WO2002026007A1 - Flux applying method and device, flow soldering method and device and electronic circuit board - Google Patents

Flux applying method and device, flow soldering method and device and electronic circuit board Download PDF

Info

Publication number
WO2002026007A1
WO2002026007A1 PCT/JP2001/008228 JP0108228W WO0226007A1 WO 2002026007 A1 WO2002026007 A1 WO 2002026007A1 JP 0108228 W JP0108228 W JP 0108228W WO 0226007 A1 WO0226007 A1 WO 0226007A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
flux
pair
supply means
edges
Prior art date
Application number
PCT/JP2001/008228
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuji Kawashima
Kenichiro Suetsugu
Shunji Hibino
Hiroaki Takano
Tatsuo Okuji
Shoshi Kabashima
Yukio Maeda
Mikiya Nakata
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2002026007A1 publication Critical patent/WO2002026007A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • B23K1/203Fluxing, i.e. applying flux onto surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3489Composition of fluxes; Methods of application thereof; Other methods of activating the contact surfaces

Definitions

  • the present invention relates to a method for applying a bright flux in flow soldering for mounting a component, for example, an electronic component on a substrate using a solder material, and an apparatus therefor. Further, the present invention provides a method and an apparatus using such a flux coating method and apparatus, respectively.
  • the present invention relates to a flow soldering method and an electronic circuit board manufactured by the flow soldering method.
  • a flow soldering process using a solder jet has been known as one method of joining electronic components and the like to the board.
  • This flow soldering process typically involves applying a flux to the board, a pre-heating step to pre-heat the board, and contacting the board with a jet of solder material to supply the solder material to the board. Includes solder material supply steps to be performed.
  • This flux application step removes an oxide film (natural oxide film) unavoidably formed on a land formed on the substrate (that is, a portion to which the solder material is to be supplied) and removes the solder material on the land surface.
  • the flux usually contains an active ingredient such as rosin (resin component) and a solvent such as isopropyl alcohol.
  • rosin resin component
  • solvent such as isopropyl alcohol.
  • a flux applying method for performing such a flux applying step there are known a foaming method in which a foamy flux is brought into contact with a substrate, and a spraying method in which a mist-like flux is sprayed on the substrate.
  • FIG. Fig. 8 (a) illustrates how the flux is applied to the substrate located in the cross section along the line X-X in Fig. 7, and Fig. 8 (b) shows the state shown in Fig. 8 (a). It is a typical top view of the part of a board
  • a printed circuit board on which electronic components such as through-hole insertion components (ie, components in which a part of the components are inserted into the through-holes (eg, discrete components or lead components) by a known method) are appropriately arranged in predetermined positions.
  • the substrate 71 is supplied from the inlet 51 to the flow soldering device 50 shown in Fig. 7.
  • the substrate 71 is provided inside the device 50 (along a transfer line shown by a dotted line in Fig. 7).
  • the substrate 71 is mechanically transported at a substantially constant speed in the direction of the arrow 52.
  • the substrate 71 is transported in more detail, as shown in FIGS. 8 (a) and 8 (b).
  • the flux 73 is applied to the lower surface of the substrate 71 in contact with the lower surface of the substrate 71.
  • the flux 73 overflowing from the guide 56 is generally a bubble having a diameter of about 1 to 2 mm.
  • the guide 56 has a width a longer than the width W of the substrate 71 and an opening (FIG. 8 (b)) having an appropriate length b. ), And the bubble-like flux 73 overflows from the opening, so that the lower surface of the substrate 71 Except for the area covered and held by the transport claws 72 a and 72 b.
  • the flux 73 is applied to the area.
  • the substrate 71 to which the flux has been applied as described above is then heated by a pre-heater 57 such as a far-infrared heater while being transported (see FIG. 7).
  • This heating step is called a pre-heating step.
  • unnecessary solvent components are removed by degassing, and only the activator component is removed from the substrate 71.
  • the substrate 71 is preheated to reduce the thermal shock to the substrate 71 caused when the molten solder material comes into contact with the substrate 71. It is.
  • the substrate 71 comes into contact with the primary jets 58 and the secondary jets 59 made of the solder material previously melted by heating on the lower surface side of the substrate 71, and the solder material is supplied to the substrate. .
  • the solder material is applied between the land portion forming the inner wall of the through hole formed in the substrate and the lead of the through hole insertion component inserted into the through hole from the upper surface side of the substrate.
  • the annular space gets wet from the bottom side of the substrate by capillary action.
  • the solder material supplied to and adhered to the substrate 71 is solidified by a decrease in temperature to form a joint made of the solder material, a so-called “fillet”.
  • solder material supply step (or flow soldering step) the primary jet flows through the surface of the land (and the lead of the electronic component) formed over the wall of the through hole by sufficiently wetting the surface with the solder material.
  • This is for supplying solder material to the holes, and the secondary jet is not desirable because the solder material remains between the lands and solidifies to form a bridge (this bridge causes an electric circuit short circuit).
  • the excess solder material attached to the lower surface area of the substrate covered with the solder resist is removed, and the shape of the fillet is adjusted. The substrate 71 thus obtained is then taken out of the outlet 53.
  • FIG. 9 is a schematic cross-sectional view of a conventional flow soldering apparatus using a spray type flux application method.
  • FIG. 10 (a) is a diagram for explaining how a flat plate is applied to a substrate located at a cross section along the line Y--Y of FIG. 9, and
  • FIG. 10 (b) is a diagram illustrating that FIG. FIG. 3 is a partial top view of the substrate shown in a).
  • a conventional flow soldering apparatus 60 using a spray type flux application method is composed of a spray fluxer 60a, which is a spray type flux application apparatus, and a flow soldering apparatus main body 60b. And power.
  • the flux application step is performed in a spray fluxer 60a, and then the flux application step is performed.
  • the reheating step and the solder material supply step are sequentially performed in the apparatus main body 60b.
  • the substrate 71 as described above is spray-fluxed.
  • Substrate 71 moves the interior of spray fluxer 60a (along the transport line shown by the dotted line in FIG. 9) at a substantially constant speed in the direction of arrow 62 in the same manner as above.
  • Transport claws 7 2a and 7 2b (Fig. 10 (a) and
  • the nozzle 63 generally has a circular injection port, and as shown in FIG. 10 (a), the flux 73 injected from the nozzle 63 is microscopically a droplet, and as a whole, In this case, the injection port of the nozzle 63 is the upper bottom (or the top), and the circular area of the diameter m (see FIG. 10 (b)) on the lower surface of the substrate 71 is the lower bottom. (Or substantially conical).
  • the substrate 71 is transported in the direction indicated by the arrow 62, and at the same time, the nozzle 63 force is applied at a speed corresponding to the transport speed of the substrate 71 over a distance corresponding to the width W of the substrate 71, in the direction indicated by the arrow 176. Reciprocate. As a result, as shown in FIG. 10 (b), the circular area composed of the flux 73 simultaneously adhering to the substrate 71 crosses the lower surface of the substrate 71 obliquely to the transport direction of the substrate 71. Then, the flux 73 is applied to the entire lower surface of the substrate 71.
  • an exhaust duct (see FIG. (Not shown) to suck and discharge the solvent that evaporates together with the atmospheric gas.
  • the substrate 71 to which the flux has been applied as described above is then mechanically transferred from the spray fluxer 60a to the apparatus main body 60b at a position 64 shown in FIG.
  • the substrate 71 is also mounted on the main body 60b of the main body 60b in the same manner as described above. Flow in the direction of arrow 65 (along the transport line shown by the dotted line in FIG. 9) while mechanically transporting at a substantially constant speed while using the above-mentioned foaming flux application method.
  • the calorie heat is generated by the pre-heater 66, and then the solder material is supplied from the lower surface of the substrate 71 in contact with the solder jets 67 and 68, and then is taken out from the outlet 69. It is.
  • an electronic circuit board in which electronic components are soldered to a substrate by a flow soldering process using a foam type or spray type flux application method is manufactured.
  • the solvent component of the flux eventually vaporizes and the solvent is evaporated.
  • the active component of the flux such as rosin (resin component)
  • rosin a sticky solid at normal temperature and pressure. Therefore, the residue may be peeled off from the substrate in the above-described post-process and adhere to the conveying member in the post-process as a foreign substance. Such adhesion of foreign matter to the transport member may cause a process defect such as a failure of the transport member. There is a problem that can be. Disclosure of the invention
  • the present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a flux coating method in a flow soldering process for mounting an electronic component on a substrate using a solder material.
  • the flux is supplied to the lower part of the substrate by a flux supply means (or a unit or a device, for example, a fluxer) used in a flow soldering process of mounting an electronic component on a substrate using a solder material.
  • a flux supply means or a unit or a device, for example, a fluxer
  • the method is characterized by applying a flux to the surface.
  • the “edge” of the substrate refers to a peripheral region on the main surface of the substrate, and “a pair of ⁇ portions on the lower surface of the substrate along the substrate transfer direction”
  • the portions located on the left and right sides of the substrate in the transport direction of the substrate are referred to (hereinafter, this is also simply referred to as “a pair of edges”).
  • the term “directly below” a pair of edges on the lower surface of the substrate means that the cover covers the pair of edges and functions to substantially prevent the application of flux to the edges. Any position may be used as long as possible, and the cover may be in contact with the lower surface of the substrate, or a gap, preferably a slight gap, may be provided between the cover and the lower surface of the substrate.
  • a flux is applied to the lower surface of the substrate excluding a pair of edges along the substrate transport direction, and a pair of edges covered with a pair of covers is provided. No flux is applied to it, so the active ingredient of the flux is on one pair of edges
  • each of the pair of covers is an angle plate-shaped long member having an L-shaped cross-sectional shape defined by two sides, and the substrate is positioned above the flux supply means.
  • one side of the L-shaped cross section defines the boundary between each pair of edges and the bottom surface of the board excluding the pair of edges at its ends, The other side of the L-shaped cross section abuts each edge, and is disposed below the edge.
  • each cover abuts the edge so as to define a boundary between each edge and the bottom surface of the board excluding the pair of edges (ie, one pair of covers contacts the bottom surface of the board).
  • the area covered by a pair of covers is ⁇ a pair of edges ''
  • the area not covered by a cover is ⁇ the lower surface of the board excluding a pair of edges ''.
  • a boundary is defined between each of the pair of ⁇ portions and the lower surface of the substrate excluding the pair of edges), and to isolate the pair of edges from the area where the flux is supplied Is preferred. In this way, by contacting the cover with the lower surface of the substrate, it is possible to ensure that the flats are not applied to a pair of the ⁇ parts, and that the area where the flatus is applied and the area where the flux is not applied are provided. Can be clearly distinguished.
  • the present invention is not limited to this, and a gap may be provided between the pair of covers and the lower surface of the substrate as long as the flux is not substantially applied to the pair of edges.
  • the cross-sectional shape of the cover is not limited to the above-described L-shape, but may be, for example, a T-shape in which one end of one side is joined inside the end of the other side, or a curved contour. May have any suitable shape, such as those having Further, even in the case of an L-shaped cross-sectional shape, the angle between the two sides does not need to be 90 degrees, and may be any other appropriate angle.
  • each of the pair of covers has an inclined portion that transitionally connects to an end of the one side at a portion that first contacts the substrate, and the substrate is
  • the front edge of the lower surface of the substrate comes into contact with the inclined portion, and as the substrate is further transported upward from the flux supply means, the lower surface of the substrate is exposed.
  • Pushes down the cover while sliding along the oblique portion so that when the substrate is located above the flux supply means, the one side abuts the edge at its end.
  • the force bar can be moved to abut the lower surface.
  • a member having at least a part of which has elasticity can be used, and for example, a cover utilizing a panel panel can be used.
  • the present invention is not limited to this, and the cover may be moved by other mechanical means (or a device), or may be fixed without being moved.
  • a flux is supplied from below the substrate by a flux supply unit and applied to a lower surface of the substrate, which is used in a flow soldering process of mounting an electronic component on the substrate using a solder material.
  • a flux applying device a transporting means (or device) for transporting the substrate; a flux supplying means (or unit or device) for supplying the flux from below the substrate; and when the substrate is positioned above the flux supplying means.
  • a pair of covers which are located directly below a pair of edges on the lower surface of the substrate along the direction of transport of the substrate and cover each edge, respectively.
  • each of the pair of covers is an angle plate-shaped long member having an L-shaped cross-sectional shape defined by two sides, and the substrate is positioned above the flux supply means.
  • One side of each L-shaped cross-section defines, at its end (or end face), the boundary between each of the pair of edges and the lower surface of the substrate excluding the pair of edges
  • the other side of the L-shaped cross section is disposed below the edge in contact with each edge of the lower surface of the substrate.
  • each of the pair of covers has an inclined portion that transitionally connects to an end of the one side at a portion that first contacts the substrate, and the substrate is When it is not above the flux supply means, no external force is applied to the cover, and the end of the one side is located above the surface through which the lower surface of the substrate should pass, and the force is applied to the inclined portion.
  • the lower surface of the substrate is positioned intersecting with the surface to be passed so as to make initial contact with the substrate conveyed above the supply means, and the substrate is above the flux supply means, the lower surface of the substrate
  • the cover is pushed down while being in contact with the edge at the end of the one side.
  • Such a flux coating apparatus of the present invention is suitably used for performing the above-described flux coating method of the present invention, and can obtain the same effects as the flux coating method of the present invention.
  • each of the pair of edges has a width of 2 to 15 mm, and more preferably a width of about 5 mm. .
  • On the edge having such a width there is usually no electronic component arranged, and there is no need to apply a flux.
  • the width of such a part is generally larger than the width (width from the edge of the substrate) that can mechanically contact the conveying member in the post-process of the flow soldering process, Adhesion of flux residue to the conveying member can be avoided.
  • the flux supplying means in the flux applying method and apparatus of the present invention includes a foaming type flux supplying means (for example, a foaming fluxer) for bringing a foamy flux into contact with a substrate and a spraying type flux supplying a mist-like flux to the substrate.
  • a foaming type flux supplying means for example, a foaming fluxer
  • a spraying type flux supplying a mist-like flux to the substrate for example, spray fluxer
  • Means for example, spray fluxer
  • the flux may be applied to the substrate by spraying and then applied by foaming, or vice versa.
  • a flow soldering method including a flux applying method and a flux applying apparatus according to the present invention, and a tip-to-solder apparatus, respectively. The effect can be obtained.
  • an electronic circuit board having electronic components mounted on the board by a flow soldering process using a solder material, wherein the board is carried.
  • An electronic circuit board having a flux applied to the lower surface of the substrate except for a pair of edges on the lower surface of the substrate along the feeding direction, preferably a pair of edges each having a width of 2 to 15 mm. Provided.
  • the term “flux” is applied for the purpose of removing oxides from the surface of a metal (for example, a land) to which a solder material is to be supplied and improving the wettability of the solder material on the surface.
  • a solvent for removing the acid component and a solvent for facilitating the handling of the active component.
  • Active ingredient for example about 3 to 20 weight 0/0, the solvent may be about 80 to 97 wt%.
  • Such active components include rosin and organic acids (for example, diphenyl diadic acid hydrobromide), and the ionic lj includes isopropyl alcohol.
  • the flatus may also contain, in addition to these active ingredients and solvents, trace amounts of other ingredients such as, for example, matting agents. For example, a commercially available flux can be used.
  • Solder materials that can be used in the present invention include, for example, Sn-Pb-based materials, Sn-Cu-based materials, Sn_Ag-Cu-based materials, Sn-Ag-based materials, Sn-Ag-Bi-based materials, and S-based materials. n-Ag-Bi-Cu material and other solder materials. Considering the impact on the environment, Sn-Pb-based materials, Sn-Cu-based materials, Sn-Ag-Cu-based materials, 311- ⁇ -based materials, Sn-Ag-Bi Pb-free solder materials such as Sn-Ag-Bi-Cu-based materials are preferred.
  • a substrate made of a paper phenol-based material, a glass epoxy-based material, a polyimide film-based material, a ceramic-based material, or the like can be used.
  • Electronic components bonded to the board include imported components (eg, semiconductors, capacitors, resistors, coils, connectors, etc.) and surface-mounted components (eg, semiconductors, capacitors, resistors, coils, etc.) placed on the back of the Z or board. ).
  • these are merely examples, and the present invention is not limited to these.
  • the present invention includes the following embodiments 1 to 16.
  • Each of the pair of covers is an angle plate-shaped long member having an L-shaped cross-sectional shape defined by two sides, and when the substrate is located above the flux supply means, One side of the L-shaped section is at its end, the edge
  • Each of the pair of covers has an inclined portion that transitionally connects to the end of the one side at a portion that first comes in contact with the substrate, and the substrate is located above the flux supply means.
  • the front edge of the lower surface of the substrate comes into contact with the inclined portion, and as the substrate is further transported above the flux supply means, the lower surface of the substrate slides along the inclined portion to cover the substrate. 4.
  • said one side abuts the edge at its end when the substrate is positioned above the flux supply means.
  • a flux application device for supplying a flux from below a substrate by a flux supply means and applying the flux to a lower surface of the substrate, which is used in a flow soldering process of mounting an electronic component on a substrate using a solder material:
  • Transport means for transporting the substrate, A flux supply means for supplying a flux from below the substrate, and a flux supply means for positioning the substrate directly above a pair of edges on a lower surface of the substrate along the substrate transport direction when the substrate is located above the flux supply means; And a pair of covers covering the edges, wherein the flux is applied to the lower surface of the substrate excluding the pair of edges.
  • Each of the pair of covers is an angle plate-shaped long member having an L-shaped cross-sectional shape defined by two sides, and when the substrate is located above the flux supply means, One side of the L-shaped section is at its end, the edge
  • Each of the pair of covers has an inclined portion that is transitionally connected to the end of the one side at a portion that first comes in contact with the substrate, and the substrate is located above the flux supply means.
  • the end of the one side is located above the surface through which the lower surface of the substrate should pass, and the force and the inclined portion are located above the flux supply means.
  • the lower surface of the substrate is positioned intersecting with the surface to be passed so that the substrate comes into contact with the substrate first, and the substrate is above the flux supply means, the lower surface of the substrate is Aspect 9 is described, wherein the cover is pushed down while being in contact with the edge at the end of one side by applying a pressing force to the one side in contact.
  • the flux supplying means is a foaming type flux supplying means for bringing a foamy flux into contact with the substrate.
  • Embodiment 13 A soldering method including the flux applying method according to any one of Embodiments 1 to 6.
  • FIGS. 1 (a) and 1 (b) illustrate a flux application method according to one embodiment of the present invention.
  • FIG. 1 (a) is a schematic cross-sectional view, in which FIG. 1 (a) shows a state where there is no substrate above the flux supply means, and FIG. 1 (b) shows a state where there is a substrate above the flux supply means.
  • FIG. 2 is a schematic top view of a portion of the substrate shown in FIG. 1 (b).
  • FIGS. 3 (a) and 3 (b) are schematic enlarged perspective views of the interior of the flow soldering device shown in FIGS. 1 (a) and 1 (b), respectively.
  • FIG. 4 is a schematic perspective view of the substrate coated with flux according to the embodiment of FIG. 1 as viewed from the lower surface side.
  • FIGS. 5 (a) and 5 (b) show a flow soldering apparatus in a direction perpendicular to the direction in which a substrate is transported, above a flux supply means, illustrating a flux application method according to another embodiment of the present invention.
  • 5 (a) shows a state where there is no substrate above the flux supply means
  • FIG. 5 (b) shows a state where there is a substrate above the flux supply means. .
  • FIG. 6 is a schematic top view of the portion of the substrate shown in FIG. 5 (b).
  • FIG. 7 is a schematic cross-sectional schematic view of one conventional flow soldering apparatus.
  • FIG. 8 (a) is a diagram illustrating how the flux is applied to the substrate located in the cross section along the line X-X in Fig. 7, and Fig. 8 (b)
  • FIG. 3 is a schematic top view of a part of the substrate shown.
  • FIG. 9 is a schematic cross-sectional schematic view of another conventional flow soldering apparatus.
  • FIG. 10 (a) is a diagram for explaining how the flux is applied to the substrate located in the cross section along the line Y_Y of FIG. 9, and
  • FIG. 10 (b) is a diagram illustrating the substrate shown in FIG. 10 (a). It is a typical top view of the part.
  • BEST MODE FOR CARRYING OUT THE INVENTION BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1 (a) and 1 (b) are views corresponding to FIG. 8 (a) referred to for describing the above-mentioned conventional flux coating method, and show a state in which there is no substrate above the flux supply means. And a certain state.
  • FIG. 2 is a diagram corresponding to FIG. 8 (b) referred to for explaining the above-mentioned conventional flux coating method.
  • the flux application device of the present embodiment was connected to chains 4a and 4b respectively rotating around conveyor frames 5a and 5b, respectively. It has conveying claws 2a and 2b, and a foaming fluxer including a guide 6 and a foaming device (not shown).
  • the transport claws 2a and 2b are arranged so that the substrate 1 is sandwiched from above and below at both ends (or sides) of the substrate 1 in the transport direction 9 (that is, the direction perpendicular to the plane of the paper of FIGS.
  • the foaming fluxer is a flux supplying means for supplying the flux 3 to the lower surface 11 of the substrate 1 located above the foaming fluxer.
  • the flux application device of the present embodiment has a pair of mounting members 7a and 7b respectively attached to the conveyor frames 5a and 5b. It has covers 8a and 8b and differs from the conventional one in this point. These covers 8a and 8b are transported by the transport claws 2a and 2b.
  • the substrate 1 is formed of an angle plate-shaped elongated member having an L-shaped cross section.
  • the covers 8a and 8b pass through the center of the substrate, are perpendicular to the main surface of the substrate, and are arranged symmetrically with respect to a plane (not shown) parallel to the direction of transport of the substrate.
  • the power bar 8a will be described in detail, but the cover 8b has a similar configuration and function.
  • the cover 8a has an L-shaped cross-sectional shape defined by two sides A and B, as shown in FIG.
  • the sides A and B refer to a vertical portion and a horizontal portion of the cover 8a, respectively, and each have a plate-like shape having a predetermined thickness cross section.
  • Sides A and B may be joined using separate elongated members (or plate members) of different or identical materials, or integrated using the same material, to provide an L-shaped cross section May be configured.
  • a member obtained by bending a flat member to have an L-shaped cross section may be used.
  • a member having two sides such as a chevron or an angle material may be used, and when the angle between these two sides is 90 degrees, an L-shaped cross section is formed.
  • the temperature is not limited, and may be less than 90 degrees or greater than 90 degrees, and may be appropriately selected by those skilled in the art.
  • the cover 8a extends over a distance L longer than the length b of the opening of the guide 6 of the foaming fluxer, and when the substrate 1 is located above the opening of the guide 6, On the lower surface 11 of the substrate 1 having a width W, they are arranged so as to overlap each other by a width d to form an edge 11a.
  • one side A of the L-shaped cross section of the force bar 8a is At its end 10, between one edge 11 a of the lower surface 11 and a middle portion 11 c of the lower surface 11 excluding a pair of edges 11 a and 11 b.
  • the other side B of the L-shaped cross section is arranged below and preferably spaced apart from the edge 11 a of the lower surface 11 of the substrate 1 so as to define the boundary. Is done.
  • a pair of edges 11 a and lib on the lower surface 11 of the substrate 1 along the transport direction 9 of the substrate 1 is preferably about 2 to 15 mm, more preferably about 5 mm in width d. However, in some cases, different widths may be appropriately selected.
  • a portion of the cover 8 a that comes into contact with the substrate 1 first has an inclined portion (or a tapered portion) that transitionally connects with the end 10 of the side A of the L-shaped cross section. 1 0 ′ is provided, and the inclined portion is inclined in a cross section including the substrate transfer direction.
  • Cover 8a force Open state where no external force is applied as shown in Fig. 1 (a) and external force due to base plate 1 fixed in the vertical direction by transport claws 2a and 2b as shown in Fig. 1 (b)
  • It is preferable that at least a part of the covers 8a and Z or the attachment 7a have sufficient elasticity so that a transition can be made between the pressed state and the pressed state.
  • a panel panel or the like can be used for the cover 8a. The same applies to the cover 8b and the mounting fixture 7b.
  • the cover 8a when there is no substrate 1 above the guide 6 of the foaming fluxer, which is a flux supply means, as shown in FIG. 1 (a), the cover 8a is in an open state receiving no external force, and The end 10 of the side A (vertical portion) of a is located above the surface through which the lower surface 11 of the substrate 1 should pass (the surface indicated by the dotted line in the figure, also referred to as the reference surface).
  • the inclined portion 10 ′ (FIG. 3) intersects with the reference plane so as to make first contact with the substrate 1 conveyed toward above the guide 6.
  • the cover 8a when the substrate 1 is above the guide 6, the cover 8a is in a pressed state under external force as shown in FIG. 1 (b), and the lower surface 11 of the substrate 1 is By applying a pressing force to the side A contacting with, the cover 8a is pressed down while being in contact with the edge of the lower surface 11 at the end 10 of the side A.
  • the board 1 is transported from above and below at both ends of the guide 6 above the opening of the guide 6 where no external force is applied to the covers 8a and 8b.
  • the sheet is transported in the transport direction 9 while being held between the claws 2a and 2b.
  • the board 1 is conveyed above the opening of the guide 6, the front side of the board 1 comes into contact with the inclined portions 10 of the covers 8a and 8b first, and the board 1
  • the lower surface 11 of the substrate 1 slides along the inclined portions 10 and pushes down the covers 8a and 8b.
  • the front edge of the substrate 1 passes through the inclined portion 10 ′, and as shown in FIGS. 1 (b) and 3 (b), ends 10 A of the sides A of the covers 8 a and 8 b.
  • the edge 10 of the side A comes into contact with the edge of the lower surface 11 of the substrate 1.
  • the covers 8a and 8b are connected between the edges 11a and 11b shown in FIG. 4 and the intermediate portion 11c of the lower surface of the substrate excluding the pair of edges.
  • Edges 11a and 11b abut at end 10 so as to define the boundaries between them, and a pair of edges 11a and 11b are in contact with lower surface 11 of substrate 1. It is covered with abutting covers 8a and 8b to isolate it from the area where the flux is supplied.
  • the other conveyor frame 5a is fixed, and the other conveyor frame 5b is fixed to the fixed conveyor frame in a direction perpendicular to the board transfer direction.
  • 5 Slide in the direction that can maintain the parallel relationship with a that is, in the direction indicated by the arrow in FIG. 1 (a) and to the left and right in the plane of FIGS. 1 (a) and (b)).
  • the width between the transfer claws 2a and 2b for holding the slide can be adjusted.
  • the cover 8b since the cover 8b is connected to the conveyor frame 5b by the attachment 7b as in the present embodiment, the cover 8b slides by the same distance as the conveyor frame 5b slides. Therefore, the width of the edge d can be maintained at a predetermined value only by appropriately setting the conveyor frame 5 b according to the width W of the substrate 1 without having to set the cover 8 individually.
  • the flats are not applied to the pair of edges of the substrate, so that the residual of the flatus is transported in the subsequent process. Adhering to the member is avoided, and the occurrence of process defects due to this can be reduced.
  • the flux application device of the present embodiment can be integrated into the flow soldering device as in the conventional flow soldering device described with reference to FIGS. 7 and 8. It may be configured separately and independently outside the device body.
  • a force bar having an L-shaped cross-sectional shape and a tapered portion is brought into contact with the lower surface of the substrate by utilizing elasticity of at least a part of the cover (or A pair of edges is separated from the flux supply unit, but the present invention is not limited to this, and when the substrate is located above the flux supply means, the pair of edges is separated along the transport direction of the substrate. It is easy for those skilled in the art that the modifications can be made to the extent that each edge can be covered with a pair of covers located immediately below a pair of edges on the lower surface of the substrate. Will be reminded.
  • the cross-sectional shape of the cover is changed to, for example, a T shape, the slope is curved, or the cover is mechanically moved up and down so as to contact the lower surface of the substrate. It is also possible. Even if the cover is not brought into contact with the lower surface of the substrate, a gap may be provided between the cover and the lower surface of the substrate such that the flats are not substantially applied to the pair of edges.
  • the present embodiment relates to a flow soldering method and apparatus including the flux application method and apparatus of Embodiment 1.
  • the flux application apparatus described in detail in Embodiment 1 is integrated into the inside like the conventional flow soldering apparatus described with reference to FIG. It is composed.
  • Any suitable device for supplying the preheater and the solder material in the form of a jet except for the flux coating device may be used, for example, as shown in FIG.
  • a flux is applied in the same manner as in the first embodiment, and then subjected to a preheating (preheating) step and a solder material supply step in the same manner as in the conventional method described above. , Flow soldering process
  • FIGS. 5 (a) and 5 (b) correspond to FIGS. 10 (a) and 10 (a), respectively, which are referred to for explaining the above-mentioned conventional flux application method, and each of them has no substrate above the flux supply means. State and a state.
  • FIG. 6 is a diagram corresponding to FIG.
  • FIGS. 5A and 5B The flux applicator of the present embodiment partially shown in FIGS. 5A and 5B is the same as the flux applicator of the first embodiment, but instead of a foaming fluxer as a flux supply means, FIG. 10 and an exhaust duct (see FIG. 10) for sucking the ambient gas using the spray fluxer used for the soldering device in the same manner as the device shown in FIGS. 9 and 10. (Not shown) is provided above the substrate.
  • the substrate is formed in the same manner as in the first embodiment. Can be coated with a flux.
  • the flux 3 is applied to the lower surface 11 of the substrate 1 while the pair of edges of the substrate 1 is covered by the covers 8a and 8b. Flux 3 is applied to the middle part of the lower surface of the substrate except for the edge of the pair, and flux 3 is not applied to the edge of the pair.
  • the flux coating device of the present embodiment can be separately and independently provided outside the flow soldering device main body, similarly to the conventional flow soldering device described with reference to FIGS. 9 and 10. However, it may be integrated into the flow soldering device.
  • the second embodiment it is also possible to carry out the flow soldering by using the flux applying method and the apparatus of the first embodiment instead of the flux applying method and the apparatus of the first embodiment.
  • the foam type flux applying method and apparatus of Embodiment 1 may be combined with the spray type flux applying method and apparatus of this embodiment.
  • a method capable of reducing the occurrence of a process failure caused by adhering to a conveying member as a foreign substance in a subsequent process and an apparatus for performing the method.
  • a flux is applied to the lower surface of the substrate except for a pair of edges along the transport direction of the substrate, and a pair of edges covered with a pair of covers is provided on the lower surface of the substrate. Since the flux is not applied, it is possible to avoid the residue of the flux from adhering to the conveying member in the post-process of the flow soldering process, and to reduce the occurrence of process defects due to this.
  • the present application is based on the Paris Convention and is based on the Paris Convention.

Abstract

A flux applying method in a flow soldering process, capable of reducing a process defect to be caused by the deposition, as a foreign matter, of flux (3) residual spread on a board (1), on a conveying member in a post-process of flow soldering. A flux applying method for supplying flux (3) from under the board (1) by a flux supply means for application on the bottom surface (11) of the board, wherein, while the board (1) is being conveyed, flux (3) is supplied to the bottom surface (11) of the board from the flux supply means with each of a pair of edges of the bottom surface (11), along the conveying direction of the board (1), being covered with a pair of covers (8a, 8b) respectively located directly under the edges when the board (1) is positioned above the flux supply means, thereby supplying flux to those portions of the bottom surface (11) of the board excluding the pair of edges.

Description

、塗布方法および装置、  , Coating method and apparatus,
フ口一はんだ付け方法および装置ならびに電子回路基板 技術分野  Method and apparatus for soldering and electronic circuit board
本発明は、 はんだ材料を用いて部品、 例えば電子部品などを基板に実装するた めのフローはんだ付けにおける明フラックス塗布方法およびそのための装置に関す る。 また、 本発明は、 このようなフラックス塗布方法および装置をそれぞれ利用 した および装置、田  The present invention relates to a method for applying a bright flux in flow soldering for mounting a component, for example, an electronic component on a substrate using a solder material, and an apparatus therefor. Further, the present invention provides a method and an apparatus using such a flux coating method and apparatus, respectively.
フローはんだ付け方法 ならびにフローはんだ付け方法により作 製される電子回路基板に関する。 背景技術  The present invention relates to a flow soldering method and an electronic circuit board manufactured by the flow soldering method. Background art
従来、 電子回路基板の製造において、 電子部品などを基板に接合する 1つの方 法として、 はんだ噴流を用いるフローはんだ付けプロセスが知られている。 この フローはんだ付けプロセスは、 一般的に、 基板にフラックスを塗布するフラック ス塗布ステップ、 基板を予め加熱するプリヒートステップ、 ならびに基板をはん だ材料から成る噴流に接触させて基板にはんだ材料を供給するはんだ材料供給ス テツプを含む。 このフラックス塗布ステップは、 基板に形成されたランド (即ち、 はんだ材料が供給されるべき部分) に不可避的に形成される酸化膜 (自然酸化 膜) を除去して、 ランド表面でのはんだ材料の濡れ広がりを良好にする目的で行 われ、 フラックスは、 通常、 ロジン (樹脂成分) などの活性成分およびイソプロ ピルアルコールなどの溶剤を含む。 このようなフラックス塗布ステップを実施す るフラックス塗布方法としては、 泡状のフラックスを基板と接触させる発泡式の 方法と、 霧状のフラックスを基板に吹き付けるスプレー式の方法とが知られてい る。  Conventionally, in the manufacture of electronic circuit boards, a flow soldering process using a solder jet has been known as one method of joining electronic components and the like to the board. This flow soldering process typically involves applying a flux to the board, a pre-heating step to pre-heat the board, and contacting the board with a jet of solder material to supply the solder material to the board. Includes solder material supply steps to be performed. This flux application step removes an oxide film (natural oxide film) unavoidably formed on a land formed on the substrate (that is, a portion to which the solder material is to be supplied) and removes the solder material on the land surface. This is done for the purpose of improving the wetting and spreading, and the flux usually contains an active ingredient such as rosin (resin component) and a solvent such as isopropyl alcohol. As a flux applying method for performing such a flux applying step, there are known a foaming method in which a foamy flux is brought into contact with a substrate, and a spraying method in which a mist-like flux is sprayed on the substrate.
以下、 発泡式のフラックス塗布方法を用いる従来のフローはんだ付けプロセス について、 図面を参照しながら説明する。 図 7は、 発泡式のフラックス塗布方法 を用いる従来のフローはんだ付け装置を、 側方から見た場合の内部の様子が判る ようにして示した概略図である。 図 8 ( a ) は、 図 7の X— X線に沿った断面に 位置する基板にフラックスが塗布される様子を説明する図であり、 図 8 ( b ) は、 図 8 ( a ) に示す基板の部分の模式的上面図である。 Hereinafter, a conventional flow soldering process using a foam type flux application method will be described with reference to the drawings. Figure 7 shows the internal appearance of a conventional flow soldering device that uses a foam type flux application method when viewed from the side. FIG. Fig. 8 (a) illustrates how the flux is applied to the substrate located in the cross section along the line X-X in Fig. 7, and Fig. 8 (b) shows the state shown in Fig. 8 (a). It is a typical top view of the part of a board | substrate.
まず、 既知の方法によってスルーホール挿入部品 (即ち、 部品の一部がスルー ホールに挿入される部品 (例えばディスクリート部品またはリード部品) などの 電子部品が所定の位置に適切に配置されたプリント基板などの基板 7 1を、 図 7 のフローはんだ付け装置 5 0に入口部 5 1から供給する。 基板 7 1は、 装置 5 0 の内部を (図 7に点線にて示す搬送ラインに沿って) 、 矢印 5 2の方向に実質的 に一定速度で機械的に搬送される。 基板 7 1の搬送は、 より詳細には、 図 8 ( a ) および (b ) に示すように、 基板 7 1を両端部 (または側部) にて保持す る列状の搬送爪 7 2 aおよび 7 2 bを矢印 5 2の搬送方向に機械的に移動させる ことにより行われる。 ここで、 搬送爪 7 2 aおよび 7 2 bは、 図 8 ( a ) に示す チェーン 7 4 aおよび 7 4 bに各々連結されて、 入口部 5 1力 ら出口部 5 3 (図 7 ) に亘つて延在するコンベアフレーム 7 5 aおよび 7 5 bの周りを、 基板 7 1 の主面と平行な面内でそれぞれ回転する。 このようにして搬送される基板 7 1が 発泡フラクサ一 5 4の上方に達すると、 発泡装置 5 5により発泡してガイド 5 6 の内部を上昇し、 ガイド 5 6の外部に溢れ出しているフラックス 7 3力 基板 7 1の下面と接触して該下面に塗布される。 ガイド 5 6から溢れ出しているフラッ タス 7 3は、 一般的には約 1〜 2 mmの直径を有する泡の形態を有する。 図 8 ( a ) および (b ) に示すように、 ガイド 5 6は、 基板 7 1の幅 Wより長い幅 a ならびに適切な長さ bを有する開口部 (図 8 ( b ) を参照のこと) を備え、 この 開口部から泡状のフラックス 7 3を溢れ出させることによって、 基板 7 1の下面 のうち、 搬送爪 7 2 aおよび 7 2 bで保持されて覆われた領域を除く.領域にフラ ックス 7 3が塗布される。  First, a printed circuit board on which electronic components such as through-hole insertion components (ie, components in which a part of the components are inserted into the through-holes (eg, discrete components or lead components) by a known method) are appropriately arranged in predetermined positions. The substrate 71 is supplied from the inlet 51 to the flow soldering device 50 shown in Fig. 7. The substrate 71 is provided inside the device 50 (along a transfer line shown by a dotted line in Fig. 7). The substrate 71 is mechanically transported at a substantially constant speed in the direction of the arrow 52. The substrate 71 is transported in more detail, as shown in FIGS. 8 (a) and 8 (b). This is carried out by mechanically moving the row-shaped transport claws 72 a and 72 b held by the section (or side) in the transport direction indicated by arrow 52. Here, the transport claws 7 2a and 7 2b is connected to chains 7 4a and 7 4b, respectively, as shown in Fig. 8 (a). Around the conveyor frames 75a and 75b extending from the inlet 51 to the outlet 53 (Fig. 7), respectively, in a plane parallel to the main surface of the substrate 71. When the substrate 71 conveyed in this way reaches above the foaming fluxer 54, it is foamed by the foaming device 55, rises inside the guide 56, and overflows outside the guide 56. The flux 73 is applied to the lower surface of the substrate 71 in contact with the lower surface of the substrate 71. The flux 73 overflowing from the guide 56 is generally a bubble having a diameter of about 1 to 2 mm. As shown in FIGS. 8 (a) and (b), the guide 56 has a width a longer than the width W of the substrate 71 and an opening (FIG. 8 (b)) having an appropriate length b. ), And the bubble-like flux 73 overflows from the opening, so that the lower surface of the substrate 71 Except for the area covered and held by the transport claws 72 a and 72 b. The flux 73 is applied to the area.
上記のようにしてフラックスが塗布された基板 7 1は、 その後、 搬送されなが ら遠赤外線ヒーターなどのプリヒーター 5 7により加熱される (図 7を参照のこ と) 。 この加熱ステップはプリヒートステップと呼ばれ、 上記のフラックス塗布 ステップにより基板 7 1に塗布されたフラックス 7 3のうち、 不要な溶剤成分を 気ィ匕させて除去し、 活性剤成分のみを基板 7 1に残留付着させるため、 ならびに、 基板 7 1へのはんだ材料の供給に先立って、 基板 7 1を予め加熱して、 溶融した はんだ材料が基板 7 1と接触する際に起こる基板 7 1に対する熱衝擊を緩和する ために行われるものである。 The substrate 71 to which the flux has been applied as described above is then heated by a pre-heater 57 such as a far-infrared heater while being transported (see FIG. 7). This heating step is called a pre-heating step. Of the flux 73 applied to the substrate 71 in the above flux application step, unnecessary solvent components are removed by degassing, and only the activator component is removed from the substrate 71. , And Prior to the supply of the solder material to the substrate 71, the substrate 71 is preheated to reduce the thermal shock to the substrate 71 caused when the molten solder material comes into contact with the substrate 71. It is.
続いて基板 7 1は、 予め加熱により溶融させたはんだ材料から成る 1次噴流 5 8および 2次噴流 5 9と基板 7 1の下面側にて接触して、 はんだ材料が基板に供 給される。 このとき、 はんだ材料は、 基板に形成されたスルーホールの内壁を構 成するランド部分と、 基板の上面側からスルーホールに揷入されているスルーホ ール挿入部品のリ一ドとの間の環状空間を、 基板の下面側から毛管現象によって 濡れ上がる。 その後、 基板 7 1に供給されて付着したはんだ材料は温度低下によ り固ィ匕し、 はんだ材料からなる接合部、 いわゆる 「フィレット」 を形成する。 こ のはんだ材料供給ステップ (またはフローはんだ付けステップ) において、 1次 噴流は、 スルーホールの壁面を覆って形成されたランド (および電子部品のリー ド) の表面をはんだ材料で十分に濡らしてスルーホールにはんだ材料を供給する ためのものであり、 2次噴流は、 はんだ材料がランド間にまたがって残留 '固化 してブリッジを形成したり (このブリツジは電子回路のショートを招くので望ま しくない) 、 角状の突起を形成したりしないように、 はんだレジストで覆われた 基板の下面の領域に付着した余分なはんだ材料を除去し、 フィレツトの形を整え るためのものである。 このようにして得られた基板 7 1は、 その後、 出口部 5 3 から取り出される。  Subsequently, the substrate 71 comes into contact with the primary jets 58 and the secondary jets 59 made of the solder material previously melted by heating on the lower surface side of the substrate 71, and the solder material is supplied to the substrate. . At this time, the solder material is applied between the land portion forming the inner wall of the through hole formed in the substrate and the lead of the through hole insertion component inserted into the through hole from the upper surface side of the substrate. The annular space gets wet from the bottom side of the substrate by capillary action. Thereafter, the solder material supplied to and adhered to the substrate 71 is solidified by a decrease in temperature to form a joint made of the solder material, a so-called “fillet”. In this solder material supply step (or flow soldering step), the primary jet flows through the surface of the land (and the lead of the electronic component) formed over the wall of the through hole by sufficiently wetting the surface with the solder material. This is for supplying solder material to the holes, and the secondary jet is not desirable because the solder material remains between the lands and solidifies to form a bridge (this bridge causes an electric circuit short circuit). In order to prevent the formation of horn-like protrusions, the excess solder material attached to the lower surface area of the substrate covered with the solder resist is removed, and the shape of the fillet is adjusted. The substrate 71 thus obtained is then taken out of the outlet 53.
もう 1つの例として、 スプレー式のフラックス塗布方法を用いる従来のフロー はんだ付けプロセスについて、 図面を参照しながら説明する。 図 9は、 スプレー 式のフラックス塗布方法を用いる従来のフローはんだ付け装置の概略断面模式図 である。 図 1 0 ( a ) は、 図 9の Y— Y線に沿った断面に位置する基板にフラッ タスが塗布される様子を説明する図であり、 図 1 0 ( b ) は、 図 1 0 ( a ) に示 す基板の部分上面図である。  As another example, a conventional flow soldering process using a spray-type flux application method will be described with reference to the drawings. FIG. 9 is a schematic cross-sectional view of a conventional flow soldering apparatus using a spray type flux application method. FIG. 10 (a) is a diagram for explaining how a flat plate is applied to a substrate located at a cross section along the line Y--Y of FIG. 9, and FIG. 10 (b) is a diagram illustrating that FIG. FIG. 3 is a partial top view of the substrate shown in a).
図 9に示すように、 スプレー式のフラックス塗布方法を用いる従来のフローは んだ付け装置 6 0は、 スプレー式フラックス塗布装置であるスプレーフラクサ一 6 0 aとフローはんだ付け装置本体 6 0 bと力 ら成る。 この装置 6 0においては、 フラックス塗布ステップがスプレーフラクサ一 6 0 aにて実施され、 その後、 プ リヒートステップおよびはんだ材料供給ステップが装置本体 6 0 bにて順次実施 される。 尚、 上記の発泡式のフラックス塗布方法を用いる従来のフローはんだ付 け装置および方法と同様のものについては、 以下において説明を省略するものと する。 As shown in FIG. 9, a conventional flow soldering apparatus 60 using a spray type flux application method is composed of a spray fluxer 60a, which is a spray type flux application apparatus, and a flow soldering apparatus main body 60b. And power. In this device 60, the flux application step is performed in a spray fluxer 60a, and then the flux application step is performed. The reheating step and the solder material supply step are sequentially performed in the apparatus main body 60b. The description of the same components as those of the conventional flow soldering apparatus and method using the foaming type flux application method will be omitted below.
この装置 6 0においては、 まず、 上記のような基板 7 1をスプレーフラクサ一 In this apparatus 60, first, the substrate 71 as described above is spray-fluxed.
6 0 aに入口部 6 1から供給する。 基板 7 1は、 スプレーフラクサ一 6 0 aの内 部を (図 9に点線にて示す搬送ラインに沿って) 、 矢印 6 2の方向に実質的に一 定速度で、 上記と同様にして搬送爪 7 2 aおよび 7 2 b (図 1 0 ( a ) およびSupplied to 60a from inlet 61. Substrate 71 moves the interior of spray fluxer 60a (along the transport line shown by the dotted line in FIG. 9) at a substantially constant speed in the direction of arrow 62 in the same manner as above. Transport claws 7 2a and 7 2b (Fig. 10 (a) and
( b ) を参照のこと) により機械的に搬送される。 このようにして搬送される基 板 7 1がノズル 6 3の上方に達すると、 ノズノレ 6 3が基板 7 1の搬送方向 (即ち、 矢印 6 2の方向) に対して垂直な面内で (即ち、 図 9の紙面に垂直な方向であり、 図 1 0 ( a ) および (b ) 中の矢印 7 6の方向に) 往復運動しながらフラックス(see (b)). When the substrate 71 conveyed in this way reaches above the nozzle 63, the nozzles 63 are moved in a plane perpendicular to the direction of conveyance of the substrate 71 (ie, the direction of the arrow 62) (ie, , The direction perpendicular to the plane of FIG. 9, and the flux while reciprocating (in the direction of arrows 76 in FIGS. 10 (a) and (b)).
7 3を空気と共に噴射することによって、 フラックス 7 3が基板 7 1の下面に塗 布される。 ノズル 6 3は一般的に円形の噴射口を有し、 図 1 0 ( a ) に示すよう に、 ノズル 6 3から噴射されるフラックス 7 3は微視的には液滴であり、 全体と しては、 ノズル 6 3の噴射口を上底面 (または頂点) とし、 基板 7 1の下面にお ける直径 m (図 1 0 ( b ) を参照のこと) の円形領域を下底面とする円錐台 (ま たは略円錐) 形状の輪郭を有する。 基板 7 1が矢印 6 2で示す方向に搬送され、 同時に、 ノズル 6 3力 基板 7 1の幅 Wに対応する距離に亘つて基板 7 1の搬送 速度に応じた速度で矢印 7 6で示す方向に往復運動する。 これらの結果、 図 1 0 ( b ) に示すように、 基板 7 1に同時に付着するフラックス 7 3より成る円形領 域が、 基板 7 1の搬送方向に対して斜めに基板 7 1の下面を横切って、 基板 7 1 の下面全体にフラックス 7 3が塗布される。 また、 フラックス 7 3に含まれる溶 剤が噴霧によって揮発し易いために、 安全性の観点から、 スプレーフラクサ一 6 0 aにおいては、 基板 7 1が通過する搬送ラインの上方に排気ダクト (図示せ ず) が備えられて、 雰囲気ガスと共に揮発した溶剤を吸引して排出している。 上記のようにしてフラックスが塗布された基板 7 1は、 その後、 図 9に示す位 置 6 4にてスプレーフラクサ一 6 0 aから装置本体 6 0 bに機械的に移される。 基板 7 1は、 装置本体 6 0 bにおいても上記と同様にして、 装置本体 6 0 bの内 部を矢印 6 5の方向に (図 9に点線にて示す搬送ラインに沿って) 実質的に一定 速度で機械的に搬送されながら、 上記の発泡式のフラックス塗布方法を用いるフ ローはんだ付けプロセスの例と同様にしてプリヒーター 6 6によりカロ熱され、 次 いで、 はんだ噴流 6 7および 6 8と接触してはんだ材料が基板 7 1の下面から供 給され、 その後、 出口部 6 9から取り出される。 By injecting 73 together with air, flux 73 is applied to the lower surface of substrate 71. The nozzle 63 generally has a circular injection port, and as shown in FIG. 10 (a), the flux 73 injected from the nozzle 63 is microscopically a droplet, and as a whole, In this case, the injection port of the nozzle 63 is the upper bottom (or the top), and the circular area of the diameter m (see FIG. 10 (b)) on the lower surface of the substrate 71 is the lower bottom. (Or substantially conical). The substrate 71 is transported in the direction indicated by the arrow 62, and at the same time, the nozzle 63 force is applied at a speed corresponding to the transport speed of the substrate 71 over a distance corresponding to the width W of the substrate 71, in the direction indicated by the arrow 176. Reciprocate. As a result, as shown in FIG. 10 (b), the circular area composed of the flux 73 simultaneously adhering to the substrate 71 crosses the lower surface of the substrate 71 obliquely to the transport direction of the substrate 71. Then, the flux 73 is applied to the entire lower surface of the substrate 71. Further, since the solvent contained in the flux 73 is easily volatilized by spraying, from the viewpoint of safety, in the spray fluxer 60a, an exhaust duct (see FIG. (Not shown) to suck and discharge the solvent that evaporates together with the atmospheric gas. The substrate 71 to which the flux has been applied as described above is then mechanically transferred from the spray fluxer 60a to the apparatus main body 60b at a position 64 shown in FIG. The substrate 71 is also mounted on the main body 60b of the main body 60b in the same manner as described above. Flow in the direction of arrow 65 (along the transport line shown by the dotted line in FIG. 9) while mechanically transporting at a substantially constant speed while using the above-mentioned foaming flux application method. In the same manner as in the above example, the calorie heat is generated by the pre-heater 66, and then the solder material is supplied from the lower surface of the substrate 71 in contact with the solder jets 67 and 68, and then is taken out from the outlet 69. It is.
以上のようにして、 発泡式またはスプレー式のフラックス塗布方法を用いるフ ローはんだ付けプロセスによつて電子部品が基板にはんだ付けされた電子回路基 板が作製される。  As described above, an electronic circuit board in which electronic components are soldered to a substrate by a flow soldering process using a foam type or spray type flux application method is manufactured.
しかし、 上記のような従来のフローはんだ付けプロセスのフラックス塗布ステ ップにおいては、 発泡式おょぴスプレー式のいずれのフラックス塗布方法によつ ても、 列状の搬送爪間にある基板の縁部にまでフラックスが塗布されることにな り、 フローはんだ付けプロセスの後工程において工程不良を発生させる原因の一 つとなるという問題がある。  However, in the flux application step of the conventional flow soldering process as described above, in any of the flux application methods of the foaming type and the spray type, the substrate between the row-shaped transport claws is formed. There is a problem that the flux is applied to the edge, which is one of the causes of a process failure in a post-process of the flow soldering process.
これは、 従来のフラックス塗布方法では、 基板の下面のうち、 搬送爪 7 2 aお よび 7 2 bで覆われた領域を除く全ての領域に、 より詳細には基板の片側の端部 (または側部) を隔間して挟持する列状の搬送爪 7 2 aの隙間およびもう片側の 端部を隔間して挟持する列状の搬送爪 7 2 bの隙間に位置する縁部にまでブラッ タスが塗布されることに起因する (図 8 ( a ) および (b ) ならびに図 1 0 ( a ) および (b ) を参照のこと) 。 フローはんだ付けプロセスの後工程、 例え ば検査工程においては、 通常はベルトおょぴチェーンなどを搬送部材に用いて、 基板の下面の搬送方向に沿った 1対の縁部 (換言すれば、 搬送方向に向かって基 板の下面の左右の縁部) を下方から支持しながら搬送している。 フローはんだ付 けプロセスのフラックス塗布ステップにより基板の縁部 (より詳細には搬送爪間 の隙間に位置する縁部) にまでフラックスが塗布されると、 フラックスの溶剤成 分がやがて気化し、 溶剤の気化によりフラックスの活性成分であるロジン (樹脂 成分) などが基板に粉末状に残留する。 例えばロジンは、 単独では、 常温および 常圧下において粘着性を有する固体である。 よって、 その残留物が上記のような 後工程にて基板から剥落して後工程の搬送部材に異物として付着し得る。 このよ うな搬送部材への異物の付着により、 搬送部材の故障などの工程不良の発生を招 き得るという問題がある。 発明の開示 In the conventional flux coating method, this is applied to all areas of the lower surface of the substrate except for the area covered with the carrier claws 72a and 72b, more specifically, to one end (or To the edge located in the gap between the row-shaped transport claws 72 a that sandwich and hold the other end of the row. This is due to the application of blood (see FIGS. 8 (a) and (b) and FIGS. 10 (a) and (b)). In the post-process of the flow soldering process, for example, in the inspection process, a belt or a chain is usually used as a transport member, and a pair of edges along the transport direction on the lower surface of the substrate (in other words, transport The left and right edges of the lower surface of the substrate are transported while supporting from below. When the flux is applied to the edge of the board (more specifically, the edge located in the gap between the transport claws) in the flux application step of the flow soldering process, the solvent component of the flux eventually vaporizes and the solvent is evaporated. The active component of the flux, such as rosin (resin component), remains in powder form on the substrate due to the evaporation of the gas. For example, rosin alone is a sticky solid at normal temperature and pressure. Therefore, the residue may be peeled off from the substrate in the above-described post-process and adhere to the conveying member in the post-process as a foreign substance. Such adhesion of foreign matter to the transport member may cause a process defect such as a failure of the transport member. There is a problem that can be. Disclosure of the invention
本発明は上記の従来の課題を解決すベくなされたものであり、 本発明の目的は、 はんだ材料を用いて電子部品を基板に実装するためのフローはんだ付けプロセス におけるフラックス塗布方法であって、 基板に塗布されたフラックスの残留物が、 フローはんだ付けプロセスの後工程にて搬送部材に異物として付着することに起 因する工程不良の発生を低減し得る方法、 該フラックス塗布方法を利用するフロ 一はんだ付け方法およびそれら方法を実施するための装置ならびに該フローはん だ付け方法により作製される電子回路基板を提供することにある。  The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a flux coating method in a flow soldering process for mounting an electronic component on a substrate using a solder material. A method capable of reducing the occurrence of process failures caused by the residue of the flux applied to the substrate adhering to the conveying member as a foreign substance in the post-process of the flow soldering process, and using the flux application method. It is an object of the present invention to provide a flow soldering method, an apparatus for performing the method, and an electronic circuit board manufactured by the flow soldering method.
本発明の 1つの要旨においては、 はんだ材料を用いて電子部品を基板に実装す るフローはんだ付けプロセスに用いる、 フラックス供給手段 (またはユニットも しくはデバイス、 例えばフラクサ一) によりフラックスを基板の下方から供給し て基板の下面に塗布するフラックス塗布方法であって、 基板を搬送しながら、 基 板がフラックス供給手段の上方に位置するときに、 基板の搬送方向に沿った基板 の下面の 1対の縁部の直下にそれぞれ位置する 1対のカバーで各縁部を覆った状 態で、 フラックス供給手段から基板の下面にフラックスを供給し、 これにより、 1対の縁部を除く基板の下面にフラックスを塗布することを特徴とする方法が提 供される。  In one aspect of the present invention, the flux is supplied to the lower part of the substrate by a flux supply means (or a unit or a device, for example, a fluxer) used in a flow soldering process of mounting an electronic component on a substrate using a solder material. Is a method of applying the flux supplied from the substrate to the lower surface of the substrate, wherein when the substrate is transported while the substrate is positioned above the flux supply means, a pair of the lower surface of the substrate along the transport direction of the substrate. Flux is supplied from the flux supply means to the lower surface of the substrate while the respective edges are covered with a pair of covers located immediately below the lower edge of the substrate, whereby the lower surface of the substrate excluding the pair of edges is removed. The method is characterized by applying a flux to the surface.
尚、 本明細書において基板の 「縁部」 とは、 基板の主面上にある周縁領域を言 うものとし、 「基板の搬送方向に沿った基板の下面の 1対の緣部」 とは、 基板の 下面の縁部のうち、 基板の搬送方向に向かって基板の左右に位置する部分を言う ものとする (以下、 これを単に 「1対の縁部」 とも言うものとする) 。 また、 基 板の下面の 1対の縁部の 「直下」 とは、 カバーが上記 1対の縁部を覆って、 該縁 部へのフラックスの塗布を実質的に防ぐように機能することが可能な程度の位置 であればよく、 カバーが基板の下面と接触していても、 カバーと基板の下面との 間に隙間、 好ましくはわずかな隙間が設けられていてもよい。  In this specification, the “edge” of the substrate refers to a peripheral region on the main surface of the substrate, and “a pair of 緣 portions on the lower surface of the substrate along the substrate transfer direction” Here, among the edges of the lower surface of the substrate, the portions located on the left and right sides of the substrate in the transport direction of the substrate are referred to (hereinafter, this is also simply referred to as “a pair of edges”). The term “directly below” a pair of edges on the lower surface of the substrate means that the cover covers the pair of edges and functions to substantially prevent the application of flux to the edges. Any position may be used as long as possible, and the cover may be in contact with the lower surface of the substrate, or a gap, preferably a slight gap, may be provided between the cover and the lower surface of the substrate.
本発明の方法によれば、 基板の下面のうち、 基板の搬送方向に沿った 1対の縁 部を除く基板の下面にフラックスを塗布し、 1対のカバーで覆われた 1対の縁部 にはフラックスが塗布されず、 よって、 1対の縁部にはフラックスの活性成分According to the method of the present invention, a flux is applied to the lower surface of the substrate excluding a pair of edges along the substrate transport direction, and a pair of edges covered with a pair of covers is provided. No flux is applied to it, so the active ingredient of the flux is on one pair of edges
(ロジンなど) が残留しない。 従って、 フローはんだ付けプロセスの後工程にお いて、 基板が、 該 1対の縁部の領域内においてベルトなどの搬送部材と機械的に 接触する際、 該 1対の縁部にはフラックスの残留物が付着していないので、 フラ ッタスの残留物がこのような搬送部材に付着することが回避でき、 このことに起 因する工程不良の発生を低減することができる。 (Such as rosin) does not remain. Therefore, in a later step of the flow soldering process, when the substrate makes mechanical contact with a conveying member such as a belt in the area of the pair of edges, residual flux remains on the pair of edges. Since no object is attached, it is possible to avoid the residue of the frustum from adhering to such a conveying member, and it is possible to reduce the occurrence of process defects caused by this.
好ましい態様においては、 上記 1対のカバーのそれぞれが、 2つの辺によって 規定される L字形の断面形状を有するアングルプレート状の長尺部材であり、 基 板がフラックス供給手段の上方に位置するときに、 L字断面の一方の辺が、 その 端部にて、 1対の縁部のそれぞれと 1対の縁部を除く基板の下面との間の境界を 規定するように、 基板の下面の各縁部と当接し、 L字断面の他方の辺が該縁部の 下方に配置される。 このように、 各カバーが、 各縁部と 1対の縁部を除く基板の 下面との間の境界を規定するように縁部と当接し (即ち、 1対のカバーが基板の 下面と接触し、 基板の下面のうち、 1対のカバーで覆われている領域が 「1対の 縁部」 となり、 カバーで覆われていない領域が 「1対の縁部を除く基板の下面」 となり、 「1対の緣部」 のそれぞれと 「1対の縁部を除く基板の下面」 との間の 境界が規定される) 、 フラックスが供給される領域から 1対の縁部を隔離するこ とが好ましい。 このように、 カバーを基板の下面に当接させることにより、 フラ ッタスが 1対の緣部に確実に塗布されないようにすることができ、 フラッタスが 塗布される領域と、 フラックスが塗布されない領域とを明瞭に区別することがで きる。 しかし、 本発明はこれに限定されず、 1対の縁部に実質的にフラックスが 塗布されない限り、 1対のカバーと基板の下面との間に隙間を設けてもよレ、。 ま た、 カバーの断面形状は、 上記のような L字形に限定されず、 例えばいずれか一 方の辺の一端が他方の辺の端部より内側にて接合した T字形や、 曲線状の輪郭を 有するものなど、 任意の適切な形状を有し得る。 また、 L字形の断面形状であつ ても、 2つの辺のなす角度は 9 0度である必要はなく、 その他の適切な角度であ つてよい。  In a preferred embodiment, each of the pair of covers is an angle plate-shaped long member having an L-shaped cross-sectional shape defined by two sides, and the substrate is positioned above the flux supply means. In addition, one side of the L-shaped cross section defines the boundary between each pair of edges and the bottom surface of the board excluding the pair of edges at its ends, The other side of the L-shaped cross section abuts each edge, and is disposed below the edge. Thus, each cover abuts the edge so as to define a boundary between each edge and the bottom surface of the board excluding the pair of edges (ie, one pair of covers contacts the bottom surface of the board). On the lower surface of the board, the area covered by a pair of covers is `` a pair of edges '', and the area not covered by a cover is `` the lower surface of the board excluding a pair of edges ''. A boundary is defined between each of the pair of 緣 portions and the lower surface of the substrate excluding the pair of edges), and to isolate the pair of edges from the area where the flux is supplied Is preferred. In this way, by contacting the cover with the lower surface of the substrate, it is possible to ensure that the flats are not applied to a pair of the 緣 parts, and that the area where the flatus is applied and the area where the flux is not applied are provided. Can be clearly distinguished. However, the present invention is not limited to this, and a gap may be provided between the pair of covers and the lower surface of the substrate as long as the flux is not substantially applied to the pair of edges. Also, the cross-sectional shape of the cover is not limited to the above-described L-shape, but may be, for example, a T-shape in which one end of one side is joined inside the end of the other side, or a curved contour. May have any suitable shape, such as those having Further, even in the case of an L-shaped cross-sectional shape, the angle between the two sides does not need to be 90 degrees, and may be any other appropriate angle.
更に好ましい態様においては、 上記 1対のカバーのそれぞれが、 上記一方の辺 の端部と遷移的につながる傾斜部を、 基板と最初に接触する部分に有し、 基板が フラックス供給手段の上方に向かって搬送されると、 基板の下面の前方縁部が傾 斜部と接触し、 基板がフラックス供給手段の上方に向かって更に搬送されるにつ れて、 基板の下面が «斜部上をそれに沿って滑りながらカバーを押し下げ、 これ により、 基板がフラックス供給手段の上方に位置するときに該一方の辺がその端 部にて縁部と当接する。 このような傾斜部 (またはテーパー部) をカバーに設け ることによって、 フラックス供給手段の上方に搬送されて来るカバー自体の動き を利用して、 カバーがその一方の辺の端部にて基板の下面に当接するように、 力 バーを動かすことができる。 このカバーには、 少なくともその一部分が弹性を有 する部材を用い得、 例えば、 板パネなどを利用したものを用いることができる。 しかしながら、 本発明はこれに限定されず、 カバーを他の機械的手段 (またはデ バイス) などによって移動させることも可能であり、 また、 移動させずに固定す るようにしてもよい。 In a further preferred aspect, each of the pair of covers has an inclined portion that transitionally connects to an end of the one side at a portion that first contacts the substrate, and the substrate is When the substrate is transported upward from the flux supply means, the front edge of the lower surface of the substrate comes into contact with the inclined portion, and as the substrate is further transported upward from the flux supply means, the lower surface of the substrate is exposed. Pushes down the cover while sliding along the oblique portion, so that when the substrate is located above the flux supply means, the one side abuts the edge at its end. By providing such an inclined portion (or a tapered portion) on the cover, the cover can be moved at one end by using the movement of the cover itself conveyed above the flux supply means. The force bar can be moved to abut the lower surface. For this cover, a member having at least a part of which has elasticity can be used, and for example, a cover utilizing a panel panel can be used. However, the present invention is not limited to this, and the cover may be moved by other mechanical means (or a device), or may be fixed without being moved.
本発明のもう 1つの要旨においては、 はんだ材料を用いて電子部品を基板に実 装するフローはんだ付けプロセスに用いる、 フラックス供給手段によりフラック スを基板の下方から供給して基板の下面に塗布するフラックス塗布装置であつ て:基板を搬送する搬送手段 (またはデバイス) と ;フラックスを基板の下方か ら供給するフラックス供給手段 (またはユニットもしくはデバイス) と ;基板が フラックス供給手段の上方に位置するときに、 基板の搬送方向に沿った基板の下 面の 1対の縁部の直下にそれぞれ位置し、 各縁部を覆う 1対のカバーとを含み、 1対の縁部を除く基板の下面にフラックスを塗布することを特徴とする装置が提 供される。  According to another aspect of the present invention, a flux is supplied from below the substrate by a flux supply unit and applied to a lower surface of the substrate, which is used in a flow soldering process of mounting an electronic component on the substrate using a solder material. A flux applying device: a transporting means (or device) for transporting the substrate; a flux supplying means (or unit or device) for supplying the flux from below the substrate; and when the substrate is positioned above the flux supplying means. A pair of covers, which are located directly below a pair of edges on the lower surface of the substrate along the direction of transport of the substrate and cover each edge, respectively. An apparatus for applying a flux is provided.
好ましい態様においては、 上記 1対のカバーのそれぞれが、 2つの辺によって 規定される L字形の断面形状を有するアングルプレート状の長尺部材であり、 基 板がフラックス供給手段の上方に位置するときに、 各 L字断面の一方の辺が、 そ の端部 (または端面) にて、 1対の縁部のそれぞれと 1対の縁部を除く基板の下 面との間の境界を規定するように、 基板の下面の各縁部と当接し、 L字断面の他 方の辺が該縁部の下方に配置される。  In a preferred embodiment, each of the pair of covers is an angle plate-shaped long member having an L-shaped cross-sectional shape defined by two sides, and the substrate is positioned above the flux supply means. One side of each L-shaped cross-section defines, at its end (or end face), the boundary between each of the pair of edges and the lower surface of the substrate excluding the pair of edges As described above, the other side of the L-shaped cross section is disposed below the edge in contact with each edge of the lower surface of the substrate.
更に好ましい態様においては、 上記 1対のカバーのそれぞれが、 上記一方の辺 の端部と遷移的につながる傾斜部を、 基板と最初に接触する部分に有し、 基板が フラックス供給手段の上方にないときは、 カバーに外力が加わらずに、 該一方の 辺の端部が、 基板の下面が通過するべき面に対して上方に位置し、 力つ、 傾斜部 ι フラックス供給手段の上方に向かって搬送される基板と最初に接触するよう に、 基板の下面が通過するべき該面と交わって位置し、 基板がフラックス供給手 段の上方にあるときは、 基板の下面が、 これと当接する該一方の辺に押圧力を加 えることによって、 カバーが一方の辺の端部にて縁部と当接しながら押し下げら れる。 In a further preferred aspect, each of the pair of covers has an inclined portion that transitionally connects to an end of the one side at a portion that first contacts the substrate, and the substrate is When it is not above the flux supply means, no external force is applied to the cover, and the end of the one side is located above the surface through which the lower surface of the substrate should pass, and the force is applied to the inclined portion. When the lower surface of the substrate is positioned intersecting with the surface to be passed so as to make initial contact with the substrate conveyed above the supply means, and the substrate is above the flux supply means, the lower surface of the substrate However, by applying a pressing force to the one side in contact with the cover, the cover is pushed down while being in contact with the edge at the end of the one side.
このような本発明のフラックス塗布装置は、 上記の本発明のフラックス塗布方 法の実施に好適に使用され、 本発明のフラックス塗布方法と同様の効果を得るこ とができる。  Such a flux coating apparatus of the present invention is suitably used for performing the above-described flux coating method of the present invention, and can obtain the same effects as the flux coating method of the present invention.
本発明のフラックス塗布方法およびフラックス塗布装置の好ましい態様におい ては、 上記 1対の縁部のぞれぞれは、 2〜 1 5 mmの幅、' より好ましくは約 5 m mの幅をそれぞれ有する。 このような幅を有する縁部には、 通常は電子部品が配 置されておらず、 フラックスを塗布する必要がない。 また、 このような,禄部の幅 は、 一般的に、 フローはんだ付けプロセスの後工程において搬送部材と機械的に 接触し得る幅 (基板のエッジからの幅) よりも大きいので、 後工程において搬送 部材にフラックスの残留物が付着することを回避できる。  In a preferred embodiment of the flux coating method and the flux coating apparatus of the present invention, each of the pair of edges has a width of 2 to 15 mm, and more preferably a width of about 5 mm. . On the edge having such a width, there is usually no electronic component arranged, and there is no need to apply a flux. In addition, since the width of such a part is generally larger than the width (width from the edge of the substrate) that can mechanically contact the conveying member in the post-process of the flow soldering process, Adhesion of flux residue to the conveying member can be avoided.
本発明のフラックス塗布方法および装置におけるフラックス供給手段は、 泡状 のフラックスを基板と接触させる発泡式のフラックス供給手段 (例えば発泡フラ クサ一) ならびに霧状のフラックスを基板に吹き付けるスプレー式のフラックス 供給手段 (例えばスプレーフラクサ一) のいずれであってもよく、 あるいは、 発 泡式およびスプレー式のフラックス塗布方法を組み合わせて用 、てもよい。 例え ば、 フラックスを基板にスプレー式で塗布し、 その後に発泡式で塗布しても、 そ の逆であってもよい。  The flux supplying means in the flux applying method and apparatus of the present invention includes a foaming type flux supplying means (for example, a foaming fluxer) for bringing a foamy flux into contact with a substrate and a spraying type flux supplying a mist-like flux to the substrate. Means (for example, spray fluxer) may be used, or a combination of a foaming type and a spray type flux application method may be used. For example, the flux may be applied to the substrate by spraying and then applied by foaming, or vice versa.
本発明の別の要旨によれば、 上記の本発明のフラックス塗布方法およびフラッ クス塗布装置をそれぞれ含むフローはんだ付け方法 (またはプロセス) およびフ 口一はんだ付け装置が提供され、 これらも上記と同様の効果を奏し得る。  According to another aspect of the present invention, there is provided a flow soldering method (or process) including a flux applying method and a flux applying apparatus according to the present invention, and a tip-to-solder apparatus, respectively. The effect can be obtained.
また、 本発明の更に別の要旨によれば、 はんだ材料を用いるフローはんだ付け プロセスによって電子部品が基板に実装された電子回路基板であって、 基板の搬 送方向に沿った基板の下面の 1対の縁部、 好ましくは 2 ~ 15 mmの幅をそれぞ れ有する 1対の縁部を除く基板の下面にフラックスが塗布されている電子回路基 板が提供される。 According to still another aspect of the present invention, there is provided an electronic circuit board having electronic components mounted on the board by a flow soldering process using a solder material, wherein the board is carried. An electronic circuit board having a flux applied to the lower surface of the substrate except for a pair of edges on the lower surface of the substrate along the feeding direction, preferably a pair of edges each having a width of 2 to 15 mm. Provided.
尚、 本発明において、 「フラックス」 とは、 はんだ材料が供給されるべき金属 (例えばランド) の表面から酸化物を除去して、 該表面におけるはんだ材料の濡 れ性を向上させる目的で塗布される材料を言い、 酸ィ匕物を除去するための活性成 分と、 活性成分の取扱いを容易にするための溶剤とを含む。 活性成分は、 例えば 約 3〜 20重量0 /0、 溶剤は、 約 80〜 97重量%であり得る。 このような活性成 分には、 ロジンおよび有機酸 (例えばジフエニルダァ-ジン酸臭化水素酸塩) な どが含まれ、 溶斉 ljには、 イソプロピルアルコールなどが含まれる。 また、 フラッ タスは、 これら活性成分およぴ溶剤に加えて、 例えばつや消し剤などの微量の他 の成分を含み得る。 例えば、 フラックスとして一般的に市販されているものを使 用され得る。 In the present invention, the term “flux” is applied for the purpose of removing oxides from the surface of a metal (for example, a land) to which a solder material is to be supplied and improving the wettability of the solder material on the surface. And contains a solvent for removing the acid component and a solvent for facilitating the handling of the active component. Active ingredient, for example about 3 to 20 weight 0/0, the solvent may be about 80 to 97 wt%. Such active components include rosin and organic acids (for example, diphenyl diadic acid hydrobromide), and the ionic lj includes isopropyl alcohol. The flatus may also contain, in addition to these active ingredients and solvents, trace amounts of other ingredients such as, for example, matting agents. For example, a commercially available flux can be used.
本発明に利用可能なはんだ材料には、 例えば、 S n— P b系材料、 Sn-Cu 系材料、 Sn_Ag— Cu系材料、 Sn— Ag系材料、 Sn— Ag— B i系材料、 および S n— A g— B i— C u系材料などのはんだ材料が挙げられる。 環境への 影響を配慮すれば、 これらのうち Sn— Pb系材料を除く、 S n— C u系材料、 Sn—Ag— Cu系材料、 311— §系材料、 S n— A g— B i系材料、 および Sn-Ag-B i -Cu系材料などの鉛フリ一のはんだ材料が好ましい。  Solder materials that can be used in the present invention include, for example, Sn-Pb-based materials, Sn-Cu-based materials, Sn_Ag-Cu-based materials, Sn-Ag-based materials, Sn-Ag-Bi-based materials, and S-based materials. n-Ag-Bi-Cu material and other solder materials. Considering the impact on the environment, Sn-Pb-based materials, Sn-Cu-based materials, Sn-Ag-Cu-based materials, 311-§-based materials, Sn-Ag-Bi Pb-free solder materials such as Sn-Ag-Bi-Cu-based materials are preferred.
本発明に利用可能な基板には、 例えば、 紙フエノール系材料、 ガラスエポキシ 系材料、 ポリイミドフィルム系材料、 およびセラミック系材料などからなる基板 が用いられ得る。 また、 基板に接合される電子部品は、 揷入部品 (例えば半導体、 コンデンサ、 抵抗、 コイル、 コネクタなど) および Zまたは基板の裏面に配置さ れる表面実装部品 (例えば半導体、 コンデンサ、 抵抗、 コィノレなど) であってよ い。 しかし、 これらは単なる例示にすぎず、 本発明はこれに限定されるものでは ない。 本発明は以下の態様 1~16を含むものとする。  As the substrate that can be used in the present invention, for example, a substrate made of a paper phenol-based material, a glass epoxy-based material, a polyimide film-based material, a ceramic-based material, or the like can be used. Electronic components bonded to the board include imported components (eg, semiconductors, capacitors, resistors, coils, connectors, etc.) and surface-mounted components (eg, semiconductors, capacitors, resistors, coils, etc.) placed on the back of the Z or board. ). However, these are merely examples, and the present invention is not limited to these. The present invention includes the following embodiments 1 to 16.
(態様 1 ) はんだ材料を用いて電子部品を基板に実装するフローはんだ付け プロセスに用いる、 フラックス供給手段によりフラックスを基板の下方から供給 して基板の下面に塗布するフラッタス塗布方法であって、 基板を搬送しながら、 基板がフラックス供給手段の上方に位置するときに、 基板の搬送方向に沿った基 板の下面の 1対の縁部の直下にそれぞれ位置する 1対のカバーで各緣部を覆った 状態で、 フラックス供給手段から基板の下面にフラックスを供給し、 これにより、 1対の縁部を除く基板の下面にフラックスを塗布することを特徴とする方法。 (Aspect 1) Flow soldering for mounting electronic components on a board using a solder material This is a method of applying a flux from below the substrate by a flux supply unit and applying the flux to the lower surface of the substrate, which is used in the process, wherein the substrate is transported while the substrate is positioned above the flux supply unit. Flux is supplied from the flux supply means to the lower surface of the substrate while a pair of covers respectively located directly below a pair of edges on the lower surface of the substrate along the transport direction of the substrate cover the lower surface of the substrate. Applying a flux to the lower surface of the substrate excluding a pair of edges.
(態様 2 ) 1対の縁部のそれぞれが、 2〜 1 5 mmの幅を有する、 態様 1に 記載の方法。  (Aspect 2) The method according to Aspect 1, wherein each of the pair of edges has a width of 2 to 15 mm.
(態様 3 ) 1対のカバーのそれぞれが、 2つの辺によって規定される L字形 の断面形状を有するアングルプレート状の長尺部材であり、 基板がフラックス供 給手段の上方に位置するときに、 L字断面の一方の辺が、 その端部にて、 縁部 (Aspect 3) Each of the pair of covers is an angle plate-shaped long member having an L-shaped cross-sectional shape defined by two sides, and when the substrate is located above the flux supply means, One side of the L-shaped section is at its end, the edge
(より詳細には 1対の縁部のそれぞれ) と 1対の縁部を除く基板の下面との間の 境界を規定するように、 基板の下面の各縁部と当接し、 L字断面の他方の辺が該 縁部の下方に配置される、 態様 1または 2に記載の方法。 Abutting against each edge of the lower surface of the board to define a boundary between each of the pair of edges (more specifically, each of the pair of edges) and the lower surface of the board excluding the pair of edges; 3. The method according to embodiment 1 or 2, wherein the other side is located below the edge.
(態様 4 ) 1対のカバーのそれぞれが、 前記一方の辺の端部と遷移的につな がる傾斜部を、 基板と最初に接触する部分に有し、 基板がフラックス供給手段の 上方に向かって搬送されると、 基板の下面の前方縁部が傾斜部と接触し、 基板が フラックス供給手段の上方に向かって更に搬送されるにつれて、 基板の下面が傾 斜部に沿って滑りながらカバーを押し下げ、 これにより、 基板がフラックス供給 手段の上方に位置するときに該一方の辺がその端部にて縁部と当接する、 態様 3 に記載の方法。  (Aspect 4) Each of the pair of covers has an inclined portion that transitionally connects to the end of the one side at a portion that first comes in contact with the substrate, and the substrate is located above the flux supply means. When the substrate is transported toward the upper surface, the front edge of the lower surface of the substrate comes into contact with the inclined portion, and as the substrate is further transported above the flux supply means, the lower surface of the substrate slides along the inclined portion to cover the substrate. 4. The method according to claim 3, wherein said one side abuts the edge at its end when the substrate is positioned above the flux supply means.
(態様 5 ) フラックス供給手段が、 泡状のフラックスを基板と接触させる発 泡式のフラックス供給手段である、 態様 1〜 4のいずれかに記載の方法。  (Aspect 5) The method according to any one of aspects 1 to 4, wherein the flux supplying means is a foaming type flux supplying means for bringing a foamy flux into contact with the substrate.
(態様 6 ) フラックス供給手段が、 霧状のフラックスを基板に吹き付けるス プレー式のフラックス供給手段である、 態様 1〜 4のいずれかに記載の方法。  (Aspect 6) The method according to any one of aspects 1 to 4, wherein the flux supply means is a spray type flux supply means for spraying a mist-like flux onto the substrate.
(態様 7 ) はんだ材料を用いて電子部品を基板に実装するフローはんだ付け プロセスに用いる、 フラックス供給手段によりフラックスを基板の下方から供給 して基板の下面に塗布するフラックス塗布装置であって:  (Embodiment 7) A flux application device for supplying a flux from below a substrate by a flux supply means and applying the flux to a lower surface of the substrate, which is used in a flow soldering process of mounting an electronic component on a substrate using a solder material:
基板を搬送する搬送手段と、 フラックスを基板の下方から供給するフラックス供給手段と、 基板がフラックス供給手段の上方に位置するときに、 基板の搬送方向に沿った 基板の下面の 1対の縁部の直下にそれぞれ位置し、 各縁部を覆う 1対のカバーと を含み、 1対の縁部を除く基板の下面にフラックスを塗布することを特徴とする Transport means for transporting the substrate, A flux supply means for supplying a flux from below the substrate, and a flux supply means for positioning the substrate directly above a pair of edges on a lower surface of the substrate along the substrate transport direction when the substrate is located above the flux supply means; And a pair of covers covering the edges, wherein the flux is applied to the lower surface of the substrate excluding the pair of edges.
(態様 8 ) 1対の縁部のそれぞれが、 2〜 1 5 mmの幅を有する、 態様 7 \Z (Aspect 8) Aspect 7 \ Z, wherein each of the pair of edges has a width of 2 to 15 mm.
(態様 9 ) 1対のカバーのそれぞれが、 2つの辺によって規定される L字形 の断面形状を有するアングルプレート状の長尺部材であり、 基板がフラックス供 給手段の上方に位置するときに、 L字断面の一方の辺が、 その端部にて、 縁部(Aspect 9) Each of the pair of covers is an angle plate-shaped long member having an L-shaped cross-sectional shape defined by two sides, and when the substrate is located above the flux supply means, One side of the L-shaped section is at its end, the edge
(より詳細には 1対の縁部のそれぞれ) と 1対の縁部を除く基板の下面との間の 境界を規定するように、 基板の下面の各縁部と当接し、 L字断面の他方の辺が該 縁部の下方に配置される、 態様 7または 8に記載の装置。 Abutting against each edge of the lower surface of the board to define a boundary between each of the pair of edges (more specifically, each of the pair of edges) and the lower surface of the board excluding the pair of edges; Apparatus according to embodiment 7 or 8, wherein the other side is located below the edge.
(態様 1 0 ) 1対のカバーのそれぞれが、 前記一方の辺の端部と遷移的につ ながる傾斜部を、 基板と最初に接触する部分に有し、 基板がフラックス供給手段 の上方にないときは、 カバーに外力が加わらずに、 該一方の辺の端部が、 基板の 下面が通過するべき面に対して上方に位置し、 力つ、 傾斜部が、 フラックス供給 手段の上方に向かって搬送される基板と最初に接触するように、 基板の下面が通 過するべき該面と交わって位置し、 基板がフラックス供給手段の上方にあるとき は、 基板の下面が、 これと当接する該一方の辺に押圧力を加えることによって、 カバーが、 一方の辺の端部にて縁部と当接しながら押し下げられる、 態様 9に記  (Aspect 10) Each of the pair of covers has an inclined portion that is transitionally connected to the end of the one side at a portion that first comes in contact with the substrate, and the substrate is located above the flux supply means. When no external force is applied to the cover, the end of the one side is located above the surface through which the lower surface of the substrate should pass, and the force and the inclined portion are located above the flux supply means. When the lower surface of the substrate is positioned intersecting with the surface to be passed so that the substrate comes into contact with the substrate first, and the substrate is above the flux supply means, the lower surface of the substrate is Aspect 9 is described, wherein the cover is pushed down while being in contact with the edge at the end of one side by applying a pressing force to the one side in contact.
1 ) フラックス供給手段が、 泡状のフラックスを基板と接触させる 発泡式のフラックス供給手段である、 態様 7〜: L 0のいずれかに記載の装置。 1) The apparatus according to any one of aspects 7 to 7, wherein the flux supplying means is a foaming type flux supplying means for bringing a foamy flux into contact with the substrate.
(態様 1 2 ) フラックス供給手段が、 霧状のフラックスを基板に吹き付ける スプレー式のフラックス供給手段である、 態様 7〜1 0のいずれかに記載の装置。  (Aspect 12) The apparatus according to any one of aspects 7 to 10, wherein the flux supply means is a spray-type flux supply means for spraying a mist-like flux onto the substrate.
(態様 1 3 ) 態様 1〜 6のいずれかに記載のフラックス塗布方法を含むフ口 一はんだ付け方法。  (Embodiment 13) A soldering method including the flux applying method according to any one of Embodiments 1 to 6.
(態様 1 4 ) 態様 7〜1 2のいずれかに記載のフラックス塗布装置を含むフ ローはんだ付け装置。 (Aspect 14) A flux including the flux coating device according to any of Aspects 7 to 12. Low soldering equipment.
(態様 1 5) はんだ材料を用いるフローはんだ付けプロセスによって電子部 品が基板に実装された電子回路基板であって、 基板の搬送方向に沿った基板の下 面の 1対の縁部を除く基板の下面にフラックスが塗布されている電子回路基板。  (Aspect 15) An electronic circuit board having electronic components mounted on the board by a flow soldering process using a solder material, and excluding a pair of edges on a lower surface of the board along the board conveying direction. Electronic circuit board with flux applied to the underside of the board.
(態様 1 6) 1対の縁部のそれぞれが、 2〜: I 5mmの幅を有する、 態様 1 (Aspect 16) Aspect 1 wherein each of a pair of edges has a width of 2 to 5 mm.
5に記載の電子回路基板。 図面の簡単な説明 The electronic circuit board according to 5. BRIEF DESCRIPTION OF THE FIGURES
図 1 (a) および (b) は、 本発明の 1つの実施形態のフラックス塗布方法を 説明する、 フラックス供給手段の上方における、 基板の搬送方向に垂直な方向で のフローはんだ付け装置の内部の模式的断面図であり、 図 1 (a) は、 フラック ス供給手段の上方に基板がない状態を示し、 図 1 (b) は、 フラックス供給手段 の上方に基板がある状態を示す。  FIGS. 1 (a) and 1 (b) illustrate a flux application method according to one embodiment of the present invention. The inside of a flow soldering apparatus in a direction perpendicular to a substrate transport direction above a flux supply means. FIG. 1 (a) is a schematic cross-sectional view, in which FIG. 1 (a) shows a state where there is no substrate above the flux supply means, and FIG. 1 (b) shows a state where there is a substrate above the flux supply means.
図 2は、 図 1 (b) に示す基板の部分の模式的上面図である。  FIG. 2 is a schematic top view of a portion of the substrate shown in FIG. 1 (b).
図 3 (a) および (b) は、 それぞれ図 1 (a) および (b) に示すフローは んだ付け装置の内部の模式的拡大斜視図である。  FIGS. 3 (a) and 3 (b) are schematic enlarged perspective views of the interior of the flow soldering device shown in FIGS. 1 (a) and 1 (b), respectively.
図 4は、 図 1の実施形態によってフラックスが塗布された基板を下面側から見 た模式的斜視図である。  FIG. 4 is a schematic perspective view of the substrate coated with flux according to the embodiment of FIG. 1 as viewed from the lower surface side.
図 5 (a) および (b) は、 本発明のもう 1つの実施形態のフラックス塗布方 法を説明する、 フラックス供給手段の上方における、 基板の搬送方向に垂直な方 向でのフローはんだ付け装置の内部の模式的断面図であり、 図 5 (a) は、 フラ ックス供給手段の上方に基板がない状態を示し、 図 5 (b) は、 フラックス供給 手段の上方に基板がある状態を示す。  FIGS. 5 (a) and 5 (b) show a flow soldering apparatus in a direction perpendicular to the direction in which a substrate is transported, above a flux supply means, illustrating a flux application method according to another embodiment of the present invention. 5 (a) shows a state where there is no substrate above the flux supply means, and FIG. 5 (b) shows a state where there is a substrate above the flux supply means. .
図 6は、 図 5 (b) に示す基板の部分の模式的上面図である。  FIG. 6 is a schematic top view of the portion of the substrate shown in FIG. 5 (b).
図 7は、 従来の 1つのフローはんだ付け装置の概略断面模式図である。  FIG. 7 is a schematic cross-sectional schematic view of one conventional flow soldering apparatus.
図 8 (a) は、 図 7の X— X線に沿った断面に位置する基板にフラックスが塗 布される様子を説明する図であり、 図 8 (b) は、 図 8 (a) に示す基板の部分 の模式的上面図である。  Fig. 8 (a) is a diagram illustrating how the flux is applied to the substrate located in the cross section along the line X-X in Fig. 7, and Fig. 8 (b) FIG. 3 is a schematic top view of a part of the substrate shown.
図 9は、 従来のもう 1つのフローはんだ付け装置の概略断面模式図である。 図 10 (a) は、 図 9の Y_Y線に沿った断面に位置する基板にフラックスが 塗布される様子を説明する図であり、 図 10 (b) は、 図 1 0 (a) に示す基板 の部分の模式的上面図である。 発明を実施するための形態 FIG. 9 is a schematic cross-sectional schematic view of another conventional flow soldering apparatus. FIG. 10 (a) is a diagram for explaining how the flux is applied to the substrate located in the cross section along the line Y_Y of FIG. 9, and FIG. 10 (b) is a diagram illustrating the substrate shown in FIG. 10 (a). It is a typical top view of the part. BEST MODE FOR CARRYING OUT THE INVENTION
(実施形態 1 )  (Embodiment 1)
以下、 本発明の 1つの実施形態について図 1〜4を参照しながら説明する。 本 実施形態は、 フラックス供給手段として発泡フラクサ一を用いる発泡式のフラッ タス塗布方法おょぴフラックス塗布装置に関する。 本実施形態のフラックス塗布 方法および装置は、 図 1および図 8を参照して説明した従来のフロ一はんだ付け 方法および装置のフラックス塗布ステップに関連するものである。 図 1 (a) お よび (b) は、 上述の従来のフラックス塗布方法を説明するために参照した図 8 (a) に対応する図であり、 それぞれ、 フラックス供給手段の上方に基板がない 状態と、 ある状態とを示す。 図 2は、 上述の従来のフラックス塗布方法を説明す るために参照した図 8 (b) に対応する図である。  Hereinafter, one embodiment of the present invention will be described with reference to FIGS. The present embodiment relates to a foam type flux applying method using a foaming fluxer as a flux supplying means, and a flux applying apparatus. The flux applying method and apparatus of the present embodiment relate to the flux applying step of the conventional flow soldering method and apparatus described with reference to FIGS. FIGS. 1 (a) and 1 (b) are views corresponding to FIG. 8 (a) referred to for describing the above-mentioned conventional flux coating method, and show a state in which there is no substrate above the flux supply means. And a certain state. FIG. 2 is a diagram corresponding to FIG. 8 (b) referred to for explaining the above-mentioned conventional flux coating method.
本実施形態のフラックス塗布装置は、 図 1 (a) および (b) に部分的に示す ように、 コンベアフレーム 5 aおよび 5 bの周りをそれぞれ回転するチェーン 4 aおよび 4 bにそれぞれ接続された搬送爪 2 aおよび 2 bと、 ガイド 6および発 泡装置 (図示せず) を含む発泡フラクサ一とを有する。 搬送爪 2 aおよび 2 bは、 基板 1をその両端部 (または側部) にて上下から挟んで搬送方向 9 (即ち、 図 1 (a) および (b) の紙面に垂直な方向であって、 紙面の裏から表に向かう方 向) に向けて搬送する搬送手段であり、 発泡フラクサ一は、 その上方に位置する 基板 1の下面 1 1にフラックス 3を供給するフラックス供給手段である。 これら の部材は、 図 7および図 8を参照して説明した従来のフローはんだ付け装置に関 して説明したものと同様であるので、 説明を省略するものとする。  As partially shown in FIGS. 1 (a) and (b), the flux application device of the present embodiment was connected to chains 4a and 4b respectively rotating around conveyor frames 5a and 5b, respectively. It has conveying claws 2a and 2b, and a foaming fluxer including a guide 6 and a foaming device (not shown). The transport claws 2a and 2b are arranged so that the substrate 1 is sandwiched from above and below at both ends (or sides) of the substrate 1 in the transport direction 9 (that is, the direction perpendicular to the plane of the paper of FIGS. The foaming fluxer is a flux supplying means for supplying the flux 3 to the lower surface 11 of the substrate 1 located above the foaming fluxer. These members are the same as those described with reference to the conventional flow soldering apparatus described with reference to FIGS. 7 and 8, and a description thereof will be omitted.
更に、 本実施形態のフラックス塗布装置は、 図 1 (a) および (b) に示すよ うに、 取付け具 7 aおよび 7 bによってコンベアフレーム 5 aおよび 5 bにそれ ぞれ取付けられた 1対のカバー 8 aおよび 8 bを有し、 この点において従来のも のと相違する。 これらカバー 8 aおよび 8 bは、 搬送爪 2 aおよび 2 bにより搬 送される基板 1の搬送方向 9に垂直な面 (即ち、 図 1 ( a ) および (b ) の紙 面) において、 L字形の断面形状を有するアングルプレート状の長尺部材から成 る。 これらカバー 8 aおよび 8 bは、 基板の中央を通り、 基板の主面に垂直で、 基板の搬送方向に平行な面 (図示せず) に対して面対称に配置される。 以下、 力 バー 8 aについて詳述するが、 カバー 8 bも同様の構成および機能を有する。 カバー 8 aは、 図 1 ( a ) に示すように、 2つの辺 Aおよび Bによって規定さ れる L字形の断面形状を有する。 辺 Aおよび Bは、 カバー 8 aの縦部分および横 部分をそれぞれ言うものであり、 所定の厚さ断面の板状形状を各自有する。 辺 A および Bは、 L字断面を提供するように、 別々または同一の材料から成る、 別個 の細長い部材 (またはプレート部材) を用いて接合されていても、 あるいは同一 の材料を用いて一体的に構成されていてもよい。 平坦な部材を折り曲げて L字断 面を有するようにしたものを用いてもよい。 カバーには、 山形材ゃアングル材な どの 2つの辺を有する部材を用い得、 これら 2つの辺の間の角度が 9 0度である 場合に L字断面を形成するが、 この角度は 9 0度に限定されず、 9 0度未満であ つても、 9 0度より大きくてもよく、 当業者により適切に選択され得る。 Further, as shown in FIGS. 1 (a) and 1 (b), the flux application device of the present embodiment has a pair of mounting members 7a and 7b respectively attached to the conveyor frames 5a and 5b. It has covers 8a and 8b and differs from the conventional one in this point. These covers 8a and 8b are transported by the transport claws 2a and 2b. On the surface perpendicular to the transport direction 9 of the substrate 1 to be transported (that is, the paper surface in FIGS. 1A and 1B), the substrate 1 is formed of an angle plate-shaped elongated member having an L-shaped cross section. The covers 8a and 8b pass through the center of the substrate, are perpendicular to the main surface of the substrate, and are arranged symmetrically with respect to a plane (not shown) parallel to the direction of transport of the substrate. Hereinafter, the power bar 8a will be described in detail, but the cover 8b has a similar configuration and function. The cover 8a has an L-shaped cross-sectional shape defined by two sides A and B, as shown in FIG. The sides A and B refer to a vertical portion and a horizontal portion of the cover 8a, respectively, and each have a plate-like shape having a predetermined thickness cross section. Sides A and B may be joined using separate elongated members (or plate members) of different or identical materials, or integrated using the same material, to provide an L-shaped cross section May be configured. A member obtained by bending a flat member to have an L-shaped cross section may be used. For the cover, a member having two sides such as a chevron or an angle material may be used, and when the angle between these two sides is 90 degrees, an L-shaped cross section is formed. The temperature is not limited, and may be less than 90 degrees or greater than 90 degrees, and may be appropriately selected by those skilled in the art.
カバー 8 aは、 図 2に示すように、 発泡フラクサ一のガイド 6の開口部の長さ bより長い距離 Lに亘つて延在し、 ガイド 6の開口部の上方に基板 1があるとき に、 幅 Wを有する基板 1の下面 1 1においてそれぞれ幅 dだけ重なって、 縁部 1 1 aとなるように配置される。 基板 1がフラックス供給手段である発泡フラクサ 一のガイド 6の上方に位置するとき、 図 1 ( b ) および図 4を参照して、 この力 バー 8 aの L字断面の一方の辺 Aは、 その端部 1 0にて、 下面 1 1の一方の縁部 1 1 aと、 下面 1 1のうちの 1対の縁部 1 1 aおよび 1 1 bを除く中間部分 1 1 cとの間の境界を規定するように、 基板 1の下面 1 1の縁部 1 1 aと当接し、 L 字断面の他方の辺 Bは、 該縁部 1 1 aの下方に、 好ましくは隔間して配置される。 ここで、 基板 1の搬送方向 9に沿った基板 1の下面 1 1にある 1対の縁部 1 1 a および l i bは、 好ましくは約 2〜1 5 mm、 より好ましくは約 5 mmの幅 dを それぞれ有するが、 場合によっては各々異なる幅を適宜選択してもよい。  As shown in FIG. 2, the cover 8a extends over a distance L longer than the length b of the opening of the guide 6 of the foaming fluxer, and when the substrate 1 is located above the opening of the guide 6, On the lower surface 11 of the substrate 1 having a width W, they are arranged so as to overlap each other by a width d to form an edge 11a. When the substrate 1 is located above the guide 6 of the foaming fluxer as the flux supply means, referring to FIG. 1 (b) and FIG. 4, one side A of the L-shaped cross section of the force bar 8a is At its end 10, between one edge 11 a of the lower surface 11 and a middle portion 11 c of the lower surface 11 excluding a pair of edges 11 a and 11 b. The other side B of the L-shaped cross section is arranged below and preferably spaced apart from the edge 11 a of the lower surface 11 of the substrate 1 so as to define the boundary. Is done. Here, a pair of edges 11 a and lib on the lower surface 11 of the substrate 1 along the transport direction 9 of the substrate 1 is preferably about 2 to 15 mm, more preferably about 5 mm in width d. However, in some cases, different widths may be appropriately selected.
更に、 図 3 ( a ) に示すように、 カバー 8 aの基板 1と最初に接触する部分に は、 L字断面の辺 Aの端部 1 0と遷-移的につながる傾斜部 (またはテーパー) 1 0 ' が設けられており、 この傾斜部は、 基板の搬送方向を含む断面において傾斜 している。 カバ 8 a力 図 1 ( a ) に示すように外力を受けない開放状態と、 図 1 ( b ) に示すように、 搬送爪 2 aおよび 2 bにより上下方向に固定された基 板 1によって外力を受けて押し下げられた押下状態との間で移行できるように、 カバー 8 aおよび Zまたは取付け具 7 aの少なくとも一部が、 十分な弾性を有す ることが好ましい。 例えば、 カバー 8 aには板パネなどを用い得る。 カバー 8 b および取り付け具 7 bについても同様である。 Further, as shown in FIG. 3 (a), a portion of the cover 8 a that comes into contact with the substrate 1 first has an inclined portion (or a tapered portion) that transitionally connects with the end 10 of the side A of the L-shaped cross section. 1 0 ′ is provided, and the inclined portion is inclined in a cross section including the substrate transfer direction. Cover 8a force Open state where no external force is applied as shown in Fig. 1 (a) and external force due to base plate 1 fixed in the vertical direction by transport claws 2a and 2b as shown in Fig. 1 (b) It is preferable that at least a part of the covers 8a and Z or the attachment 7a have sufficient elasticity so that a transition can be made between the pressed state and the pressed state. For example, a panel panel or the like can be used for the cover 8a. The same applies to the cover 8b and the mounting fixture 7b.
より詳細には、 フラックス供給手段である発泡フラクサ一のガイド 6の上方に 基板 1がないときは、 図 1 ( a ) に示すようにカバー 8 aは外力を受けない開放 状態にあり、 カバー 8 aの辺 A (縦部分) の端部 1 0は、 基板 1の下面 1 1が通 過するべき面 (図中に点線にて示す面、 以下、 基準面とも言う) に対して上方に 位置し、 かつ、 傾斜部 1 0 ' (図 3 ) は、 ガイド 6の上方に向かって搬送されて 来る基板 1と最初に接触するように、 基準面と交わって位置する。 他方、 ガイド 6の上方に基板 1があるときは、 図 1 ( b ) に示すようにカバー 8 aは外力を受 けた押下状態にあり、 基板 1の下面 1 1が、 これと端部 1 0にて当接する辺 Aに 押圧力を加えることによって、 カバー 8 aが辺 Aの端部 1 0にて下面 1 1の縁部 と当接しながら押し下げられている。  More specifically, when there is no substrate 1 above the guide 6 of the foaming fluxer, which is a flux supply means, as shown in FIG. 1 (a), the cover 8a is in an open state receiving no external force, and The end 10 of the side A (vertical portion) of a is located above the surface through which the lower surface 11 of the substrate 1 should pass (the surface indicated by the dotted line in the figure, also referred to as the reference surface). The inclined portion 10 ′ (FIG. 3) intersects with the reference plane so as to make first contact with the substrate 1 conveyed toward above the guide 6. On the other hand, when the substrate 1 is above the guide 6, the cover 8a is in a pressed state under external force as shown in FIG. 1 (b), and the lower surface 11 of the substrate 1 is By applying a pressing force to the side A contacting with, the cover 8a is pressed down while being in contact with the edge of the lower surface 11 at the end 10 of the side A.
以下、 このようなフラックス塗布装置を用いるフラックス塗布方法にっ ヽて説 明する。 まず、 図 1 ( a ) および図 3 ( a ) に示すように、 カバー 8 aおよび 8 bに外力が加わっていないガイド 6の開口部の上方に、 基板 1をその両端部にて 上下から搬送爪 2 aおよび 2 bで挟んで搬送方向 9に向けて搬送する。 ガイド 6 の開口部の上方へ基板 1が搬送されて来ると、 基板 1の前方緣部がカバー 8 aお よび 8 bの傾斜部 1 0, と最初に接触し、 基板 1がガイド 6の開口部の上方に向 かって更に搬送されるにつれて、 基板 1の下面 1 1が傾斜部 1 0, に沿って滑り ながらカバー 8 aおよび 8 bを押し下げる。 そして、 基板 1の前方縁部が傾斜部 1 0 ' を過ぎて、 図 1 ( b ) およぴ図 3 ( b ) に示すように、 カバー 8 aおよび 8 bの辺 Aの端部 1 0の上を滑って、 辺 Aの端部 1 0が基板 1の下面 1 1の縁部 と当接するようになる。 これにより、 カバー 8 aおよび 8 bは、 図 4に示す縁部 1 1 aおよび 1 1 bとこれら 1対の縁部を除く基板の下面の中間部分 1 1 cとの 間の境界をそれぞれ規定するように、 縁部 1 1 aおよび 1 1 bと端部 1 0にて当 接し、 1対の縁部 1 1 aおよび 1 1 bが、 基板 1の下面 1 1と当接したカバー 8 aおよび 8 bで覆われて、 フラックスが供給される領域から隔離される。 このよ うにして、 1対の縁部 1 1 aおよび 1 1 bを 1対のカバー 8 aおよび 8 bでそれ ぞれ覆った状態で、 ガイド 6の開口部の上方に位置する基板 1の下面 1 1にフラ ックス 3を供給すると、 1対の縁部 1 1 aおよび 1 1 bを除く基板の下面の中間 部分 1 1 cにフラックス 3が塗布され、 1対の縁部 1 1 aおよび l i bにはフラ ッタスが塗布されない。 Hereinafter, a flux coating method using such a flux coating device will be described. First, as shown in Fig. 1 (a) and Fig. 3 (a), the board 1 is transported from above and below at both ends of the guide 6 above the opening of the guide 6 where no external force is applied to the covers 8a and 8b. The sheet is transported in the transport direction 9 while being held between the claws 2a and 2b. When the board 1 is conveyed above the opening of the guide 6, the front side of the board 1 comes into contact with the inclined portions 10 of the covers 8a and 8b first, and the board 1 As the substrate 1 is further transported upward, the lower surface 11 of the substrate 1 slides along the inclined portions 10 and pushes down the covers 8a and 8b. Then, the front edge of the substrate 1 passes through the inclined portion 10 ′, and as shown in FIGS. 1 (b) and 3 (b), ends 10 A of the sides A of the covers 8 a and 8 b. , The edge 10 of the side A comes into contact with the edge of the lower surface 11 of the substrate 1. Thereby, the covers 8a and 8b are connected between the edges 11a and 11b shown in FIG. 4 and the intermediate portion 11c of the lower surface of the substrate excluding the pair of edges. Edges 11a and 11b abut at end 10 so as to define the boundaries between them, and a pair of edges 11a and 11b are in contact with lower surface 11 of substrate 1. It is covered with abutting covers 8a and 8b to isolate it from the area where the flux is supplied. In this way, with the pair of edges 11a and 11b covered by the pair of covers 8a and 8b, respectively, the substrate 1 above the opening of the guide 6 When flux 3 is supplied to the lower surface 11, the flux 3 is applied to the middle portion 1 1 c of the lower surface of the substrate excluding the pair of edges 11 a and 11 b, and the pair of edges 11 a and No liberation is applied to lib.
更に、 基板 1の幅 Wが基板の種類によって異なることに対応し得るように、 ― 方のコンベアフレーム 5 aを固定し、 他方のコンベアフレーム 5 bを基板の搬送 方向に垂直で、 固定コンベアフレーム 5 aと平行関係を維持し得る方向に (即ち、 図 1 ( a ) に矢印で示す方向であって、 図 1 ( a ) および (b ) の紙面内で左右 に) スライドして、 基板 1を保持する搬送爪 2 aおよび 2 b間の幅をスライド調 整可能できることが好ましい。 この場合、 本実施形態のようにカバー 8 bがコン ベアフレーム 5 bに取付け具 7 bによって連結されているので、 コンベアフレー ム 5 bのスライド移動につれてカバー 8 bも同距離だけスライド移動する。 よつ て、 基板 1の幅 Wに合わせてコンベアフレーム 5 bを適切にセットするだけで、 カバー 8 を個別にセットする必要なく、 縁部 dの幅を所定の値に維持すること ができるという利点がある。  Further, in order to cope with the fact that the width W of the board 1 varies depending on the type of the board, the other conveyor frame 5a is fixed, and the other conveyor frame 5b is fixed to the fixed conveyor frame in a direction perpendicular to the board transfer direction. 5 Slide in the direction that can maintain the parallel relationship with a (that is, in the direction indicated by the arrow in FIG. 1 (a) and to the left and right in the plane of FIGS. 1 (a) and (b)). It is preferable that the width between the transfer claws 2a and 2b for holding the slide can be adjusted. In this case, since the cover 8b is connected to the conveyor frame 5b by the attachment 7b as in the present embodiment, the cover 8b slides by the same distance as the conveyor frame 5b slides. Therefore, the width of the edge d can be maintained at a predetermined value only by appropriately setting the conveyor frame 5 b according to the width W of the substrate 1 without having to set the cover 8 individually. There are advantages.
上述のような本実施形態のフラックス塗布方法および塗布装置を用いてフラッ クスを塗布すると、 基板の 1対の縁部にはフラッタスが塗布されていないので、 後工程において、 フラッタスの残留物が搬送部材に付着することが回避され、 こ れに起因する工程不良の発生を低減することが可能となる。  When the flux is applied by using the flux applying method and the coating apparatus of the present embodiment as described above, the flats are not applied to the pair of edges of the substrate, so that the residual of the flatus is transported in the subsequent process. Adhering to the member is avoided, and the occurrence of process defects due to this can be reduced.
尚、 本実施形態のフラックス塗布装置は、 図 7および図 8を参照しながら説明 した従来のフローはんだ付け装置と同様に、 フローはんだ付け装置の内部に一体 的に組み込まれ得るが、 フローはんだ付け装置本体の外部に別個に独立して構成 されてもよい。  Note that the flux application device of the present embodiment can be integrated into the flow soldering device as in the conventional flow soldering device described with reference to FIGS. 7 and 8. It may be configured separately and independently outside the device body.
また、 本実施形態においては、 L字形の断面形状およびテーパー部を有する力 バーを、 カバーの少なくとも一部分の弾性を利用して基板の下面に接触 (または 当接) させて用いて、 1対の縁部をフラックス供給部から隔離したが、 本発明は これに限定されず、 基板がフラックス供給手段の上方に位置するときに、 基板の 搬送方向に沿った基板の下面の 1対の縁部の直下にそれぞれ位置する 1対のカバ 一で各縁部を覆った状態とすることが可能な範囲で改変が成され得ることは、 当 業者には容易に想到されよう。 具体的には、 カバーの断面形状を例えば T字形な どに改変することや、 傾斜部を曲線状にしたり、 カバーを基板の下面に接触させ るように機械的に上下動させるように改変することも可能である。 また、 カバー を基板の下面に接触させなくても、 1対の縁部にフラッタスが実質的に塗布され ない程度の隙間をカバーと基板の下面との間に設けてもよ 、。 Further, in the present embodiment, a force bar having an L-shaped cross-sectional shape and a tapered portion is brought into contact with the lower surface of the substrate by utilizing elasticity of at least a part of the cover (or A pair of edges is separated from the flux supply unit, but the present invention is not limited to this, and when the substrate is located above the flux supply means, the pair of edges is separated along the transport direction of the substrate. It is easy for those skilled in the art that the modifications can be made to the extent that each edge can be covered with a pair of covers located immediately below a pair of edges on the lower surface of the substrate. Will be reminded. Specifically, the cross-sectional shape of the cover is changed to, for example, a T shape, the slope is curved, or the cover is mechanically moved up and down so as to contact the lower surface of the substrate. It is also possible. Even if the cover is not brought into contact with the lower surface of the substrate, a gap may be provided between the cover and the lower surface of the substrate such that the flats are not substantially applied to the pair of edges.
(実施形態 2 ) (Embodiment 2)
本実施形態は、 実施形態 1のフラックス塗布方法および装置を含むフローはん だ付け方法および装置に関する。 本実施形態のフローはんだ付け装置は、 実施形 態 1にて詳述したフラックス塗布装置が、 図 7を参照して説明した従来のフロ一 はんだ付け装置のようにその内部に一体的に組み込まれて構成される。 フラック ス塗布装置を除くプリヒーターおよびはんだ材料を噴流の形態で供給するための 装置は、 任意の適切なもの、 例えば図 7に示すようなものを使用し得る。 このよ うなフローはんだ付け装置を用いて、 実施形態 1と同様にしてフラックスを塗布 し、 次いで、 上述の従来の方法と同様にしてプリヒート (予備加熱) ステップお よびはんだ材料供給ステップに付すことによって、 フローはんだ付けプロセス The present embodiment relates to a flow soldering method and apparatus including the flux application method and apparatus of Embodiment 1. In the flow soldering apparatus according to the present embodiment, the flux application apparatus described in detail in Embodiment 1 is integrated into the inside like the conventional flow soldering apparatus described with reference to FIG. It is composed. Any suitable device for supplying the preheater and the solder material in the form of a jet except for the flux coating device may be used, for example, as shown in FIG. Using such a flow soldering apparatus, a flux is applied in the same manner as in the first embodiment, and then subjected to a preheating (preheating) step and a solder material supply step in the same manner as in the conventional method described above. , Flow soldering process
(方法) が完了し、 電子部品が実装された電子回路基板が得られる。 得られた電 子回路基板は、 フ口一はんだ付けプロセスの後工程、 例えば検査工程などに送ら れる力 電子回路基板の 1対の縁部にはフラックスが塗布されていないので、 実 施形態 1に説明したように、 後工程において、 フラックスの残留物が搬送部材に 付着することに起因する工程不良の発生を低減することが可能となる。 (Method) is completed, and an electronic circuit board on which electronic components are mounted is obtained. In the obtained electronic circuit board, a flux is not applied to a pair of edges of the electronic circuit board, which is sent to a post process of the soldering process, for example, an inspection process. As described in the above, it is possible to reduce the occurrence of process defects due to the adhesion of the flux residue to the transport member in the post-process.
(実施形態 3 ) (Embodiment 3)
次に、 本努明のもう 1つの実施形態について図 5および 6を参照しながら説明 する。 本実施形態は、 フラックス供給手段としてスプレーフラクサ一を用いるス プレー式のフラックス塗布方法およびフラックス塗布装置に関する。 本実施形態 のフラックス塗布方法および装置は、 図 9および図 1 0を参照して説明した従来 のフローはんだ付け方法および装置のフラックス塗布ステップに関連するもので ある。 図 5 ( a ) および (b ) は、 上述の従来のフラックス塗布方法を説明する ために参照した図 1 0 ( a ) に対応する図であり、 それぞれ、 フラックス供給手 段の上方に基板がない状態と、 ある状態とを示す。 図 6は、 上述の従来のフラッ タス塗布方法を説明するために参照した図 1 0 ( b ) に対応する図である。 図 5 ( a ) および (b ) に部分的に示す本実施形態のフラックス塗布装置は、 実施形態 1のフラックス塗布装置と同様であるが、 フラックス供給手段として発 泡フラクサ一の代わりに、 図 9および図 1 0を参照して説明した従来のフローは んだ付け装置に利用されるスプレーフラクサ一を用い、 図 9および図 1 0の装置 と同様に雰囲気ガスを吸引するための排気ダクト (図示せず) を基板の上方に設 けた点において相違する。 Next, another embodiment of the present effort will be described with reference to FIGS. In this embodiment, a flux using a spray fluxer as a flux supply means is used. The present invention relates to a play type flux applying method and a flux applying apparatus. The flux applying method and apparatus of the present embodiment relate to the flux applying step of the conventional flow soldering method and apparatus described with reference to FIGS. 9 and 10. FIGS. 5 (a) and 5 (b) correspond to FIGS. 10 (a) and 10 (a), respectively, which are referred to for explaining the above-mentioned conventional flux application method, and each of them has no substrate above the flux supply means. State and a state. FIG. 6 is a diagram corresponding to FIG. 10 (b) referred to for describing the above-mentioned conventional flash coating method. The flux applicator of the present embodiment partially shown in FIGS. 5A and 5B is the same as the flux applicator of the first embodiment, but instead of a foaming fluxer as a flux supply means, FIG. 10 and an exhaust duct (see FIG. 10) for sucking the ambient gas using the spray fluxer used for the soldering device in the same manner as the device shown in FIGS. 9 and 10. (Not shown) is provided above the substrate.
本実施形態においては、 フラックス 3力 矢印 1 3の方向に往復運動するノズ ル 1 2から噴射されて基板 1に供給される点を除いては、 実施形態 1と同様の方 法によつて基板にフラックスを塗布することができる。 本実施形態においても、 実施形態 1と同様に、 カバー 8 aおよび 8 bによって基板 1の 1対の縁部が覆わ れた状態でフラックス 3が基板 1の下面 1 1に塗布されるので、 1対の縁部を除 く基板の下面の中間部分にフラックス 3を塗布し、 1対の縁部にはフラックス 3 が塗布されない。 これにより、 本実施形態においても、 実施形態 1と同様の効果 を奏することができる。  In this embodiment, except that the flux 3 is ejected from the nozzle 12 reciprocating in the direction of the arrow 13 and is supplied to the substrate 1, the substrate is formed in the same manner as in the first embodiment. Can be coated with a flux. Also in the present embodiment, as in the first embodiment, the flux 3 is applied to the lower surface 11 of the substrate 1 while the pair of edges of the substrate 1 is covered by the covers 8a and 8b. Flux 3 is applied to the middle part of the lower surface of the substrate except for the edge of the pair, and flux 3 is not applied to the edge of the pair. Thereby, also in the present embodiment, the same effect as in the first embodiment can be obtained.
尚、 本実施形態のフラックス塗布装置は、 図 9および図 1 0を参照しながら説 明した従来のフローはんだ付け装置と同様に、 フローはんだ付け装置本体の外部 に別個に独立して構成され得るが、 フローはんだ付け装置の内部に一体的に組み 込まれてもよい。 また、 実施形態 2において、 実施形態 1のフラックス塗布方法 およぴ装置の代わりに本実施形態のものを利用して、 フローはんだ付けを実施す ることも可能である。 更にまた、 実施形態 1の発泡式のフラックス塗布方法およ び装置と本実施形態のスプレー式のフラックス塗布方法および装置とを組み合わ せて利用してもよい。 産業上の利用の可能性 Note that the flux coating device of the present embodiment can be separately and independently provided outside the flow soldering device main body, similarly to the conventional flow soldering device described with reference to FIGS. 9 and 10. However, it may be integrated into the flow soldering device. In the second embodiment, it is also possible to carry out the flow soldering by using the flux applying method and the apparatus of the first embodiment instead of the flux applying method and the apparatus of the first embodiment. Furthermore, the foam type flux applying method and apparatus of Embodiment 1 may be combined with the spray type flux applying method and apparatus of this embodiment. Industrial applicability
本発明によれば、 はんだ材料を用いて電子部品を基板に実装するためのフロー はんだ付けプロセスに用いるフラックス塗布方法であって、 基板に塗布されたフ ラッタスの残留物が、 フローはんだ付けプロセスの後工程にて搬送部材に異物と して付着することに起因する工程不良の発生を低減し得る方法および該方法を実 施するための装置が提供される。 更に、 本発明によれば、 該フラックス塗布方法 を利用するフローはんだ付け方法およびそれら方法を実施するための装置ならぴ に該フローはんだ付け方法により作製される電子回路基板が提供される。 本発明 によれば、 基板の下面のうち、 基板の搬送方向に沿った 1対の縁部を除く基板の 下面にフラックスを塗布し、 1対のカバーで覆われた 1対の縁部にはフラックス が塗布されないので、 フローはんだ付けプロセスの後工程において、 フラックス の残留物が搬送部材に付着することが回避でき、 このことに起因する工程不良の 発生を低減することができる。 本出願は、 パリ条約に基づいて、 「フラックス塗布方法、 フローはんだ付け方 法およびこれらのための装置ならびに電子回路基板」 を発明の名称とする 13本国 特許出願である特願 2 0 0 0— 2 9 0 2 6 3号 ( 2 0 0 0年 9月 2 5曰出願) の 優先権を主張する。 当該出願の内容は引用によりその全体が本明細書に組み込ま れる。  According to the present invention, there is provided a flux coating method used in a flow soldering process for mounting an electronic component on a substrate using a solder material, wherein the flatus residue applied to the substrate is used in the flow soldering process. Provided is a method capable of reducing the occurrence of a process failure caused by adhering to a conveying member as a foreign substance in a subsequent process, and an apparatus for performing the method. Further, according to the present invention, there is provided a flow soldering method using the flux applying method and an electronic circuit board manufactured by the flow soldering method, as well as an apparatus for performing the method. According to the present invention, a flux is applied to the lower surface of the substrate except for a pair of edges along the transport direction of the substrate, and a pair of edges covered with a pair of covers is provided on the lower surface of the substrate. Since the flux is not applied, it is possible to avoid the residue of the flux from adhering to the conveying member in the post-process of the flow soldering process, and to reduce the occurrence of process defects due to this. The present application is based on the Paris Convention and is based on the Paris Convention. The patent application of the patent application in the thirteenth country, entitled “Flux coating method, flow soldering method, device for these and electronic circuit board” Claim the priority of No. 90263 (filed on September 25, 2000). The contents of that application are incorporated herein by reference in their entirety.

Claims

請 求 の 範 囲 The scope of the claims
1 . はんだ材料を用いて電子部品を基板に実装するフローはんだ付けプロセス に用いる、 フラックス供給手段によりフラックスを基板の下方から供給して基板 の下面に塗布するフラックス塗布方法であって、 基板を搬送しながら、 基板がフ ラックス供給手段の上方に位置するときに、 基板の搬送方向に沿った基板の下面 の 1対の縁部の直下にそれぞれ位置する 1対のカバーで各縁部を覆った状態で、 フラックス供給手段から基板の下面にフラックスを供給し、 これにより、 1対の 緣部を除く基板の下面にフラックスを塗布することを特徴とする方法。 1. A flux application method in which flux is supplied from below the substrate by a flux supply means and applied to the lower surface of the substrate, which is used in the flow soldering process of mounting electronic components on the substrate using a solder material. While the substrate was positioned above the flux supply means, each edge was covered with a pair of covers located directly below a pair of edges on the lower surface of the substrate along the substrate transport direction. In the state, the flux is supplied from the flux supply means to the lower surface of the substrate, whereby the flux is applied to the lower surface of the substrate except for a pair of the portions.
2 . 1対の縁部のそれぞれが、 2〜1 5 mmの幅を有する、 請求項 1に記載の 方法。 2. The method of claim 1, wherein each of the pair of edges has a width of 2 to 15 mm.
3 . 1対のカバーのそれぞれが、 2つの辺によって規定される L字形の断面形 状を有するアングルプレート状の長尺部材であり、 基板がフラックス供給手段の 上方に位置するときに、 L字断面の一方の辺が、 その端部にて、 1対の縁部のそ れぞれと 1対の縁部を除く基板の下面との間の境界を規定するように、 基板の下 面の各縁部と当接し、 L字断面の他方の辺が 縁部の下方に配置される、 請求項 3. Each of the pair of covers is an angle plate-shaped long member having an L-shaped cross-sectional shape defined by two sides, and when the substrate is positioned above the flux supply means, the L-shape is formed. The lower surface of the substrate is such that one side of the cross-section defines at its ends the boundaries between each of the pair of edges and the lower surface of the substrate excluding the pair of edges. Claim: wherein the other side of the L-shaped cross-section is disposed below the edge in contact with each edge.
1に記載の方法。 The method according to 1.
4 . 1対のカバーのそれぞれが、 前記一方の辺の端部と遷移的につながる傾斜 部を、 基板と最初に接触する部分に有し、 基板がフラックス供給手段の上方に向 かって搬送されると、 基板の下面の前方縁部が傾斜部と接触し、 基板がフラック ス供給手段の上方に向かって更に搬送されるにつれて、 基板の下面が傾斜部に沿 つて滑りながらカバーを押し下げ、 これにより、 基板がフラックス供給手段の上 方に位置するときに該一方の辺がその端部にて縁部と当接する、 請求項 3に記載 の方法。  4. Each of the pair of covers has an inclined portion that transitionally connects to the end of the one side at a portion where the cover first comes in contact with the substrate, and the substrate is conveyed toward above the flux supply means. As the front edge of the lower surface of the substrate comes into contact with the inclined portion, and as the substrate is further transported above the flux supply means, the lower surface of the substrate slides down the inclined portion and pushes down the cover. 4. The method according to claim 3, wherein said one side abuts the edge at its end when the substrate is located above the flux supply means.
5 . フラックス供給手段が、 泡状のフラックスを基板と接触させる発泡式のフ ラックス供給手段である、 請求項 1に記載の方法。  5. The method according to claim 1, wherein the flux supplying means is a foaming type flux supplying means for bringing a foamy flux into contact with the substrate.
6 . フラックス供給手段が、 霧状のフラックスを基板に吹き付けるスプレー式 のフラックス供給手段である、 請求項 1に記載の方法。  6. The method according to claim 1, wherein the flux supply means is a spray-type flux supply means for spraying a mist-like flux onto the substrate.
7 . はんだ材料を用いて電子部品を基板に実装するフローはんだ付けプロセス に用いる、 フラックス供給手段によりフラックスを基板の下方から供給して基板 の下面に塗布するフラックス塗布装置であって: 7. Flow soldering process for mounting electronic components on a board using a solder material A flux application device for supplying a flux from below the substrate by a flux supply means and applying the flux to a lower surface of the substrate, wherein:
基板を搬送する搬送手段と、  Transport means for transporting the substrate,
フラックスを基板の下方から供給するフラックス供給手段と、  Flux supply means for supplying flux from below the substrate,
基板がフラックス供給手段の上方に位置するときに、 基板の搬送方向に沿った 基板の下面の 1対の縁部の直下にそれぞれ位置し、 各縁部を覆う 1対のカバーと を含み、 1対の縁部を除く基板の下面にフラックスを塗布することを特徴とする  A pair of covers, which are located directly below a pair of edges on the lower surface of the substrate along the transport direction of the substrate and cover the edges, respectively, when the substrate is located above the flux supply means; Flux is applied to the lower surface of the substrate excluding the edge of the pair
8 . 1対の縁部のそれぞれが、 2〜1 5 mmの幅を有する、 請求項 7に記載の 8. The method of claim 7, wherein each of the pair of edges has a width of 2 to 15 mm.
9 . 1対のカバーのそれぞれが、 2つの辺によって規定される L字形の断面形 状を有するアングルプレート状の長尺部材であり、 基板がフラックス供給手段の 上方に位置するときに、 L字断面の一方の辺が、 その端部にて、 1対の縁部のそ れぞれと 1対の縁部を除く基板の下面との間の境界を規定するように、 基板の下 面の各縁部と当接し、 L字断面の他方の辺が該縁部の下方に配置される、 請求項 7に記載の装置。 9. Each of the pair of covers is an angle plate-shaped long member having an L-shaped cross-sectional shape defined by two sides, and when the substrate is located above the flux supply means, the L-shape is formed. The lower surface of the substrate is such that one side of the cross-section defines at its ends the boundaries between each of the pair of edges and the lower surface of the substrate excluding the pair of edges. 8. The device according to claim 7, wherein the abutment is on each edge, and the other side of the L-shaped cross section is located below the edge.
1 0 . 1対のカバーのそれぞれが、 前記一方の辺の端部と遷移的につながる傾 斜部を、 基板と最初に接触する部分に有し、 基板がフラックス供給手段の上方に ないときは、 カバーに外力が加わらずに、 該一方の辺の端部が、 基板の下面が通 過するべき面に対して上方に位置し、 かつ、 傾斜部が、 フラックス供給手段の上 方に向かって搬送される基板と最初に接触するように、 基板の下面が通過するぺ き該面と交わって位置し、 基板がフラックス供給手段の上方にあるときは、 基板 の下面が、 これと当接する該一方の辺に押圧力を加えることによって、 カバーが、 一方の辺の端部にて縁部と当接しながら押し下げられる、 請求項 9に記載の装置。 10.0.1 when each of the pair of covers has an inclined portion transitionally connected to the end of the one side at a portion where the cover first comes in contact with the substrate, and the substrate is not above the flux supply means. The end of the one side is located above the surface through which the lower surface of the substrate should pass, and the inclined portion faces upward of the flux supply means without external force being applied to the cover. When the lower surface of the substrate passes through the lower surface of the substrate so as to make first contact with the substrate to be conveyed, the lower surface of the substrate is located in contact with the surface when the substrate is above the flux supply means. The apparatus according to claim 9, wherein the cover is pushed down by applying a pressing force to one side while abutting the edge at the end of the one side.
1 1 . フラックス供給手段が、 泡状のフラックスを基板と接触させる発泡式の フラックス供給手段である、 請求項 7に記載の装置。 11. The apparatus according to claim 7, wherein the flux supply means is a foaming type flux supply means for bringing foamy flux into contact with the substrate.
1 2 . フラックス供給手段が、 霧状のフラックスを基板に吹き付けるスプレー 式のフラックス供給手段である、 請求項 7に記載の装置。  12. The apparatus according to claim 7, wherein the flux supply means is a spray-type flux supply means for spraying mist-like flux onto the substrate.
1 3 . 請求項 1〜 6のいずれかに記載のフラックス塗布方法を含むフ口一はん だ付け方法。 13. The method of applying the flux application method according to any one of claims 1 to 6. How to attach.
1 4 . 請求項 7〜1 2のいずれかに記載のフラックス塗布装置を含むフローは んだ付け装置。  14. A flow soldering device including the flux coating device according to any one of claims 7 to 12.
1 5 . はんだ材料を用いるフローはんだ付けプロセスによって電子部品が基板 に実装された電子回路基板であって、 基板の搬送方向に沿った基板の下面の 1対 の縁部を除く基板の下面にフラックスが塗布されている電子回路基板。  15 5. An electronic circuit board on which electronic components are mounted on a board by a flow soldering process using a solder material, and a flux is applied to the lower face of the board except a pair of edges on the lower face of the board along the board transport direction. Electronic circuit board to which is applied.
1 6 . 1対の縁部のそれぞれが、 2〜 1 5 mmの幅を有する、 請求項 1 5に記 載の電子回路基板。  16. The electronic circuit board according to claim 15, wherein each of the pair of edges has a width of 2 to 15 mm.
PCT/JP2001/008228 2000-09-25 2001-09-21 Flux applying method and device, flow soldering method and device and electronic circuit board WO2002026007A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000290263A JP2002100858A (en) 2000-09-25 2000-09-25 Flux-applying method, flow soldering method, device for the same and electronic circuit board
JP2000-290263 2000-09-25

Publications (1)

Publication Number Publication Date
WO2002026007A1 true WO2002026007A1 (en) 2002-03-28

Family

ID=18773515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008228 WO2002026007A1 (en) 2000-09-25 2001-09-21 Flux applying method and device, flow soldering method and device and electronic circuit board

Country Status (2)

Country Link
JP (1) JP2002100858A (en)
WO (1) WO2002026007A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103724343A (en) * 2004-03-25 2014-04-16 记忆药物公司 Indazoles, benzothiazoles, benzoisothiazoles, benzisoxazoles, and preparation and uses thereof
KR101274487B1 (en) * 2012-07-17 2013-06-13 재단법인 한국조명연구원 Pcb soldering apparatus for input/output lead-wire
KR101274488B1 (en) * 2012-10-12 2013-06-13 재단법인 한국조명연구원 Apparatus having soldering and cutting of pcb lead-wire
EP2808114A3 (en) * 2013-05-30 2015-09-02 Lucas-Milhaupt, Inc. Process for flux coating braze preforms and discrete parts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563664U (en) * 1992-01-17 1993-08-24 株式会社弘輝 Flux applicator
JPH0818206A (en) * 1994-06-24 1996-01-19 Taisei Kaken:Kk Partitioned foam fluxor tank
JPH0946032A (en) * 1995-07-31 1997-02-14 Hitachi Ltd Mounting apparatus for electronic component
JPH09239300A (en) * 1996-03-12 1997-09-16 Nihon Dennetsu Kk Spray type flux coating apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563664U (en) * 1992-01-17 1993-08-24 株式会社弘輝 Flux applicator
JPH0818206A (en) * 1994-06-24 1996-01-19 Taisei Kaken:Kk Partitioned foam fluxor tank
JPH0946032A (en) * 1995-07-31 1997-02-14 Hitachi Ltd Mounting apparatus for electronic component
JPH09239300A (en) * 1996-03-12 1997-09-16 Nihon Dennetsu Kk Spray type flux coating apparatus

Also Published As

Publication number Publication date
JP2002100858A (en) 2002-04-05

Similar Documents

Publication Publication Date Title
US8817487B2 (en) Electronic component mounting system and electronic component mounting method
EP3297785B1 (en) Reflow oven liner with a substrate and an adhesive layer, and a method of treating the surface of a reflow oven
EP0714721A2 (en) Applying flux to a solder wave for wave soldering an element
US6915941B2 (en) Method for local application of solder to preselected areas on a printed circuit board
WO2002026007A1 (en) Flux applying method and device, flow soldering method and device and electronic circuit board
JP3121971B2 (en) Adhesive application method and apparatus and component mounting method
JP2002100857A (en) Flux-applying method, flow soldering method, device for the same and electronic circuit board
JP2002232197A (en) Electronic component mounting method
JP2009170698A (en) Apparatus and method for soldering surface-mounted component
JP2003188515A (en) Soldering device, method for soldering, and device and method for manufacturing printed circuit board
JP5535122B2 (en) Flux coating method, mounting substrate manufacturing method, and flux coating apparatus
JPH09246706A (en) Solder feeding method and manufacture of part mounting substrate
JP2002204060A (en) Soldering method and flow soldering apparatus
JP2002026506A (en) Soldering device and material coating section used therefor
JP3237392B2 (en) Electronic component mounting method
JPH10290066A (en) Part mounting method and equipment
JPH06296074A (en) Wave soldering device
JPH02226795A (en) Parts mounting method and parts fixing method
JP2002026510A (en) Device and method for mounting electronic parts
JP2003326360A (en) Method and apparatus for adhering solder
JPH0541597A (en) Various mechanisms for composing electronic component placing apparatus and electronic component placing apparatus using the same mechanisms
JPH0661638A (en) Method and machine for soldering printed board
JPH11214569A (en) Method and device for forming bump
JP2002141656A (en) Method and device for flow soldering
JP2005129572A (en) Soldering device and method therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase