closes the throttle flow passage F22 while seated on the orifice member 32, so that the downstream fuel pressure PL when the moving member 100A is seated can be increased. Therefore, the pressure difference ΔP between the upstream region and the downstream region with the orifice 32a as a boundary can be increased. Therefore, the braking force when the moving member 100 </ b> A is seated is greater than when the sub-throttle flow passage 103 is formed in the moving member 100. Accordingly, it is possible to promote the slowing down of the valve closing operation speed of the valve body 30 and improve the bounce reduction effect of the valve body 30.

(第4実施形態)
上記第1実施形態では、摺動部材33は可動コア40とは別体であり、可動コア40に対して径方向に相対移動可能な状態で配置されている。これに対し、図7に示す本実施形態では、摺動部材33は可動コア40に溶接等により接合されている。これに伴い、本実施形態では密着用弾性部材SP2および支持部材24を廃止している。
(Fourth embodiment)
In the first embodiment, the sliding member 33 is a separate body from the movable core 40 and is disposed in a state in which the sliding member 33 can move relative to the movable core 40 in the radial direction. On the other hand, in this embodiment shown in FIG. 7, the sliding member 33 is joined to the movable core 40 by welding or the like. Accordingly, in this embodiment, the contact elastic member SP2 and the support member 24 are eliminated.

また、第1実施形態の如く摺動部材33を可動コア40と別体にして径方向に移動可能にした場合、可動構造体Mのうち摺動部材33を除く部分に反噴孔側ガイド部が設けられている。これに対し、摺動部材33が可動コア40に接合された本実施形態では、摺動部材33に反噴孔側ガイド部が設けられている。つまり、摺動部材33の摺動面33aを反噴孔側ガイド部として機能させている。   Further, when the sliding member 33 is separated from the movable core 40 and can be moved in the radial direction as in the first embodiment, the anti-injection hole side guide portion is formed in a portion of the movable structure M excluding the sliding member 33. Is provided. In contrast, in the present embodiment in which the sliding member 33 is joined to the movable core 40, the sliding member 33 is provided with an anti-injection hole side guide portion. That is, the sliding surface 33a of the sliding member 33 functions as an anti-injection hole side guide portion.

(第5実施形態)
上記第1実施形態では、オリフィス32aをオリフィス部材32に形成し、そのオリフィス部材32を可動コア40に組み付けている。これに対し本実施形態では、オリフィス部材32を廃止して、図8に示すようにオリフィス32aを可動コア40に直接形成している。
(Fifth embodiment)
In the first embodiment, the orifice 32 a is formed in the orifice member 32, and the orifice member 32 is assembled to the movable core 40. On the other hand, in this embodiment, the orifice member 32 is abolished and the orifice 32a is directly formed in the movable core 40 as shown in FIG.

また、上記第1実施形態では、貫通穴41による流通路F28sは、可動コア40、連結部材31およびオリフィス部材32の3部品により形成されているのに対し、本実施形態では、可動コア40の1部品により貫通穴41が形成されている。貫通穴41は、可動コア40の内径側に位置する流通路F21、および可動コア40の外形側に位置する流通路F26sと連通する。   Further, in the first embodiment, the flow path F28s by the through hole 41 is formed by three parts of the movable core 40, the connecting member 31, and the orifice member 32. In the present embodiment, the flow path F28s of the movable core 40 is formed. A through hole 41 is formed by one component. The through hole 41 communicates with the flow passage F21 located on the inner diameter side of the movable core 40 and the flow passage F26s located on the outer shape side of the movable core 40.

可動コア40の中心にて軸線方向に延びる中心穴のうち、オリフィス32aの反噴孔側に連通する部分である流通路F21は、絞り流通路F22および貫通穴41と連通する「連通流通路」に相当する。絞り流通路F22の通路面積は、連通流通路の通路面積より小さい。摺動流通路F27sの通路面積は、絞り流通路F22の通路面積より小さい。なお、本明細書における通路面積とは、該当する通路を燃料流れ方向に対して直交する方向に切った断面の面積のことである。   Of the central hole extending in the axial direction at the center of the movable core 40, the flow passage F 21, which is a portion communicating with the side opposite to the injection hole of the orifice 32 a, communicates with the throttle flow passage F 22 and the through hole 41. It corresponds to. The passage area of the throttle flow passage F22 is smaller than the passage area of the communication flow passage. The passage area of the sliding flow passage F27s is smaller than the passage area of the throttle flow passage F22. In addition, the passage area in this specification is an area of a cross section obtained by cutting the corresponding passage in a direction orthogonal to the fuel flow direction.

また、上記第1実施形態に係る可動コア40は、固定コア50の吸引面に吸引される被吸引面を有し、その被吸引面は、軸線方向に対して垂直に拡がる1つの面である。これに対し本実施形態に係る可動コア40は、第1被吸引面401aおよび第2被吸引面402aといった2つの被吸引面を有する。第1被吸引面401aは、第1固定コア部501により形成される第1吸引面501aに対向配置され、第1吸引面501aとのエアギャップを磁束が通ることにより吸引される。第2被吸引面402aは、第2固定コア部502により形成される第2吸引面502aに対向配置され、第2吸引面502aとのエアギャップを磁束が通ることにより吸引される。   In addition, the movable core 40 according to the first embodiment has a surface to be sucked by the suction surface of the fixed core 50, and the surface to be sucked is one surface that extends perpendicular to the axial direction. . On the other hand, the movable core 40 according to the present embodiment has two sucked surfaces such as a first sucked surface 401a and a second sucked surface 402a. The first suction surface 401a is disposed opposite to the first suction surface 501a formed by the first fixed core portion 501, and is sucked by the magnetic flux passing through the air gap with the first suction surface 501a. The second attracted surface 402a is disposed opposite to the second attracting surface 502a formed by the second fixed core portion 502, and is attracted by the magnetic flux passing through the air gap with the second attracting surface 502a.

第1被吸引面401aおよび第2被吸引面402aは、径方向において互いに異なる位置に配置され、さらに、軸線方向においても互いに異なる位置に配置されている。具体的には、第1被吸引面401aは、第2被吸引面402aよりも径方向内側、かつ、軸線方向において噴孔側に配置されている。要するに、本実施形態に係る可動コア40は、径方向および軸線方向に異なる位置に配置された2つの被吸引面を有する、段付き形状に形成されている。   The first suction surface 401a and the second suction surface 402a are arranged at different positions in the radial direction, and are also arranged at different positions in the axial direction. Specifically, the first suction surface 401a is disposed radially inward of the second suction surface 402a and on the nozzle hole side in the axial direction. In short, the movable core 40 according to the present embodiment is formed in a stepped shape having two suction surfaces arranged at different positions in the radial direction and the axial direction.

可動コア40の外周面のうち第1被吸引面401aに連なる部分を第1外周面401bと呼び、第2被吸引面402aに連なる部分を第2外周面402bと呼ぶ。第1外周面401bは第2外周面402bよりも径方向内側に位置する。貫通穴41の一端は第1外周面401bに位置する。   A portion of the outer peripheral surface of the movable core 40 that is continuous with the first suction surface 401a is referred to as a first outer peripheral surface 401b, and a portion that is continuous with the second suction surface 402a is referred to as a second outer peripheral surface 402b. The first outer peripheral surface 401b is located radially inward of the second outer peripheral surface 402b. One end of the through hole 41 is located on the first outer peripheral surface 401b.

第1固定コア部501と第2固定コア部502との間には非磁性部材60が配置されている。そのため、第1被吸引面401aおよび第1吸引面501aを通過する磁束の向きと、第2被吸引面402aおよび第2吸引面502aを通過する磁束の向きは、逆向きになっている。   A nonmagnetic member 60 is disposed between the first fixed core portion 501 and the second fixed core portion 502. Therefore, the direction of the magnetic flux passing through the first attracted surface 401a and the first attracting surface 501a and the direction of the magnetic flux passing through the second attracted surface 402a and the second attracting surface 502a are opposite to each other.

第2固定コア部502の端面と本体部21の端面は溶接により固定されている。図8中のドットを付した部分は、溶接により溶融固化した部分(溶接部Y)を示す。第2固定コア部502および本体部21の内周面には、円筒形状の溶接カバー201が固定されている。溶接カバー201は、溶接部Yにより溶接されている。溶接カバー201の内周面には、被摺動部材202が嵌合により固定されている。被摺動部材202の内周面は、摺動部材33の外周面(摺動面33a)を摺動可能な状態で径方向に支持する。なお、摺動部材33の内周面は、可動コア40に嵌合する嵌合面33dとして機能している。   The end surface of the 2nd fixed core part 502 and the end surface of the main-body part 21 are being fixed by welding. The part which attached | subjected the dot in FIG. 8 shows the part (welded part Y) melted and solidified by welding. A cylindrical welding cover 201 is fixed to the inner peripheral surfaces of the second fixed core portion 502 and the main body portion 21. The welding cover 201 is welded by the welded portion Y. A sliding member 202 is fixed to the inner peripheral surface of the welding cover 201 by fitting. The inner peripheral surface of the sliding member 202 supports the outer peripheral surface (sliding surface 33a) of the sliding member 33 in the radial direction in a slidable state. The inner peripheral surface of the sliding member 33 functions as a fitting surface 33 d that fits into the movable core 40.

溶接カバー201、被摺動部材202、噴孔部材23および可動コア40は、それぞれ異なる材質で形成されている。具体的には、可動コア40には高磁性の材質が用いられ、摺動部材33および被摺動部材202には耐摩耗性に優れた高硬度の材質が用いられ、溶接カバー201には溶接に有利な材質が用いられている。   The welding cover 201, the sliding member 202, the injection hole member 23, and the movable core 40 are formed of different materials. Specifically, a highly magnetic material is used for the movable core 40, a highly hard material with excellent wear resistance is used for the sliding member 33 and the sliding member 202, and the welding cover 201 is welded. A material advantageous to the above is used.

先述した通りオリフィス部材32を廃止していることに伴い、弁体30は可動コア40に直接取り付けられている。具体的には、可動コア40のうちの噴孔側の面(下端面)に形成された凹部に、弁体30の反噴孔側端部が嵌合により固定されている。弁体30の反噴孔側端部の内部には、流通路F23が形成されている。弁体30内部の流通路F23は、弁体30に形成された通路穴30hを通じて、下流通路F30である流通路F31と連通している。   As described above, the valve body 30 is directly attached to the movable core 40 as the orifice member 32 is eliminated. Specifically, the end portion on the side opposite to the injection hole of the valve body 30 is fixed to the recess formed on the injection hole side surface (lower end surface) of the movable core 40 by fitting. A flow path F <b> 23 is formed in the end portion of the valve body 30 on the side opposite to the injection hole. The flow passage F23 inside the valve body 30 communicates with the flow passage F31 which is the downstream passage F30 through a passage hole 30h formed in the valve body 30.

可動コア40のうちの反噴孔側の面(上端面)に形成された凹部には、当接部材34が嵌合により固定されている。弁体30が開弁作動してフルリフト位置に達すると、当接部材34がストッパ51に当接して、可動コア40が固定コア50に当接することを回避させている。また、当接部材34は、弾性部材SP1を支持する部材としても機能している。   A contact member 34 is fixed by fitting into a recess formed on the surface (upper end surface) of the movable core 40 on the side opposite to the injection hole. When the valve body 30 opens and reaches the full lift position, the contact member 34 contacts the stopper 51, and the movable core 40 is prevented from contacting the fixed core 50. Further, the contact member 34 also functions as a member that supports the elastic member SP1.

ここで、本実施形態に反して、例えばオリフィス32aが形成されたオリフィス部材32を可動コア40に圧入固定する場合には、圧入によりオリフィス32aが変形して、絞り流通路F22の通路面積が所望の値から変化する懸念が生じる。このようにオリフィス32aが変形すると、先述した上流燃圧PHと下流燃圧PLとの圧力差ΔPによるブレーキ力が、所望の値からずれてしまう。この懸念に対し本実施形態では、オリフィス32aによる絞り流通路F22が可動コア40に形成されている。そのため、上記圧入変形によるオリフィス32aの変形を回避できるので、圧力差ΔPによるブレーキ力の上記ずれを低減できる。   Here, contrary to the present embodiment, for example, when the orifice member 32 formed with the orifice 32a is press-fitted and fixed to the movable core 40, the orifice 32a is deformed by the press-fitting, and the passage area of the throttle flow passage F22 is desired. Concerns vary from the value of. When the orifice 32a is deformed in this way, the braking force due to the pressure difference ΔP between the upstream fuel pressure PH and the downstream fuel pressure PL described above deviates from a desired value. In this embodiment, the throttle flow passage F22 formed by the orifice 32a is formed in the movable core 40 with respect to this concern. Therefore, since the deformation of the orifice 32a due to the press-fitting deformation can be avoided, the deviation of the braking force due to the pressure difference ΔP can be reduced.

ここで、本実施形態に反して、例えば貫通穴41による流通路F28sが、可動コア40、連結部材31およびオリフィス部材32の3部品により形成されている場合、貫通穴41内の燃料が各部材の当接面から漏れ出る懸念が生じる。このような漏出が生じると、上述した圧力差ΔPによるブレーキ力が、所望の値からずれてしまう。この懸念に対し本実施形態では、可動コア40に、絞り流通路F22および流通路F21(連通流通路)が形成されており、この連通流通路は、絞り流通路F22の反噴孔側に位置し、絞り流通路F22および貫通穴41と連通する。そのため、可動コア40の1部品により貫通穴41(流通路F28s)が形成されることになるので、連通流通路と連通する貫通穴41からの燃料漏出を回避でき、圧力差ΔPによるブレーキ力の上記ずれを低減できる。   Here, contrary to the present embodiment, for example, when the flow path F28s by the through hole 41 is formed by three parts of the movable core 40, the connecting member 31, and the orifice member 32, the fuel in the through hole 41 is each member. There is a concern of leakage from the contact surface. When such leakage occurs, the braking force due to the pressure difference ΔP described above deviates from a desired value. With respect to this concern, in the present embodiment, the movable core 40 is formed with a throttle flow passage F22 and a flow passage F21 (communication flow passage), and the communication flow passage is located on the side opposite to the injection hole of the throttle flow passage F22. Then, it communicates with the throttle flow passage F22 and the through hole 41. Therefore, since the through-hole 41 (flow passage F28s) is formed by one component of the movable core 40, fuel leakage from the through-hole 41 communicating with the communication flow passage can be avoided, and the braking force due to the pressure difference ΔP can be avoided. The deviation can be reduced.

(他の実施形態)
以上、発明の好ましい実施形態について説明したが、発明は上述した実施形態に何ら制限されることなく、以下に例示するように種々変形して実施することが可能である。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(Other embodiments)
The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made as illustrated below. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.

上記第1実施形態では、摺動部材33が、可動コア40に対して径方向に相対移動可能な状態で設置されている。これに対し、摺動部材33が、溶接等の手段により可動コア40に固定されて相対移動不能な状態で設置されていてもよい。   In the first embodiment, the sliding member 33 is installed so as to be relatively movable in the radial direction with respect to the movable core 40. On the other hand, the sliding member 33 may be fixed to the movable core 40 by means of welding or the like and installed in a state where relative movement is impossible.

上記第1実施形態では、可動コア40と連結部材31を別々に切削加工して別部品として製造し、その後、各々を溶接等で組み合わせて一体化させている。これに対し、可動コア40と連結部材31を1部品として一体に製造してもよい。例えば、1つの金属母材を切削加工して可動コア40と連結部材31を一体に形成してもよい。   In the said 1st Embodiment, the movable core 40 and the connection member 31 are cut separately, and it manufactures as another component, Then, each is combined and integrated by welding etc. On the other hand, you may manufacture the movable core 40 and the connection member 31 integrally as one component. For example, the movable core 40 and the connecting member 31 may be integrally formed by cutting one metal base material.

上記第1実施形態では、連結部材31と弁体30を別々に切削加工して別部品として製造し、その後、各々を溶接等で組み合わせて一体化させている。これに対し、連結部材31と弁体30を1部品として一体に製造してもよい。例えば、1つの金属母材を切削加工して連結部材31と弁体30を一体に形成してもよい。   In the said 1st Embodiment, the connection member 31 and the valve body 30 are cut separately, and it manufactures as another component, Then, each is combined and integrated by welding etc. On the other hand, you may manufacture the connection member 31 and the valve body 30 integrally as one component. For example, the connecting member 31 and the valve body 30 may be integrally formed by cutting one metal base material.

上記第1実施形態では、可動コア40、連結部材31および弁体30を別々に切削加工して別部品として製造しているが、可動コア40、連結部材31および弁体30を1部品として一体に製造してもよい。例えば、1つの金属母材を切削加工して可動コア40、連結部材31および弁体30を一体に形成してもよい。   In the first embodiment, the movable core 40, the connecting member 31, and the valve body 30 are separately cut and manufactured as separate parts. However, the movable core 40, the connecting member 31, and the valve body 30 are integrated as one part. May be manufactured. For example, the movable core 40, the connecting member 31, and the valve body 30 may be integrally formed by cutting one metal base material.

上記第1実施形態では、弁体30が、溶接等の手段により可動コア40に固定されて、軸線方向に相対移動不能な状態で設置されている。これに対し、弁体30が、可動コア40に対して軸線方向に相対移動可能な状態で設置されていてもよい。この場合、開弁作動時には、可動コア40に弁体30が係合して、可動コア40の駆動力が弁体30に伝達され、可動コア40が固定コア50に吸引されて停止した後も、弁体30が相対移動可能である。また、閉弁作動時には、弾性部材SP1により弁体30が押されて閉弁作動するにあたり、可動コア40に弁体30が係合して、弁体30の閉弁力が可動コア40に伝達され、弁体30が着座して閉弁作動を停止した後も、可動コア40が相対移動可能である。   In the said 1st Embodiment, the valve body 30 is fixed to the movable core 40 by means, such as welding, and is installed in the state which cannot be relatively moved to an axial direction. On the other hand, the valve body 30 may be installed in a state in which it can move relative to the movable core 40 in the axial direction. In this case, when the valve opening operation is performed, the valve body 30 is engaged with the movable core 40, the driving force of the movable core 40 is transmitted to the valve body 30, and the movable core 40 is sucked by the fixed core 50 and stopped. The valve body 30 is relatively movable. Further, when the valve closing operation is performed, the valve body 30 is engaged with the movable core 40 and the valve closing force of the valve body 30 is transmitted to the movable core 40 when the valve body 30 is pushed by the elastic member SP1 to perform the valve closing operation. Even after the valve body 30 is seated and the valve closing operation is stopped, the movable core 40 is relatively movable.

上記各実施形態では、絞り流通路F22が可動構造体Mの軸中心に配置されている。これに対し、絞り流通路F22が可動構造体Mの軸中心から外れた位置に配置されていてもよい。この場合、絞り流通路F22をオリフィス部材32に形成することに替え、可動コア40に形成してもよいし、連結部材31に形成してもよいし、弁体30に形成してもよい。また、絞り流通路F22を軸中心に配置するとともに、他の絞り流通路をさらに設けてもよい。例えば、絞り流通路F22に加えて、可動コア40に絞り流通路を形成してもよい。   In each of the above embodiments, the throttle flow passage F22 is arranged at the axial center of the movable structure M. On the other hand, the throttle flow passage F22 may be disposed at a position deviated from the axial center of the movable structure M. In this case, instead of forming the throttle flow passage F22 in the orifice member 32, it may be formed in the movable core 40, the connection member 31, or the valve body 30. Further, the throttle flow passage F22 may be arranged at the center of the axis, and another throttle flow passage may be further provided. For example, in addition to the throttle flow path F22, a throttle flow path may be formed in the movable core 40.

また、上述のように絞り流通路F22を軸中心から外して配置する場合、複数の絞り流通路F22を、可動構造体Mの軸中心に対して対称となる位置に配置することが望ましい。これによれば、可動構造体Mに作用するブレーキ力が軸中心に対して偏ることを抑制し、可動構造体Mに作用する傾倒力を抑制させることができる。   Further, when the throttle flow passage F22 is arranged away from the axial center as described above, it is desirable to arrange the plurality of throttle flow passages F22 at positions that are symmetric with respect to the axial center of the movable structure M. According to this, it is possible to suppress the braking force acting on the movable structure M from being biased with respect to the axial center, and to suppress the tilting force acting on the movable structure M.

上記第1実施形態では、摺動部材33の摺動方向に対して垂直な方向(径方向)における摺動面33aの位置は、可動コア40の最外周位置よりも内側、つまり環状中心線Cの側に位置する。これに対し、摺動面33aの位置は、可動コア40の最外周位置よりも外側であってもよい。   In the first embodiment, the position of the sliding surface 33a in the direction (radial direction) perpendicular to the sliding direction of the sliding member 33 is inside the outermost peripheral position of the movable core 40, that is, the annular center line C. Located on the side. On the other hand, the position of the sliding surface 33 a may be outside the outermost peripheral position of the movable core 40.

また、上記実施形態では、ボデーBのうち可動構造体Mを収容する部分であるノズルボデー20に、摺動面33aが摺動する摺動部分を形成している。これに対し、ノズルボデー20とは別の部品に上記摺動部分を形成し、その別の部品をノズルボデー20に結合させる構造であってもよい。   Moreover, in the said embodiment, the sliding part which the sliding surface 33a slides in the nozzle body 20 which is a part which accommodates the movable structure M among the bodies B is formed. On the other hand, the structure which forms the said sliding part in components different from the nozzle body 20, and couples the other components to the nozzle body 20 may be sufficient.

また、上記実施形態では、摺動面33aとボデーBとの間に流通路F33を設けるようにしたが、燃料が流れないようにしてもよい。あるいは、流通路F33に流れる燃料を微小にしてもよい。微小の燃料とは、例えば、摺動面33aとボデーBとの摺動に伴い摺動隙間から押し出される燃料のことである。   Moreover, in the said embodiment, although the flow path F33 was provided between the sliding surface 33a and the body B, you may make it a fuel not flow. Or you may make the fuel which flows into the flow path F33 minute. The minute fuel is, for example, fuel that is pushed out from the sliding gap as the sliding surface 33a and the body B slide.

また、上記実施形態では、摺動面33aとボデーBとを摺動させているが、摺動させずに流通路F33を設けるようにしてもよい。つまり、可動構造体Mが、ボデーBに接触することなく軸方向に移動可能な状態でボデーBに収容された構造であってもよく、摺動流通路F27sを、摺動しない流通路(別流通路)にしてもよい。   Moreover, in the said embodiment, although the sliding face 33a and the body B are slid, you may make it provide the flow path F33, without making it slide. That is, the movable structure M may be structured to be accommodated in the body B so as to be movable in the axial direction without being in contact with the body B. (Flow passage).

上記第2および第3実施形態では、下流燃圧PLと上流燃圧PHの圧力差ΔP、および押付用弾性部材SP3の弾性力により移動部材100が離着座するように開閉作動する。これに対し、電動アクチュエータにより移動部材100を開閉作動させてもよい。また、移動部材100自体が弾性変形して開閉作動するように構成して、押付用弾性部材SP3を廃止してもよい。   In the second and third embodiments, the opening / closing operation is performed so that the moving member 100 is separated and seated by the pressure difference ΔP between the downstream fuel pressure PL and the upstream fuel pressure PH and the elastic force of the pressing elastic member SP3. On the other hand, the moving member 100 may be opened and closed by an electric actuator. The moving member 100 itself may be configured to be elastically deformed to open and close, and the pressing elastic member SP3 may be eliminated.

図4に示す例では、サブ絞り流通路103の通路長(軸線方向長さ)がサブ絞り流通路103の直径よりも長くなるように構成されているが、上記直径よりも短く構成してもよい。例えば、移動部材100の軸線方向長さの全体をサブ絞り流通路103とすることに替え、通路長の一部分について直径を小さくしてサブ絞り流通路として機能させてもよい。   In the example shown in FIG. 4, the sub-throttle flow passage 103 is configured such that the passage length (the length in the axial direction) is longer than the diameter of the sub-throttle flow passage 103. Good. For example, the entire length in the axial direction of the moving member 100 may be replaced with the sub-throttle flow passage 103, and a part of the passage length may be reduced in diameter to function as a sub-throttle flow passage.

上記第4実施形態では、摺動部材33は可動コア40に接合されているが、連結部材31に接合されていてもよいし、可動コア40および連結部材31の両方に接合されていてもよい。また、上記第4実施形態では、可動コア40とは別体に加工された摺動部材33が可動コア40に接合されているが、摺動部材33が可動コア40と一体に加工されていてもよい。例えば、1つの金属母材を切削加工することで、可動コア40が、摺動部材33として機能する部分(摺動部)を有する形状に形成されていてもよい。この場合であっても、可動コア40のうち摺動面33aに相当する面は、可動コア40の最外周位置と異なる位置に設けられている。   In the fourth embodiment, the sliding member 33 is joined to the movable core 40, but may be joined to the connecting member 31, or may be joined to both the movable core 40 and the connecting member 31. . In the fourth embodiment, the sliding member 33 processed separately from the movable core 40 is joined to the movable core 40, but the sliding member 33 is processed integrally with the movable core 40. Also good. For example, the movable core 40 may be formed in a shape having a portion (sliding portion) that functions as the sliding member 33 by cutting one metal base material. Even in this case, the surface corresponding to the sliding surface 33 a of the movable core 40 is provided at a position different from the outermost peripheral position of the movable core 40.

上記第5実施形態では、オリフィス32aを可動コア40に直接形成し、かつ、貫通穴41による流通路F28sを可動コア40の1部品で形成している。これに対し、オリフィス32aを可動コア40に直接形成しつつ、貫通穴41による流通路F28sを複数部品で形成してもよい。上記各実施形態では、摺動流通路F27s(別流通路)は、可動コア40よりも噴孔側に設けられているが、反噴孔側に設けられていてもよい。   In the fifth embodiment, the orifice 32 a is formed directly on the movable core 40, and the flow path F <b> 28 s by the through hole 41 is formed by one component of the movable core 40. On the other hand, the flow path F28s by the through hole 41 may be formed by a plurality of parts while directly forming the orifice 32a in the movable core 40. In each of the above embodiments, the sliding flow passage F27s (separate flow passage) is provided on the injection hole side of the movable core 40, but may be provided on the counter injection hole side.

23a…噴孔、30…弁体(可動構造体)、31…連結部材(可動構造体)、32…オリフィス部材(可動構造体)、32a…絞り部、33…摺動部材(可動構造体)、33a…摺動面、40…可動コア(可動構造体)、50…固定コア、70…コイル、B…ボデー、F…流通路、F20…可動流通路、F22…絞り流通路、F27s…摺動流通路、M、M1、M2…可動構造体。   23a ... nozzle hole, 30 ... valve body (movable structure), 31 ... connecting member (movable structure), 32 ... orifice member (movable structure), 32a ... throttle part, 33 ... sliding member (movable structure) 33a ... sliding surface, 40 ... movable core (movable structure), 50 ... fixed core, 70 ... coil, B ... body, F ... flow passage, F20 ... movable flow passage, F22 ... throttle flow passage, F27s ... slide Dynamic flow path, M, M1, M2 ... movable structure.

Claims (20)

燃料を噴射する噴孔(23a)、および前記噴孔へ燃料を流通させる流通路(F)を有する燃料噴射弁において、
通電により磁束を生じさせるコイル(70)と、
前記磁束の通路を形成して磁気力を生じさせる固定コア(50)と、
前記磁気力で移動する可動コア(40)、および前記可動コアにより駆動されて前記噴孔を開閉する弁体(30)を有し、前記流通路の一部となる可動流通路(F20)が内部に形成された可動構造体(M、M1、M2)と、
前記可動構造体を移動可能な状態で内部に収容し、前記流通路の一部が内部に形成されたボデー(B)と、
を備え、
前記可動構造体は、前記可動流通路の通路面積を部分的に狭くして流量を絞る絞り部(32a)を有し、
前記流通路は、前記絞り部による流通路である絞り流通路(F22)と、前記絞り流通路と独立して燃料を流す通路であって前記可動構造体と前記ボデーとの間で形成される別流通路(F27s)と、を含み、
前記別流通路の通路面積は、前記絞り流通路の通路面積よりも小さく、
前記可動構造体の移動方向に対して垂直な方向における前記別流通路の位置は、前記可動コアの最外周位置と異なる燃料噴射弁。
In a fuel injection valve having an injection hole (23a) for injecting fuel, and a flow passage (F) for flowing fuel to the injection hole,
A coil (70) for generating magnetic flux when energized;
A fixed core (50) that creates a magnetic force by forming a path of the magnetic flux;
The movable flow path (F20), which has a movable core (40) that moves by the magnetic force, and a valve body (30) that is driven by the movable core and opens and closes the nozzle hole, serves as a part of the flow path. A movable structure (M, M1, M2) formed inside;
A body (B) in which the movable structure is housed in a movable state, and a part of the flow path is formed inside;
With
The movable structure has a throttle part (32a) that partially narrows the passage area of the movable flow passage to restrict the flow rate,
The flow passage is formed between the movable structure and the body, the throttle flow passage (F22), which is a flow passage by the throttle portion, and a passage through which fuel flows independently of the throttle flow passage. A separate flow path (F27s),
The passage area of the separate flow passage is smaller than the passage area of the throttle flow passage,
The fuel injection valve in which a position of the separate flow path in a direction perpendicular to a moving direction of the movable structure is different from an outermost peripheral position of the movable core.
前記別流通路の噴孔側部分は、前記絞り流通路よりも噴孔側の流通路と接続されており、
前記別流通路の噴孔側とは反対の反噴孔側の部分は、前記絞り流通路の前記反噴孔側の流通路と接続されている請求項1に記載の燃料噴射弁。
The nozzle hole side portion of the separate flow path is connected to the flow path on the nozzle hole side than the throttle flow path,
2. The fuel injection valve according to claim 1, wherein a portion of the separate flow passage on the side opposite to the injection hole is connected to a flow passage on the counter injection hole side of the throttle flow passage.
前記別流通路は、前記可動コアよりも噴孔側に設けられている請求項1または2に記載の燃料噴射弁。   The fuel injection valve according to claim 1 or 2, wherein the separate flow passage is provided closer to the injection hole than the movable core. 前記別流通路は、前記可動コアの最外周よりも径方向内側に設けられている請求項1〜3のいずれか1つに記載の燃料噴射弁。   The fuel injection valve according to any one of claims 1 to 3, wherein the separate flow passage is provided radially inward from the outermost periphery of the movable core. 前記可動構造体のうち前記別流通路を形成する部材の材質は、前記可動コアの材質とは異なる請求項1〜4のいずれか1つに記載の燃料噴射弁。   The fuel injection valve according to any one of claims 1 to 4, wherein a material of a member forming the separate flow passage in the movable structure is different from a material of the movable core. 前記可動コアには、前記絞り流通路の噴孔側とは反対の反噴孔側の部分と前記別流通路の前記反噴孔側の部分とを連通する貫通穴(41)が形成されている請求項1〜5のいずれか1つに記載の燃料噴射弁。   The movable core is formed with a through hole (41) that communicates a portion of the constricted flow passage on the side opposite to the injection hole and a portion of the separate flow passage on the side opposite to the injection hole. The fuel injection valve according to any one of claims 1 to 5. 前記可動コアには、
前記絞り流通路と、
前記絞り流通路の反噴孔側に位置し、前記絞り流通路および前記貫通穴と連通する連通流通路(F21)と、が形成されている請求項6に記載の燃料噴射弁。
In the movable core,
The throttle flow passage;
The fuel injection valve according to claim 6, wherein a communication flow passage (F21) located on the side opposite to the injection hole of the restriction flow passage and communicating with the restriction flow passage and the through hole is formed.
前記絞り流通路は前記可動コアに形成されている請求項1〜6のいずれか1つに記載の燃料噴射弁。   The fuel injection valve according to claim 1, wherein the throttle flow passage is formed in the movable core. 前記可動コアの最外周と前記ボデーとの間で形成される流通路の通路面積は、前記別流通路の通路面積よりも大きい請求項1〜8のいずれか1つに記載の燃料噴射弁。   The fuel injection valve according to any one of claims 1 to 8, wherein a passage area of a flow passage formed between an outermost periphery of the movable core and the body is larger than a passage area of the separate flow passage. 燃料を噴射する噴孔(23a)、および前記噴孔へ燃料を流通させる流通路(F)を有する燃料噴射弁において、
通電により磁束を生じさせるコイル(70)と、
前記磁束の通路を形成して磁気力を生じさせる固定コア(50)と、
前記磁気力で移動する可動コア(40)、および前記可動コアにより駆動されて前記噴孔を開閉する弁体(30)を有し、前記流通路の一部となる可動流通路(F20)が内部に形成された可動構造体(M、M1、M2)と、
前記可動構造体を摺動可能な状態で内部に収容し、前記流通路の一部が内部に形成されたボデー(B)と、
を備え、
前記可動構造体は、前記可動流通路の通路面積を部分的に狭くして流量を絞る絞り部(32a)、および前記ボデーとの摺動面(33a)を有し、
前記流通路は、前記絞り部による流通路である絞り流通路(F22)を含み、
前記可動構造体の摺動方向に対して垂直な方向における前記摺動面の位置は、前記可動コアの最外周位置と異なる燃料噴射弁。
In a fuel injection valve having an injection hole (23a) for injecting fuel, and a flow passage (F) for flowing fuel to the injection hole,
A coil (70) for generating magnetic flux when energized;
A fixed core (50) that creates a magnetic force by forming a path of the magnetic flux;
The movable flow path (F20), which has a movable core (40) that moves by the magnetic force, and a valve body (30) that is driven by the movable core and opens and closes the nozzle hole, serves as a part of the flow path. A movable structure (M, M1, M2) formed inside;
A body (B) in which the movable structure is housed in a slidable state, and a part of the flow path is formed inside;
With
The movable structure has a throttle part (32a) that partially narrows the passage area of the movable flow passage to restrict the flow rate, and a sliding surface (33a) with the body,
The flow path includes a throttle flow path (F22) that is a flow path by the throttle unit,
The fuel injection valve, wherein a position of the sliding surface in a direction perpendicular to a sliding direction of the movable structure is different from an outermost peripheral position of the movable core.
前記絞り流通路は、前記弁体の中心軸線上に位置する請求項1〜10のいずれか1つに記載の燃料噴射弁。   The fuel injection valve according to any one of claims 1 to 10, wherein the throttle flow passage is positioned on a central axis of the valve body. 前記可動構造体は、前記流通路での流量の絞り度合を変化させる可変絞り機構(100、100A、SP3)を有する請求項1〜11のいずれか1つに記載の燃料噴射弁。   The fuel injection valve according to any one of claims 1 to 11, wherein the movable structure includes a variable throttle mechanism (100, 100A, SP3) that changes a throttle degree of a flow rate in the flow passage. 前記弁体が閉弁方向へ移動する下降期間のうち少なくとも閉弁直前の期間では、前記弁体が開弁方向へ最も移動したフルリフト状態の時に比べて、前記可変絞り機構による前記絞り度合が大きくなる請求項12に記載の燃料噴射弁。   Of the descending period in which the valve body moves in the valve closing direction, at least in the period immediately before the valve closing, the degree of throttle by the variable throttle mechanism is larger than in the full lift state in which the valve body has moved most in the valve opening direction. The fuel injection valve according to claim 12. 前記弁体が開弁方向へ移動する上昇期間のうち少なくとも開弁直後の期間では、前記弁体が開弁方向へ最も移動したフルリフト状態の時に比べて、前記可変絞り機構による前記絞り度合が大きくなる請求項12または13に記載の燃料噴射弁。   Of the rising period in which the valve element moves in the valve opening direction, at least in the period immediately after the valve opening, the degree of throttle by the variable throttle mechanism is larger than in the full lift state in which the valve element has moved most in the valve opening direction. The fuel injection valve according to claim 12 or 13. 前記可変絞り機構は、前記絞り部が形成された固定部材(32)、および前記固定部材に対して相対移動する移動部材(100、100A)を有し、
前記移動部材は、前記固定部材に着座することで前記絞り流通路を覆って前記絞り度合を大きくし、前記固定部材から離座することで前記絞り流通路を開放して前記絞り度合を小さくする請求項12〜14のいずれか1つに記載の燃料噴射弁。
The variable throttle mechanism includes a fixed member (32) in which the throttle portion is formed, and a moving member (100, 100A) that moves relative to the fixed member,
The moving member is seated on the fixed member to cover the throttle flow passage to increase the throttle degree, and is moved away from the fixed member to open the throttle flow path and reduce the throttle degree. The fuel injection valve according to any one of claims 12 to 14.
前記移動部材は、前記固定部材の下流側に配置され、
前記弁体が開弁方向へ移動するに伴い前記移動部材の上流側燃圧が下流側燃圧よりも所定以上高くなることで前記移動部材は離座し、前記弁体が閉弁方向へ移動するに伴い前記下流側燃圧が前記上流側燃圧よりも所定以上高くなることで前記移動部材は着座するように構成されている請求項15に記載の燃料噴射弁。
The moving member is disposed downstream of the fixed member,
As the valve body moves in the valve opening direction, the upstream side fuel pressure of the moving member becomes higher than the downstream side fuel pressure by a predetermined amount or more, so that the moving member separates and the valve body moves in the valve closing direction. Accordingly, the fuel injection valve according to claim 15, wherein the moving member is seated when the downstream fuel pressure becomes higher than the upstream fuel pressure by a predetermined amount or more.
前記移動部材には、前記流通路の一部であるサブ絞り流通路(103)が形成され、
前記サブ絞り流通路の通路面積は、前記絞り流通路の通路面積よりも小さい請求項15または16に記載の燃料噴射弁。
The moving member is formed with a sub-throttle flow passage (103) that is a part of the flow passage,
The fuel injection valve according to claim 15 or 16, wherein a passage area of the sub throttle passage is smaller than a passage area of the throttle passage.
前記移動部材は、前記固定部材に着座した状態で前記絞り流通路を閉塞する請求項15または16に記載の燃料噴射弁。   The fuel injection valve according to claim 15 or 16, wherein the moving member closes the throttle flow passage while being seated on the fixed member. 前記可動構造体は、前記ボデーとの摺動面(33a)を形成する摺動部材(33)と、前記摺動部材を前記可動コアに押し付けて密着させる密着用弾性部材(SP2)とを有する請求項1〜18のいずれか1つに記載の燃料噴射弁。   The movable structure includes a sliding member (33) that forms a sliding surface (33a) with the body, and an adhesion elastic member (SP2) that presses the sliding member against the movable core to closely contact the body. The fuel injection valve according to any one of claims 1 to 18. 前記流通路のうち前記弁体が離着座するシート面(30s)での通路面積であって、前記弁体が開弁方向へ最も移動したフルリフト状態での通路面積をシート通路面積とし、
前記絞り流通路の通路面積は、前記シート通路面積よりも大きい請求項1〜19のいずれか1つに記載の燃料噴射弁。
Of the flow passage, the passage area on the seat surface (30 s) on which the valve body is separated and seated, the passage area in the full lift state in which the valve body has moved most in the valve opening direction is defined as a seat passage area,
The fuel injection valve according to any one of claims 1 to 19, wherein a passage area of the throttle flow passage is larger than the seat passage area.
JP2017229426A 2017-01-27 2017-11-29 Fuel injection valve Withdrawn JP2018123826A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880007921.7A CN110199108B (en) 2017-01-27 2018-01-24 Fuel injection valve
DE112018000562.3T DE112018000562B4 (en) 2017-01-27 2018-01-24 FUEL INJECTION VALVE
PCT/JP2018/002040 WO2018139469A1 (en) 2017-01-27 2018-01-24 Fuel injection valve
US16/508,369 US11319911B2 (en) 2017-01-27 2019-07-11 Fuel injection valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017013369 2017-01-27
JP2017013369 2017-01-27

Publications (1)

Publication Number Publication Date
JP2018123826A true JP2018123826A (en) 2018-08-09

Family

ID=63108855

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017040731A Active JP6645460B2 (en) 2017-01-27 2017-03-03 Fuel injection valve
JP2017229426A Withdrawn JP2018123826A (en) 2017-01-27 2017-11-29 Fuel injection valve

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017040731A Active JP6645460B2 (en) 2017-01-27 2017-03-03 Fuel injection valve

Country Status (2)

Country Link
JP (2) JP6645460B2 (en)
CN (1) CN110199108B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021116713A (en) * 2020-01-23 2021-08-10 株式会社Soken Fuel injection valve

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6677194B2 (en) * 2017-03-03 2020-04-08 株式会社デンソー Fuel injection valve
JP7302875B2 (en) * 2020-01-23 2023-07-04 株式会社デンソー fuel injector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412165A (en) * 1990-04-27 1992-01-16 Nippondenso Co Ltd Fuel injection device
JP2002021675A (en) * 2000-06-27 2002-01-23 Siemens Automotive Corp Regulable antibounce type orifice disc
JP2005083237A (en) * 2003-09-08 2005-03-31 Nippon Soken Inc Injector for internal combustion engine
JP2006183470A (en) * 2004-12-24 2006-07-13 Denso Corp Electromagnetic driving device and fuel injection valve using the same
JP2017040731A (en) * 2015-08-19 2017-02-23 富士ゼロックス株式会社 Developing device and image forming apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2397683B1 (en) * 2010-06-18 2014-12-03 Caterpillar Motoren GmbH & Co. KG Injection Nozzle System
DE102012222043A1 (en) * 2012-12-03 2014-06-05 Robert Bosch Gmbh Fuel injector for injecting fuel into combustion chamber of internal combustion engine, has coupler piston whose active faces limit hydraulic coupler in axial direction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412165A (en) * 1990-04-27 1992-01-16 Nippondenso Co Ltd Fuel injection device
JP2002021675A (en) * 2000-06-27 2002-01-23 Siemens Automotive Corp Regulable antibounce type orifice disc
JP2005083237A (en) * 2003-09-08 2005-03-31 Nippon Soken Inc Injector for internal combustion engine
JP2006183470A (en) * 2004-12-24 2006-07-13 Denso Corp Electromagnetic driving device and fuel injection valve using the same
JP2017040731A (en) * 2015-08-19 2017-02-23 富士ゼロックス株式会社 Developing device and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021116713A (en) * 2020-01-23 2021-08-10 株式会社Soken Fuel injection valve

Also Published As

Publication number Publication date
CN110199108A (en) 2019-09-03
CN110199108B (en) 2021-04-30
JP6645460B2 (en) 2020-02-14
JP2018123822A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
JP4483940B2 (en) Fuel injection valve
WO2018139469A1 (en) Fuel injection valve
JP5239965B2 (en) Fuel injection valve
JP5537472B2 (en) Fuel injection device
JP2004504566A (en) Proportional pressure control valve
US20160053731A1 (en) Valve Assembly For An Injection Valve And Injection Valve
JP2018123826A (en) Fuel injection valve
JP6655723B2 (en) Fuel injection valve
US10550809B2 (en) Valve assembly for an injection valve and injection valve
EP3339628A1 (en) Valve assembly for an injection valve and injection valve
JP4161217B2 (en) Fuel injection valve
WO2002027226A1 (en) Linear solenoid and solenoid valve
WO2013140835A1 (en) Fuel injection valve
JP6677194B2 (en) Fuel injection valve
JP6275902B2 (en) Fuel injection device
JP3757261B2 (en) Fuel injection valve
JP6668079B2 (en) Fuel injection device
KR100495172B1 (en) Control structure for nozzle needle in fuel injection valve
JP6453381B2 (en) Fuel injection device
JP2002372164A (en) Solenoid valve
JP6698802B2 (en) Fuel injector
EP3339627B1 (en) Valve assembly and fluid injection valve
JP2017082671A (en) Flow regulating valve
WO2020022099A1 (en) Fuel injection valve
JP6539314B2 (en) Fuel injection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20190820

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20191004