WO2002023622A1 - Detector and treatment system for detected body - Google Patents

Detector and treatment system for detected body Download PDF

Info

Publication number
WO2002023622A1
WO2002023622A1 PCT/JP2001/007922 JP0107922W WO0223622A1 WO 2002023622 A1 WO2002023622 A1 WO 2002023622A1 JP 0107922 W JP0107922 W JP 0107922W WO 0223622 A1 WO0223622 A1 WO 0223622A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
detection
detected
reflector
emitting element
Prior art date
Application number
PCT/JP2001/007922
Other languages
French (fr)
Japanese (ja)
Inventor
Mikio Takahashi
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2002023622A1 publication Critical patent/WO2002023622A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver
    • G01V8/14Detecting, e.g. by using light barriers using one transmitter and one receiver using reflectors

Definitions

  • the present invention relates to an object detection device used mainly in a processing system for semiconductor wafers and the like, and a processing system using the same.
  • a semiconductor device is formed on a semiconductor wafer by various manufacturing processes such as a film forming process, an etching process, and an oxidation diffusion process.
  • processing chambers and semiconductor manufacturing equipment dedicated to performing the processing are arranged as manufacturing lines, and semiconductor wafers are transferred between these chambers or between equipment using a transfer mechanism. Conveyed.
  • the processing is performed according to a predetermined sequence. After the completion of this processing, the semiconductor wafer is carried out of the processing chamber by the transfer mechanism.
  • the semiconductor wafer passes through each point on the transfer path in order to avoid a transfer error or to stop the transfer with minimal damage. It is important to check whether this is the case. Usually, this check is performed by arranging a detection device for detecting the presence or absence of a semiconductor wafer at a key point on the semiconductor wafer transfer path.
  • FIG. 8 is a perspective view showing a general sensor unit used in a conventional detection device
  • FIGS. 9A and 9B show a state when the presence or absence of a semiconductor wafer is detected using the conventional detection device.
  • FIGS. OA and 10B are explanatory diagrams illustrating the principle of detection when detecting the presence or absence of a semiconductor wafer using a conventional detection device.
  • the sensor section 2 is configured integrally with a light emitting element 4 for emitting detection light and a light receiving element 6 for receiving reflected light of the emitted detection light.
  • the light emitting element 4 emits light having a wavelength of about 700 nm, for example.
  • the sensor unit 2 is connected via a cable 8 to a discriminating unit 10 composed of, for example, a micro computer.
  • the determination unit 10 determines the presence or absence of a semiconductor wafer based on the result of light reception by the light receiving element 6.
  • a horizontal polarization filter 11 which allows only horizontal polarization (see FIG. 1OA, for example) in FIG. 8, and a front face of the light receiving element 6.
  • a vertical polarization filter 12 that is shifted by 90 degrees from the above polarization direction, that is, passes only the polarization in the vertical direction in FIG. 8, is arranged.
  • the reflector 14 is arranged at a predetermined distance in the irradiation direction of the detection light L1 of the sensor unit 2.
  • the reflecting surface 14a of the reflector 14 is set so as to be substantially perpendicular to the above-mentioned irradiation direction, that is, the above-mentioned irradiation direction and the direction of the normal line to the above-mentioned reflecting surface 14a substantially coincide.
  • the property of the reflecting surface 14a is that even if light having a vibration surface in a specific direction is irradiated, the polarization direction is disturbed and the vibration direction exists in all directions. Thus, the reflected light L 2 can be formed.
  • the surface of a general semiconductor wafer is a mirror surface, and when light incident on this surface is reflected, the vibration direction of the reflected light is the same as the vibration direction of the incident light. Without being disturbed, it is reflected while maintaining this, so that it is in the same state as the vibration direction of the incident light.
  • the detection light L 1 emitted from the light emitting element 4 is radiated by the horizontal polarization filter 11 as detection light oscillating in the horizontal direction, and is applied to the reflection surface 1 of the reflector 14. 4a, or the light is reflected on the surface of the semiconductor wafer W as the object to be detected.
  • the reflected light L 2 enters the longitudinal polarization filter 12 and the light receiving element 6.
  • the detection light L1 is reflected by the reflection surface 14a which disturbs the vibration direction. Since the reflected light L 2 is reflected, the reflected light L 2 contains vibration components in all directions.
  • the vertical vibration component of the reflected light L 2 passes through the vertically polarized finolators 12 and is detected by the light receiving element 6. It is determined that W does not exist in the detection space S.
  • the reflection surface which is the surface of the semiconductor wafer W
  • the reflected light L2 does not disturb the vibration direction of the detection light L1. ing.
  • the detection light L1 is incident on the wafer surface on which the antireflection film is formed, and the reflected light L2 reflected includes vibration components in all directions as shown in FIG. 9A.
  • the vertical vibration component of the reflected light L 2 passes through the vertical polarization filter 12 and is detected by the light receiving element 6, and the discrimination unit 10 determines that the semiconductor wafer W is In some cases, it may be determined that it does not exist even though it actually exists in the detection space S. Such erroneous judgments can cause the transport system to stop, which in turn will stop the production line.
  • a partially inclined surface is mounted on a mounting table for mounting a semiconductor wafer, which is disclosed in Japanese Patent Application Laid-Open No. H05-294405.
  • a concave-shaped reflecting portion having the concave-shaped reflecting portion is also formed, in this case, the concave-shaped reflecting portion must be accurately formed on the surface of the mounting table, which results in an increase in cost.
  • the location where the concave reflection portion is formed is limited. Therefore, the mounting position of the detection device is also restricted.
  • An object of the present invention is to provide an object detection device and a processing system thereof, which can reliably determine the presence of the object without being affected by the surface condition of the object. With the goal.
  • the present invention provides a sensor unit including a pair of a light emitting element and a light receiving element, and the sensor unit is arranged with a detection space in which an object to be detected can exist,
  • the polygonal pyramids are arranged on the entire plane so that the faces of the adjacent polygonal pyramids face each other and are orthogonal to each other, and form a plurality of pairs of reflecting surfaces composed of two surfaces.
  • a reflector that emits reflected light in the same direction as the incident direction of the detection light from the sensor; and a drive that controls the sensor unit, and the presence of the detected object based on the reflected light obtained from the light receiving element.
  • the sensor unit is provided at a position where the detection light is emitted from the oblique direction to the reflection surface pair and the detection object to the detection object. Is when there is no object in the detection space. Since the detection light is mainly reflected toward the incident direction by the pair of reflecting surfaces of the reflector, the reflected light is received by the light receiving element and the object to be detected does not exist. On the other hand, when the object to be detected exists in the detection space, the above detection light enters the surface of the object to be detected from an oblique direction, so that the reflected light is directed to the normal to the surface of the object to be detected. The light is reflected in the opposite direction and is not detected by the light receiving element, and the presence of the object to be detected is accurately and reliably determined. It is possible to actually determine.
  • FIG. 1 is a diagram showing a schematic configuration of a device for detecting an object to be detected according to the present invention.
  • FIG. 2 is a diagram showing a cross-sectional configuration of a reflector used in the detection device of the present invention.
  • FIG. 3 is a diagram for explaining detection of a detection target (processing target).
  • FIG. 4 is a diagram showing a configuration example of a multi-chamber processing apparatus for a semiconductor wafer provided with the detection device of the present invention.
  • FIG. 5 is a configuration diagram showing a wafer positioning device in the multi-chamber processing apparatus.
  • FIG. 6 is a plan view showing a wafer fork provided with a reflector.
  • FIG. 7 is a diagram showing a main configuration of the positioning device.
  • FIG. 8 is a diagram showing a configuration of a general sensor unit used in a conventional detection device.
  • 9A and 9B are diagrams showing a configuration example for detecting the presence or absence of a semiconductor wafer by a conventional detection device.
  • FIGS. 10A and 10B are explanatory diagrams illustrating the detection principle when detecting the presence or absence of a semiconductor wafer using a conventional detection device.
  • FIG. 11 is a diagram showing a schematic configuration of a modified example of the device for detecting an object to be detected according to the present invention.
  • FIG. 1 is a diagram showing a conceptual configuration of a device for detecting an object to be detected according to the present invention.
  • FIG. 2 is a diagram showing a cross-sectional configuration of a reflector used in the detecting device of the present invention. Is a diagram illustrating a state when a detection target (processing target) is detected.
  • the same components will be described with the same reference numerals.
  • the detection light emitted from the light emitting element and the reflected light are light beams having a certain irradiation area, but are indicated by straight lines for convenience of description.
  • the position incident on the reflector and the position reflected therefrom are shown differently, but these positions are within the irradiation area. And the same position.
  • the detection device 20 for the object to be detected has a sensor unit 2.
  • the sensor unit 2 includes a light emitting element 4 for emitting detection light L 1 and a reflected light L of the emitted detection light L 1.
  • the light receiving elements 6 for receiving the light 2 and the light receiving elements 6 are integrally provided side by side in a pair.
  • the light emitting element 4 emits light having a wavelength of about 700 nm, for example.
  • these light emitting and receiving elements 4 and 6 are connected by a cable 8 to a discriminating section 10 composed of, for example, a computer with a microphone port. With this configuration, it is determined whether or not the object to be inspected exists based on the light receiving result of the light receiving element 6.
  • a horizontal polarization filter 11 that allows only horizontal polarization (see FIG. 10) in the figure, for example, is arranged.
  • a vertical polarization filter 12 that is shifted by 90 degrees from the above polarization direction, that is, passes only vertical polarization (see also FIG. 10) in the figure, is arranged. Note that these two filters 11 and 12 need not be provided as shown in FIG.
  • a reflector 22 having a reflecting surface which will be described later, is disposed at a predetermined distance in the irradiation direction of the detection light L1 of the sensor unit 2.
  • the space between the reflector 22 and the sensor unit 2 is a detection space S.
  • the reflector 22 has a reflection surface 22 a for mainly reflecting light so as to return to the direction of incidence of light, and a detection for the reflection surface 22 a is performed.
  • the incident light direction of the light L1 is only a predetermined angle 61 from the direction of the normal HI of the reflective surface 22a when the reflective surface 22a is viewed from the above, that is, the normal direction.
  • the reflecting surface 22a has a function such as a reflector that is provided at the end of a bicycle or the like and visually indicates that it is present, for example. I have. This has the function of reflecting light almost in the direction of incidence, regardless of the direction in which light enters, as long as the angle is within a certain opening angle centered on the normal to the reflecting surface. I have.
  • the reflecting surface 22a of such a reflector 22 is processed into a mirror surface state in which the surface disturbs the direction of light oscillation, and as shown in Fig. 2, the apex angle ⁇ is approximately 90 degrees.
  • the shape is such that many small quadrangular pyramids are arranged on the entire surface. This can be considered as a state in which many reflection surface pairs 24 in which two reflection surfaces are orthogonal to each other are arranged on the entire surface.
  • the present invention is not limited to the configuration described above, and can be used as a reflector in the detection device of the present invention. You. Further, in the present embodiment, a large number of quadrangular pyramids are arranged. However, the present invention is not limited to this, and when arranged, the faces of the adjacent pyramids face each other and are orthogonal (open). A polygonal pyramid having more than a quadrangular pyramid may be used as long as it can form a pair of reflecting surfaces composed of two surfaces arranged in a V-shape having an angle of about 90 degrees).
  • the detection light L 1 emitted from the light emitting element 4 of the sensor unit 2 is irradiated as the detection light vibrating in the horizontal direction by the horizontal polarization filter 11 and is reflected.
  • the reflected light L 2 is reflected on the surface of the body 22, and enters the longitudinal polarization filter 12 and the light receiving element 6.
  • the detection light L 1 when the object to be detected does not exist in the detection space S, the detection light L 1 has an incident angle of 0 1 with respect to the reflection surface 22 a of the reflector 22. The light enters from an oblique direction. Then, due to the action of the reflection surface 22 a, the reflected light L 2 is reflected toward the incident direction of the detection light L 1, that is, toward the sensor unit 2.
  • the reflected light L 2 includes vibration components in all directions.
  • the vertical vibration component of the reflected light L 2 is The light passes through the optical filter 12 and is detected by the light receiving element 6, and as a result, the determination unit 10 determines that the object to be detected (see the object to be detected 26 shown in FIG. 3) does not exist in the detection space S. .
  • the detection target 26 when the detection target 26 is present in the detection space S, the surface of the detection target 26 is obliquely oriented (angle ⁇ ⁇ ⁇ ⁇ with respect to the normal). 2)
  • this detection light L1 becomes reflected light L2 at the same angle 02 as the incident angle on the opposite side of the normal H1 according to the law of reflection. It is injected. Therefore, the reflected light L 2 does not enter the light receiving element 6, and as a result, the determination unit 10 determines that the detection target 26 exists in the detection space S.
  • the vibration direction of the reflected light L 2 depends on the surface state of the detection target 26.
  • the reflected light L 2 is emitted to the opposite side across the normal line and does not return to the sensor unit 2. Therefore, even if the reflected light contains vibration components in all directions. Thus, the presence / absence of the object 26 can be accurately and reliably determined.
  • the angle 0 1 of the detection light L 1 with respect to the normal H 1 is such that the reflected light L 2 from the object 26 does not enter the light receiving element 6 and It is necessary that the angle is within an angle range that the reflection surface 22a of the reflector 22 can cover (an angle range that can reflect the reflected light L2 with respect to the incident direction of the detection light L1). It is in the range of 6 degrees to 25 degrees, preferably in the range of about 11 degrees to 20 degrees.
  • FIG. 4 is a diagram showing an example of a configuration of a multi-chamber processing apparatus in a cluster tool as an example of the processing system.
  • FIG. 5 is a diagram illustrating a semiconductor wafer positioning mechanism in the multi-chamber processing apparatus.
  • FIG. 6 is a diagram showing a wafer fork provided with a reflector, and
  • FIG. 7 is a diagram showing a main configuration of a positioning device.
  • the multi-chamber processing apparatus 30 includes two film forming chambers 32, 34 for depositing a nitride film such as a silicon nitride film or a titanium nitride film on a semiconductor wafer W to be processed. And an alignment chamber 36 equipped with an alignment mechanism 50 having the above-described detection device 20 and a cassette 44 a accommodating a large number of semiconductor wafers W. Then, the load chamber 46 for supplying the semiconductor wafer before processing and the empty cassette 44 b are mounted, and the unloading port chamber 4 for collecting the processed semiconductor wafer W is mounted. 8 and, for example, a hexagonal prism, and each side is connected to each of the chambers 32, 34, 46, 48 via gate valves G1, G2, G5, G6.
  • the transport mechanism 42 for loading and unloading semiconductor wafers to and from each chamber The center chamber 38 is provided with an exhaust system (not shown) so that a vacuum state can be maintained by exhaust.
  • the alignment chamber 36 is connected to the center chamber 38 by providing an opening that is always open.
  • Both the load and the unlock lock channel 46 and 48 have an airtight structure, and each of them has a force set stage (not shown) that can move up and down and rotate.
  • a cassette is mounted on each of these cassette stages.
  • an exhaust system (not shown) and gate doors G3 and G4 that open and close for mounting the cassette are provided.
  • the inside of the loading and unloading lock channels 46 and 48 is in a vacuum state, the atmosphere in the outside working room (atmosphere) is established, and the gate doors G3 and G4 are opened.
  • the cassettes 44a and 44b are attached and detached by a transport robot or the like.
  • the transfer mechanism 42 in the center chamber 38 is attached to the end of the articulated arm 42a and the articulated arm 42a, which can bend and extend and rotate.
  • a transfer fork (not shown) for absorbing semiconductor wafers.
  • the multi-joint arm is extended, a transfer fork is inserted into each chamber, and the transfer is performed between each chamber and the semiconductor wafer mounting portion.
  • the alignment chamber 36 is made of, for example, aluminum. Thus, it is formed in a box shape, and one side is air-tightly connected to the center chamber 38.
  • the detection device 20 is provided as a component of a positioning mechanism 50 mounted in the alignment chamber 36.
  • the positioning mechanism 50 has a turntable 52 that holds and rotates the semiconductor wafer W.
  • the turntable 52 is provided with a holding mechanism such as a vacuum chuck, so that even if the semiconductor wafer W rotates, it does not slide down.
  • the rotary shaft 54 connected to the rotary base 52 penetrates through the bottom 36 a of the alignment chamber 36 and is connected to the rotary motor 56 to run.
  • the rotating shaft 54 is attached to the bottom of the penetrating portion with a magnetic fluid seal 58 interposed therebetween, for example, and is rotatable while maintaining airtightness.
  • a transfer unit 60 for mounting the semiconductor wafer W on the turntable 52 is provided in the alignment chamber 36.
  • the transfer section 60 is composed of a lifting / lowering port pad 62 that moves up and down at the time of delivery, and a Y-shaped wafer fork 64 that is horizontally attached to the upper end of the lifting / lowering port 62.
  • a lifting / lowering port pad 62 that moves up and down at the time of delivery
  • a Y-shaped wafer fork 64 that is horizontally attached to the upper end of the lifting / lowering port 62.
  • four support pins 66 are fitted so as to protrude upward, and the elevating door 62 is raised, and the upper end of these support pins 66 is lifted.
  • the lifting / lowering port 62 is used to abut the back surface of the semiconductor wafer W, and to support the semiconductor wafer by pushing it up from the transport fork and to receive the semiconductor wafer.
  • the positioning mechanism 50 has a contour sensor 70 for detecting the outer peripheral contour of the semiconductor wafer W to be detected.
  • the contour sensor section 70 includes a contour light emitting element 72 that emits a strip-like inspection light L5 provided on the ceiling 36 b of the alignment chamber 36 and an alignment chamber 70. And a line-shaped light receiving element for contour 74 provided at the bottom 36a of 36.
  • Each of the mounting portions of the contour light emitting element 72 and the contour light receiving element 74 is provided with a transmission window 76, 78 made of, for example, quartz via a sealing member (not shown).
  • the band-shaped inspection light L5 can be emitted from the light emitting element 72 to a position crossing the outer peripheral edge of the semiconductor wafer W placed at an appropriate position on the turntable 52.
  • the light emitting element for contour 72 and the light receiving element for contour 74 are connected to a displacement detecting unit 80 composed of, for example, a micro computer.
  • the alignment is performed according to the eccentricity amount and the eccentric direction of the semiconductor wafer W obtained based on the output value of the light receiving element 74.
  • the sensor unit 2 of the detection device 20 is provided on the upper surface 36 b of the alignment chamber 36.
  • an opening 82 is opened in the upper surface 36b, and a sealing portion such as an O-ring is provided in the opening 82 for airtightness.
  • a transmission window 84 made of quartz or the like is placed with the material 86 interposed therebetween, and the surrounding area is fixed with a mounting frame 88.
  • the sensor section 2 is fixed to a bending bracket 92, one end of which is fixed to a mounting frame 88 by a bolt 90 outside the transmission window 84.
  • the output end of the sensor section 2 is a cable 8 Is connected to the discriminating unit 10 via.
  • the bending fitting 92 is inclined at an angle of 01, for example, about 15 degrees with respect to the vertical direction (normal line) as described above, and the sensor section is bent. 2 is bent so that it is fixed.
  • the reflector 22 is provided horizontally on one side of a wafer fork 64 that moves up and down. In this case, as the wafer fork 64 is moved up and down, the reflector 22 also moves up and down by a stroke of the distance XI.
  • the detection light L 1 is set to be incident on the reflection surface 22 a of the reflector 22.
  • each of the chambers is evacuated to reach a predetermined vacuum.
  • all chambers may be exhausted once.
  • the gate door G3 of the load lock channel 46 is opened, and a force set 44a containing, for example, 25 unprocessed semiconductor wafers W is placed on a cassette stage (not shown).
  • the gate door G 3 to close and subsequently mounted, Ri by the indoor for example inert gas, the N 2 gas Nono.
  • this load lock channel The inside of the bar 46 is evacuated to a specified vacuum. In the same way, an empty cassette 44b is attached to the unloading port chamber 48.
  • the gate valve G1 is opened, the multi-joint arm 42a of the transfer mechanism 42 is extended under vacuum, and a transfer fork is inserted into the cassette 44a to receive the semiconductor wafer.
  • the transfer fork is retracted, and the semiconductor wafer W is loaded into the center chamber 38, and then the gate valve G1 is closed.
  • the multi-joint arm 42 a is rotated ⁇ extended, and the semiconductor wafer W is carried into the alignment chamber 36, and is placed on the wafer fork 64. Then, as will be described later, the positioning mechanism 50 detects a position shift and performs positioning so as to be at a correct position. The semiconductor wafer W after the completion of the alignment is again carried out to the center chamber 38 by the transfer mechanism 42.
  • the semiconductor wafer W is sequentially carried into the film forming chambers 32 and 34, and a predetermined film is formed on the semiconductor wafer W in each of the film forming chambers 32 and 34. Perform processing. After the completion of the film forming process, the processed semiconductor wafer W is stored by the transfer mechanism 42 in the empty cassette 44 b in the unload lock chamber 48.
  • the semiconductor held by the transport fork of the transport mechanism 42 The wafer W is carried into the center chamber 38 and the alignment chamber 36, and stops at a predetermined position.
  • the wafer fork 64 is raised, and the upper end of the support pin 66 is brought into contact with the back surface of the semiconductor wafer W, and the semiconductor wafer W is further pushed up and received from the transfer fork. Thereafter, the transfer is completed by the withdrawal of the transfer fork out of the alignment chamber 36.
  • the wafer fork 64 is lowered to a position below the turntable 52.
  • the semiconductor wafer W is delivered to and held by the turntable 52.
  • the turntable 52 drives the contour sensor 70 while rotating the semiconductor wafer W by one or more rotations, and receives the inspection light L 5 from the contour light emitting element 72 by the contour light receiving element 74.
  • the position of the contour of the semiconductor wafer W is detected based on the orientation flat.
  • the displacement detection unit 80 obtains a displacement correction amount of the semiconductor wafer, and performs the position correction by rotating the turntable 52 according to the displacement correction amount.
  • This position correction is performed, for example, so as to match the semiconductor wafer holding position of the film carrier to be carried in next.
  • one unified reference position is set for all the conductive wafer holding units (for example, a susceptor in a film forming chamber) in the apparatus. In this case, the position is corrected so as to be the reference position.
  • the detection light L 1 is reflected by the reflector 22 from the light emitting element 4 of the sensor unit 2 of the detection device 20.
  • the semiconductor wafer W is injected toward the surface 22 a, and whether or not the semiconductor wafer W is held on the wafer fork 64 is constantly monitored.
  • the detection light L1 is incident on the reflection surface 22a of the reflector 22 and reflected there, as shown in FIG. 1 described above.
  • the reflected light L2 is emitted in the same or almost the same direction as the incident direction.
  • the reflected light L 2 is received by the light receiving element 6 of the sensor unit 2, and from the light receiving result, the determination unit 10 determines that the semiconductor wafer W is not held.
  • the detection light L1 is reflected in the opposite direction across the normal on the surface of the semiconductor wafer. The reflected light does not enter the light receiving element 6, and the determination unit 10 determines that the semiconductor wafer W is held.
  • the detection light L1 is reflected by the semiconductor wafer W in the opposite direction, so that the determination unit 10 determines that the semiconductor wafer W is held. ing. Therefore, since the reflected light is not reflected in the direction of the light receiving element 6, it is not affected by the surface condition of the semiconductor wafer, that is, regardless of the type of film formed on the surface of the semiconductor wafer W, The presence or absence of W can be accurately and reliably determined.
  • the transport of the semiconductor wafer is performed by an intelligent method.
  • the determination result of “wafer present” indicates that the detection device 20 holds the semiconductor wafer W on the turntable 52 of the positioning mechanism 50.
  • an interface is automatically provided by the program sequence to prevent another semiconductor wafer W from being carried into the alignment mechanism 50 during transfer or processing. The transfer operation is stopped.
  • interlocks are often generated by software.
  • a multi-chamber processing apparatus having the film forming chambers 32 and 34 is described as an example.
  • the present invention is not limited to this, and may include an etching apparatus, an oxidation diffusion apparatus, and a sputtering apparatus.
  • the object to be transported is not limited to a semiconductor wafer, but may be a glass substrate, an LCD substrate, or the like.
  • the detection device 20 of the present invention is provided in the positioning mechanism has been described.
  • the present invention can be applied to other devices such as a moving path of a driving member such as each gate valve in the center chamber. By arranging as shown in FIG. 1 as a detection space, it is also possible to detect the driving state of the driving member.
  • the reflector may be prepared and attached separately to the support, or may be attached to the drive member itself and implemented.
  • the reflector 22 may be provided at the bottom of the chamber.
  • a reflector is attached to the arm, a plurality of sensor units are arranged on the movement path of the transfer arm, and the sensor output is monitored as needed.
  • the reflection surface 22 of the reflector 22 is used.
  • a has a shape in which a large number of minute quadrangular pyramids whose surface is disturbed in a mirror state that disturbs the direction of light oscillation are arranged, but it is not limited to this.For example, it has two orthogonal surfaces A plurality of groove-shaped (line-shaped) reflecting surfaces may be arranged in a row.
  • it is configured using a sensor unit having no filter. In this configuration, it is necessary to adjust the position of the sensor section in the line direction of the reflection surface.
  • the detection light When no object is present in the detection space, the detection light is reflected mainly by the reflecting surface of the reflector toward the incident direction. It is possible to determine that the object is not present, and when the object is present in the detection space, the reflected light is incident on the surface of the object from an oblique direction. The light does not return to the light receiving element because it is reflected in the direction opposite to the normal to the surface of the detection object. Therefore, it can be determined that the object to be detected exists.
  • the incident direction of the reflected light is not directed toward the light receiving element.
  • the presence or absence of a test object can be accurately and reliably determined.
  • the detection device for a detected object includes: a sensor unit in which a pair of a light emitting element and a light receiving element are integrally formed; A plurality of identical polygonal pyramids are arranged on the entire plane so that the faces of the adjacent polygonal pyramids face each other and are orthogonal to each other on a plane where a detection object is allowed to exist. A plurality of reflective surface pairs formed of two surfaces, and a reflector that emits reflected light in the same direction as the incident direction of the detection light from the light-emitting element. The normal direction of the body does not match the normal direction of the object to be reflected, and the sensor section emits the detection light to the pair of reflecting surfaces from a direction oblique to the normal direction of the reflector. Placed in
  • the detection light when the object to be detected does not exist in the detection space, the detection light is mainly reflected toward the incident direction by the pair of reflecting surfaces of the reflector, so that the reflected light is received.
  • the detection light can be received by the element to determine that the object is not present.
  • the above detection light when the object is present in the detection space, the above detection light is incident on the surface of the object obliquely.
  • this reflected light is reflected in the direction opposite to the normal to the surface of the object and is not detected by the light receiving element, and the presence of the object is accurately and reliably determined. It is possible to do it.
  • an object detection device and a processing system thereof which can reliably determine the presence of the object without being affected by the surface condition of the object.

Abstract

A detector for detected body installed across a transporting path for transporting, by a transporting mechanism, detected body to a plurality of designated positions and detecting whether the detected body is present or not on the transporting path, comprising a sensor part having a light emitting element and a light receiving element formed integrally with each other, a reflective body formed of two surfaces orthogonal to each other and having a large number of pair of reflective surfaces for emitting a reflected light along the same direction as an incident direction formed on the entire surface thereof, and a discrimination part for discriminating the presence of the detected body based on the reflective light obtained from the light receiving element, wherein the sensor part is disposed at a position capable of emitting a detection light to the pair of reflective surfaces and the detected body from a slanting direction.

Description

明 細 書  Specification
被検出体の検出装置とその処理システム Detected object detection device and its processing system
技術分野 Technical field
本発明は、 半導体ウェハ等の処理システムに主と して用い られる被検出体の検出装置及びこれを用いた処理システムに 関する。  The present invention relates to an object detection device used mainly in a processing system for semiconductor wafers and the like, and a processing system using the same.
背景技術 Background art
一般に、 半導体デバイスは、 半導体ウェハに対 して、 成膜 処理、 エッチング処理、 酸化拡散処理等の各種の製造工程に よ り 形成される。 これらの製造工程においては、 その処理を 専用に行 う 処理チャ ンバ一や半導体製造装置が製造ライ ンと して配置され、 これらのチャ ンバ一間又は装置間で搬送機構 を用いて半導体ウェハが搬送される。  Generally, a semiconductor device is formed on a semiconductor wafer by various manufacturing processes such as a film forming process, an etching process, and an oxidation diffusion process. In these manufacturing processes, processing chambers and semiconductor manufacturing equipment dedicated to performing the processing are arranged as manufacturing lines, and semiconductor wafers are transferred between these chambers or between equipment using a transfer mechanism. Conveyed.
半導体ウェハが搬入された処理チヤ ンバ一内では、 決め ら れたシーケンス に従い処理が施される。 こ の処理が終了 した 後に、 半導体ウェハは搬送機構によ り 処理チャ ンバ一外へ搬 出されている。  In the processing chamber into which the semiconductor wafer is loaded, the processing is performed according to a predetermined sequence. After the completion of this processing, the semiconductor wafer is carried out of the processing chamber by the transfer mechanism.
こ のよ う な半導体ウェハの搬送機構においては、 搬送エラ 一を回避する若しく は最小限の損傷で停止させるために、 搬 送経路上の各ポイ ン ト にて半導体ウェハが通過 しているのか 否かを確認する こ とが重要である。 通常、 この確認は、 半導 体ウェハの搬送経路上の要所に半導体ウェハの存在の有無を 検出する検出装置を配置して行っている。  In such a semiconductor wafer transfer mechanism, the semiconductor wafer passes through each point on the transfer path in order to avoid a transfer error or to stop the transfer with minimal damage. It is important to check whether this is the case. Usually, this check is performed by arranging a detection device for detecting the presence or absence of a semiconductor wafer at a key point on the semiconductor wafer transfer path.
こ こで、 従来、 一般的に用いられている検出装置について 説明する。 図 8 は、 従来の検出装置に用い られる一般的なセンサ部を 示す斜視図、 図 9 A, 9 B は、 従来の検出装置を用いて半導 体ウェハの有無を検出する時の状態を示す図、 図 丄 O A , 1 0 B は、 従来の検出装置を用いて半導体ウェハの有無を検出 する時の検出原理を説明する説明図である。 Here, a conventionally used detection device will be described. FIG. 8 is a perspective view showing a general sensor unit used in a conventional detection device, and FIGS. 9A and 9B show a state when the presence or absence of a semiconductor wafer is detected using the conventional detection device. FIGS. OA and 10B are explanatory diagrams illustrating the principle of detection when detecting the presence or absence of a semiconductor wafer using a conventional detection device.
図 8 に示すよ う に、 センサ部 2 は、 検出光を射出する発光 素子 4 と 、 この射出 した検出光の反射光を受光する受光素子 6 と が一体的に構成されている。 この発光素子 4 は、 例えば 波長が 7 0 0 nm程度の光が射出される。 こ のセンサ部 2 はケ 一ブル 8 を介して、 例えばマイ ク ロ コ ンピュータ等力 らなる 判別部 1 0 へ接続される。 この判別部 1 0 は受光素子 6 によ り 受光された結果に基づき、 半導体ウェハの存在の有無を判 定している。  As shown in FIG. 8, the sensor section 2 is configured integrally with a light emitting element 4 for emitting detection light and a light receiving element 6 for receiving reflected light of the emitted detection light. The light emitting element 4 emits light having a wavelength of about 700 nm, for example. The sensor unit 2 is connected via a cable 8 to a discriminating unit 10 composed of, for example, a micro computer. The determination unit 10 determines the presence or absence of a semiconductor wafer based on the result of light reception by the light receiving element 6.
そ して、 上記発光素子 4 の前方には、 例えば図 8 中におい て横方向への偏光 (図 1 O A参照) しか通さ ない横偏光フィ ルタ 1 1 が配置され、 また、 受光素子 6 の前面には、 上記偏 光方向と は 9 0度ずれた、 すなわち図 8 中において縦方向へ の偏光しか通さ ない縦偏光フ ィ ルタ 1 2 が配置される。  In front of the light emitting element 4, there is arranged a horizontal polarization filter 11, which allows only horizontal polarization (see FIG. 1OA, for example) in FIG. 8, and a front face of the light receiving element 6. In FIG. 8, a vertical polarization filter 12 that is shifted by 90 degrees from the above polarization direction, that is, passes only the polarization in the vertical direction in FIG. 8, is arranged.
そ して、 このセンサ部 2 の検出光 L 1 の照射方向には、 所 定の距離だけ隔てて反射体 1 4 を配置 している。 この反射体 1 4 の反射面 1 4 a は、 上記照射方向に対して略垂直になる よ う に、 すなわち上記照射方向と上記反射面 1 4 a に立てた 法線の方向が略一致する よ う に設定されている。 また、 上記 反射面 1 4 a の性質は、 特定方向の振動面を有する光が当た つても、 この偏光方向を乱して全ての方向に振動方向が存在 する よ う な反射光 L 2 を形成し得る よ う になつている。 The reflector 14 is arranged at a predetermined distance in the irradiation direction of the detection light L1 of the sensor unit 2. The reflecting surface 14a of the reflector 14 is set so as to be substantially perpendicular to the above-mentioned irradiation direction, that is, the above-mentioned irradiation direction and the direction of the normal line to the above-mentioned reflecting surface 14a substantially coincide. Is set to The property of the reflecting surface 14a is that even if light having a vibration surface in a specific direction is irradiated, the polarization direction is disturbed and the vibration direction exists in all directions. Thus, the reflected light L 2 can be formed.
これに対 して、 一般的な半導体ウェハの表面は鏡面状態に なってお り 、 こ の表面に入射した光が反射される場合には、 反射光の振動方向は、 入射光の振動方向を乱すこ と もなく 、 これを維持 した状態で反射されるので、 入射光の振動方向と 同 じ状態と なっている。  On the other hand, the surface of a general semiconductor wafer is a mirror surface, and when light incident on this surface is reflected, the vibration direction of the reflected light is the same as the vibration direction of the incident light. Without being disturbed, it is reflected while maintaining this, so that it is in the same state as the vibration direction of the incident light.
このよ う な検出装置において、 発光素子 4 よ り 射出された 検出光 L 1 は、 横偏光フィルタ 1 1 にて横方向に振動する検 出光と なって照射され、 反射体 1 4 の反射面 1 4 a 、 或いは 被検出体である半導体ウェハ Wの表面で反射する。 反射光 L 2 は、 縦偏光フ ィ ルタ 1 2及び受光素子 6 に向かって入射し てく る。 ,  In such a detection device, the detection light L 1 emitted from the light emitting element 4 is radiated by the horizontal polarization filter 11 as detection light oscillating in the horizontal direction, and is applied to the reflection surface 1 of the reflector 14. 4a, or the light is reflected on the surface of the semiconductor wafer W as the object to be detected. The reflected light L 2 enters the longitudinal polarization filter 12 and the light receiving element 6. ,
こ こで、 検出空間 S に半導体ウェハ Wが存在しない場合に は、 図 9 A及び図 1 O Aに示すよ う に、 検出光 L 1 は振動方 向を乱すよ う な反射面 1 4 a で反射されるため、 この反射光 L 2 にはあ らゆる方向の振動成分が含まれている。  Here, when the semiconductor wafer W does not exist in the detection space S, as shown in FIGS. 9A and 1OA, the detection light L1 is reflected by the reflection surface 14a which disturbs the vibration direction. Since the reflected light L 2 is reflected, the reflected light L 2 contains vibration components in all directions.
従って、 この反射光 L 2 の内の縦方向の振動成分は、 縦偏 光フイノレタ 1 2 を通過 して受光素子 6 に検出 される こ と にな り 、 この結果、 判別部 1 0 は半導体ウェハ Wが検出空間 S に は存在しないものと判別する。  Therefore, the vertical vibration component of the reflected light L 2 passes through the vertically polarized finolators 12 and is detected by the light receiving element 6. It is determined that W does not exist in the detection space S.
これに対 して、 図 9 B及ぴ図 1 O B に示すよ う に、 検出空 間 S に半導体ウェハ Wが存在する場合においては、 この半導 体ウェハ Wの表面が一般的には鏡面状態と なっている こ とか ら、 検出光 L 1 の振動方向はそのまま維持された状態で反射 されるため、 反射光 L 2 は横方向に振動している。 この反射 光 2 は、 横偏光フ ィ ルタ 1 2 を通過する こ とができずに、 遮断 (光路が曲げられる) され、 受光素子 6 には反射光 L 2 が入射せず、 この結果、 判別部 1 0 は半導体ウェハ Wが検出 空間 S に存在 している もの と判別する。 On the other hand, as shown in FIGS. 9B and 1OB, when the semiconductor wafer W is present in the detection space S, the surface of the semiconductor wafer W is generally in a mirror state. Therefore, since the detection light L1 is reflected while being kept in the same vibration direction, the reflected light L2 vibrates in the horizontal direction. This reflection The light 2 cannot pass through the horizontal polarization filter 12 and is blocked (the optical path is bent), and the reflected light L 2 does not enter the light receiving element 6. A value of 0 determines that the semiconductor wafer W exists in the detection space S.
前述したよ う な従来の検出装置では、 半導体ウェハ Wの表 面である反射面が鏡面状態であ り 、 検出光 L 1 の振動方向を 乱さ ない反射光 L 2 と なる こ と を前提と している。  In the conventional detection apparatus as described above, it is assumed that the reflection surface, which is the surface of the semiconductor wafer W, is in a mirror state, and the reflected light L2 does not disturb the vibration direction of the detection light L1. ing.
しかし、 種々 の化合物、 例えば、 窒化化合物からなる反射 防止膜等が半導体ウェハ Wの表面に堆積された場合、 この表 面は鏡面状態ではなく な り 、 その振動方向を乱すよ う に作用 する。 従って、 この反射防止膜が形成されている ウェハ表面 に検出光 L 1 が入射し、 反射された反射光 L 2 は、 図 9 Aに 示すよ う に、 あ らゆる方向に振動成分が含まれた状態と なる 結果的に、 こ の反射光 L 2 の内の縦方向の振動成分が縦偏光 フィ ルタ 1 2 を通過 して受光素子 6 に検出されて、 判別部 1 0 は半導体ウェハ Wが検出空間 S に実際には存在する にも関 わらず、 存在 しなレ、と判定して しま う場合がある。 このよ う な誤った判定によ り 、 搬送系が停止 し、 牽いては製造ライ ン が停止するに至って しま う。  However, when an anti-reflection film made of various compounds, for example, a nitride compound is deposited on the surface of the semiconductor wafer W, this surface is not in a mirror state but acts to disturb the vibration direction. Therefore, the detection light L1 is incident on the wafer surface on which the antireflection film is formed, and the reflected light L2 reflected includes vibration components in all directions as shown in FIG. 9A. As a result, the vertical vibration component of the reflected light L 2 passes through the vertical polarization filter 12 and is detected by the light receiving element 6, and the discrimination unit 10 determines that the semiconductor wafer W is In some cases, it may be determined that it does not exist even though it actually exists in the detection space S. Such erroneous judgments can cause the transport system to stop, which in turn will stop the production line.
また、 この よ う な問題を解決する技術と して、 特開平 5 _ 2 9 4 4 0 5 号公報に開示されている、 半導体ウェハを載置 する載置台上に、 部分的に傾斜面を有する凹部状反射部を形 成する こ と も行われているが、 この場合には載置台の表面に 凹部状反射部を精度良く 形成しなければな らず、 コス ト高を 招いている。 また、 凹部状反射部を形成する箇所が限られて いる ため、 検出装置の取り 付け位置等も制限を受ける こ と と なる。 In addition, as a technique for solving such a problem, a partially inclined surface is mounted on a mounting table for mounting a semiconductor wafer, which is disclosed in Japanese Patent Application Laid-Open No. H05-294405. Although a concave-shaped reflecting portion having the concave-shaped reflecting portion is also formed, in this case, the concave-shaped reflecting portion must be accurately formed on the surface of the mounting table, which results in an increase in cost. In addition, the location where the concave reflection portion is formed is limited. Therefore, the mounting position of the detection device is also restricted.
発明の開示 Disclosure of the invention
本発明は、 被検出体の表面状態に影響されずに、 こ の被検 出体の存在を確実に判別する こ と ができ る被検出体の検出装 置及びその処理システムを提供する こ と を 目的とする。  An object of the present invention is to provide an object detection device and a processing system thereof, which can reliably determine the presence of the object without being affected by the surface condition of the object. With the goal.
本発明は上記目的を達成するために、 一対の発光素子及び 受光素子に構成されるセンサ部と、 上記セ ンサ部とは被検出 体が存在可能な検出空間を空けて配置され、 複数の同一の多 角錐体が全平面上に、 隣接する上記多角錐体の面どう しが正 対し且つ直交する よ う に配置されて、 2つの面からなる反射 面対を複数形成 して、 上記発光素子からの検出光の入射方向 と同方向に沿って反射光を射出する反射体と、 上記センサ部 を駆動制御 し、 上記受光素子から得られた上記反射光に基づ き、 被検出体の存在を判別する判別部と で構成され、 上記セ ンサ部は、 斜め方向から上記反射面対及び被検出体へ検出光 を射出する位置に配置される被検出体の検出装置を提供する 本発明においては、 検出空間に被検出体が存在 しない場合 には検出光は、 反射体の反射面対によ り 主と してその入射方 向に向けて反射されるため、 この反射光を受光素子で受光し て被検出体が存在していないこ とを判別でき、 一方、 検出空 間に被検出体が存在する場合には、 上記検出光は被検出体の 表面に斜め方向から入射するため、 この反射光は被検出体の 表面の法線に対して反対方向に反射する こ と になって受光素 子に検出される こ と はな く 、 被検出体の存在を正確に且つ確 実に判別する こ とが可能と なる。 In order to achieve the above object, the present invention provides a sensor unit including a pair of a light emitting element and a light receiving element, and the sensor unit is arranged with a detection space in which an object to be detected can exist, The polygonal pyramids are arranged on the entire plane so that the faces of the adjacent polygonal pyramids face each other and are orthogonal to each other, and form a plurality of pairs of reflecting surfaces composed of two surfaces. A reflector that emits reflected light in the same direction as the incident direction of the detection light from the sensor; and a drive that controls the sensor unit, and the presence of the detected object based on the reflected light obtained from the light receiving element. The sensor unit is provided at a position where the detection light is emitted from the oblique direction to the reflection surface pair and the detection object to the detection object. Is when there is no object in the detection space. Since the detection light is mainly reflected toward the incident direction by the pair of reflecting surfaces of the reflector, the reflected light is received by the light receiving element and the object to be detected does not exist. On the other hand, when the object to be detected exists in the detection space, the above detection light enters the surface of the object to be detected from an oblique direction, so that the reflected light is directed to the normal to the surface of the object to be detected. The light is reflected in the opposite direction and is not detected by the light receiving element, and the presence of the object to be detected is accurately and reliably determined. It is possible to actually determine.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明に係る被検出体の検出装置の概略的な構成 を示す図である。  FIG. 1 is a diagram showing a schematic configuration of a device for detecting an object to be detected according to the present invention.
図 2 は、 本発明の検出装置に用いる反射体の断面構成を示 す図である。  FIG. 2 is a diagram showing a cross-sectional configuration of a reflector used in the detection device of the present invention.
図 3 は、 被検出体 (被処理体) の検出について説明するた めの図である。  FIG. 3 is a diagram for explaining detection of a detection target (processing target).
図 4 は、 本発明の検出装置を備えた半導体ウェハのマルチ チャ ンバ一処理装置の構成例を示す図である。  FIG. 4 is a diagram showing a configuration example of a multi-chamber processing apparatus for a semiconductor wafer provided with the detection device of the present invention.
図 5 は、 マルチチャ ンバ一処理装置内の ウェハ位置合わせ 装置を示す構成図である。  FIG. 5 is a configuration diagram showing a wafer positioning device in the multi-chamber processing apparatus.
図 6 は、 反射体を設けたウェハフォーク を示す平面図であ る。  FIG. 6 is a plan view showing a wafer fork provided with a reflector.
図 7 は、 位置合わせ装置の主要な構成を示す図である。 図 8 は、 従来の検出装置に用い られる一般的なセンサ部の 構成を示す図である。  FIG. 7 is a diagram showing a main configuration of the positioning device. FIG. 8 is a diagram showing a configuration of a general sensor unit used in a conventional detection device.
図 9 A, 9 B は、 従来の検出装置による半導体ウェハの有 無を検出するための構成例を示す図である。  9A and 9B are diagrams showing a configuration example for detecting the presence or absence of a semiconductor wafer by a conventional detection device.
図 1 0 A, 1 O B は、 従来の検出装置を用いて半導体ゥェ ハの有無を検出する時の検出原理を説明する説明図である。  FIGS. 10A and 10B are explanatory diagrams illustrating the detection principle when detecting the presence or absence of a semiconductor wafer using a conventional detection device.
図 1 1 は、 本発明に係る被検出体の検出装置の変形例の概 略的な構成を示す図である。  FIG. 11 is a diagram showing a schematic configuration of a modified example of the device for detecting an object to be detected according to the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明によ る実施形態について詳細に説明する。 図 1 は本発明に係る被検出体の検出装置の概念的な構成を 示す図であ り 、 図 2 は本発明の検出装置に用いる反射体の断 面構成を示す図であ り 、 図 3 は被検出体 (被処理体) を検出 する時の状態を示す図である。 尚、 これらの図の中で同 じ構 成部位には同 じ参照符号を付して説明する。 また、 以下の図 面において、 発光素子から射出される検出光及びその反射光 はある照射面積を持つビーム光であるが、 表記の都合上、 直 線で示している。 また、 射出方向及び入射方向の方向性を分 かり 易く するために反射体に入射した位置と反射した位置が 異なって示 しているが、 これらの位置が照射面積内である も の と して、 同 じ位置と して説明 している。 Hereinafter, embodiments according to the present invention will be described in detail. FIG. 1 is a diagram showing a conceptual configuration of a device for detecting an object to be detected according to the present invention. FIG. 2 is a diagram showing a cross-sectional configuration of a reflector used in the detecting device of the present invention. Is a diagram illustrating a state when a detection target (processing target) is detected. In these figures, the same components will be described with the same reference numerals. Further, in the following drawings, the detection light emitted from the light emitting element and the reflected light are light beams having a certain irradiation area, but are indicated by straight lines for convenience of description. In addition, in order to make it easier to understand the directivity of the emission direction and the incident direction, the position incident on the reflector and the position reflected therefrom are shown differently, but these positions are within the irradiation area. And the same position.
この被検出体の検出装置 2 0 は、 セ ンサ部 2 を有している このセンサ部 2 は、 検出光 L 1 を射出する発光素子 4 と、 こ の射出 した検出光 L 1 の反射光 L 2 を受光する受光素子 6 と が一対で並んで一体的に設け られている。 この発光素子 4か らは、 例えば波長が 7 0 0 n m程度の光が射出される。 また、 これらの発光受光素子 4、 6 には、 ケーブル 8 によ り 、 例え ばマイ ク 口 コ ンピュータ等からなる判別部 1 0 へ接続されて いる。 こ の構成によ り 、 受光素子 6 における受光結果に基づ いて被検査体が存在するか否かを判断する。  The detection device 20 for the object to be detected has a sensor unit 2. The sensor unit 2 includes a light emitting element 4 for emitting detection light L 1 and a reflected light L of the emitted detection light L 1. The light receiving elements 6 for receiving the light 2 and the light receiving elements 6 are integrally provided side by side in a pair. The light emitting element 4 emits light having a wavelength of about 700 nm, for example. In addition, these light emitting and receiving elements 4 and 6 are connected by a cable 8 to a discriminating section 10 composed of, for example, a computer with a microphone port. With this configuration, it is determined whether or not the object to be inspected exists based on the light receiving result of the light receiving element 6.
さ らに、 発光素子 4 の前方には、 例えば図中において横方 向への偏光 (図 1 0参照) しか通さない横偏光フ ィルタ 1 1 が配置され、 また、 受光素子 6 の前面には、 上記偏光方向と は 9 0度ずれた、 すなわち図中において縦方向への偏光 (図 1 0 も参照) しか通さ ない縦偏光フィ ルタ 1 2 が配置される 尚、 これらの両フィルタ 1 1 、 1 2 は図 1 1 に示すよ う に設 けな く ても よい。 In addition, in front of the light-emitting element 4, a horizontal polarization filter 11 that allows only horizontal polarization (see FIG. 10) in the figure, for example, is arranged. A vertical polarization filter 12 that is shifted by 90 degrees from the above polarization direction, that is, passes only vertical polarization (see also FIG. 10) in the figure, is arranged. Note that these two filters 11 and 12 need not be provided as shown in FIG.
そ して、 このセンサ部 2 の検出光 L 1 の照射方向には、 所 定の距離だけ隔てて後述する反射面を有する反射体 2 2 を配 置している。 この反射体 2 2 とセンサ部 2 と の間が検出空間 S と なる。  Further, a reflector 22 having a reflecting surface, which will be described later, is disposed at a predetermined distance in the irradiation direction of the detection light L1 of the sensor unit 2. The space between the reflector 22 and the sensor unit 2 is a detection space S.
こ こで、 この反射体 2 2 は、 主と して光の入射方向に戻す よ う に光を反射する反射面 2 2 a を有してお り 、 且つ、 この 反射面 2 2 a に対する検出光 L 1 の入射光方向が、 上記反射 面 2 2 a をマク 口的に見た時のこの反射面 2 2 a の法線 H I の方向、 すなわち法線方向よ り も所定の角度 6 1 だけ傾斜さ れている。 具体的には、 反射面 2 2 a は、 例えば、 自転車等 の最後尾に設けて存在する こ と を視覚的に知 らせる リ フ レタ タ (反射鏡) のよ う な機能を有している。 これは、 反射面の 法線を中心とする一定の開き角の範囲内な らば、 どのよ う な 方向から光が入射してきても、 略その入射方向に向けて反射 させる機能を有している。  Here, the reflector 22 has a reflection surface 22 a for mainly reflecting light so as to return to the direction of incidence of light, and a detection for the reflection surface 22 a is performed. The incident light direction of the light L1 is only a predetermined angle 61 from the direction of the normal HI of the reflective surface 22a when the reflective surface 22a is viewed from the above, that is, the normal direction. Inclined. Specifically, the reflecting surface 22a has a function such as a reflector that is provided at the end of a bicycle or the like and visually indicates that it is present, for example. I have. This has the function of reflecting light almost in the direction of incidence, regardless of the direction in which light enters, as long as the angle is within a certain opening angle centered on the normal to the reflecting surface. I have.
こ のよ う な反射体 2 2 の反射面 2 2 a は表面が光の振動方 向を乱す鏡面状態に処理され、 図 2 に示すよ う に、 頂角 α ΐ がほぼ 9 0度と なる微小な四角錐体が多数、 全面上に配置さ れている形状と なっている。 これは、 2つの反射面が直交し ている反射面対 2 4 が多数、 全面上に配置されている状態と 考える こ と もできる。 この反射面対 2 4 によ り 、 入射側の反 射面に入射角度を持って入射すれば、 どのよ う な角度から入 射した光に対しても、 この入射方向と ほぼ同 じ方向に反射光 を射出する こ とが可能と なる。 また、 入射方向と ほぼ同 じ方 向に反射光を射出する反射面であれば、 前述したよ う な構成 に限定されず、 本発明の検出装置における反射体と して用い る こ とができ る。 また、 本実施形態では、 四角錐多数配置し た例であるが、 これに限定される ものではな く 、 配置された 際に隣接する錐体の面ど う しが正対し且つ直交する (開き角 ほぼ 9 0度の V字状) よ う に配置される 2つの面からなる反 射面対を形成でき るな らば、 四角錐以上の多面を有する多角 錐体でも よい。 The reflecting surface 22a of such a reflector 22 is processed into a mirror surface state in which the surface disturbs the direction of light oscillation, and as shown in Fig. 2, the apex angle αΐ is approximately 90 degrees. The shape is such that many small quadrangular pyramids are arranged on the entire surface. This can be considered as a state in which many reflection surface pairs 24 in which two reflection surfaces are orthogonal to each other are arranged on the entire surface. By means of this pair of reflecting surfaces 24, if the light is incident on the reflecting surface on the incident side at an angle of incidence, the light incident from any angle will be in the same direction as this incident direction. reflected light Can be injected. In addition, as long as the reflecting surface emits reflected light in substantially the same direction as the incident direction, the present invention is not limited to the configuration described above, and can be used as a reflector in the detection device of the present invention. You. Further, in the present embodiment, a large number of quadrangular pyramids are arranged. However, the present invention is not limited to this, and when arranged, the faces of the adjacent pyramids face each other and are orthogonal (open). A polygonal pyramid having more than a quadrangular pyramid may be used as long as it can form a pair of reflecting surfaces composed of two surfaces arranged in a V-shape having an angle of about 90 degrees).
次に、 以上のよ う に構成された検出装置 2 0 を用いて行わ れる被検出体 2 6 の有無の検出動作について図 3 も参照 して 説明する。  Next, the operation of detecting the presence or absence of the detection target 26 using the detection device 20 configured as described above will be described with reference to FIG.
まず、 図 1 に示すよ う にセンサ部 2 の発光素子 4 よ り 射出 された検出光 L 1 は、 横偏光フ ィ ルタ 1 1 にて横方向に振動 する検出光と なって照射され、 反射体 2 2 、 の表面で反射し この反射光 L 2 は縦偏光フィルタ 1 2及び受光素子 6 に向か つて入射してく る。  First, as shown in FIG. 1, the detection light L 1 emitted from the light emitting element 4 of the sensor unit 2 is irradiated as the detection light vibrating in the horizontal direction by the horizontal polarization filter 11 and is reflected. The reflected light L 2 is reflected on the surface of the body 22, and enters the longitudinal polarization filter 12 and the light receiving element 6.
こ こで図 1 に示すよ う に、 検出空間 S に被検出体が存在 し ない場合には、 検出光 L 1 は反射体 2 2 の反射面 2 2 a に対 して入射角が 0 1 と なる斜め方向から入射する。 そして、 こ の反射面 2 2 a の作用によ り 、 反射光 L 2 は検出光 L 1 の入 射方向に向けて、 すなわちセンサ部 2 の方向に向けて反射さ れる。 また、 この反射光 L 2 にはあ らゆる方向の振動成分を 含む。  Here, as shown in FIG. 1, when the object to be detected does not exist in the detection space S, the detection light L 1 has an incident angle of 0 1 with respect to the reflection surface 22 a of the reflector 22. The light enters from an oblique direction. Then, due to the action of the reflection surface 22 a, the reflected light L 2 is reflected toward the incident direction of the detection light L 1, that is, toward the sensor unit 2. The reflected light L 2 includes vibration components in all directions.
従って、 この反射光 L 2 の内の縦方向の振動成分は、 縦偏 光フ ィルタ 1 2 を通過 して受光素子 6 で検出され、 この結果 判別部 1 0 は被検出体 (図 3 に示す被検出体 2 6 参照) が検 出空間 S に存在 しないもの と判定する。 Therefore, the vertical vibration component of the reflected light L 2 is The light passes through the optical filter 12 and is detected by the light receiving element 6, and as a result, the determination unit 10 determines that the object to be detected (see the object to be detected 26 shown in FIG. 3) does not exist in the detection space S. .
これに対 して、 図 3 に示すよ う に、 検出空間 S に被検出体 2 6 が存在する場合には、 この被検出体 2 6 の表面に斜め方 向 (法線に対して角度 Θ 2 ) から検出光 L 1 が入射される と この検出光 L 1 は、 反射の法則に従って、 法線 H 1 を挟んだ 反対側で入射した角度と 同 じ角度 0 2 で反射光 L 2 と なって 射出される。 このため、 この反射光 L 2 は、 受光素子 6 には 入射せず、 この結果、 判別部 1 0 は被検出体 2 6 が検出空間 S に存在する ものと判定する。  On the other hand, as shown in FIG. 3, when the detection target 26 is present in the detection space S, the surface of the detection target 26 is obliquely oriented (angle に 対 し て with respect to the normal). 2) When the detection light L1 is incident from the above, this detection light L1 becomes reflected light L2 at the same angle 02 as the incident angle on the opposite side of the normal H1 according to the law of reflection. It is injected. Therefore, the reflected light L 2 does not enter the light receiving element 6, and as a result, the determination unit 10 determines that the detection target 26 exists in the detection space S.
この場合、 検出空間 S における被検出体 2 6 の反射面の法 線 H 2 の方向は、 上記検出光 L 1 の射出方向 と一致しないよ う にする必要がある。 つま り 、 この例では反射体 2 2 の反射 面 2 2 a と被検出体 2 6 が略平行になっている ので、 角度 Θ 1 = 0 2 と なっている。  In this case, the direction of the normal H 2 of the reflection surface of the detection target 26 in the detection space S needs to be different from the emission direction of the detection light L 1. That is, in this example, the angle Θ1 = 02 because the reflection surface 22a of the reflector 22 and the object 26 are substantially parallel to each other.
このよ う に、 被検出体 2 6 の表面方向に対して斜めに入射 するため、 被検出体 2 6 の表面状態によ り 反射光 L 2 の振動 方向がどの よ う になっていたと しても、 その反射光 L 2 は、 法線を挟んで反対側に射出され、 センサ部 2 へ戻ってこない 従って、 その反射光があ らゆる方向に振動成分が含まれた状 態であって も、 被検出体 2 6 の存在の有無が正確に、 且つ確 実に判別する こ とが可能と なる。  As described above, since the light is incident obliquely with respect to the surface direction of the detection target 26, the vibration direction of the reflected light L 2 depends on the surface state of the detection target 26. However, the reflected light L 2 is emitted to the opposite side across the normal line and does not return to the sensor unit 2. Therefore, even if the reflected light contains vibration components in all directions. Thus, the presence / absence of the object 26 can be accurately and reliably determined.
また上記法線 H 1 に対する検出光 L 1 の角度 0 1 は、 被検 出体 2 6 か らの反射光 L 2 が受光素子 6 に入射しないで且つ 上記反射体 2 2 の反射面 2 2 a がカバー し得る角度範囲 (検 出光 L 1 の入射方向に対して反射光 L 2 を反射し得る角度範 囲) 内である必要があ り 、 例えば、 6度〜 2 5度の範囲内、 好ま しく は 1 1 度〜 2 0度程度の範囲内である。 The angle 0 1 of the detection light L 1 with respect to the normal H 1 is such that the reflected light L 2 from the object 26 does not enter the light receiving element 6 and It is necessary that the angle is within an angle range that the reflection surface 22a of the reflector 22 can cover (an angle range that can reflect the reflected light L2 with respect to the incident direction of the detection light L1). It is in the range of 6 degrees to 25 degrees, preferably in the range of about 11 degrees to 20 degrees.
次に、 こ のよ う な被検出体の検出装置を処理システムに搭 載して、 被検出体と なる半導体ウェハの存在の有無を検出す る例について説明する。  Next, an example will be described in which such an object detection device is mounted on a processing system to detect the presence or absence of a semiconductor wafer serving as an object.
図 4 は、 処理システムの一例と して、 ク ラ スタ ツール化さ れているマルチチヤ ンバー処理装置の構成例を示す図であ り 図 5 はマルチチャ ンバ一処理装置における半導体ウェハの位 置合わせ機構の構成を示す図であ り 、 図 6 は反射体を設けた ウェハフォーク を示す図、 図 7 は位置合わせ装置の主要な構 成を示す図である。  FIG. 4 is a diagram showing an example of a configuration of a multi-chamber processing apparatus in a cluster tool as an example of the processing system. FIG. 5 is a diagram illustrating a semiconductor wafer positioning mechanism in the multi-chamber processing apparatus. FIG. 6 is a diagram showing a wafer fork provided with a reflector, and FIG. 7 is a diagram showing a main configuration of a positioning device.
このマルチチャ ンバ一処理装置 3 0 は、 被処理体と なる半 導体ウェハ W上に窒化シリ コン膜ゃ窒化チタ ン膜等の窒化膜 を堆積させる 2 台の成膜チャ ンバ一 3 2、 3 4 と、 前述 した 検出装置 2 0 を備える位置合わせ機構 5 0 が搭載されたァラ ィ メ ン ト チャ ンバ一 3 6 と、 多数枚の半導体ウェハ Wが収納 されたカセ ッ ト 4 4 a を装着して、 処理前の半導体ウェハを 供給する ための ロー ドロ ツ クチャ ンバー 4 6 と 、 空カセ ッ ト 4 4 b を装着して、 処理された半導体ウェハ Wを回収するァ ンロー ド口 ツクチャ ンバー 4 8 と、 例えば 6 角柱形状を成し それぞれの側面にゲー トバルブ G 1, G 2, G 5 , G 6 を介 して各チャ ンバ一 3 2、 3 4、 4 6、 4 8 が連結され、 各チ ヤ ンバーへ半導体ウェハを搬入 · 搬出する搬送機構 4 2 が取 り 付け られたセンタチャ ンバ一 3 8 と によ り 構成されている , こ のセンタチャ ンバ一 3 8 は、 図示 しない排気系を備えて 排気によ り 真空状態を維持可能に構成されている。 ァライ メ ン ト チャ ンバ一 3 6 は、 セ ンタチャ ンバ一 3 8 と の間に常時 開 口 している開 口部を設けて連結されている。 The multi-chamber processing apparatus 30 includes two film forming chambers 32, 34 for depositing a nitride film such as a silicon nitride film or a titanium nitride film on a semiconductor wafer W to be processed. And an alignment chamber 36 equipped with an alignment mechanism 50 having the above-described detection device 20 and a cassette 44 a accommodating a large number of semiconductor wafers W. Then, the load chamber 46 for supplying the semiconductor wafer before processing and the empty cassette 44 b are mounted, and the unloading port chamber 4 for collecting the processed semiconductor wafer W is mounted. 8 and, for example, a hexagonal prism, and each side is connected to each of the chambers 32, 34, 46, 48 via gate valves G1, G2, G5, G6. The transport mechanism 42 for loading and unloading semiconductor wafers to and from each chamber The center chamber 38 is provided with an exhaust system (not shown) so that a vacuum state can be maintained by exhaust. The alignment chamber 36 is connected to the center chamber 38 by providing an opening that is always open.
これらの ロー ド、 ア ンロ ー ドロ ック チャ ンノ ー 4 6 , 4 8 は、 共に気密構造であ り 、 それぞれに昇降及び旋回自在な力 セ ッ トステージ (図示せず) を備えてお り 、 これらのカセ ッ トステージ上にそれぞれカセ ッ トが装着される。 さ ら に、 図 示 しない排気系 とカセ ッ ト装着のために開閉するゲー ト ドア G 3 , G 4 と を備えている。  Both the load and the unlock lock channel 46 and 48 have an airtight structure, and each of them has a force set stage (not shown) that can move up and down and rotate. A cassette is mounted on each of these cassette stages. In addition, an exhaust system (not shown) and gate doors G3 and G4 that open and close for mounting the cassette are provided.
上記ロー ド、 アンロー ドロ ックチャ ンノ ー 4 6 , 4 8 内が 真空状態であれば、 外部の作業室雰囲気 (大気) と した後、 ゲー ト ドア G 3 , G 4 を開 口 して、 作業者又は搬送ロ ボッ ト 等によ り カセ ッ ト 4 4 a , 4 4 b の装着 ' 脱着が行われる。 またセンタ チャ ンバ一 3 8 内の搬送機構 4 2 は、 屈伸及ぴ旋 回可能な多関節アーム 4 2 a と、 多関節アーム 4 2 a の先端 部分に取り 付け られ、 真空チヤ ック によ り 半導体ウェハを吸 着する搬送用フォーク (図示せず) と で構成される。 この多 間接アームを伸長させて、 各チャ ンバ一内に搬送用フォーク を差し入れ、 各チヤ ンバーの半導体ウェハ载置部との受け渡 しを行ってレヽる。  If the inside of the loading and unloading lock channels 46 and 48 is in a vacuum state, the atmosphere in the outside working room (atmosphere) is established, and the gate doors G3 and G4 are opened. Alternatively, the cassettes 44a and 44b are attached and detached by a transport robot or the like. The transfer mechanism 42 in the center chamber 38 is attached to the end of the articulated arm 42a and the articulated arm 42a, which can bend and extend and rotate. And a transfer fork (not shown) for absorbing semiconductor wafers. The multi-joint arm is extended, a transfer fork is inserted into each chamber, and the transfer is performed between each chamber and the semiconductor wafer mounting portion.
次に、 図 5 乃至図 7 を参照 して、 検出装置 2 0 を用いた位 置合わせについて説明する。  Next, with reference to FIG. 5 to FIG. 7, positioning using the detection device 20 will be described.
こ のァラ イ メ ン ト チャ ンバ一 3 6 は、 例えばアルミ ニ ウム によ り 箱形状に形成され、 一側面側がセンタチャ ンバ一 3 8 に気密に連結されている。 検出装置 2 0 は、. ァライ メ ン トチ ヤ ンバー 3 6 内に搭載される位置合わせ機構 5 0 の一構成部 位と して備え付け られている。 The alignment chamber 36 is made of, for example, aluminum. Thus, it is formed in a box shape, and one side is air-tightly connected to the center chamber 38. The detection device 20 is provided as a component of a positioning mechanism 50 mounted in the alignment chamber 36.
この位置合わせ機構 5 0 は、 半導体ウェハ Wを保持して回 転する回転台 5 2 を有している。 この回転台 5 2 には、 真空 チャ ック等の保持機構が備えられてお り 、 半導体ウェハ Wが 回転しても、 滑落しなレヽよ う になっている。 この回転台 5 2 に連結する回転軸 5 4 は、 ァライ メ ン トチャ ンバ一 3 6 の底 部 3 6 a を貫通 して回転モータ 5 6 に接続されてレヽる。 この 回転軸 5 4 は、 貫通部分に例えば磁性流体シール 5 8等を介 在させて、 底部に取り 付け られてお り 、 気密性を維持させつ つ、 回転可能と なっている。  The positioning mechanism 50 has a turntable 52 that holds and rotates the semiconductor wafer W. The turntable 52 is provided with a holding mechanism such as a vacuum chuck, so that even if the semiconductor wafer W rotates, it does not slide down. The rotary shaft 54 connected to the rotary base 52 penetrates through the bottom 36 a of the alignment chamber 36 and is connected to the rotary motor 56 to run. The rotating shaft 54 is attached to the bottom of the penetrating portion with a magnetic fluid seal 58 interposed therebetween, for example, and is rotatable while maintaining airtightness.
また、 こ のァライ メ ン トチャ ンバ一 3 6 内には、 半導体ゥ ェハ Wを回転台 5 2 に載置させるための受け渡し部 6 0 が設 置されている。 この受け渡し部 6 0 は、 受け渡し時に昇降す る昇降口 ッ ド 6 2 と、 昇降口 ッ ド 6 2 の上端に水平方向に取 り 付け られた Y字形状のウェハフォーク 6 4 とで構成されて レヽる。 このウェハフォーク 6 4 の上面には、 上方へ突出する 様に 4本の支持ピン 6 6 が嵌め込まれてお り 、 昇降口 ッ ド 6 2 を上昇させて、 これらの支持ピン 6 6 の上端に半導体ゥェ ハ Wの裏面に当接させて、 さ らに搬送用フォーク から半導体 ウェハを押 し上げる よ う に支持して、 受け取り を行っている この昇降口 ッ ド 6 2 は、 ァ ライ メ ン ト チャ ンバ一 3 6 の底部 3 6 a を貫通 してお り 、 この貫通部には、 ベローズ 6 8 を介 在させて、 ァライ メ ン トチャ ンバ一 3 6 内の気密性を維持さ せつつ、 こ の昇降ロ ッ ド 6 2 を図示しないァクチユエータに よ り 昇降 している。 In addition, a transfer unit 60 for mounting the semiconductor wafer W on the turntable 52 is provided in the alignment chamber 36. The transfer section 60 is composed of a lifting / lowering port pad 62 that moves up and down at the time of delivery, and a Y-shaped wafer fork 64 that is horizontally attached to the upper end of the lifting / lowering port 62. Reply On the upper surface of the wafer fork 64, four support pins 66 are fitted so as to protrude upward, and the elevating door 62 is raised, and the upper end of these support pins 66 is lifted. The lifting / lowering port 62 is used to abut the back surface of the semiconductor wafer W, and to support the semiconductor wafer by pushing it up from the transport fork and to receive the semiconductor wafer. Penetrates the bottom 36 a of the sensor chamber 36, and through this bellows 68 The lifting rod 62 is moved up and down by an unillustrated actuator while maintaining the airtightness of the alignment chamber 36.
さ らに、 こ の位置合わせ機構 5 0 には、 被検出体と なる半 導体ウェハ Wの外周輪郭を検出する輪郭セ ンサ部 7 0 を有し ている。 この輪郭セ ンサ部 7 0 は、 ァ ライ メ ン ト チャ ンバ一 3 6 の天井部 3 6 b に設けた帯状の検査光 L 5 を発する輪郭 用発光素子 7 2 と、 ァライ メ ン トチャ ンバ一 3 6 の底部 3 6 a に設けたライ ン状の輪郭用受光素子 7 4 と で構成される。 輪郭用発光素子 7 2及び輪郭用受光素子 7 4の各取付部に は、 図示 しないシール部材を介 して例えば石英製の透過窓 7 6、 7 8 がそれぞれ設け られてお り 、 上記輪郭用発光素子 7 2から回転台 5 2上に適正な位置に載置されている半導体ゥ ェハ Wの外周端を横切る よ う な位置に帯状の検査光 L 5 を射 出 し得る よ う になつている。 これらの輪郭用発光素子 7 2及 び輪郭用受光素子 7 4 は、 例えばマイ ク ロ コ ンピュータ等か らなる位置ずれ検出部 8 0 へ接続されている。 この受光素子 7 4 の出力値に基づいて求めた半導体ウェハ Wの偏芯量と偏 芯方向に従って、 位置合わせを行っている。  Further, the positioning mechanism 50 has a contour sensor 70 for detecting the outer peripheral contour of the semiconductor wafer W to be detected. The contour sensor section 70 includes a contour light emitting element 72 that emits a strip-like inspection light L5 provided on the ceiling 36 b of the alignment chamber 36 and an alignment chamber 70. And a line-shaped light receiving element for contour 74 provided at the bottom 36a of 36. Each of the mounting portions of the contour light emitting element 72 and the contour light receiving element 74 is provided with a transmission window 76, 78 made of, for example, quartz via a sealing member (not shown). The band-shaped inspection light L5 can be emitted from the light emitting element 72 to a position crossing the outer peripheral edge of the semiconductor wafer W placed at an appropriate position on the turntable 52. ing. The light emitting element for contour 72 and the light receiving element for contour 74 are connected to a displacement detecting unit 80 composed of, for example, a micro computer. The alignment is performed according to the eccentricity amount and the eccentric direction of the semiconductor wafer W obtained based on the output value of the light receiving element 74.
そ して、 検出装置 2 0 のセンサ部 2 は、 ァライ メ ン トチヤ ンバー 3 6 の上面部 3 6 b に設けている。 つま り 、 図 7 に示 すよ う に、 この上面部 3 6 b に開 口部 8 2 を開けて、 この開 口部 8 2 に、 気密性を持たせるための O リ ング等のシール部 材 8 6 を挟んで石英等よ り なる透過窓 8 4 を置き、 この周囲 を取付枠 8 8 で固定する。 そ して、 この透過窓 8 4 の外側に取付枠 8 8 にボル ト 9 0 によ り 一端を固定した屈曲金具 9 2へセンサ部 2 を固定する このセンサ部 2 の出力端は、 ケーブル 8 を介 して判別部 1 0 へ接続される。 屈曲金具 9 2 は、 例えば半導体ウェハ Wが水 平である もの と して、 前述 したよ う に垂直方向 (法線) に対 して角度 0 1 、 例えば角度 1 5度程度を傾けてセンサ部 2 が 固定される よ う に曲げられている。 The sensor unit 2 of the detection device 20 is provided on the upper surface 36 b of the alignment chamber 36. In other words, as shown in FIG. 7, an opening 82 is opened in the upper surface 36b, and a sealing portion such as an O-ring is provided in the opening 82 for airtightness. A transmission window 84 made of quartz or the like is placed with the material 86 interposed therebetween, and the surrounding area is fixed with a mounting frame 88. Then, the sensor section 2 is fixed to a bending bracket 92, one end of which is fixed to a mounting frame 88 by a bolt 90 outside the transmission window 84. The output end of the sensor section 2 is a cable 8 Is connected to the discriminating unit 10 via. For example, assuming that the semiconductor wafer W is horizontal, the bending fitting 92 is inclined at an angle of 01, for example, about 15 degrees with respect to the vertical direction (normal line) as described above, and the sensor section is bent. 2 is bent so that it is fixed.
これに対して、 反射体 2 2 は、 図 6 及び図 7 に示すよ う に 昇降移動する ウェハフォーク 6 4 の一側に水平に設け られて いる。 この場合、 ウェハフォーク 6 4 の昇降にと もなって、 この反射体 2 2 も距離 X I のス ト ローク で上下動する が、 こ のス ト ローク範囲内のいずれの位置でもセンサ部 2からの検 出光 L 1 が反射体 2 2 の反射面 2 2 a に入射する よ う に設定 される。  On the other hand, as shown in FIGS. 6 and 7, the reflector 22 is provided horizontally on one side of a wafer fork 64 that moves up and down. In this case, as the wafer fork 64 is moved up and down, the reflector 22 also moves up and down by a stroke of the distance XI. The detection light L 1 is set to be incident on the reflection surface 22 a of the reflector 22.
次に、 このよ う に構成された処理装置における半導体ゥェ ハ Wの処理工程について説明する。  Next, the processing steps of the semiconductor wafer W in the processing apparatus configured as described above will be described.
まず、 口一 ドロ ツ クチャ ンバー 4 6 及びアンロー ド口 ック チャ ンバ一 4 8 を除く 各チャンバ一内を排気して、 所定の真 空度まで到達させる。 勿論、 一旦全チャ ンバ一を排気 しても よい。  First, the inside of each of the chambers, except the mouthpiece chamber 46 and the unloading chamber 48, is evacuated to reach a predetermined vacuum. Of course, all chambers may be exhausted once.
その後、 ロー ドロ ックチャンノ ー 4 6 のゲー ト ドア G 3 を 開けて、 未処理の半導体ウェハ Wを例えば 2 5枚収容 した力 セ ッ ト 4 4 a をカセ ッ トステージ (図示せず) 上に装着する 続いてゲー ト ドア G 3 を閉 じて、 この室内を不活性ガス例え ば、 N 2ガス によ り ノヽ。ージした後、 この ロー ドロ ックチャ ン バー 4 6 内を所定の真空度まで排気する。 尚、 アンロー ド口 ツクチャンバー 4 8 には、 同様に して空カセ ッ ト 4 4 b を装 着する。 Thereafter, the gate door G3 of the load lock channel 46 is opened, and a force set 44a containing, for example, 25 unprocessed semiconductor wafers W is placed on a cassette stage (not shown). the gate door G 3 to close and subsequently mounted, Ri by the indoor for example inert gas, the N 2 gas Nono. After loading, this load lock channel The inside of the bar 46 is evacuated to a specified vacuum. In the same way, an empty cassette 44b is attached to the unloading port chamber 48.
次に、 ゲー トバルブ G 1 を開き、 真空状態下で、 搬送機構 4 2 の多間接アーム 4 2 a を伸長させて、 カセ ッ ト 4 4 a 内 へ搬送用フォーク を差し入れ半導体ウェハを受け取る。 次に 搬送用フォーク を退避させて、 セ ンタチャ ンバ一 3 8 内に半 導体ウェハ Wを搬入させて、 その後、 ゲー トバルブ G 1 を閉 じる。  Next, the gate valve G1 is opened, the multi-joint arm 42a of the transfer mechanism 42 is extended under vacuum, and a transfer fork is inserted into the cassette 44a to receive the semiconductor wafer. Next, the transfer fork is retracted, and the semiconductor wafer W is loaded into the center chamber 38, and then the gate valve G1 is closed.
次に、 多間接アーム 4 2 a を回転 ■ 伸長 して、 半導体ゥェ ハ Wをァライ メ ン ト チャ ンバ一 3 6 内へ搬入し、 ウェハフォ ーク 6 4上に載置する。 そ して、 後述する よ う に位置合わせ 機構 5 0 は位置ずれを検出 して、 正しい位置になるよ う に位 置合わせを行う。 位置合わせ完了後の半導体ウェハ Wは、 再 度、 搬送機構 4 2 によ り セ ンタチャ ンバ一 3 8側へ搬出され る。  Next, the multi-joint arm 42 a is rotated ■ extended, and the semiconductor wafer W is carried into the alignment chamber 36, and is placed on the wafer fork 64. Then, as will be described later, the positioning mechanism 50 detects a position shift and performs positioning so as to be at a correct position. The semiconductor wafer W after the completion of the alignment is again carried out to the center chamber 38 by the transfer mechanism 42.
そ して、 半導体ウェハ Wを成膜チャ ンバ一 3 2、 3 4へ順 次搬入して、 それぞれの成膜チャ ンバ一 3 2、 3 4 内で半導 体ウェハ W上に所定の成膜処理を施す。 この成膜処理が完了 した後、 処理済みの半導体ウェハ Wは、 搬送機構 4 2 によ り ア ンロー ドロ ッ ク チャ ンバ一 4 8 内の空カセ ッ ト 4 4 b に収 容される。  Then, the semiconductor wafer W is sequentially carried into the film forming chambers 32 and 34, and a predetermined film is formed on the semiconductor wafer W in each of the film forming chambers 32 and 34. Perform processing. After the completion of the film forming process, the processed semiconductor wafer W is stored by the transfer mechanism 42 in the empty cassette 44 b in the unload lock chamber 48.
次に、 位置合わせ機構 5 0 によ る位置合わせ動作について 詳しく 説明する。  Next, the positioning operation by the positioning mechanism 50 will be described in detail.
まず、 搬送機構 4 2 の搬送用フォーク に保持された半導体 ウェハ Wがセンタチヤ ンバー 3 8 力ゝらァライ メ ン トチャ ンパ 一 3 6 内へ搬入され、 所定位置で停止する。 次に、 ウェハフ オーク 6 4 が上昇して、 支持ピン 6 6 の上端に半導体ウェハ Wの裏面に当接させて、 さ らに半導体ウェハ Wを押し上げて 搬送用フォーク から受け取る。 その後、 搬送用フォーク がァ ライ メ ン ト チャ ンバ一 3 6外へ退避する こ と によ り 、 受け渡 しが完了する。 First, the semiconductor held by the transport fork of the transport mechanism 42 The wafer W is carried into the center chamber 38 and the alignment chamber 36, and stops at a predetermined position. Next, the wafer fork 64 is raised, and the upper end of the support pin 66 is brought into contact with the back surface of the semiconductor wafer W, and the semiconductor wafer W is further pushed up and received from the transfer fork. Thereafter, the transfer is completed by the withdrawal of the transfer fork out of the alignment chamber 36.
次に、 ウェハフォーク 6 4 を回転台 5 2 よ り 下方の位置ま で下降させる。 この時、 半導体ウェハ Wは、 回転台 5 2 に受 け渡されて保持される。 次に、 回転台 5 2 は、 半導体ウェハ Wを一回転以上回転させつつ、 輪郭センサ部 7 0 を駆動 して 輪郭用発光素子 7 2 からの検査光 L 5 を輪郭用受光素子 7 4 で受ける こ と によって、 例えばオリ フラを基準と して、 半導 体ウェハ Wの輪郭の位置を検出する。  Next, the wafer fork 64 is lowered to a position below the turntable 52. At this time, the semiconductor wafer W is delivered to and held by the turntable 52. Next, the turntable 52 drives the contour sensor 70 while rotating the semiconductor wafer W by one or more rotations, and receives the inspection light L 5 from the contour light emitting element 72 by the contour light receiving element 74. Thus, for example, the position of the contour of the semiconductor wafer W is detected based on the orientation flat.
この検出結果から位置ずれ検出部 8 0 は、 半導体ウェハの 位置ずれ補正量を求め、 その位置ずれ補正量に従って回転台 5 2 を回転させて位置補正を行う。 この位置補正は、 例えば 次に搬入される成膜チャ ンバ一の半導体ウェハ保持位置に合 う よ う に行われる。 尚、 このよ う なマルチチャンバ一処理装 置においては、 装置内の全部の導体ウェハ保持部 (例えば、 成膜チャ ンバ一内のサセプタ等) に対して、 1 つの統一的な 基準位置が設定されている場合があ り 、 この場合には、 その 基準位置になる よ う に位置補正を行う。  From this detection result, the displacement detection unit 80 obtains a displacement correction amount of the semiconductor wafer, and performs the position correction by rotating the turntable 52 according to the displacement correction amount. This position correction is performed, for example, so as to match the semiconductor wafer holding position of the film carrier to be carried in next. In such a multi-chamber single-processing apparatus, one unified reference position is set for all the conductive wafer holding units (for example, a susceptor in a film forming chamber) in the apparatus. In this case, the position is corrected so as to be the reference position.
このよ う な一連の動作途中において、 検出装置 2 0 のセン サ部 2 の発光素子 4 からは、 検出光 L 1 が反射体 2 2 の反射 面 2 2 a に向けて射出 してお り 、 この ウェハフォーク 6 4上 に半導体ウェハ Wが保持されているか否かが常時監視されて いる。 During such a series of operations, the detection light L 1 is reflected by the reflector 22 from the light emitting element 4 of the sensor unit 2 of the detection device 20. The semiconductor wafer W is injected toward the surface 22 a, and whether or not the semiconductor wafer W is held on the wafer fork 64 is constantly monitored.
ウェハフ ォーク 6 4 が半導体ウェハ Wを保持していない場 合、 前述した図 1 のよ う に、 検出光 L 1 は反射体 2 2 の反射 面 2 2 a へ入射し、 こ こで反射して入射方向 と 同等若し く は ほぼ同等な方向に反射光 L 2が射出される。 そ して、 この反 射光 L 2 はセ ンサ部 2 の受光素子 6 で受光され、 その受光結 果から判別部 1 0 が半導体ウェハ Wは保持されていないもの と判別する。 これに対 して、 ウェハフ ォーク 6 4 上に半導体 ウェハ Wを保持している場合、 この検出光 L 1 は、 半導体ゥ ェハの表面で法線を挟んだ反対方向に反射されて しま う ので 受光素子 6 には反射光が入射せず、 判別部 1 0 は半導体ゥェ ハ Wは保持されている ものと判別する。 尚、 回転台 5 2 上の 半導体ウェハ Wにおいても、 検出光 L 1 は半導体ウェハ Wに よって上記反対方向に反射される ので、 判別部 1 0 は半導体 ウェハ Wを保持している ものと判別している。 従って、 反射 光が受光素子 6 の方向に反射されていないため、 半導体ゥェ ハの表面状態には影響されず、 つま り 半導体ウェハ Wの表面 に形成されている膜種に関係なく 、 半導体ウェハ Wの存在の 有無を正確に、 且つ確実に判別する こ とができ る。  When the wafer fork 64 does not hold the semiconductor wafer W, the detection light L1 is incident on the reflection surface 22a of the reflector 22 and reflected there, as shown in FIG. 1 described above. The reflected light L2 is emitted in the same or almost the same direction as the incident direction. Then, the reflected light L 2 is received by the light receiving element 6 of the sensor unit 2, and from the light receiving result, the determination unit 10 determines that the semiconductor wafer W is not held. On the other hand, when the semiconductor wafer W is held on the wafer fork 64, the detection light L1 is reflected in the opposite direction across the normal on the surface of the semiconductor wafer. The reflected light does not enter the light receiving element 6, and the determination unit 10 determines that the semiconductor wafer W is held. Note that, also on the semiconductor wafer W on the turntable 52, the detection light L1 is reflected by the semiconductor wafer W in the opposite direction, so that the determination unit 10 determines that the semiconductor wafer W is held. ing. Therefore, since the reflected light is not reflected in the direction of the light receiving element 6, it is not affected by the surface condition of the semiconductor wafer, that is, regardless of the type of film formed on the surface of the semiconductor wafer W, The presence or absence of W can be accurately and reliably determined.
このよ う な半導体ウェハの有無の判別結果に基づいて、 半 導体ウェハの搬送にィ ンタ一口 ックがかけ られる。 例えば、 検出装置 2 0 が位置合わせ機構 5 0 の回転台 5 2 上に半導体 ウェハ Wが保持されている とい う " ウェハ有り " の判別結果 があった場合、 プロ グラムシーケンスによ り 自動的に、 搬送 や処理が行われている際に、 他の半導体ウェハ Wが位置合わ せ機構 5 0 へ搬入されないよ う にイ ンター口 ック がか力、り 、 搬送動作が停止される。 このよ う なイ ンタ ーロ ッ ク は、 ソフ ト ウェアによ り 発せられる場合が多い。 On the basis of the result of the determination of the presence or absence of such a semiconductor wafer, the transport of the semiconductor wafer is performed by an intelligent method. For example, the determination result of “wafer present” indicates that the detection device 20 holds the semiconductor wafer W on the turntable 52 of the positioning mechanism 50. In the event that there is an error, an interface is automatically provided by the program sequence to prevent another semiconductor wafer W from being carried into the alignment mechanism 50 during transfer or processing. The transfer operation is stopped. Such interlocks are often generated by software.
前述 した実施形態では、 成膜チャ ンバ一 3 2、 3 4 を有す るマルチチャ ンバ一処理装置を一例と したが、 これに限定さ れず、 他にもエ ッチング装置、 酸化拡散装置、 スパッタ装置 等の全ての処理装置や各ュニッ トチャ ンバ一にも適用でき る また、 搬送される被検出体と しては、 半導体ウェハに限定 されず、 ガラス基板、 L C D基板等も適用する こ とができ る こ こでは、 本発明の検出装置 2 0 を位置合わせ機構内に設 けた例であつたが、 これ以外にも適用でき、 例えば、 センタ チヤ ンバー内の各ゲー トバルブな どの駆動部材の移動経路を 検出空間 と して、 図 1 に示したよ う に配置する こ と によ り 、 駆動部材の駆動状態を検出する こ と も可能である。 特に反射 体は、 支持体を別途作成して取り 付けても よい し、 駆動部材 自体に取 り 付けて、 実施する こ と も可能である。 例えば、 ゲ ー トバルブ等に適用 した場合には、 反射体 2 2 はチャ ンバ一 底部に設けても よい。 また、 搬送用アームな どに対しては、 そのアーム上に反射体を貼り 付け、 搬送アームの移動経路上 に複数のセンサ部を配置して、 随時、 センサ出力をモニタす る こ と によ り 、 搬送アームの現在位置と駆動状況を把握する こ と も可能である。  In the above-described embodiment, a multi-chamber processing apparatus having the film forming chambers 32 and 34 is described as an example. However, the present invention is not limited to this, and may include an etching apparatus, an oxidation diffusion apparatus, and a sputtering apparatus. In addition, the object to be transported is not limited to a semiconductor wafer, but may be a glass substrate, an LCD substrate, or the like. Here, the example in which the detection device 20 of the present invention is provided in the positioning mechanism has been described. However, the present invention can be applied to other devices such as a moving path of a driving member such as each gate valve in the center chamber. By arranging as shown in FIG. 1 as a detection space, it is also possible to detect the driving state of the driving member. In particular, the reflector may be prepared and attached separately to the support, or may be attached to the drive member itself and implemented. For example, when applied to a gate valve or the like, the reflector 22 may be provided at the bottom of the chamber. For a transfer arm, etc., a reflector is attached to the arm, a plurality of sensor units are arranged on the movement path of the transfer arm, and the sensor output is monitored as needed. In addition, it is possible to grasp the current position and the driving state of the transfer arm.
以上説明 した実施形態において、 反射体 2 2 の反射面 2 2 a は、 表面が光の振動方向を乱す鏡面状態に処理された微小 な四角錐体が多数に配置されている形状であつたが、 これに 限定されず、 例えば、 直交する 2つの面を持つ溝形状 (ライ ン状) の反射面が複数列並んで形成されても よい。 特に、 図 1 1 に示したよ う にフィルタを有していないセンサ部を用い て構成する。 この構成においては、 反射面のライ ン方向につ いては、 センサ部の配置位置を調整する必要がある。 In the embodiment described above, the reflection surface 22 of the reflector 22 is used. a has a shape in which a large number of minute quadrangular pyramids whose surface is disturbed in a mirror state that disturbs the direction of light oscillation are arranged, but it is not limited to this.For example, it has two orthogonal surfaces A plurality of groove-shaped (line-shaped) reflecting surfaces may be arranged in a row. In particular, as shown in FIG. 11, it is configured using a sensor unit having no filter. In this configuration, it is necessary to adjust the position of the sensor section in the line direction of the reflection surface.
以上説明 したよ う に、 本発明の被検出体の検出装置と これ を用いた処理システムによれば、 次のよ う に優れた作用効果 を発揮する こ と ができ る。  As described above, according to the object detection device of the present invention and the processing system using the same, the following excellent operational effects can be obtained.
検出空間に被検出体が存在しない場合に、 検出光は反射体 の反射面によ り 主と してその入射方向に向けて反射されるの で、 この反射光を受光素子で受光 して被検出体が存在してい ないこ と を判別でき、 また、 検出空間に被検出体が存在する 場合には、 上記検出光は被検出体の表面に斜め方向から入射 するので、 この反射光は被検出体の表面の法線に対して反対 方向に反射する こ と になつて受光素子には戻らない。 従って 被検出体が存在 している ものと判別する こ とができ る。  When no object is present in the detection space, the detection light is reflected mainly by the reflecting surface of the reflector toward the incident direction. It is possible to determine that the object is not present, and when the object is present in the detection space, the reflected light is incident on the surface of the object from an oblique direction. The light does not return to the light receiving element because it is reflected in the direction opposite to the normal to the surface of the detection object. Therefore, it can be determined that the object to be detected exists.
このよ う に、 被検出体の表面の状態によ り 反射光の振動方 向が どのよ う になっていた と しても、 反射光の射出方向が受 光素子に向かっていないため、 入射される こ と はなく 、 被検 出体の有無を正確に且つ確実に判別する こ とができ る。  In this way, regardless of the direction of vibration of the reflected light depending on the state of the surface of the detection target, the incident direction of the reflected light is not directed toward the light receiving element. The presence or absence of a test object can be accurately and reliably determined.
産業上の利用可能性 Industrial applicability
本発明の被検出体の検出装置は、 一対の発光素子及び受光 素子とがー体的に構成されたセンサ部と、 上記センサ部と は 被検出体が存在可能な検出空間を空けて配置され、 複数の同 一の多角錐体が全平面上に、 隣接する上記多角錐体の面ど う しが正対 し且つ直交する よ う に配置されて、 2つの面からな る反射面対を複数形成して、 上記発光素子からの検出光の入 射方向と 同方向に沿って反射光を射出する反射体とで構成さ れ、 反射体の法線方向 と被反射体の法線方向が一致せず、 且 つ上記セ ンサ部は、 上記反射体の法線方向よ り斜め方向から 上記反射面対へ検出光を射出する よ う に配置される。 The detection device for a detected object according to the present invention includes: a sensor unit in which a pair of a light emitting element and a light receiving element are integrally formed; A plurality of identical polygonal pyramids are arranged on the entire plane so that the faces of the adjacent polygonal pyramids face each other and are orthogonal to each other on a plane where a detection object is allowed to exist. A plurality of reflective surface pairs formed of two surfaces, and a reflector that emits reflected light in the same direction as the incident direction of the detection light from the light-emitting element. The normal direction of the body does not match the normal direction of the object to be reflected, and the sensor section emits the detection light to the pair of reflecting surfaces from a direction oblique to the normal direction of the reflector. Placed in
これによれば、 検出空間に被検出体が存在 しない場合には 検出光は、 反射体の反射面対によ り 主と してその入射方向に 向けて反射されるため、 この反射光を受光素子で受光 して被 検出体が存在していないこ と を判別でき、 一方、 検出空間に 被検出体が存在する場合には、 上記検出光は被検出体の表面 に斜め方向から入射する ので、 この反射光は被検出体の表面 の法線に対して反対方向に反射する こ と になって受光素子に 検出 される こ と はな く 、 被検出体の存在を正確に且つ確実に 判別する こ とが可能と なる。  According to this, when the object to be detected does not exist in the detection space, the detection light is mainly reflected toward the incident direction by the pair of reflecting surfaces of the reflector, so that the reflected light is received. The detection light can be received by the element to determine that the object is not present. On the other hand, when the object is present in the detection space, the above detection light is incident on the surface of the object obliquely. However, this reflected light is reflected in the direction opposite to the normal to the surface of the object and is not detected by the light receiving element, and the presence of the object is accurately and reliably determined. It is possible to do it.
本発明によれば、 検出体の表面状態に影響されずに、 この 被検出体の存在を確実に判別する こ とができ る被検出体の検 出装置及ぴその処理システムが提供される。  According to the present invention, there is provided an object detection device and a processing system thereof, which can reliably determine the presence of the object without being affected by the surface condition of the object.

Claims

請 求 の 範 囲 The scope of the claims
1 . 検出光を射出する発光素子と、  1. A light emitting element that emits detection light,
上記検出光の反射光を受光する受光素子と、  A light receiving element for receiving the reflected light of the detection light,
上記発光素子に対して被検出体の検出空間を介 して配置さ れる と共に、 主と して光の入射方向に光を反射する反射面を 有する反射体と 、  A reflector which is disposed with respect to the light emitting element via a detection space of the object to be detected, and which has a reflecting surface mainly reflecting light in a light incident direction;
を備え、 With
上記反射面への上記検出光が、 上記反射面の法線方向よ り も所定の角度だけ傾斜して入射する よ う に、 上記反射体と上 記発光素子とが配置される こ と を特徴とする被検出体の検出  The reflector and the light-emitting element are arranged such that the detection light on the reflection surface is incident at a predetermined angle from the normal direction of the reflection surface. Of the object to be detected
2 . 上記検出空間に位置する こ とのある上記被検出体の反 射面に対する上記検出光の入射方向が、 上記被検出体の反射 面の法線方向よ り も所定の角度だけ傾斜されている こ と を特 徴とする請求項 1 に記載の被検出体の検出装置。 2. The incident direction of the detection light on the reflection surface of the object to be detected, which may be located in the detection space, is inclined by a predetermined angle from the normal direction of the reflection surface of the object to be detected. 2. The detection device for an object to be detected according to claim 1, wherein:
3 . 上記発光素子と上記受光素子と は並設されて一体的に 設け られている こ と を特徴とする請求項 1 記載の被検出体の 検出装置。  3. The device for detecting an object to be detected according to claim 1, wherein the light emitting element and the light receiving element are provided side by side and integrally provided.
4 . 被処理体に対して所定の処理を施す処理シス テ ムにお いて、  4. In a processing system that performs predetermined processing on the object,
上記被処理体の搬送経路が上記検出空間を通過する よ う に 上記検出装置を搭載する こ と を特徴とする処理システム。  A processing system, wherein the detection device is mounted so that a conveyance path of the object passes through the detection space.
5 . 上記検出装置は、  5. The above detection device is
上記被処理体を保持して回転させる回転台と、  A turntable for holding and rotating the object to be processed,
上記被処理体を上記回転台に移載する移載機構と、 上記被処理体の外周輪郭を検出する輪郭センサ部と、 上記輪郭センサ部の検出結果に基づいて位置ずれ量を求め る位置ずれ検出部と を有する位置合わせ装置に設け られる こ と を特徴とする請求項 4記載の処理システム。 A transfer mechanism for transferring the object to be processed to the turntable; It is provided in a positioning device having a contour sensor unit for detecting an outer peripheral contour of the object to be processed, and a misregistration detecting unit for calculating a misregistration amount based on a detection result of the contour sensor unit. The processing system according to claim 4.
6 . —対の発光素子及び受光素子で構成されるセンサ部と 上記センサ部と は被検出体が存在可能な検出空間を空けて 配置され、  6. The sensor unit composed of a pair of light-emitting element and light-receiving element and the sensor unit are arranged with a detection space in which the object to be detected can exist,
複数の同一の多角錐体が全平面上に、 隣接する上記多角錐 体の面ど う しが正対し且つ直交する よ う に配置されて、 2つ の面からなる反射面対を複数形成して、 上記発光素子からの 検出光の入射方向 と 同方向に沿って反射光を射出する反射体 と、  A plurality of identical polygonal pyramids are arranged on the entire plane such that the faces of the adjacent polygonal pyramids face each other and are orthogonal to each other, and form a plurality of reflection surface pairs composed of two surfaces. A reflector that emits reflected light in the same direction as the incident direction of the detection light from the light emitting element;
上記センサ部を駆動制御 し、 上記受光素子から得られた上 記反射光に基づき、 被検出体の存在を判別する判別部と、 で構成され、  A determination unit that controls the driving of the sensor unit and determines the presence of the detection target based on the reflected light obtained from the light receiving element;
上記セ ンサ部は、 斜め方向から上記反射面対及ぴ被検出体 へ検出光を射出する位置に配置される こ と を特徴とする被検 出体の検出装置。  The object detection device, wherein the sensor section is disposed at a position where the detection light is emitted from the oblique direction to the reflection surface and the object.
7 . 上記検出装置において、  7. In the above detection device,
上記反射体に入射する上記検出光は、  The detection light incident on the reflector,
上記反射体の反射面における法線の方向に対して、 6 度〜 2 5度の範囲内の斜め方向から上記反射体に入射する こ と を 特徴とする請求項 6 に記載の被検出体の検出装置。  The object to be detected according to claim 6, wherein the light enters the reflector from an oblique direction within a range of 6 degrees to 25 degrees with respect to the direction of the normal to the reflection surface of the reflector. Detection device.
8 . 上記検出装置において、  8. In the above detection device,
上記発光素子からの検出光が上記反射面に入射する範囲で 上記反射体が上記検出空間内を移動可能なこ と を特徴とする 請求項 1 に記載の被検出体の検出装置。 In a range where the detection light from the light emitting element is incident on the reflection surface. The device for detecting an object to be detected according to claim 1, wherein the reflector is movable in the detection space.
9 . 上記検出装置において、  9. In the above detection device,
上記センサ部は、 発光素子が射出する検出光の第 1 の光路 と、 上記反射体の上記反射面対で反射されて射出 された上記 検出光の反射光の第 2 の光路とが同 じ方向に沿っている よ う に、 上記発光素子と上記受光素子とが配置される こ と を特徴 とする請求項 6 に記載の被検出体の検出装置。  The sensor section is configured so that a first optical path of the detection light emitted from the light emitting element and a second optical path of the reflected light of the detection light reflected and emitted by the pair of reflection surfaces of the reflector are in the same direction. The device for detecting an object to be detected according to claim 6, wherein the light-emitting element and the light-receiving element are arranged so as to follow.
1 0 . 上記検出装置において、  1 0. In the above detection device,
上記判別部は、  The discriminating unit includes:
上記発光素子から射出された検出光が上記反射体の反射面 へ向かって斜め方向から入射し、 その入射方向に沿った方向 に反射された反射光を上記受光素子が受光した検出信号を得 た場合には、 上記検出空間に上記被検出体が存在 しないもの と判別し、  Detection light emitted from the light emitting element is incident obliquely toward the reflection surface of the reflector, and a detection signal is obtained in which the light receiving element receives reflected light reflected in a direction along the incident direction. In this case, it is determined that the object to be detected does not exist in the detection space,
上記発光素子から射出された検出光が上記反射体の反射面 へ向かって斜め方向から入射し、 その入射光が上記反射体の 法線を越えた反対側に反射されて、 上記受光素子に向かって 射出されなかった場合には、 上記検出空間に被検出体が存在 する もの と判定される こ と を特徴とする請求項 6 に記載の被 検出体の検出装置。  Detection light emitted from the light emitting element is incident obliquely toward the reflecting surface of the reflector, and the incident light is reflected on the opposite side beyond the normal line of the reflector and is directed toward the light receiving element. 7. The device for detecting a detected object according to claim 6, wherein, if the object is not ejected, the detected object is determined to be present in the detection space.
1 1 . 被検出体を複数の指定箇所に搬送する搬送機構によ る搬送経路上に設け られ、 上記被検出体が上記搬送経路上に 存在するか否かを検出する検出装置において、  1 1. A detecting device provided on a transport path by a transport mechanism for transporting a detected object to a plurality of designated locations, and detecting whether the detected object is present on the transport path.
一対の発光素子及び受光素子で、 検出光の射出方向 とその 検出光の反射光の入射方向が同一と なる よ う に構成されたセ ンサ部と、 The direction of detection light emission and its A sensor section configured so that the incident direction of the reflected light of the detection light is the same,
複数の同一の多角錐体が全平面上に、 隣接する上記多角錐 体の面ど う しが正対し且つ直交する よ う に配置されて、 2つ の面からなる反射面対を複数形成して、 上記発光素子からの 検出光の入射方向と 同方向に沿って反射光を射出する反射体 と、  A plurality of identical polygonal pyramids are arranged on the entire plane such that the faces of the adjacent polygonal pyramids face each other and are orthogonal to each other, and form a plurality of reflection surface pairs composed of two surfaces. A reflector that emits reflected light in the same direction as the incident direction of the detection light from the light emitting element;
上記センサ部を駆動制御 し、 上記受光素子から得られた上 記反射光に基づき、 被検出体の存在を判別する判別部と、 を 具備 し、  A determining unit that controls the driving of the sensor unit and determines the presence of the object to be detected based on the reflected light obtained from the light receiving element;
上記反射体と上記センサ部とが上記被検出体の搬送経路を 挟んで配置され、 且つ、 上記センサ部は、 斜め方向から上記 反射面対及び上記被検出体へ検出光を射出する位置に配置さ れる こ と を特徴とする被検出体の検出装置。  The reflector and the sensor unit are arranged with the conveyance path of the object to be detected interposed therebetween, and the sensor unit is arranged at a position where detection light is emitted to the reflection surface pair and the object to be detected from an oblique direction. A device for detecting an object to be detected.
1 2 . 駆動部材が移動する移動経路上に設け られ、 上記駆 動部材が上記移動経路上を移動 したか否かを検出する検出装 {·こ; ヽ飞 ヽ  1 2. A detection device provided on a moving path along which the driving member moves, and detecting whether the driving member has moved on the moving path.
一対の発光素子及び受光素子で、 検出光の射出方向 とその 検出光の反射光の入射方向が同一と なる よ う に構成されたセ ンサ部と、  A sensor unit configured such that the direction of emission of the detection light and the direction of incidence of the reflected light of the detection light are the same between the pair of light emitting element and the light receiving element;
複数の同一の多角錐体が全平面上に、 隣接する上記多角錐 体の面ど う しが正対し且つ直交する よ う に配置されて、 2つ の面からなる反射面対を複数形成 して、 上記発光素子からの 検出光の入射方向 と 同方向に沿って反射光を射出する反射体 と、 上記セ ンサ部を駆動制御 し、 上記受光素子から得られた上 記反射光に基づき、 駆動部材の存在を判別する判別部と、 を 具備し、 A plurality of identical polygonal pyramids are arranged on the entire plane such that the faces of the adjacent polygonal pyramids face each other and are orthogonal to each other, and form a plurality of reflection surface pairs composed of two surfaces. A reflector that emits reflected light in the same direction as the incident direction of the detection light from the light emitting element; A determining unit that controls the driving of the sensor unit and determines the presence of a driving member based on the reflected light obtained from the light receiving element;
上記反射体と上記センサ部と が上記駆動部材の移動経路を 挟んで配置され、 且つ、 上記センサ部は、 斜め方向から上記 反射面対及び上記駆動部材へ検出光を射出する位置に配置さ れる こ と を特徴とする被検出体の検出装置。  The reflector and the sensor unit are arranged so as to sandwich the movement path of the drive member, and the sensor unit is arranged at a position where detection light is emitted to the reflection surface pair and the drive member from an oblique direction. A device for detecting an object to be detected, characterized in that:
PCT/JP2001/007922 2000-09-13 2001-09-12 Detector and treatment system for detected body WO2002023622A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-278311 2000-09-13
JP2000278311 2000-09-13

Publications (1)

Publication Number Publication Date
WO2002023622A1 true WO2002023622A1 (en) 2002-03-21

Family

ID=18763494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007922 WO2002023622A1 (en) 2000-09-13 2001-09-12 Detector and treatment system for detected body

Country Status (1)

Country Link
WO (1) WO2002023622A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284647A (en) * 1991-03-13 1992-10-09 Tokyo Electron Yamanashi Kk Method and apparatus for detecting central position of wafer
JPH05294405A (en) * 1992-04-20 1993-11-09 Tel Varian Ltd Substrate detector
JPH07333007A (en) * 1994-06-02 1995-12-22 Dainippon Screen Mfg Co Ltd Device for detecting edge of transferred medium
JPH10142350A (en) * 1996-11-07 1998-05-29 Tsubakimoto Chain Co Article detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284647A (en) * 1991-03-13 1992-10-09 Tokyo Electron Yamanashi Kk Method and apparatus for detecting central position of wafer
JPH05294405A (en) * 1992-04-20 1993-11-09 Tel Varian Ltd Substrate detector
JPH07333007A (en) * 1994-06-02 1995-12-22 Dainippon Screen Mfg Co Ltd Device for detecting edge of transferred medium
JPH10142350A (en) * 1996-11-07 1998-05-29 Tsubakimoto Chain Co Article detector

Similar Documents

Publication Publication Date Title
KR0165555B1 (en) Load-lock unit and wafer transfer system
US8395136B2 (en) Positional deviation detection apparatus and process system employing the same
US11664259B2 (en) Process apparatus with on-the-fly substrate centering
JP2986121B2 (en) Load lock device and vacuum processing device
TWI428585B (en) A substrate inspection mechanism, and a substrate processing apparatus using the same
JP2010232560A (en) Mapping mechanism, foup, and load port
US20070180676A1 (en) Method of and tool for calibrating transfer apparatus
US7832353B2 (en) Semiconductor manufacturing apparatus equipped with wafer inspection device and inspection techniques
JP2002164416A (en) Apparatus for detecting object and processing system using it
JP2012015530A (en) Substrate treatment device and substrate detection method
US20090294442A1 (en) Lid opening/closing system for closed container, contained object insertion/takeout system having same lid opening/closing system, and substrate processing method using same lid opening/closing system
JP3468430B2 (en) Position detection guide device, position detection guide method, and vacuum processing device
WO2002023622A1 (en) Detector and treatment system for detected body
US8347813B2 (en) Thin film deposition apparatus and method thereof
JP2007042929A (en) Load lock device, its method, and semiconductor manufacturing apparatus
JP7199211B2 (en) CONVEYANCE DETECTION METHOD AND SUBSTRATE PROCESSING APPARATUS
JP3065843B2 (en) Object detection device
JP2003068829A (en) Substrate transport system and substrate treating device
JP4847032B2 (en) Substrate processing apparatus and substrate detection method
JP2004140147A (en) Detecting device and processing system for body to be transferred
JP4422300B2 (en) Wafer processing equipment
US20220076977A1 (en) Transfer apparatus and transfer method
JP2004311864A (en) Load port for semiconductor processing equipment
US20220367223A1 (en) Substrate transport apparatus and substrate transport method
JPH06338558A (en) Detector and processing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase