WO2002023600A1 - Ceramic heater for semiconductor manufacturing and inspecting equipment - Google Patents

Ceramic heater for semiconductor manufacturing and inspecting equipment Download PDF

Info

Publication number
WO2002023600A1
WO2002023600A1 PCT/JP2001/007456 JP0107456W WO0223600A1 WO 2002023600 A1 WO2002023600 A1 WO 2002023600A1 JP 0107456 W JP0107456 W JP 0107456W WO 0223600 A1 WO0223600 A1 WO 0223600A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
resistance heating
ceramic substrate
ceramic
resistance
Prior art date
Application number
PCT/JP2001/007456
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuji Hiramatsu
Yasutaka Ito
Atsushi Ito
Satoru Kariya
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000278773A external-priority patent/JP2002015841A/en
Priority claimed from JP2000279564A external-priority patent/JP2002093551A/en
Priority claimed from JP2000281653A external-priority patent/JP2002093552A/en
Priority claimed from JP2000282504A external-priority patent/JP2002083667A/en
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to US10/380,327 priority Critical patent/US20040035846A1/en
Publication of WO2002023600A1 publication Critical patent/WO2002023600A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • H05B3/143Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds applied to semiconductors, e.g. wafers heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction

Definitions

  • TECHNICAL FIELD-The present invention relates to a ceramic heater for semiconductor manufacturing and inspection equipment used in the semiconductor industry. Background art
  • Semiconductor products are manufactured through processes such as forming a photosensitive resin as an etching resist on a semiconductor wafer and etching the semiconductor wafer.
  • This photosensitive resin is a liquid and is applied to the surface of the semiconductor wafer using a spin coater or the like.After application, the resin must be dried to disperse the solvent, etc., and the applied semiconductor wafer is placed on a heater. And heat it.
  • the thickness of the heater plate since it is made of metal, the thickness of the heater plate must be as thick as about 15 mm. This is because, in a thin metal plate, warpage, distortion, and the like are generated due to thermal expansion caused by heating, and the semiconductor wafer placed on the metal plate is damaged or tilted. However, when the thickness of the heater plate is increased while the force is being applied, the weight of the heater increases, and the heater becomes bulky.
  • the heating temperature is controlled by changing the voltage or current applied to the resistance heating element.However, the thickness of the metal plate causes the temperature of the heater plate to quickly change with changes in voltage or current. There was also a problem that it was difficult to control the temperature without following.
  • Japanese Patent Application Laid-Open Nos. Hei 9-136642 and Hei 4-324276 discloses a non-oxide ceramic having high thermal conductivity and high strength as a substrate.
  • a ceramic heater using 1 N and having a resistance heating element formed on the surface or inside of the A 1 N substrate is disclosed.
  • Japanese Patent Application Laid-Open No. 11-43030 discloses that a substrate has a high thermal conductivity, Ceramic heaters made of nitride ceramics or carbide ceramics with high strength, and provided with a resistance heating element formed by sintering metal particles on the surface of a plate-like body (ceramic substrate) made of these ceramics It has been disclosed.
  • a ceramic substrate having a predetermined shape is manufactured. Thereafter, when a resistance heating element is formed by a coating method, subsequently, a heating element pattern is formed on the surface of the ceramic substrate by using a method such as screen printing. A conductive paste layer was formed, and heating and firing were performed to form a resistance heating element.
  • a resistance heating element is formed by a physical vapor deposition method such as sputtering or a plating method
  • a metal layer is formed on a predetermined region of a ceramic substrate by these methods, and then the heating element pattern is formed.
  • an etching process is performed to form a resistance heating element having a predetermined pattern.
  • the thickness and width of the printing may vary, causing variations in the resistance value.
  • a ceramic heater on which a resistance heating element composed of such a heating element pattern is formed a semiconductor device may be used.
  • the temperature of the entire heated surface of the wafer is not uniform, even if the density of the heating element pattern is uniform throughout. As a result, the temperature difference between the central portion and the outer peripheral portion of the heated semiconductor wafer is increased. There was a problem that occurs.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to suppress the variation of the resistance heating element to a certain level or less, thereby enabling the temperature variation within the heating surface during a constant temperature rise transient. It is an object of the present invention to provide a ceramic heater for a semiconductor manufacturing and inspection apparatus capable of suppressing the occurrence of the above.
  • a first aspect of the present invention is a ceramic heater in which a resistance heating element is provided on the surface or inside of a ceramic substrate, wherein a variation in resistance value with respect to an average resistance value of the resistance heating element is 25% or less.
  • This is a ceramic heater for semiconductor manufacturing and inspection equipment.
  • the average resistance value is obtained by measuring each resistance value in the divided area by dividing each resistance heating element finely, and calculating the average value of the measured resistance values and the difference between the maximum and minimum of the measured resistance values. The variability was calculated.
  • a resistive heating element having a concentric or spiral pattern is used.
  • the thickness varies between the area perpendicular to the printing direction and the area parallel to the printing direction. This causes a change in the resistance value, and causes a variation in the temperature of the heated surface.
  • the pattern portion in the region A of the resistive heating element 42 having the spiral pattern shown in FIG. 1 tends to have a large thickness while the region B has a small thickness. Accordingly, the resistance heating element 42 has a low resistance value in the region A and a high resistance value in the region B, and the amount of generated heat varies.
  • the printing direction may vary depending on the location. Because of the variation, thickness variations are reduced.
  • the resistance heating element is formed by combining the repetitive pattern of the bent line and another pattern, and the variation of the resistance value of the resistance heating element is adjusted to 25% or less. In addition, it is possible to suppress the temperature variation in the heating surface at the time of a transient temperature rise.
  • the resistance heating element constituting the ceramic heater for semiconductor manufacturing and inspection equipment according to the first aspect of the present invention is a force composed of a resistance heating element having a repetitive pattern of a bent line, or a concentric or spiral pattern and a repetition of a bent line. It is desirable to use a resistance heating element formed by mixing patterns.
  • the resistance heating element has a resistance heating element having a repeating pattern of bent lines formed at least on an outer peripheral portion of the ceramic substrate.
  • a ceramic heater in which a resistance heating element is formed on a ceramic substrate, wherein the resistance heating element is formed with a groove or a notch, and the groove has a thickness of 20 mm. It is a ceramic heater for semiconductor manufacturing and inspection equipment characterized by having a depth of more than 10%.
  • the groove formed by trimming has a depth of 20% or more of the thickness of the resistance heating element, the amount of change in the resistance value due to the trimming is large, and the resistance value can be easily controlled. If the thickness of the resistance heating element is less than 20%, there is almost no change in resistance, and it is difficult to control the resistance value.
  • the groove has a depth of 50% or more of the thickness of the resistance heating element, and more preferably reaches the surface of the ceramic substrate. If a groove reaching the surface of the ceramic substrate is formed, the formed groove completely separates the resistance heating element, and the trimming length and the amount of change in the resistance value are completely linked, so the resistance value Can be controlled more easily.
  • the resistance heating element remains at the bottom of the groove formed by the trimming, the resistance value changes depending on the remaining amount, so the trimming length and the amount of change in the resistance value do not interlock accurately, and eventually the resistance value Variation increases. Also, if the resistance heating element remains at the bottom of the groove formed by trimming, the oxidation resistance of the remaining resistance heating element decreases, and the resistance value tends to change with time. However, such a problem does not occur if the trimming groove reaches the bottom of the ceramic substrate.
  • the groove formed by trimming be stopped at a depth of about 30% of the thickness of the ceramic substrate from the surface of the ceramic substrate. If it exceeds 30%, the strength of the ceramic substrate decreases, and the ceramic substrate warps easily.
  • the width of the heating element pattern is preferably 0.5 mm or more. If the thickness is less than 0.5 mm, it is difficult to perform trimming in parallel with the direction in which the current of the resistance heating element flows.
  • a third aspect of the present invention is a ceramic heater in which a resistance heating element is formed on a ceramic substrate, wherein the resistance heating element is formed with a groove or a notch, and the surface of the resistance heating element formation surface of the ceramic substrate is roughened.
  • This is a ceramic heater for semiconductor production and inspection equipment, characterized in that Ra ⁇ 20 ⁇ m.
  • the laser light is easily reflected, and the bending strength of the ceramic substrate is reduced and the amount of warpage is reduced. Can be done.
  • the surface roughness of the surface of the ceramic substrate on which the resistance heating element is formed is Ra> 20 ⁇ m, it becomes difficult to reflect laser light, and a deep groove or the like is formed in the ceramic substrate, so that the ceramic substrate warps. Or the strength is reduced.
  • the surface roughness is Ra ⁇ 10 ⁇ m. This is because the cooling time can be made within approximately 120 seconds. If the cooling time exceeds 120 seconds, productivity may decrease.
  • a fluid serving as a refrigerant is sprayed on a surface of a ceramic substrate on which a resistance heating element is formed.
  • notches or grooves are formed in the resistance heating element.
  • turbulence is likely to occur, and if the surface roughness of the surface on which the resistance heating element is formed is large, turbulence is more likely to occur, causing the fluid with heat to stagnate and lower the cooling rate.
  • R a ⁇ 20 m by setting the resistance heating element forming surface of the ceramic substrate to R a ⁇ 20 m, turbulence can be reduced, thereby improving the temperature lowering rate.
  • the variation of the resistance value with respect to the average resistance value of the resistance heating element constituting the ceramic heater for semiconductor manufacturing and inspection equipment of the second and third aspects of the present invention is desirably 5% or less.
  • the resistance heating element is divided into a plurality of circuits and controlled, the number of divisions can be reduced, and as a result, control can be performed easily. If the resistance value of the resistance heating element has a large variation, it is necessary to divide the circuit finely and control the temperature by changing the input power amount for each circuit (channel). Since there is almost no variation, fine division is not required and control becomes easier. Further, since the variation in the resistance value is small, the controllability is improved, and the temperature of the heating surface can be made uniform during the transition of the temperature rise.
  • the grooves are formed substantially in parallel along the direction in which the current of the resistance heating element flows.
  • the resistance value locally increases.
  • the direction of current propagation and the direction of groove formation need not be mathematically parallel, and even if the groove 130 is formed in a curved line as shown in FIG. 2 (b). Often, as shown in FIG. 2 (c), the groove 140 may be formed so as to draw an oblique line with respect to the current propagation direction. In short, it is only necessary that the groove is formed so that the direction in which the groove is formed is parallel to the direction in which the current is propagated, or the angle between the direction in which the current is propagated and the direction in which the groove is formed is an acute angle.
  • the resistance heating element 22 is trimmed perpendicularly to the direction in which the current flows.
  • the resistance value of the portion A of the resistance heating element 22 becomes extremely high, and as shown in Fig. 4, the resistance heating element 22 melts due to heat generation. Resulting in.
  • such extreme heat generation does not occur, and damage or the like due to overheating of the resistance heating element does not occur.
  • the variation in the resistance value can be extremely reduced to 5% or less, preferably 1% or less.
  • the variation in the resistance value of the resistance heating element can be reduced in this way, even when the resistance heating element is divided into a plurality of circuits and controlled, the number of divisions can be reduced and control can be facilitated. Can be.
  • there is almost no variation in resistance value This eliminates the need for fine division and makes it easier to control.
  • the surface of the ceramic substrate will be irradiated with the laser, and the ceramic substrate will be discolored, resulting in poor appearance and poor ceramic appearance.
  • the discolored portion will not only be hidden but also generate excess heat, as described above. Since energy is not transmitted to the ceramic substrate, a decrease in strength can be prevented.
  • the resistance heating element is formed on the ceramic substrate using a conductor paste made of a metal or a metal and an oxide, trimming is particularly performed by laser light. This is because the metal is evaporated and removed by the laser, but the ceramic is not removed. Therefore, it is completely different from laser trimming on a semiconductor wafer or a printed wiring board, and it is not necessary to adjust the laser beam output, and it is possible to realize accurate trimming without removing residues. Also, since it is a ceramic substrate, there is no warping or significant decrease in strength.
  • FIG. 1 is an explanatory diagram showing a printing direction when producing a resistance heating element having a spiral pattern.
  • FIG. 2 is a perspective view schematically showing a resistance heating element in which a groove formed by trimming is formed substantially parallel to the direction in which current flows.
  • FIG. 3 is a perspective view schematically showing a resistance heating element having a groove formed by trimming perpendicular to the direction in which current flows.
  • Figure 4 is a photograph showing the molten resistance heating element.
  • FIG. 5 is a plan view schematically showing a pattern of a resistance heating element in the ceramic heater of the present invention.
  • FIG. 6 is a partially enlarged sectional view of the ceramic heater shown in FIG.
  • FIG. 7 is an explanatory diagram showing a printing direction when producing a resistance heating element having a repeating pattern of bent lines. '
  • FIG. 8 is a bottom view schematically showing a ceramic heater on which a resistance heating element formed by combining a spiral pattern and a repeating pattern of bent lines is formed.
  • FIG. 9 is a bottom view schematically showing a ceramic heater on which a resistance heating element having a concentric pattern is formed.
  • FIG. 10 is a bottom view schematically showing a ceramic heater on which a resistance heating element having a repeating pattern of bent lines is formed.
  • FIG. 11 is a perspective view showing how a resistance heating element is divided into a plurality of regions in order to measure a resistance value.
  • FIG. 12 is a block diagram showing an outline of a laser trimming apparatus used when manufacturing the ceramic heater of the present invention.
  • FIG. 13 is a perspective view schematically showing a table constituting the laser trimming apparatus shown in FIG.
  • FIG. 14 are cross-sectional views showing each step of manufacturing the resistance heating element of the present invention.
  • FIG. 15 shows a ceramic heater in which the ceramic heater of the present invention is housed in a holding container. It is sectional drawing which shows a knit typically.
  • Figures 16 (a) to (d) show the grooves reaching the ceramic substrate at 30%, 60%, and 90% of the thickness of the resistance heating element, respectively. Is a graph showing the shape (height and position) of the cross section, and the lower part is a cross-sectional view taken along the arrow in FIG. 11 in the upper part.
  • Figure 17 is a graph showing the cross-sectional shape (position and height) of the resistance heating element. Explanation of reference numerals
  • the ceramic heater for a semiconductor manufacturing and inspection device of the first present invention has a variation in resistance value with respect to the average resistance value of the resistance heating element. If it is 5% or less, it is not limited to this embodiment.
  • the ceramic heater for semiconductor manufacturing and inspection equipment according to the first embodiment of the present invention is a ceramic heater in which a resistance heating element is provided on the surface or inside of a disk-shaped ceramic substrate,
  • the above-mentioned resistance heating element has a repetitive pattern of bent lines, or the thickness of the resistance heating element is adjusted, and the variation with respect to the average resistance value is 25% or less. Ceramic heater.
  • the ceramic heater for semiconductor manufacturing and inspection equipment will be simply referred to as a ceramic heater.
  • the resistance heating element is formed by repeating a bent line pattern (see FIG. 10) or a concentric or spiral pattern and a pattern formed by a bent line. Therefore (see Fig. 5), it is possible to suppress a decrease in the temperature of the outer peripheral portion as compared with the case where a concentric or spiral shaped patterned resistance heating element is formed on the entire ceramic substrate. As a result, the temperature of the entire wafer heating surface becomes uniform, so that the semiconductor wafer and the like can be uniformly heated. Further, in the pattern composed of the bent lines or the repeated pattern of the bent lines, as shown in FIG. 7, due to the presence of the bent portion, not only a portion parallel to the printing direction but also a portion perpendicular to the printing direction occurs.
  • the heating element pattern is not limited to the above-mentioned pattern.
  • a spiral shape as shown in FIGS. 9 and 1 may be used.
  • the portion perpendicular to the printing direction is a belt sander. It is necessary to adjust the thickness by polishing the surface with, for example.
  • the thickness of the ceramic substrate is desirably 25 mm or less.
  • the heat capacity becomes too large, the heat transfer takes time, and the temperature of the heating surface (the side opposite to the surface on which the resistance heating element is formed) is unlikely to be uneven, as in the first invention. This is because there is no need to control the variation in resistance value. However, the responsiveness to the input power is extremely reduced.
  • the thickness is more than 1.5 mm and 5 mm or less. If the thickness is more than 5 mm, heat is difficult to propagate, and the heating efficiency tends to decrease.On the other hand, if the thickness is less than 1.5 mm, the heat propagating through the ceramic substrate will not be sufficiently diffused, so heating will not occur. This is because temperature variations may occur on the surface and the strength of the ceramic substrate may be reduced to cause breakage.
  • the diameter of the ceramic substrate should preferably exceed 19 O mm, more preferably 200 mm or more. This is because a substrate with a larger diameter is more likely to have a nonuniform heating surface temperature. In addition, a substrate having such a large diameter can be provided with a semiconductor wafer having a large diameter.
  • the diameter of the ceramic substrate is preferably at least 12 inches (300 mm '). This is because it will become the mainstream of next generation semiconductor wafers.
  • the porosity of the ceramic substrate is preferably 5% or less. Since the ceramic substrate having a high porosity has a low thermal conductivity, it takes a long time for heat transfer, and the temperature of the heating surface (the side opposite to the surface on which the resistance heating element is formed) is less likely to be uneven. This is because it is not necessary to control the variation of the resistance value. However, the responsiveness to the input power is extremely reduced.
  • the ceramic heater according to the first aspect of the present invention uses a non-oxide ceramic such as a nitride ceramic or a carbide ceramic or an oxide ceramic as a ceramic substrate, and forms an insulating layer on the surface of the non-oxide ceramic substrate. Oxide ceramics can also be used.
  • Nitride ceramics have a tendency to decrease in volume resistance at high temperatures due to oxygen solid solution, etc.Carbide ceramics are not particularly highly purified! It has electrical conductivity, and oxide ceramics are used as an insulating layer. This is because the formation can prevent a short circuit between circuits even at high temperatures or even when impurities are contained, thereby ensuring temperature controllability.
  • non-oxidizing ceramics are suitable for heaters because they have high thermal conductivity, so that the temperature can be raised and lowered quickly and the temperature can be easily controlled.
  • the thermal conductivity is high, temperature variations due to the heating element pattern are likely to occur, and the configuration of the first present invention is particularly advantageous as compared with oxide ceramics.
  • the surface on the opposite side (hereinafter referred to as the bottom) of the heating surface of the ceramic substrate has a surface roughness
  • Ra is preferably 20 m or less.
  • nitride ceramic forming the ceramic substrate examples include metal nitride ceramics, for example, aluminum nitride, silicon nitride, boron nitride, titanium nitride, and the like.
  • carbide ceramic examples include metal carbide ceramics, for example, silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, tansten carbide, and the like.
  • an oxide ceramic may be used as the ceramic substrate, and alumina, silica, cordierite, mullite, zirconia, beryllia, or the like can be used.
  • Non-oxide ceramic substrates such as the nitride ceramics and carbide ceramics described above have high thermal conductivity, and the temperature of the heating surface of the ceramic substrate can quickly follow the temperature change of the resistance heating element.
  • the surface temperature can be controlled well, and the mechanical strength is high, so the heater plate does not warp. It is possible to prevent the semiconductor wafer mounted thereon from being damaged.
  • nitride ceramics aluminum nitride is the most preferred. This is because the thermal conductivity is the highest at 18 O W / m ⁇ K.
  • FIG. 5 is a bottom view schematically showing an example of the first ceramic heater of the present invention
  • FIG. 6 is a partially enlarged sectional view showing a part thereof.
  • a ceramic substrate 11 made of a ceramic substrate such as a nitride ceramic, a carbide ceramic, or an oxide ceramic (hereinafter, referred to as a nitride ceramic substrate) is formed in a disc shape, and has a heating surface of the ceramic substrate 11.
  • a resistive heating element 12 (12e to 12g) with a concentric pattern is formed inside the bottom of the ceramic substrate 11.
  • resistance heating elements 12 (12a to 12d) having a repeating pattern of bent lines are formed.
  • the inner resistance heating elements 12 e to l 2 g are connected such that double concentric circles close to each other form a single line. Further, the resistance heating element 12 is covered and protected by a metal coating layer 1200, and an external terminal 33 has a solder layer (not shown) or the like at an end of the resistance heating element 12. Connected through. In a portion near the center, a through hole 35 is formed for passing a lifter pin 36 for supporting and transporting the semiconductor wafer 39, and a bottomed hole for inserting a temperature measuring element. A hole 34 is formed.
  • an object to be heated such as a semiconductor wafer 39 is placed and heated while being in contact with the heating surface 11 a of the ceramic substrate 11.
  • a recess or through hole is formed in the recess, and a pin having a spire or hemispherical tip is inserted and fixed into the recess with the tip slightly protruding from the surface of the ceramic substrate.
  • the heated skin material may be held at a certain distance from the ceramic substrate by supporting the heated skin material with the support pins.
  • the distance between the heating surface and the wafer is preferably 5 to 500 ⁇ .
  • an object to be heated such as a semiconductor wafer 39 can be received from the transfer machine, or the object to be heated can be received. Can be placed on the ceramic substrate 11 or heated while supporting the object to be heated.
  • the resistance heating element 12 is provided at the bottom of the ceramic substrate 11, but may be provided inside the ceramic substrate 11. Even when the resistance heating element 12 is provided inside the ceramic substrate 11, the pattern of the resistance heating element 12 is formed in the same manner.
  • the ceramic heater 30 of the present invention ceramic such as nitride is used as the material of the ceramic substrate. This is because the ceramic heater has a smaller coefficient of thermal expansion than metal, and even if thinner, warps due to heating. This is because the ceramic substrate 11 can be made thin and light because it is not distorted.
  • the thermal conductivity of the ceramic substrate 11 is high and the ceramic substrate itself is thin, the surface temperature of the ceramic substrate 11 quickly follows the temperature change of the resistance heating element.
  • the surface temperature of the ceramic substrate 11 can be controlled well by changing the voltage and the current amount to change the temperature of the resistance heating element.
  • spiral resistance heating elements 12 e to l 2 g are formed on the inner side, but the resistance heating elements may be concentric.
  • the resistance heating elements 12 a to l 2 d are formed in the outer peripheral portion in a repeating pattern of the bent line, the degree of the repeated bending of the bent line is large even if the number per unit length is large. Good. That is, the resistance heating elements 12a to l2d shown in FIG. 5 may be bent more frequently.
  • FIG. 10 discloses a ceramic heater 70 consisting only of a repeating pattern of bent lines. Since the ceramic heater 70 includes only the resistance heating elements 72 a to 72 h each having a bent line pattern, it is possible to reduce the variation in the resistance value when printing metal particles. In addition, in the case of a hybrid pattern of a bent line repetition pattern and a spiral or concentric pattern, it is preferable that the bent line repetition pattern be formed at a radius of 1Z2 or more outside the center. This is because concentric circles and swirl arcs tend to be parallel to the printing direction in a region that is more than 1/2 radius away from the center, and the resistance varies widely.
  • the repetition of the bending line is formed between the resistance heating elements formed of the inner spiral pattern and the concentric pattern. It may have a resistive heating element composed of a pattern.
  • the resistance heating element 12 formed on the surface or inside of the ceramic substrate such as nitride be divided into at least two or more circuits as shown in FIG. This is because, by dividing the circuit, the amount of heat generated can be changed by controlling the power supplied to each circuit, and the temperature of the heating surface of the semiconductor wafer can be adjusted.
  • a conductive paste containing metal particles is applied to the surface of the ceramic substrate 11 to form a conductor base layer having a predetermined pattern. Is preferable, and metal particles are sintered on the surface of the ceramic substrate 11. The sintering of the metal is sufficient if the metal particles are fused together with the ceramic.
  • the thickness of the resistance heating elements is preferably 1 ⁇ 3 0 ⁇ ⁇ , more preferably 1 to 1 0 / im.
  • the thickness thereof is preferably 1 to 50 ⁇ .
  • the width of the resistance heating element is preferably 0.1 to 20 mm, more preferably 0.1 to 5 mm.
  • the resistance heating element preferably has a thickness of 5 to 20 ⁇ m.
  • the resistance value of the resistance heating element 12 can be varied depending on its width and thickness, the above range is most practical.
  • the resistance becomes thinner and thinner, and becomes larger.
  • the thickness and width are larger, but when the resistance heating element 12 is provided inside, the heating surface and the resistance heating element 1 2 And the uniformity of the temperature of the surface is reduced, so the width of the resistance heating element itself must be increased.
  • a ceramic such as nitride. Since there is no need to consider the adhesion of High melting point metals such as lipden can be used, and carbides such as tungsten and molybdenum can be used, and the resistance value can be increased. Therefore, the thickness itself can be increased to prevent disconnection. Therefore, it is desirable that the resistance heating element 12 has the above-mentioned thickness and width.
  • the resistance heating element 12 may have a rectangular or elliptical cross section, but is preferably flat. This is because the flattened surface tends to radiate heat toward the heated surface of the wafer, making it difficult to achieve a temperature distribution on the heated surface.
  • the aspect ratio of the cross section (the width of the resistance heating element and the thickness of the resistance heating element) be 10 to 500.
  • the resistance value of the resistance heating element 12 can be increased, and the uniformity of the temperature of the heating surface can be ensured.
  • the thickness of the resistance heating element 12 is constant, if the aspect ratio is smaller than the above range, the amount of heat propagation in the wafer heating direction of the ceramic substrate 11 decreases, and the resistance heating element 12 Heat distribution similar to the above pattern occurs on the heating surface. Conversely, if the aspect ratio is too large, the temperature immediately above the center of the resistance heating element 12 becomes high, resulting in resistance heating. A heat distribution similar to the pattern of the body 12 occurs on the heated surface. Therefore, in consideration of the temperature distribution, the aspect ratio of the cross section is preferably 10 to 500.
  • the aspect ratio is 10 to 200.
  • the aspect ratio is It is desirable that the ratio be between 200 and 500.
  • the aspect ratio is higher.
  • the resistance to the heating surface is reduced. This is because the distance from the heating element 12 becomes shorter, and the temperature uniformity of the surface decreases, so that the resistance heating element 12 itself needs to be flattened.
  • the resistance heating element 12 When the resistance heating element 12 is formed eccentrically inside the ceramic substrate 11, the position is close to the surface (bottom surface) facing the heating surface of the ceramic substrate 11, and the distance from the heating surface to the bottom surface Above 50% and up to 99% If it is less than 50%, the temperature distribution is generated because it is too close to the heated surface. Conversely, if it exceeds 99%, the ceramic substrate 11 itself warps and the semiconductor wafer is damaged. It is because it is damaged.
  • the resistance heating element 12 When the resistance heating element 12 is formed inside the ceramic substrate 11, a plurality of resistance heating element forming layers may be provided.
  • the pattern of each layer is such that the resistive heating element 12 is formed on some layer so as to capture each other, and when viewed from above the wafer heating surface, the pattern is formed on any area. Is desirable.
  • a structure for example, there is a structure in which the staggered arrangement is provided.
  • resistance heating element 12 may be provided inside the ceramic substrate 11, and the resistance heating element 12 may be partially exposed.
  • the conductive paste is not particularly limited, but preferably contains not only metal particles or conductive ceramic for ensuring conductivity, but also a resin, a solvent, a thickener, and the like.
  • metal particles for example, noble metals (gold, silver, platinum, palladium), lead, tungsten, molybdenum, nickel and the like are preferable. These may be used alone or in combination of two or more. This is because these metals are relatively hard to oxidize and have sufficient resistance to generate heat.
  • the conductive ceramic examples include tungsten and molybdenum carbide. These may be used alone or in combination of two or more.
  • the particle diameter of the metal particles or conductive ceramic particles is preferably 0.1 to 100 ⁇ m. If it is too fine, less than 0.1 ⁇ ⁇ , it is liable to be oxidized, while if it exceeds ⁇ ⁇ ⁇ , it becomes difficult to sinter, not only increases the resistance but also makes it difficult to print. It may be spherical or scaly. When these metal particles are used, they may be a mixture of the sphere and the flakes.
  • the metal particles are flakes or a mixture of spheres and flakes
  • it is easy to hold the oxide particles between the metal particles it is possible to secure the adhesion between the resistance heating element 12 and ceramics such as nitrides, and to increase the resistance value, which is advantageous. is there. ⁇
  • Examples of the resin used for the conductor paste include an epoxy resin and a phenol resin.
  • Examples of the solvent include isopropyl alcohol, butyl carbitol, diethylene ether monoether, and the like.
  • Examples of the thickener include cellulose.
  • the conductor paste is made by adding a metal oxide (glass frit) to metal particles and sintering the resistance heating element, the metal particles, and the metal oxide.
  • a metal oxide glass frit
  • the ceramic substrate such as a nitride ceramic
  • the metal particles can be more closely adhered.
  • the mixing with the metal oxide improves the adhesion with the nitride ceramic, etc., but the surface of the metal particles and the surface of the nitride ceramic, etc. are slightly oxidized to form an oxide film. It is considered that these oxide films are sintered together via the metal oxide to be integrated, and the metal particles and the nitride ceramics are brought into close contact with each other.
  • the ceramic constituting the ceramic substrate is an oxide ceramic
  • the surface is naturally made of an oxide, so that a conductor layer having excellent adhesion is formed.
  • the metal oxide for example, lead oxide, zinc oxide, silica, boron oxide (B 2 0 3), alumina, Shi preferred is at least one selected from the group consisting of yttria and titania les.
  • the titania is 1 to 50, and the total is adjusted so as not to exceed 100 parts by weight.
  • the addition amount of the above-mentioned oxidized product to the metal particles is 0.1% by weight or more and 1 ° by weight. It is preferably less than / 0 . Further, when the resistance heating element 12 is formed using the conductor paste having such a configuration, the area resistivity is preferably 1 to 5 Om QZ port.
  • the sheet resistivity exceeds 5 ⁇ / port, the amount of heat generated is too large for the applied voltage, and the heat generated on the ceramic substrate 11 provided with the resistance heating element 12 on the surface of the ceramic substrate This is because it is difficult to control the amount. If the addition amount of the metal oxide is 10% by weight or more, the sheet resistivity exceeds 5 ⁇ / port, and the calorific value becomes too large to make temperature control difficult. The uniformity of distribution is reduced.
  • the sheet resistivity can be set to 5 ⁇ / port to 10 ⁇ port. If the sheet resistance is increased, the width of the pattern can be increased, so that there is no problem of disconnection.
  • a metal coating layer 1200 is formed on the surface of the resistance heating element 12. This is to prevent the internal metal sintered body from being oxidized to change the resistance value.
  • the thickness of the formed metal coating layer 1200 is preferably 0.1 to 10 ⁇ .
  • the metal used for forming the metal coating layer 1200 is not particularly limited as long as it is a non-oxidizing metal, and specifically, for example, gold, silver, palladium, platinum, nickel, etc. No. These may be used alone or in combination of two or more. Of these, nickel is preferred. Further, as the coating layer, an inorganic insulating layer such as glass, a heat-resistant resin, or the like can be used.
  • the resistance heating element 12 needs a terminal to connect to the power supply, and this terminal is attached to the resistance heating element 12 via solder, but nickel prevents heat diffusion of the solder.
  • Examples of the connection terminal include an external terminal 33 made of Kovar.
  • the resistance heating element 12 When the resistance heating element 12 is formed inside the ceramic substrate 11, no coating is necessary because the surface of the resistance heating element is not oxidized. When the resistance heating element 12 is formed inside the ceramic substrate 11, part of the resistance heating element is exposed on the surface. Alternatively, a through hole for connecting the resistance heating element 12 may be provided in the terminal portion, and an external terminal may be connected and fixed to the through hole.
  • alloys such as silver-lead, lead-tin, and bismuth-tin can be used as the solder.
  • the thickness of the solder layer is preferably from 0.1 to 50 / m. This is because the range is sufficient to secure connection by soldering.
  • a through hole 35 is provided in the ceramic substrate 11 and a lifter pin 36 is inserted into the through hole 35 to transfer the semiconductor wafer to a carrier (not shown), From a semiconductor wafer.
  • thermocouple can be embedded in the ceramic substrate as needed. This is because the temperature of the resistance heating element is measured by a thermocouple, and the temperature and the amount of current can be changed based on the data to control the temperature.
  • the size of the junction of the metal wires of the thermocouple is the same as the wire diameter of each metal wire, or
  • thermocouple examples include K-type, R-type, B-type, S-type, E-type, J-type, and T-type thermocouples as described in, for example, JIS-C-162 (1980). Pairs. Next, a method for manufacturing the first ceramic heater will be described.
  • Sintering aids 4 C such yttria (Y 2 0 3) and B as needed to ceramic powders such as nitrides such as nitride Arumiyuumu Ya silicon carbide mentioned above, N a, compounds containing C a,
  • the slurry is granulated by a method such as a spray drier, and the granules are placed in a mold or the like and pressed to form a plate. To form a green body.
  • a part to be a through hole for inserting a lifter pin for supporting a semiconductor wafer and a part to be a bottomed hole for embedding a temperature measuring element such as a thermocouple are formed in the formed body. .
  • the through hole and the bottomed hole can be formed after the formed body is fired.
  • the formed body is heated, fired and sintered to produce a ceramic plate.
  • the ceramic substrate 11 is manufactured by processing into a predetermined shape, but the ceramic substrate 11 may be used as it is after firing. By performing heating and baking while applying pressure, it is possible to manufacture a ceramic substrate 11 having no pores.
  • the heating and sintering may be performed at a temperature equal to or higher than the sintering temperature. In the case of oxide ceramics, the temperature is 150 ° C. to 200 ° C.
  • a through hole and a bottomed hole for inserting a temperature measuring element are provided.
  • the through-holes or the like can be formed by performing a drilling process such as sandblasting using SiC particles or the like after surface polishing.
  • the conductor paste is generally a high-viscosity fluid composed of metal particles, a resin, and a solvent.
  • the conductor paste is printed on the portion where the resistance heating element is to be provided by screen printing or the like to form a conductor paste layer.
  • the resistance heating element is printed in a combination pattern of concentric circles and bent lines as shown in Fig. 5 because the temperature of the entire ceramic substrate needs to be uniform.
  • the conductor paste layer is desirably formed so that the cross section of the resistance heating element 12 after firing has a rectangular and flat shape.
  • the pattern is a concentric circle or a spiral pattern
  • a portion perpendicular to the printing direction is polished with a belt sander to make the thickness uniform.
  • the conductor paste layer printed on the bottom surface of the ceramic substrate 11 is heated and fired to remove the resin and the solvent, and at the same time, sinters the metal particles.
  • the heating and firing temperature is preferably from 500 to 100 ° C.
  • the metal particles and the ceramic substrate oxide will sinter and be integrated, so that the adhesion between the resistance heating element and the ceramic substrate will be improved. Is improved.
  • the metal coating layer 1200 can be formed by electrolytic plating, electroless plating, sputtering, or the like, but in consideration of mass productivity, electroless plating is optimal. Further, instead of a metal, it may be covered with a cover such as glass or resin.
  • thermocouple is fixed to the bottomed hole 34 with silver brazing, gold brazing, or the like, and sealing is performed with a heat-resistant resin such as polyimide, thereby completing the manufacture of the ceramic heater.
  • a ceramic powder such as a nitride is mixed with a binder, a solvent and the like to prepare a paste, which is used to produce a green sheet.
  • Aluminum nitride or the like can be used as the ceramic powder such as nitride described above, and a sintering aid such as yttria or a compound containing Na or Ca may be added as necessary. Les ,.
  • binder at least one selected from acryl-based binder, ethyl cellulose, butyl cellulose-based solve, and polybutyl alcohol is preferable.
  • solvent at least one selected from ⁇ -terbineol and glycol is desirable.
  • the paste obtained by mixing these is formed into a sheet by the doctor blade method. To produce a green sheet.
  • the thickness of the green sheet is preferably from 0.1 to 5 mm.
  • the obtained green sheet will be a part that becomes a through hole for inserting a lifter pin for supporting a semiconductor wafer, and a bottomed hole for embedding a temperature measuring element such as a thermocouple.
  • a part, a part to be a through hole for connecting a resistance heating element to an external end pin, etc. are formed.
  • the above processing may be performed after forming a green sheet laminate described later.
  • a metal paste for forming a resistance heating element or a conductive paste containing a conductive ceramic is printed on the green sheet.
  • the printing pattern at this time is desirably a combination pattern of concentric circles and bent lines as shown in FIG.
  • These conductive pastes contain metal particles or conductive ceramic particles.
  • the average particle size of the tungsten particles or molybdenum particles is preferably 0.1 to 5 ⁇ m. If the average particle size is less than 0.1 ⁇ , if it exceeds 5 m, it will be difficult to print the conductive paste.
  • a conductive paste for example, 85 to 87 parts by weight of metal particles or conductive ceramic particles; at least one kind of binder selected from acrylonitrile-based, ethylcellulose, sorbitol, and polyvinyl alcohol 1. 5 to 10 parts by weight; and a fibrous material (paste) obtained by mixing 1.5 to 10 parts by weight with at least one solvent selected from ⁇ -terbineol and glycol.
  • the number of green sheets stacked on the upper side is made larger than the number of green sheets stacked on the lower side, and the formation position of the resistance heating element is eccentric toward the bottom.
  • the number of stacked green sheets on the upper side is preferably 20 to 50
  • the number of stacked green sheets on the lower side is preferably 5 to 20.
  • the green sheet laminate is heated and pressed to sinter the green sheet and the internal conductor paste.
  • the heating temperature is preferably from 100 to 200 ° C.
  • the pressure is preferably from 100 to 200 kg / cm 2 .
  • Heating is performed in an inert gas atmosphere.
  • the inert gas for example, argon, nitrogen, or the like can be used.
  • a bottomed hole for inserting a temperature measuring element may be provided.
  • the bottomed hole can be formed by blasting sand blast or the like after surface polishing. Also, connect an external terminal to the through hole for connecting to the internal resistance heating element, and heat it to reflow.
  • the heating temperature is preferably from 200 to 500 ° C.
  • thermocouple as a temperature measuring element is attached with silver brazing or gold brazing, etc., sealed with polyimide or other heat-resistant resin, and production of the ceramic heater is completed.
  • a ceramic heater according to a second aspect of the present invention is a ceramic heater in which a resistance heating element is formed on a ceramic substrate, wherein the resistance heating element has a groove or notch, and the depth of the groove is equal to the resistance.
  • This is a ceramic heater characterized in that it is 20% or more of the thickness of the heating element.
  • the ceramic heater according to the third aspect of the present invention is a ceramic heater in which a resistance heating element is formed on a ceramic substrate, wherein the resistance heating element has a groove or a notch formed therein.
  • the ceramic heater is characterized in that the surface roughness of the body forming surface is Ra 20 ⁇ m.
  • the ceramic heater according to the second aspect of the present invention is characterized in that the depth of the groove formed in the resistance heating element is at least 20% of the thickness of the resistance heating element, and the ceramic heater according to the third aspect of the invention.
  • the characteristic of the cook heater is that the surface roughness of the surface of the ceramic substrate on which the resistance heating element is formed is Ra ⁇ 20 um. Therefore, in the following description, the second invention and the third invention will be described at the same time, and the features of each invention will be individually described therein. And
  • the second and third ceramic heaters of the present invention have a heating surface on the side opposite to the surface on which the resistance heating element is formed, and the resistance value is adjusted by forming a groove or notch by trimming in the resistance heating element. The temperature distribution on the heating surface becomes uniform.
  • the notch is a kind of notch formed to locally reduce the width of the resistance heating element. By making a notch, the width of the resistance heating element is locally reduced and the resistance value is adjusted. Is what you do. The difference is that the groove does not form a cut on the side, whereas the notch forms a cut on the side.
  • the variation in the resistance value can be reduced, and the reduction in the resistance to oxidation of the resistance heating element can be prevented. Further, the strength of the ceramic substrate is not reduced.
  • the groove formed in the resistance heating element has a depth of 20% or more of the thickness of the resistance heating element, the amount of change in the resistance value due to trimming is large, and the resistance value is controlled. Can be easily performed. If the thickness is less than 20% of the resistance heating element thickness, there is almost no change in resistance, and it is difficult to control the resistance value. More preferably, the groove has a depth of 50% or more of the thickness of the resistance heating element, and more preferably reaches the surface of the ceramic substrate. If a groove reaching the surface of the ceramic substrate is formed, the formed groove completely separates the resistance heating element, and the trimming length and the amount of change in the resistance value are completely linked, so that the resistance value can be controlled more. It can be done easily.
  • the depth is within 30% of the thickness of the ceramic substrate. If it exceeds 30%, the strength of the ceramic substrate is reduced, and the ceramic substrate is likely to be warped.
  • the groove formed in the resistance heating element may have a depth of 20% or more of the thickness of the resistance heating element for the same reason as in the second aspect of the invention. More preferably, it has a depth of 50% or more of the thickness of the resistance heating element, and more preferably reaches the surface of the ceramic substrate. If a groove is also formed in the ceramic substrate, the depth is set to the thickness of the ceramic substrate. It is desirable to be within 30% of the value.
  • the groove is formed substantially parallel to a direction in which a current flows through the resistance heating element.
  • the trimming is formed on the surface (upper surface) of the resistance heating element. If a trimming groove is formed on the side surface of the resistance heating element, there will be a portion where the resistance value is locally increased, and the resistance heating element will be melted during heat generation.
  • 2 (a) to 2 (c) are perspective views schematically showing the resistance heating element 12 when the surface of the resistance heating element is trimmed substantially parallel to the direction of current flow.
  • the grooves 120, 130, 140 formed by trimming are straight or curved as shown in FIG. 2, but a plurality of such straight or curved grooves are formed. You may.
  • the resistance heating element when the resistance heating element is formed in a shape drawing an arc, trimming the inner peripheral side of the circular resistance heating element can greatly change the resistance value. This is because the current flows more easily toward the inner circumference.
  • the variation in the resistance value with respect to the average resistance value is preferably 5% or less, more preferably 1%.
  • the variation in the resistance value with respect to the average resistance value is preferably 5% or less, more preferably 1%.
  • variations in the resistance value of the resistance heating element should be suppressed to 25% or less by making the thickness and width etc. uniform when printing the resistance heating element, and further adjusted to 5% or less by trimming. Is desirable. This is because the adjustment by trimming is smoother if the variation is reduced at the printing stage of the resistance heating element.
  • the width of the groove is preferably about 1 to 100 ⁇ m, more preferably about 1 to 100 m. If the width exceeds 100 ⁇ , disconnection or the like is likely to occur, while if the width is less than 1 / xm, it is difficult to adjust the resistance value of the resistance heating element.
  • the spot diameter of the laser beam is 1 ⁇ ! It is desirable to adjust at ⁇ 2 cm, 5 0 11! ⁇ 2 cm It is more desirable to adjust with.
  • the trimming be performed by measuring the resistance value of the resistance heating element and based on the measured value. This is because the resistance value can be accurately adjusted.
  • the resistance value is measured by dividing the resistance heating element pattern from 1: _ to 16 and measuring the resistance value for each section. Then, a trimming process is performed on a section having a low resistance value.
  • the resistance value measurement may be performed again, and if necessary, further trimming may be performed.
  • resistance measurement and trimming may be performed not only once but also two or more times.
  • the resistive heating element paste may be first printed in a planar shape (so-called solid shape) and then patterned by trimming. If you try to print in a pattern from the beginning, the thickness will vary depending on the printing direction.However, if you print in a plane, you can print with a uniform thickness, so trim it and pattern it. Thereby, a heating element pattern having a uniform thickness can be obtained.
  • the trimming can be performed using laser light irradiation or polishing treatment such as sand blasting or belt sanding.
  • Examples of the laser light include a YAG laser, an excimer laser (KrF), a carbon dioxide laser, and the like.
  • FIG. 12 is a block diagram showing an outline of a laser trimming apparatus used for manufacturing the second and third ceramic heaters of the present invention.
  • the conductor layer 12m is formed in a concentric shape with a predetermined width so as to include the circuit of the resistance heating element to be formed, or a predetermined pattern Disc-shaped ceramic substrate 11 on which the resistance heating element is formed Fix it on the tape 13.
  • the table 13 is provided with a motor and the like (not shown), and the motor and the like are connected to the control unit 17 so that a signal from the control unit 17 drives the motor and the like.
  • the table 13 can be freely moved in the xy direction (or ⁇ direction in addition to this).
  • a galvanomirror 15 is provided above the table 13.
  • the galvanomirror 15 can be freely rotated by a motor 16.
  • the laser beam 22 emitted from the laser irradiation device 14 disposed on the galvanomirror 15 is reflected and illuminates the ceramic substrate 11.
  • the motor 16 and the laser irradiating device 14 are connected to the control unit 17, and the motor 16 and the laser irradiating device 14 are driven by a signal from the control unit 17. 5 is rotated by a predetermined angle so that the irradiation position can be freely set in the X- y direction on the ceramic substrate 11. As described above, by driving the table 13 on which the ceramic substrate 11 is mounted and / or the galvanomirror 15, an arbitrary position on the ceramic substrate 11 can be irradiated with the laser beam 22.
  • a camera 21 is also installed above the table 13 so that the position (x, y) of the ceramic substrate 11 can be recognized.
  • the camera 21 is connected to the storage unit 18, thereby recognizing the position (x, y) of the conductor layer 12 m of the ceramic substrate 11, and irradiating the position with the laser beam 22.
  • the input unit 20 is connected to the storage unit 18 and has a keyboard or the like (not shown) as a terminal, and receives a predetermined instruction or the like via the storage unit 18 or a keyboard. It is supposed to be.
  • this laser trimming device includes a calculation unit 19, and based on data such as the position and thickness of the ceramic substrate 11 recognized by the camera 21, the irradiation position and irradiation position of the laser beam 22 are determined. Performs calculations to control speed, laser light intensity, etc. Based on the calculation result, the control unit 17 issues an instruction to the motor 16, the laser irradiation device 14, etc., and rotates the galvanomirror 15, or emits the laser beam 22 while moving the table 13. Irradiation is performed, and trimming is performed in an unnecessary part of the conductor layer 12 m or in a direction substantially parallel to the direction in which the current of the resistance heating element pattern flows. In this way, a predetermined pattern of the resistance heating element is formed, or a groove or a notch is formed in the resistance heating element.
  • this laser trimming device has a resistance measuring unit.
  • the resistance measuring section includes a plurality of tester pins, divides the resistance heating element pattern into a plurality of sections, contacts the tester pins for each section, measures the resistance value of the resistance heating element, and applies laser light to the section. Irradiation is performed, and trimming is performed almost in parallel along the direction in which the current of the resistance heating element flows.
  • a method of manufacturing a ceramic heater using such a laser trimming device will be specifically described.
  • the laser trimming step which is the main part of the second and third aspects of the present invention, will be described in detail, and other steps will be briefly described. The steps other than the trimming will be described in more detail later.
  • a ceramic substrate is manufactured.
  • a formed body made of ceramic powder and resin is manufactured.
  • a method of producing the formed body there are a method of producing granules containing a ceramic powder and a resin, then putting the granules into a mold or the like and applying a pressing pressure, and a method of laminating and pressing green sheets.
  • a manufacturing method and a more appropriate method is selected depending on whether or not there is a force for forming another conductive layer such as an electrostatic electrode therein.
  • the formed body is degreased and fired to produce a ceramic substrate.
  • a through hole for inserting a lifter pin into the ceramic substrate, a bottomed hole for burying a temperature measuring element, and the like are formed.
  • a conductive paste layer having the shape shown in FIG. 12 is formed on the ceramic substrate 11 by screen printing or the like in a wide area including a portion serving as a resistance heating element, and the conductive paste layer is baked. 2 m.
  • the conductive layer may be formed by using a physical vapor deposition method such as plating or sputtering. In the case of plating, a conductive layer 12 m can be formed in a predetermined region by forming a plating resist, and in the case of sputtering or the like, by performing selective etching.
  • the conductor layer may be formed as a resistance heating element pattern as described above.
  • the force for forming the conductor layer 12 m in the predetermined area or the ceramic substrate 11 on which the resistance heating element of the predetermined pattern is formed is fixed to the predetermined position of the table 13.
  • the trimming data, the data of the resistance heating element pattern, both the trimming data and the data of the resistance heating element pattern, etc. are input from the input section 20 in advance and stored in the storage section 19. That is, data of the shape to be formed by trimming is stored.
  • Trimming data is data used for trimming the side and surface of the resistance heating element pattern, trimming in the thickness direction, and trimming a ladder-like pattern.
  • the resistance heating element pattern data is It is used when a conductor layer printed in a so-called solid shape is trimmed to form a resistance heating element pattern. Of course, these can be used in combination.
  • desired resistance value data may be input and stored in the storage unit.
  • the resistance measurement unit measures the resistance value and calculates how much the desired resistance value differs, and calculates what trimming is performed to correct this to the desired resistance value.
  • the calculation unit 19 performs calculation, and the result is stored in the storage unit as control data. Stored in 18.
  • a control signal is generated from the control unit 17 based on the calculation result, and By irradiating a laser beam while driving the motor 16 of the pano mirror 15 and / or the motor of the table 13, unnecessary portions of the conductor layer 12 m or portions where resistance of the heating element is desired to be increased by the above method. Trim using
  • the table 13 has a fixing projection 13b that comes into contact with the side surface of the ceramic substrate 11 and a fitting projection 13a that fits into the through hole into which the lifter pin is inserted.
  • the ceramic substrate 11 is fixed on the table 13 using these projections.
  • the resistance value is controlled by dividing the resistance heating element pattern into two or more sections (1i to 16 ) and controlling the resistance value for each section.
  • the resistance value is controlled by forming a groove or the like in a part of the resistance heating element.
  • the part to be trimmed such as the conductor layer, is trimmed by laser light irradiation, but the laser light irradiation has a large effect on the underlying ceramic substrate. It is important that there is no.
  • examples of such a laser include a YAG laser, a carbon dioxide laser, an excimer laser, and a UV (ultraviolet) laser.
  • the required laser light intensity varies depending on the type and thickness of the conductor layer to be removed, etc., but cannot be specified unconditionally, but a YAG laser or an excimer (KrF) laser can be optimized.
  • SL432H, SL436G, SL432GT, and SL411B manufactured by NEC Corporation can be used as the YAG laser.
  • the laser is pulsed light. This is because a large amount of energy can be applied to the resistance heating element in a very short time, and damage to the ceramic substrate can be reduced.
  • the pulse is preferably 1 kHz or less. 1 kHz If it exceeds, the energy of the first pulse of the laser will be high and it will be trimmed excessively.
  • the processing speed is desirably 100 mm / sec or less. If the time exceeds 100 mmZ seconds, a groove or the like cannot be formed unless the frequency is increased. As described above, since the upper limit of the frequency is 1 kHz or less, the frequency is preferably 100 mm or less.
  • the output of the laser is preferably 0.3 W or more.
  • the ceramic substrate is preferably made of a material that hardly absorbs laser light.
  • a substrate having a carbon content of 500 ppm or less and a small carbon content is preferable.
  • the surface roughness of the surface of the ceramic substrate is set to not more than 20 / im in JISB0601Ra.
  • the surface roughness of the ceramic substrate is desirably 10 // m or less. This is because when the surface roughness is large, the laser light is absorbed.
  • the surface roughness is adjusted by polishing and polishing. Polishing # using 2 0 0-1 0 0 0 diamond grindstone to perform the polishing by applying a load of 1 to 1 0 0 kg Z cm 2 from both sides. The polishing is performed by using a polishing cloth and a diamond paste containing diamond powder having a particle diameter of 0.1 to 100 / im. The surface roughness is measured using a surface roughness meter manufactured by KEYENCE CORPORATION.
  • the surface roughness of the surface is set to 20 ⁇ or less in JISB 0601 Ra, and 10 m It is more desirable to make the following.
  • a method for adjusting the surface roughness a method similar to the above-described third invention can be used.
  • the ceramic heaters of the second and third aspects of the present invention have substantially the same configuration as the ceramic heater of the first aspect of the present invention except that a groove or a notch is formed in the resistance heating element. Since the description has already been made with reference to FIG. As in the second and third ceramic heaters of the present invention, the surface of the ceramic substrate When a resistance heating element is provided on the (bottom) surface, it is desirable that the heating surface be on the opposite side of the resistance heating element formation surface. This is because the ceramic substrate plays a role of thermal diffusion, so that the temperature uniformity of the heated surface can be improved.
  • the shape (diameter and thickness), material, and the like of the ceramic substrate in the second and third ceramic heaters of the present invention are the same as those of the above-described first present invention.
  • the material of the ceramic substrate it is necessary to take measures such as reducing the amount of carbon so as not to absorb the laser beam.
  • the surface of the ceramic substrate constituting the ceramic heater according to the third aspect of the present invention is polished and adjusted to not more than 20 ⁇ by JIS B 0601 Ra. In addition, it is desirable to adjust it to 10 ⁇ or less.
  • the surface of the ceramic substrate constituting the ceramic heater according to the second aspect of the present invention is preferably polished and adjusted to 20 ⁇ or less by JISBO601Ra, and is preferably adjusted to 10 ⁇ or less. Is more desirable.
  • a heat-resistant ceramic layer may be provided between the resistance heating element and the ceramic substrate.
  • a heat-resistant ceramic layer may be provided between the resistance heating element and the ceramic substrate.
  • an oxide ceramic may be formed on the surface.
  • the surface roughness of the surface of the heat-resistant ceramic layer or the oxide ceramic layer is adjusted to 20 zm or less.
  • the resistance heating element formed on the surface or inside of the ceramic substrate is divided into at least two or more circuits. This is because, by dividing the circuit, the amount of heat generated can be changed by controlling the power supplied to each circuit (channel), and the temperature of the heated surface of the semiconductor wafer can be adjusted.
  • the number of circuits is desirably less than 15. This is because it is easy to control. According to the second aspect of the present invention, since the variation in the resistance value can be reduced, the number of circuits can be reduced to less than 15.
  • Examples of the pattern of the resistance heating element include concentric circles, spirals, eccentric circles, and bends. Although a line or the like may be used, a concentric shape as shown in FIG. 5 or a combination of a concentric shape and a bent shape is preferable because the temperature of the entire ceramic substrate can be made uniform.
  • the wiring has a narrow and mixed pattern.
  • the above-described method is used as a method for forming the resistance heating element on the surface of the ceramic substrate. That is, a conductor paste is applied to a predetermined region of a ceramic substrate, and then a force for performing a trimming process by a laser after forming a conductor paste layer, or a conductor paste is baked, and then a trimming process by a laser is performed. Forming a resistance heating element.
  • metal particles can be sintered on the surface of the ceramic substrate via a glass frit or the like. The sintering of the metal is sufficient if the metal particles and the metal particles and the ceramic are fused. Trimming is optimal after firing. This is because the resistance value fluctuates due to firing, and the resistance value can be controlled more accurately after firing.
  • a conductor layer may be formed in a predetermined region by using a plating method, a sputtering method, or the like, and may be subjected to laser trimming.
  • the resistance heating element is formed on the surface of the ceramic substrate.
  • the thickness of the resistance heating element is preferably 1 to 3 0111, and 1 to 15 ⁇ is more preferred.
  • the width of the resistance heating element is preferably 0.5 to 20 mm, more preferably 0.5 to 5 mm.
  • the resistance heating element can have its resistance changed depending on its width and thickness, but the above range is the most practical.
  • This resistance volume resistivity
  • This resistance can be adjusted by using laser light as described above.
  • the cross-sectional shape and aspect ratio of the resistance heating element formed on the ceramic substrate are the same as in the first present invention, and have already been described. The description here is omitted.
  • the conductor paste used for forming the resistance heating element is the same as that of the first embodiment of the present invention, and has already been described, so that the description is omitted here.
  • a method of manufacturing a ceramic heater of the present invention including laser processing will be described in more detail with reference to FIG. 14 regarding steps other than the laser processing step. Since the laser processing step has been described in detail above, it will be briefly described here.
  • 14 (a) to 14 (d) are cross-sectional views schematically showing a part of the method for manufacturing a ceramic heater of the present invention including laser processing.
  • a ceramic substrate 11 having a through-hole 35 and a bottomed hole (not shown) is manufactured in the same manner as (1) of A. in the first method of manufacturing a ceramic heater of the present invention described above (FIG. 14). (See (a))-.
  • the conductor paste is generally a high-viscosity fluid composed of metal particles, a resin, and a solvent. This conductor paste is printed on the area where the resistance heating element is to be provided by screen printing or the like to form a conductor paste layer 12m (see Fig. 14 (b)).
  • the pattern of the resistance heating element is preferably a pattern consisting of concentric and bent shapes as shown in Fig. 5 because the temperature of the entire ceramic substrate must be uniform. A wide concentric or circular pattern is included to include these patterns.
  • the conductor paste layer printed on the bottom surface of the ceramic substrate 11 is heated and baked to remove the resin and the solvent, and the metal particles are sintered and baked on the bottom surface of the ceramic substrate 11 to obtain a conductor having a predetermined width.
  • the above-described trimming process using a laser is performed to form a resistive heating element 12 having a predetermined pattern (see FIG. 14 (c)).
  • the heating and firing temperature is preferably from 500 to 1,000.
  • a pattern such as a concentric circle, a spiral, a bent pattern, or the like may be formed first, and a part of the pattern may be trimmed to adjust its resistance value, thereby forming a resistance heating element 12.
  • metal coating layer 1200 It is desirable to provide a metal coating layer 1200 on the surface of the resistance heating element 12 as shown in FIG.
  • the metal coating layer 1200 can be formed by electrolytic plating, electroless plating, sputtering, or the like. However, considering mass productivity, electroless plating is optimal.
  • FIG. 14 does not show the metal coating layer 1200. Further, instead of a metal, it may be covered with a cover such as glass or resin.
  • a terminal for connection to the power supply to the end of the pattern of the resistance heating element 12 via solder (see Fig. 14 (d)). Also, a thermocouple is inserted into the bottomed hole 34 and sealed with a heat-resistant resin such as polyimide or the like, and the production of the ceramic heater is completed.
  • FIG. 15 is a cross-sectional view schematically showing the ceramic heater unit manufactured as described above.
  • a support column 56 is formed in a support container 51 to support the ceramic substrate 11.
  • a resistance heating element 12 is formed on the bottom surface of the ceramic substrate 11.
  • An intermediate bottom plate 52 having an opening 52 for preventing the ceramic substrate 11 from being overheated by radiant heat is mounted in the middle of the support column 56, and is supported by a panel 53.
  • a bottom plate 51a having an opening 510 is formed at the bottom of 1, and a supply port 59 for supplying a refrigerant is provided.
  • thermocouple 44 is pressure-bonded to the ceramic substrate 11 with the force of the panel 45 via the electric heating plate 42.
  • a refrigerant is introduced into the support vessel 51, and the refrigerant flows in from the supply port 59 and is connected to the resistance heating element 12 and the ceramic substrate 11 While contacting, heat is exchanged and discharged from the opening 5 10.
  • the refrigerant may be a liquid or a gas as long as it is a fluid.
  • the liquid include water, ammonia, alcohol, and ethylene glycol
  • the gas include nitrogen, carbon dioxide, argon, neon, and air.
  • the first, second and third ceramic heaters of the present invention can be used as an electrostatic chuck by providing an electrostatic electrode inside a ceramic substrate. Further, by providing a tip-top conductor layer on the surface and providing a guard electrode and a duland electrode inside, it can be used as a chuck top plate of a wafer prober.
  • Aluminum nitride powder (average particle size: 0.6 ⁇ ) 100 parts by weight, yttria (average particle size: 0.4 // m) 4 parts by weight, ataryl binder 12 parts by weight A spray drying of a composition comprising alcohol was performed to produce a granular powder.
  • a disk having a diameter of 21 Omm was cut out from the plate to obtain a ceramic plate (ceramic substrate 11).
  • This ceramic substrate is drilled to form a through hole 35 for inserting the lifter pins 36 of the semiconductor wafer, and a bottomed hole 34 (diameter: 1. lmm, depth: 2 mm) for embedding a thermocouple. did.
  • the porosity of the ceramic substrate was approximately 0%.
  • the porosity was measured as follows. That is, the ceramic is crushed, immersed in mercury or an organic solvent, the volume is measured, the true specific gravity is calculated from the previously measured weight, and the porosity is calculated from the apparent specific gravity calculated from the shape. did.
  • a conductor paste layer was formed on the ceramic substrate 11 obtained in (3) by screen printing.
  • the printing pattern was as shown in FIG.
  • This conductive paste was an Ag—Pt paste, and the silver particles had an average particle size of 4.5 ⁇ and were scaly. The Pt particles were spherical with an average particle diameter of 0.5 ⁇ .
  • the ceramic substrate 11 is heated and fired at 780 ° C. to sinter Ag and Pt in the conductor paste and ceramic. It was baked on substrate 11.
  • the pattern of the resistance heating element 12 is 7 channels of 12 a to 12 g. There are three spiral channels (12 e to 12 g) on the inner circumference, and four winding channels (12 a to l 2 d resistance heating elements) on the outer circumference.
  • each channel is a circuit that performs the same control by applying the same voltage when performing control.
  • each channel has a resistance heating element (12 a ⁇ 12 g).
  • the variation in the resistance in each channel is calculated by dividing the pattern in the same channel, measuring the resistance at both ends within the divided area, and calculating the average. The average resistance value of the channel was used, and the variation within one channel was calculated from the difference between the highest resistance value and the lowest resistance value and the average resistance value. Resistance variation is calculated for each channel. In the present invention, the largest variation of the resistance heating element may be 25% or less. '
  • a silver-lead solder paste (manufactured by Tanaka Kikinzoku Co., Ltd.) was printed by screen printing on the portion where the external terminals 33 for securing the connection with the power supply were to be formed, thereby forming a solder layer.
  • an external terminal 33 made of Kovar was placed on the solder layer, heated and reflowed at 420 ° C., and the external terminal 33 was attached to the surface of the resistance heating element 12.
  • thermocouple for temperature control was sealed with polyimide to obtain a ceramic heater 10.
  • Example 2 Same as Example 1, except that a ceramic substrate was manufactured as follows.
  • SiC powder (average particle size: 1.1 ⁇ ) 100 parts by weight, B ⁇ C 4 parts by weight, A composition comprising 12 parts by weight of krill pinda alcohol was spray-dried to produce a granular powder.
  • a disk having a diameter of 21 Omm was cut out from the plate to obtain a ceramic plate (ceramic substrate 11).
  • the ceramic substrate was drilled to form a through hole 35 for inserting a lifter pin 36 of a semiconductor wafer and a bottomed hole 34 (diameter: 1. lmm, depth: 2 mm) for embedding a thermocouple.
  • the ceramic substrate 11 is heated and fired at 780 ° C. to sinter Ag and Pt in the conductor paste and to form the ceramic paste on the ceramic substrate 11. Baked.
  • the pattern of the resistance heating element 32 is a 9-channel spiral pattern.
  • the part perpendicular to the printing direction is thicker than the other parts. Therefore, of the pattern of the resistance heating element 32, a portion perpendicular to the printing direction was polished by a belt sander for polishing by rotating a # 200 abrasive paper.
  • the resistance variation is calculated by dividing the pattern in the same channel, measuring the resistance at both ends within the divided range, and taking the average as the average resistance value of the channel. The variation in one channel was calculated from the difference and the average resistance value. The variation of the resistance value is calculated for each channel, but the largest variation value should be 25% or less.
  • an external terminal 13 made of Kovar was placed on the solder layer, heated and reflowed at 420 ° C., and the external terminal 13 was attached to the surface of the resistance heating element 12.
  • thermocouple for temperature control was sealed with polyimide to obtain a ceramic heater 10.
  • Aluminum nitride powder (manufactured by Tokuyama, average particle size 0.6 ⁇ ) 100 parts by weight, 4 parts by weight of alumina, 11.5 parts by weight of acrylic resin binder, 0.5 parts by weight of dispersant Using a paste obtained by mixing 53 parts by weight of alcohol composed of 1-butanol and ethanol, green sheets having a thickness of 0.47 mm were produced by a doctor blade method.
  • the conductor paste A was prepared by mixing 3 parts by weight.
  • tungsten particles having an average particle diameter of 3 ⁇ 100 parts by weight of tungsten particles having an average particle diameter of 3 ⁇ , 1.9 parts by weight of an acrylic binder, 3. parts by weight of an ⁇ -terbineol solvent, and 0.2 parts by weight of a dispersant were mixed to prepare a conductive paste ⁇ . .
  • This conductive paste was printed by screen printing on a daline sheet in which a portion to be a via hole was formed to form a conductive paste layer for a resistance heating element.
  • the printing pattern was a spiral pattern as shown in Fig. 8 and a partially bent pattern.
  • the width of the conductive paste layer was 1 Omm, and its thickness was 12 ⁇ m.
  • the thickness variation is ⁇ 0. As a whole, but the variation is not localized.
  • the conductive paste B was filled in the portions to be the via holes and the portions to be the through holes.
  • Hot pressing was performed at 0 ° C and a pressure of 15 MPa for 10 hours to obtain a ceramic plate having a thickness of 5 mm. This was cut into a 23 Omm disk to form a ceramic plate having a 6 / m-thick and 10-mm-wide resistance heating element through hole.
  • the ceramic plate obtained in (4) is polished with a diamond grindstone, a mask is placed, and a blast treatment with SiC particles or the like is performed to provide a thermocouple on the surface. A bottom hole was provided.
  • thermocouple for temperature control was inserted into the bottomed hole, filled with silica sol, and cured at 190 ° C for 2 hours to obtain a ceramic heater having a resistance heating element and a through hole.
  • a ceramic heater was manufactured in substantially the same manner as in Example 1, except that the pattern of the resistance heating element was a pattern consisting of only the bent lines shown in FIG.
  • a ceramic heater was manufactured in the same manner as in Example 1, except that the pattern of the resistance heating element to be formed was the concentric pattern shown in FIG.
  • a ceramic heater was formed in the same manner as in Example 1 except that the pattern of the resistance heating element to be formed was the concentric pattern shown in Fig. 9 and the thickness of the ceramic substrate was 28 mm. Was manufactured.
  • a ceramic heater was manufactured in the same manner as in Example 1 except that the pattern of the formed resistance heating element was the concentric pattern shown in FIG. 9 and the diameter of the ceramic substrate was 15 O mm. ''
  • a ceramic heater was manufactured in the same manner as in Example 2 except that the sintering aid was not added.
  • the porosity was 5.5%.
  • the concentric pattern shown in Fig. 9 was used as the pattern of the resistance heating element.
  • the number at the top indicates the channel number of the resistance heating element.
  • Example 1 In the ceramic heater according to Example 1, 3, 4, 1. 2a-1 2 g sequentially Numbering of Example 2, the ceramic heater of Comparative Example 1, from the outside of the resistance heating element
  • the distribution of the in-plane temperature when the temperature was raised from room temperature to 130 ° C. was measured.
  • the temperature distribution is indicated by the difference between the highest and lowest temperatures. At the time of this heating, the heating time was also measured.
  • the ceramic heaters according to Examples 1 to 4 have no variation in the resistance value in the same channel and no variation in the resistance between channels. Excellent in-plane temperature uniformity during transition. In addition, since the resistance value is uniform, temperature control is easy and recappari one hour is short. On the other hand, in the ceramic heater according to Comparative Example 1, since the resistance variation in the same channel cannot be reduced, the in-plane temperature uniformity in a constant state and in a transient state is poor. In addition, the temperature controllability is poor and the recovery time is long.
  • the substrate is too thick and the heat capacity is too large to control the temperature. Therefore, the in-plane temperature distribution during the transition becomes too large, resulting in poor controllability. In the steady state, the larger the heat capacity, the smaller the temperature distribution.
  • the porosity is too high, the thermal conductivity is reduced, and the temperature cannot be controlled. Therefore, the in-plane temperature distribution during the transition becomes too large, resulting in poor controllability. In the steady state, the thermal conductivity is poor and the temperature distribution is small.
  • the green compact was hot-pressed at 1800 ° C. and a pressure of 2 OMPa to obtain an aluminum nitride plate having a thickness of approximately 3 mm.
  • a disk having a diameter of 21 Omm was cut out from the plate to obtain a ceramic plate (ceramic substrate 11).
  • the ceramic substrate was drilled to form a through hole 35 for inserting a lifter pin 36 of a semiconductor wafer and a bottomed hole 34 (diameter: 1. lmm, depth: 2 mm) for embedding a thermocouple.
  • a conductor paste layer was formed on the ceramic substrate 11 obtained in (3) by screen printing.
  • the printing pattern was as shown in FIG.
  • As the conductor paste A g 48 weight 0, P t 21 weight 0/0, S i O 2 1. 0 wt%, B 2 0 3 1. 2 wt%, Zn04. 1 wt%, P b03. 4 wt%, acetic acid Echiru 3.4 wt%, having composition consisting heptyl carbitol 1 7.9 wt 0/0 used.
  • This conductor paste was an Ag_Pt paste, and the silver particles had an average particle size of 4.5111 and were scaly.
  • the Pt particles were spherical with an average particle diameter of 0.5 ⁇ .
  • the ceramic substrate 11 is heated and fired at 850 ° C to sinter Ag and Pt in the conductor paste, and the ceramic substrate 11 Baked on.
  • the pattern of the resistance heating element is 7 channels of 12 a to l 2 g.
  • Table 3 shows the variation in resistance in the outer four channels (trimming elements 12a to 12d) before trimming.
  • the channel is a circuit that performs the same control by applying the same voltage when performing control.
  • each channel includes a resistance heating element (12 a to l 2 g) formed as a continuous body. ).
  • the resistance variation in each channel is calculated by dividing the channel further into 20 parts, measuring the resistance at both ends within the divided area, and averaging the average divided resistance value (Table In Fig. 3, the average value) was used, and the variation was calculated from the difference between the highest and lowest resistance values in the channel and the average split resistance value.
  • the resistance value in each channel is the sum of all resistance values measured separately.
  • a YAG laser with a wavelength of 1060 nm manufactured by NEC S143AL, output 5 W, pulse frequency 0.1 to 40 kHz
  • This device is equipped with an XY stage, a galvanometer mirror, a CCD camera, and a Nd •• YAG laser, and has a built-in controller for controlling the stage and the galvanometer mirror.
  • the controller is a computer (NEC FC-9821) It is connected to the.
  • the computer has a CPU that doubles as an arithmetic unit and a storage unit. It also has a hard disk that doubles as a storage unit and an input unit and a 3.5-inch FD drive.
  • Figures 16 (a) to (d) show the grooves reaching 30%, 60%, and 90% of the thickness of the resistance heating element and the ceramic substrate, respectively.
  • the upper part is a photograph showing the appearance, and the middle part is a cross section.
  • FIG. 4 is a graph showing the shape (height and position) of the upper part, and the lower part is a cross-sectional view when cut in the direction of the arrow in the external view of the upper part.
  • the grooves are formed perpendicularly to the direction in which the current of the resistance heating element flows, and are actually different from the grooves formed in the above embodiment.
  • the resistance heating element had a thickness of 10 ⁇ and a width of 2.4 mm.
  • the laser had a frequency of 1 kHz, a power of 0.4 W, a byte size of 10; ⁇ , and a processing speed of 1 Om mZ second.
  • Table 3 shows the resistance values of the outer four channels (resistance heating elements 12a to 12d) after trimming and the variations within each channel.
  • the resistance variation in the channel is calculated by dividing the channel further into 20 parts, measuring the resistance at both ends of the divided area, taking the average as the average divided resistance value, and calculating the maximum and minimum resistance values in the channel. The variation was calculated from the difference between the values and the average split resistance value. Also, the resistance value in the channel is the sum of all resistance values measured separately.
  • the external terminal 13 made of Kovar was placed on the solder layer, and heated and reflowed at 420 ° C., and the external terminal 13 was attached to the surface of the resistance heating element 12.
  • thermocouple for temperature control was sealed with polyimide to obtain a ceramic heater 10.
  • Example 6 A ceramic heater was manufactured in the same manner as in Example 1 except that the ceramic substrate was manufactured as described below, and the variation in resistance value of the resistance heating element was measured.
  • S i C powder (average particle size: 1. 1 ⁇ ) 1 0 0 parts by weight
  • B 4 C4 parts performs spray drying of ⁇ acrylic binder 1 2 parts by weight of the composition consisting of alcohols, granular Was prepared.
  • the formed body was hot-pressed at 189 ° C. and a pressure of 2 OMPa to obtain a SiC plate having a thickness of about 3 mm.
  • a glass paste (G-517, manufactured by Shoei Chemical Industry Co., Ltd.) was applied on the surface, and the temperature was raised to 600 ° C. to form a SiO 2 layer having a thickness of 3 ⁇ .
  • a disk having a diameter of 21 Omm was cut out from the plate to obtain a ceramic plate (ceramic substrate 11).
  • This ceramic substrate is drilled to form a through hole 35 for inserting lifter pins 36 of a semiconductor wafer and a bottomed hole 34 (diameter: 1. lmm, depth: 2 mm) for embedding a thermocouple. did.
  • the width was 50% until the grooves of 30 ⁇ m, 60% and 90% of the thickness of the resistance heating element reached the ceramic substrate, and a 2 ⁇ deep groove was formed in the ceramic substrate. A ⁇ m groove was formed.
  • a ceramic heater was manufactured in the same manner as in Example 5, except that the depth of the groove was set to 15% of the thickness of the resistance heating element, and the resistance value variation of the resistance heating element was measured.
  • the ceramic heater obtained through the above steps was evaluated according to the following indices.
  • the sample was heated to 350 ° C and left for 2 weeks, and the rate of change in resistance was measured.
  • the rate of change of the resistance was calculated by the following equation (1).
  • Rate of change of resistance value [(Resistance value after heating-resistance value before heating) / resistance value before heating] X 100 ⁇ ⁇ ⁇ (1),
  • Specimens were cut out according to JISR 1601, and the strength reduction rate was measured.
  • the test was performed with a specimen thickness of 3.06 mm and a specimen width of 4.03 mm, and the three-point bending strength ⁇ (kgf / mm 2 ) was calculated using the following equation (1).
  • Table 3 shows the bending strength at 25 ° C.
  • Example 56 since the groove was formed at a depth of 20% or more of the thickness of the resistance heating element, the resistance value was surely increased. Variation can be suppressed. Also, there is almost no warpage or reduction in strength of the substrate. 'If the heating element remains at the bottom of the groove, it is estimated that a slight change in resistance will occur, so the groove reaching the ceramic substrate is optimal.
  • a ceramic heater 10 was manufactured in the same manner as in Example 5, except that the thickness of the resistance heating element was 5 ⁇ m, and a groove was formed in the resistance heating element to reach the ceramic substrate.
  • Figure 17 is a graph showing the cross-sectional shape (position and height) of the resistance heating element. From FIG. 17, it can be seen that the groove formed by the trimming reaches the ceramic substrate. The measurement was performed using a laser displacement meter manufactured by Keyence Corporation.
  • a ceramic heater was manufactured in the same manner as in Example 6, except that the thickness of the resistance heating element was 5 ⁇ m, and a groove was formed in the resistance heating element to reach the ceramic substrate.
  • Example 5 Same as Example 5 except that the thickness of the resistance heating element was set to 5 ⁇ m, and trimming was performed several times by laser light in the direction perpendicular to the current propagation, and grooves were formed perpendicular to the direction in which the current propagated. Then, a ceramic heater was manufactured, and the variation of the resistance value of the resistance heating element was measured.
  • a temperature controller (E5ZE manufactured by Omguchi Company) was attached to the ceramic heaters manufactured in Examples 7 to 9, and the following performance evaluation was performed.
  • the distribution of the in-plane temperature when the temperature was raised from room temperature to 130 ° C. was measured.
  • the temperature distribution is indicated by the difference between the highest and lowest temperatures.
  • the temperature was raised to 200 ° C, and the maximum rise from 200 ° C before reaching the steady temperature was measured.
  • the variation in the resistance values of the resistance heating elements 12a to 12d after the trimming is about 5 or less even in the channel in Examples 7 and 8 (the highest accuracy). 1%), and the in-plane variation is as good as 0.5% or less. Moreover, there is nothing that the heating element melts.
  • Example 9 it was found that the heating element melted at 7% or more even in the channel.
  • the resistance variation in the channel cannot be reduced, so that the in-plane temperature uniformity at the time of constant transient is poor.
  • the temperature control is poor, the overshoot temperature is high, and the recovery time is long.
  • control on seven channels is not performed. Therefore, it is necessary to increase the number of channels and control the input power variably.
  • Example 9 there was a case in which a heating element was melted and disconnected due to excessive heating due to a local increase in the resistance value.
  • the ceramic substrate When manufacturing the ceramic substrate was polished from both sides at 1 kg / cm 2 load with a diamond grindstone of # 2 2 0, further, diamond paste (particle size 0. 5 / m) and polices in Po Li Sing Cross
  • the surface roughness of the surface is 0.01 m in Ra, and when forming the resistance heating element, the thickness of the resistance heating element is 5 ⁇ , and a 2 ⁇ m groove is formed in the resistance heating element.
  • a ceramic heater 10 was manufactured in the same manner as in Example 5 except that a groove having a width of 50 ⁇ m was formed.
  • a ceramic substrate When manufacturing a ceramic substrate, it is polished with a # 800 diamond grindstone and polished with a diamond paste to reduce the surface roughness to Ra at 0. Furthermore, a glass paste (manufactured by Shoei Chemical Industry Co., Ltd.) G-5177) was applied, and the temperature was raised to 600 ° C to form a Si0 2 layer having a thickness of 3 ⁇ , which was polished with a # 800 diamond grindstone.
  • the width of the resistance heating element when forming the resistance heating element, was set to 5 ⁇ , and a groove having a width of 50 ⁇ m was formed until a groove of 2 ⁇ m was formed in the resistance heating element. In the same manner as in 6, a ceramic heater was manufactured.
  • a ceramic heater was manufactured in the same manner as in Example 5 except that the thickness of the resistance heating element was 5 m, and a groove having a width of 50 ⁇ m was formed until a groove of 2 m was formed in the resistance heating element.
  • a ceramic heater was manufactured in the same manner as in Example 5, except that the thickness of the heating element was set to 5 ⁇ and a groove having a width of 50 ⁇ was formed in the resistance heating element until a groove of 2 ⁇ was formed.
  • the strength reduction rate of the ceramic substrate was measured by the same method as the method for evaluating the ceramic heaters according to Examples 5 to 6 and the ceramic heater according to Comparative Example 5.
  • the refrigerant is air, and injected with 0. 01M 3 Z min.
  • the surface of the heating element irradiated with laser was plated with Ni, the pins were fixed with solder, and the tensile strength was measured. ⁇
  • Tensile strength Tensile strength of resistance heating element As is clear from the results shown in Table 7, in Examples 10 to 15, the surface roughness Ra was Since the thickness is adjusted to 20 ⁇ m or less, a decrease in the strength of the ceramic substrate can be suppressed, and the ceramic substrate hardly warps. This is probably because the laser light is reflected so that the ceramic substrate is not unnecessarily damaged.
  • the cooling time is shorter as the surface roughness Ra is smaller. This is because when the surface roughness Ra is large, a groove is formed in the resistance heating element, and the turbulence generated by the unevenness is further amplified by the concave ⁇ on the ceramic substrate surface, and the heat storage air is It is estimated that this was caused by stagnation.
  • the ceramic heater for semiconductor manufacturing and inspection equipment of the first aspect of the present invention since there is almost no resistance variation, the temperature of the heating surface can be made uniform especially during a transition. In addition, recovery time can be reduced. Further, according to the second ceramic heater for semiconductor manufacturing inspection apparatus of the present invention, since the resistance value of the resistance heating element hardly varies, the temperature of the heating surface can be made uniform. Also, the substrate is not damaged, and the oxidation resistance of the heating element is not reduced.
  • the ceramic heater for an inspection device has a ceramic substrate surface roughness Ra of 20 ⁇ m or less, and thus the strength and warpage of the ceramic substrate are reduced. In addition, there is no decrease in the adhesion strength of the heating element irradiated with the laser. In addition, the cooling rate can be improved.
  • the second and third ceramic heaters for semiconductor manufacturing and inspection equipment of the present invention by adjusting the resistance variation to 5% or less, a ceramic heater excellent in temperature uniformity of the heating surface can be obtained.
  • the heating element can be prevented from being heated and melted.
  • the number of channels can be reduced, the temperature uniformity in the plane during the transition can be improved, and the recovery time can be shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)

Abstract

A ceramic heater for semiconductor manufacturing and inspecting equipment capable of uniformly heating a semiconductor wafer by making uniform the temperature of the entire heated surface of the wafer, comprising a resistance heating element installed on the surface of or inside a ceramic substrate, characterized in that a variation in the resistance value of the resistance heating element with respect to the average resistance value is 25% or less.

Description

明細書  Specification
半導体製造 ·検査装置用セラミックヒータ  Ceramic heater for semiconductor manufacturing and inspection equipment
技術分野 - 本発明は、 半導体産業において使用される半導体製造 ·検査装置用セラミック ヒータに関する。 背景技術  TECHNICAL FIELD-The present invention relates to a ceramic heater for semiconductor manufacturing and inspection equipment used in the semiconductor industry. Background art
半導体製品は、 半導体ウェハ上に感光性樹脂をエッチングレジストとして形成 し、 半導体ウェハのエッチングを行う工程等を経て製造される。  Semiconductor products are manufactured through processes such as forming a photosensitive resin as an etching resist on a semiconductor wafer and etching the semiconductor wafer.
この感光性樹脂は液状であり、 スピンコータ などを用いて半導体ウェハ表面 に塗布されるのであるが、 塗布後に溶剤等を飛散させるため乾燥させなければな らず、 塗布した半導体ウェハをヒータ上に載置して加熱することになる。  This photosensitive resin is a liquid and is applied to the surface of the semiconductor wafer using a spin coater or the like.After application, the resin must be dried to disperse the solvent, etc., and the applied semiconductor wafer is placed on a heater. And heat it.
従来、 このような用途に使用される金属製のヒータとしては、 アルミニウム板 の裏面に抵抗発熱体を配置したものが採用されている。  Conventionally, as a metal heater used for such an application, a heater in which a resistance heating element is arranged on the back surface of an aluminum plate has been adopted.
ところが、 このような金属製のヒータは、 以下のような問題があった。  However, such a metal heater has the following problems.
まず、 金属製であるため、 ヒータ板の厚みは、 1 5 mm程度と厚くしなければ ならない。 なぜなら、 薄い金属板では、 加熱に起因する熱膨張により、 反り、 歪 み等が発生してしまい、'金属板上に載置した半導体ウェハが破損したり傾いたり してしまうからである。 し力 しながら、 ヒータ板の厚みを厚くすると、 ヒータの 重量が重くなり、 また、 かさばってしまうという問題があった。  First, since it is made of metal, the thickness of the heater plate must be as thick as about 15 mm. This is because, in a thin metal plate, warpage, distortion, and the like are generated due to thermal expansion caused by heating, and the semiconductor wafer placed on the metal plate is damaged or tilted. However, when the thickness of the heater plate is increased while the force is being applied, the weight of the heater increases, and the heater becomes bulky.
また、 抵抗発熱体に印加する電圧や電流量を変えることにより、 加熱温度を制 御するのであるが、 金属板が厚いために、 電圧や電流量の変化に対してヒータ板 の温度が迅速に追従せず、 温度制御しにくいという問題もあった。  In addition, the heating temperature is controlled by changing the voltage or current applied to the resistance heating element.However, the thickness of the metal plate causes the temperature of the heater plate to quickly change with changes in voltage or current. There was also a problem that it was difficult to control the temperature without following.
そこで、 特開平 9一 3 0 6 6 4 2号公報、 特開平 4— 3 2 4 2 7 6号公報等に は、 基板として、 熱伝導率が高く、 強度も大きい非酸化物セラミックである A 1 Nを使用し、 この A 1 N基板の表面または内部に抵抗発熱体が形成されたセラミ ックヒータが開示されている。  Therefore, Japanese Patent Application Laid-Open Nos. Hei 9-136642 and Hei 4-324276 discloses a non-oxide ceramic having high thermal conductivity and high strength as a substrate. A ceramic heater using 1 N and having a resistance heating element formed on the surface or inside of the A 1 N substrate is disclosed.
また、 特開平 1 1一 4 0 3 3 0号公報等には、 基板として、 熱伝導率が高く、 強度も大きい窒化物セラミックや炭化物セラミックを使用し、 これらのセラミツ クからなる板状体 (セラミック基板) の表面に、 金属粒子を焼結して形成した抵 抗発熱体を設けてなるセラミックヒータが開示されている。 In addition, Japanese Patent Application Laid-Open No. 11-43030 discloses that a substrate has a high thermal conductivity, Ceramic heaters made of nitride ceramics or carbide ceramics with high strength, and provided with a resistance heating element formed by sintering metal particles on the surface of a plate-like body (ceramic substrate) made of these ceramics It has been disclosed.
このようなセラミックヒータを製造する際に抵抗発熱体を形成する方法として は、 以下のような方法が挙げられる。  As a method of forming a resistance heating element when manufacturing such a ceramic heater, the following method is exemplified.
まず初めに、 所定形状のセラミック基板を製造するが、 この後、 塗布法で抵抗 発熱体を形成する場合、 続いて、 このセラミック基板の表面に、 スクリーン印刷 等の方法を用いて発熱体パターンの導体ペースト層を形成し、 加熱、 焼成を行つ て、 抵抗発熱体を形成していた。  First, a ceramic substrate having a predetermined shape is manufactured. Thereafter, when a resistance heating element is formed by a coating method, subsequently, a heating element pattern is formed on the surface of the ceramic substrate by using a method such as screen printing. A conductive paste layer was formed, and heating and firing were performed to form a resistance heating element.
また、 スパッタリング等の物理的蒸着法やめつき法を用いて抵抗発熱体を形成 する場合には、 セラミック基板の所定領域に、 これらの方法により金属層を形成 しておき、 その後、 発熱体パターンの部分を覆うようにエッチングレジス トを形 成した後、 エッチング処理を施すことにより、 所定パターンの抵抗発熱体を形成 していた。  When a resistance heating element is formed by a physical vapor deposition method such as sputtering or a plating method, a metal layer is formed on a predetermined region of a ceramic substrate by these methods, and then the heating element pattern is formed. After forming an etching resist so as to cover the portion, an etching process is performed to form a resistance heating element having a predetermined pattern.
また、 初めに、 発熱体パターン以外の部分を樹脂等で被覆しておき、 この後、 上記処理を施すことにより、 一度の処理でセラミック基板の表面に所定パターン の抵抗発熱体を形成することもできる。 発明の要約  Also, first, a portion other than the heating element pattern is covered with a resin or the like, and thereafter, the above-described processing is performed, so that a predetermined pattern of the resistance heating element can be formed on the surface of the ceramic substrate by a single processing. it can. Summary of the Invention
しかしながら、 スパッタリングやめつき等の方法では、 精密なパターンを形成 することができるものの、 所定パターンの抵抗発熱体を形成するために、 セラミ ック基板表面にフォトリソグラフィ一の手法を用いてエッチングレジストやめつ きレジスト等を形成する必要があるため、 コストが高くつくという問題があった 一方、 導体ペーストを用いる方法では、 上記したように、 スクリーン印刷等の 手法を用いることにより、 比較的低コストで抵抗発熱体を形成することができる ものの、 精密なパターンを形成しょうとすると、 印刷時のわずかなミスで短絡等 が発生してしまレ、、 精密なパターンの抵抗発熱体を形成するのが難しいという問 題もあった。 However, although methods such as sputtering and plating can form a precise pattern, the formation of a resistive heating element with a predetermined pattern requires the use of a photolithographic technique on the surface of the ceramic substrate to remove the etching resist. On the other hand, there is a problem that the cost is high because it is necessary to form a resist and the like, but the method using the conductive paste has a relatively low cost by using a method such as screen printing as described above. Although it is possible to form a resistive heating element, it is difficult to form a resistive heating element with a precise pattern if a precise pattern is to be formed. The question There was also a title.
また、 発熱体パターンによっては、 印刷の厚さや幅がばらついて抵抗値にばら つきが生じてしまレ、、 そのような発熱体パターンからなる抵抗発熱体が形成され たセラミックヒータを用いて、 半導体ウェハ等を加熱しょうとすると、 発熱体パ ターンの密度が全体に均一でも、 ウェハ加熱面全体の温度が均一にならず、 その 結果、 加熱された半導体ウェハに中心部分と外周部分とで温度差が生じるという 問題があった。  In addition, depending on the heating element pattern, the thickness and width of the printing may vary, causing variations in the resistance value.Using a ceramic heater on which a resistance heating element composed of such a heating element pattern is formed, a semiconductor device may be used. When a wafer or the like is to be heated, the temperature of the entire heated surface of the wafer is not uniform, even if the density of the heating element pattern is uniform throughout. As a result, the temperature difference between the central portion and the outer peripheral portion of the heated semiconductor wafer is increased. There was a problem that occurs.
本発明は、 上述した問題点に鑑みてなされたものであり、 その目的は、 抵抗発 熱体のばらつきを一定以下に抑制することにより、 定常時、 昇温過渡時の加熱面 内の温度ばらつきを抑制することができる半導体製造 ·検查装置用セラミックヒ ータを提供することにある。  The present invention has been made in view of the above-described problems, and an object of the present invention is to suppress the variation of the resistance heating element to a certain level or less, thereby enabling the temperature variation within the heating surface during a constant temperature rise transient. It is an object of the present invention to provide a ceramic heater for a semiconductor manufacturing and inspection apparatus capable of suppressing the occurrence of the above.
すなわち、 第一の本発明は、 セラミック基板の表面または内部に抵抗発熱体を 設けてなるセラミックヒータであって、 前記抵抗発熱体の平均抵抗値に対する抵 抗値のばらつきは、 2 5 %以下であることを特徴とする半導体製造.検査装置用 セラミックヒータである。 ,  That is, a first aspect of the present invention is a ceramic heater in which a resistance heating element is provided on the surface or inside of a ceramic substrate, wherein a variation in resistance value with respect to an average resistance value of the resistance heating element is 25% or less. This is a ceramic heater for semiconductor manufacturing and inspection equipment. ,
なお、 平均抵抗値は、 各抵抗発熱体を細かく区画して、 区画された領域内の抵 抗値を実測し、 この実測抵抗値の平均値と、 実測抵抗値の最大と最小の差から、 ばらつきを計算した。  In addition, the average resistance value is obtained by measuring each resistance value in the divided area by dividing each resistance heating element finely, and calculating the average value of the measured resistance values and the difference between the maximum and minimum of the measured resistance values. The variability was calculated.
例えば、 特開平 9一 3 0 6 6 4 2号公報、 特開平 4一 3 2 4 2 7 6号公報等に 開示されているように、 同心円形状または渦卷き状のパターンの抵抗発熱体を形 成すると、 印刷の方向に垂直な領域と平行な領域とでは厚さにばらつきが発生し 、 これが原因で抵抗値が変わってしまレ、、 加熱面の温度にばらつきが生じてしま う。  For example, as disclosed in Japanese Unexamined Patent Publication Nos. Hei 9-3106442, Hei 4-324276, etc., a resistive heating element having a concentric or spiral pattern is used. When formed, the thickness varies between the area perpendicular to the printing direction and the area parallel to the printing direction. This causes a change in the resistance value, and causes a variation in the temperature of the heated surface.
また、 図 1に示した渦巻きパターンの抵抗発熱体 4 2における領域 Aのパター ン部分の厚さは厚く、 一方、 領域 Bの部分の厚さは薄くなる傾向がある。 従って 、 この抵抗発熱体 4 2は、 領域 Aの部分では抵抗値が低く、 領域 Bの部分では抵 抗値が高くなり、 発熱量がばらつく。  Further, the pattern portion in the region A of the resistive heating element 42 having the spiral pattern shown in FIG. 1 tends to have a large thickness while the region B has a small thickness. Accordingly, the resistance heating element 42 has a low resistance value in the region A and a high resistance value in the region B, and the amount of generated heat varies.
しかしながら、 屈曲線の繰り返しパターンを用いると、 場所により印刷方向が 変化するため、 厚さのばらつきが低減する。 However, if a repetitive pattern of bending lines is used, the printing direction may vary depending on the location. Because of the variation, thickness variations are reduced.
このように、 第一の本発明では、 屈曲線の繰り返しパターンと他のパターンと を組み合わせて抵抗発熱体を形成し、 抵抗発熱体の抵抗値のばらつきを 2 5 %以 下に調整することにより、 定常時、 昇温過渡時の加熱面内の温度ばらつきを抑制 することができるのである。  As described above, in the first aspect of the present invention, the resistance heating element is formed by combining the repetitive pattern of the bent line and another pattern, and the variation of the resistance value of the resistance heating element is adjusted to 25% or less. In addition, it is possible to suppress the temperature variation in the heating surface at the time of a transient temperature rise.
第一の本発明の半導体製造 ·検査装蘆用セラミックヒータを構成する抵抗発熱 体は、 屈曲線の繰り返しパターンの抵抗発熱体からなる力、 または、 同心円形状 もしくは渦巻き形状パターンと、 屈曲線の繰り返しパターンとが混成して形成さ れた抵抗発熱体からなることが望ましい。  The resistance heating element constituting the ceramic heater for semiconductor manufacturing and inspection equipment according to the first aspect of the present invention is a force composed of a resistance heating element having a repetitive pattern of a bent line, or a concentric or spiral pattern and a repetition of a bent line. It is desirable to use a resistance heating element formed by mixing patterns.
また、 上記抵抗発熱体は、 セラミック基板の少なくとも外周部分には、 屈曲線 の繰り返しパターンの抵抗発熱体が形成されていることが望ましい。  Further, it is preferable that the resistance heating element has a resistance heating element having a repeating pattern of bent lines formed at least on an outer peripheral portion of the ceramic substrate.
上記抵抗発熱体の平均抵抗値に対する抵抗値のばらつきを、 2 5 %以下に抑制 するためである。  This is because the variation of the resistance value with respect to the average resistance value of the resistance heating element is suppressed to 25% or less.
なお、 屈曲線の繰り返しパターンを組み合わせて抵抗発熱体を形成する方法以 外にも、 ベルトサンダー処理で厚さを調整して抵抗発熱体の抵抗値のばらつきを 2 5 %以下に調整してもよい。  In addition to the method of forming the resistance heating element by combining the repetitive patterns of the bending lines, even if the thickness of the resistance heating element is adjusted by belt sander treatment to adjust the variation of the resistance value of the resistance heating element to 25% or less. Good.
第二の本発明は、 セラミック基板上に抵抗発熱体を形成したセラミックヒータ であって、 上記抵抗発熱体には溝または切欠が形成されてなり、 上記溝は抵抗発 熱体厚さの 2 0 %以上の深さを持つことを特徴とする半導体製造 ·検査装置用セ ラミックヒータである。  According to a second aspect of the present invention, there is provided a ceramic heater in which a resistance heating element is formed on a ceramic substrate, wherein the resistance heating element is formed with a groove or a notch, and the groove has a thickness of 20 mm. It is a ceramic heater for semiconductor manufacturing and inspection equipment characterized by having a depth of more than 10%.
トリミングにより形成した溝は、 抵抗発熱体厚さの 2 0 %以上の深さを持った め、 トリミングによる抵抗値の変化量が大きく、 抵抗値の制御を容易に行うこと 'ができる。 抵抗発熱体厚さの 2 0 %未満では、 抵抗の変化がほとんどなく、 抵抗 値の制御を行うことが困難である。  Since the groove formed by trimming has a depth of 20% or more of the thickness of the resistance heating element, the amount of change in the resistance value due to the trimming is large, and the resistance value can be easily controlled. If the thickness of the resistance heating element is less than 20%, there is almost no change in resistance, and it is difficult to control the resistance value.
また、 上記溝は、 抵抗発熱体厚さの 5 0 %以上の深さを有することがより望ま しく、 セラミック基板の表面に達していることがさらに望ましい。 セラミック基 板の表面に達する溝が形成されている場合、 形成した溝により抵抗発熱体が完全 に分断され、 トリ ミングの長さと抵抗値の変化量が完全に連動するため、 抵抗値 の制御をより容易に行うことができる。 More preferably, the groove has a depth of 50% or more of the thickness of the resistance heating element, and more preferably reaches the surface of the ceramic substrate. If a groove reaching the surface of the ceramic substrate is formed, the formed groove completely separates the resistance heating element, and the trimming length and the amount of change in the resistance value are completely linked, so the resistance value Can be controlled more easily.
抵抗発熱体がトリミングにより形成された溝の底部に残存する場合には、 残存 量により抵抗値が変化してしまうため、 トリミング長さと抵抗値の変化量が正確 に連動せず、 結局抵抗値のばらつきが大きくなる。 また、 抵抗発熱体がトリミン グにより形成された溝の底部に残存している場合は、 残存している抵抗発熱体の 耐酸化性が低下してしまレ、、 抵抗値が経時変化しやすいが、 トリミング溝がセラ ミック基板底部まで到達していれば、 このような問題は発生しない。  If the resistance heating element remains at the bottom of the groove formed by the trimming, the resistance value changes depending on the remaining amount, so the trimming length and the amount of change in the resistance value do not interlock accurately, and eventually the resistance value Variation increases. Also, if the resistance heating element remains at the bottom of the groove formed by trimming, the oxidation resistance of the remaining resistance heating element decreases, and the resistance value tends to change with time. However, such a problem does not occur if the trimming groove reaches the bottom of the ceramic substrate.
トリミングにより形成される溝は、 セラミック基板の表面からセラミック基板 厚さの 3 0 %以内くらいの深さに止まっていることが望ましい。 3 0 %を超える とセラミック基板の強度が低下し、 該セラミック基板に反りが生じゃすい。 また、 発熱体パターンの幅は 0 . 5 mm以上が望ましい。 0 . 5 mm未満では 、 抵抗発熱体の電流が流れる方向と平行にトリミングすることが困難だからであ る。  It is desirable that the groove formed by trimming be stopped at a depth of about 30% of the thickness of the ceramic substrate from the surface of the ceramic substrate. If it exceeds 30%, the strength of the ceramic substrate decreases, and the ceramic substrate warps easily. The width of the heating element pattern is preferably 0.5 mm or more. If the thickness is less than 0.5 mm, it is difficult to perform trimming in parallel with the direction in which the current of the resistance heating element flows.
第三の本発明は、 セラミック基板上に抵抗発熱体を形成したセラミックヒータ であって、 前記抵抗発熱体には溝または切欠が形成されてなり、 前記セラミック 基板の抵抗発熱体形成面の面粗度は、 R a≤ 2 0 μ mであることを特徴とする半 導体製造 ·検査装置用セラミックヒータである。  A third aspect of the present invention is a ceramic heater in which a resistance heating element is formed on a ceramic substrate, wherein the resistance heating element is formed with a groove or a notch, and the surface of the resistance heating element formation surface of the ceramic substrate is roughened. This is a ceramic heater for semiconductor production and inspection equipment, characterized in that Ra ≦ 20 μm.
第三の本発明によれば、 その抵抗値を調整するために、 抵抗発熱体に溝または 切欠を形成する際、 レーザ光を反射させやすくし、 セラミック基板の曲げ強度の 低下や反り量を減少させることができる。  According to the third aspect of the invention, when forming a groove or a notch in the resistance heating element to adjust the resistance value, the laser light is easily reflected, and the bending strength of the ceramic substrate is reduced and the amount of warpage is reduced. Can be done.
上記セラミック基板の抵抗発熱体形成面の面粗度が R a > 2 0 μ mでは、 レー ザ光を反射しにくくなり、 セラミック基板に深い溝等が形成されるため、 セラミ ック基板が反ったり、 強度が低下したりする。  When the surface roughness of the surface of the ceramic substrate on which the resistance heating element is formed is Ra> 20 μm, it becomes difficult to reflect laser light, and a deep groove or the like is formed in the ceramic substrate, so that the ceramic substrate warps. Or the strength is reduced.
上記面粗度は、 R a≤ 1 0 μ mであることがより望ましい。 冷却時間をほぼ 1 2 0秒以内にすることができるからである。 冷却時間が 1 2 0秒を超えると、 生 産性が低下することがある。  More preferably, the surface roughness is Ra ≦ 10 μm. This is because the cooling time can be made within approximately 120 seconds. If the cooling time exceeds 120 seconds, productivity may decrease.
例えば、 セラミックヒータを冷却させるにあたり、 冷媒となる流体をセラミツ ク基板の抵抗発熱体形成面に吹きつける。 この際、 抵抗発熱体に切欠や溝を形成 すると、 乱流が生じやすくなり、 抵抗発熱体形成面の面粗度が大きいと、 さらに 乱流が生じやすくなつて、 熱を持った流体が滞留し、 降温速度が低下してしまう しかしながら、 上述したように、 セラミック基板の抵抗発熱体形成面を R a≤ 2 0 mとすることにより、 乱流発生を低減することができ、 これにより、 降温 速度を向上させることが可能になる。 For example, in cooling a ceramic heater, a fluid serving as a refrigerant is sprayed on a surface of a ceramic substrate on which a resistance heating element is formed. At this time, notches or grooves are formed in the resistance heating element Then, turbulence is likely to occur, and if the surface roughness of the surface on which the resistance heating element is formed is large, turbulence is more likely to occur, causing the fluid with heat to stagnate and lower the cooling rate. As described above, by setting the resistance heating element forming surface of the ceramic substrate to R a ≤ 20 m, turbulence can be reduced, thereby improving the temperature lowering rate.
第二おょぴ第三の本発明の半導体製造 ·検査装置用セラミックヒータを構成 する抵抗発熱体の平均抵抗値に対する抵抗値のばらつきは、 5 %以下であること が望ましい。  The variation of the resistance value with respect to the average resistance value of the resistance heating element constituting the ceramic heater for semiconductor manufacturing and inspection equipment of the second and third aspects of the present invention is desirably 5% or less.
上記抵抗発熱体を複数回路に分割して制御する場合でも、 分割数を減らすこと ができ、 その結果、 制御がやりやすくなるからである。 抵抗発熱体の抵抗値のば らつきが大きい場合には、 細かく回路を分割して、 各回路 (チャンネル) 毎に投 入電力量を変えて温度制御する必要があるが、 本発明では抵抗値のばらつきがほ とんどないため、 細かい分割が不要となり、 制御しやすくなるのである。 さらに 、 抵抗値のばらつきが小さいため、 制御性が高くなり、 昇温の過渡時の加熱面の 温度を均一にすることが可能となる。  This is because, even when the resistance heating element is divided into a plurality of circuits and controlled, the number of divisions can be reduced, and as a result, control can be performed easily. If the resistance value of the resistance heating element has a large variation, it is necessary to divide the circuit finely and control the temperature by changing the input power amount for each circuit (channel). Since there is almost no variation, fine division is not required and control becomes easier. Further, since the variation in the resistance value is small, the controllability is improved, and the temperature of the heating surface can be made uniform during the transition of the temperature rise.
第二おょぴ第三の本発明では、 抵抗発熱体の電流が流れる方向に沿って概ね平 行に溝が形成されてなることが望ましい。  In the second and third aspects of the present invention, it is desirable that the grooves are formed substantially in parallel along the direction in which the current of the resistance heating element flows.
図 2 ( a ) に示すように、 トリミングによる溝 1 2 0が抵抗発熱体 1 2の電流 ' が流れる方向に沿って概ね平行に形成されていると、 局部的に抵抗値が大きくな つてしまうことがない。  As shown in FIG. 2A, if the groove 120 formed by trimming is formed substantially parallel to the direction in which the current ′ of the resistance heating element 12 flows, the resistance value locally increases. Nothing.
なお、 電流の伝搬方向と溝の形成方向とは、 数学的に平行である必要はなく、 図 2 ( b ) に示したように、 溝 1 3 0が曲線を描くように形成されていてもよく 、 図 2 ( c ) に示したように、 溝 1 4 0が電流の伝搬方向に対して斜線を描くよ うに形成されていてもよい。 要するに、 溝の形成方向が、 電流の伝搬方向に対し て平行であるか、 または、 電流の伝搬方向と溝の形成方向とのなす角が鋭角にな るように形成されていればよい。  Note that the direction of current propagation and the direction of groove formation need not be mathematically parallel, and even if the groove 130 is formed in a curved line as shown in FIG. 2 (b). Often, as shown in FIG. 2 (c), the groove 140 may be formed so as to draw an oblique line with respect to the current propagation direction. In short, it is only necessary that the groove is formed so that the direction in which the groove is formed is parallel to the direction in which the current is propagated, or the angle between the direction in which the current is propagated and the direction in which the groove is formed is an acute angle.
図 3に示すように、 抵抗発熱体 2 2の電流が流れる方向に対して垂直にトリミ ングがなされ、 切り込み 2 2 aが形成されている場合、 抵抗発熱体 2 2の Aの部 分の抵抗値が極端に高くなり、 図 4に示すように、 発熱で抵抗発熱体 2 2が溶融 してしまう。 しかしながら、 本発明では、 このような極端な発熱が生じず、 抵抗 発熱体の過熱による破損等が発生することはない。 さらに、 極端な抵抗値の上昇 がなく、 抵抗値のばらつきを 5 %以下、 好ましくは 1 %以下と極めて小さくする ことが可能である。 As shown in Fig. 3, the resistance heating element 22 is trimmed perpendicularly to the direction in which the current flows. When the notch 22 a is formed, the resistance value of the portion A of the resistance heating element 22 becomes extremely high, and as shown in Fig. 4, the resistance heating element 22 melts due to heat generation. Resulting in. However, in the present invention, such extreme heat generation does not occur, and damage or the like due to overheating of the resistance heating element does not occur. Furthermore, there is no extreme rise in the resistance value, and the variation in the resistance value can be extremely reduced to 5% or less, preferably 1% or less.
また、 このように抵抗発熱体の抵抗値のばらつきを小さくすることができるた め、 抵抗発熱体を複数回路に分割して制御する場合でも、 分割数を減らすことが でき、 制御しやすくすることができる。 抵抗値のばらつきが大きい場^:は、 細か く回路を分割して、 各回路 (チャンネル) 毎に投入電力量を変えて温度制御する 必要があるが、 本発明では抵抗値のばらつきがほとんどないため、 細かい分割が 不要となり、 制御しやすくなるのである。 さらに、 昇温の過渡時の加熱面の温度 を均一にすることが可能となる。 '  In addition, since the variation in the resistance value of the resistance heating element can be reduced in this way, even when the resistance heating element is divided into a plurality of circuits and controlled, the number of divisions can be reduced and control can be facilitated. Can be. In the case of large variation in resistance value, it is necessary to control the temperature by dividing the circuit into small parts and changing the input power for each circuit (channel). However, in the present invention, there is almost no variation in resistance value. This eliminates the need for fine division and makes it easier to control. Furthermore, it is possible to make the temperature of the heating surface uniform during the transition of the temperature rise. '
また、 レーザでトリミングする場合に、 抵抗発熱体の電流が流れる方向に対し て垂直にトリミングを行うと、 セラミック基板表面にレーザを照射することにな り、 セラミック基板が変色して外観不良やセラミックの強度低下を招いてしまう し力 しながら、 上述したように、 抵抗発熱体の電流が流れる方向に沿って概ね 平行に溝を形成しておくと、 変色部分が隠れるだけでなく、 余分な熱エネルギー がセラミック基板に伝わらないため、 強度低下を防止することができる。  Also, when performing trimming with a laser, if the trimming is performed perpendicularly to the direction in which the current of the resistance heating element flows, the surface of the ceramic substrate will be irradiated with the laser, and the ceramic substrate will be discolored, resulting in poor appearance and poor ceramic appearance. As described above, if the grooves are formed substantially parallel to the direction in which the current flows through the resistance heating element, the discolored portion will not only be hidden but also generate excess heat, as described above. Since energy is not transmitted to the ceramic substrate, a decrease in strength can be prevented.
第二およぴ第三の本発明では、 金属または金属と酸化物とからなる導体ペース トでセラミック基板の上に抵抗発熱体を形成するため、 特にレーザ光でトリミン グしゃすい。 金属はレーザで蒸発除去されるがセラミックは除去されないからで ある。 従って、 半導体ウェハやプリント配線板上のレーザトリミングとは全く異 なり、 レーザ光出力を加減しなくてすみ、 除去残渣がなく、 精度よいトリミング を実現することができる。 また、 セラミック基板であるため、 反ったり、 強度の 著しい低下もない。 図面の簡単な説明 According to the second and third aspects of the present invention, since the resistance heating element is formed on the ceramic substrate using a conductor paste made of a metal or a metal and an oxide, trimming is particularly performed by laser light. This is because the metal is evaporated and removed by the laser, but the ceramic is not removed. Therefore, it is completely different from laser trimming on a semiconductor wafer or a printed wiring board, and it is not necessary to adjust the laser beam output, and it is possible to realize accurate trimming without removing residues. Also, since it is a ceramic substrate, there is no warping or significant decrease in strength. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 渦卷きパターンの抵抗発熱体を作製する際の印刷の方向を示す説明図 である。  FIG. 1 is an explanatory diagram showing a printing direction when producing a resistance heating element having a spiral pattern.
図 2は、 電流が流れる方向に沿って概ね平行にトリミングによる溝が形成され た抵抗発熱体を模式的に示す斜視図である。  FIG. 2 is a perspective view schematically showing a resistance heating element in which a groove formed by trimming is formed substantially parallel to the direction in which current flows.
図 3は、 電流が流れる方向と垂直にトリミングによる溝が形成された抵抗発熱 体を模式的に示す斜視図である。  FIG. 3 is a perspective view schematically showing a resistance heating element having a groove formed by trimming perpendicular to the direction in which current flows.
図 4は、 溶融した抵抗発熱体を示す写真である。  Figure 4 is a photograph showing the molten resistance heating element.
図 5は、 本発明のセラミックヒータにおける抵抗発熱体のパターンを模式的に 示した平面図である。  FIG. 5 is a plan view schematically showing a pattern of a resistance heating element in the ceramic heater of the present invention.
図 6は、 図 1に示したセラミックヒータの部分拡大断面図である。  FIG. 6 is a partially enlarged sectional view of the ceramic heater shown in FIG.
図 7は、 屈曲線の繰り返しパターンの抵抗発熱体を作製する際の印刷の方向を 示す説明図である。 '  FIG. 7 is an explanatory diagram showing a printing direction when producing a resistance heating element having a repeating pattern of bent lines. '
図 8は、 渦巻きパターンと屈曲線の繰り返しパターンとを組み合わせた抵抗発 熱体が形成されたセラミックヒータを模式的に示す底面図である。  FIG. 8 is a bottom view schematically showing a ceramic heater on which a resistance heating element formed by combining a spiral pattern and a repeating pattern of bent lines is formed.
図 9は、 同心円パターンの抵抗発熱体が形成されたセラミックヒータを模式的 に示す底面図である。  FIG. 9 is a bottom view schematically showing a ceramic heater on which a resistance heating element having a concentric pattern is formed.
図 1 0は、 屈曲線の繰り返しパターンの抵抗発熱体が形成'されたセラミックヒ 一タを模式的に示す底面図である。  FIG. 10 is a bottom view schematically showing a ceramic heater on which a resistance heating element having a repeating pattern of bent lines is formed.
図 1 1は、 抵抗値を測定するために抵抗発熱体を複数の領域に分割する様子を 示す斜視図である。  FIG. 11 is a perspective view showing how a resistance heating element is divided into a plurality of regions in order to measure a resistance value.
図 1 2は、 本発明のセラミックヒータを製造する際に用いるレーザトリミング 装置の概要を示すブロック図である。  FIG. 12 is a block diagram showing an outline of a laser trimming apparatus used when manufacturing the ceramic heater of the present invention.
図 1 3は、 図 3に示したレーザトリミング装置を構成するテーブルを模式的に 示す斜視図である。  FIG. 13 is a perspective view schematically showing a table constituting the laser trimming apparatus shown in FIG.
図 1 4の (a ) 〜 (d ) は、 本発明の抵抗発熱体を製造する際の各工程を示す 断面図である。  (A) to (d) of FIG. 14 are cross-sectional views showing each step of manufacturing the resistance heating element of the present invention.
図 1 5は、 本発明のセラミックヒータを保持容器に納めたセラミックヒータュ ニットを模式的に示す断面図である。 FIG. 15 shows a ceramic heater in which the ceramic heater of the present invention is housed in a holding container. It is sectional drawing which shows a knit typically.
図 1 6は、 (a) 〜 (d) は、 それぞれ抵抗発熱体の厚さの 30%、 60%、 90%、 セラミック基板に到達する溝に関し、 上段はその外観を示す写真であり 、 中段は断面の形状 (高さと位置) を示すグラフであり、 下段は、 上段の ^11図 において矢印の方向に切断した場合の断面図である。  Figures 16 (a) to (d) show the grooves reaching the ceramic substrate at 30%, 60%, and 90% of the thickness of the resistance heating element, respectively. Is a graph showing the shape (height and position) of the cross section, and the lower part is a cross-sectional view taken along the arrow in FIG. 11 in the upper part.
図 1 7は、 抵抗発熱体の断面の形状 (位置と高さ) を示すグラフである。 符号の説明  Figure 17 is a graph showing the cross-sectional shape (position and height) of the resistance heating element. Explanation of reference numerals
4、 34 有底孔  4, 34
5、 35 貫通孔  5, 35 Through hole
1 1、 3 1、 6 1 セラミック基板  1 1, 3 1, 6 1 Ceramic substrate
1 1 a 加熱面  1 1a heated surface
l i b 底面  l i b bottom
1 2 (1 2 a〜1 2 g) 、 32、 42、 52、 62 (6 2 a〜6 2 d) 抵抗 発熱体  1 2 (1 2 a to 12 g), 32, 42, 52, 62 (6 2 a to 6 2 d) Resistance Heating element
1 2m 導体層 (抵抗発熱体)  1 2m conductor layer (resistance heating element)
1 3 テープ/レ .  1 3 tape / record.
1 3 a 嵌合用突起部  1 3 a Mating protrusion
1 3 b 固定用突起部  1 3 b Fixing protrusion
14 レーザ照射装置  14 Laser irradiation equipment
1 5 ガルバノミラー  1 5 Galvanometer mirror
1 制御部  1 Control unit
1 8 記憶部  1 8 Memory
1 9 演算部  1 9 Operation section
20 入力部  20 Input section
2 1 カメラ  2 1 Camera
22 レーザ光  22 Laser light
30 セラミックヒータ 3 3 外部端子 30 Ceramic heater 3 3 External terminal
3 6 リフタ ^"ピン  3 6 Lifter ^ "pin
3 9 半導体ウェハ 発明の詳細な開示  3 9 Semiconductor wafer Detailed disclosure of invention
まず、 実施の形態に則して第一の本発明を説明するが、 第一の本発明の半導体 製造 ·検查装置用セラミックヒータは、 抵抗発熱体の平均抵抗値に対する抵抗値 のばらつきが 2 5 %以下であれば、 この実施形態に制限されるものではない。 第一の本発明の実施形態に係る半導体製造 ·検查装置用セラミックヒータは、 円板形状のセラミック基板の表面または内部に抵抗発熱体を設けてなるセラミッ クヒータであって、  First, the first present invention will be described based on the embodiment. However, the ceramic heater for a semiconductor manufacturing and inspection device of the first present invention has a variation in resistance value with respect to the average resistance value of the resistance heating element. If it is 5% or less, it is not limited to this embodiment. The ceramic heater for semiconductor manufacturing and inspection equipment according to the first embodiment of the present invention is a ceramic heater in which a resistance heating element is provided on the surface or inside of a disk-shaped ceramic substrate,
上記抵抗発熱体は、 屈曲線の繰り返しパターンを有するか、 あるいは抵抗発熱 体の厚さ調整がなされてなり、 平均抵抗値に対するばらつきが 2 5 %以下である ことを特徴とする半導体製造 ·検査装置用セラミックヒータである。  The above-mentioned resistance heating element has a repetitive pattern of bent lines, or the thickness of the resistance heating element is adjusted, and the variation with respect to the average resistance value is 25% or less. Ceramic heater.
なお、 以下の説明においては、 半導体製造 '検査装置用セラミックヒータを、 単に、 セラミックヒータともいうことにする。  In the following description, the ceramic heater for semiconductor manufacturing and inspection equipment will be simply referred to as a ceramic heater.
上記セラミックヒータによれば、 上記抵抗発熱体は、 屈曲線の繰り返しパター ン (図 1 0参照) 、 または、 同心円形状もしくは渦巻き形状のパターンと屈曲線 からなるパターンとが混成して形成されているので (図 5参照) 、 セラミック基 板の全体に同心円形状または渦卷き形状のパタ一ンの抵抗発熱体が形成されてい る場合と比較して、 外周部分の温度の低下を抑えることができ、 ウェハ加熱面全 体の温度が均一になる結果、 半導体ウェハ等を均一に加熱することができる。 また、 屈曲線からなるパターンや屈曲線の繰り返しパターンでは、 図 7に示す ように屈曲部分の存在に起因して、 印刷方向に平行な部分のみならず、 印刷方向 に垂直な部分が生ずる。 抵抗発熱体が印刷方向に平行な場合 (図 7の D部分、 図 1では B部分) 、 その抵抗発熱体を形成する場合に、 スキージがマスクの開口の 周縁部と線接触するため、 金属粒子がマスクの開口に充填しにくレ、。 これに対し て、 抵抗発熱体が印刷方向に垂直な場合 (図 7の C部分、 図 1では A部分) 、 そ の抵抗発熱体を形成する場合に、 ズキージがマスクの開口の周縁部と面接触する ため、 金属粒子がマスクの開口に充填しやすいのである。 従って、 発熱体が印刷 方向に垂直な場合部分 C、 平行な部分 Dの両方の構成を持つことで、 金属粒子を マスク開口に充填して、 抵抗値のばらつきを低減することができるのである。 発熱体パターンは、 上記したパターンに限定される訳ではなく、 例えば、 図 9 や図 1に示すような渦巻き形状でもよいが、 この場合には、 印刷方向に垂直にな る部分は、 ベルトサンダーなどで表面を研磨して厚さを調整する必要がある。 セラミック基板の厚さは、 2 5 mm以下が望ましい。 2 5 mmを超える場合は 、 熱容量が大きくなりすぎて、 熱伝達に時間がかかり、 加熱面 (抵抗発熱体形成 面の反対側面) の温度が不均一になりにくく、 第一の本発明のように抵抗値のば らつき制御が不要だからである。 し力 しながら、 投入電力に対する応答性は極端 に低下してしまう。 According to the ceramic heater, the resistance heating element is formed by repeating a bent line pattern (see FIG. 10) or a concentric or spiral pattern and a pattern formed by a bent line. Therefore (see Fig. 5), it is possible to suppress a decrease in the temperature of the outer peripheral portion as compared with the case where a concentric or spiral shaped patterned resistance heating element is formed on the entire ceramic substrate. As a result, the temperature of the entire wafer heating surface becomes uniform, so that the semiconductor wafer and the like can be uniformly heated. Further, in the pattern composed of the bent lines or the repeated pattern of the bent lines, as shown in FIG. 7, due to the presence of the bent portion, not only a portion parallel to the printing direction but also a portion perpendicular to the printing direction occurs. When the resistance heating element is parallel to the printing direction (D part in Fig. 7 and B part in Fig. 1), when forming the resistance heating element, the squeegee comes into line contact with the periphery of the mask opening, so metal particles Is difficult to fill into the opening of the mask. On the other hand, when the resistance heating element is perpendicular to the printing direction (part C in FIG. 7 and part A in FIG. 1), When the resistive heating element is formed, since the squeegee makes surface contact with the peripheral portion of the opening of the mask, the metal particles can easily fill the opening of the mask. Therefore, by having both the portion C when the heating element is perpendicular to the printing direction and the portion D parallel to the printing direction, metal particles can be filled in the mask opening and the variation in resistance value can be reduced. The heating element pattern is not limited to the above-mentioned pattern. For example, a spiral shape as shown in FIGS. 9 and 1 may be used. In this case, the portion perpendicular to the printing direction is a belt sander. It is necessary to adjust the thickness by polishing the surface with, for example. The thickness of the ceramic substrate is desirably 25 mm or less. If it exceeds 25 mm, the heat capacity becomes too large, the heat transfer takes time, and the temperature of the heating surface (the side opposite to the surface on which the resistance heating element is formed) is unlikely to be uneven, as in the first invention. This is because there is no need to control the variation in resistance value. However, the responsiveness to the input power is extremely reduced.
また、 その厚さは、 1 . 5 mmを超え 5 mm以下であることがより望ましい。 5 mmより厚くなると、 熱が伝搬しにくくなり、 加熱の効率が低下する傾向が生 じ、 一方、 1 . 5 mm以下であると、 セラミック基板中を伝搬する熱が充分に拡 散しないため加熱面に温度ばらつきが発生することがあり、 また、 セラミック基 板の強度が低下して破損する場合があるからである。  More preferably, the thickness is more than 1.5 mm and 5 mm or less. If the thickness is more than 5 mm, heat is difficult to propagate, and the heating efficiency tends to decrease.On the other hand, if the thickness is less than 1.5 mm, the heat propagating through the ceramic substrate will not be sufficiently diffused, so heating will not occur. This is because temperature variations may occur on the surface and the strength of the ceramic substrate may be reduced to cause breakage.
セラミック基板の直径は、 1 9 O mmを超えていることが望ましく、 2 0 0 m m以上がより ましい。 大きな直径を持つ基板ほど加熱面の温度が不均一化しや すいからである。 また、 このような大きな直径を持つ基板は、 大口径の半導体ゥ ェハを载置することができるからである。  The diameter of the ceramic substrate should preferably exceed 19 O mm, more preferably 200 mm or more. This is because a substrate with a larger diameter is more likely to have a nonuniform heating surface temperature. In addition, a substrate having such a large diameter can be provided with a semiconductor wafer having a large diameter.
セラミック基板の直径は、 特に 1 2インチ (3 0 0 mm') 以上であることが望 ましい。 次世代の半導体ウェハの主流となるからである。  The diameter of the ceramic substrate is preferably at least 12 inches (300 mm '). This is because it will become the mainstream of next generation semiconductor wafers.
セラミック基板の気孔率は、 5 %以下が望ましレ、。 気孔率が高いセラミック基 板は、 熱伝導率が低いため、 熱伝達に時間がかかり、 加熱面 (抵抗発熱体形成面 の反対側面) の温度が不均一になりにくく、 第一の本発明のように抵抗値のばら つき制御が不要だからである。 しかしながら、 投入電力に対する応答性は極端に 低下してしまう。 第一の本発明のセラミックヒータは、 セラミック基板として、 窒化物セラミツ クもしくは炭化物セラミックなどの非酸化物セラミック、 または、 酸化物セラミ ックを使用し、 非酸化物セラミック基板の表面に絶縁層として酸化物セラミック を使用することもできる。 窒化物セラミックは酸素固溶等により、 高温で体積抵 抗値が低下しやすく、 また炭化物セラミックは特に高純度化しない!^り導電性を 有しており、 酸ィ匕物セラミックを絶縁層として形成することにより、 高温時ある いは不純物を含有していても回路間の短絡を防止して温度制御性を確保すること ができるからである。 The porosity of the ceramic substrate is preferably 5% or less. Since the ceramic substrate having a high porosity has a low thermal conductivity, it takes a long time for heat transfer, and the temperature of the heating surface (the side opposite to the surface on which the resistance heating element is formed) is less likely to be uneven. This is because it is not necessary to control the variation of the resistance value. However, the responsiveness to the input power is extremely reduced. The ceramic heater according to the first aspect of the present invention uses a non-oxide ceramic such as a nitride ceramic or a carbide ceramic or an oxide ceramic as a ceramic substrate, and forms an insulating layer on the surface of the non-oxide ceramic substrate. Oxide ceramics can also be used. Nitride ceramics have a tendency to decrease in volume resistance at high temperatures due to oxygen solid solution, etc.Carbide ceramics are not particularly highly purified! It has electrical conductivity, and oxide ceramics are used as an insulating layer. This is because the formation can prevent a short circuit between circuits even at high temperatures or even when impurities are contained, thereby ensuring temperature controllability.
また、 非酸ィ匕物セラミックは、 熱伝導率が高いため、 迅速に昇温、 降温し、 温 度の制御が容易であるため、 ヒータとして適している。 その一方で、 熱伝導率が 高いため、 発熱体パターンに起因する温度のばらつきが生じやすく、 酸化物セラ ミックに比べて第一の本発明の構成が特に有利である。  In addition, non-oxidizing ceramics are suitable for heaters because they have high thermal conductivity, so that the temperature can be raised and lowered quickly and the temperature can be easily controlled. On the other hand, since the thermal conductivity is high, temperature variations due to the heating element pattern are likely to occur, and the configuration of the first present invention is particularly advantageous as compared with oxide ceramics.
セラミック基板の加熱面の反対側面 (以下、 底面という) の表面は、 面粗度が The surface on the opposite side (hereinafter referred to as the bottom) of the heating surface of the ceramic substrate has a surface roughness
R aで 2 0 m以下が好ましい。 Ra is preferably 20 m or less.
上記セラミック基板を構成する窒化物セラミックとしては、 金属窒化物セラミ ック、 例えば、 窒化アルミニウム、 窒化ケィ素、 窒化ホウ素、 窒化チタン等が挙 げられる。  Examples of the nitride ceramic forming the ceramic substrate include metal nitride ceramics, for example, aluminum nitride, silicon nitride, boron nitride, titanium nitride, and the like.
また、 上記炭化物セラミックとしては、 金属炭化物セラミック、 例えば、 炭化 ケィ素、 炭化ジルコニウム、 炭化チタン、 炭化タンタル、 炭化タンステン等が挙 げられる。  Examples of the carbide ceramic include metal carbide ceramics, for example, silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, tansten carbide, and the like.
なお、 セラミック基板として酸化物セラミックを使用してもよく、 アルミナ、 シリカ、 コージエライト、 ムライト、 ジルコユア、 ベリリアなどを使用すること ができる。  Note that an oxide ceramic may be used as the ceramic substrate, and alumina, silica, cordierite, mullite, zirconia, beryllia, or the like can be used.
これらは、 単独で用いてもよく、 2種以上を併用してもよい。  These may be used alone or in combination of two or more.
上記窒化物セラミック、 炭化物セラミックのような非酸化物セラミック製の基 板は、 熱伝導率が高く、 セラミック基板の加熱面の温度を抵抗発熱体の温度変化 に迅速に追従させることができ、 加熱面の温度を良好に制御することができると ともに、 機械的な強度が大きいので、 ヒータ板が反ったりすることはなく、 その 上に載置した半導体ウェハが破損するのを防止することができる。 Non-oxide ceramic substrates such as the nitride ceramics and carbide ceramics described above have high thermal conductivity, and the temperature of the heating surface of the ceramic substrate can quickly follow the temperature change of the resistance heating element. The surface temperature can be controlled well, and the mechanical strength is high, so the heater plate does not warp. It is possible to prevent the semiconductor wafer mounted thereon from being damaged.
上記窒化物セラミックのなかでは窒化アルミニウムが最も好ましレ、。 熱伝導率 が 1 8 O W/m · Kと最も高いからである。  Of the above-mentioned nitride ceramics, aluminum nitride is the most preferred. This is because the thermal conductivity is the highest at 18 O W / m · K.
図 5は、 第一の本発明のセラミックヒータの一例を模式的に示す底面図であり 、 図 6はその一部を示す部分拡大断面図である。  FIG. 5 is a bottom view schematically showing an example of the first ceramic heater of the present invention, and FIG. 6 is a partially enlarged sectional view showing a part thereof.
窒化物セラミック、 炭化物セラミック、 酸化物セラミックなどのセラミック基 板 (以下、 窒化物等のセラミック基板という) からなるセラミック基板 1 1は、 円板状に形成されており、 セラミック基板 1 1の加熱面 1 1 aの全体の温度が均 一になるように加熱するため、 セラミック基板 1 1の底面の内側には同心円形状 のパターンの抵抗発熱体 1 2 ( 1 2 e〜1 2 g ) が形成され、 一方、 セラミック 基板 1 1の外周部分には、 屈曲線の繰り返しパターンの抵抗発熱体 1 2 ( 1 2 a 〜1 2 d ) が形成されている。  A ceramic substrate 11 made of a ceramic substrate such as a nitride ceramic, a carbide ceramic, or an oxide ceramic (hereinafter, referred to as a nitride ceramic substrate) is formed in a disc shape, and has a heating surface of the ceramic substrate 11. In order to heat the entire 11a so that the entire temperature is uniform, a resistive heating element 12 (12e to 12g) with a concentric pattern is formed inside the bottom of the ceramic substrate 11. On the other hand, on the outer peripheral portion of the ceramic substrate 11, resistance heating elements 12 (12a to 12d) having a repeating pattern of bent lines are formed.
そして、 内側の抵抗発熱体 1 2 e〜l 2 gは、 互いに近い二重の同心円同士が 1組として、 1本の線になるように接続されている。 また、 抵抗発熱体 1 2は、 金属被覆層 1 2 0 0により被覆、 保護されており、 この抵抗発熱体 1 2の端部に は、 外部端子 3 3が半田層 (図示せず) 等を介して接続されている。 また、 中央 に近い部分には、 半導体ウェハ 3 9を支持し、 運搬等するリフターピン 3 6を揷 通するための貫通孔 3 5が形成され、 さらに、 測温素子を挿入するための有底孔 3 4が形成されている。  The inner resistance heating elements 12 e to l 2 g are connected such that double concentric circles close to each other form a single line. Further, the resistance heating element 12 is covered and protected by a metal coating layer 1200, and an external terminal 33 has a solder layer (not shown) or the like at an end of the resistance heating element 12. Connected through. In a portion near the center, a through hole 35 is formed for passing a lifter pin 36 for supporting and transporting the semiconductor wafer 39, and a bottomed hole for inserting a temperature measuring element. A hole 34 is formed.
第一の本発明のセラミックヒータ 3 0では、 半導体ウェハ 3 9等の被加熱物を セラミック基板 1 1の加熱面 1 1 aに接触させた状態で載置して加熱するほか、 さらに、 セラミック基板に凹部や貫通孔等を形成し、 この凹部等に先端が尖塔状 または半球状の支持ピンを先端がセラミック基板の表面よりわずかに突出した状 態で揷入、 固定し、 半導体ウェハ 3 9等のネ皮加熱物をこの支持ピンで支持するこ とにより、 セラミック基板との間に一定の間隔を保って保持してもよい。  In the first ceramic heater 30 of the present invention, an object to be heated such as a semiconductor wafer 39 is placed and heated while being in contact with the heating surface 11 a of the ceramic substrate 11. A recess or through hole is formed in the recess, and a pin having a spire or hemispherical tip is inserted and fixed into the recess with the tip slightly protruding from the surface of the ceramic substrate. The heated skin material may be held at a certain distance from the ceramic substrate by supporting the heated skin material with the support pins.
加熱面とウェハとの距離は、 5〜5 0 0 0 μ πιが好ましい。  The distance between the heating surface and the wafer is preferably 5 to 500 μπι.
また、 貫通孔にリフターピンを挿入し、 このリフターピン 3 6を上下させるこ とにより、 搬送機から半導体ウェハ 3 9等の被加熱物を受け取ったり、 被加熱物 をセラミック基板 1 1上に ¾置したり、 被加熱物を支持したまま加熱したりする ことができる。 Also, by inserting a lifter pin into the through-hole and raising and lowering the lifter pin 36, an object to be heated such as a semiconductor wafer 39 can be received from the transfer machine, or the object to be heated can be received. Can be placed on the ceramic substrate 11 or heated while supporting the object to be heated.
なお、 図 5〜 6に示したセラミックヒータ 3 0において、 抵抗発熱体 1 2はセ ラミック基板 1 1の底部に設けられているが、 セラミック基板 1 1の内部に設け られていてもよい。 抵抗発熱体 1 2をセラミック基板 1 1の内部に設ける場合に も、 抵抗発熱体 1 2のパターンは、 同様に形成する。  In the ceramic heater 30 shown in FIGS. 5 and 6, the resistance heating element 12 is provided at the bottom of the ceramic substrate 11, but may be provided inside the ceramic substrate 11. Even when the resistance heating element 12 is provided inside the ceramic substrate 11, the pattern of the resistance heating element 12 is formed in the same manner.
第一の本発明のセラミックヒータ 3 0では、 セラミック基板の材料として、 窒 化物等のセラミックを用いているが、 これは、 熱膨張係数が金属より小さく、 薄 くしても、 加熱により反ったり、 歪んだりしないため、 セラミック基板 1 1を薄 くて軽いものとすることができるからである。  In the first ceramic heater 30 of the present invention, ceramic such as nitride is used as the material of the ceramic substrate. This is because the ceramic heater has a smaller coefficient of thermal expansion than metal, and even if thinner, warps due to heating. This is because the ceramic substrate 11 can be made thin and light because it is not distorted.
また、 セラミック基板 1 1の熱伝導率が高く、 またセラミック基板自体薄いた め、 セラミック基板 1 1の表面温度が、 抵抗発熱体の温度変化に迅速に追従する Also, since the thermal conductivity of the ceramic substrate 11 is high and the ceramic substrate itself is thin, the surface temperature of the ceramic substrate 11 quickly follows the temperature change of the resistance heating element.
。 即ち、 電圧、 電流量を変えて抵抗発熱体の温度を変化させることにより、 セラ ミック基板 1 1の表面温度を良好に制御することができるのである。 . That is, the surface temperature of the ceramic substrate 11 can be controlled well by changing the voltage and the current amount to change the temperature of the resistance heating element.
図 5〜6に示したセラミックヒータでは、 内側に渦巻き形状の抵抗発熱体 1 2 e〜l 2 gが形成されているが、 この抵抗発熱体は同心円形状でもよい。  In the ceramic heater shown in FIGS. 5 and 6, spiral resistance heating elements 12 e to l 2 g are formed on the inner side, but the resistance heating elements may be concentric.
一方、 外周部分には、 屈曲線の繰り返しパターンの抵抗発熱体 1 2 a〜l 2 d が形成されているが、 屈曲線の屈曲の繰り返しの程度は、 単位長さ当たり数が多 くてもよい。 すなわち図 5に示した抵抗発熱体 1 2 a〜l 2 dの屈曲の回数がも つと多いものであってもよい。  On the other hand, although the resistance heating elements 12 a to l 2 d are formed in the outer peripheral portion in a repeating pattern of the bent line, the degree of the repeated bending of the bent line is large even if the number per unit length is large. Good. That is, the resistance heating elements 12a to l2d shown in FIG. 5 may be bent more frequently.
また、 図 1 0には、 屈曲線の繰り返しパターンのみからなるセラミックヒータ 7 0を開示する。 このセラミックヒータ 7 0は、 屈曲線パターンからなる抵抗発 熱体 7 2 a〜7 2 hのみであるため、 金属粒子を印刷した場合の抵抗値のばらつ きを小さくすることができる。 なお、 屈曲線の繰り返しパターンと、 渦卷き、 同 心円パターンの混成パターンの場合は、 屈曲線の繰り返しパターンを、 中心から 半径の 1 Z 2以上外側に形成することが望ましい。 中心から半径の 1 / 2以上外 側の領域では、 印刷方向と同心円、 渦巻きの円弧が平行になりやすく、 抵抗値の ばらつきが大きいからである。 また、 第一の本発明では、 少なくとも外周部分に屈曲線の繰り返しパターンを 有していればよいので内側の渦卷きパターンおよぴ または同心円パターンから なる抵抗発熱体の間に屈曲線の繰り返しパターンからなる抵抗発熱体を有してい てもよい。 FIG. 10 discloses a ceramic heater 70 consisting only of a repeating pattern of bent lines. Since the ceramic heater 70 includes only the resistance heating elements 72 a to 72 h each having a bent line pattern, it is possible to reduce the variation in the resistance value when printing metal particles. In addition, in the case of a hybrid pattern of a bent line repetition pattern and a spiral or concentric pattern, it is preferable that the bent line repetition pattern be formed at a radius of 1Z2 or more outside the center. This is because concentric circles and swirl arcs tend to be parallel to the printing direction in a region that is more than 1/2 radius away from the center, and the resistance varies widely. Further, in the first aspect of the present invention, since it is sufficient that at least the outer peripheral portion has a repetition pattern of the bending line, the repetition of the bending line is formed between the resistance heating elements formed of the inner spiral pattern and the concentric pattern. It may have a resistive heating element composed of a pattern.
窒化物等のセラミック基板の表面または内部に形成される抵抗発熱体 1 2は、 図 5に示したように少なくとも 2以上の回路に分割されていることが望ましい。 回路を分割することにより、 各回路に投入する電力を制御して発熱量を変えるこ とができ、 半導体ウェハの加熱面の温度を調整することができるからである。 抵抗発熱体 1 2をセラミック基板 1 1の表面に形成する場合には、 金属粒子を 含む導電ペーストをセラミック基板 1 1の表面に塗布して所定パターンの導体べ 一スト層を形成した後、 これを焼き付け、 セラミック基板 1 1の表面で金属粒子 を焼結させる方法が好ましい。 なお、 金属の焼結は、 金属粒子同士おょぴ金属粒 子とセラミックとが融着していれば充分である。  It is desirable that the resistance heating element 12 formed on the surface or inside of the ceramic substrate such as nitride be divided into at least two or more circuits as shown in FIG. This is because, by dividing the circuit, the amount of heat generated can be changed by controlling the power supplied to each circuit, and the temperature of the heating surface of the semiconductor wafer can be adjusted. When the resistance heating element 12 is formed on the surface of the ceramic substrate 11, a conductive paste containing metal particles is applied to the surface of the ceramic substrate 11 to form a conductor base layer having a predetermined pattern. Is preferable, and metal particles are sintered on the surface of the ceramic substrate 11. The sintering of the metal is sufficient if the metal particles are fused together with the ceramic.
セラミック基板 1 1の表面に抵抗努熱体を形成する場合には、 抵抗発熱体の厚 さは、 1〜3 0 μ ιηが好ましく、 1〜1 0 /i mがより好ましい。 また、 セラミツ ク基板 1 1の内部に抵抗発熱体を形成する場合には、 その厚さは、 1〜5 0 μ πι が好ましい。 In the case of forming the resistor Tsutomunetsu body ceramic substrate 1 1 surface, the thickness of the resistance heating elements is preferably 1~3 0 μ ιη, more preferably 1 to 1 0 / im. When a resistance heating element is formed inside the ceramic substrate 11, the thickness thereof is preferably 1 to 50 μπι.
また、 セラミック基板 1 1の表面に抵抗発熱体を形成する場合には、 抵抗発熱 体の幅は、 0 . l〜2 0 mmが好ましく、 0 . 1〜 5 mmがより好ましレ、。 また 、 セラミック基板 1 1の内部に抵抗発熱体を形成する場合には、 抵抗発熱体の は、 5〜 2 0 μ mが好ましレヽ。  When a resistance heating element is formed on the surface of the ceramic substrate 11, the width of the resistance heating element is preferably 0.1 to 20 mm, more preferably 0.1 to 5 mm. When a resistance heating element is formed inside the ceramic substrate 11, the resistance heating element preferably has a thickness of 5 to 20 μm.
抵抗発熱体 1 2は、 その幅や厚さにより抵抗値に変化を持たせることができる が、 上記した範囲が最も実用的である。 抵抗値は、 薄く、 また、 細くなる程大き くなる。 抵抗突熱体 1 2は、 セラミック基板 1 1の内部に形成した場合の方が、 厚み、 幅とも大きくなるが、 抵抗発熱体 1 2を内部に設けると、 加熱面と抵抗発 熱体 1 2との距離が短くなり、 表面の温度の均一性が低下するため、 抵抗発熱体 自体の幅を広げる必要があること、 内部に抵抗発熱体 1 2を設けるために、 窒化 物等のセラミック等との密着性を考慮する必要性がないため、 タングステン、 モ リプデンなどの高融点金属ゃタングステン、 モリブデンなどの炭化物を使用する ことができ、 抵抗値を高くすることが可能となるため、 断線等を防止する目的で 厚み自体を厚くしてもよレ、。 そのため、 抵抗発熱体 1 2は、 上記した厚みや幅と することが望ましい。 Although the resistance value of the resistance heating element 12 can be varied depending on its width and thickness, the above range is most practical. The resistance becomes thinner and thinner, and becomes larger. When the resistance heating element 12 is formed inside the ceramic substrate 11, the thickness and width are larger, but when the resistance heating element 12 is provided inside, the heating surface and the resistance heating element 1 2 And the uniformity of the temperature of the surface is reduced, so the width of the resistance heating element itself must be increased.In order to provide the resistance heating element 12 inside, it is necessary to use a ceramic such as nitride. Since there is no need to consider the adhesion of High melting point metals such as lipden can be used, and carbides such as tungsten and molybdenum can be used, and the resistance value can be increased. Therefore, the thickness itself can be increased to prevent disconnection. Therefore, it is desirable that the resistance heating element 12 has the above-mentioned thickness and width.
抵抗発熱体 1 2は、 断面形状が矩形であっても楕円であってもよいが、 偏平で あることが望ましい。 偏平の方がウェハ加熱面に向かって放熱しやすいため、 加 熱面の温度分布ができにくいからである。  The resistance heating element 12 may have a rectangular or elliptical cross section, but is preferably flat. This is because the flattened surface tends to radiate heat toward the heated surface of the wafer, making it difficult to achieve a temperature distribution on the heated surface.
断面のァスぺクト比 (抵抗発熱体の幅 Z抵抗発熱体の厚さ) は、 1 0〜5 0 0 0であることが望ましい。  It is desirable that the aspect ratio of the cross section (the width of the resistance heating element and the thickness of the resistance heating element) be 10 to 500.
この範囲に調整することにより、 抵抗発熱体 1 2の抵抗値を大きくすることが できるとともに、 加熱面の温度の均一性を確保することができるからである。 抵抗発熱体 1 2の厚さを一定とした場合、 ァスぺクト比が上記範囲より小さい と、 セラミック基板 1 1のウェハ加熱方向への熱の伝搬量が小さくなり、 抵抗発 熱体 1 2のパターンに近似した熱分布が加熱面に発生してしまい、 逆にァスぺク ト比が大きすぎると抵抗発熱体 1 2の中央の直上部分が高温となってしまい、 結 局、 抵抗発熱体 1 2のパターンに近似した熱分布が加熱面に発生してしまう。 従 つて、 温度分布を考慮すると、 断面のアスペク ト比は、 1 0〜 5 0 0 0であるこ とが好ましいのである。  By adjusting to this range, the resistance value of the resistance heating element 12 can be increased, and the uniformity of the temperature of the heating surface can be ensured. When the thickness of the resistance heating element 12 is constant, if the aspect ratio is smaller than the above range, the amount of heat propagation in the wafer heating direction of the ceramic substrate 11 decreases, and the resistance heating element 12 Heat distribution similar to the above pattern occurs on the heating surface. Conversely, if the aspect ratio is too large, the temperature immediately above the center of the resistance heating element 12 becomes high, resulting in resistance heating. A heat distribution similar to the pattern of the body 12 occurs on the heated surface. Therefore, in consideration of the temperature distribution, the aspect ratio of the cross section is preferably 10 to 500.
抵抗発熱体 1 2をセラミック基板 1 1の表面に形成する場合は、 ァスぺクト比 を 1 0〜 2 0 0、 抵抗発熱体 1 2をセラミック基板 1 1の内部に形成する場合は 、 アスペクト比を 2 0 0〜5 0 0 0とすることが望ましい。  When the resistance heating element 12 is formed on the surface of the ceramic substrate 11, the aspect ratio is 10 to 200. When the resistance heating element 12 is formed inside the ceramic substrate 11, the aspect ratio is It is desirable that the ratio be between 200 and 500.
抵抗発熱体 1 2は、 セラミック基板 1 1の内部に形成した場合の方が、 ァスぺ クト比が大きくなるが、 これは、 抵抗発熱体 1 2を内部に設けると、 加熱面と抵 抗発熱体 1 2との距離が短くなり、 表面の温度均一性が低下するため、 抵抗発熱 体 1 2自体を偏平にする必要があるからである。  When the resistance heating element 12 is formed inside the ceramic substrate 11, the aspect ratio is higher. However, when the resistance heating element 12 is provided inside, the resistance to the heating surface is reduced. This is because the distance from the heating element 12 becomes shorter, and the temperature uniformity of the surface decreases, so that the resistance heating element 12 itself needs to be flattened.
抵抗発熱体 1 2をセラミック基板 1 1の内部に偏芯して形成する場合の位置は 、 セラミック基板 1 1の加熱面に対向する面 (底面) に近い位置で、 加熱面から 底面までの距離に対して 5 0 %を超え、 9 9 %までの位置とすることが望ましい 5 0 %以下であると、 加熱面に近すぎるため、 温度分布が発生してしまい、 逆 に、 9 9 %を超えると、 セラミック基板 1 1自体に反りが発生して、 半導体ゥェ ハが破損するからである。 When the resistance heating element 12 is formed eccentrically inside the ceramic substrate 11, the position is close to the surface (bottom surface) facing the heating surface of the ceramic substrate 11, and the distance from the heating surface to the bottom surface Above 50% and up to 99% If it is less than 50%, the temperature distribution is generated because it is too close to the heated surface. Conversely, if it exceeds 99%, the ceramic substrate 11 itself warps and the semiconductor wafer is damaged. It is because it is damaged.
また、 抵抗発熱体 1 2をセラミック基板 1 1の内部に形成する場合には、 抵抗 発熱体形成層を複数層設けてもよい。 この場合は、 各層のパターンは、 相互に捕 完するようにどこかの層に抵抗発熱体 1 2が形成され、 ウェハ加熱面の上方から 見ると、 どの領域にもパターンが形成されている状態が望ましい。 このような構 造としては、 例えば、 互いに千鳥の配置になっている構造が挙げられる。  When the resistance heating element 12 is formed inside the ceramic substrate 11, a plurality of resistance heating element forming layers may be provided. In this case, the pattern of each layer is such that the resistive heating element 12 is formed on some layer so as to capture each other, and when viewed from above the wafer heating surface, the pattern is formed on any area. Is desirable. As such a structure, for example, there is a structure in which the staggered arrangement is provided.
なお、 抵抗発熱体 1 2をセラミック基板 1 1の内部に設け、 かつ、 その抵抗発 熱体 1 2を一部露出させてもよい。  Note that the resistance heating element 12 may be provided inside the ceramic substrate 11, and the resistance heating element 12 may be partially exposed.
導体ペーストとしては特に限定されないが、 導電性を確保するための金属粒子 または導電性セラミックが含有されているほか、 樹脂、 溶剤、 増粘剤などを含む ものが好ましい。  The conductive paste is not particularly limited, but preferably contains not only metal particles or conductive ceramic for ensuring conductivity, but also a resin, a solvent, a thickener, and the like.
上記金属粒子としては、 例えば、 貴金属 (金、 銀、 白金、 パラジウム) 、 鉛、 タングステン、 モリプデン、 ニッケルなどが好ましい。 これらは、 単独で用いて もよく、 2種以上を併用してもよレ、。 これらの金属は、 比較的酸化しにくく、 発 熱するに充分な抵抗値を有するからである。  As the metal particles, for example, noble metals (gold, silver, platinum, palladium), lead, tungsten, molybdenum, nickel and the like are preferable. These may be used alone or in combination of two or more. This is because these metals are relatively hard to oxidize and have sufficient resistance to generate heat.
上記導電 ¾Ξセラミックとしては、 例えば、 タングステン、 モリブデンの炭化物 などが挙げられる。 これらは、 単独で用いてもよく、 2種以上を併用してもよい これら金属粒子または導電性セラミック粒子の粒径は、 0 . 1〜 1 0 0 μ mが 好ましい。 0 . 1 ^ πι未満と微細すぎると、 酸化されやすく、 一方、 Ι Ο Ο μ πι を超えると、 焼結しにくくなり、 抵抗値が大きくなるだけでなく、 印刷しにくい 上記金属粒子の形状は、 球状であっても、 リン片状であってもよい。 これらの 金属粒子を用いる場合、 上記球状物と上記リン片状物との混合物であってよい。 上記金属粒子がリン片状物、 または、 球状物とリン片状物との混合物の場合は 、 金属粒子間の酸ィ匕物を保持しやすくなり、 抵抗発熱体 1 2と窒化物等のセラミ ック等との密着性を確実にし、 かつ、 抵抗値を大きくすることができるため有利 である。 ■ Examples of the conductive ceramic include tungsten and molybdenum carbide. These may be used alone or in combination of two or more. The particle diameter of the metal particles or conductive ceramic particles is preferably 0.1 to 100 μm. If it is too fine, less than 0.1 ^ πι, it is liable to be oxidized, while if it exceeds Ο Ο μππι, it becomes difficult to sinter, not only increases the resistance but also makes it difficult to print. It may be spherical or scaly. When these metal particles are used, they may be a mixture of the sphere and the flakes. When the metal particles are flakes or a mixture of spheres and flakes In addition, it is easy to hold the oxide particles between the metal particles, it is possible to secure the adhesion between the resistance heating element 12 and ceramics such as nitrides, and to increase the resistance value, which is advantageous. is there. ■
導体ペーストに使用される樹脂としては、 例えば、 エポキシ樹脂、 フエノール 樹脂などが挙げられる。 また、 溶剤としては、 例えば、 イソプロピルアルコール 、 プチルカルビトール、 ジエチレンエーテルモノエーテルなどが挙げられる。 増 粘剤としては、 セルロースなどが挙げられる。  Examples of the resin used for the conductor paste include an epoxy resin and a phenol resin. Examples of the solvent include isopropyl alcohol, butyl carbitol, diethylene ether monoether, and the like. Examples of the thickener include cellulose.
導体ペーストには、 金属粒子に金属酸化物 (ガラスフリット) を添加し、 抵抗 発熱体と金属粒子およぴ金属酸化物とを焼結させたものとすることが望ましい。 このように、 金属酸化物を金属粒子とともに焼結させることにより、 セラミック 基板である窒化物セラミック等と金属粒子とをより密着させることができる。 金属酸化物を混合することにより、 窒化物セラミック等との密着性が改善され る理由は明確ではないが、 金属粒子表面や窒化物セラミック等の表面は、 わずか に酸化されて酸ィ匕膜が形成されており、 この酸化膜同士が金属酸化物を介して焼 結して一体化し、 金属粒子と窒化物セラミック等とが密着するのではないかと考 えられる。 また、 セラミック基板を構成するセラミックが酸化物セラミックの場 合は、 当然に表面が酸化物からなるので、 密着性に優れた導体層が形成される。 上記金属酸化物としては、 例えば、 酸化鉛、 酸化亜鉛、 シリカ、 酸化ホウ素 ( B 20 3) 、 アルミナ、 イットリアおよびチタニアからなる群から選ばれる少なく とも 1種が好ましレ、。 It is preferable that the conductor paste is made by adding a metal oxide (glass frit) to metal particles and sintering the resistance heating element, the metal particles, and the metal oxide. Thus, by sintering the metal oxide together with the metal particles, the ceramic substrate, such as a nitride ceramic, and the metal particles can be more closely adhered. It is not clear why the mixing with the metal oxide improves the adhesion with the nitride ceramic, etc., but the surface of the metal particles and the surface of the nitride ceramic, etc. are slightly oxidized to form an oxide film. It is considered that these oxide films are sintered together via the metal oxide to be integrated, and the metal particles and the nitride ceramics are brought into close contact with each other. Also, when the ceramic constituting the ceramic substrate is an oxide ceramic, the surface is naturally made of an oxide, so that a conductor layer having excellent adhesion is formed. The metal oxide, for example, lead oxide, zinc oxide, silica, boron oxide (B 2 0 3), alumina, Shi preferred is at least one selected from the group consisting of yttria and titania les.
これらの酸化物は、 抵抗発熱体 1 2の抵抗値を大きくすることなく、 金属粒子 と窒化物等のセラミックとの密着性を改善することができるからである。  This is because these oxides can improve the adhesion between metal particles and ceramics such as nitrides without increasing the resistance value of the resistance heating element 12.
, 上記酸化鉛、 酸化亜鉛、 シリカ、 酸化ホウ素 (B 20 3) 、 アルミナ、 イツトリ ァ、 チタニアの割合は、 金属酸ィ匕物の全量を 1 0 0重量部とした場合、 重量比で 、 酸化鉛が 1〜1 0、 シリカが 1〜 3 0、 酸化ホゥ素が 5〜 5 0、 酸化亜鉛が 2 0〜7 0、 アルミナが 1〜1 0、 イットリアが:!〜 5 0、 チタニアが 1〜5 0で あって、 その合計が 1 0 0重量部を超えない範囲で調整されていることが望まし レ、。 これらの範囲で、 これらの酸化物の量を調整することにより、 特に窒化物等 のセラミックとの密着性を改善することができる。 The lead oxide, zinc oxide, silica, boron oxide (B 2 0 3), alumina, Itsutori §, the proportion of titania, when the 1 0 0 parts by weight of the total amount of metal Sani匕物, by weight, Lead oxide 1 ~ 10, silica 1 ~ 30, boron oxide 5 ~ 50, zinc oxide 20 ~ 70, alumina 1 ~ 10, yttria :! Preferably, the titania is 1 to 50, and the total is adjusted so as not to exceed 100 parts by weight. By adjusting the amount of these oxides within these ranges, especially nitrides Can be improved in adhesion to ceramic.
上記酸ィ匕物の金属粒子に対する添加量は、 0 . 1重量%以上 1◦重量。 /0未満が 好ましい。 また、 このような構成の導体ペーストを使用して抵抗発熱体 1 2を形 成した際の面積抵抗率は、 1〜5 O m QZ口が好ましい。 The addition amount of the above-mentioned oxidized product to the metal particles is 0.1% by weight or more and 1 ° by weight. It is preferably less than / 0 . Further, when the resistance heating element 12 is formed using the conductor paste having such a configuration, the area resistivity is preferably 1 to 5 Om QZ port.
面積抵抗率が 5 Ο πι Ω /口を超えると、 印加電圧量に対して発熱量は大きくな りすぎて、 セラミック基板の表面に抵抗発熱体 1 2を設けたセラミック基板 1 1 では、 その発熱量を制御しにくいからである。 なお、 金属酸化物の添加量が 1 0 重量%以上であると、 面積抵抗率が 5 Ο πι Ω /口を超えてしまレ、、 発熱量が大き くなりすぎて温度制御が難しくなり、 温度分布の均一性が低下する。  If the sheet resistivity exceeds 5ΟπιΩ / port, the amount of heat generated is too large for the applied voltage, and the heat generated on the ceramic substrate 11 provided with the resistance heating element 12 on the surface of the ceramic substrate This is because it is difficult to control the amount. If the addition amount of the metal oxide is 10% by weight or more, the sheet resistivity exceeds 5ΟπιΩ / port, and the calorific value becomes too large to make temperature control difficult. The uniformity of distribution is reduced.
また、 必要に応じて面積抵抗率を 5 Ο ηα Ω /口〜 1 0 ΩΖ口にすることができ る。 面積抵抗率を大きくすると、 パターンを幅を広くすることができるため、 断 線の問題がない。  If necessary, the sheet resistivity can be set to 5ΟηαΩ / port to 10Ω〜port. If the sheet resistance is increased, the width of the pattern can be increased, so that there is no problem of disconnection.
抵抗発熱体 1 2がセラミック基板 1 1の表面に形成される場合には、 抵抗発熱 体 1 2の表面部分に、 金属被覆層 1 2 0 0が形成されていることが望ましい。 内 部の金属焼結体が酸化されて抵抗値が変化するのを防止するためである。 形成す る金属被覆層 1 2 0 0の厚さは、 0 . 1〜1 0 μ πιが好ましい。  When the resistance heating element 12 is formed on the surface of the ceramic substrate 11, it is desirable that a metal coating layer 1200 is formed on the surface of the resistance heating element 12. This is to prevent the internal metal sintered body from being oxidized to change the resistance value. The thickness of the formed metal coating layer 1200 is preferably 0.1 to 10 μπι.
金属被覆層 1 2 0 0を形成する際に使用される金属は、 非酸化性の金属であれ ば特に限定されないが、 具体的には、 例えば、 金、 銀、 パラジウム、 白金、 ニッ ケルなどが挙げられる。 これらは、 単独で用いてもよく、 2種以上を併用しても よい。 これらのなかでは、 ニッケルが好ましい。 さらに、 被覆層としては、 ガラ スなどの無機絶縁層や耐熱性樹脂などを使用することもできる。  The metal used for forming the metal coating layer 1200 is not particularly limited as long as it is a non-oxidizing metal, and specifically, for example, gold, silver, palladium, platinum, nickel, etc. No. These may be used alone or in combination of two or more. Of these, nickel is preferred. Further, as the coating layer, an inorganic insulating layer such as glass, a heat-resistant resin, or the like can be used.
抵抗発熱体 1 2には、 電源と接続するための端子が必要であり、 この端子は、 半田を介して抵抗発熱体 1 2に取り付けるが、 ニッケルは、 半田の熱拡散を防止 するからである。 接続端子としては、 例えば、 コバール製の外部端子 3 3が挙げ られる。  The resistance heating element 12 needs a terminal to connect to the power supply, and this terminal is attached to the resistance heating element 12 via solder, but nickel prevents heat diffusion of the solder. . Examples of the connection terminal include an external terminal 33 made of Kovar.
なお、 抵抗発熱体 1 2をセラミック基板 1 1の内部に形成する場合には、 抵抗 発熱体表面が酸化されることがないため、 被覆は不要である。 抵抗発熱体 1 2を セラミック基板 1 1内部に形成する場合、 抵抗発熱体の一部が表面に露出してい てもよく、 抵抗発熱体 1 2を接続するためのスルーホールが端子部分に設けられ 、 このスルーホールに外部端子が接続、 固定されていてもよい。 When the resistance heating element 12 is formed inside the ceramic substrate 11, no coating is necessary because the surface of the resistance heating element is not oxidized. When the resistance heating element 12 is formed inside the ceramic substrate 11, part of the resistance heating element is exposed on the surface. Alternatively, a through hole for connecting the resistance heating element 12 may be provided in the terminal portion, and an external terminal may be connected and fixed to the through hole.
外部端子 3 3を接続する場合、 半田としては、 銀一鉛、 鉛一スズ、 ビスマス一 スズなどの合金を使用することができる。 なお、 半田層の厚さは、 0 . 1〜5 0 / mが好ましい。 半田による接続を確保するのに充分な範囲だからである。 また、 図 6に示したように、 セラミック基板 1 1に貫通孔 3 5を設けてその貫 通孔 3 5にリフターピン 3 6を挿入し、 半導体ウェハを図示しない搬送機に渡し たり、 搬送機から半導体ウェハを受け取ったりすることができる。  When connecting the external terminals 33, alloys such as silver-lead, lead-tin, and bismuth-tin can be used as the solder. The thickness of the solder layer is preferably from 0.1 to 50 / m. This is because the range is sufficient to secure connection by soldering. Also, as shown in FIG. 6, a through hole 35 is provided in the ceramic substrate 11 and a lifter pin 36 is inserted into the through hole 35 to transfer the semiconductor wafer to a carrier (not shown), From a semiconductor wafer.
セラミック基板の抵抗発熱体形成面の反対側面が被加熱物の加熱面となる。 · 第一の本発明では、 必要に応じてセラミック基板に熱電対を埋め込んでおくこ とができる。 熱電対により抵抗発熱体の温度を測定し、 そのデータをもとに電圧 、 電流量を変えて、 温度を制御することができるからである。  The side of the ceramic substrate opposite to the surface on which the resistance heating element is formed is the heating surface of the object to be heated. · In the first aspect of the present invention, a thermocouple can be embedded in the ceramic substrate as needed. This is because the temperature of the resistance heating element is measured by a thermocouple, and the temperature and the amount of current can be changed based on the data to control the temperature.
熱電対の金属線の接合部位の大きさは、 各金属線の素線径と同一か、 もしくは The size of the junction of the metal wires of the thermocouple is the same as the wire diameter of each metal wire, or
、 それよりも大きく、 かつ、 0 . 5 mm以下がよい。 このような構成によって、 接合部分の熱容量が小さくなり、 温度が正確に、 また、 迅速に電流値に変換され るのである。 このため、 温度制御性が向上してウェハの加熱面の温度分布が小さ くなるのである。 It should be larger and less than 0.5 mm. With such a configuration, the heat capacity of the junction is reduced, and the temperature is accurately and quickly converted to a current value. Therefore, the temperature controllability is improved and the temperature distribution on the heated surface of the wafer is reduced.
上記熱電対としては、 例えば、 J I S— C— 1 6 0 2 ( 1 9 8 0 ) に挙げられ るように、 K型、 R型、 B型、 S型、 E型、 J型、 T型熱電対が挙げられる。 次に、 第一のセラミックヒータの製造方法について説明する。  Examples of the thermocouple include K-type, R-type, B-type, S-type, E-type, J-type, and T-type thermocouples as described in, for example, JIS-C-162 (1980). Pairs. Next, a method for manufacturing the first ceramic heater will be described.
まず、 セラミック基板 1 1の底面に抵抗発熱体が形成されたセラミックヒータ (図 5〜 6参照) の製造方法について説明する。  First, a method of manufacturing a ceramic heater (see FIGS. 5 and 6) in which a resistance heating element is formed on the bottom surface of a ceramic substrate 11 will be described.
A · セラミック基板の底面に抵抗発熱体が形成されたセラミックヒータ ( 1 ) セラミック基板の作製工程  A · Ceramic heater with resistance heating element formed on the bottom of ceramic substrate (1) Ceramic substrate manufacturing process
上述した窒化アルミユウムゃ炭化珪素などの窒化物等のセラミックの粉末に必 要に応じてイットリア (Y 203) や B 4 C等の焼結助剤、 N a、 C aを含む化合 物、 バインダ等を配合してスラリーを調製した後、 このスラリーをスプレードラ ィ等の方法で顆粒状にし、 この顆粒を金型などに入れて加圧することにより板状 などに成形し、 生成形体 (グリーン) を作製する。 Sintering aids 4 C such yttria (Y 2 0 3) and B as needed to ceramic powders such as nitrides such as nitride Arumiyuumu Ya silicon carbide mentioned above, N a, compounds containing C a, After preparing a slurry by blending a binder and the like, the slurry is granulated by a method such as a spray drier, and the granules are placed in a mold or the like and pressed to form a plate. To form a green body.
次に、 生成形体に、 必要に応じて、 半導体ウェハを支持するためのリフターピ ンを挿入する貫通孔となる部分や熱電対などの測温素子を埋め込むための有底孔 となる部分を形成する。 なお、 貫通孔ゃ有底孔は、 生成形体を焼成した後で行う こともできる。  Next, if necessary, a part to be a through hole for inserting a lifter pin for supporting a semiconductor wafer and a part to be a bottomed hole for embedding a temperature measuring element such as a thermocouple are formed in the formed body. . The through hole and the bottomed hole can be formed after the formed body is fired.
次に、 この生成形体を加熱、 焼成して焼結させ、 セラミック製の板状体を製造 する。 この後、 所定の形状に加工することにより、 セラミック基板 1 1を作製す るが、 焼成後にそのまま使用することができる形状としてもよレ、。 加圧しながら '加熱、 焼成を行うことにより、 気孔のないセラミック基板 1 1を製造することが 可能となる。 加熱、 焼成は、 焼結温度以上であればよいが、 窒化物セラミックや 炭化物セラミックでは、 1 0 0 0〜2 5 0 0 °Cである。 また、 酸化物セラミック では、 1 5 0 0 °C〜2 0 0 0 °Cである。  Next, the formed body is heated, fired and sintered to produce a ceramic plate. Thereafter, the ceramic substrate 11 is manufactured by processing into a predetermined shape, but the ceramic substrate 11 may be used as it is after firing. By performing heating and baking while applying pressure, it is possible to manufacture a ceramic substrate 11 having no pores. The heating and sintering may be performed at a temperature equal to or higher than the sintering temperature. In the case of oxide ceramics, the temperature is 150 ° C. to 200 ° C.
なお、 通常は、 焼成を行った後に、 貫通孔ゃ測温素子を挿入するための有底孔 を設ける。.貫通孔等は、 表面研磨後に、 S i C粒子等を用いたサンドブラスト等 のドリル加工を行うことにより形成することができる。  Usually, after firing, a through hole and a bottomed hole for inserting a temperature measuring element are provided. The through-holes or the like can be formed by performing a drilling process such as sandblasting using SiC particles or the like after surface polishing.
( 2 ) セラミック基板に導体ペーストを印刷する工程  (2) Process of printing conductive paste on ceramic substrate
導体ペーストは、 一般に、 金属粒子、 樹脂、 溶剤からなる粘度の高い流動物で ある。 この導体ペーストをスクリーン印刷などを用い、 抵抗発熱体を設けようと する部分に印刷を行うことにより、 導体ペースト層を形成する。 抵抗発熱体は、 セラミック基板全体を均一な温度にする必要があることから、 図 5に示すような 同心円と屈曲線の組み合わせのパターンに印刷する。  The conductor paste is generally a high-viscosity fluid composed of metal particles, a resin, and a solvent. The conductor paste is printed on the portion where the resistance heating element is to be provided by screen printing or the like to form a conductor paste layer. The resistance heating element is printed in a combination pattern of concentric circles and bent lines as shown in Fig. 5 because the temperature of the entire ceramic substrate needs to be uniform.
導体ペースト層は、 焼成後の抵抗発熱体 1 2の断面が、 方形で、 偏平な形状と なるように形成することが望ましい。  The conductor paste layer is desirably formed so that the cross section of the resistance heating element 12 after firing has a rectangular and flat shape.
さらに、 パターンを同心円や渦卷きパターンとする場合には、 印刷方向と垂直 になる部分をベルトサンダーで研磨して厚さを均一にする。  Further, when the pattern is a concentric circle or a spiral pattern, a portion perpendicular to the printing direction is polished with a belt sander to make the thickness uniform.
( 3 ) 導体ペーストの焼成  (3) Baking of conductive paste
セラミック基板 1 1の底面に印刷した導体ペースト層を加熱焼成して、 樹脂、 溶剤を除去するとともに、 金属粒子を焼結させ、 セラミック基板 1 1の底面に焼 き付け、 抵抗発熱体 1 2を形成する。 加熱焼成の温度は、 5 0 0〜1 0 0 0 °Cが 好ましい。 The conductor paste layer printed on the bottom surface of the ceramic substrate 11 is heated and fired to remove the resin and the solvent, and at the same time, sinters the metal particles. To form a resistance heating element 12. The heating and firing temperature is preferably from 500 to 100 ° C.
導体ペースト中に上述した酸ィヒ物を添加しておくと、 金属粒子、 セラミック基 板おょぴ酸化物が焼結して一体ィ匕するため、 抵抗発熱体とセラミック基板との密 着性が向上する。  If the above-mentioned acid is added to the conductor paste, the metal particles and the ceramic substrate oxide will sinter and be integrated, so that the adhesion between the resistance heating element and the ceramic substrate will be improved. Is improved.
( 4 ) 金属被覆層の形成  (4) Formation of metal coating layer
抵抗発熱体 1 2表面には、 金属被覆層 1 2 0 0を設けることが望ましい。 金属 被覆層 1 2 0 0は、 電解めつき、 無電解めつき、 スパッタリング等により形成す ― ることができるが、 量産性を考慮すると、 無電解めつきが最適である。 また、 金 属の代わりに、 ガラス、 樹脂等の被覆体で被覆してもよい。  It is desirable to provide a metal coating layer 1200 on the surface of the resistance heating element 12. The metal coating layer 1200 can be formed by electrolytic plating, electroless plating, sputtering, or the like, but in consideration of mass productivity, electroless plating is optimal. Further, instead of a metal, it may be covered with a cover such as glass or resin.
( 5 ) 端子等の取り付け  (5) Installation of terminals, etc.
発熱体 1 2のパターンの端部に電源との接続のための端子 (外部端子 3 3 ) を 半田で取り付ける。 また、 有底孔 3 4に銀ろう、 金ろうなどで熱電対を固定し、 ポリイミド等の耐熱樹脂で封止し、 セラミックヒータの製造を終了する。  Attach the terminal (external terminal 33) for connection to the power supply to the end of the pattern of the heating element 12 by soldering. In addition, a thermocouple is fixed to the bottomed hole 34 with silver brazing, gold brazing, or the like, and sealing is performed with a heat-resistant resin such as polyimide, thereby completing the manufacture of the ceramic heater.
次に、 セラミック基板 1 1の内部に抵抗発熱体 1 2が形成されたセラミックヒ ータの製造方法について説明する。  Next, a method of manufacturing a ceramic heater in which a resistance heating element 12 is formed inside a ceramic substrate 11 will be described.
B . セラミック基板の内部に抵抗発熱体が形成されたセラミックヒータ B. Ceramic heater with resistance heating element formed inside ceramic substrate
( 1 ) セラミック基板の作製工程 (1) Manufacturing process of ceramic substrate
まず、 窒化物等のセラミックの粉末をバインダ、 溶剤等'と混合してペーストを 調製し、 これを用いてグリーンシートを作製する。  First, a ceramic powder such as a nitride is mixed with a binder, a solvent and the like to prepare a paste, which is used to produce a green sheet.
上述した窒化物等のセラミック粉末としては、 窒化アルミニウムなどを使用す ることができ、 必要に応じて、 イットリア等の焼結助剤、 N a、 C aを含む化合 物等を加えてもよレ、。  Aluminum nitride or the like can be used as the ceramic powder such as nitride described above, and a sintering aid such as yttria or a compound containing Na or Ca may be added as necessary. Les ,.
また、 バインダとしては、 ァクリル系バインダ、 ェチルセルロース、 プチルセ 口ソルブ、 ポリビュルアルコールから選ばれる少なくとも 1種が望ましい。 さらに溶媒としては、 α—テルビネオール、 グリコールから選ばれる少なくと も 1種が望ましい。  Further, as the binder, at least one selected from acryl-based binder, ethyl cellulose, butyl cellulose-based solve, and polybutyl alcohol is preferable. Further, as the solvent, at least one selected from α-terbineol and glycol is desirable.
これらを混合して得られるペーストをドクターブレード法でシート状に成形し てグリーンシートを作製する。 The paste obtained by mixing these is formed into a sheet by the doctor blade method. To produce a green sheet.
グリーンシートの厚さは、 0 . l〜5 mmが好ましい。  The thickness of the green sheet is preferably from 0.1 to 5 mm.
次に、 得られたグリーンシートに、 必要に応じて、 半導体ウェハを支持するた めのリフターピンを挿入する貫通孔となる部分、 熱電対などの測温素子を埋め込 むための有底孔となる部分、 抵抗発熱体を外部の端ピンと接続するためのスルー ホールとなる部分等を形成する。 後述するグリーンシート積層体を形成した後に 、 上記加工を行ってもよい。  Next, if necessary, the obtained green sheet will be a part that becomes a through hole for inserting a lifter pin for supporting a semiconductor wafer, and a bottomed hole for embedding a temperature measuring element such as a thermocouple. A part, a part to be a through hole for connecting a resistance heating element to an external end pin, etc. are formed. The above processing may be performed after forming a green sheet laminate described later.
( 2 ) グリーンシート上に導体ぺーストを印刷する工程  (2) Process of printing conductor paste on green sheet
グリーンシート上に、 抵抗発熱体を形成するための金属ペーストまたは導電性 セラミックを含む導電性ペーストを印刷する。 この際の印刷パターンは、 図 5に 示すような同心円と屈曲線の組み合わせのパターンとすることが望ましい。 これらの導電ペースト中には、 金属粒子または導電性セラミック粒子が含まれ ている。  A metal paste for forming a resistance heating element or a conductive paste containing a conductive ceramic is printed on the green sheet. The printing pattern at this time is desirably a combination pattern of concentric circles and bent lines as shown in FIG. These conductive pastes contain metal particles or conductive ceramic particles.
タングステン粒子またはモリブデン粒子の平均粒子径は、 0 . 1〜5 μ mが好 ましい。 平均粒子が 0 . Ι μ πι未満である力、 5 mを超えると、 導体ペースト を印刷しにくいからである。  The average particle size of the tungsten particles or molybdenum particles is preferably 0.1 to 5 μm. If the average particle size is less than 0.1 μππ, if it exceeds 5 m, it will be difficult to print the conductive paste.
このような導体ペーストとしては、 例えば、 金属粒子または導電性セラミック 粒子 8 5〜8 7重量部;ァクリノレ系、 ェチルセルロース、 プチルセ口ソルブ、 ポ リビュルアルコールから選ばれる少なくとも 1種のバインダ 1 . 5〜1 0重量部 ;および、 α—テルビネオール、 グリコールから選ばれる少なくとも 1種の溶媒 を 1 . 5〜1 0重量部を混合した糸且成物 (ペースト) が挙げられる。  As such a conductive paste, for example, 85 to 87 parts by weight of metal particles or conductive ceramic particles; at least one kind of binder selected from acrylonitrile-based, ethylcellulose, sorbitol, and polyvinyl alcohol 1. 5 to 10 parts by weight; and a fibrous material (paste) obtained by mixing 1.5 to 10 parts by weight with at least one solvent selected from α-terbineol and glycol.
( 3 ) グリーンシートの積層工程  (3) Green sheet lamination process
導体ペーストを印刷していないグリーンシートを、 導体ペーストを印刷したグ リーンシートの上下に積層する。  Laminate green sheets without conductor paste printed on top and bottom of the green sheets with conductor paste printed.
このとき、 上側に積層するグリーンシートの数を下側に積層するグリーンシー トの数よりも多くして、 抵抗発熱体の形成位置を底面の方向に偏芯させる。 具体的には、 上側のグリーンシートの積層数は 2 0〜 5 0枚が、 下側のダリー ンシートの積層数は 5〜 2 0枚が好ましい。 ( 4 ) グリーンシート積層体の焼成工程 At this time, the number of green sheets stacked on the upper side is made larger than the number of green sheets stacked on the lower side, and the formation position of the resistance heating element is eccentric toward the bottom. Specifically, the number of stacked green sheets on the upper side is preferably 20 to 50, and the number of stacked green sheets on the lower side is preferably 5 to 20. (4) Green sheet laminate firing process
グリーンシート積層体の加熱、 加圧を行い、 グリーンシートおよび内部の導体 ペーストを焼結させる。  The green sheet laminate is heated and pressed to sinter the green sheet and the internal conductor paste.
加熱温度は、 1 0 0 0〜 2 0 0 0 °Cが好ましく、 加圧の圧力は、 1 0 0〜 2 0 0 k g / c m2が好ましい。 加熱は、 不活性ガス雰囲気中で行う。 不活性ガスとし ては、 例えば、 アルゴン、 窒素などを使用することができる。 The heating temperature is preferably from 100 to 200 ° C., and the pressure is preferably from 100 to 200 kg / cm 2 . Heating is performed in an inert gas atmosphere. As the inert gas, for example, argon, nitrogen, or the like can be used.
なお、 焼成を行った後に、 測温素子を挿入するための有底孔を設けてもよい。 有底孔は、 表面研磨後に、 サンドブラストなどをブラスト処理を行うことにより 形成することができる。 また、 内部の抵抗発熱体と接続するためのスルーホール に外部端子を接続し、 加熱してリフローする。 加熱温度は、 2 0 0〜5 0 0 °Cが 好適である。  After firing, a bottomed hole for inserting a temperature measuring element may be provided. The bottomed hole can be formed by blasting sand blast or the like after surface polishing. Also, connect an external terminal to the through hole for connecting to the internal resistance heating element, and heat it to reflow. The heating temperature is preferably from 200 to 500 ° C.
さらに、 測温素子としての熱電対などを銀ろう、 金ろうなどで取り付け、 ポリ ィミ ドなどの耐熱性樹脂で封止し、 セラミックヒータの製造を終了する。  In addition, a thermocouple as a temperature measuring element is attached with silver brazing or gold brazing, etc., sealed with polyimide or other heat-resistant resin, and production of the ceramic heater is completed.
次に、 第二および第三の本発明のセラミックヒータについて説明する。  Next, the second and third ceramic heaters of the present invention will be described.
第二の本発明のセラミックヒータは、 セラミック基板上に抵抗発熱体を形成し たセラミックヒータであって、 上記抵抗発熱体には溝または切欠が形成されてな り、 その溝の深さは抵抗発熱体厚さの 2 0 %以上であることを特徴とするセラミ ックヒータである。  A ceramic heater according to a second aspect of the present invention is a ceramic heater in which a resistance heating element is formed on a ceramic substrate, wherein the resistance heating element has a groove or notch, and the depth of the groove is equal to the resistance. This is a ceramic heater characterized in that it is 20% or more of the thickness of the heating element.
また、 第三の本発明のセラミックヒータは、 セラミック基板上に抵抗発熱体を 形成したセラミックヒータであって、 上記抵抗発熱体には溝または切欠が形成さ れてなり、 上記セラミック基板の抵抗発熱体形成面の面粗度は、 R a 2 0 μ m であることを特徴とするセラミックヒータである。  The ceramic heater according to the third aspect of the present invention is a ceramic heater in which a resistance heating element is formed on a ceramic substrate, wherein the resistance heating element has a groove or a notch formed therein. The ceramic heater is characterized in that the surface roughness of the body forming surface is Ra 20 μm.
なお、 第二の本発明のセラミックヒータは、 抵抗発熱体に形成された溝の深さ が抵抗発熱体厚さの 2 0 %以上であることに特徴を有し、 第三の本発明のセラミ ックヒータは、 セラミック基板の抵抗発熱体形成面の面粗度が、 R a≤ 2 0 u m であることに特徴を有しているが、 それら以外について、 両者は同一である。 従 つて、 以下の説明においては、 第二の本発明と、 第三の本発明とを同時に説明す ることにし、 それぞれの本発明の特徴については、 そのなかで個別に説明するこ とにする。 The ceramic heater according to the second aspect of the present invention is characterized in that the depth of the groove formed in the resistance heating element is at least 20% of the thickness of the resistance heating element, and the ceramic heater according to the third aspect of the invention. The characteristic of the cook heater is that the surface roughness of the surface of the ceramic substrate on which the resistance heating element is formed is Ra≤20 um. Therefore, in the following description, the second invention and the third invention will be described at the same time, and the features of each invention will be individually described therein. And
第二および第三の本発明のセラミックヒータは、 抵抗発熱体形成面の反対側面 が加熱面となっており、 抵抗発熱体にトリミングによる溝または切欠が形成され て抵抗値が調整され、 その結果、 加熱面の温度分布が均一になる。  The second and third ceramic heaters of the present invention have a heating surface on the side opposite to the surface on which the resistance heating element is formed, and the resistance value is adjusted by forming a groove or notch by trimming in the resistance heating element. The temperature distribution on the heating surface becomes uniform.
なお、 切欠とは、 抵抗発熱体の幅を局部的に狭くするために形成された 1種の 切れ込みをいい、 切れ込みを入れることにより抵抗発熱体の幅を局部的に狭くし 、 抵抗値を調整するものである。 溝は、 側面に切断部を形成しないのに対し、 切 欠は、 側面に切断部を形成する点が異なる。  The notch is a kind of notch formed to locally reduce the width of the resistance heating element. By making a notch, the width of the resistance heating element is locally reduced and the resistance value is adjusted. Is what you do. The difference is that the groove does not form a cut on the side, whereas the notch forms a cut on the side.
このような構成のセラミックヒータでは、 抵抗値のばらつきを小さくすること ができ、 また、 抵抗発熱体の耐酸ィ匕性の低下を防止することができる。 さらに、 セラミック基板の強度を低下させることもない。  In the ceramic heater having such a configuration, the variation in the resistance value can be reduced, and the reduction in the resistance to oxidation of the resistance heating element can be prevented. Further, the strength of the ceramic substrate is not reduced.
第二の本発明のセラミックヒータにおいて、 抵抗発熱体に形成した溝は、 抵抗 発熱体厚さの 2 0 %以上の深さを持っため、 トリミングによる抵抗値の変化量が 大きく、 抵抗値の制御を容易に行うことができる。 抵抗発熱体厚さの 2 0 %未満 では、 抵抗の変化がほとんどなく、 抵抗値の制御を行うことが困難である。 また、 上記溝は、 抵抗発熱体厚さの 5 0 %以上の深さを有することがより望ま しく、 セラミック基板の表面に達していることがさらに望ましい。 セラミック基 板の表面に達する溝が形成されている場合、 形成した溝により抵抗発熱体が完全 に分断され、 トリミングの長さと抵抗値の変化量が完全に連動するため、 抵抗値 の制御をより容易に行うことができる。  In the ceramic heater according to the second aspect of the present invention, since the groove formed in the resistance heating element has a depth of 20% or more of the thickness of the resistance heating element, the amount of change in the resistance value due to trimming is large, and the resistance value is controlled. Can be easily performed. If the thickness is less than 20% of the resistance heating element thickness, there is almost no change in resistance, and it is difficult to control the resistance value. More preferably, the groove has a depth of 50% or more of the thickness of the resistance heating element, and more preferably reaches the surface of the ceramic substrate. If a groove reaching the surface of the ceramic substrate is formed, the formed groove completely separates the resistance heating element, and the trimming length and the amount of change in the resistance value are completely linked, so that the resistance value can be controlled more. It can be done easily.
さらに、 セラミック 板中にも溝が形成されている場合には、 その深さはセラ ミック基板の厚さの 3 0 %以内であることが望ましい。 3 0 %を超えるとセラミ ック基板の強度が低下し、 該セラミック基板に反りが生じやすい。  Further, when a groove is also formed in the ceramic plate, it is desirable that the depth is within 30% of the thickness of the ceramic substrate. If it exceeds 30%, the strength of the ceramic substrate is reduced, and the ceramic substrate is likely to be warped.
第三の本発明のセラミックヒータにおいて、 抵抗発熱体に形成した溝は、 上述 した第二の本発明と同様の理由により、 抵抗発熱体厚さの 2 0 %以上の深さを有 することが望ましく、 抵抗発熱体厚さの 5 0 %以上の深さを有することがより望 ましく、 セラミック基板の表面に達していることがさらに望ましい。 また、 セラ ミック基板中にも溝が形成されている場合には、 その深さはセラミック基板の厚 さの 3 0 %以内であることが望ましい。 In the ceramic heater according to the third aspect of the present invention, the groove formed in the resistance heating element may have a depth of 20% or more of the thickness of the resistance heating element for the same reason as in the second aspect of the invention. More preferably, it has a depth of 50% or more of the thickness of the resistance heating element, and more preferably reaches the surface of the ceramic substrate. If a groove is also formed in the ceramic substrate, the depth is set to the thickness of the ceramic substrate. It is desirable to be within 30% of the value.
また、 第二おょぴ第三の本発明において、 上記溝は、 抵抗発熱体に電流が流れ る方向に沿って概ね平行に形成されていることが望ましい。  In the second and third aspects of the present invention, it is preferable that the groove is formed substantially parallel to a direction in which a current flows through the resistance heating element.
上記トリミングは、 抵抗発熱体の表面 (上面) に形成されている。 抵抗発熱体 の側面にトリミング溝が形成されると、 抵抗値が局所的に高くなる部分が生じ、 発熱の際に、 抵抗発熱体が溶融してしまうからである。 図 2 ( a ) 〜 (c ) は、 抵抗発熱体の表面を電流の流れる方向に沿って概ね平行にトリミングした場合の 抵抗発熱体 1 2を模式的に示す斜視図である。 トリミングにより形成する溝 1 2 0、 1 3 0、 1 4 0は、 図 2に示したような直線状または曲線状であるが、 この 直線状の溝や曲線状の溝は、 複数形成されていてもよい。  The trimming is formed on the surface (upper surface) of the resistance heating element. If a trimming groove is formed on the side surface of the resistance heating element, there will be a portion where the resistance value is locally increased, and the resistance heating element will be melted during heat generation. 2 (a) to 2 (c) are perspective views schematically showing the resistance heating element 12 when the surface of the resistance heating element is trimmed substantially parallel to the direction of current flow. The grooves 120, 130, 140 formed by trimming are straight or curved as shown in FIG. 2, but a plurality of such straight or curved grooves are formed. You may.
さらに、 抵抗発熱体が円弧を描く形状で形成されている場合には、 円形の抵抗 発熱体の内周側をトリミングした方が、 抵抗値を大きく変えることができる。 こ れは、 電流が内周ほど流れやすいためである。  Further, when the resistance heating element is formed in a shape drawing an arc, trimming the inner peripheral side of the circular resistance heating element can greatly change the resistance value. This is because the current flows more easily toward the inner circumference.
第二おょぴ第三の本発明において、 上記抵抗発熱体の抵抗値のばらつきに関し 、 平均抵抗値に対する抵抗値のばらつきは 5 %以下が望ましく、 1 %がより望ま しい。 このようにばらつきを小さくすることにより、 抵抗発熱体を複数回路に分 割して制御する場合でも、 分割数を減らすことができ制御しやすくすることがで きる。 さらに、 昇温の過渡時の加熱面の温度を均一にすることが可能となる。 抵抗発熱体の抵抗値のばらつきが 5 %を超えると、 定常時の加熱面内温度均一 性が悪く、 また昇温中のような過渡時においても加熱面内温度均一性が悪い。 さらに、 抵抗発熱体の抵抗値のばらつきは、 抵抗発熱体を印刷する際に、 その 厚さや幅等を均一化することにより 2 5 %以下に抑制し、 さらにトリミングで 5 %以下に調整することが望ましい。 抵抗発熱体の印刷段階でばらつきを小さくし た方が、 トリミングによる調整がしゃすいからである。  In the second and third aspects of the present invention, regarding the variation in the resistance value of the resistance heating element, the variation in the resistance value with respect to the average resistance value is preferably 5% or less, more preferably 1%. By reducing the variation in this way, even when the resistance heating element is divided into a plurality of circuits and controlled, the number of divisions can be reduced and control can be facilitated. Further, it is possible to make the temperature of the heating surface uniform during the transition of the temperature rise. If the variation of the resistance value of the resistance heating element exceeds 5%, the uniformity of the temperature within the heating surface at the regular time is poor, and the uniformity of the temperature within the heating surface during the transition such as during the temperature rise is also poor. Furthermore, variations in the resistance value of the resistance heating element should be suppressed to 25% or less by making the thickness and width etc. uniform when printing the resistance heating element, and further adjusted to 5% or less by trimming. Is desirable. This is because the adjustment by trimming is smoother if the variation is reduced at the printing stage of the resistance heating element.
上記溝の幅は、 1〜 1 0 0 0 μ m程度が望ましく、 1〜1 0 0 m程度がより 望ましい。 幅が 1 0 0 0 μ πιを超えると、 断線などが発生しやすくなり、 一方、 幅が 1 /x m未満では、 抵抗発熱体の抵抗値の調整が難しいからである。 レーザ光 のスポット径は、 1 π!〜 2 c mで調整することが望ましく、 5 0 11!〜 2 c m で調整することがより望ましい。 The width of the groove is preferably about 1 to 100 μm, more preferably about 1 to 100 m. If the width exceeds 100 μππι, disconnection or the like is likely to occur, while if the width is less than 1 / xm, it is difficult to adjust the resistance value of the resistance heating element. The spot diameter of the laser beam is 1π! It is desirable to adjust at ~ 2 cm, 5 0 11! ~ 2 cm It is more desirable to adjust with.
上記トリミングは、 抵抗発熱体の抵抗値を測定し、 その測定値に基づいて行う ことが望ましい。 抵抗値の精度よい調整が可能になるからである。  It is desirable that the trimming be performed by measuring the resistance value of the resistance heating element and based on the measured value. This is because the resistance value can be accurately adjusted.
抵抗値の測定は、 図 1に示すように、 例えば、 抵抗発熱体パターンを 1 :_〜 1 6 まで分割し、 各区画について抵抗値を測定する。 そして、 抵抗値が低い区画につ いてトリミング処理を実施する。 As shown in Fig. 1, for example, the resistance value is measured by dividing the resistance heating element pattern from 1: _ to 16 and measuring the resistance value for each section. Then, a trimming process is performed on a section having a low resistance value.
トリミング処理が終わった後、 再度抵抗値測定を実施し、 必要があればさらに トリミングを実施してもよい。 すなわち、 抵抗値測定とトリミングは 1回だけで はなく、 2回以上実施してもよレ、。  After the trimming process is completed, the resistance value measurement may be performed again, and if necessary, further trimming may be performed. In other words, resistance measurement and trimming may be performed not only once but also two or more times.
トリミングは、 抵抗発熱体ペーストを印刷した後焼成し、 その後に実施するこ とが望ましレ、。 焼成により抵抗値が変動してしまうからであり、 また、 焼成前に トリミングすると、 レーザ光の照射により、 剥離してしまう場合があるからであ る。  It is desirable to perform the trimming after printing the resistance heating element paste and firing it. This is because the resistance value fluctuates due to firing, and if trimming is performed before firing, peeling may occur due to irradiation with laser light.
また、 最初に抵抗発熱体ペーストを面状 (いわゆるベタ状) に印刷し、 トリミ ングによりパターン化してもよい。 最初からパターン状に印刷しょうとすると、 印刷方向により厚さのばらつきが発生するが、 面状に印刷する場合には均一な厚 さで印刷することができるため、 これをトリミングしてパターン化することによ り、 均一な厚さの発熱体パターンを得ることができる。  Alternatively, the resistive heating element paste may be first printed in a planar shape (so-called solid shape) and then patterned by trimming. If you try to print in a pattern from the beginning, the thickness will vary depending on the printing direction.However, if you print in a plane, you can print with a uniform thickness, so trim it and pattern it. Thereby, a heating element pattern having a uniform thickness can be obtained.
上記トリミングは、 レーザ光の照射や、 サンドブラスト、 ベルトサンダーなど の研磨処理を用いて行うことができる。  The trimming can be performed using laser light irradiation or polishing treatment such as sand blasting or belt sanding.
レーザ光としては、 例えば、 YAGレーザ、 エキシマレーザ (K r F ) 、 炭酸 ガスレーザなどが挙げられる。  Examples of the laser light include a YAG laser, an excimer laser (KrF), a carbon dioxide laser, and the like.
次に、 第二おょぴ第三の本発明のトリミングシステムについて説明する。  Next, a second and a third trimming system of the present invention will be described.
図 1 2は、 第二および第三の本発明のセラミックヒータの製造に用いるレーザ トリミング装置の概要を示すプロック図である。  FIG. 12 is a block diagram showing an outline of a laser trimming apparatus used for manufacturing the second and third ceramic heaters of the present invention.
レーザトリミングを行う際には、 図 1 2に示したように、 形成する抵抗発熱体 の回路を含むように、 所定幅の同心円形状に導体層 1 2 mが形成されているか、 または、 所定パターンの抵抗発熱体が形成された円板状のセラミック基板 1 1を テープノレ 1 3上に固定する。 When performing laser trimming, as shown in Fig. 12, the conductor layer 12m is formed in a concentric shape with a predetermined width so as to include the circuit of the resistance heating element to be formed, or a predetermined pattern Disc-shaped ceramic substrate 11 on which the resistance heating element is formed Fix it on the tape 13.
このテーブル 1 3には、 モータ等 (図示せず) が設けられているとともに、 こ のモータ等は制御部 1 7に接続されており、 制御部 1 7からの信号でモータ等を 駆動させることにより、 テーブル 1 3を x y方向 (あるいはこれに加えて Θ方向 ) に自由に移動させることができるようになつている。  The table 13 is provided with a motor and the like (not shown), and the motor and the like are connected to the control unit 17 so that a signal from the control unit 17 drives the motor and the like. Thus, the table 13 can be freely moved in the xy direction (or Θ direction in addition to this).
一方、 このテーブル 1 3の上方には、 ガルバノミラー 1 5が設けられているが 、 このガルバノミラー 1 5は、 モータ 1 6により自由に回転できるようになって おり、 同じくテーブル 1 3の上方に配置されたレーザ照射装置 1 4から照射され たレーザ光 2 2が、 このガルバノミラー 1 5に当たって、 反射し、 セラミック基 板 1 1を照射するように構成されている。  On the other hand, a galvanomirror 15 is provided above the table 13. The galvanomirror 15 can be freely rotated by a motor 16. The laser beam 22 emitted from the laser irradiation device 14 disposed on the galvanomirror 15 is reflected and illuminates the ceramic substrate 11.
また、 モータ 1 6およびレーザ照射装置 1 4は、 制御部 1 7に接続されており 、 制御部 1 7からの信号でモータ 1 6やレーザ照射装置 1 4を駆動させることに より、 ガルバノミラー 1 5を所定の角度回転させ、 セラミック基板 1 1上の X— y方向について、 照射位置を自由に設定することができるようになつている。 このように、 セラミック基板 1 1を載置したテーブル 1 3および/またはガル バノミラー 1 5を動力すことにより、 セラミック基板 1 1上の任意の位置にレー ザ光 2 2を照射することができる。 The motor 16 and the laser irradiating device 14 are connected to the control unit 17, and the motor 16 and the laser irradiating device 14 are driven by a signal from the control unit 17. 5 is rotated by a predetermined angle so that the irradiation position can be freely set in the X- y direction on the ceramic substrate 11. As described above, by driving the table 13 on which the ceramic substrate 11 is mounted and / or the galvanomirror 15, an arbitrary position on the ceramic substrate 11 can be irradiated with the laser beam 22.
一方、 テーブル 1 3の上方には、 カメラ 2 1も設置されており、 これにより、 セラミック基板 1 1の位置 (x, y ) を認識することができるようになつている 。 このカメラ 2 1は、 記憶部 1 8に接続され、 これによりセラミック基板 1 1の 導体層 1 2 mの位置 (x, y ) 等を認識し、 その位置にレーザ光 2 2を照射する また、 入力部 2 0は、 記憶部 1 8に接続されるとともに、 端末としてキーポー ド等 (図示せず) を有しており、 記憶部 1 8やキーボード等を介して、 所定の指 示等が入力されるようになっている。  On the other hand, a camera 21 is also installed above the table 13 so that the position (x, y) of the ceramic substrate 11 can be recognized. The camera 21 is connected to the storage unit 18, thereby recognizing the position (x, y) of the conductor layer 12 m of the ceramic substrate 11, and irradiating the position with the laser beam 22. The input unit 20 is connected to the storage unit 18 and has a keyboard or the like (not shown) as a terminal, and receives a predetermined instruction or the like via the storage unit 18 or a keyboard. It is supposed to be.
さらに、 このレーザトリミング装置は、 演算部 1 9を備えており、 カメラ 2 1 により認識されたセラミック基板 1 1の位置や厚さ等のデータに基づいて、 レー ザ光 2 2の照射位置、 照射速度、 レーザ光の強度等を制御するための演算を行い 、 この演算結果に基づいて制御部 1 7からモータ 1 6、 レーザ照射装置 1 4等に 指示を出し、 ガルバノミラー 1 5を回転させ、 あるいは、 テーブル 1 3を移動さ せながらレーザ光 2 2を照射し、 導体層 1 2 mの不要部分、 または、 抵抗発熱体 パターンの電流が流れる方向に沿って概ね平行にトリミングを行う。 このように して、 所定パターンの抵抗発熱体を形成するか、 または、 抵抗発熱体に溝または 切欠を形成するのである。 Furthermore, this laser trimming device includes a calculation unit 19, and based on data such as the position and thickness of the ceramic substrate 11 recognized by the camera 21, the irradiation position and irradiation position of the laser beam 22 are determined. Performs calculations to control speed, laser light intensity, etc. Based on the calculation result, the control unit 17 issues an instruction to the motor 16, the laser irradiation device 14, etc., and rotates the galvanomirror 15, or emits the laser beam 22 while moving the table 13. Irradiation is performed, and trimming is performed in an unnecessary part of the conductor layer 12 m or in a direction substantially parallel to the direction in which the current of the resistance heating element pattern flows. In this way, a predetermined pattern of the resistance heating element is formed, or a groove or a notch is formed in the resistance heating element.
また、 このレーザトリミング装置は、 抵抗測定部を有している。 抵抗測定部は 、 複数のテスタピンを備えており、 抵抗発熱体パターンを複数の区画に区分し、 各区画毎にテスタピンを接触させて、 抵抗発熱体の抵抗値を測定し、 その区画に レーザ光を照射し、 抵抗発熱体の電流が流れる方向に沿って概ね平行にトリミン グを行うのである。  Also, this laser trimming device has a resistance measuring unit. The resistance measuring section includes a plurality of tester pins, divides the resistance heating element pattern into a plurality of sections, contacts the tester pins for each section, measures the resistance value of the resistance heating element, and applies laser light to the section. Irradiation is performed, and trimming is performed almost in parallel along the direction in which the current of the resistance heating element flows.
次に、 このようなレーザトリミング装置を用いたセラミックヒータの製造方法 について具体的に説明する。 ここでは、 第二おょぴ第三の本発明の要部であるレ 一ザトリミング工程ついて詳しく説明し、 それ以外の工程については簡単に説明 する。 なお、 これらトリミング以外の工程については、 後でより詳しく説明する 最初に、 セラミック基板の製造を行うが、 まず、 セラミック粉末と樹脂とから なる生成形体を作製する。 この生成形体の作製方法としては、 セラミック粉末と 樹脂とを含む顆粒を製造した後、 これを金型等に投入してプレス圧をかけること により作製する方法と、 グリーンシートを積層圧着することにより作製する方法 とがあり、 内部に静電電極等の他の導体層を形成する力否か等により、 より適切 な方法を選択する。 この後、 生成形体の脱脂、 焼成を行うことにより、 セラミツ ク基板を製造する。  Next, a method of manufacturing a ceramic heater using such a laser trimming device will be specifically described. Here, the laser trimming step, which is the main part of the second and third aspects of the present invention, will be described in detail, and other steps will be briefly described. The steps other than the trimming will be described in more detail later. First, a ceramic substrate is manufactured. First, a formed body made of ceramic powder and resin is manufactured. As a method of producing the formed body, there are a method of producing granules containing a ceramic powder and a resin, then putting the granules into a mold or the like and applying a pressing pressure, and a method of laminating and pressing green sheets. There is a manufacturing method, and a more appropriate method is selected depending on whether or not there is a force for forming another conductive layer such as an electrostatic electrode therein. Thereafter, the formed body is degreased and fired to produce a ceramic substrate.
この後、 セラミック基板にリフターピンを挿通するための貫通孔の形成、 測温 素子を埋設するための有底孔の形成等を行う。 ' 次に、 このセラミック基板 1 1上に、 抵抗発熱体となる部分を含む広い領域に 、 スクリーン印刷等により図 1 2に示した形状の導体ペースト層を形成し、 焼成 することにより導体層 1 2 mとする。 めっき法ゃスパッタリング等の物理蒸着法を用いて導体層を形成してもよレ、。 めっきの場合には、 めっきレジストを形成することにより、 スパッタリング等の 場合には、 選択的なエッチングを行うことにより、 所定領域に導体層 1 2 mを形 成することができる。 Thereafter, a through hole for inserting a lifter pin into the ceramic substrate, a bottomed hole for burying a temperature measuring element, and the like are formed. 'Next, a conductive paste layer having the shape shown in FIG. 12 is formed on the ceramic substrate 11 by screen printing or the like in a wide area including a portion serving as a resistance heating element, and the conductive paste layer is baked. 2 m. The conductive layer may be formed by using a physical vapor deposition method such as plating or sputtering. In the case of plating, a conductive layer 12 m can be formed in a predetermined region by forming a plating resist, and in the case of sputtering or the like, by performing selective etching.
また、 導体層は、 上述したように抵抗発熱体パターンとして形成されていても よい。  Further, the conductor layer may be formed as a resistance heating element pattern as described above.
このようにして所定領域に導体層 1 2 mが形成される力、 または、 所定パター ンの抵抗発熱体が形成されたセラミック基板 1 1をテーブル 1 3の所定位置に固 定する。  In this manner, the force for forming the conductor layer 12 m in the predetermined area or the ceramic substrate 11 on which the resistance heating element of the predetermined pattern is formed is fixed to the predetermined position of the table 13.
あらかじめ、 トリミングデータ、 抵抗発熱体パターンのデータ、 トリミングデ ータと抵抗発熱体パターンのデータの両方等を入力部 2 0から入力し、 記憶部 1 9に格納する。 すなわち、 トリミングにより形成しょうとする形状のデータを記 憶しておくのである。 トリミングデータは、 抵抗発熱体パターンの側面や表面の トリミング、 厚さ方向のトリミング、 梯子状のパターンのトリミング等を行う場 合に使用されるデータであり、 抵抗発熱体パターンデータは、 面状 (いわゆるべ タ状) に印刷された導体層をトリミングして抵抗発熱体パターンを形成する場合 に使用される。 無論、 これらを併用することもできる。  The trimming data, the data of the resistance heating element pattern, both the trimming data and the data of the resistance heating element pattern, etc. are input from the input section 20 in advance and stored in the storage section 19. That is, data of the shape to be formed by trimming is stored. Trimming data is data used for trimming the side and surface of the resistance heating element pattern, trimming in the thickness direction, and trimming a ladder-like pattern. The resistance heating element pattern data is It is used when a conductor layer printed in a so-called solid shape is trimmed to form a resistance heating element pattern. Of course, these can be used in combination.
さらに、 これらのデータに加えて、 所望とする抵抗値データを入力し、 記憶部 に格納しておいてもよい。 これは抵抗測定部において、 抵抗値を実測し所望とす る抵抗値にどれだけ相違があるかを演算し、 これを所望とする抵抗値に補正する ためにどのようなトリミングを行うかを演算、 制御データを生成させるのである 次に、 固定されたセラミック基板 1 1をカメラ 2 1で撮影することにより、 導 体層 1 2 mの形成位置や抵抗発熱体のパターンが記憶部 1 8に記憶される。 この導体層の位置のデータ、 トリミングにより形成しょう'とする形状のデータ 、 および必要に応じて抵抗値データに基づいて、 演算部 1 9で演算が行われ、 そ の結果が制御データとして記憶部 1 8に記憶される。  Further, in addition to these data, desired resistance value data may be input and stored in the storage unit. This means that the resistance measurement unit measures the resistance value and calculates how much the desired resistance value differs, and calculates what trimming is performed to correct this to the desired resistance value. Next, by photographing the fixed ceramic substrate 11 with the camera 21, the formation position of the conductor layer 12 m and the pattern of the resistance heating element are stored in the storage section 18. Is done. Based on the data of the position of the conductor layer, the data of the shape to be formed by trimming, and the resistance value data as required, the calculation unit 19 performs calculation, and the result is stored in the storage unit as control data. Stored in 18.
そして、 この演算結果に基づいて、 制御部 1 7から制御信号を発生させ、 ガル パノミラー 15のモータ 16および/またはテーブル 13のモータを駆動させな がら、 レーザ光を照射することにより、 導体層 12 mの不必要な部分または抵抗 発熱体の抵抗を上げたい部分を、 上記方法を用いてトリミングする。 Then, a control signal is generated from the control unit 17 based on the calculation result, and By irradiating a laser beam while driving the motor 16 of the pano mirror 15 and / or the motor of the table 13, unnecessary portions of the conductor layer 12 m or portions where resistance of the heating element is desired to be increased by the above method. Trim using
図 12、 13に示すように、 テーブル 1 3には、 セラミック基板 11の側面と 接触する固定用突起 13 bとリフターピンを揷入する貫通孔に嵌合する嵌合用突 起 13 aとがあり、 これらの突起を用いて、 セラミック基板 1 1をテーブル 13 上に固定する。  As shown in FIGS. 12 and 13, the table 13 has a fixing projection 13b that comes into contact with the side surface of the ceramic substrate 11 and a fitting projection 13a that fits into the through hole into which the lifter pin is inserted. The ceramic substrate 11 is fixed on the table 13 using these projections.
その後、 外部端子の接続、 測温素子の設置等を経て、 セラミックヒータの製造 が終了する。  After that, through the connection of external terminals, installation of temperature measuring element, etc., the production of ceramic heater is completed.
抵抗値の制御は、 図 11に示すように、 抵抗発熱体パターンを 2以上に区画 ( 1 i〜 16) して各区画毎に、 抵抗値の制御を行う。 As shown in FIG. 11, the resistance value is controlled by dividing the resistance heating element pattern into two or more sections (1i to 16 ) and controlling the resistance value for each section.
第二および第三の本発明では、 上述したように、 抵抗発熱体の一部に溝等を形 成することで抵抗値を制御する。  In the second and third aspects of the present invention, as described above, the resistance value is controlled by forming a groove or the like in a part of the resistance heating element.
導体層等の一部を除去する際には、 レーザ光照射により導体層等のトリミング すべき部分はトリミングするものの、 その下に存在するセラミック基板には、 レ 一ザ光照射により大きな影響を与えないことが重要になる。  When removing part of the conductor layer, etc., the part to be trimmed, such as the conductor layer, is trimmed by laser light irradiation, but the laser light irradiation has a large effect on the underlying ceramic substrate. It is important that there is no.
従って、 レーザ光は、 導体層等を構成する金属粒子等には良好に吸収され、 一 方、 セラミック基板に吸収されにくいものを選定する必要がある。 このようなレ 一ザの種類としては、 上記したように、 例えば、 YAGレーザ、 炭酸ガスレーザ 、 エキシマレーザ、 UV (紫外線) レーザ等が挙げられる。  Therefore, it is necessary to select a laser beam that is well absorbed by the metal particles and the like constituting the conductor layer and the like, but hardly absorbed by the ceramic substrate. As described above, examples of such a laser include a YAG laser, a carbon dioxide laser, an excimer laser, and a UV (ultraviolet) laser.
要求されるレーザ光の強さは、 除去する導体層の種類や厚さ等により変化する ために一概には言えないが、 YAGレーザ、 エキシマ (Kr F) レーザが最適で める。  The required laser light intensity varies depending on the type and thickness of the conductor layer to be removed, etc., but cannot be specified unconditionally, but a YAG laser or an excimer (KrF) laser can be optimized.
Y AGレーザとしては、 日本電気社製の S L 432H、 SL436G、 S L4 32GT、 S L 411 Bなどを採用することができる。  As the YAG laser, SL432H, SL436G, SL432GT, and SL411B manufactured by NEC Corporation can be used.
レーザはパルス光であることが望ましい。 極めて短い時間に大きなエネルギー を抵抗発熱体に照射することができ、 セラミック基板に対するダメージを小さく することができるからである。 パルスは、 1 kHz以下が望ましい。 1 kHzを 超えると、 レーザのファーストパルスのエネルギーが高くなり、 過剰にトリミン グされてしまうからである。 Preferably, the laser is pulsed light. This is because a large amount of energy can be applied to the resistance heating element in a very short time, and damage to the ceramic substrate can be reduced. The pulse is preferably 1 kHz or less. 1 kHz If it exceeds, the energy of the first pulse of the laser will be high and it will be trimmed excessively.
また、 加エスピードは、 1 0 0 mm/秒以下が望ましい。 1 0 0 mmZ秒を超 えると、 周波数を高くしないかぎり、 溝等を形成することができないからである 。 前述のように、 周波数は 1 k H z以下を上限とするため、 1 0 0 mm,秒以下 が望ましい。  Further, the processing speed is desirably 100 mm / sec or less. If the time exceeds 100 mmZ seconds, a groove or the like cannot be formed unless the frequency is increased. As described above, since the upper limit of the frequency is 1 kHz or less, the frequency is preferably 100 mm or less.
さらに、 抵抗発熱体にセラミック基板に届くような溝を形成する場合には、 レ 一ザの出力は 0 . 3 W以上が望ましい。  Further, when a groove is formed in the resistance heating element so as to reach the ceramic substrate, the output of the laser is preferably 0.3 W or more.
セラミック基板は、 レーザ光が吸収されにくい材質のものが好ましく、 例えば 、 窒化アルミニウム基板の場合には、 炭素含有量が 5 0 0 0 p p m以下の炭素含 有量が少ないものが好ましい。  The ceramic substrate is preferably made of a material that hardly absorbs laser light. For example, in the case of an aluminum nitride substrate, a substrate having a carbon content of 500 ppm or less and a small carbon content is preferable.
第三の本発明では、 セラミック基板の表面の面粗'度を J I S B 0 6 0 1 R aで 2 0 /i m以下にする。 上記セラミック基板の表面の面粗度は、 1 0 // m以 下にすることが望ましい。 面粗度が大きい場合は、 レーザ光を吸収してしまうか らである。  In the third aspect of the present invention, the surface roughness of the surface of the ceramic substrate is set to not more than 20 / im in JISB0601Ra. The surface roughness of the ceramic substrate is desirably 10 // m or less. This is because when the surface roughness is large, the laser light is absorbed.
面粗度の調整は、 研磨、 ポリシングにより行う。 研磨は # 2 0 0〜1 0 0 0の ダイヤモンド砥石を使用し、 両面から 1〜1 0 0 k g Z c m2の荷重を加えて研磨 を実施する。 ポリシングは、 0 . 1〜1 0 0 /i mの粒径を有するダイヤモンド粉 末を含むダイヤモンドペーストとポリシングクロスを用いて行う。 面粗度の測定 は、 キーエンス社製の面粗さ測定計を用いて行う。 The surface roughness is adjusted by polishing and polishing. Polishing # using 2 0 0-1 0 0 0 diamond grindstone to perform the polishing by applying a load of 1 to 1 0 0 kg Z cm 2 from both sides. The polishing is performed by using a polishing cloth and a diamond paste containing diamond powder having a particle diameter of 0.1 to 100 / im. The surface roughness is measured using a surface roughness meter manufactured by KEYENCE CORPORATION.
また、 第二の本発明では、 上述した第三の本発明と同様の理由により、 表面の 面粗度を J I S B 0 6 0 1 R aで 2 0 μ πι以下にすることが望ましく、 1 0 m以下にすることがより望ましい。 面粗度を調整する方法としては、 上述し た第三の本発明と同様の方法を挙げることができる。  In the second aspect of the present invention, for the same reason as in the third aspect of the present invention, it is preferable that the surface roughness of the surface is set to 20 μπι or less in JISB 0601 Ra, and 10 m It is more desirable to make the following. As a method for adjusting the surface roughness, a method similar to the above-described third invention can be used.
第二および第三の本発明のセラミックヒータは、 抵抗発熱体に溝または切欠が 形成されている以外は、 第一の本発明のセラミックヒータと略同様の構成であり 、 図 5および図 6を用いて既に説明済みであるのでここでの説明は省略する。 第二および第三の本発明のセラミックヒータのように、 セラミック基板の表面 (底面) に抵抗発熱体を設ける場合は、 加熱面は抵抗発熱体形成面の反対側であ' ることが望ましい。 セラミック基板が熱拡散の役割を果たすため、 加熱面の温度 均一性を向上させることができるからである。 The ceramic heaters of the second and third aspects of the present invention have substantially the same configuration as the ceramic heater of the first aspect of the present invention except that a groove or a notch is formed in the resistance heating element. Since the description has already been made with reference to FIG. As in the second and third ceramic heaters of the present invention, the surface of the ceramic substrate When a resistance heating element is provided on the (bottom) surface, it is desirable that the heating surface be on the opposite side of the resistance heating element formation surface. This is because the ceramic substrate plays a role of thermal diffusion, so that the temperature uniformity of the heated surface can be improved.
第二および第三の本発明のセラミックヒータにおけるセラミック基板の形状 ( 直径および厚さ) および材質等は、 上述した第一の本発明と同様である。 ただし 、 セラミック基板の材質については、 レーザ光を吸収しないように、 カーボンの 量を少なくする等の工夫が必要である。  The shape (diameter and thickness), material, and the like of the ceramic substrate in the second and third ceramic heaters of the present invention are the same as those of the above-described first present invention. However, for the material of the ceramic substrate, it is necessary to take measures such as reducing the amount of carbon so as not to absorb the laser beam.
第三の本発明のセラミックヒータを構成するセラミック基板は、 上述したよう に、 表面を研磨して J I S B 0 6 0 1 R aで 2 0 μ πι以下に調整する。 また 、 1 0 μ πι以下に調整することが望ましい。  As described above, the surface of the ceramic substrate constituting the ceramic heater according to the third aspect of the present invention is polished and adjusted to not more than 20 μπι by JIS B 0601 Ra. In addition, it is desirable to adjust it to 10 μπι or less.
また、 第二の本発明のセラミックヒータを構成するセラミック基板は、 表面を 研磨して J I S B O 6 0 1 R aで 2 0 μ πι以下に調整することが望ましく、 1 0 μ πι以下に調整することがより望ましい。  The surface of the ceramic substrate constituting the ceramic heater according to the second aspect of the present invention is preferably polished and adjusted to 20 μπι or less by JISBO601Ra, and is preferably adjusted to 10 μπι or less. Is more desirable.
第二および第三の本発明では、 また必要に応じて、 抵抗発熱体とセラミック基 板の間に耐熱性セラミック層を設けてもよレ、。 例えば、 非酸化物系セラミックの 場合は、 表面に酸化物セラミックを形成しておいてもよい。  In the second and third aspects of the present invention, if necessary, a heat-resistant ceramic layer may be provided between the resistance heating element and the ceramic substrate. For example, in the case of a non-oxide ceramic, an oxide ceramic may be formed on the surface.
第三の本発明において、 このような場合には、 耐熱性セラミック層や酸化物セ ラミック層の表面の面粗度を 2 0 z m以下に調整する。 また、 第二の本発明にお いて、 このような場合には、 耐熱性セラミック層や酸化物セラミック層の表面の 面粗度を 2 0 // m以下に調整することが望ましい。  In the third invention, in such a case, the surface roughness of the surface of the heat-resistant ceramic layer or the oxide ceramic layer is adjusted to 20 zm or less. In such a case, in the second aspect of the present invention, it is desirable to adjust the surface roughness of the heat-resistant ceramic layer or the oxide ceramic layer to 20 // m or less.
第二および第三の本発明において、 セラミック基板の表面または内部に形成さ れる抵抗発熱体は、 少なくとも 2以上の回路に分割されていることが望ましい。 回路を分割することにより、 各回路 (チャンネル) に投入する電力を制御して発 熱量を変えることができ、 半導体ウェハの加熱面の温度を調整することができる からである。 なお、 回路数は、 1 5未満の回路数であることが望ましい。 制御し やすいからである。 第二の本発明では、 抵抗値のばらつきを小さくできるため、 回路数を 1 5未満と小さくすることができる。  In the second and third aspects of the present invention, it is preferable that the resistance heating element formed on the surface or inside of the ceramic substrate is divided into at least two or more circuits. This is because, by dividing the circuit, the amount of heat generated can be changed by controlling the power supplied to each circuit (channel), and the temperature of the heated surface of the semiconductor wafer can be adjusted. The number of circuits is desirably less than 15. This is because it is easy to control. According to the second aspect of the present invention, since the variation in the resistance value can be reduced, the number of circuits can be reduced to less than 15.
上記抵抗発熱体のパターンとしては、 例えば、 同心円、 渦卷き、 偏心円、 屈曲 線などが挙げられるが、 セラミック基板全体の温度を均一にすることができる点 から、 図 5に示したような同心円状のものか、 または、 同心円形状と屈曲形状と を組み合わせたものが好ましい。 Examples of the pattern of the resistance heating element include concentric circles, spirals, eccentric circles, and bends. Although a line or the like may be used, a concentric shape as shown in FIG. 5 or a combination of a concentric shape and a bent shape is preferable because the temperature of the entire ceramic substrate can be made uniform.
上記レーザを用いて抵抗発熱体を形成する場合には、 配線同士の間隔が狭く混 み合ったパターンとなる場合が有利である。  When the resistance heating element is formed by using the laser, it is advantageous that the wiring has a narrow and mixed pattern.
抵抗発熱体をセラミック基板の表面に形成する方法としては、 上述した方法を 用いる。 すなわち、 セラミック基板の所定領域に導体ペーストを塗布し、 次に、 導体ペースト層を形成した後にレーザによるトリミング処理を行う力、 または、 導体ペーストを焼き付けた後、 レーザによるトリミング処理を行い、 所定パター ンの抵抗発熱体を形成する。 焼成によりセラミック基板の表面でガラスフリット 等を介して金属粒子を焼結させることができる。 なお、 金属の焼結は、 金属粒子 同士および金属粒子とセラミックとが融着していれば充分である。 トリミングは 焼成後が最適である。 焼成により抵抗値の変動があるため、 焼成後の方が精度よ く抵抗値制御ができるからである。  The above-described method is used as a method for forming the resistance heating element on the surface of the ceramic substrate. That is, a conductor paste is applied to a predetermined region of a ceramic substrate, and then a force for performing a trimming process by a laser after forming a conductor paste layer, or a conductor paste is baked, and then a trimming process by a laser is performed. Forming a resistance heating element. By firing, metal particles can be sintered on the surface of the ceramic substrate via a glass frit or the like. The sintering of the metal is sufficient if the metal particles and the metal particles and the ceramic are fused. Trimming is optimal after firing. This is because the resistance value fluctuates due to firing, and the resistance value can be controlled more accurately after firing.
なお、 めっき法やスパッタリング等の方法を用いて所定領域に導体層を形成し 、 レーザによるトリミング処理を行ってもよい。  Note that a conductor layer may be formed in a predetermined region by using a plating method, a sputtering method, or the like, and may be subjected to laser trimming.
第二および第三の本発明のセラミックヒータにおいて、 抵抗発熱体はセラミッ ク基板の表面に形成するのであるが、 抵抗発熱体の厚さは、 1〜3 0 111が好ま しく、 1〜1 5 μ πιがより好ましい。 また、 抵抗発熱体の幅は、 0 . 5〜2 0 m mが好ましく、 0 . 5〜5 mmがより好ましい。  In the second and third ceramic heaters of the present invention, the resistance heating element is formed on the surface of the ceramic substrate. The thickness of the resistance heating element is preferably 1 to 3 0111, and 1 to 15 μπι is more preferred. Further, the width of the resistance heating element is preferably 0.5 to 20 mm, more preferably 0.5 to 5 mm.
抵抗発熱体は、 その幅や厚さにより抵抗値に変化を持たせることができるが、 上記した範囲が最も実用的である。 この抵抗値 (体積抵抗率) は、 上述したよう に、 レーザ光を用いることにより調整することができる。  The resistance heating element can have its resistance changed depending on its width and thickness, but the above range is the most practical. This resistance (volume resistivity) can be adjusted by using laser light as described above.
第二おょぴ第三の本発明のセラミックヒータにおいて、 セラミック基板に形成 される抵抗発熱体の断面形状およびアスペクト比については、 第一の本発明と同 様であり、 既に説明済みであるので、 ここでの説明は省略する。  In the second and third ceramic heaters of the present invention, the cross-sectional shape and aspect ratio of the resistance heating element formed on the ceramic substrate are the same as in the first present invention, and have already been described. The description here is omitted.
また、 抵抗発熱体を形成するために用いる導体ペーストについても、 第一の本 発明と同様であり、 既に説明済みであるので、 ここでの説明は省略する。 次に、 レーザ処理を含む本発明のセラミックヒータの製造方法について、 レー ザ処理工程以外の工程に関し、 図 14に基づいてさらに詳しく説明する。 レーザ 処理工程については、 前に詳しく説明したので、 ここでは、 簡単に説明する。 図 14 (a) 〜 (d) は、 レーザ処理を含む本発明のセラミックヒータの製造 方法の一部を模式的に示す断面図である。 Also, the conductor paste used for forming the resistance heating element is the same as that of the first embodiment of the present invention, and has already been described, so that the description is omitted here. Next, a method of manufacturing a ceramic heater of the present invention including laser processing will be described in more detail with reference to FIG. 14 regarding steps other than the laser processing step. Since the laser processing step has been described in detail above, it will be briefly described here. 14 (a) to 14 (d) are cross-sectional views schematically showing a part of the method for manufacturing a ceramic heater of the present invention including laser processing.
(1) セラミック基板の作製工程  (1) Manufacturing process of ceramic substrate
上述した第一の本発明のセラミックヒータの製造方法における A. の (1) と 同様にして、 貫通孔 35や有底孔 (図示せず) を有するセラミック基板 1 1を製 造する (図 14 (a) 参照) -。  A ceramic substrate 11 having a through-hole 35 and a bottomed hole (not shown) is manufactured in the same manner as (1) of A. in the first method of manufacturing a ceramic heater of the present invention described above (FIG. 14). (See (a))-.
(2) セラミック基板に導体ペーストを印刷する工程  (2) Printing conductive paste on ceramic substrate
導体ペーストは、 一般に、 金属粒子、 樹脂、 溶剤からなる粘度の高い流動物で ある。 この導体ペーストをスクリーン印刷などを用い、 抵抗発熱体を設けようと する領域一体に印刷を行うことにより、 導体ペースト層 1 2mを形成する (図 1 4 (b) 参照) 。  The conductor paste is generally a high-viscosity fluid composed of metal particles, a resin, and a solvent. This conductor paste is printed on the area where the resistance heating element is to be provided by screen printing or the like to form a conductor paste layer 12m (see Fig. 14 (b)).
抵抗発熱体のパターンは、 セラミック基板全体を均一な温度にする必要がある こと力 ら、 図 5に示すような同心円形状と屈曲形状とからなるパターンとするこ とが望ましいが、 導体ペースト層は、 これらのパターンを含むように、 幅広の同 心円形状、 または、 円形状のパターンとする。  The pattern of the resistance heating element is preferably a pattern consisting of concentric and bent shapes as shown in Fig. 5 because the temperature of the entire ceramic substrate must be uniform. A wide concentric or circular pattern is included to include these patterns.
(3) 導体ペース トの焼成  (3) Firing the conductor paste
セラミック基板 1 1の底面に印刷した導体ペースト層を加熱焼成して、 樹脂、 溶剤を除去するとともに、 金属粒子を焼結させ、 セラミック基板 1 1の底面に焼 き付け、 所定の幅を有する導体層を形成 (図 5参照) した後、 上述したレーザに よるトリミング処理を行うことにより、 所定パターンの抵抗発熱体 1 2を形成す る (図 14 ( c ) 参照) 。 加熱焼成の温度は、 500〜 1000でが好ましい。 また、 最初に同心円、 渦卷き、 屈曲パターンなどのパターンを形成しておき、 その一部をトリミング処理してその抵抗値を調整し、 抵抗発熱体 1 2としてもよ い。  The conductor paste layer printed on the bottom surface of the ceramic substrate 11 is heated and baked to remove the resin and the solvent, and the metal particles are sintered and baked on the bottom surface of the ceramic substrate 11 to obtain a conductor having a predetermined width. After the layer is formed (see FIG. 5), the above-described trimming process using a laser is performed to form a resistive heating element 12 having a predetermined pattern (see FIG. 14 (c)). The heating and firing temperature is preferably from 500 to 1,000. Alternatively, a pattern such as a concentric circle, a spiral, a bent pattern, or the like may be formed first, and a part of the pattern may be trimmed to adjust its resistance value, thereby forming a resistance heating element 12.
(4) 金属被覆層の形成 抵抗発熱体 1 2表面には、 図 6に示したように、 金属被覆層 1 2 0 0を設ける ことが望ましい。 金属被覆層 1 2 0 0は、 電解めつき、 無電解めつき、 スパッタ リング等により形成することができるが、 量産性を考慮すると、 無電解めつきが 最適である。 なお、 図 1 4には、 金属被覆層 1 2 0 0を示していない。 また、 金 属の代わりに、 ガラス、 樹脂等の被覆体で被覆してもよい。 (4) Formation of metal coating layer It is desirable to provide a metal coating layer 1200 on the surface of the resistance heating element 12 as shown in FIG. The metal coating layer 1200 can be formed by electrolytic plating, electroless plating, sputtering, or the like. However, considering mass productivity, electroless plating is optimal. FIG. 14 does not show the metal coating layer 1200. Further, instead of a metal, it may be covered with a cover such as glass or resin.
( 5 ) 端子等の取り付け  (5) Installation of terminals, etc.
抵抗発熱体 1 2のパターンの端部に電源との接続のための端子 (外部端子 3 3 ) を半田を介して取り付ける (図 1 4 ( d ) 参照) 。 また、 有底孔 3 4に熱電対 を挿入し、 ポリイミド等の耐熱樹脂等を用いて封止し、 セラミックヒータの製造 を終了する。  Attach a terminal (external terminal 33) for connection to the power supply to the end of the pattern of the resistance heating element 12 via solder (see Fig. 14 (d)). Also, a thermocouple is inserted into the bottomed hole 34 and sealed with a heat-resistant resin such as polyimide or the like, and the production of the ceramic heater is completed.
図 1 5は、 このようにして製造されたセラミックヒータュニットを模式的に示 す断面図である。  FIG. 15 is a cross-sectional view schematically showing the ceramic heater unit manufactured as described above.
このセラミックヒータュ-ットでは、 支持容器 5 1に支持柱 5 6が形成され、 セラミック基板 1 1を支持している。 セラミック基板 1 1の底面には、 抵抗発熱 体 1 2が形成されている。 支持柱 5 6の中程には、 輻射熱によるセラミック基板 1 1の過熱を防止するための開口 5 2 0を有する中底板 5 2が取り付けられ、 バ ネ 5 3により支持されており、 支持容器 5 1の底には開口 5 1 0を有する底板 5 1 aが形成され、 冷媒を供給する供給ポート 5 9が設けられている。  In this ceramic heater, a support column 56 is formed in a support container 51 to support the ceramic substrate 11. On the bottom surface of the ceramic substrate 11, a resistance heating element 12 is formed. An intermediate bottom plate 52 having an opening 52 for preventing the ceramic substrate 11 from being overheated by radiant heat is mounted in the middle of the support column 56, and is supported by a panel 53. A bottom plate 51a having an opening 510 is formed at the bottom of 1, and a supply port 59 for supplying a refrigerant is provided.
電力は給電端子 5 4により供給される。 また、 熱電対 4 4は、 電熱板 4 2を介 してセラミック基板 1 1にパネ 4 5の力で圧着されている。  Power is supplied by the power supply terminal 54. Further, the thermocouple 44 is pressure-bonded to the ceramic substrate 11 with the force of the panel 45 via the electric heating plate 42.
このセラミックヒータュニット冷却する際には、 冷媒を支持容器 5 1の内部に 導入するが、 この冷媒は、 供給ポート 5 9から流入し、 抵抗発熱体 1 2およぴセ ラミック基板 1 1と接触しながら、 熱交換し、 開口 5 1 0から排出される。  When the ceramic heater unit is cooled, a refrigerant is introduced into the support vessel 51, and the refrigerant flows in from the supply port 59 and is connected to the resistance heating element 12 and the ceramic substrate 11 While contacting, heat is exchanged and discharged from the opening 5 10.
冷媒は、 流体であれば、 液体、 気体いずれでもよいが、 液体としては水、 アン モユア、 アルコール、 エチレングリコールなどが、 気体としては、 窒素、 二酸化 炭素、 アルゴン、 ネオン、 空気などが挙げられる。  The refrigerant may be a liquid or a gas as long as it is a fluid. Examples of the liquid include water, ammonia, alcohol, and ethylene glycol, and examples of the gas include nitrogen, carbon dioxide, argon, neon, and air.
なお、 第一、 第二および第三の本発明のセラミックヒータは、 セラミック基板 の内部に静電電極を設けることにより静電チヤックとして使用することができ、 また、 表面にチヤップトップ導体層を設け、 内部にガード電極やダランド電極を 設けることによりウェハプローバのチャックトップ板として使用することができ る。 発明を実施するための最良の形態 The first, second and third ceramic heaters of the present invention can be used as an electrostatic chuck by providing an electrostatic electrode inside a ceramic substrate. Further, by providing a tip-top conductor layer on the surface and providing a guard electrode and a duland electrode inside, it can be used as a chuck top plate of a wafer prober. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例によりさらに詳細に説明する。  Hereinafter, the present invention will be described in more detail with reference to Examples.
(実施例 1 )  (Example 1)
( 1) 窒化アルミニウム粉末 (平均粒径: 0. 6 β ΐα) 1 0 0重量部、 イット リァ (平均粒径: 0. 4 //m) 4重量部、 アタリルバインダ 1 2重量部およぴァ ルコールからなる組成物のスプレードライを行い、 顆粒状の粉末を作製した。 (1) Aluminum nitride powder (average particle size: 0.6 βΐα ) 100 parts by weight, yttria (average particle size: 0.4 // m) 4 parts by weight, ataryl binder 12 parts by weight A spray drying of a composition comprising alcohol was performed to produce a granular powder.
(2) 次に、 この顆粒状の粉末を金型に入れ、 平板状に成形して生成形体 (グ リーン) を得た。  (2) Next, the granular powder was placed in a mold and molded into a flat plate to obtain a green compact.
(3) 次に、 この生成形体を 1 8 0 0。C、 圧力: 20 MP aでホットプレスし 、 厚さが略 3 mmの窒化アルミニウム板状体を得た。  (3) Next, this generated form is 1800. C, Pressure: Hot pressed at 20 MPa to obtain an aluminum nitride plate having a thickness of about 3 mm.
次に、 この板状体から直径 2 1 Ommの円板体を切り出し、 セラミック製の板 状体 (セラミック基板 1 1) とした。 このセラミック基板にドリル加工を施し、 半導体ウェハのリフターピン 3 6を挿入する貫通孔 3 5、 熱電対を埋め込むため の有底孔 34 (直径: 1. l mm、 深さ : 2 mm) を形成した。 セラミック基板 の気孔率は略 0 %であった。  Next, a disk having a diameter of 21 Omm was cut out from the plate to obtain a ceramic plate (ceramic substrate 11). This ceramic substrate is drilled to form a through hole 35 for inserting the lifter pins 36 of the semiconductor wafer, and a bottomed hole 34 (diameter: 1. lmm, depth: 2 mm) for embedding a thermocouple. did. The porosity of the ceramic substrate was approximately 0%.
気孔率の測定は、 以下のようにして行った。 すなわち、 セラミックを粉碎して 、 水銀または有機溶媒中に浸漬して、 体積を測定し、 予め測定した重量から真比 重を計算し、 形状から計算されるみかけの比重とから、 気孔率を計算した。  The porosity was measured as follows. That is, the ceramic is crushed, immersed in mercury or an organic solvent, the volume is measured, the true specific gravity is calculated from the previously measured weight, and the porosity is calculated from the apparent specific gravity calculated from the shape. did.
(4) 上記 (3) で得たセラミック基板 1 1に、 スクリーン印刷にて導体ぺー スト層を形成した。 印刷パターンは、 図 5に示したようなパターンであった。 上記導体ペーストとしては、 A g 4 8重量0 /0、 P t 2 1重量0 /o、 S i 021. 0 重量%、 B2031. 2重量%、 Z n04. 1重量%、 P b 03. 4重量%、 酢酸 ェチル 3. 4重量%、 プチルカルビトール 1 7. 9重量0 /0からなる組成のものを 使用した。 この導体ペーストは、 Ag— P tペーストであり、 銀粒子は、 平均粒径が 4. 5 μ ιηで、 リン片状のものであった。 また、 P t粒子は、 平均粒子径 0. 5 μ ιη の球状であった。 (4) A conductor paste layer was formed on the ceramic substrate 11 obtained in (3) by screen printing. The printing pattern was as shown in FIG. As the conductor paste, A g 4 8 wt 0/0, P t 2 1 wt 0 / o, S i 0 2 1. 0 wt%, B 2 0 3 1. 2 wt%, Z n04. 1 wt% , P b 03. 4 wt%, acetic acid Echiru 3.4 wt%, was used a composition consisting of heptyl carbitol 1 7.9 wt 0/0. This conductive paste was an Ag—Pt paste, and the silver particles had an average particle size of 4.5 μιη and were scaly. The Pt particles were spherical with an average particle diameter of 0.5 μιη.
(5) さらに、 発熱体パターンの導体ペースト層を形成した後、 セラミック基 板 1 1を 7 8 0°Cで加熱、 焼成して、 導体ペースト中の A g、 P tを焼結させる とともにセラミック基板 1 1に焼き付けた。  (5) Further, after forming the conductor paste layer of the heating element pattern, the ceramic substrate 11 is heated and fired at 780 ° C. to sinter Ag and Pt in the conductor paste and ceramic. It was baked on substrate 11.
抵抗発熱体 1 2のパターンは、 図 5に示すように、 1 2 a〜1 2 gの 7チャン ネルである。 内周には渦巻きの 3つのチャンネル (1 2 e〜1 2 g) があり、 外 周には 4つの屈曲線のチャンネル (抵抗発熱体 1 2 a〜l 2 d) がある。  As shown in FIG. 5, the pattern of the resistance heating element 12 is 7 channels of 12 a to 12 g. There are three spiral channels (12 e to 12 g) on the inner circumference, and four winding channels (12 a to l 2 d resistance heating elements) on the outer circumference.
なお、 チャンネルとは、 制御を行う際に、 同一の電圧を印加して一の制御を行 う回路をいうが、 本実施例では、 連続体して形成された各抵抗発熱体 (1 2 a〜 1 2 g) を示す。  Note that a channel is a circuit that performs the same control by applying the same voltage when performing control. In the present embodiment, each channel has a resistance heating element (12 a ~ 12 g).
(6) 各チャンネル (抵抗発熱体 1 2 a〜l 2 g) 内の抵抗のばらつきは、 同 一チャンネル内のパターンを区画して、 区画した範囲内の両端で抵抗を測定し、 その平均をチャンネルの平均抵抗値とし、 さらに、 最高抵抗値と最低抵抗値との 差と平均抵抗値とから、 1つのチャンネル内のばらつきを計算した。 抵抗値のば らつきは各チャンネル毎に計算される。 本発明では、 抵抗発熱体の最も大きなば らつきの値が、 2 5%以下であればよい。 '  (6) The variation in the resistance in each channel (resistance heating elements 12 a to l 2 g) is calculated by dividing the pattern in the same channel, measuring the resistance at both ends within the divided area, and calculating the average. The average resistance value of the channel was used, and the variation within one channel was calculated from the difference between the highest resistance value and the lowest resistance value and the average resistance value. Resistance variation is calculated for each channel. In the present invention, the largest variation of the resistance heating element may be 25% or less. '
(7) 次に、 電源との接続を確保するための外部端子 3 3を取り付ける部分に 、 スクリーン印刷により、 銀一鉛半田ペースト (田中貴金属社製) を印刷して半 田層を形成した。  (7) Next, a silver-lead solder paste (manufactured by Tanaka Kikinzoku Co., Ltd.) was printed by screen printing on the portion where the external terminals 33 for securing the connection with the power supply were to be formed, thereby forming a solder layer.
次いで、 半田層の上にコバール製の外部端子 3 3を載置して、 4 20°Cで加熱 リフローし、 外部端子 3 3を抵抗発熱体 1 2の表面に取り付けた。  Next, an external terminal 33 made of Kovar was placed on the solder layer, heated and reflowed at 420 ° C., and the external terminal 33 was attached to the surface of the resistance heating element 12.
( 8 ) 温度制御のための熱電対をポリイミドで封止し、 セラミックヒータ 1 0 を得た。  (8) A thermocouple for temperature control was sealed with polyimide to obtain a ceramic heater 10.
(実施例 2)  (Example 2)
実施例 1と同様であるが、 セラミック基板を以下のように製造した。  Same as Example 1, except that a ceramic substrate was manufactured as follows.
(1) S i C粉末 (平均粒径: 1. 1 μΐη) 1 0 0重量部、 B^ C 4重量部、 ァ クリルパインダ 12重量部おょぴアルコールからなる組成物のスプレードライを 行い、 顆粒状の粉末を作製した。 (1) SiC powder (average particle size: 1.1 μΐη) 100 parts by weight, B ^ C 4 parts by weight, A composition comprising 12 parts by weight of krill pinda alcohol was spray-dried to produce a granular powder.
(2) 次に、 この顆粒状の粉末を金型に入れ、 平板状に成形して生成形体 (グ リーン) を得た。  (2) Next, the granular powder was placed in a mold and molded into a flat plate to obtain a green compact.
(3) 次に、 この生成形体を 1890°C、 圧力: 2 OMP aでホットプレスし (3) Next, the green compact was hot-pressed at 1890 ° C and a pressure of 2 OMPa.
、 厚さが略 3 mmの S i C板状体を得た。 さらに、 表面を # 800のダイヤモン ド砥石で研磨し、 ダイヤモンドペーストでポリシングして R a = 0. 008 とした。 さらに表面にガラスペースト (昭栄化学工業製 G— 5177) を塗布 し、 600°Cに昇温し、 厚さ 2 μιηの S i 02層を形成した。 セラミック基板の気 孔率は、 3%であった。 A SiC plate having a thickness of about 3 mm was obtained. Furthermore, the surface was polished with a # 800 diamond whetstone and polished with diamond paste to Ra = 0.008. Further, a glass paste (G-5177, manufactured by Shoei Chemical Industry Co., Ltd.) was applied to the surface, and the temperature was raised to 600 ° C. to form a SiO 2 layer having a thickness of 2 μιη. The porosity of the ceramic substrate was 3%.
次に、 この板状体から直径 21 Ommの円板体を切り出し、 セラミック製の板 状体 (セラミック基板 11) とした。 このセラミック基板にドリル加工を施し、 半導体ウェハのリフターピン 36を挿入する貫通孔 35、 熱電対を埋め込むため の有底孔 34 (直径: 1. lmm、 深さ: 2 mm) を形成した。  Next, a disk having a diameter of 21 Omm was cut out from the plate to obtain a ceramic plate (ceramic substrate 11). The ceramic substrate was drilled to form a through hole 35 for inserting a lifter pin 36 of a semiconductor wafer and a bottomed hole 34 (diameter: 1. lmm, depth: 2 mm) for embedding a thermocouple.
(4) さらに、 発熱体パターンの導体ペースト層を形成した後、 セラミック基 板 1 1を 780°Cで加熱、 焼成して、 導体ペースト中の Ag、 P tを焼結させる とともにセラミック基板 11に焼き付けた。  (4) Further, after the conductor paste layer of the heating element pattern is formed, the ceramic substrate 11 is heated and fired at 780 ° C. to sinter Ag and Pt in the conductor paste and to form the ceramic paste on the ceramic substrate 11. Baked.
抵抗発熱体 32のパターンは、 図 9に記載したように、 9チャンネルであり、 渦卷きパターンである。  As shown in FIG. 9, the pattern of the resistance heating element 32 is a 9-channel spiral pattern.
従って、 印刷方向に垂直になる部分は、 他の部分と比べて厚さが厚くなる。 そ こで、 抵抗発熱体 32のパターンのうち、 印刷方向に垂直になる部分を # 200 の研磨紙を回転させて研磨するベルトサンダーにて研磨した。  Therefore, the part perpendicular to the printing direction is thicker than the other parts. Therefore, of the pattern of the resistance heating element 32, a portion perpendicular to the printing direction was polished by a belt sander for polishing by rotating a # 200 abrasive paper.
(5) 抵抗ばらつきは、 同一チャンネル内のパターンを区画して、 区画した範 囲内の両端で抵抗を測定し、 その平均をチャンネルの平均抵抗値とし、 さらに、 最高抵抗値と最低抵抗値との差と平均抵抗値とから、 1つのチャンネル内のばら つきを計算した。 抵抗値のばらつきはチャンネル毎に計算されるが、 最も大きな ばらつきの値が、 25%以下であればよい。  (5) The resistance variation is calculated by dividing the pattern in the same channel, measuring the resistance at both ends within the divided range, and taking the average as the average resistance value of the channel. The variation in one channel was calculated from the difference and the average resistance value. The variation of the resistance value is calculated for each channel, but the largest variation value should be 25% or less.
(6) 電源との接続を確保するための外部端子 13を取り付ける部分に、 スク リーン印刷により、 銀一鉛半田ペースト (田中貴金属社製) を印刷して半田層を 形成した。 (6) Attach the external terminal 13 to secure the connection to the power supply. A silver-lead solder paste (Tanaka Kikinzoku Co., Ltd.) was printed by lean printing to form a solder layer.
次いで、 半田層の上にコバール製の外部端子 1 3を載置して、 4 20°Cで加熱 リフローし、 外部端子 1 3を抵抗発熱体 1 2の表面に取り付けた。  Next, an external terminal 13 made of Kovar was placed on the solder layer, heated and reflowed at 420 ° C., and the external terminal 13 was attached to the surface of the resistance heating element 12.
(7) 温度制御のための熱電対をポリイミドで封止し、 セラミックヒータ 1 0 を得た。  (7) A thermocouple for temperature control was sealed with polyimide to obtain a ceramic heater 10.
(実施例 3)  (Example 3)
( 1) 窒化アルミニウム粉末 (トクャマ社製、 平均粒径 0. 6 μτα) 1 0 0重 量部、 'アルミナ 4重量部、 アクリル系樹脂バインダ 1 1. 5重量部、 分散剤 0. 5重量部おょぴ 1ーブタノールとエタノールとからなるアルコール 53重量部を 混合したペーストを用い、 ドクタープレード法により成形を行って、 厚さ 0. 4 7 mmのグリーンシートを作製した。  (1) Aluminum nitride powder (manufactured by Tokuyama, average particle size 0.6 μτα) 100 parts by weight, 4 parts by weight of alumina, 11.5 parts by weight of acrylic resin binder, 0.5 parts by weight of dispersant Using a paste obtained by mixing 53 parts by weight of alcohol composed of 1-butanol and ethanol, green sheets having a thickness of 0.47 mm were produced by a doctor blade method.
(2) 次に、 このグリーンシートを 8 0°Cで 5時間乾燥させた後、 半導体ゥェ ハを運搬等するためのリフターピンを挿入するための貫通孔 3 5となる部分、 パ ィァホールとなる部分、 および、 スルーホールとなる部分をパンチングにより形 成した。  (2) Next, after drying this green sheet at 80 ° C. for 5 hours, a portion that becomes a through hole 35 for inserting a lifter pin for transporting a semiconductor wafer, etc., The part to be formed and the part to be a through hole were formed by punching.
(3) 平均粒径 1 xmのタングステンカーバイト粒子 1 0 0重量部、 アクリル 系バインダ 3. 0重量部、 ひ一テルビネオール溶媒 3. 5重量部おょぴ分散剤 0 (3) 100 parts by weight of tungsten carbide particles having an average particle diameter of 1 xm, 3.0 parts by weight of an acrylic binder, 3.5 parts by weight of a terbineol solvent 3.5 parts by weight of dispersant 0
. 3重量部を混合して導体ペースト Aを調整した。 The conductor paste A was prepared by mixing 3 parts by weight.
平均粒径 3 μπιのタングステン粒子 1 0 0重量部、 アクリル系パインダ 1. 9 重量部、 α—テルビネオール溶媒 3. マ重量部および分散剤 0. 2重量部を混合 して導体ペースト Βを調整した。  100 parts by weight of tungsten particles having an average particle diameter of 3 μπι, 1.9 parts by weight of an acrylic binder, 3. parts by weight of an α-terbineol solvent, and 0.2 parts by weight of a dispersant were mixed to prepare a conductive paste Β. .
この導体ペースト Αをバイァホールとなる部分を形成したダリーンシート上に スクリーン印刷で印刷し、 抵抗発熱体用の導体ペース ト層を形成した。 印刷パタ ーンは、 図 8に示すような渦巻きパターンと部分的に屈曲するパターンとした。 導体ペースト層の幅を 1 Omm、 その厚さを 1 2 μ mとした。 なお、 厚さのば らつきは、 全体で ± 0. であるが、 ばらつきが局在していない。  This conductive paste was printed by screen printing on a daline sheet in which a portion to be a via hole was formed to form a conductive paste layer for a resistance heating element. The printing pattern was a spiral pattern as shown in Fig. 8 and a partially bent pattern. The width of the conductive paste layer was 1 Omm, and its thickness was 12 μm. The thickness variation is ± 0. As a whole, but the variation is not localized.
続いて、 導体ペースト Aをスルーホールとなる部分を形成したグリーンシート 上にスタリ ン印刷で印刷し、 導体回路用の導体ペースト層を形成した。 印刷の 形状は帯状とした。 Next, a green sheet in which conductive paste A The conductor paste was printed on the top to form a conductor paste layer for conductor circuits. The shape of the print was strip-shaped.
また、 導体ペースト Bを、 バイァホールとなる部分およぴスルーホールとなる 部分に充填した。  In addition, the conductive paste B was filled in the portions to be the via holes and the portions to be the through holes.
上記処理の終わった導体ペース ト層を印刷したグリーンシートの上に、 導体ぺ ーストを印刷していないグリーンシートを 37枚重ね、 その下に、 導体ペースト 層を印刷したグリーンシートを重ねた後、 更にその下に、 導体ペーストを印刷し ていないグリーンシートを 12枚重ねて、 130。C、 8 MP aの圧力で積層した (4) 次に、 得られた積層体を窒素ガス中、 600°Cで 5時間脱脂し、 189 On the green sheet printed with the conductor paste layer after the above process, 37 green sheets without printed conductor paste are stacked, and under that, the green sheet printed with the conductor paste layer is stacked. Underneath, 12 green sheets with no conductive paste printed are stacked 130. C, laminated at a pressure of 8 MPa (4) Next, the obtained laminated body was degreased in nitrogen gas at 600 ° C for 5 hours.
0°C、 圧力 15MP aで 10時間ホットプレスし、 厚さ 5 mmのセラミック板状 体を得た。 これを 23 Ommの円板状に切り出し、 内部に厚さ 6 / m、 幅 10m mの抵抗努熱体おょぴスルーホールを有するセラミック板状体とした。 Hot pressing was performed at 0 ° C and a pressure of 15 MPa for 10 hours to obtain a ceramic plate having a thickness of 5 mm. This was cut into a 23 Omm disk to form a ceramic plate having a 6 / m-thick and 10-mm-wide resistance heating element through hole.
(5) 次に、 (4) で得られたセラミック板状体を、 ダイヤモンド砥石で研磨 した後、 マスクを載置し、 S i C粒子等によるブラスト処理で表面に熱電対のた めの有底孔を設けた。  (5) Next, the ceramic plate obtained in (4) is polished with a diamond grindstone, a mask is placed, and a blast treatment with SiC particles or the like is performed to provide a thermocouple on the surface. A bottom hole was provided.
(6) 温度制御のための熱電対を有底孔に挿入し、 シリカゾルを充填し、 19 0°Cで 2時間硬化ゲルィヒさせ抵抗発熱体おょぴスルーホールを有するセラミック ヒータを得た。  (6) A thermocouple for temperature control was inserted into the bottomed hole, filled with silica sol, and cured at 190 ° C for 2 hours to obtain a ceramic heater having a resistance heating element and a through hole.
(実施例 4)  (Example 4)
本実施例は、 実施例 1とほぼ同様にしてセラミックヒータを製造したが、 抵抗 発熱体のパターンを図 10に示す屈曲線のみのパターンとした。  In this example, a ceramic heater was manufactured in substantially the same manner as in Example 1, except that the pattern of the resistance heating element was a pattern consisting of only the bent lines shown in FIG.
(比較例 1 )  (Comparative Example 1)
形成する抵抗発熱体のパターンを図 9に示した同心円パターンとしたほかは、 実施例 1と同様にしてセラミックヒータを製造した。  A ceramic heater was manufactured in the same manner as in Example 1, except that the pattern of the resistance heating element to be formed was the concentric pattern shown in FIG.
(比較例 2 )  (Comparative Example 2)
形成する抵抗発熱体のパターンを図 9に示した同心円パターンとし、 セラミツ ク基板の厚さを 28 mmとしたほかは、 実施例 1と同様にしてセラミックヒータ を製造した。 A ceramic heater was formed in the same manner as in Example 1 except that the pattern of the resistance heating element to be formed was the concentric pattern shown in Fig. 9 and the thickness of the ceramic substrate was 28 mm. Was manufactured.
(比較例 3 )  (Comparative Example 3)
形成する抵抗発熱体のパターンを図 9に示した同心円パターンとし、 セラミツ ク基板の直径を 1 5 O mmとしたほかは、 実施例 1と同様にしてセラミックヒー タを製造した。 ' ' A ceramic heater was manufactured in the same manner as in Example 1 except that the pattern of the formed resistance heating element was the concentric pattern shown in FIG. 9 and the diameter of the ceramic substrate was 15 O mm. ''
(比較例 4 ) (Comparative Example 4)
焼結助剤を添カ卩しなかったほかは、 実施例 2と同様にしてセラミックヒータを 製造した。 気孔率は、 5 . 5 %であった。 抵抗発熱体のパターンは、 図 9に示し た同心円パターンとした。  A ceramic heater was manufactured in the same manner as in Example 2 except that the sintering aid was not added. The porosity was 5.5%. The concentric pattern shown in Fig. 9 was used as the pattern of the resistance heating element.
実施例 1〜4および比較例 1で得られたセラミックヒータについて、 抵抗発熱 体の抵抗値のばらつきを測定した。 その結果を下記の表 1に示した。  With respect to the ceramic heaters obtained in Examples 1 to 4 and Comparative Example 1, variations in the resistance value of the resistance heating element were measured. The results are shown in Table 1 below.
表 1  table 1
Figure imgf000044_0001
Figure imgf000044_0001
注)最上段の数字は、抵抗発熱体のチャンネル番号を表す。  Note) The number at the top indicates the channel number of the resistance heating element.
実施例 1、 3、 4に係るセラミックヒータでは、 1 2a〜 1 2gの順に番号を振り、 実施例 2、比較例 1に係るセラミックヒータでは、外側の抵抗発熱体から In the ceramic heater according to Example 1, 3, 4, 1. 2a-1 2 g sequentially Numbering of Example 2, the ceramic heater of Comparative Example 1, from the outside of the resistance heating element
順に番号を振っている。 また、 上記工程を経て得られた実施例 1〜4および比較例 1〜4に係るセラミ ックヒータについて、 以下の指標で評価した。 この際、 得られたセラミックヒー タに、 温調器 (オムロン社製 E 5 Z E) を取り付け、 性能評価を実施した。 そ の結果を表 2に示す。  They are numbered in order. Further, the ceramic heaters according to Examples 1 to 4 and Comparative Examples 1 to 4 obtained through the above steps were evaluated by the following indexes. At this time, a temperature controller (Omron E5ZE) was attached to the obtained ceramic heater, and the performance was evaluated. The results are shown in Table 2.
( 1 ) 加熱面内温度均一性 1 7ポイント測温素子つきの半導体ウェハを使用して、 面内温度の分布を測定 した。 温度分布は、 2 0 0 °C設定での最高温度と最低温度の差で示す。 (1) Temperature uniformity within the heating surface Using a semiconductor wafer with a 17-point temperature measuring element, the in-plane temperature distribution was measured. The temperature distribution is indicated by the difference between the maximum temperature and the minimum temperature at a setting of 200 ° C.
( 2 ) 過渡時面内温度均一性および昇温時間  (2) Transient in-plane temperature uniformity and heating time
室温〜 1 3 0 °Cまで昇温した時の面内温度の分布を測定した。 温度分布は、 最 高温度と最低温度の差で示す。 また、 この昇温時に昇温時間も測定した。  The distribution of the in-plane temperature when the temperature was raised from room temperature to 130 ° C. was measured. The temperature distribution is indicated by the difference between the highest and lowest temperatures. At the time of this heating, the heating time was also measured.
( 3 ) リカバリー時間  (3) Recovery time
1 4 0 °C設定温度で、 2 5 °Cの半導体ウェハを載置した場合に、 1 4 0 °Cまで 回復する時間 (リカバリー時間) を測定した。  When a semiconductor wafer at 25 ° C was placed at a set temperature of 140 ° C, the time to recover to 140 ° C (recovery time) was measured.
表 2  Table 2
Figure imgf000045_0001
上記表 1より明ら力なように、 抵抗発熱体の抵抗値のばらつきは、 実施例 1〜 4では、 チャンネ^^内で 2 0 %以下、 もっとも精度の高いもので 6。/。であった。 これに対して比較例 1では、' 2 7 %のものがあり、 ばらつきが大きい。
Figure imgf000045_0001
As is clear from Table 1 above, the variation in the resistance value of the resistance heating element is 20% or less in the channel in Examples 1 to 4, and 6 is the highest accuracy. /. Met. On the other hand, in Comparative Example 1, there is a value of '27%, and the variation is large.
また、 表 1、 2中の記載より明らかなように、 実施例 1〜 4に係るセラミック ヒータでは、 同一チャンネル内での抵抗値のばらつきがなく、 チャンネル間の抵 抗ばらつきもないため、 定常時おょぴ過渡時の面内温度均一性に優れる。 また、 抵抗値が均一であるため、 温度制御しやすく、 リカパリ一時間も短い。 これに対して、 比較例 1に係るセラミックヒータでは、 同一チャンネル内の抵 抗ばらつきを小さくすることができないため、 定常時および過渡時の面内温度均 —性に劣る。 また、 温度制御性に劣り、 リカバリー時間も長い。 Also, as is clear from the descriptions in Tables 1 and 2, the ceramic heaters according to Examples 1 to 4 have no variation in the resistance value in the same channel and no variation in the resistance between channels. Excellent in-plane temperature uniformity during transition. In addition, since the resistance value is uniform, temperature control is easy and recappari one hour is short. On the other hand, in the ceramic heater according to Comparative Example 1, since the resistance variation in the same channel cannot be reduced, the in-plane temperature uniformity in a constant state and in a transient state is poor. In addition, the temperature controllability is poor and the recovery time is long.
さらに、 比較例 2に係るセラミックヒータでは、 基板が厚く熱容量が大きすぎ て温度制御ができない。 したがって過渡時の面内温度分布が大きくなりすぎて制 御性が悪い。 定常状態では、 熱容量が大きい方が温度分布が小さい。  Furthermore, in the ceramic heater according to Comparative Example 2, the substrate is too thick and the heat capacity is too large to control the temperature. Therefore, the in-plane temperature distribution during the transition becomes too large, resulting in poor controllability. In the steady state, the larger the heat capacity, the smaller the temperature distribution.
比較例 3に係るセラミックヒータでは、 基板の直径が小さく、 抵抗値のばらつ きが温度分布として反映されないことがわかる。  In the ceramic heater according to Comparative Example 3, it is found that the diameter of the substrate is small and the variation in the resistance value is not reflected as the temperature distribution.
比較例 4に係るセラミックヒータでは、 気孔率が高すぎて、 熱伝導率が低下し 、 温度制御ができない。 したがって過渡時の面内温度分布が大きくなりすぎて制 御性が悪い。 定常状態では、 熱伝導率が悪く、 温度分布は小さい。  In the ceramic heater according to Comparative Example 4, the porosity is too high, the thermal conductivity is reduced, and the temperature cannot be controlled. Therefore, the in-plane temperature distribution during the transition becomes too large, resulting in poor controllability. In the steady state, the thermal conductivity is poor and the temperature distribution is small.
(実施例 5)  (Example 5)
(1) 窒化アルミニウム粉末 (平均粒径: 0. 6 πι) 100重量部、 イット リ了 (平均粒径: 0. 4 μπι) 4重量部、 アタリルバインダ 12重量部おょぴァ ルコールからなる組成物のスプレードライを行い、 顆粒状の粉末を作製した。  (1) 100 parts by weight of aluminum nitride powder (average particle diameter: 0.6 πι), 4 parts by weight (average particle diameter: 0.4 μπι), 12 parts by weight of ataryl bond binder The composition was spray-dried to produce a granular powder.
(2) 次に、 この顆粒状の粉末を金型に入れ、 平板状に成形して生成形体 (グ リーン) を得た。  (2) Next, the granular powder was placed in a mold and molded into a flat plate to obtain a green compact.
(3) 次に、 この生成形体を 1800°C、 圧力: 2 OMP aでホットプレスし 、 厚さがほぼ 3.mmの窒化アルミニゥム板状体を得た。  (3) Next, the green compact was hot-pressed at 1800 ° C. and a pressure of 2 OMPa to obtain an aluminum nitride plate having a thickness of approximately 3 mm.
次に、 この板状体から直径 21 Ommの円板体を切り出し、 セラミック製の板 状体 (セラミック基板 11) とした。 このセラミック基板にドリル加工を施し、 半導体ウェハのリフターピン 36を挿入する貫通孔 35.、 熱電対を埋め込むため の有底孔 34 (直径: 1. lmm, 深さ: 2 mm) を形成した。  Next, a disk having a diameter of 21 Omm was cut out from the plate to obtain a ceramic plate (ceramic substrate 11). The ceramic substrate was drilled to form a through hole 35 for inserting a lifter pin 36 of a semiconductor wafer and a bottomed hole 34 (diameter: 1. lmm, depth: 2 mm) for embedding a thermocouple.
(4) 上記 (3) で得たセラミック基板 1 1に、 スクリーン印刷にて導体ぺー スト層を形成した。 印刷パターンは、 図 5に示したようなパターンであった。 上記導体ペーストとしては、 A g 48重量0 、 P t 21重量0 /0、 S i O 21. 0 重量%、 B2031. 2重量%、 Zn04. 1重量%、 P b03. 4重量%、 酢酸 ェチル 3. 4重量%、 プチルカルビトール 1 7. 9重量0 /0からなる組成のものを 使用した。 (4) A conductor paste layer was formed on the ceramic substrate 11 obtained in (3) by screen printing. The printing pattern was as shown in FIG. As the conductor paste, A g 48 weight 0, P t 21 weight 0/0, S i O 2 1. 0 wt%, B 2 0 3 1. 2 wt%, Zn04. 1 wt%, P b03. 4 wt%, acetic acid Echiru 3.4 wt%, having composition consisting heptyl carbitol 1 7.9 wt 0/0 used.
この導体ペーストは、 Ag_P tペーストであり、 銀粒子は、 平均粒径が 4. 5 111で、 リン片状のものであった。 また、 P t粒子は、 平均粒子径 0. 5 μιη の球状であった。  This conductor paste was an Ag_Pt paste, and the silver particles had an average particle size of 4.5111 and were scaly. The Pt particles were spherical with an average particle diameter of 0.5 μιη.
(5) さらに、 発熱体パターンの導体ペースト層を形成した後、 セラミック基 板 1 1を 850°Cで加熱、 焼成して、 導体ペースト中の Ag、 P tを焼結させる とともにセラミック基板 1 1に焼き付けた。  (5) Further, after forming the conductor paste layer of the heating element pattern, the ceramic substrate 11 is heated and fired at 850 ° C to sinter Ag and Pt in the conductor paste, and the ceramic substrate 11 Baked on.
抵抗発熱体のパターンは、 図 5に示したように、 12 a〜l 2 gの 7チャンネ ルである。 外周の 4つのチャンネル (抵抗発熱体 12 a〜 12 d) のトリミング 前のチャンネル内の抵抗値のばらつきを表 3に記載する。 なお、 チャンネルとは 、 制御を行う際に、 同一電圧を印加して一の制御を行う回路をいうが、 本実施例 では、 連続体として形成された各抵抗発熱体 (12 a〜l 2 g) を示す。  As shown in Fig. 5, the pattern of the resistance heating element is 7 channels of 12 a to l 2 g. Table 3 shows the variation in resistance in the outer four channels (trimming elements 12a to 12d) before trimming. Note that the channel is a circuit that performs the same control by applying the same voltage when performing control. In this embodiment, each channel includes a resistance heating element (12 a to l 2 g) formed as a continuous body. ).
各チャンネル (抵抗発熱体 12 a〜l 2 d) 内の抵抗ばらつきは、 チャンネル 内をさらに 20分割して、 分割した範囲内の両端で抵抗を測定し、 その平均を平 均分割抵抗値 (表 3では、 平均値) とし、 さらに、 チャンネル内の最高抵抗値と 最低抵抗値との差と平均分割抵抗値とから、 ばらつきを計算した。 また、 各チヤ ンネル (抵抗発熱体 12 a〜l 2 d) 内の抵抗値は、 分割して測定した全抵抗値 の総和である。  The resistance variation in each channel (resistance heating elements 12a to l2d) is calculated by dividing the channel further into 20 parts, measuring the resistance at both ends within the divided area, and averaging the average divided resistance value (Table In Fig. 3, the average value) was used, and the variation was calculated from the difference between the highest and lowest resistance values in the channel and the average split resistance value. The resistance value in each channel (resistance heating elements 12a to 12d) is the sum of all resistance values measured separately.
(6) 次に、 トリミング用の装置として、 波長が 1060 nmの YAGレーザ (日本電気製 S 143AL 出力 5 W、 パルス周波数 0. 1〜 40 kHz) を用いた。 この装置は、 X— Yステージ、 ガルバノミラー、 CCDカメラ、 Nd •• YAGレーザを備え、 また、 ステージとガルバノミラーを制御するコントロー ラを内蔵し、 コントローラは、 コンピュータ (日本電気製 FC- 9821) に 接続されている。 コンピュータは、 演算部と記憶部を兼ねる CPUを有している 。 また、 記憶部と入力部を兼ねるハードディスクと 3. 5インチ FDドライブを 有している。  (6) Next, as a device for trimming, a YAG laser with a wavelength of 1060 nm (manufactured by NEC S143AL, output 5 W, pulse frequency 0.1 to 40 kHz) was used. This device is equipped with an XY stage, a galvanometer mirror, a CCD camera, and a Nd •• YAG laser, and has a built-in controller for controlling the stage and the galvanometer mirror. The controller is a computer (NEC FC-9821) It is connected to the. The computer has a CPU that doubles as an arithmetic unit and a storage unit. It also has a hard disk that doubles as a storage unit and an input unit and a 3.5-inch FD drive.
このコンピュータに FDドライブから発熱体パターンデータを入力し、 さらに 、 導体層の位置を読み取って (読み取りは、 導体層の特定箇所またはセラミック 基板に形成されたマーカを基準にする) 、 必要な制御データを演算し、 発熱体パ ターンを電流が流れる方向に沿って概ね平行に照射し、 その部分の導体層を除去 し、 抵抗発熱体の厚さの 30%、 60%、 90%、 セラミック基板に到達するま で、 セラミック基板に 2 μ mの溝ができるまで、 それぞれ幅 50 μ mの溝を形成 した。 測定は、 キーエンス社製 レーザ変位計により行った。 Input the heating element pattern data from the FD drive to this computer, and read the position of the conductor layer (read the specific location of the conductor layer or ceramic Based on the marker formed on the substrate), the necessary control data is calculated, the heating element pattern is irradiated almost parallel along the direction in which current flows, the conductor layer in that part is removed, and the resistance heating element is removed. Until the ceramic substrate reached 30%, 60%, and 90% of its thickness, grooves of 50 μm each were formed until grooves of 2 μm were formed on the ceramic substrate. The measurement was performed using a laser displacement meter manufactured by Keyence Corporation.
図 16 (a) 〜 (d) は、 それぞれ抵抗発熱体の厚さの 30%、 60%、 90 %、 セラミック基板に到達する溝に関し、 上段はその外観を示す写真であり、 中 段は断面の形状 (高さと位置) を示すグラフであり、 下段は、 上段の外観図にお いて矢印の方向に切断した場合の断面図である。  Figures 16 (a) to (d) show the grooves reaching 30%, 60%, and 90% of the thickness of the resistance heating element and the ceramic substrate, respectively. The upper part is a photograph showing the appearance, and the middle part is a cross section. FIG. 4 is a graph showing the shape (height and position) of the upper part, and the lower part is a cross-sectional view when cut in the direction of the arrow in the external view of the upper part.
ただし、 上記写真や上記グラフは、 溝をはっきりと示すため、 抵抗発熱体の電 流が流れる方向と垂直に溝を形成しており、 実際は、 上記実施例において形成し た溝とは異なる。  However, in order to clearly show the grooves in the above photograph and the above graph, the grooves are formed perpendicularly to the direction in which the current of the resistance heating element flows, and are actually different from the grooves formed in the above embodiment.
抵抗発熱体は、 厚さが 10μπι、 幅 2. 4mmであった。 レーザは、 1 kHz の周波数で、 0. 4Wの出力、 バイトサイズは 10 ; ιη、 加工スピードは 1 Om mZ秒であった。 トリミング後の外周の 4つのチャンネル (抵抗発熱体 12 a〜 12 d) の抵抗値と各チャンネル内のばらつきを表 3に記载する。 チャンネル内 の抵抗ばらつきは、 チャンネル内をさらに 20分割して、 分割した範囲内の両端 で抵抗を測定し、 その平均を平均分割抵抗値とし、 さらに、 チャンネル内の最高 抵抗値と最低抵抗値との差と平均分割抵抗値とから、 ばらつきを計算した。 また 、 チャンネル内の抵抗値は、 分割して測定した全抵抗値の総和である。  The resistance heating element had a thickness of 10 μπι and a width of 2.4 mm. The laser had a frequency of 1 kHz, a power of 0.4 W, a byte size of 10; ιη, and a processing speed of 1 Om mZ second. Table 3 shows the resistance values of the outer four channels (resistance heating elements 12a to 12d) after trimming and the variations within each channel. The resistance variation in the channel is calculated by dividing the channel further into 20 parts, measuring the resistance at both ends of the divided area, taking the average as the average divided resistance value, and calculating the maximum and minimum resistance values in the channel. The variation was calculated from the difference between the values and the average split resistance value. Also, the resistance value in the channel is the sum of all resistance values measured separately.
(7) 電源との接続を確保するための外部端子 13を取り付ける部分に N iめ つきした後、 スクリーン印刷により、 銀一鉛半田ペースト (田中貴金属社製) を 印刷して半田層を形成した。  (7) After attaching N i to the part where the external terminals 13 for securing the connection to the power supply were to be attached, a silver-lead solder paste (manufactured by Tanaka Kikinzoku Co., Ltd.) was printed by screen printing to form a solder layer. .
次いで、 半田層の上にコバール製の外部端子 13を載置して、 420°Cで加熱 リフローし、 外部端子 13を抵抗発熱体 12の表面に取り付けた。  Next, the external terminal 13 made of Kovar was placed on the solder layer, and heated and reflowed at 420 ° C., and the external terminal 13 was attached to the surface of the resistance heating element 12.
( 8 ) 温度制御のための熱電対をポリイミドで封止し、 セラミックヒータ 10 を得た。 '  (8) A thermocouple for temperature control was sealed with polyimide to obtain a ceramic heater 10. '
(実施例 6) セラミック基板を以下のように製造したほかは、 実施例 1と同様にして、 セラ ミックヒータを製造し、 抵抗発熱体の抵抗値のばらつきを測定した。 (Example 6) A ceramic heater was manufactured in the same manner as in Example 1 except that the ceramic substrate was manufactured as described below, and the variation in resistance value of the resistance heating element was measured.
( 1) S i C粉末 (平均粒径: 1. 1 μπι) 1 0 0重量部、 B4C4重量部、 ァ クリルバインダ 1 2重量部およびアルコールからなる組成物のスプレードライを 行い、 顆粒状の粉末を作製した。 (1) S i C powder (average particle size: 1. 1 μπι) 1 0 0 parts by weight, B 4 C4 parts performs spray drying of § acrylic binder 1 2 parts by weight of the composition consisting of alcohols, granular Was prepared.
(2) 次に、 この顆粒状の粉末を金型に入れ、 平板状に成形して生成形体 (グ リーン) を得た。  (2) Next, the granular powder was placed in a mold and molded into a flat plate to obtain a green compact.
(3) 次に、 この生成形体を 1 8 9 0°C、 圧力: 2 OMP aでホットプレスし 、 厚さがほぼ 3mmの S i C板状体を得た。 さらに、 表面を # 8 00のダイヤモ ンド砥石で研磨し、 ダイヤモンドペーストでポリシングして R a =0. 00 8 μ mとした。 さらに表面にガラスペースト (昭栄化学工業製 G- 5 1 7 7) を塗 布し、 60 0°Cに昇温し、 厚さ 3 μπιの S i 02層を形成した。 (3) Next, the formed body was hot-pressed at 189 ° C. and a pressure of 2 OMPa to obtain a SiC plate having a thickness of about 3 mm. The surface was further polished with a # 800 diamond grindstone and polished with diamond paste to Ra = 0.008 μm. Further, a glass paste (G-517, manufactured by Shoei Chemical Industry Co., Ltd.) was applied on the surface, and the temperature was raised to 600 ° C. to form a SiO 2 layer having a thickness of 3 μπι.
次に、 この板状体から直径 2 1 Ommの円板体を切り出し、 セラミック製の板 状体 (セラミック基板 1 1) とした。 このセラミック基板にドリル加工を施し、 半導体ウェハのリフターピン 3 6を挿入する貫通孔 3 5、 熱電対を埋め込むため の有底孔 34 (直径: 1. l mm, 深さ: 2 mm) を形成した。  Next, a disk having a diameter of 21 Omm was cut out from the plate to obtain a ceramic plate (ceramic substrate 11). This ceramic substrate is drilled to form a through hole 35 for inserting lifter pins 36 of a semiconductor wafer and a bottomed hole 34 (diameter: 1. lmm, depth: 2 mm) for embedding a thermocouple. did.
この実施例でも、 抵抗発熱体の厚さの 3 0 %、 6 0%、 9 0 %、 セラミック基 板に到達するまで、 セラミック基板に 2 μπιの深さの溝ができるまで、 それぞれ 幅 5 0 μ mの溝を形成した。  Also in this example, the width was 50% until the grooves of 30 μm, 60% and 90% of the thickness of the resistance heating element reached the ceramic substrate, and a 2 μπι deep groove was formed in the ceramic substrate. A μm groove was formed.
(比較例 5 )  (Comparative Example 5)
溝の深さを抵抗発熱体の厚さの 1 5 %としたほかは、 実施例 5と同様にしてセ ラミックヒータを製造し、 抵抗発熱体の抵抗値のばらつきを測定した。  A ceramic heater was manufactured in the same manner as in Example 5, except that the depth of the groove was set to 15% of the thickness of the resistance heating element, and the resistance value variation of the resistance heating element was measured.
実施例 5〜 6に係るセラミックヒータと比較例 5に係るセラミックヒータとに ついて、 トリミング前後の抵抗値のばらつきを表 3に記載した。  For the ceramic heaters according to Examples 5 to 6 and the ceramic heater according to Comparative Example 5, variations in resistance values before and after trimming are shown in Table 3.
また、 上記工程を経て得られたセラミックヒータについて、 以下の指標で評価 した。  The ceramic heater obtained through the above steps was evaluated according to the following indices.
( 1) 基板の反り  (1) Board warpage
セラミック基板の 1 7箇所で平坦度測定装置 (ネクシブ社製) で平坦度を測定 し、 平坦度の変化を調べた。 変化がなければ、 反りなしと判断した。 Measure flatness with a flatness measuring device (Nexiv) at 17 locations on the ceramic substrate Then, the change in flatness was examined. If there was no change, it was determined that there was no warpage.
(2) 発熱体の耐酸化性  (2) Oxidation resistance of heating element
350°Cまで加熱して 2週間放置し、 抵抗値の変化率を測定した。 なお、 抵抗 値の変化率は、 下記の (1) 式により計算した。  The sample was heated to 350 ° C and left for 2 weeks, and the rate of change in resistance was measured. The rate of change of the resistance was calculated by the following equation (1).
抵抗値の変化率 (。/。) = 〔 (加熱後の抵抗値一加熱前の抵抗値) /加熱前の抵 抗値〕 X 100 · · · ( 1 ) ,  Rate of change of resistance value (./.) = [(Resistance value after heating-resistance value before heating) / resistance value before heating] X 100 · · · (1),
(3) 基板の強度低下 ■  (3) Reduced board strength ■
J I S R 1601に従って供試体を切出し、 強度低下率を測定した。 供試体の強度は、 インスト口ン万能試験機 ( 4507型 ロードセル 500 k g f ) を用い、 温度が 25〜1000°Cの大気中、 クロスヘッド速度 0. 5 mm Z分、 スパン距離 L=30mm、 試験片の厚さ =3. 06 mm, 試験片の幅 =4 . 03mmで実施し、 以下の計算式 (1) を用いて 3点曲げ強度 σ (k g f /m m2) を算出した。 なお、 表 3に示したのは、 25°Cにおける曲げ強度である。 計算式 (1) Specimens were cut out according to JISR 1601, and the strength reduction rate was measured. The strength of the test specimen was measured using an instrument universal tester (Model 4507 load cell 500 kgf) in the air at a temperature of 25 to 1000 ° C, a crosshead speed of 0.5 mm Z, a span distance of L = 30 mm, and a test. The test was performed with a specimen thickness of 3.06 mm and a specimen width of 4.03 mm, and the three-point bending strength σ (kgf / mm 2 ) was calculated using the following equation (1). Table 3 shows the bending strength at 25 ° C. Formula (1)
3PL  3PL
σ =——  σ = ——
2wt2 2wt 2
表 3 Table 3
Figure imgf000051_0001
上記表 3より明らかなように、 形成した溝の深さが抵抗発熱体の厚さの 2 0 % 未満 (比較例 5 ) では、 抵抗値のばらつきを抑制することができないことが分か る。
Figure imgf000051_0001
As is evident from Table 3 above, when the depth of the formed groove is less than 20% of the thickness of the resistance heating element (Comparative Example 5), the variation in the resistance value cannot be suppressed.
また、 表 3に示した結果より明らかなように、 実施例 5 6の場合には、 抵抗 発熱体の厚さの 2 0 %以上の深さで溝を形成しているため、 確実に抵抗値のばら つきを抑制することができる。 また、 基板の反りや強度低下もほとんどない。 ' なお、 溝の底部に発熱体が残存していると、 若干の抵抗値変化を引き起こすと 推定されるため、 セラミック基板まで到達した溝が最適である。  Also, as is clear from the results shown in Table 3, in Example 56, since the groove was formed at a depth of 20% or more of the thickness of the resistance heating element, the resistance value was surely increased. Variation can be suppressed. Also, there is almost no warpage or reduction in strength of the substrate. 'If the heating element remains at the bottom of the groove, it is estimated that a slight change in resistance will occur, so the groove reaching the ceramic substrate is optimal.
(実施例 7 )  (Example 7)
抵抗発熱体の厚さを 5 μ mとし、 上記抵抗発熱体にセラミック基板まで到達す る溝を形成した以外は、 実施例 5と同様にして、 セラミックヒータ 1 0を製造し た。 , 図 1 7は、 抵抗発熱体断面の形状 (位置と高さ) を示したグラフである。 図 1 7より、 トリミングによる溝がセラミック基板まで達していることが分かる。 測 定は、 キーエンス社製のレーザ変位計により行った。 A ceramic heater 10 was manufactured in the same manner as in Example 5, except that the thickness of the resistance heating element was 5 μm, and a groove was formed in the resistance heating element to reach the ceramic substrate. Was. , Figure 17 is a graph showing the cross-sectional shape (position and height) of the resistance heating element. From FIG. 17, it can be seen that the groove formed by the trimming reaches the ceramic substrate. The measurement was performed using a laser displacement meter manufactured by Keyence Corporation.
(実施例 8 )  (Example 8)
抵抗発熱体の厚さを 5 μ mとし、 上記抵抗発熱体にセラミック基板まで到達す る溝を形成した以外は、 実施例 6と同様にして、 セラミックヒータを製造した。  A ceramic heater was manufactured in the same manner as in Example 6, except that the thickness of the resistance heating element was 5 μm, and a groove was formed in the resistance heating element to reach the ceramic substrate.
(実施例 9 )  (Example 9)
抵抗発熱体の厚さを 5 μ mとし、 レーザ光により トリミングを電流が伝搬する 方向に垂直に複数回実施し、 電流が伝搬する方向に垂直に溝を形成したほかは、 実施例 5と同様にしてセラミックヒータを製造し、 抵抗発熱体の抵抗値のばらつ きを測定した。 Same as Example 5 except that the thickness of the resistance heating element was set to 5 μm, and trimming was performed several times by laser light in the direction perpendicular to the current propagation, and grooves were formed perpendicular to the direction in which the current propagated. Then, a ceramic heater was manufactured, and the variation of the resistance value of the resistance heating element was measured.
Figure imgf000053_0001
また、 実施例 7〜 9で製造したセラミックヒータに、 温調器 (ォム口ン社製 E 5 ZE) を取り付け、 下記の性能評価を実施した。
Figure imgf000053_0001
Further, a temperature controller (E5ZE manufactured by Omguchi Company) was attached to the ceramic heaters manufactured in Examples 7 to 9, and the following performance evaluation was performed.
(1) 加熱面内の温度分布の均一性  (1) Uniformity of temperature distribution in heated surface
1 7ポイント測温素子つきのシリコンウェハを使用して、 面内温度の分布を測 定した。 温度分布は、 200°C設定での最高温度と最低温度の差で示す。 (2) 過渡時の面内温度均一性 Using a silicon wafer with a 17-point temperature measuring element, the in-plane temperature distribution was measured. The temperature distribution is indicated by the difference between the maximum and minimum temperatures at 200 ° C. (2) In-plane temperature uniformity during transient
室温〜 130°Cまで昇温した時の面内温度の分布を測定した。 温度分布は、 最 高温度と最低温度の差で示す。  The distribution of the in-plane temperature when the temperature was raised from room temperature to 130 ° C. was measured. The temperature distribution is indicated by the difference between the highest and lowest temperatures.
(3) オーバーシユート量  (3) Overshoot amount
200°Cまで昇温して、 定常温度になる前に 200°Cから最高どれだけ上昇す るかを測定した。  The temperature was raised to 200 ° C, and the maximum rise from 200 ° C before reaching the steady temperature was measured.
(4) リカバリー時間  (4) Recovery time
140°C設定温度で、 25°Cのシリコンウェハを載置した場合に、 140°Cま で回復する時間 (リカバリー時間) を測定した。  When a silicon wafer at 25 ° C was placed at a set temperature of 140 ° C, the time to recover to 140 ° C (recovery time) was measured.
結果を表 5に示す。  Table 5 shows the results.
表 5  Table 5
Figure imgf000054_0001
表 4に示した結果より明らかなように、 トリミング後の抵抗発熱体 12 a〜 1 2 dの抵抗値のばらつきは、 実施例 7、 8では、 チヤンネル内でも約 5以下、 ( もっとも精度の高いもので 1%) 、 面内でのバラツキは 0. 5%以下と良好であ る。 しかも、 発熱体が溶融するものもない。
Figure imgf000054_0001
As is clear from the results shown in Table 4, the variation in the resistance values of the resistance heating elements 12a to 12d after the trimming is about 5 or less even in the channel in Examples 7 and 8 (the highest accuracy). 1%), and the in-plane variation is as good as 0.5% or less. Moreover, there is nothing that the heating element melts.
これに対して実施例 9では、 チャンネル内でも 7%以上で、 発熱体が溶融して しまうことが分かった。  On the other hand, in Example 9, it was found that the heating element melted at 7% or more even in the channel.
また、 表 5に示した結果より明らかなように、 実施例 7、 8では、 トリミング 後のチヤンネル内の抵抗値のばらつきおよびチヤンネル間の抵抗値のばらつきが ないため、 定常時おょぴ過渡時の面内温度均一性に優れる。 また、 抵抗値が均一 であるため、 温度制御しやすく、 オーバーシュート温度も低く、 リカバリー時間 も短い。 Also, as is clear from the results shown in Table 5, in Examples 7 and 8, there is no variation in the resistance value in the channels after trimming and no variation in the resistance value between the channels. Has excellent in-plane temperature uniformity. In addition, because the resistance is uniform, temperature control is easy, the overshoot temperature is low, and the recovery time is low. Is also short.
これに対して、 実施例 9では、 チャンネル内の抵抗バラツキを小さくできない ため、 定常時おょぴ過渡時の面内温度均一性に劣る。 また、 温度制御性に劣り、 オーバーシユート温度も高く、 リカバリー時間も長い。  On the other hand, in the ninth embodiment, the resistance variation in the channel cannot be reduced, so that the in-plane temperature uniformity at the time of constant transient is poor. In addition, the temperature control is poor, the overshoot temperature is high, and the recovery time is long.
また、 実施例 9では、 7チャンネルでの制御ができていない。 従って、 チャン ネル数を増やして、 投入電力を可変して制御する必要がある。  In the ninth embodiment, control on seven channels is not performed. Therefore, it is necessary to increase the number of channels and control the input power variably.
さらに、 実施例 9では、 抵抗値の局所的な上昇で過剰発熱して発熱体が溶融し て断線する事例も見られた。  Further, in Example 9, there was a case in which a heating element was melted and disconnected due to excessive heating due to a local increase in the resistance value.
(実施例 1 0 )  (Example 10)
セラミック基板を製造する際、 # 2 2 0のダイヤモンド砥石で 1 k g / c m2の 荷重で両側から研磨し、 さらに、 ダイヤモンドペースト (粒径 0 . 5 / m) とポ リシングクロスでポリシングして表面の面粗度を R aで 0 . 0 1 mとし、 また 、 抵抗発熱体を形成する際、 抵抗発熱体の厚さを 5 μ ιηとし、 上記抵抗発熱体に 2 μ mの溝ができるまで幅 5 0 μ mの溝を形成した以外は、 実施例 5と同様にし て、 セラミックヒータ 1 0を製造した。 When manufacturing the ceramic substrate was polished from both sides at 1 kg / cm 2 load with a diamond grindstone of # 2 2 0, further, diamond paste (particle size 0. 5 / m) and polices in Po Li Sing Cross The surface roughness of the surface is 0.01 m in Ra, and when forming the resistance heating element, the thickness of the resistance heating element is 5 μιη, and a 2 μm groove is formed in the resistance heating element. A ceramic heater 10 was manufactured in the same manner as in Example 5 except that a groove having a width of 50 μm was formed.
(実施例 1 1 )  (Example 11)
セラミック基板を製造する際、 # 8 0 0のダイヤモンド砥石で研磨し、 ダイャ モンドペーストでポリシングして表面の面粗度を R aで 0 . とし、 さ らに表面にガラスペースト (昭栄化学工業製 G— 5 1 7 7 ) を塗布し、 6 0 0 °Cに昇温し、 厚さ 3 μ πιの S i 0 2層を形成し、 # 8 0 0のダイヤモンド砥石で研 磨した。 また、 抵抗発熱体を形成する際、 抵抗発熱体の幅を 5 μ πιとし、 上記抵 抗発熱体に 2 μ mの溝ができるまで幅 5 0 μ mの溝を形成した以外は、 実施例 6 と同様にして、 セラミックヒータを製造した。 When manufacturing a ceramic substrate, it is polished with a # 800 diamond grindstone and polished with a diamond paste to reduce the surface roughness to Ra at 0. Furthermore, a glass paste (manufactured by Shoei Chemical Industry Co., Ltd.) G-5177) was applied, and the temperature was raised to 600 ° C to form a Si0 2 layer having a thickness of 3 μπι, which was polished with a # 800 diamond grindstone. In addition, when forming the resistance heating element, the width of the resistance heating element was set to 5 μπι, and a groove having a width of 50 μm was formed until a groove of 2 μm was formed in the resistance heating element. In the same manner as in 6, a ceramic heater was manufactured.
実施例 1 0、 1 1で製造されたセラミックヒータについて、 上記した方法によ り、 トリミング前後における抵抗値のばらつきを測定した。  With respect to the ceramic heaters manufactured in Examples 10 and 11, variations in resistance value before and after trimming were measured by the above-described method.
その結果を下記の表 6に示す。 '
Figure imgf000056_0001
The results are shown in Table 6 below. '
Figure imgf000056_0001
表 6に示した結果より明らかなように、 実施例 10、 11では、 トリミング後 の抵抗発熱体 12 a〜l 2 dの抵抗値のばらつきは、 チャンネル内でも約 5%以 下、 (もっとも精度の高いもので 1%) 、 面内でのバラツキは 0. 5%以下と良 好である。 しかも、 発熱体が溶融するものもなかった。  As is clear from the results shown in Table 6, in Examples 10 and 11, the variation in the resistance values of the resistance heating elements 12a to l2d after trimming was less than about 5% even within the channel (the most accurate 1%), and the in-plane variation is better than 0.5% or less. Moreover, none of the heating elements melted.
(実施例 12)  (Example 12)
セラミック基板を製造する際、 #220のダイヤモンド砥石を用い、 l k gZ cm2の荷重でセラミック基板の両面を研磨して表面粗度を R aで 0. 6 mとし 、 抵抗発熱体を形成する際、 抵抗発熱体の厚さを 5 μπιとし、 上記抵抗発熱体に 2 μΐηの溝ができるまで幅 50 μιηの溝を形成した以外は、 実施例 5と同様にし てセラミックヒータを製造した。 When manufacturing ceramic substrates, use lk gZ Polishing both sides of the ceramic substrate with a load of cm 2 to make the surface roughness Ra 0.6 m, and when forming the resistance heating element, the thickness of the resistance heating element is set to 5 μπι. A ceramic heater was manufactured in the same manner as in Example 5, except that a groove having a width of 50 μιη was formed until a groove of 2 μΐη was formed.
(実施例 13)  (Example 13)
セラミック基板を製造する際、 # 120のダイヤモンド砥石を用い、 1 k g/ cm2の荷重でセラミック基板の両面を研磨して表面粗度を R aで 1. 0 mとし 、 抵抗発熱体を形成する際、 抵抗発熱体の厚さを 5 mとし、 上記抵抗発熱体に 2 mの溝ができるまで幅 50 μ mの溝を形成した以外は、 実施例 5と同様にし てセラミックヒータを製造した。 When manufacturing the ceramic substrate, using a diamond grindstone of # 120, the surface roughness by polishing the both surfaces of the ceramic substrate at 1 kg / cm 2 load and 1. 0 m in R a, to form a resistance heating element At this time, a ceramic heater was manufactured in the same manner as in Example 5 except that the thickness of the resistance heating element was 5 m, and a groove having a width of 50 μm was formed until a groove of 2 m was formed in the resistance heating element.
(実施例 14)  (Example 14)
セラミック基板を製造する際、 # 100のダイヤモンド砥石を用い、 1 k g c m 2の荷重でセラミック基板の両面を研磨して表面粗度を R aで 8. Ο μιηとし 、 抵抗発熱体を形成する際、 抵抗発熱体の厚さを 5 μπιとし、 上記抵抗発熱体に 2 μ mの溝ができるまで幅 50 μ mの溝を形成した以外は、 実施例 5と同様にし てセラミックヒータを製造した。 When manufacturing a ceramic substrate, use a # 100 diamond grindstone, grind both surfaces of the ceramic substrate with a load of 1 kgcm 2 to make the surface roughness Ra 8. 8.μιη, and when forming a resistance heating element, A ceramic heater was manufactured in the same manner as in Example 5, except that the thickness of the resistance heating element was 5 μπι, and a groove having a width of 50 μm was formed until a groove of 2 μm was formed in the resistance heating element.
(実施例 15)  (Example 15)
セラミック基板を製造する際、 #80のダイヤモンド砥石を用い、 l k gZc m2の荷重で両面を研磨して表面粗度を R aで 18 0 μ mとし、 抵抗発熱体を形 成する際、 抵抗発熱体の厚さを 5 μπιとし、 上記抵抗発熱体に 2 μηαの溝ができ るまで幅 50 μπιの溝を形成した以外は、 実施例 5と同様にしてセラミックヒー タを製造した。 When manufacturing a ceramic substrate, use a # 80 diamond grindstone and grind both surfaces with a load of lk gZc m 2 to achieve a surface roughness of 180 μm with Ra. A ceramic heater was manufactured in the same manner as in Example 5, except that the thickness of the heating element was set to 5 μπι and a groove having a width of 50 μπι was formed in the resistance heating element until a groove of 2 μηα was formed.
(比較例 6)  (Comparative Example 6)
セラミック基板を製造する際、 セラミック基板の両面を研磨せず、 抵抗発熱体 を形成する際、 抵抗発熱体の厚さを 5 μ mとし、 上記抵抗発熱体に 2 β mの溝が できるまで幅 50 μ mの溝を形成した以外は、 実施例 5と同様にしてセラミック ヒータを製造した このときのセラミック基板の表面粗度は、 1 &で22. 0 μ mであつ 7こ。 実施例 10〜実施例 15および比較例 6に係るセラミックヒータについて、 以 下の指標により評価した。 その結果を表 7に示す。 When manufacturing the ceramic substrate, do not grind both sides of the ceramic substrate.When forming the resistance heating element, set the thickness of the resistance heating element to 5 μm, and make the width until a 2 βm groove is formed in the resistance heating element. A ceramic heater was manufactured in the same manner as in Example 5 except that a groove of 50 μm was formed. The surface roughness of the ceramic substrate at this time was 12.0 and 22.0 μm. The ceramic heaters according to Examples 10 to 15 and Comparative Example 6 were evaluated using the following indices. Table 7 shows the results.
(1) 基板の反り  (1) substrate warpage
実施例 5〜6に係るセラミックヒータと比較例 5に係るセラミックヒータとを 評価した方法と同様の方法により、 平坦度の変化を調べた。  The change in flatness was examined by the same method as the method for evaluating the ceramic heaters according to Examples 5 to 6 and the ceramic heater according to Comparative Example 5.
(2) 基板の強度低下  (2) Reduced board strength
実施例 5〜6に係るセラミックヒータと比較例 5に係るセラミックヒータとを 評価した方法と同様の方法により、 セラミック基板の強度低下率を測定した。  The strength reduction rate of the ceramic substrate was measured by the same method as the method for evaluating the ceramic heaters according to Examples 5 to 6 and the ceramic heater according to Comparative Example 5.
(3) 冷却特 '性  (3) Cooling characteristics
140°Cまで昇温した後、 90°Cまで冷却するまでの時間を測定した。 冷媒は 、 空気であり、 0. 01m3Z分で噴射した。 After the temperature was raised to 140 ° C, the time required to cool to 90 ° C was measured. The refrigerant is air, and injected with 0. 01M 3 Z min.
(4) 抵抗発熱体の密着性  (4) Adhesion of resistance heating element
レーザ照射した発熱体表面に N iめっきを施し、 はんだにてピンを固定し、 引 つ張り強度を測定した。 〜  The surface of the heating element irradiated with laser was plated with Ni, the pins were fixed with solder, and the tensile strength was measured. ~
表 7  Table 7
Figure imgf000058_0001
Figure imgf000058_0001
注)引っ張り強度:抵抗発熱体の引っ張り強度 表 7に示した結果より明らかなように、 実施例 10〜15では、 面粗度 R aを 2 0 μ m以下に調整しているため、 セラミック基板の強度の低下を抑制すること ができ、 セラミック基板に反りも殆ど生じていない。 これは、 レーザ光を反射す ることで、 必要以上にセラミック基板を損傷させないためと考えられる。 Note) Tensile strength: Tensile strength of resistance heating element As is clear from the results shown in Table 7, in Examples 10 to 15, the surface roughness Ra was Since the thickness is adjusted to 20 μm or less, a decrease in the strength of the ceramic substrate can be suppressed, and the ceramic substrate hardly warps. This is probably because the laser light is reflected so that the ceramic substrate is not unnecessarily damaged.
さらに、 冷却時間も、 面粗度 R aが小さいほど短い。 これは、 面粗度 R aが大 きい場合には、 抵抗発熱体に溝が形成され、. 凹凸が生じることにより発生した乱 流を、 セラミック基板表面の凹 ώがさらに増幅させ、 蓄熱空気を滞留させたため と推定される。 産業上利用の可能十生  Furthermore, the cooling time is shorter as the surface roughness Ra is smaller. This is because when the surface roughness Ra is large, a groove is formed in the resistance heating element, and the turbulence generated by the unevenness is further amplified by the concave の on the ceramic substrate surface, and the heat storage air is It is estimated that this was caused by stagnation. Industrial availability
以上説明したように、 第一の本発明の半導体製造 '検査装置用セラミックヒー タによれば、 抵抗ばらつきがほとんどないため、 特に過渡時の加熱面の温度を均 一にすることができる。 さらに、 リカバリー時間も短くすることができる。 また、 第二の本発明の半導体製造'検查装置用セラミックヒータによれば、 抵 抗発熱体の抵抗値のばらつきがほとんどないため、 加熱面の温度を均一にするこ とができる。 また、 基板もダメージもなく、 発熱体の耐酸化性を低下させること もない。  As described above, according to the ceramic heater for semiconductor manufacturing and inspection equipment of the first aspect of the present invention, since there is almost no resistance variation, the temperature of the heating surface can be made uniform especially during a transition. In addition, recovery time can be reduced. Further, according to the second ceramic heater for semiconductor manufacturing inspection apparatus of the present invention, since the resistance value of the resistance heating element hardly varies, the temperature of the heating surface can be made uniform. Also, the substrate is not damaged, and the oxidation resistance of the heating element is not reduced.
また、 第三の本発明の半導体製造.検査装置用セラミックヒータによれば、 セ ラミック基板の面粗度 R aが 2 0 μ m以下であるため、 セラミック基板の強度低 下や反りが発生せず、 さらに、 レーザを照射した発熱体の密着強度低下もない。 さらに、 冷却速度の改善も期待できる。  Further, according to the third aspect of the present invention, the ceramic heater for an inspection device has a ceramic substrate surface roughness Ra of 20 μm or less, and thus the strength and warpage of the ceramic substrate are reduced. In addition, there is no decrease in the adhesion strength of the heating element irradiated with the laser. In addition, the cooling rate can be improved.
また、 第二おょぴ第三の本発明の半導体製造 ·検查装置用セラミックヒータに おいて、 抵抗バラツキを 5 %以下に調整することにより、 加熱面の温度均一性に 優れたセラミックヒータを得ることができ、 発熱体が加熱溶融することを防止す ることができる。 さらに、 チャンネル数を減らすことができ、 過渡時面内温度均 一性を向上させることができ、 また、 リカバリー時間も短くすることができる。  Also, in the second and third ceramic heaters for semiconductor manufacturing and inspection equipment of the present invention, by adjusting the resistance variation to 5% or less, a ceramic heater excellent in temperature uniformity of the heating surface can be obtained. Thus, the heating element can be prevented from being heated and melted. Furthermore, the number of channels can be reduced, the temperature uniformity in the plane during the transition can be improved, and the recovery time can be shortened.

Claims

請求の範囲 The scope of the claims
1 . セラミック基板の表面または内部に抵抗発熱体を設けてなるセラミックヒ ータであって、 1. A ceramic heater in which a resistance heating element is provided on the surface or inside of a ceramic substrate,
前記抵抗発熱体の平均抵抗値に対する抵抗値のばらつきは、 2 5 %以下である ことを特徴とする半導体製造 ·検査装置用セラミックヒータ。  A ceramic heater for a semiconductor manufacturing / inspection apparatus, wherein a variation of a resistance value with respect to an average resistance value of the resistance heating element is 25% or less.
2 . 前記抵抗発熱体は、 屈曲線の繰り返しパターンの抵抗発熟体からなる請求 の範囲 1に記載の半導体製造 ·検査装置用セラミックヒータ。 2. The ceramic heater for a semiconductor manufacturing / inspection apparatus according to claim 1, wherein the resistance heating element comprises a resistance ripening element having a repeating pattern of bent lines.
3 . 前記抵抗発熱体は、 同心円形状または渦卷き形状パターンと、 屈曲線の繰 り返しパターンとが混成して形成された抵抗発熱体からなる請求の範囲 1に記載 の半導体製造 ·検査装置用セラミックヒータ。 3. The semiconductor manufacturing / inspection apparatus according to claim 1, wherein the resistance heating element comprises a resistance heating element formed by mixing a concentric or spiral pattern and a repetitive pattern of bent lines. For ceramic heater.
4 . 前記セラミック基板は、 厚さが 2 5 mm以下である請求の範囲 1〜3のい ずれか 1に記載の半導体製造 ·検查装置用セラミックヒータ。 4. The ceramic heater for semiconductor manufacturing and inspection equipment according to any one of claims 1 to 3, wherein the ceramic substrate has a thickness of 25 mm or less.
5 . 前記セラミック基板は、 気孔率が 5 %以下である請求の範囲 1〜4のいず れか 1に記載の半導体製造 ·検查装置用セラミックヒータ。 5. The ceramic heater for semiconductor manufacturing and inspection equipment according to any one of claims 1 to 4, wherein the porosity of the ceramic substrate is 5% or less.
6 . 前記セラミック基板は、 直径が 2 0 O mm以上である請求の範囲 1〜5の いずれか 1に記載の半導体製造 ·検査装置用セラミックヒータ。 6. The ceramic heater for a semiconductor manufacturing / inspection apparatus according to any one of claims 1 to 5, wherein the ceramic substrate has a diameter of 20 O mm or more.
7 . セラミック基板上に抵抗発熱体を形成したセラミックヒータであって、 前 記抵抗発熱体には溝または切欠が形成されてなり、 前記溝は抵抗発熱体厚さの 27. A ceramic heater having a resistance heating element formed on a ceramic substrate, wherein the resistance heating element is formed with a groove or a notch, and the groove has a thickness of 2 mm.
0 %以上の深さを持つことを特徴とする半導体製造 ·検査装置用セラミックヒー タ。 Ceramic heater for semiconductor manufacturing and inspection equipment characterized by having a depth of 0% or more.
8 . セラミック基板上に抵抗発熱体を形成したセラミックヒータであって、 前 記抵抗発熱体には溝または切欠が形成されてなり、 前記セラミック基板の抵抗発 熱体形成面の面粗度は、 R a 2 0 μ mであることを特徴とする半導体製造 ·検 查装置用セラミックヒータ。 8. A ceramic heater having a resistance heating element formed on a ceramic substrate, wherein the resistance heating element is formed with a groove or a notch, and a surface roughness of a resistance heating element forming surface of the ceramic substrate is: A ceramic heater for semiconductor manufacturing and inspection equipment, which has a Ra of 20 μm.
9 . 前記抵抗発熱体の平均抵抗値に対する抵抗値のばらつきは、 5 %以下で ある請求の範囲 7または 8に記載の半導体製造 ·検査装置用セラミックヒータ。 9. The ceramic heater for a semiconductor manufacturing / inspection apparatus according to claim 7, wherein a variation in a resistance value with respect to an average resistance value of the resistance heating element is 5% or less.
1 0 . 前記抵抗発熱体の電流が流れる方向に沿って前記溝が形成されてなる請 求の範囲 7〜 9のいずれか 1に記載の半導体製造 ·検查装置用セラミックヒータ 10. The ceramic heater for a semiconductor manufacturing / inspection device according to any one of claims 7 to 9, wherein the groove is formed along a direction in which a current of the resistance heating element flows.
1 1 . 前記溝または切欠は、 レーザ光にて形成されてなる請求の範囲 7〜1 0 のいずれか 1に記載の半導体製造 ·検査装置用セラミックヒータ。 11. The ceramic heater for semiconductor manufacturing and inspection equipment according to any one of claims 7 to 10, wherein the groove or the notch is formed by a laser beam.
PCT/JP2001/007456 2000-09-13 2001-08-30 Ceramic heater for semiconductor manufacturing and inspecting equipment WO2002023600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/380,327 US20040035846A1 (en) 2000-09-13 2001-08-30 Ceramic heater for semiconductor manufacturing and inspecting equipment

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2000278773A JP2002015841A (en) 2000-04-29 2000-09-13 Ceramic heater
JP2000-278773 2000-09-13
JP2000279564A JP2002093551A (en) 2000-09-14 2000-09-14 Ceramic heater
JP2000-279564 2000-09-14
JP2000281653A JP2002093552A (en) 2000-09-18 2000-09-18 Ceramic heater
JP2000-281653 2000-09-18
JP2000282504A JP2002083667A (en) 2000-07-06 2000-09-18 Ceramic heater
JP2000-282504 2000-09-18

Publications (1)

Publication Number Publication Date
WO2002023600A1 true WO2002023600A1 (en) 2002-03-21

Family

ID=27481607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007456 WO2002023600A1 (en) 2000-09-13 2001-08-30 Ceramic heater for semiconductor manufacturing and inspecting equipment

Country Status (1)

Country Link
WO (1) WO2002023600A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210143043A1 (en) * 2019-11-12 2021-05-13 Mico Ceramics Ltd. Electrostatic chuck

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299070A (en) * 1987-05-29 1988-12-06 Nok Corp Resistance value adjusting method for sheet heating element
JPH04249090A (en) * 1991-02-05 1992-09-04 Ricoh Co Ltd Sheet-form heat emitting element
JPH06324585A (en) * 1993-05-12 1994-11-25 Toshiba Lighting & Technol Corp Heater and fixing device
JPH06324584A (en) * 1993-05-12 1994-11-25 Toshiba Lighting & Technol Corp Heater, manufacture of heater and fixing device
US5587097A (en) * 1991-12-09 1996-12-24 Toshiba Lighting & Technology Corporation Fixing heater and method of manufacturing fixing heater
JPH11251040A (en) * 1998-02-27 1999-09-17 Kyocera Corp Ceramic heater and its manufacture
JPH11312570A (en) * 1998-04-28 1999-11-09 Kyocera Corp Ceramic heater
JPH11317283A (en) * 1998-05-06 1999-11-16 Kyocera Corp Ceramic heater

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299070A (en) * 1987-05-29 1988-12-06 Nok Corp Resistance value adjusting method for sheet heating element
JPH04249090A (en) * 1991-02-05 1992-09-04 Ricoh Co Ltd Sheet-form heat emitting element
US5587097A (en) * 1991-12-09 1996-12-24 Toshiba Lighting & Technology Corporation Fixing heater and method of manufacturing fixing heater
JPH06324585A (en) * 1993-05-12 1994-11-25 Toshiba Lighting & Technol Corp Heater and fixing device
JPH06324584A (en) * 1993-05-12 1994-11-25 Toshiba Lighting & Technol Corp Heater, manufacture of heater and fixing device
JPH11251040A (en) * 1998-02-27 1999-09-17 Kyocera Corp Ceramic heater and its manufacture
JPH11312570A (en) * 1998-04-28 1999-11-09 Kyocera Corp Ceramic heater
JPH11317283A (en) * 1998-05-06 1999-11-16 Kyocera Corp Ceramic heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210143043A1 (en) * 2019-11-12 2021-05-13 Mico Ceramics Ltd. Electrostatic chuck
US11581211B2 (en) * 2019-11-12 2023-02-14 Mico Ceramics Ltd. Electrostatic chuck having a cooling structure

Similar Documents

Publication Publication Date Title
WO2002043441A1 (en) Ceramic heater, and production method for ceramic heater
US6967312B2 (en) Semiconductor manufacturing/testing ceramic heater, production method for the ceramic heater and production system for the ceramic heater
WO2001041508A1 (en) Ceramic heater
WO2002003435A1 (en) Hot plate for semiconductor manufacture and testing
EP1120997A1 (en) Ceramic heater
WO2002047129A1 (en) Ceramic substrate for semiconductor manufacturing and inspecting devices, and method of manufacturing the ceramic substrate
US20040035846A1 (en) Ceramic heater for semiconductor manufacturing and inspecting equipment
KR100615443B1 (en) Ceramic heater
WO2002042241A1 (en) Aluminum nitride sintered body, method for producing aluminum nitride sintered body, ceramic substrate and method for producing ceramic substrate
WO2001078455A1 (en) Ceramic board
JP3729785B2 (en) Ceramic heater
JP2002246155A (en) Ceramic heater
WO2002045138A1 (en) Ceramic heater for semiconductor manufacturing and inspecting devices
WO2002007196A1 (en) Semiconductor manufacturing/testing ceramic heater
JP2002373846A (en) Ceramic heater and hot plate unit for semiconductor manufacturing and inspection apparatus
JP2002083848A (en) Semiconductor manufacturing and inspecting apparatus
JP2002203666A (en) Ceramic heater and manufacturing method of the same
JP2002141159A (en) Ceramic heater
JP2002083667A (en) Ceramic heater
JP2002151235A (en) Manufacturing method of ceramic heater
WO2002023600A1 (en) Ceramic heater for semiconductor manufacturing and inspecting equipment
JP2002190373A (en) Manufacturing method of ceramic heater
JP2002083668A (en) Manufacturing method of ceramic heater for semiconductor manufacturing/inspecting apparatus, and ceramic heater, and manufacturing system of the ceramic heater
JP2004296445A (en) Ceramic heater, manufacturing method of the same, and ceramic heater manufacturing system
JP2002175867A (en) Ceramic heater

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10380327

Country of ref document: US

122 Ep: pct application non-entry in european phase