JP4022855B2 - Solenoid valve device - Google Patents

Solenoid valve device Download PDF

Info

Publication number
JP4022855B2
JP4022855B2 JP2002005008A JP2002005008A JP4022855B2 JP 4022855 B2 JP4022855 B2 JP 4022855B2 JP 2002005008 A JP2002005008 A JP 2002005008A JP 2002005008 A JP2002005008 A JP 2002005008A JP 4022855 B2 JP4022855 B2 JP 4022855B2
Authority
JP
Japan
Prior art keywords
movable core
movable
contact
valve device
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002005008A
Other languages
Japanese (ja)
Other versions
JP2003207067A (en
Inventor
兼久 長崎
卓 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002005008A priority Critical patent/JP4022855B2/en
Publication of JP2003207067A publication Critical patent/JP2003207067A/en
Application granted granted Critical
Publication of JP4022855B2 publication Critical patent/JP4022855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、可動コアを往復移動自在に支持する収容部材と、可動コアとの間に磁気吸引力が働く吸引部材とを別体にしている電磁弁装置に関する。
【0002】
【従来の技術】
従来の電磁弁装置として、可動コアを往復移動自在に収容する収容部材と、可動コアとの間に磁気吸引力が働く吸引部材とを別体にしている電磁弁装置として、特開2000−230660号公報、特開平10−122412号公報および特許第2834552号公報に開示されているものが知られている。
【0003】
特開2000−230660号公報の電磁弁装置では、図3に示すように、可動コア200とシャフト202とが平面同士で当接している。収容部材204と吸引部材206との軸がずれていても、吸引部材206と収容部材204との軸ずれに合わせ可動コア200はシャフト202と軸をずらすことができる。可動コア200の往復移動方向に沿った軸線と直交する方向に収容部材204と可動コア200との間に形成されるギャップ、所謂サイドギャップを極力小さくすることにより、吸引部材206に可動コア200を吸引する磁気吸引力が高まる。
【0004】
しかしながら、可動コア200と吸引部材206とが互いに向き合う面が平面であるから、可動コア200と吸引部材206とが可動コア200の往復移動方向に形成する間隔、つまり主ギャップが大きいほど、図2の曲線100に示すように磁気吸引力が小さくなる。可動コア200と吸引部材206との主ギャップが最も大きいときに吸引部材206に可動コア200を吸引するため、電磁駆動部であるコイルの巻数を増やし大きな磁気吸引力を発生する必要がある。特に、主ギャップの最大値で決定される流体流量を増加したり、吸引部材から離れる方向に可動コアが大きな流体圧力を受ける場合、磁気吸引力を増加するために電磁駆動部が大きくなるという問題がある。
【0005】
特開平10−122412号公報に開示される電磁弁装置では、図4に示すように、吸引部材216に凹部218が形成されている。主ギャップが大きいときに凹部218の内周側面と可動コア210との最短距離は、平面同士で向き合う構成に比べ小さくなっている。したがって、図2の曲線110に示すように、主ギャップが大きいとき、吸引部材216に可動コア210を吸引する磁気吸引力が曲線100に比べ大きくなる。
【0006】
特許第2834552号公報に開示される電磁弁装置では、図5に示すように、可動コア220と吸引部材226とがテーパ面同士で向き合っている。主ギャップが大きくても、テーパ面同士の垂直距離、つまり最短距離は短い。したがって、図2の曲線110と同様に、主ギャップが大きいとき、吸引部材226に可動コア220を吸引する磁気吸引力が曲線100に比べ大きくなる。
【0007】
【発明が解決しようとする課題】
しかし、特開平10−122412号公報および特許第2834552号公報に開示される電磁弁装置では、可動コア210、220にシャフト212、222が圧入されているので、収容部材214、224と吸引部材216、226との軸ずれに合わせ可動コア210、220はシャフト212、222に対し軸をずらすことができない。収容部材214、224と吸引部材216、226との軸ずれにより、可動コア210、220と収容部材214、224との摺動抵抗が増加することを防止するため、可動コア210、220と収容部材214、224とのサイドギャップを予め大きくする必要がある。すると、図2の曲線110に示すように、吸引部材216と可動コア210との間に働く磁気吸引力が全体的に小さくなる。
【0008】
本発明の目的は、小型の電磁弁装置を提供することにある。
本発明の他の目的は、可動コアと可動部材との当接状態を維持する電磁弁装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明の請求項1または2記載の電磁弁装置によると、可動コアまたは吸引部材の一方は他方と向き合う側の端部に対向凹部を有し、可動コアが吸引部材に近づくと、可動コアまたは吸引部材の他方は対向凹部内に進入する。可動コアと吸引部材との間に可動コアの往復移動方向に形成される主ギャップが大きいときにも、可動コアまたは吸引部材の他方と対向凹部との最短距離は主ギャップよりも小さい。ここで主ギャップとは、可動コアまたは吸引部材の他方と対向凹部の底面との間に可動コアの往復移動方向に形成されるギャップである。したがって、主ギャップが大きくても所望の磁気吸引力で吸引部材側に可動コアを吸引できる。
【0010】
さらに、可動コアと可動部材とは当接凹面と当接凸面とにより当接しているので、当接凸面は当接凹面に沿って当接凹面の中心に案内される。したがって、可動コアと可動部材との当接箇所は殆どずれない。さらに、可動コアの外周側面と収容部材の内周側面との間に、当接凹面と当接凸面との当接箇所を支持箇所として往復移動方向に沿った軸線に対し可動コアが傾斜可能な隙間が形成されている。収容部材と吸引部材との間に軸ずれがあると、軸ずれに合わせ可動コアが傾斜する。
【0011】
したがって、収容部材と吸引部材との間に軸ずれが生じていても、可動コアまたは吸引部材の一方に形成した対向凹部と、可動コアまたは吸引部材の他方とが軸線と直交する方向に形成するギャップがほとんど変化しない。したがって、可動コアまたは吸引部材の他方と対向凹部とが接触することなく、可動コアまたは吸引部材の他方と対向凹部との最短距離を極力小さくすることができる。さらに、収容部材と可動コアとの間のサイドギャップも、収容部材と吸引部材との軸ずれに合わせ可動コアが傾斜する程度に極力小さくすることができる。可動コアと吸引部材との間に働く磁気吸引力が全体的に大きくなるので、電磁弁装置を小型化できる。
また、可動コアが傾斜することにより収容部材と吸引部材との軸ずれを吸収するので、各部品の加工および組み付けに高い精度を要求されない。したがって、製造コストが低減する。
【0012】
本発明の請求項3記載の電磁弁装置によると、嵌合突部は軸線に対し可動部材が傾斜可能に嵌合凹部に嵌合している。何らかの要因で衝撃荷重が加わり可動コアと可動部材が遠ざかり嵌合突部が嵌合凹部から抜けても、嵌合突部が当接凹面内に位置している限り、当接凹面に案内され嵌合突部は嵌合凹部に再び嵌合する。したがって、可動コアと可動部材との当接状態を維持できる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を示す実施例を図に基づいて説明する。
本発明の一実施例による電磁弁装置を自動変速機の油圧制御弁装置に用いた例を図1に示す。図1に示す電磁弁装置10は、自動変速機の係合装置であるクラッチまたはブレーキに供給する作動油の油圧を制御する電磁三方弁装置である。
ヨーク12、収容部材14、ベースハウジング20および可動コア30は磁性材で形成され、電磁弁装置10の磁気回路を構成している。収容部材14はヨーク12とカバー16との間に挟持され、ヨーク12にかしめ固定されている。
【0014】
ベースハウジング20は、シャフト40を往復移動自在に支持する吸引部材としての吸引部22と、流入ポート70、制御ポート72およびドレインポート74を形成するポート部28とを一体に形成している。流入ポート70、制御ポート72およびドレインポート74は特許請求の範囲に記載した流路を構成している。流入ポート70は高圧の油圧供給源と接続し、制御ポート72は図示しない油流路を介して自動変速機のクラッチまたはブレーキと接続し、ドレインポート74は低圧のドレイン側に開口している。
【0015】
吸引部22は可動コア30に対し可動コア30の往復移動方向の一方側に可動コア30と向き合って設置されている。吸引部22の可動コア30側端部に、円筒状の対向凹部24が形成されている。吸引部22の内周壁はシャフト40を往復移動自在に支持している。つまり、吸引部22はシャフト40の軸受け部材を兼ねている。
【0016】
可動コア30は収容部材14の内周側面に往復移動自在に支持されている。収容部材14の内周側面と可動コア30の外周側面とが形成するサイドギャップは、収容部材14と吸引部22との軸ずれにより可動コア30の往復移動方向に沿った軸線90に対し可動コア30が傾斜できる程度の大きさに設定されている。
【0017】
収容部材14の内周側面および可動コア30の外周側面の少なくとも一方にニッケルメッキ等により非磁性膜を形成し、収容部材14と可動コア30との摺動抵抗を低減することが望ましい。収容部材14と可動コア30との摺動抵抗が許容できるのであれば、非磁性膜を形成する必要はない。可動コア30は円筒状に形成されており、軸線90方向両側が開口している。可動コア30のシャフト40側に、当接凹面としての円錐凹面32が形成されている。嵌合穴34は円錐凹面32からさらに凹んで形成されている。
【0018】
シャフト40は可動コア30に対し往復移動方向の一方側に設置されている。シャフト40は、吸引部22に貫挿され、吸引部22の内壁により往復移動自在に支持されており、軸線90に対し傾斜不能である。シャフト40は後述するボール50とともに可動部材を構成している。シャフト40の可動コア30側に、当接凸面としての球面42が形成されている。球面42は可動コア30の円錐凹面32と当接している。嵌合突部44は球面42から突出しており、嵌合穴34に嵌合している。嵌合突部44の周囲に形成される嵌合穴34との間隔は、収容部材14と吸引部22との軸ずれにより軸線90に対し可動コア30が傾斜できる程度の大きさに設定されている。シャフト40は、付勢手段としてのスプリング48の付勢力により可動コア30に向け可動コア30の往復移動方向の他方に付勢されている。
【0019】
ボール50は、流入ポート70から流入する作動油によりシャフト40に向けて圧力を受けている。弁座部材52はポート部28の内壁に取り付けられている。弁座部材52は弁座54を有し、ボール50は弁座54に着座可能である。フィルタ58は弁座部材52の流入ポート70側に取り付けられており、作動油中の異物を除去する。
ボビン62に巻回された電磁駆動部としてのコイル60は収容部材14および吸引部22の外周を取り囲んで配設されている。
【0020】
次に、電磁弁装置1の作動について説明する。
コイル60への通電オフ時、スプリング48の付勢力により、シャフト40は可動コア30に向け図1の上方に付勢されている。ボール50は流入ポート70から流入する作動油の圧力によりポート部28の内壁に形成されている弁座56に着座する。この状態で、シャフト40とボール50とは当接していない。流入ポート70から流入した作動油は制御ポート72から自動変速機のクラッチまたはブレーキに供給されるので、クラッチまたはブレーキは係合状態になる。
【0021】
コイル60への通電オン時、スプリング48の付勢力に抗し可動コア30は吸引部22に向けて吸引される。可動コア30とともにシャフト40が図1の下方に移動しボール50と当接するので、ボール50は弁座56から離座し弁座54に着座する。制御ポート72とドレインポート74とが連通するので、自動変速機のクラッチまたはブレーキに供給されていた作動油はドレインポート74から排出されクラッチまたはブレーキに加わる油圧が低下する。したがって、クラッチまたはブレーキが解除状態になる。
図示しないエンジン制御装置でコイル60に供給する制御電流をデューティ比制御することにより制御ポート72に接続するクラッチまたはブレーキに加わる油圧が調整され、クラッチまたはブレーキの係合状態が制御される。
【0022】
本実施例では、吸引部22の対向凹部24の底面と可動コア30との間に可動コア30の往復移動方向に形成される主ギャップが大きいとき、対向凹部24の内周側面26と可動コア30との最短距離は小さい。したがって、主ギャップが大きいとき、可動コア30と吸引部22との間に働く磁気吸引力が増加する。可動コア30が吸引部22側に近づいても対向凹部24の内周側面26と可動コア30との最短距離はほとんど変化しないので、可動コア30と吸引部22との間に働く磁気吸引力はほぼ一定である。
【0023】
シャフト40は、スプリング48により常に可動コア30に向けて付勢されているので、シャフト40の球面42は円錐凹面32により円錐凹面32の中心に案内される。したがって、可動コア30とシャフト40との当接箇所は殆ど変化しない。部品の加工誤差や組付誤差により収容部材14と吸引部22との間に軸ずれが生じており、可動コア30が収容部材14から軸線90と直交する方向に力を受けても、円錐凹面32が円錐凹面32の中心に球面42を案内するので、可動コア30とシャフト40との当接箇所は変化せず、可動コア30は、円錐凹面32と球面42との当接箇所を支持箇所として軸線90に対し傾斜する。したがって、収容部材14と吸引部22との間に軸ずれが生じていても、対向凹部24の内周側面26と可動コア30とのギャップは全周にわたり殆ど変化せず、内周側面26と可動コア30とは接触しない。したがって、対向凹部24の内周側面26と可動コア30とのギャップを極力小さくすることができる。
【0024】
収容部材14の内周側面と可動コア30の外周側面との間に形成されるサイドギャップは、収容部材14と吸引部22との間に軸ずれがあるときに、軸線90に対し可動コア30が傾斜できる程度の大きさであればよいので、極力小さくすることができる。したがって、可動コア30と吸引部22との間に働く磁気吸引力が全体として大きくなる。したがって、図2の曲線120に示すように、主ギャップの大きさに関わらず磁気吸引力がほぼ一定であり、磁気吸引力が全体的に大きくなる。コイル60の巻数を増加することなく磁気吸引力が増加するので、電磁弁装置を小型化できる。
【0025】
以上説明した本発明の上記実施例では、可動コア30に当接凹面としての円錐凹面32を形成し、シャフト40に当接凸面としての球面42を形成した。可動コアに当接凸面を形成し、シャフトに当接凹面を形成してもよい。
また、吸引部22に対向凹部24を形成し、可動コア30が対向凹部24内に進入する構成にした。これに対し、可動コアに対向凹部を形成してもよい。
【0026】
また電磁弁装置の構成によって、吸引部で直接シャフト40を軸受けするのではなく、吸引部とは別部材の軸受け部材でシャフト40を往復移動自在に支持してもよい。
また上記実施例では、自動変速機に用いられる圧力制御弁装置としての三方弁に本発明の電磁弁装置を用いた。これ以外にも、二方弁、あるいは流量制御弁装置として本発明の電磁弁装置を用いることができる。
【図面の簡単な説明】
【図1】本発明の一実施例による電磁弁装置を示す断面図である。
【図2】本実施例と従来例との、主ギャップと磁気吸引力との関係を示す特性図である。
【図3】従来例1の主要部を示す模式的断面図である。
【図4】従来例2の主要部を示す模式的断面図である。
【図5】従来例3の主要部を示す模式的断面図である。
【符号の説明】
10 電磁弁装置
12 ヨーク
14 収容部材
20 ベースハウジング
22 吸引部(吸引部材、軸受け部材)
24 対向凹部
26 内周側面
30 可動コア
32 円錐凹面(当接凹面)
34 嵌合穴
40 シャフト(可動部材)
42 球面(当接凸面)
44 嵌合突部
48 スプリング(付勢手段)
50 ボール(可動部材)
60 コイル(電磁駆動部)
90 軸線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic valve device in which a housing member that supports a movable core so as to be capable of reciprocating and a suction member that acts as a magnetic attraction between the movable core are separated.
[0002]
[Prior art]
As a conventional electromagnetic valve device, an electromagnetic valve device in which a housing member that reciprocally moves a movable core and a suction member that exerts a magnetic attractive force between the movable core and a movable core are separated from each other. Japanese Patent Laid-Open No. 10-122412 and Japanese Patent No. 2834552 are known.
[0003]
In the electromagnetic valve device disclosed in Japanese Patent Application Laid-Open No. 2000-230660, the movable core 200 and the shaft 202 are in contact with each other as shown in FIG. Even if the axes of the housing member 204 and the suction member 206 are displaced, the movable core 200 can be displaced from the shaft 202 in accordance with the axial displacement of the suction member 206 and the housing member 204. By reducing the gap formed between the housing member 204 and the movable core 200 in a direction orthogonal to the axis along the reciprocating direction of the movable core 200, so-called side gap, the movable core 200 is attached to the suction member 206 as much as possible. The magnetic attraction force to attract increases.
[0004]
However, since the surfaces where the movable core 200 and the suction member 206 face each other are flat, the larger the interval formed between the movable core 200 and the suction member 206 in the reciprocating direction of the movable core 200, that is, the main gap is, the larger the FIG. As shown by the curve 100, the magnetic attractive force is reduced. In order to attract the movable core 200 to the attracting member 206 when the main gap between the movable core 200 and the attracting member 206 is the largest, it is necessary to increase the number of turns of the coil that is an electromagnetic drive unit and generate a large magnetic attracting force. In particular, when the fluid flow rate determined by the maximum value of the main gap is increased, or when the movable core receives a large fluid pressure in the direction away from the attraction member, the electromagnetic drive unit becomes large in order to increase the magnetic attraction force. There is.
[0005]
In the electromagnetic valve device disclosed in Japanese Patent Application Laid-Open No. 10-122212, the suction member 216 has a recess 218 as shown in FIG. When the main gap is large, the shortest distance between the inner peripheral side surface of the recess 218 and the movable core 210 is smaller than the configuration in which the flat surfaces face each other. Therefore, as shown by a curve 110 in FIG. 2, when the main gap is large, the magnetic attraction force that attracts the movable core 210 to the attraction member 216 is larger than that of the curve 100.
[0006]
In the electromagnetic valve device disclosed in Japanese Patent No. 2834552, as shown in FIG. 5, the movable core 220 and the suction member 226 face each other with tapered surfaces. Even if the main gap is large, the vertical distance between the tapered surfaces, that is, the shortest distance is short. Therefore, similarly to the curve 110 of FIG. 2, when the main gap is large, the magnetic attraction force that attracts the movable core 220 to the attraction member 226 is larger than that of the curve 100.
[0007]
[Problems to be solved by the invention]
However, in the electromagnetic valve device disclosed in Japanese Patent Application Laid-Open No. 10-122212 and Japanese Patent No. 2835552, the shafts 212 and 222 are press-fitted into the movable cores 210 and 220, so that the housing members 214 and 224 and the suction member 216 are pressed. The movable cores 210 and 220 cannot be displaced with respect to the shafts 212 and 222 in accordance with the misalignment with respect to the shaft 226. In order to prevent an increase in sliding resistance between the movable cores 210 and 220 and the housing members 214 and 224 due to an axial shift between the housing members 214 and 224 and the suction members 216 and 226, the movable cores 210 and 220 and the housing member It is necessary to increase the side gap between 214 and 224 in advance. Then, as shown by a curve 110 in FIG. 2, the magnetic attraction force acting between the attraction member 216 and the movable core 210 is reduced as a whole.
[0008]
An object of the present invention is to provide a small electromagnetic valve device.
Another object of the present invention is to provide an electromagnetic valve device that maintains a contact state between a movable core and a movable member.
[0009]
[Means for Solving the Problems]
According to the electromagnetic valve device of the first or second aspect of the present invention, one of the movable core or the suction member has an opposing recess at the end facing the other, and when the movable core approaches the suction member, The other of the suction members enters the opposing recess. Even when the main gap formed in the reciprocating direction of the movable core is large between the movable core and the suction member, the shortest distance between the other of the movable core or the suction member and the opposing recess is smaller than the main gap. Here, the main gap is a gap formed in the reciprocating direction of the movable core between the other of the movable core or the suction member and the bottom surface of the opposing recess. Therefore, even if the main gap is large, the movable core can be attracted to the attracting member side with a desired magnetic attraction force.
[0010]
Furthermore, since the movable core and the movable member are in contact with each other by the contact concave surface and the contact convex surface, the contact convex surface is guided along the contact concave surface to the center of the contact concave surface. Therefore, the contact portion between the movable core and the movable member is hardly displaced. Furthermore, the movable core can be tilted with respect to an axis along the reciprocating direction with the contact portion between the contact concave surface and the contact convex surface as a support portion between the outer peripheral side surface of the movable core and the inner peripheral side surface of the housing member. A gap is formed. If there is an axial misalignment between the housing member and the suction member, the movable core is inclined in accordance with the axial misalignment.
[0011]
Therefore, even if an axial deviation occurs between the housing member and the suction member, the opposing concave portion formed in one of the movable core or the suction member and the other of the movable core or the suction member are formed in a direction perpendicular to the axis. The gap hardly changes. Therefore, the shortest distance between the other of the movable core or the suction member and the opposing recess can be made as small as possible without the other of the movable core or the suction member coming into contact with the opposing recess. Furthermore, the side gap between the housing member and the movable core can be made as small as possible so that the movable core is inclined in accordance with the axial deviation between the housing member and the suction member. Since the magnetic attraction force acting between the movable core and the attraction member increases as a whole, the electromagnetic valve device can be reduced in size.
Further, since the movable core is inclined to absorb the axial deviation between the housing member and the suction member, high accuracy is not required for processing and assembling of each component. Therefore, the manufacturing cost is reduced.
[0012]
According to the electromagnetic valve device of the third aspect of the present invention, the fitting protrusion is fitted in the fitting recess so that the movable member can be inclined with respect to the axis. Even if the impact load is applied for some reason and the movable core and the movable member move away and the fitting projection comes out of the fitting recess, it will be guided and fitted in the contact concave surface as long as the fitting projection is located in the contact concave surface. The mating protrusion fits again into the fitting recess. Therefore, the contact state between the movable core and the movable member can be maintained.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, examples showing embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example in which an electromagnetic valve device according to an embodiment of the present invention is used in a hydraulic control valve device of an automatic transmission. An electromagnetic valve device 10 shown in FIG. 1 is an electromagnetic three-way valve device that controls the hydraulic pressure of hydraulic oil supplied to a clutch or a brake that is an engagement device of an automatic transmission.
The yoke 12, the housing member 14, the base housing 20 and the movable core 30 are made of a magnetic material and constitute a magnetic circuit of the electromagnetic valve device 10. The housing member 14 is sandwiched between the yoke 12 and the cover 16 and fixed to the yoke 12 by caulking.
[0014]
The base housing 20 integrally forms a suction portion 22 as a suction member that supports the shaft 40 so as to be reciprocally movable, and a port portion 28 that forms an inflow port 70, a control port 72, and a drain port 74. The inflow port 70, the control port 72, and the drain port 74 constitute the flow path described in the claims. The inflow port 70 is connected to a high-pressure hydraulic supply source, the control port 72 is connected to a clutch or a brake of an automatic transmission via an oil passage (not shown), and the drain port 74 is open to the low-pressure drain side.
[0015]
The suction unit 22 is disposed on one side of the movable core 30 in the reciprocating direction of the movable core 30 so as to face the movable core 30. A cylindrical opposing recess 24 is formed at the end of the suction portion 22 on the movable core 30 side. The inner peripheral wall of the suction part 22 supports the shaft 40 so as to be capable of reciprocating. That is, the suction part 22 also serves as a bearing member for the shaft 40.
[0016]
The movable core 30 is supported on the inner peripheral side surface of the housing member 14 so as to be reciprocally movable. The side gap formed by the inner circumferential side surface of the housing member 14 and the outer circumferential side surface of the movable core 30 is movable core with respect to the axis 90 along the reciprocating direction of the movable core 30 due to the axial deviation between the housing member 14 and the suction portion 22. 30 is set to a size that can be tilted.
[0017]
It is desirable to reduce the sliding resistance between the housing member 14 and the movable core 30 by forming a nonmagnetic film on at least one of the inner circumferential surface of the housing member 14 and the outer circumferential surface of the movable core 30 by nickel plating or the like. If the sliding resistance between the housing member 14 and the movable core 30 is acceptable, it is not necessary to form a nonmagnetic film. The movable core 30 is formed in a cylindrical shape, and is open on both sides in the axis 90 direction. A conical concave surface 32 as a contact concave surface is formed on the shaft 40 side of the movable core 30. The fitting hole 34 is further recessed from the conical concave surface 32.
[0018]
The shaft 40 is installed on one side of the movable core 30 in the reciprocating direction. The shaft 40 is inserted into the suction portion 22, is supported so as to be reciprocally movable by the inner wall of the suction portion 22, and cannot tilt with respect to the axis 90. The shaft 40 constitutes a movable member together with a ball 50 described later. A spherical surface 42 as a contact convex surface is formed on the movable core 30 side of the shaft 40. The spherical surface 42 is in contact with the conical concave surface 32 of the movable core 30. The fitting protrusion 44 protrudes from the spherical surface 42 and is fitted in the fitting hole 34. The distance from the fitting hole 34 formed around the fitting protrusion 44 is set to such a size that the movable core 30 can be inclined with respect to the axis 90 due to the axial deviation between the housing member 14 and the suction portion 22. Yes. The shaft 40 is urged toward the movable core 30 in the reciprocating direction of the movable core 30 by the urging force of the spring 48 as an urging means.
[0019]
The ball 50 receives pressure toward the shaft 40 by the hydraulic oil flowing from the inflow port 70. The valve seat member 52 is attached to the inner wall of the port portion 28. The valve seat member 52 has a valve seat 54, and the ball 50 can be seated on the valve seat 54. The filter 58 is attached to the inflow port 70 side of the valve seat member 52 and removes foreign matters in the hydraulic oil.
A coil 60 as an electromagnetic drive unit wound around a bobbin 62 is disposed so as to surround the outer periphery of the housing member 14 and the suction unit 22.
[0020]
Next, the operation of the electromagnetic valve device 1 will be described.
When the coil 60 is turned off, the shaft 40 is biased upward in FIG. 1 toward the movable core 30 by the biasing force of the spring 48. The ball 50 is seated on a valve seat 56 formed on the inner wall of the port portion 28 by the pressure of the hydraulic oil flowing from the inflow port 70. In this state, the shaft 40 and the ball 50 are not in contact with each other. Since the hydraulic oil flowing in from the inflow port 70 is supplied from the control port 72 to the clutch or brake of the automatic transmission, the clutch or brake is engaged.
[0021]
When energization of the coil 60 is turned on, the movable core 30 is attracted toward the suction portion 22 against the biasing force of the spring 48. Since the shaft 40 together with the movable core 30 moves downward in FIG. 1 and contacts the ball 50, the ball 50 is separated from the valve seat 56 and seated on the valve seat 54. Since the control port 72 and the drain port 74 communicate with each other, the hydraulic oil supplied to the clutch or brake of the automatic transmission is discharged from the drain port 74 and the hydraulic pressure applied to the clutch or brake decreases. Therefore, the clutch or brake is released.
By controlling the duty ratio of the control current supplied to the coil 60 by an engine control device (not shown), the hydraulic pressure applied to the clutch or brake connected to the control port 72 is adjusted, and the engagement state of the clutch or brake is controlled.
[0022]
In this embodiment, when the main gap formed in the reciprocating direction of the movable core 30 between the bottom surface of the opposed recess 24 of the suction portion 22 and the movable core 30 is large, the inner peripheral side surface 26 of the opposed recess 24 and the movable core The shortest distance to 30 is small. Therefore, when the main gap is large, the magnetic attractive force acting between the movable core 30 and the attractive portion 22 increases. Since the shortest distance between the inner peripheral side surface 26 of the opposing recess 24 and the movable core 30 hardly changes even when the movable core 30 approaches the attraction portion 22 side, the magnetic attraction force acting between the movable core 30 and the attraction portion 22 is It is almost constant.
[0023]
Since the shaft 40 is always biased toward the movable core 30 by the spring 48, the spherical surface 42 of the shaft 40 is guided to the center of the conical concave surface 32 by the conical concave surface 32. Therefore, the contact portion between the movable core 30 and the shaft 40 hardly changes. Even if the axial deviation occurs between the housing member 14 and the suction portion 22 due to parts processing error or assembly error, even if the movable core 30 receives a force from the housing member 14 in the direction perpendicular to the axis 90, the conical concave surface Since 32 guides the spherical surface 42 to the center of the conical concave surface 32, the contact location between the movable core 30 and the shaft 40 does not change, and the movable core 30 supports the contact location between the conical concave surface 32 and the spherical surface 42. As shown in FIG. Therefore, even if an axial deviation occurs between the accommodating member 14 and the suction portion 22, the gap between the inner peripheral side surface 26 of the opposing recess 24 and the movable core 30 hardly changes over the entire circumference, and the inner peripheral side surface 26 There is no contact with the movable core 30. Therefore, the gap between the inner peripheral side surface 26 of the opposing recess 24 and the movable core 30 can be made as small as possible.
[0024]
The side gap formed between the inner peripheral side surface of the housing member 14 and the outer peripheral side surface of the movable core 30 is movable core 30 with respect to the axis 90 when there is an axial deviation between the housing member 14 and the suction portion 22. Can be made as small as possible, as long as it can be tilted. Therefore, the magnetic attraction force acting between the movable core 30 and the attraction portion 22 is increased as a whole. Therefore, as shown by the curve 120 in FIG. 2, the magnetic attraction force is substantially constant regardless of the size of the main gap, and the magnetic attraction force increases as a whole. Since the magnetic attraction force increases without increasing the number of turns of the coil 60, the electromagnetic valve device can be downsized.
[0025]
In the above-described embodiment of the present invention described above, the conical concave surface 32 as the contact concave surface is formed on the movable core 30, and the spherical surface 42 as the contact convex surface is formed on the shaft 40. A contact convex surface may be formed on the movable core, and a contact concave surface may be formed on the shaft.
Further, the opposing recess 24 is formed in the suction portion 22 so that the movable core 30 enters the opposing recess 24. On the other hand, you may form an opposing recessed part in a movable core.
[0026]
Further, depending on the configuration of the electromagnetic valve device, the shaft 40 may not be directly supported by the suction portion, but may be supported by a bearing member that is a separate member from the suction portion so as to be reciprocally movable.
Moreover, in the said Example, the solenoid valve apparatus of this invention was used for the three-way valve as a pressure control valve apparatus used for an automatic transmission. In addition to this, the electromagnetic valve device of the present invention can be used as a two-way valve or a flow control valve device.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an electromagnetic valve device according to an embodiment of the present invention.
FIG. 2 is a characteristic diagram showing the relationship between the main gap and the magnetic attractive force between the present embodiment and the conventional example.
3 is a schematic cross-sectional view showing a main part of Conventional Example 1. FIG.
4 is a schematic cross-sectional view showing a main part of a conventional example 2. FIG.
5 is a schematic cross-sectional view showing the main part of Conventional Example 3. FIG.
[Explanation of symbols]
10 Solenoid valve device 12 Yoke 14 Housing member 20 Base housing 22 Suction part (suction member, bearing member)
24 Opposite recessed part 26 Inner peripheral side surface 30 Movable core 32 Conical concave surface (contact concave surface)
34 Mating hole 40 Shaft (movable member)
42 Spherical surface (abutment convex surface)
44 Fitting protrusion 48 Spring (biasing means)
50 balls (movable member)
60 coils (electromagnetic drive unit)
90 axis

Claims (3)

直線方向に往復移動する可動コアと、
前記可動コアの往復移動方向の一方側に設置され、前記可動コアと当接して前記可動コアとともに往復移動し、流路を開閉する可動部材と、
往復移動自在に前記可動部材を支持する軸受け部材と、
往復移動自在に前記可動コアを支持する収容部材と、
前記可動コアに対し往復移動方向の一方側に前記可動コアと向き合って設置され、前記可動コアおよび前記収容部材と磁気回路を形成している吸引部材と、
前記可動コアに向け往復移動方向の他方に前記可動部材を付勢している付勢手段と、
通電することにより前記吸引部材に向け往復移動方向の一方に前記可動コアを吸引する磁力を発生する電磁駆動部と、
を備える電磁弁装置であって、
前記可動コアまたは前記吸引部材の一方は他方と向き合う側に対向凹部を有し、前記可動コアが前記吸引部材に向け往復移動方向の一方に移動すると、前記可動コアまたは前記吸引部材の他方は前記対向凹部内に進入し、
前記可動コアと前記可動部材との当接箇所において、前記可動コアまたは前記可動部材の一方は当接凹面を有し、前記可動コアまたは前記可動部材の他方は前記当接凹面と当接する当接凸面を有し、
前記可動コアの外周側面と前記収容部材の内周側面との間に、前記当接凹面と前記当接凸面との当接箇所を支持箇所として往復移動方向に沿った軸線に対し前記可動コアが傾斜可能な前記対向凹部側へ向かって拡大する隙間が形成されていることを特徴とする電磁弁装置。
A movable core that reciprocates in a linear direction;
A movable member installed on one side of the reciprocating direction of the movable core, reciprocating with the movable core in contact with the movable core, and opening and closing the flow path;
A bearing member that supports the movable member in a freely reciprocating manner;
A housing member that supports the movable core in a freely reciprocating manner;
A suction member that is installed on one side of the reciprocating direction with respect to the movable core so as to face the movable core, and forms a magnetic circuit with the movable core and the housing member;
An urging means for urging the movable member to the other in the reciprocating direction toward the movable core;
An electromagnetic drive unit that generates a magnetic force for attracting the movable core in one of the reciprocating directions toward the suction member by energization;
A solenoid valve device comprising:
One of the movable core or the suction member has an opposing recess on the side facing the other, and when the movable core moves in one of the reciprocating directions toward the suction member, the other of the movable core or the suction member is Enter into the opposite recess,
At the contact point between the movable core and the movable member, one of the movable core or the movable member has a contact concave surface, and the other of the movable core or the movable member contacts the contact concave surface. Has a convex surface,
Between the outer peripheral side surface of the movable core and the inner peripheral side surface of the housing member, the movable core is supported with respect to an axis along the reciprocating direction with a contact portion between the contact concave surface and the contact convex surface as a support portion. A solenoid valve device characterized in that a gap is formed that expands toward the opposing concave portion that can be tilted.
前記当接凹面は円錐凹面であり、前記当接凸面は球面であることを特徴とする請求項1記載の電磁弁装置。The electromagnetic valve device according to claim 1, wherein the concave contact surface is a conical concave surface, and the convex contact surface is a spherical surface. 前記可動コアまたは前記可動部材の一方は前記当接凹面からさらに凹んだ嵌合穴を有し、前記可動コアまたは前記可動部材の他方は前記当接凸面から突出している嵌合突部を有し、前記嵌合突部は前記軸線に対し前記可動部材が傾斜可能に前記嵌合凹部に嵌合していることを特徴とする請求項1または2記載の電磁弁装置。One of the movable core or the movable member has a fitting hole that is further recessed from the contact concave surface, and the other of the movable core or the movable member has a fitting protrusion protruding from the contact convex surface. The electromagnetic valve device according to claim 1, wherein the fitting protrusion is fitted in the fitting recess so that the movable member can tilt with respect to the axis.
JP2002005008A 2002-01-11 2002-01-11 Solenoid valve device Expired - Fee Related JP4022855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002005008A JP4022855B2 (en) 2002-01-11 2002-01-11 Solenoid valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002005008A JP4022855B2 (en) 2002-01-11 2002-01-11 Solenoid valve device

Publications (2)

Publication Number Publication Date
JP2003207067A JP2003207067A (en) 2003-07-25
JP4022855B2 true JP4022855B2 (en) 2007-12-19

Family

ID=27644174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002005008A Expired - Fee Related JP4022855B2 (en) 2002-01-11 2002-01-11 Solenoid valve device

Country Status (1)

Country Link
JP (1) JP4022855B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200430A (en) * 2005-01-20 2006-08-03 Fuji Koki Corp Electromagnetic actuator and control valve for variable displacement compressor equipped with the same
JP4594142B2 (en) * 2005-03-25 2010-12-08 株式会社不二工機 Solenoid expansion valve
JP5178653B2 (en) * 2009-07-15 2013-04-10 日立オートモティブシステムズ株式会社 solenoid valve
JP5870971B2 (en) * 2013-07-24 2016-03-01 株式会社デンソー solenoid valve
CN103671952B (en) * 2014-01-08 2016-04-06 浙江弘驰科技股份有限公司 A kind of lightweight miniaturization ultra high speed switch electromagnetic valve
JP6558160B2 (en) * 2015-09-04 2019-08-14 浜名湖電装株式会社 solenoid valve
CN110799746B (en) 2017-06-27 2021-05-28 日立汽车系统株式会社 High-pressure fuel supply pump

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1135853B (en) * 1980-06-13 1986-08-27 Weber Spa PRESSURE REGULATOR FOR INJECTION SYSTEMS OF INTERNAL COMBUSTION ENGINES WITH COMMAND IGNITION
JPH0738780Y2 (en) * 1988-07-04 1995-09-06 矢崎総業株式会社 Solenoid valve structure
JPH0235207U (en) * 1988-08-29 1990-03-07
JPH0525203Y2 (en) * 1989-01-11 1993-06-25
DE3925794C2 (en) * 1989-08-04 1996-03-14 Bosch Gmbh Robert Solenoid valve
JPH07293729A (en) * 1994-04-26 1995-11-10 Nippondenso Co Ltd Solenoid valve for controlling hydraulic pressure
JPH09144931A (en) * 1995-11-22 1997-06-03 Aisin Aw Co Ltd Linear solenoid
JPH10122412A (en) * 1996-10-22 1998-05-15 Denso Corp Linear solenoid
JP2000055230A (en) * 1998-08-06 2000-02-22 Nisshinbo Ind Inc Solenoid valve
JP2000230660A (en) * 1999-02-12 2000-08-22 Denso Corp Solenoid valve for controlling fluid pressure
JP2001254864A (en) * 2000-03-08 2001-09-21 Aisin Seiki Co Ltd Solenoid valve

Also Published As

Publication number Publication date
JP2003207067A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
JP4022857B2 (en) Solenoid valve device
JP4569371B2 (en) Linear solenoid
JP4058749B2 (en) Electromagnetic drive device and electromagnetic valve using the same
JP2012204574A (en) Linear solenoid
JP4022855B2 (en) Solenoid valve device
JP2003130246A (en) Solenoid valve device
JP2008089080A (en) Electromagnetic driving device and solenoid valve using the same
JP4372448B2 (en) Proportional solenoid valve
JP4058604B2 (en) Solenoid valve device
JP2004316855A (en) Proportional solenoid valve
JP2007100841A (en) Spool valve device
JP4492649B2 (en) Bleed valve device
WO2002027226A1 (en) Linear solenoid and solenoid valve
JP2004150584A (en) Solenoid valve
JP2009079605A (en) Solenoid valve device
JP2001343086A (en) Solenoid valve device
JP4301318B2 (en) Bleed valve device
JP4013440B2 (en) Electromagnetic drive device and electromagnetic valve using the same
US11783979B2 (en) Solenoid
JP2006194351A (en) Solenoid valve
US11948737B2 (en) Solenoid
US20230013945A1 (en) Solenoid valve
US11908620B2 (en) Solenoid
JP2007051753A (en) Three-way control valve
JP2024002252A (en) electromagnetic actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees