WO2002016447A1 - Process for producing vinyl alicyclic hydrocarbon polymer and molded object - Google Patents

Process for producing vinyl alicyclic hydrocarbon polymer and molded object Download PDF

Info

Publication number
WO2002016447A1
WO2002016447A1 PCT/JP2001/007273 JP0107273W WO0216447A1 WO 2002016447 A1 WO2002016447 A1 WO 2002016447A1 JP 0107273 W JP0107273 W JP 0107273W WO 0216447 A1 WO0216447 A1 WO 0216447A1
Authority
WO
WIPO (PCT)
Prior art keywords
alicyclic hydrocarbon
reaction solution
polymer
hydrocarbon polymer
vinyl
Prior art date
Application number
PCT/JP2001/007273
Other languages
French (fr)
Japanese (ja)
Inventor
Tsutomu Nagamune
Original Assignee
Nippon Zeon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co., Ltd. filed Critical Nippon Zeon Co., Ltd.
Publication of WO2002016447A1 publication Critical patent/WO2002016447A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • C08F6/003Removal of residual monomers by physical means from polymer solutions, suspensions, dispersions or emulsions without recovery of the polymer therefrom

Definitions

  • the present invention relates to, for example, a method for producing a vinyl alicyclic hydrocarbon polymer suitable as a material for a molded article for optical use, a butyl alicyclic hydrocarbon polymer obtained thereby, and a molded article.
  • a bullet alicyclic hydrocarbon polymer obtained by hydrogenating an aromatic bullet polymer such as polystyrene is excellent in transparency, low water absorption, heat resistance, and the like, and is a material suitable for optical materials and the like.
  • a vinyl alicyclic hydrocarbon polymer is produced by performing a polymerization reaction by solution polymerization using an organic solvent, and then hydrogenating it in a reaction solution as needed. After removing volatile components such as a solvent from the reaction solution, it is necessary to form a molded body by heat melting molding or the like.
  • the reaction solution in the case of an aromatic vinyl polymer such as polystyrene, the reaction solution is dissolved in a large amount of a solvent (poor solvent) that does not dissolve the polymer. , And the polymer was collected by filtration (coagulation drying method) and dried to obtain a molding material.
  • a solvent poor solvent
  • the polymer recovered only by the coagulation drying method is in the form of particles containing volatile components such as solvents, the volatile components inside the particles cannot be completely removed even by drying. It was difficult to use it as a molded article for optical components because it caused molding defects such as streaks and microvoids.
  • the drying temperature is increased or the drying time is lengthened to solve the above problems, the polymer chains will be cut and the molecular weight will be reduced, which may cause the strength of the obtained molded article to be reduced.
  • Japanese Patent Application Laid-Open No. H11-132731 discloses that a reaction solution in which a metathesis ring-opening polymer is dissolved in an inert solvent is heated under reduced pressure to evaporate and remove the inert solvent.
  • a method for producing a metathesis ring-opened polymer by recovering the polymer using a direct drying method Has been disclosed.
  • the metathesis ring-opening polymer and the butyl alicyclic hydrocarbon polymer have completely different molecular structures and different mechanisms for reducing the molecular weight.
  • the publication does not teach that this method is versatile enough to be applicable to other resins.
  • An object of the present invention is to provide a method for producing a vinyl alicyclic hydrocarbon polymer capable of reducing the amount of residual volatile components and reducing the molecular weight reduction, and a vuyl alicyclic hydrocarbon polymer obtained by this method. That is.
  • Another object of the present invention is to provide a molded article comprising such a bullet alicyclic hydrocarbon polymer and having high strength without molding failure.
  • the present inventor obtains a polymer by recovering a polymer by evaporating and removing a volatile component such as a solvent or an unreacted monomer from a reaction solution containing a vinyl alicyclic hydrocarbon polymer by a specific method. Residual volatile components can be efficiently reduced while suppressing a decrease in the molecular weight of the polymer.As a result, not only a decrease in the strength of a molded article molded using the obtained polymer, but also molding defects such as silver streaks are caused. We found that it could be prevented.
  • a reaction solution containing a vinyl alicyclic hydrocarbon polymer is heated at normal pressure or lower to vaporize and remove volatile components. And recovering the polymer.
  • the polymer concentration of the reaction solution when heated at normal pressure or lower is less than 80%, a part of the volatile components contained in the reaction solution before heating the reaction solution at normal pressure or lower. It is preferable that the reaction solution is pre-concentrated so as to obtain a polymer concentration of 80% or more by removing water.
  • the specific means of heating the reaction solution at normal pressure or lower is preferably performed using a decompressible solvent removing device equipped with a heat exchanger, more preferably without a thin film stirrer and with a heat exchanger.
  • a solvent removal device capable of reducing pressure is used.
  • the lower limit of the heating temperature when the reaction solution is heated at normal pressure or lower is the glass transition temperature (T g) of the polymer contained in the reaction solution + 50 ° C, and the upper limit is 320 ° C. C is preferred.
  • the operating pressure at the time of heating the reaction solution at normal pressure or lower may be normal pressure or lower, and is preferably as low as possible, more preferably 15 kPa or lower.
  • the time (residence time in the apparatus) from the start of heating the reaction solution at normal pressure or lower to the recovery of the polymer is preferably 2 hours or less.
  • the vinyl alicyclic hydrocarbon polymer according to the present invention is obtained by any one of the above production methods.
  • a molded article according to the present invention is characterized by comprising a butyl alicyclic hydrocarbon polymer obtained by any one of the above production methods.
  • reaction solution containing the butyl alicyclic hydrocarbon polymer is heated at normal pressure or lower to evaporate and remove volatile components to recover the polymer.
  • reaction solution containing the butyl alicyclic hydrocarbon polymer is concentrated to a high concentration of 80% or more, and then heated at normal pressure or lower to evaporate and remove volatile components, thereby recovering the weight recovered. It is possible to efficiently reduce the residual volatile components contained in the polymer while suppressing the decrease in the molecular weight of the coalescence.
  • reaction solution containing the alicyclic cycloaliphatic polymer is placed under optimum conditions, for example, under an operating pressure of 15 kPa or less, and the lower limit of the temperature of the polymer contained in the reaction solution is reduced.
  • Transition temperature (Tg) + 50 ° C heating at a temperature within the upper limit of 320 ° C to evaporate and remove volatile components, and to keep the residence time in the equipment for 2 hours or less.
  • the amount of residual volatile components and the decrease in molecular weight are small. Since a bullet alicyclic hydrocarbon polymer is obtained, a molded article molded using the same has no molding failure and high strength.
  • Examples of the hydrogenated alicyclic hydrocarbon polymer according to the present invention include a hydride of an aromatic ring portion of an aromatic vinyl polymer, an alicyclic vinyl polymer, and a hydride of an alicyclic vinyl polymer.
  • the method for producing a vinyl alicyclic hydrocarbon polymer according to the present invention comprises: a step of polymerizing an aromatic butyl compound and a phenyl or alicyclic butyl compound in the presence of a polymerization catalyst; The method includes a step of hydrogenating the polymer obtained in the step in the presence of a hydrogenation catalyst, and a step of removing volatile components of the reaction solution obtained in the polymerization step or the hydrogenation step.
  • the aromatic butyl compound used in the polymerization step is not particularly limited as long as it is a compound having an aromatic ring and a polymerizable butyl group.
  • the aromatic vinyl compound include, for example, styrene, ⁇ -methylstyrene, aethylstyrene, ⁇ -propynolestyrene, ⁇ -isopropynolestyrene, a-t-butynolestyrene,
  • Examples of the alicyclic biel compound used in the polymerization step include a cycloalkene compound and a cycloalkane biel compound.
  • the cycloalkene compound is not particularly limited as long as it has an aliphatic ring having 5 to 8 carbon atoms having a double bond and has a polymerizable bur group.
  • the aliphatic ring can have an alkyl group having 1 to 4 carbon atoms or a halogen atom group as a substituent.
  • Examples of cycloalkene bur compounds include, for example, 2-Biel cyclopentene, 2-Methinolay 4-vinylinolepentene, 3-Bielcyclopentene,
  • 4-cyclopentenebininole compound such as bininolepentene; 4- Biercyclohexene, 4-Isopropenylbiercyclohexene, 1-Methyl-14-Bursik mouth hexene, 1-Methyl-14-isopropidinylvinylsixene, Hexene, 2-Methinole-1-vinylinolecyclohexene, 2-Methinole 4 Cyclohexene biel compounds such as 1-isopropyl-rubiercyclohexene; 2-1-bulcic-heptene, 3-biercycloheptene, 4--bulcycloheptene, 3-methyl-1-hexinol-heptene, 4-ethynolehc-heptene, 4-ethynole-6 Cycloheptene vinyl compounds such as vienorcycloheptene, 3-t-butyl-1-5-bulcycloheptene
  • the cycloalkane vinyl compound is not particularly limited as long as it is a compound having a saturated aliphatic ring having 5 to 8 carbon atoms and having a polymerizable vinyl group.
  • the aliphatic ring may have an alkyl group having 1 to 4 carbon atoms or a halogen atom group as a substituent.
  • Examples of the compound having a lip of vinyl alcohol include cyclopentane vinyl chloride such as 2-vinylcyclopentane, 2-methylinole-4-vinylinolepentane, 3-butynolecyclopentane, and 3-t-butylinolene 4-vinylinolepentane.
  • an aromatic bur compound, a pentopentyl compound and a cyclohexene vinylinoleic compound are preferred, and an aromatic bil compound and a hexene vinyl compound are more preferred.
  • aromatic bur compound, a pentopentyl compound and a cyclohexene vinylinoleic compound are preferred, and an aromatic bil compound and a hexene vinyl compound are more preferred.
  • a monomer copolymerizable therewith may be added in addition to the aromatic 'compound and the aromatic or alicyclic compound.
  • Such a monomer is not particularly limited as long as it can be copolymerized by a polymerization method such as radical polymerization, anion polymerization, or cationic polymerization.
  • Examples thereof include ethylene, propylene, isobutene, and 2-methyl-1- ⁇ -olefin-based monomers such as butene, 2-methinolene 1-pentene, 4-methinolene 1-pentene; cyclopentadiene, 1-methyinclopentadiene, 2-methinole cyclopentadiene, 2-ethynolethic pentadiene, 5 -Cyclopentadiene-based monomers such as methinoresic pentagen and 5,5-dimethylcyclopentadiene; cyclic olefinic monomers such as cycloptene, cyclopentene, cyclohexene and dicyclopentadiene; butadiene, isoprene, 1 , 3_pentagen, furan, chofen, 1,3-hexa Conjugated diene monomers such as styrene; ditrinole monomers such as atari lonitrile, methacryl
  • the obtained copolymer may be a random copolymer or a pseudo-random copolymer. And graft copolymers and block copolymers.
  • a block copolymer it may be a diblock, triblock or higher multiblock, a block copolymer having a star-like or other branched structure, or a block copolymer having an inclined block. .
  • the mode of the polymerization reaction may be any of known methods such as radical polymerization, anion polymerization, and cationic polymerization, and may be any of suspension polymerization, solution polymerization, and bulk polymerization.
  • a radical initiator such as azobisisobutyronitrile and benzoyl peroxide can be used as a polymerization catalyst.
  • BF 3 When performing cationic polymerization, BF 3, BF e like it can be used as a polymerization catalyst.
  • anion polymerization an organic metal can be used as a polymerization catalyst.
  • solution polymerization in which the polymerization is carried out in an organic solvent is convenient for continuously carrying out the steps.
  • Aion polymerization is preferable in order to obtain a polymer having a smaller molecular weight distribution, which is preferable as a polymer having a smaller birefringence.
  • the organic solvent is preferably a hydrocarbon solvent and is not particularly limited as long as it does not harm the polymerization catalyst. Examples thereof include ⁇ -butane, ⁇ -pentane, isopentane, ⁇ -hexane, ⁇ -heptane, and isooctane. Alicyclic hydrocarbons such as cyclopentane, cyclohexane and decalin; aromatic hydrocarbons such as benzene and toluene; ethers such as tetrahydrofuran and dioxane; Among them, aliphatic hydrocarbons and alicyclic hydrocarbons are preferable because they can be used as a solvent for a hydrogenation reaction after the polymerization reaction. These organic solvents can be used alone or in combination of two or more. The amount of the organic solvent to be used is such that the monomer concentration is usually 1 to 40% by weight, preferably 10 to 30% by weight.
  • the organic alkali metals used in the Ayuon polymerization include ⁇ -butyllithium, sec-butyllithium, t-butyl ⁇ lithium, and hexinolelithium.
  • Funinorerichiu Mono-organic lithium compounds such as lithium and stilbene lithium; polyfunctional organic lithium compounds such as dilithiomethane, 1,4-dilithiobutane, 1,4-dilithi-2-ethycyclohexane, 1,3,5-trilithiobenzene; sodium naphtha And potassium naphthalene.
  • organolithium compounds are preferred, and monoorganic lithium is particularly preferred.
  • These organic alkali metals can be used alone or in combination of two or more.
  • the amount of the organic metal used is usually from 0.05 to 100 mmol, preferably from 0.1 to 50 mmol, per 100 parts by weight of the monomer.
  • a Lewis base can be added to the polymerization catalyst, if desired, to obtain a polymer having a narrow molecular weight distribution.
  • Lewis bases include, for example, ethenolei conjugates such as getyl ether, dibutyl ether, methyl oleno ethenoate, dibenzino oleateno and tetrahydrofuran: tetramethylethylene diamine, triethylamine, pyridine and the like Tertiary amine compounds; alkyl metal alkoxide compounds such as potassium tertiary hydroxide and potassium tertiary butyl oxide; phosphine compounds such as triphenylphenylphosphine; Of these, ether compounds are particularly preferred because they form polymers having a narrow molecular weight distribution. These Lewis base compounds can be used alone or in combination of two or more. The amount of the Lewis base compound used is usually 0.01 to 10.0 mmol, preferably 0.01 to 5.0 mmol, based on the organic alkali metal.
  • the polymerization reaction is usually carried out at 170 to 150 ° C, preferably at 150 to 120 ° C.
  • the polymerization time is usually from 0.01 to 20 hours, preferably from 0.1 to 10 hours.
  • the polymerization reaction is stopped when the polymerization addition rate is increased and the monomer is almost eliminated, but a deactivator for the polymerization catalyst may be added for the purpose of preventing the reaction solution from gelling after the polymerization reaction.
  • a deactivator for the polymerization catalyst include water; alcohols such as methanol, ethanol, isopropyl alcohol, 1,2-butanediol, and glycerin; carboxylic acids such as formic acid, acetic acid, citric acid, and phthalic acid; And phenols such as tarezol.
  • the molecular weight of the polymer obtained in the polymerization step is appropriately selected according to the purpose of use, From the viewpoint of balance between mechanical strength and moldability, gel permeation of tetrahydrofuran solution.
  • Weight average molecular weight (Mw) in terms of polystyrene measured by chromatography preferably 100000 or more, more preferably Is from 3,000 to 280,000, more preferably from 50,000 to 2,500,000. If the molecular weight is too large, not only does the moldability deteriorate, but also the progress of the hydrogenation reaction slows down in the case of performing the hydrogenation described later, and the hydrogenation rate decreases. If the molecular weight is too small, the mechanical strength of the polymer will be low.
  • the molecular weight distribution (Mw / Mn) of the polymer obtained in the polymerization step is preferably 1.25 or less, more preferably 1.20 or less, and further preferably 1.15 or less.
  • Mw / Mn The molecular weight distribution is in the above range, a molded article molded using the polymer has excellent mechanical strength, and a decrease in the molecular weight in the volatile component removing step is reduced.
  • the glass transition temperature (Tg) of the polymer obtained in the polymerization step is preferably 50 to 250 ° C, more preferably 70 to 220 ° C, and still more preferably 80 to 200 ° C. C.
  • the polymer obtained by the polymerization step does not have a carbon-carbon unsaturated bond (a non-conjugated unsaturated bond and a di- or aromatic unsaturated bond, etc. in the side chain).
  • the hydrogenation step it is preferable to include a step of removing the polymerization catalyst from the reaction solution after the polymerization step.
  • a polymerization catalyst removing step may be included after the polymerization step.
  • an adsorbent such as activated alumina is added to the polymerization reaction solution, and the mixture is stirred while being heated, and the polymerization catalyst is adsorbed on the adsorbent and filtered.
  • a method of adding a small amount of isopropyl alcohol or the like to a polymerization reaction solution to precipitate a polymerization catalyst and removing the polymerization catalyst by filtration is usually 10 ppm or less, preferably 1 ppm or less, by weight of the metal element (catalyst) with respect to the polymer in the reaction solution.
  • the polymer obtained by the above polymerization step has a carbon-carbon unsaturated bond in a side chain ring
  • the hydrogenation reaction is carried out by contacting the polymer with hydrogen in the presence of a hydrogenation catalyst according to a conventional method.
  • the hydrogenation catalyst contains, for example, at least one element selected from nickel, nickel, iron, titanium, rhodium, palladium, platinum, ruthenium and rhenium.
  • nickel catalysts are preferred because they give a hydride having a narrow molecular weight distribution of the polymer, that is, a weight average molecular weight Z number average molecular weight ratio Mw / Mn close to 1.
  • the hydrogenation catalyst may be either a heterogeneous catalyst or a homogeneous catalyst.
  • the heterogeneous catalyst can be used as it is as a metal or a metal compound, or supported on a carrier.
  • Examples of the carrier include activated carbon, diatomaceous earth, magnesia, silica, alumina, silica-magnesia, silica-zirconia, diatomaceous earth-zirconia, and alumina-zirconia.
  • the amount of the metal supported on the carrier is usually from 0.01 to 80% by weight.
  • a catalyst in which a metal compound such as nickel, cobalt, titanium, or iron is combined with an organic metal compound such as organoaluminum or organolithium; an organic catalyst such as rhodium, palladium, ruthenium, or rhenium; A metal complex or the like can be used.
  • a metal compound such as nickel, cobalt, titanium, or iron
  • an organic metal compound such as organoaluminum or organolithium
  • an organic catalyst such as rhodium, palladium, ruthenium, or rhenium
  • a metal complex or the like can be used.
  • the metal compound for example, an acetylacetone salt, a naphthenate, a cyclopentagenenyl compound, a cyclopentadienyl dichloro compound, etc. of each metal are used.
  • organoaluminum examples include alkyl aluminum such as triethylaluminum and triisobutylaluminum; alkylaluminum alkylaluminum such as dimethylaluminum chloride and ethylaluminum dichloride; and alkylaluminum hydride such as diisobutylaluminum hydride. Is used.
  • organometallic complex examples include a “y-dichloro- ⁇ -benzene complex”, a dichlorotris (triphenyl-norethosphine) complex, and a hydride-chlorotris (triphenylphosphine) complex of the above metals.
  • the hydrogenation catalysts can be used alone or in combination of two or more.
  • the amount of the hydrogenation catalyst to be used is generally 0.03 to 50 parts by weight, preferably 0.16 to 33 parts by weight, per 100 parts by weight of the polymer.
  • the organic solvent used in the hydrogenation step include alcohols in addition to the solvent used in the solution polymerization described above. These organic solvents can be used alone or in combination of two or more.
  • the amount of the organic solvent used is such that the concentration of the polymer in the reaction solution is usually 1 to 50% by weight, preferably 3 to 40% by weight.
  • the hydrogenation reaction of the polymer is carried out by introducing hydrogen into the hydrogenation reaction solution. For example, a method of bringing the introduced hydrogen into sufficient contact with the polymer while stirring the organic solvent solution of the polymer is known. preferable.
  • the temperature of the hydrogenation reaction is usually 10 to 250 ° C, preferably 50 to 200 ° C.
  • the hydrogen pressure is usually 1 to 30 MPa, preferably 0.5 to 25 MPa.
  • a filter aid to the reaction solution, to separate the hydrogenation catalyst and the filter aid by filtration, and to reuse them in the next hydrogenation step.
  • Filter aids are chemically inert, porous particles that are used to reduce the likelihood of the filtered material from clogging the filter media.
  • the filter aid include inert, solvent-insoluble powders such as diatomaceous earth, silica, synthetic zeolite, perlite, and radiolite.
  • the filter aid is used in a body feed method in which a filter aid is added to the suspension to be filtered in advance, or a pre-coat method in which a filter aid is formed after a filter aid bed is formed and then filtered. The method is preferred.
  • the amount of the filter aid used is preferably about the same as that of the hydrogenation catalyst.
  • the recovered hydrogenation catalyst in the (batch) hydrogenation reaction, it is preferable to use the recovered hydrogenation catalyst as a hydrogenation catalyst in a state in which a filter aid is mixed, since this saves the amount of catalyst used. If necessary, a new hydrogenation catalyst or a filter aid may be supplemented in addition to the recovered hydrogenation catalyst. Although the cause is not clear, the reduction of the hydrogenation rate can be prevented by keeping the filter aid mixed.
  • the molecular weight of the polymer obtained in the hydrogenation step is appropriately selected depending on the purpose of use, but the genole permeation of a tetrahydrofuran (THF) solution 'weight average molecular weight (Mw) in terms of polystyrene measured by chromatography.
  • Mw weight average molecular weight
  • it is 10 000 or more, more preferably 30,000 to 280,000, further preferably 50 000 to 250,000.
  • the molecular weight distribution MwZMn of the polymer obtained in the hydrogenation step is preferably 2.0 or less. Below, more preferably 1.7 or less, still more preferably 1.5 or less.
  • the glass transition temperature (T g) of the polymer obtained in the hydrogenation step is preferably 50 to 250 ° C., more preferably 70 to 220 ° C., and still more preferably 80 to 200 ° C. ° C.
  • the present invention preferably includes a step of removing the hydrogenation catalyst from the reaction solution after the hydrogenation step.
  • both the polymerization catalyst and the hydrogenation catalyst may be removed at once after the hydrogenation step without performing the polymerization catalyst removal step.
  • the removal method and the residual amount of the catalyst after the removal may be the same as those in the polymerization catalyst removal step.
  • reaction solution after the above-described polymerization step or hydrogenation step is supplied to a closed system in which foreign substances do not enter from the external environment, and volatile components mainly including an organic solvent are removed from the reaction solution to obtain a heavy solution. Collect the coalesced. It is also preferable that the solvent removed by evaporation is collected by condensing in a condensing device and reused.
  • a direct drying method is used in which the reaction solution is heated at normal pressure or lower to evaporate and remove solvents and other volatile components.
  • Solvent removal equipment that can be directly dried and can be decompressed include vented screw extrusion dryers and thin film dryers, but considering the decrease in the amount of polymer molecules caused by mechanical stress, the It is preferable to use a thin film dryer that has a small shear stress applied to the polymer of the present invention. And the like) are particularly preferable because no shear stress is applied to the polymer in the solution.
  • Examples of such a solvent removing device that does not include a thin film stirrer and includes a heat exchanger and that can be decompressed include a hibiscus evaporator (manufactured by Mitsui Engineering & Shipbuilding Co., Ltd.).
  • the heating temperature for the reaction solution is preferably such that the lower limit is the glass transition temperature (T g) of the polymer contained in the reaction solution + 50 ° C, and the upper limit is 320 ° C, more preferably It is 240 ° C or more and 280 ° C or less. If the heating temperature of the reaction solution is too low, the evaporation efficiency becomes poor, causing problems such as a decrease in productivity and thermal degradation of the polymer. If the heating temperature is too high, the polymer to be recovered will be thermally degraded, causing a decrease in molecular weight. There is it.
  • T g glass transition temperature
  • the operating pressure at the time of heating the reaction solution is preferably such that the effect of removing volatile components increases as the pressure decreases, more preferably 15 kPa or less, and further preferably 5 kPa or less. is there. If the operating pressure is too high, the evaporation efficiency of the solution will be poor and the content of volatile components in the polymer after drying will be high.
  • the reaction solution is started to be heated at normal pressure or lower (specifically, after being introduced into the solvent removing device capable of reducing the life), until the polymer is recovered (specifically, for example, the solvent).
  • the time (remaining time in the device) after being taken out of the removing device and cooled and solidified and then pelletized is preferably 2 hours or less, more preferably 1 hour or less. If the residence time in the apparatus is too long, the polymer to be recovered may be thermally degraded and cause a decrease in molecular weight.
  • two or more solvent removing devices capable of reducing the pressure may be used, and in this case, the operating pressure and the heating temperature may be different for each device.
  • the method further comprises a step of pre-concentration (pre-concentration step) so that the polymer concentration becomes 80% or more, preferably 85% or more.
  • preconcentration step is not particularly limited, and is a method in which the reaction solution is concentrated only at normal pressure; a method in which the reaction solution is heated and concentrated under normal pressure (heating concentration method); A method in which the pressurized reaction solution is released into a system under normal pressure, and only the volatile components are scattered and separated by the pressure difference to concentrate the reaction solution (flash concentration method).
  • the flash concentration method is preferred from the viewpoint of good productivity, and the heat flash concentration method combining the heat concentration method and the flash concentration method is particularly preferred.
  • Examples of the apparatus used for the flash concentration method include a flash box and a flash separator (manufactured by Mitsui Engineering & Shipbuilding Co., Ltd.).
  • the method may further include a step of pre-heating the reaction solution before pre-concentration (pre-heating step).
  • pre-heating step By preheating the reaction solution before the preconcentration, the concentration efficiency of the polymer is improved.
  • Preheating method includes heating the storage container for the reaction solution before concentration and the transfer pipe from the storage container or Z to the solvent removal device with a jacket-type heating device, or using a multi-tube heat exchanger or plate-fin heat exchanger. Method using a known heat exchanger such as a heat exchanger.
  • the temperature of the solution at the time of preheating is usually 50 to 400 ° C, preferably 70 to 350 ° C.
  • the above-mentioned removal of volatile components is performed in a low oxygen concentration atmosphere.
  • the low oxygen concentration atmosphere preferably oxygen concentration of 1 0 Capacity ° / 0 or less, more preferably adjusted 8 vol ° / 0 following atmosphere so as.
  • By setting the working atmosphere to have a lower oxygen concentration oxidation of the polymer is prevented, and coloring of the obtained molded body is prevented.
  • As a specific means for creating a low oxygen concentration atmosphere there is a method of setting the inside of an apparatus used for removing volatile components to an atmosphere of an inert gas such as nitrogen or helium.
  • the volatile component content in the recovered polymer can be reduced to preferably 1000 ppm or less, more preferably 500 ppm or less. .
  • the content of the volatile component in the polymer can be recovered to 100 000 ppm or less, there is little possibility that molding failure such as sylper streak void occurs in the molded product.
  • binders can be added to the bullet alicyclic hydrocarbon polymer obtained by the method of the present invention, if necessary.
  • the various compounding agents are not particularly limited as long as they are generally used in the resin industry.
  • antioxidants such as phenol-based, phosphite-based, and thioether-based compounds
  • ultraviolet rays such as hindered phenol-based compounds Absorbents
  • mold release agents such as aliphatic alcohols, aliphatic esters, aromatic esters, triglycerides, fluorinated surfactants and higher fatty acid metal salts
  • other lubricants anti-fog agents, plasticizers, pigments, near red External absorbents, antistatic agents and the like.
  • the bullet alicyclic hydrocarbon polymer obtained by the method of the present invention can be kneaded in a molten state using a twin-screw extruder or the like after production, and used as pellets. Then, molding is performed by a known method, for example, injection molding, extrusion molding, cast molding, inflation molding, blow molding, vacuum molding, press molding, compression molding, rotational molding, calendar molding, rolling molding, cutting molding, or the like. be able to.
  • the bullet alicyclic hydrocarbon polymer obtained by the method of the present invention is useful in a wide range of fields as various molded articles including optical materials.
  • optical materials such as optical disks, optical lenses, prisms, light diffusion plates, optical cards, optical fibers, optical mirrors, liquid crystal display element substrates, light guide plates, polarizing films, retardation films; liquid chemical containers, ampoules, and vials , Prefilled syringes, infusion bags, sealed medicine bags, press-through packages, solid medicine containers, eye drop containers, etc.
  • sampling containers such as sample containers, medical instruments such as syringes, sterile containers such as scalpels, forceps, gauze, contact lenses, etc., beakers, petri dishes, flasks, flasks, test tubes, centrifuge tubes, etc.
  • Medical optical components such as analytical instruments, plastic lenses for medical inspection, Ryoyo infusion Chi Interview one flop, pipes, fittings, piping materials such as pulp, denture, medical equipment, such as artificial hearts, artificial tooth root of any artificial organs or parts thereof;
  • Processing or transfer containers such as tanks, trays, carriers, cases, etc., protective materials such as carrier tapes, separation films, pipes, tubes, pulp, shipper flowmeters, piping such as filters and pumps, sampling containers, and bottles
  • Equipment for processing electronic components such as liquid containers such as liquid and ampoule bags; covering materials for electric wires and cables; general-purpose insulation such as OA equipment such as industrial electronic equipment, copying machines, computers, and printers, and instruments Materials; Rigid printed circuit boards, flexible printed circuit boards, multilayer printed wiring boards, and other circuit boards, especially high-frequency circuit boards for satellite communications equipment that require high-frequency characteristics; liquid crystal substrates, optical memories, automobiles and aircraft
  • Substrate of transparent conductive film such as surface heating element such as defroster, electric and conductor sealing materials such as transistors, ICs, LSIs, LEDs, etc.Sealing of electric and electronic parts such as components, motors, capacitors, switches, and sensors
  • Electrical insulation materials such as sealing materials, body materials such as TVs and video cameras,
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) were measured by gel permeation using a cyclohexane as a moving layer (chromatography-one in terms of polystyrene) unless otherwise specified. Hydrogenation rates were measured by — NMR.
  • the resulting styrene polymer solution was transferred to a pressurizable reactor, and 20 kg of a nickel-silicone supported catalyst (E22U, manufactured by JGC Corporation) was added as a hydrogenation catalyst, and the hydrogen pressure in the reactor was reduced. 4. Perform hydrogenation reaction at 5MPa, temperature 160 ° C for 6 hours, A vinylcyclohexane polymer was obtained. The hydrogenation rate of the obtained bulcyclohexane polymer was 99.9%, and the glass transition temperature was 145 ° C.
  • a nickel-silicone supported catalyst E22U, manufactured by JGC Corporation
  • the obtained styrene-styrene / ptadene-styrene block copolymer solution was transferred to a pressurizable reactor, and a nickel-silica supported catalyst (E22U: Nikki Chemical Co., Ltd.) was used as a hydrogenation catalyst. 18 kg
  • the hydrogenation reaction was performed for 6 hours at a hydrogen pressure in the reactor of 4.5 MPa and a temperature of 170 ° C for 6 hours, and the hydrogenation-styrene polymer (viercyclohexane polymer) block, hydrogenated monostyrene A ternary block copolymer comprising a nobutadiene copolymer block and a hydrogenated monostyrene polymer block was obtained.
  • the hydrogenation rate of the obtained block copolymer was 99.9 ° / 0 , and the glass transition temperature was 140 ° C.
  • reaction solution After heating the above reaction solution (25% concentration) to 220 ° C, it is applied to a pressurizable cylindrical solution concentrator (550 mm ID, 500 mm height, manufactured by BUSS) at 40 k / h. Introduced in g. As an operation at the time of introduction, a part of the solvent in the reaction solution is flash-separated by creating a pressure difference by setting the introduction pressure of the reaction solution to 300 kPa and the exhaust pressure to 300 kPa. The reaction solution was preliminarily concentrated. The separated and evaporated solvent was transferred to the heat exchanger from the exhaust port and then recovered by condensation. The polymer concentration of the obtained reaction solution was 85%.
  • the reaction solution pre-concentrated by the above method was converted to a solvent equipped with a plate-fin heat exchanger (width 27 O mm, height 20 O mm, depth 255 mm, heat transfer area 4.3 m 2 ).
  • the gas was directly introduced into the removal device (manufactured by BUSS) from the outlet of the cylindrical concentrator through the inside of the double pipe through which the heating medium at 270 ° C passed, and the heating temperature was set at 270 ° C.
  • a process of removing volatile components such as solvents was performed by heating and decompression.
  • the evaporated solvent (cyclohexane) was suctioned from the exhaust port by a vacuum pump and condensed by a heat exchanger and recovered.
  • the vinylcyclohexane polymer in the molten state accumulated at the bottom of the equipment was continuously led out of the equipment by a gear pump, extruded into strands, cooled and solidified, and formed into pellets by a pelletizer. .
  • the time from introduction of the concentrated solution into the device to pelletization was 1 hour.
  • the concentration of the volatile components remaining in the obtained pellet-shaped bush hex polymer was measured by gas chromatography and found to be 80 ppm.
  • the weight average molecular weight (Mw) of the bulcyclohexane polymer was determined in terms of polystyrene by gel permeation chromatography (GPC). After the treatment, it was 11.90000, and the reduction rate was 10%.
  • Example 3 In the drying step, the same procedure as in Example 1 was carried out except that the heating temperature was set at 220 ° C. and the residence time of the bulcyclohexane polymer in the apparatus was set at 2 hours. A coalescence was obtained. The volatile component concentration of the obtained bulcyclohexane polymer was 100 ppm, and Mw was 132 000 before the solvent removal treatment and 123 000 after the solvent removal treatment. Was 7%.
  • a pellet-like bicyclohexane polymer was obtained in the same manner as in Example 1 except that the internal pressure of the apparatus was changed to 15 kPa in the drying step.
  • the volatile component concentration in the obtained Biercyclohexane polymer was 160 ppm, and Mw was 1320000 before the solvent removal treatment, and 1190 000 after the solvent removal treatment. The decrease was 10%.
  • the reaction solution was added to a phenolic acid inhibitor, ilganox 100 (Chipagaigi Co., Ltd.). 0.5 kg).
  • the obtained vinylcyclohexane reaction solution (concentration: 25%) was introduced into the solvent removing apparatus used in Example 1 at 40 kg / h without passing through the concentration step, and was heated at a heating temperature of 270 ° C. At an internal pressure of 1 kPa, a solvent removal treatment was performed by heating under reduced pressure. The evaporated solvent was sucked from the exhaust port by a vacuum pump, and was condensed and recovered by a heat exchanger. The molten cyclohexane-based polymer collected at the bottom of the apparatus was continuously drawn out of the apparatus by a gear pump, solidified by cooling while extruding into a strand, and formed into a pellet by a pelletizer.
  • the residence time of the bulcyclohexane polymer in the apparatus was 6 hours.
  • the volatile component concentration in the obtained vinylcyclohexane polymer was 200 ppm, and Mw was 132,000 before the solvent removal treatment, and 112,000 after the solvent removal treatment, and decreased.
  • the rate was 15%.
  • a pellet-shaped vinyl hexane polymer was obtained in the same manner as in Example 1 except that the concentration step was not performed, and the residence time of the vinyl siloxane polymer in the drying step in the apparatus was set to 10 hours.
  • the volatile component concentration in the obtained bursik-mouth hexane-based polymer was 100 ppm, and the Mw was 13200000 before the solvent removal treatment and 11000000 after the solvent removal treatment. 0, a decrease of 17%.
  • a pellet-shaped vinylcyclohexane polymer was obtained in the same manner as in Example 1 except that the concentration step was not performed and the heating temperature in the drying step was 220 ° C.
  • the volatile component concentration in the obtained bulcyclohexane polymer was 250 pm, and Mw was Before the solvent removal treatment, it was 132,000, and after the solvent removal treatment, it was 110,000, and the reduction rate was 13. /. Met.
  • a pellet-shaped bulcyclohexane polymer was obtained in the same manner as in Example 1 except that the block copolymer solution obtained in Production Example 2 was used.
  • the concentration of volatile components in the obtained polymer was 70 ppm, and Mw was 7500 before the solvent removal treatment and 7150 after the solvent removal treatment, and decreased. Rate is 5. /. Met.
  • a bicyclohexane polymer was recovered from the Bielsik-mouth reaction solution obtained in Production Example 1 by a coagulation drying method. That is, after the hydrogenation catalyst hexane reaction solution to Byurushi black obtained in Preparation Example 1 was separated off by filtration and then to the reaction solution 1 part by weight to 1 0 m 3 of agitator with container, 3 weight A part of isopropanol was added, and the reaction solution was introduced at 40 kg / h under stirring of isopropanol to coagulate the hexane polymer at the mouth of the vininole resin to obtain a slurry of a bielcyclohexane polymer.
  • the slurry of the bulcyclohexane polymer is sent to a filter to separate most volatile components such as isopropanol / cyclohexane, and the bulcyclohexane polymer is transferred to a hot air dryer, which is a known facility.
  • the temperature of the hot air was 60 ° C, and the drying time was 2 hours.
  • the volatile component concentration in the obtained vinylcyclohexane polymer was 20000 p, and Mw was 13200000 before the solvent removal treatment, and 1320000 after the solvent removal treatment. Yes, the reduction rate was 0%.
  • a dried block copolymer was obtained in the same manner as in Comparative Example 1, except that the block copolymer solution obtained in Production Example 2 was used.
  • the volatile component concentration in the obtained block copolymer was 1,600 ppm, and Mw was 7,500,000 before the solvent removal treatment, and 7,500,000 after the solvent removal treatment. The decrease was 0%.
  • Table 1 also shows the results of Examples 1 to 7 and Comparative Examples 1 and 2.
  • Example 1 Concentration (%) (° C) (kPa) (h) Concentration (ppm) (%) Example 1 Production Example 1 85 270 1 1 80 10 Example 2 Production Example 1 85 220 1 2 100 7 Example 3 Production Example 1 85 270 15 1 160 10 Example 4 Production Example 1 No concentration 270 1 6 200 15 Example 5 Production Example 1 No concentration 270 1 10 100 17 Example 6 Production Example 1 No concentration 220 1 6 250 13 Example 7 Production Example 2 85 270 1 1 70 5 Comparative Example 1 Production Example 1 No concentration 2000 0 Comparative Example 2 Production Example 2 No concentration 1600 0

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A process for producing a vinyl alicyclic hydrocarbon polymer, characterized by heating a reaction solution containing a vinyl alicyclic hydrocarbon polymer at a pressure not higher than ordinary pressure to remove volatile matters by evaporation and recovering the polymer. By the process, the vinyl alicyclic hydrocarbon polymer obtained can be reduced in the content of residual volatile ingredients therein and inhibited from suffering a decrease in molecular weight.

Description

明糸田書 ビュル脂環式炭化水素重合体の製造方法およぴ成形体 発明の属する技術分野  AKITODA-SHOU Method for producing bur alicyclic hydrocarbon polymer and molded article
本発明は、 たとえば光学用成形体の材料として好適なビニル脂環式炭化水素重 合体の製造方法、 これにより得られるビュル脂環式炭化水素重合体、 および成形 体に関する。  The present invention relates to, for example, a method for producing a vinyl alicyclic hydrocarbon polymer suitable as a material for a molded article for optical use, a butyl alicyclic hydrocarbon polymer obtained thereby, and a molded article.
背景技術  Background art
ポリスチレンなどの芳香族ビュル重合体を水素化して得られるビュル脂環式炭 化水素重合体は、 透明性、 低吸水性、 耐熱性等に優れ、 光学材料などに適した材 料である。 ビニル脂環式炭化水素重合体は、 有機溶媒を用いた溶液重合により重 合反応を行い、 その後必要に応じて反応溶液中で水素化して製造されるが、 光学 材料などとして使用するには、 反応溶液中から溶媒などの揮発性成分を除去した 後に、 加熱溶融成形などにより成形体にする必要がある。  A bullet alicyclic hydrocarbon polymer obtained by hydrogenating an aromatic bullet polymer such as polystyrene is excellent in transparency, low water absorption, heat resistance, and the like, and is a material suitable for optical materials and the like. A vinyl alicyclic hydrocarbon polymer is produced by performing a polymerization reaction by solution polymerization using an organic solvent, and then hydrogenating it in a reaction solution as needed. After removing volatile components such as a solvent from the reaction solution, it is necessary to form a molded body by heat melting molding or the like.
従来、 反応溶液から揮発性成分を除去して重合体を回収する方法としては、 ポ リスチレンなどの芳香族ビニル重合体の場合は、 重合体を溶解しない大量の溶媒 (貧溶媒) 中に反応溶液を注いで重合体を析出させた後に、 濾過により重合体を 回収し (凝固乾燥法) 、 乾燥して成形材料としていた。  Conventionally, as a method for recovering the polymer by removing volatile components from the reaction solution, in the case of an aromatic vinyl polymer such as polystyrene, the reaction solution is dissolved in a large amount of a solvent (poor solvent) that does not dissolve the polymer. , And the polymer was collected by filtration (coagulation drying method) and dried to obtain a molding material.
しかしながら、 凝固乾燥法のみにより回収した重合体は、 溶媒等の揮発性成分 を含有する粒子状であるために、 乾燥によっても粒子内部の揮発性成分を完全に 除去できず、 加熱溶融成形時にシルパーストリークやミクロボイ ドなどの成形不 良の原因となるため、 光学部品用の成形体として使用するのが困難であった。 ま た、 前記問題を解決するために乾燥温度を高くしたり、 乾燥時間を長くすると、 重合体鎖の切断が生じて分子量が低下するため、 得られる成形体の強度が低下す る原因ともなつていた。  However, since the polymer recovered only by the coagulation drying method is in the form of particles containing volatile components such as solvents, the volatile components inside the particles cannot be completely removed even by drying. It was difficult to use it as a molded article for optical components because it caused molding defects such as streaks and microvoids. In addition, if the drying temperature is increased or the drying time is lengthened to solve the above problems, the polymer chains will be cut and the molecular weight will be reduced, which may cause the strength of the obtained molded article to be reduced. I was
なお、 特開平 4一 1 3 2 7 3 1号公報は、 メタセシス開環重合体が不活性溶媒 に溶解している反応溶液を、 減圧下で加熱して不活性溶媒を蒸発除去させるとい つ,た直接乾燥法を用いて、 重合体を回収するメタセシス開環重合体の製造方法を 開示している。 し力 し、 メタセシス開環重合体とビュル脂環式炭化水素重合体と は分子構造が全く異なり、 分子量が低下する機構も異なる。 該公報には、 この方 法を他の樹脂に適用できるほどの汎用性があるとの教示はなされていない。 Japanese Patent Application Laid-Open No. H11-132731 discloses that a reaction solution in which a metathesis ring-opening polymer is dissolved in an inert solvent is heated under reduced pressure to evaporate and remove the inert solvent. A method for producing a metathesis ring-opened polymer by recovering the polymer using a direct drying method Has been disclosed. However, the metathesis ring-opening polymer and the butyl alicyclic hydrocarbon polymer have completely different molecular structures and different mechanisms for reducing the molecular weight. The publication does not teach that this method is versatile enough to be applicable to other resins.
発明の開示  Disclosure of the invention
本発明の目的は、 残留揮発性成分量を少なくでき、 しかも分子量低下を少なく できるビニル脂環式炭化水素重合体の製造方法、 およびこの方法により得られる ビュル脂環式炭化水素重合体を提供することである。  An object of the present invention is to provide a method for producing a vinyl alicyclic hydrocarbon polymer capable of reducing the amount of residual volatile components and reducing the molecular weight reduction, and a vuyl alicyclic hydrocarbon polymer obtained by this method. That is.
また、 本発明は、 このようなビュル脂環式炭化水素重合体からなり、 成形不良 がなく高い強度を有する成形体を提供することも目的とする。  Another object of the present invention is to provide a molded article comprising such a bullet alicyclic hydrocarbon polymer and having high strength without molding failure.
本発明者は、 ビニル脂環式炭化水素重合体を含有する反応溶液から溶剤や未反 応モノマーなどの揮発性成分を、 特定の方法で蒸発除去させて重合体を回収する ことにより、 得られる重合体の分子量低下を抑制しつつ、 残留揮発性成分を効率 よく低減でき、 その結果、 得られる重合体を用いて成形した成形体の強度低下の みならず、 シルバーストリークなどの成形不良なども防止できることを見出した。 すなわち、 本発明に係るビ-ル脂環式炭化水素重合体の製造方法は、 ビニル脂 環式炭化水素重合体を含有する反応溶液を、 常圧以下で加熱して揮発性成分を蒸 発除去させて重合体を回収することを特徴とする。  The present inventor obtains a polymer by recovering a polymer by evaporating and removing a volatile component such as a solvent or an unreacted monomer from a reaction solution containing a vinyl alicyclic hydrocarbon polymer by a specific method. Residual volatile components can be efficiently reduced while suppressing a decrease in the molecular weight of the polymer.As a result, not only a decrease in the strength of a molded article molded using the obtained polymer, but also molding defects such as silver streaks are caused. We found that it could be prevented. That is, in the method for producing a bele cycloaliphatic hydrocarbon polymer according to the present invention, a reaction solution containing a vinyl alicyclic hydrocarbon polymer is heated at normal pressure or lower to vaporize and remove volatile components. And recovering the polymer.
常圧以下で加熱する際の前記反応溶液の重合体濃度が 8 0 %未満である場合に は、 前記反応溶液を常圧以下で加熱する前に、 反応溶液に含まれる揮発性成分の 一部を除去して 8 0 %以上の重合体濃度になるように前記反応溶液を予備濃縮す ることが好ましい。  If the polymer concentration of the reaction solution when heated at normal pressure or lower is less than 80%, a part of the volatile components contained in the reaction solution before heating the reaction solution at normal pressure or lower. It is preferable that the reaction solution is pre-concentrated so as to obtain a polymer concentration of 80% or more by removing water.
前記反応溶液を常圧以下で加熱する具体的手段は、 熱交換器を備えた減圧可能 な溶媒除去装置を用いて行うことが好ましく、 より好ましくは薄膜攪拌器を備え ずかつ熱交換器を備えた減圧可能な溶媒除去装置を用いる。  The specific means of heating the reaction solution at normal pressure or lower is preferably performed using a decompressible solvent removing device equipped with a heat exchanger, more preferably without a thin film stirrer and with a heat exchanger. A solvent removal device capable of reducing pressure is used.
前記反応溶液を常圧以下で加熱する際の加熱温度は、 その下限が反応溶液に含 まれる重合体のガラス転移温度 (T g ) + 5 0 °Cであり、 その上限が 3 2 0 °Cで あることが好ましい。  The lower limit of the heating temperature when the reaction solution is heated at normal pressure or lower is the glass transition temperature (T g) of the polymer contained in the reaction solution + 50 ° C, and the upper limit is 320 ° C. C is preferred.
前記反応溶液を常圧以下で加熱する際の操作圧力は、 常圧以下であればよく、 低いほど好ましいが、 より好ましくは 1 5 k P a以下である。 前記反応溶液を常圧以下で加熱し始めてから、 重合体を回収するまでの時間 (装置内滞留時間) は、 2時間以下であることが好ましい。 The operating pressure at the time of heating the reaction solution at normal pressure or lower may be normal pressure or lower, and is preferably as low as possible, more preferably 15 kPa or lower. The time (residence time in the apparatus) from the start of heating the reaction solution at normal pressure or lower to the recovery of the polymer is preferably 2 hours or less.
本発明に係るビニル脂環式炭化水素重合体は、 上記いずれかの製造方法により 得られることを特徴とする。  The vinyl alicyclic hydrocarbon polymer according to the present invention is obtained by any one of the above production methods.
本発明に係る成形体は、 上記いずれかの製造方法により得られるビュル脂環式 炭化水素重合体からなることを特徴とする。  A molded article according to the present invention is characterized by comprising a butyl alicyclic hydrocarbon polymer obtained by any one of the above production methods.
ビュル脂環式炭化水素重合体は、 長時間の高温加熱による分子量の低下の度合 いがメタセシス開環重合体などと比較して非常に大きいので、 長時間の高温加熱 により、 反応溶液から揮発性成分を除去して回収された重合体を用いて成形品を 成形した場合には、 得られる成形品の機械的強度が低下する。 一方、 何ら加熱す ることなく揮発性成分を完全に除去しょうとすると、 長時間を要することになり、 工業的な生産性の悪ィヒを引き起こしてしまう。 また、 加熱を行わずに揮発性成分 の除去操作時間を短くした場合には、 重合体中に多くの揮発性成分が残留し、 こ うして得られる重合体を用いて成形品を成形すると、 成形加工の段階でシルバー ストリーク等の成形不良を引き起こすことがある。  Bull alicyclic hydrocarbon polymers have a very large decrease in molecular weight due to prolonged high-temperature heating compared to metathesis ring-opening polymers, etc. When a molded article is molded using the polymer recovered by removing the components, the mechanical strength of the resulting molded article decreases. On the other hand, the complete removal of volatile components without any heating would take a long time, causing industrial productivity to suffer. In addition, when the operation time for removing volatile components is shortened without heating, many volatile components remain in the polymer, and when a molded article is molded using the polymer thus obtained, During the molding process, molding defects such as silver streaks may occur.
本発明では、 ビュル脂環式炭化水素重合体を含有する反応溶液を常圧以下で加 熱することにより揮発性成分を蒸発除去させて重合体を回収する。  In the present invention, the reaction solution containing the butyl alicyclic hydrocarbon polymer is heated at normal pressure or lower to evaporate and remove volatile components to recover the polymer.
特に、 ビュル脂環式炭化水素重合体を含有する反応溶液を 8 0 %以上の高濃度 にまで濃縮した後、 常圧以下で加熱して揮発性成分を蒸発除去させることにより、 回収される重合体の分子量低下を抑制しつつ、 効率的に重合体に含まれる残留揮 発性成分の低減を図ることができる。  In particular, the reaction solution containing the butyl alicyclic hydrocarbon polymer is concentrated to a high concentration of 80% or more, and then heated at normal pressure or lower to evaporate and remove volatile components, thereby recovering the weight recovered. It is possible to efficiently reduce the residual volatile components contained in the polymer while suppressing the decrease in the molecular weight of the coalescence.
また、 ビ-ル脂環式炭化水素重合体を含有する反応溶液を、 最適な条件下、 た とえば 1 5 k P a以下の操作圧力下で、 下限が反応溶液に含まれる重合体のガラ ス転移温度 (T g ) + 5 0 °C、 上限が 3 2 0 °Cである範囲内の温度で加熱して、 揮発性成分を蒸発除去させ、 しかも装置内滞留時間を 2時間以下とすることによ り、 回収される重合体の分子量低下を抑制しつつ、 効率的に重合体に含まれる残 留揮発性成分の低減を図ることができるとともに、 工業的に見た生産性をも最適 にパランスされる。  In addition, the reaction solution containing the alicyclic cycloaliphatic polymer is placed under optimum conditions, for example, under an operating pressure of 15 kPa or less, and the lower limit of the temperature of the polymer contained in the reaction solution is reduced. Transition temperature (Tg) + 50 ° C, heating at a temperature within the upper limit of 320 ° C to evaporate and remove volatile components, and to keep the residence time in the equipment for 2 hours or less As a result, it is possible to efficiently reduce the residual volatile components contained in the polymer while suppressing the decrease in the molecular weight of the polymer to be recovered, and to optimize the industrial productivity Will be balanced.
このように本発明方法によれば、 残留揮発性成分量および分子量低下が少ない ビュル脂環式炭化水素重合体が得られるので、 これを用いて成形された成形体は、 成形不良がなく、 高い強度を有する。 As described above, according to the method of the present invention, the amount of residual volatile components and the decrease in molecular weight are small. Since a bullet alicyclic hydrocarbon polymer is obtained, a molded article molded using the same has no molding failure and high strength.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係るビュル脂環式炭化水素重合体としては、 たとえば、 芳香族ビニル 重合体の芳香環部分の水素化物、 脂環族ビュル重合体、 および脂環族ビニル重合 体の水素化物などが挙げられる。  Examples of the hydrogenated alicyclic hydrocarbon polymer according to the present invention include a hydride of an aromatic ring portion of an aromatic vinyl polymer, an alicyclic vinyl polymer, and a hydride of an alicyclic vinyl polymer. Can be
本発明に係るビニル脂環式炭化水素重合体の製造方法は、 芳香族ビュル化合物 およぴノまたは脂環族ビュル化合物を重合触媒の存在下で重合する工程と、 必要 に応じて、 前記重合工程により得られる重合体を水素化触媒の存在下に水素化す る工程と、 前記重合工程または水素化工程により得られる反応溶液の揮発性成分 を除去する揮発性成分除去工程とを有する。  The method for producing a vinyl alicyclic hydrocarbon polymer according to the present invention comprises: a step of polymerizing an aromatic butyl compound and a phenyl or alicyclic butyl compound in the presence of a polymerization catalyst; The method includes a step of hydrogenating the polymer obtained in the step in the presence of a hydrogenation catalyst, and a step of removing volatile components of the reaction solution obtained in the polymerization step or the hydrogenation step.
重合工程  Polymerization process
重合工程に用いられる芳香族ビュル化合物としては、 芳香環を有し、 かつ、 重 合性のビュル基を有する化合物であれば格別な限定はなレ、。 芳香族ビニル化合物 の例としては、 たとえば、 スチレン、 α—メチルスチレン、 aーェチルスチレン、 α—プロピノレスチレン、 α—イソプロピノレスチレン、 a - tーブチノレスチレン、 The aromatic butyl compound used in the polymerization step is not particularly limited as long as it is a compound having an aromatic ring and a polymerizable butyl group. Examples of the aromatic vinyl compound include, for example, styrene, α-methylstyrene, aethylstyrene, α-propynolestyrene, α-isopropynolestyrene, a-t-butynolestyrene,
2—メチルスチレン、 3—メチノレスチレン、 4—メチノレスチレン、 2, 4—ジメ チルスチレン、 2 , 4ージィソプロピノレスチレン、 4 - t—ブチルスチレン、 5 ― t—プチノレ一 2—メチノレスチレン、 モノクロロスチレン、 ジクロロスチレン、 モノフルォロスチレンなどを挙げることができる。 これらの中でも、 スチレン、 α—メチルスチレンなどが特に好ましい。 2-Methylstyrene, 3-Methynolestyrene, 4-Methynolestyrene, 2,4-Dimethylstyrene, 2,4-Diisopropynolestyrene, 4-t-Butylstyrene, 5-t-Ptinole-1-Methylstyrene Examples include styrene, monochlorostyrene, dichlorostyrene, and monofluorostyrene. Among them, styrene, α-methylstyrene and the like are particularly preferable.
重合工程に用いられる脂環族ビエル化合物としては、 シクロアルケンビュル化 合物おょぴシクロアルカンビエル化合物が挙げられる。  Examples of the alicyclic biel compound used in the polymerization step include a cycloalkene compound and a cycloalkane biel compound.
シクロアルケンビュル化合物としては、 二重結合を持つ炭素数 5〜 8の脂肪族 環を有し、 かつ、 重合性のビュル基を有する化合物であれば格別な限定はない。 脂肪族環には炭素数 1 ~ 4のアルキル基またはハロゲン原子基を置換基に持つこ とができる。 シクロアルケンビュル化合物の例としては、 たとえば、 2—ビエル シクロペンテン、 2—メチノレー 4一ビニノレペンテン、 3—ビエルシクロペンテン、 The cycloalkene compound is not particularly limited as long as it has an aliphatic ring having 5 to 8 carbon atoms having a double bond and has a polymerizable bur group. The aliphatic ring can have an alkyl group having 1 to 4 carbon atoms or a halogen atom group as a substituent. Examples of cycloalkene bur compounds include, for example, 2-Biel cyclopentene, 2-Methinolay 4-vinylinolepentene, 3-Bielcyclopentene,
3— t〜プチ ·レー 4ービニノレペンテンなどのシクロペンテンビニノレ化合物; 4― ビエルシクロへキセン、 4一イソプロぺニルビエルシクロへキセン、 1一メチル 一 4 _ビュルシク口へキセン、 1ーメチル一 4—ィソプロぺニルビ二ルシク口へ キセン、 2—メチノレ一 4ービニノレシクロへキセン、 2—メチノレー 4一イソプロぺ -ルビエルシクロへキセンなどのシクロへキセンビエル化合物; 2一ビュルシク 口ヘプテン、 3—ビエルシクロヘプテン、 4—ビュルシクロヘプテン、 3—メチ ノレ一 6 -ビニノレシク口ヘプテン、 4ーェチノレ _ 6—ビエノレシクロヘプテン、 3― t一プチル一 5—ビュルシクロヘプテンなどのシクロヘプテンビニル化合物; 2 一ビエノレシクロオタテン、 3—ビニルシクロォクテン、 4一ビエノレシクロォクテ ン、 2—メチノレ一 5—ビュルシクロオタテン、 4 ーェチノレー 6—ビニノレシクロォ クテン、 3— t—ブチルー 7—ビュルシクロオタテンなどのシクロォクテンビニ ル化合物などが挙げられる。 これらの中でもシクロペンテンビュル化合物おょぴ シクロへキセンビニル化合物が好ましく、 シクロへキセンビ ϋル化合物が特に好 ましい。 3-t ~ petite 4-cyclopentenebininole compound such as bininolepentene; 4- Biercyclohexene, 4-Isopropenylbiercyclohexene, 1-Methyl-14-Bursik mouth hexene, 1-Methyl-14-isopropidinylvinylsixene, Hexene, 2-Methinole-1-vinylinolecyclohexene, 2-Methinole 4 Cyclohexene biel compounds such as 1-isopropyl-rubiercyclohexene; 2-1-bulcic-heptene, 3-biercycloheptene, 4--bulcycloheptene, 3-methyl-1-hexinol-heptene, 4-ethynolehc-heptene, 4-ethynole-6 Cycloheptene vinyl compounds such as vienorcycloheptene, 3-t-butyl-1-5-bulcycloheptene; 2-bienolecyclootaten, 3-vinylcyclooctene, 4-bienolecyclooctene, 2-methinole 1-bulcinoleca otene, 4-ethynolee 6-vininole cyclo octene, 3 — Cyclooctenevinyl compounds such as t-butyl-7-butylcyclootatene. Among these, a cyclopentene compound and a cyclohexene vinyl compound are preferred, and a cyclohexene compound is particularly preferred.
シクロアルカンビニル化合物としては、 炭素数 5〜 8の飽和脂肪族環を有し、 かつ、 重合性のビニル基を有する化合物であれば格別な限定はなレ、。 脂肪族環に は炭素数 1〜 4のアルキル基またはハロゲン原子基を置換基に持つことができる。 、ンク口アル力ンビニルイ匕合物の例としては、 2—ビニルシクロペンタン、 2—メ チノレ一 4ービニノレペンタン、 3—ビュノレシクロペンタン、 3— tーブチノレー 4 - ビニノレペンタンなどのシクロペンタンビニノレイ匕合物; 4ービニノレシクロへキサン、 4—ィソプロぺニノレビニノレシク口へキサン、 1—メチノレー 4一ビニノレシク口へキ サン、 1—メチルー 4ーィソプロぺニルビニノレシク口へキサン、 2—メチノレ一 4 -ビエノレシク口へキサン、 2—メチノレー 4ーィソプロぺニノレビエノレシク口へキサ ンなどのシクロへキサンビニル化合物; 2—ビニ^/シクロヘプタン、 3—ビエノレ シクロへプタン、 4—ビエルシクロへプタン、 3—メチノレー 6—ビエルシクロへ ブタン、 4—ェチノレ一 6—ビュルシクロヘプタン、 3— t—ブチルー 5—ビエル シクロへプタンなどのシク口ヘプタンビニノレイ匕合物; 2一ビニルシク口オタタン、 3—ビニルシクロオクタン、 4—ビュルシクロオクタン、 2—メチル一 5—ビニ ノレシクロオクタン、 4一ェチ/レー 6—ビニノレシクロオクタン、 3— t—プチル一 一ビニルシクロォクタンなどのシクロォクタンビエル化合物などが挙げられる。 これらの中でもシクロペンタンビニルイ匕合物おょぴシクロへキサンビニ/レ化合物 が好ましく、 シク口へキサンビュル化合物が特に好ましい。 The cycloalkane vinyl compound is not particularly limited as long as it is a compound having a saturated aliphatic ring having 5 to 8 carbon atoms and having a polymerizable vinyl group. The aliphatic ring may have an alkyl group having 1 to 4 carbon atoms or a halogen atom group as a substituent. Examples of the compound having a lip of vinyl alcohol include cyclopentane vinyl chloride such as 2-vinylcyclopentane, 2-methylinole-4-vinylinolepentane, 3-butynolecyclopentane, and 3-t-butylinolene 4-vinylinolepentane. Norayi conjugate; 4-vinylinolecyclohexane, 4-isopropinolenobinoresin hex, 1-methinole 41-vinylinolexine hexane, 1-methyl-4-isoprozinylbininoresic mouth hexane, 2-methinole 14 -Cyclohexane vinyl compounds, such as -hexanolic hexane, 2-methinolyl 4-isopropinolenovinylic hexane; 2-vinyl ^ / cycloheptane, 3-bienolecycloheptane, 4-biercycloheptane, 3- Methynoreh 6-Biercyclohe butane, 4-Echinorhe 6-Bulurcycloheptane, 3-t-Buty L-5-Hyper-heptane vinylinole conjugates such as Bier cycloheptane; 2-Vinyl cyclo-octane, 3-Vinylcyclooctane, 4-Butylcyclooctane, 2-Methyl-5-vinylinolecyclooctane, 41- And cyclooctane biel compounds such as 6-vinylincyclooctane and 3-t-butyl-vinylcyclooctane. Of these, cyclopentane vinylide conjugates and cyclohexane vinyl compounds are preferred, and hexahexane vinyl compounds are particularly preferred.
これらの化合物の中でも芳香族ビュル化合物、 シク口ペンテンビュル化合物お ょぴシクロへキセンビニノレイヒ合物が好ましく、 芳香族ビエル化合物およびシク口 へキセンビニル化合物がより好ましい。 これらの化合物は、 それぞれ単独で、 あ るいは 2種以上を組み合わせて用いることができる。  Among these compounds, an aromatic bur compound, a pentopentyl compound and a cyclohexene vinylinoleic compound are preferred, and an aromatic bil compound and a hexene vinyl compound are more preferred. These compounds can be used alone or in combination of two or more.
芳香族'ビュル化合物およぴノまたは脂環族ビュル化合物以外に、 これと共重合 可能な単量体を加えてもよい。 このような単量体としては、 ラジカル重合、 ァニ オン重合、 カチオン重合などの重合法により共重合可能なものであれば特に限定 されず、 たとえば、 エチレン、 プロピレン、 ィソブテン、 2ーメチル一 1—ブテ ン、 2—メチノレー 1一ペンテン、 4ーメチノレー 1一ペンテンなどの α—ォレフィ ン系単量体;シクロペンタジェン、 1ーメチ ンクロペンタジェン、 2—メチノレ シクロペンタジェン、 2ーェチノレシク口ペンタジェン、 5—メチノレシク口ペンタ ジェン、 5, 5—ジメチルシクロペンタジェンなどのシクロペンタジェン系単量 体;シクロプテン、 シクロペンテン、 シクロへキセン、 ジシクロペンタジェンな どの環状ォレフィン系単量体;ブタジエン、 イソプレン、 1 , 3 _ペンタジェン、 フラン、 チォフェン、 1 , 3—へキサジェンなどの共役ジェン系単量体;アタリ ロニトリノレ、 メタクリロニトリノレ、 α—クロロアクリロニトリルなどの二トリノレ 系単量体;メタタリル酸メチル、 メタタリル酸ェチル、 メタタリル酸プロピル、 メタタリル酸プチル、 アタリル酸メチル、 アタリル酸ェチル、 アタリル酸プロピ ル、 アタリル酸ブチルなどのァクリル酸エステル系単量体;アタリル酸、 メタク リル酸、 無水マレイン酸などの不飽和脂肪酸系単量体; フヱニルマレイミ ド;ェ チレンオキサイ ド、 プロピレンオキサイド、 トリメチレンオキサイド、 トリオキ サン、 ジォキサン、 シクロへキセンォキサイ ド、 スチレンォキサイド、 ェピクロ ルヒ ドリン、 テトラヒ ドロフランなどの環状エーテル系単量体;メチルビニルェ —テル、 Ν—ビニルカルバゾール、 Ν—ビ-ルー 2—ピロリ ドンなどの複素環含 有ビニル化合物系単量体などが挙げられる。 これらの共重合可能な単量体は、 そ れぞれ単独で、 あるいは 2種以上を組み合わせて用いることができる。 共重合可 能な単量体を加える場合には、 重合体中の繰り返し単位が 5 0重量%以下となる 範囲で添加すればよい。 A monomer copolymerizable therewith may be added in addition to the aromatic 'compound and the aromatic or alicyclic compound. Such a monomer is not particularly limited as long as it can be copolymerized by a polymerization method such as radical polymerization, anion polymerization, or cationic polymerization. Examples thereof include ethylene, propylene, isobutene, and 2-methyl-1- Α-olefin-based monomers such as butene, 2-methinolene 1-pentene, 4-methinolene 1-pentene; cyclopentadiene, 1-methyinclopentadiene, 2-methinole cyclopentadiene, 2-ethynolethic pentadiene, 5 -Cyclopentadiene-based monomers such as methinoresic pentagen and 5,5-dimethylcyclopentadiene; cyclic olefinic monomers such as cycloptene, cyclopentene, cyclohexene and dicyclopentadiene; butadiene, isoprene, 1 , 3_pentagen, furan, chofen, 1,3-hexa Conjugated diene monomers such as styrene; ditrinole monomers such as atari lonitrile, methacrylonitrile, and α-chloroacrylonitrile; methyl methacrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methallylate, and atalylic acid Acrylic ester monomers such as methyl, ethyl acrylate, propyl acrylate, and butyl acrylate; unsaturated fatty acid monomers such as atrial acid, methacrylic acid, and maleic anhydride; phenyl maleimide; ethylene oxide , Propylene oxide, trimethylene oxide, trioxane, dioxane, cyclohexenoxide, styrene oxide, epichlorohydrin, tetrahydrofuran, and other cyclic ether monomers; methyl vinyl ether, vinyl vinyl azo And heterocyclic ring-containing vinyl compound monomers such as vinyl and vinyl 2-pyrrolidone. These copolymerizable monomers can be used alone or in combination of two or more. When copolymerizable monomers are added, the amount of repeating units in the polymer will be 50% by weight or less. What is necessary is just to add in the range.
芳香族ビニル化合物および Zまたは脂環族ビニルイ匕合物と、 上記共重合可能な 単量体とを共重合する場合、 得られる共重合体としては、 ランダム共重合体、 擬 似ランダム共重合体、 グラフト共重合体、 ブロック共重合体などが挙げられる。 ブロック共重合体の場合は、 ジブロック、 トリブロック、 またはそれ以上のマル チブロックや、 スター状などの分枝構造を有するものでもよく、 また傾斜プロッ クを有するブロック共重合体でもよレ、。  When the aromatic vinyl compound and the Z or alicyclic vinyl compound are copolymerized with the copolymerizable monomer, the obtained copolymer may be a random copolymer or a pseudo-random copolymer. And graft copolymers and block copolymers. In the case of a block copolymer, it may be a diblock, triblock or higher multiblock, a block copolymer having a star-like or other branched structure, or a block copolymer having an inclined block. .
重合反応の様式は ラジカル重合、 ァニオン重合、 カチオン重合などの公知の 方法のいずれでもよく、 また、 懸濁重合、 溶液重合、 塊状重合のいずれでもよい。 ラジカル重合を行う場合は、 重合触媒としてァゾビスイソブチロニトリル、 ベ ンゾィルペルォキシドのごときラジカル開始剤を使用できる。  The mode of the polymerization reaction may be any of known methods such as radical polymerization, anion polymerization, and cationic polymerization, and may be any of suspension polymerization, solution polymerization, and bulk polymerization. When radical polymerization is performed, a radical initiator such as azobisisobutyronitrile and benzoyl peroxide can be used as a polymerization catalyst.
カチオン重合を行う場合は、 重合触媒として B F 3 、 B F e などを使用できる。 ァニオン重合を行う場合は、 重合触媒として有機アル力リ金属を使用できる。 重合反応後に、 水素化反応を続けて行う場合には、 有機溶媒中で重合する溶液 重合が工程を連続して行うのに好都合である。 また、 複屈折のより小さな重合体 として好ましい、 分子量分布のより狭い重合体を得るためにはァユオン重合が好 ましい。 When performing cationic polymerization, BF 3, BF e like it can be used as a polymerization catalyst. When performing anion polymerization, an organic metal can be used as a polymerization catalyst. When the hydrogenation reaction is carried out continuously after the polymerization reaction, solution polymerization in which the polymerization is carried out in an organic solvent is convenient for continuously carrying out the steps. Aion polymerization is preferable in order to obtain a polymer having a smaller molecular weight distribution, which is preferable as a polymer having a smaller birefringence.
有機溶媒としては、 炭化水素系溶媒が好ましく、 重合触媒を害さないものであ れば特に限定されず、 たとえば、 η—ブタン、 η—ペンタン、 イソペンタン、 η —へキサン、 η—ヘプタン、 イソオクタンなどの脂肪族炭化水素.; シクロペンタ ン、 シクロへキサン、 デカリンなどの脂環式炭化水素';ベンゼン、 トルエンなど の芳香族炭化水素;テトラヒドロフラン、 ジォキサンなどのエーテル類などが挙 げられる。 これらの中でも、 脂肪族炭化水素や脂環式炭化水素は重合反応後の水 素化反応の溶媒としても使えるので好ましい。 これら有機溶媒は、 それぞれ単独 で、 または 2種以上を組み合わせて使用することができる。 有機溶媒の使用量は、 単量体濃度が、 通常 1〜 4 0重量%、 好ましくは 1 0〜 3 0重量%になる量であ る。  The organic solvent is preferably a hydrocarbon solvent and is not particularly limited as long as it does not harm the polymerization catalyst. Examples thereof include η-butane, η-pentane, isopentane, η-hexane, η-heptane, and isooctane. Alicyclic hydrocarbons such as cyclopentane, cyclohexane and decalin; aromatic hydrocarbons such as benzene and toluene; ethers such as tetrahydrofuran and dioxane; Among them, aliphatic hydrocarbons and alicyclic hydrocarbons are preferable because they can be used as a solvent for a hydrogenation reaction after the polymerization reaction. These organic solvents can be used alone or in combination of two or more. The amount of the organic solvent to be used is such that the monomer concentration is usually 1 to 40% by weight, preferably 10 to 30% by weight.
ァユオン重合に用いる有機アルカリ金属としては、 η—ブチルリチウム、 s e c—ブチルリチウム、 t一プチ^^リチウム、 へキシノレリチウム。 フヱニノレリチウ ム、 スチルベンリチウムなどのモノ有機リチウム化合物;ジリチオメタン、 1 , 4—ジリチォブタン、 1 , 4ージリチォー 2—ェチ シクロへキサン、 1 , 3, 5—トリリチォベンゼンなどの多官能性有機リチウム化合物;ナトリゥムナフタ レン、 カリウムナフタレンなどが挙げられる。 これらの中でも、 有機リチウム化 合物が好ましく、 モノ有機リチウムが特に好ましい。 これらの有機アルカリ金属 は、 それぞ単独で、 または 2種以上を組み合わせて使用することができる。 有機 アル力リ金属の使用量は、 単量体 1 0 0重量部あたり、 通常 0 . 0 5〜 1 0 0ミ リモル、 好ましくは 0 . 1 0〜 5 0ミリモルである。 The organic alkali metals used in the Ayuon polymerization include η-butyllithium, sec-butyllithium, t-butyl ^^ lithium, and hexinolelithium. Funinorerichiu Mono-organic lithium compounds such as lithium and stilbene lithium; polyfunctional organic lithium compounds such as dilithiomethane, 1,4-dilithiobutane, 1,4-dilithi-2-ethycyclohexane, 1,3,5-trilithiobenzene; sodium naphtha And potassium naphthalene. Of these, organolithium compounds are preferred, and monoorganic lithium is particularly preferred. These organic alkali metals can be used alone or in combination of two or more. The amount of the organic metal used is usually from 0.05 to 100 mmol, preferably from 0.1 to 50 mmol, per 100 parts by weight of the monomer.
ァニオン重合においては、 所望により、 分子量分布の狭い重合体を得るために 重合触媒にルイス塩基を添加できる。  In anion polymerization, a Lewis base can be added to the polymerization catalyst, if desired, to obtain a polymer having a narrow molecular weight distribution.
ルイス塩基としては、 たとえば、 ジェチルエーテル、 ジブチルエーテル、 メチ ノレェチノレエーテノレ、 ジべンジノレエーテノレ、 テトラヒ ドロフランなどのエーテノレイ匕 合物:テトラメチルエチレンジァミン、 トリェチルァミン、 ピリジンなどの第 3 級ァミン化合物;力リゥムー tーァミルォキシド、 力リゥムー t一ブチルォキシ ドなどのアルキル金属アルコキシド化合物; トリフエニルホスフィンなどのホス フィン化合物などが挙げられる。 これらの中でも特にエーテル化合物が分子量分 布の狭い重合体を生成するので好ましい。 これらのルイス塩基ィヒ合物は、 それぞ れ単独で、 または 2種以上組み合わせて用いることができる。 ルイス塩基化合物 の使用量は、 有機アルカリ金属に対して、 通常 0 . 0 0 1 〜 1 0 . 0ミリモル、 好ましくは 0 . 0 1 〜 5 . 0ミリモルである。  Examples of Lewis bases include, for example, ethenolei conjugates such as getyl ether, dibutyl ether, methyl oleno ethenoate, dibenzino oleateno and tetrahydrofuran: tetramethylethylene diamine, triethylamine, pyridine and the like Tertiary amine compounds; alkyl metal alkoxide compounds such as potassium tertiary hydroxide and potassium tertiary butyl oxide; phosphine compounds such as triphenylphenylphosphine; Of these, ether compounds are particularly preferred because they form polymers having a narrow molecular weight distribution. These Lewis base compounds can be used alone or in combination of two or more. The amount of the Lewis base compound used is usually 0.01 to 10.0 mmol, preferably 0.01 to 5.0 mmol, based on the organic alkali metal.
重合反応は、 通常一 7 0〜 1 5 0 °C、 好ましくは一 5 0〜 1 2 0 °Cで行う。 重 合時間は、 通常 0 . 0 1 〜 2 0時間、 好ましくは 0 . 1 〜 1 0時間である。  The polymerization reaction is usually carried out at 170 to 150 ° C, preferably at 150 to 120 ° C. The polymerization time is usually from 0.01 to 20 hours, preferably from 0.1 to 10 hours.
重合反応は、 重合添加率が高くなって単量体がほとんど無くなれば停止するが、 重合反応後の反応溶液のゲル化を防ぐ目的で重合触媒の不活性化剤を添加しても よい。 重合触媒の不活性化剤としては、 たとえば、 水;メタノール、 エタノール、 イソプロピルアルコール、 1 , 2—ブタンジオール、 グリセリンなどのアルコー ル類;ギ酸、 酢酸、 クェン酸、 フタル酸などのカルボン酸類;フエノール、 タレ ゾールなどのフエノール類などが挙げられる。  The polymerization reaction is stopped when the polymerization addition rate is increased and the monomer is almost eliminated, but a deactivator for the polymerization catalyst may be added for the purpose of preventing the reaction solution from gelling after the polymerization reaction. Examples of the deactivator of the polymerization catalyst include water; alcohols such as methanol, ethanol, isopropyl alcohol, 1,2-butanediol, and glycerin; carboxylic acids such as formic acid, acetic acid, citric acid, and phthalic acid; And phenols such as tarezol.
重合工程で得られる重合体の分子量は、 使用目的に応じて適宜選択されるが、 機械強度と成形加工性とのパランスの観点から、 テトラヒドロフラン溶液のゲル •パ一ミエーシヨン .クロマトグラフィーで測定したポリスチレン換算の重量平 均分子量 (Mw) で、 好ましくは 1 0 0 0 0以上、 より好ましくは 3 0 0 0 0〜 2 8 0 0 0 0、 さらに好ましくは 5 0 0 0 0〜2 5 0 0 0 0である。 分子量が過 度に大きいと、 成形性が悪くなるばかりでなく、 後述する水素化を行う場合に水 素化反応の進行が遅くなり、 水素化率が低下する。 また、 分子量が過度に小さい と重合体の機械強度が小さくなる。 The molecular weight of the polymer obtained in the polymerization step is appropriately selected according to the purpose of use, From the viewpoint of balance between mechanical strength and moldability, gel permeation of tetrahydrofuran solution. Weight average molecular weight (Mw) in terms of polystyrene measured by chromatography, preferably 100000 or more, more preferably Is from 3,000 to 280,000, more preferably from 50,000 to 2,500,000. If the molecular weight is too large, not only does the moldability deteriorate, but also the progress of the hydrogenation reaction slows down in the case of performing the hydrogenation described later, and the hydrogenation rate decreases. If the molecular weight is too small, the mechanical strength of the polymer will be low.
重合工程で得られる重合体の分子量分布 (Mw/M n ) は、 好ましくは 1 . 2 5以下、 より好ましくは 1 . 2 0以下、 さらに好ましくは 1 . 1 5以下である。 分子量分布が上記範囲にあるときに、 該重合体を用いて成形した成形体の機械強 度が優れ、 揮発性成分除去工程での分子量の低下も少なくなる。  The molecular weight distribution (Mw / Mn) of the polymer obtained in the polymerization step is preferably 1.25 or less, more preferably 1.20 or less, and further preferably 1.15 or less. When the molecular weight distribution is in the above range, a molded article molded using the polymer has excellent mechanical strength, and a decrease in the molecular weight in the volatile component removing step is reduced.
重合工程で得られる重合体のガラス転移温度 (T g ) は、 好ましくは 5 0〜 2 5 0 °C、 より好ましくは 7 0〜2 2 0 °C、 さらに好ましくは 8 0〜2 0 0 °Cであ る。  The glass transition temperature (Tg) of the polymer obtained in the polymerization step is preferably 50 to 250 ° C, more preferably 70 to 220 ° C, and still more preferably 80 to 200 ° C. C.
なお、 前記重合工程により得られる重合体が、 側鎖の環に炭素—炭素不飽和結 合 (非共役不飽和結合およびノまたは芳香族性不飽和結合など。 以下同じ) を有 さず、 後述する水素化工程を行わない場合には、 前記重合工程後の反応溶液から 重合触媒を除去する工程を含むことが好ましい。 なお、 水素化工程を行う場合で あっても、 重合工程後に重合触媒除去工程を含むこととしても良い。 溶液重合し た場合における重合触媒の除去法としては、 活性アルミナなどの吸着剤を重合反 応溶液に添加して加温状態で攪拌し、 該吸着剤に重合触媒を吸着させて濾過によ り除去する方法、 ィソプロピルアルコールなどを重合反応溶液に少量添加して重 合触媒を沈殿させて濾過により除去する方法などが挙げられる。 触媒除去後の反 応溶液中の触媒残留量は、 反応溶液中の重合体に対し、 (触媒) 金属元素の重量 で、 通常 1 0 p p m以下、 好ましくは 1 p p m以下である。  The polymer obtained by the polymerization step does not have a carbon-carbon unsaturated bond (a non-conjugated unsaturated bond and a di- or aromatic unsaturated bond, etc. in the side chain). When the hydrogenation step is not performed, it is preferable to include a step of removing the polymerization catalyst from the reaction solution after the polymerization step. In addition, even when the hydrogenation step is performed, a polymerization catalyst removing step may be included after the polymerization step. As a method for removing the polymerization catalyst in the case of solution polymerization, an adsorbent such as activated alumina is added to the polymerization reaction solution, and the mixture is stirred while being heated, and the polymerization catalyst is adsorbed on the adsorbent and filtered. And a method of adding a small amount of isopropyl alcohol or the like to a polymerization reaction solution to precipitate a polymerization catalyst and removing the polymerization catalyst by filtration. The residual amount of the catalyst in the reaction solution after removal of the catalyst is usually 10 ppm or less, preferably 1 ppm or less, by weight of the metal element (catalyst) with respect to the polymer in the reaction solution.
水素化工程  Hydrogenation process
本発明では、 上記重合工程により得られる重合体が、 側鎖の環に炭素一炭素不 飽和結合を有する場合には、 その不飽和基の一部または全部を水素化することが 好ましい。 不飽和基を水素化することで重合体の耐熱性や透明性を改善できる。 水素化反応は、 常法に従い、 水素化触媒の存在下に重合体を水素と接触させる ことにより行う。 In the present invention, when the polymer obtained by the above polymerization step has a carbon-carbon unsaturated bond in a side chain ring, it is preferable to partially or entirely hydrogenate the unsaturated group. By hydrogenating the unsaturated group, the heat resistance and transparency of the polymer can be improved. The hydrogenation reaction is carried out by contacting the polymer with hydrogen in the presence of a hydrogenation catalyst according to a conventional method.
水素化触媒としては、 たとえば、 ニッケル、 コノ ルト、 鉄、 チタン、 ロジウム、 パラジウム、 白金、 ルテェゥムおよびレニウムから選ばれる少なくとも 1種の元 素を含有するものである。 これらの中で、 ニッケル触媒が重合体の分子量分布が 狭く、 即ち、 重量平均分子量 Z数平均分子量比 Mw/M nが 1に近い水素化物を 与えるので好ましい。 水素化触媒は不均一系触媒、 均一系触媒のいずれでもよい。 不均一系触媒は、 金属もしくは金属化合物のままか、 または担体に担持させて用 いることができる。  The hydrogenation catalyst contains, for example, at least one element selected from nickel, nickel, iron, titanium, rhodium, palladium, platinum, ruthenium and rhenium. Among them, nickel catalysts are preferred because they give a hydride having a narrow molecular weight distribution of the polymer, that is, a weight average molecular weight Z number average molecular weight ratio Mw / Mn close to 1. The hydrogenation catalyst may be either a heterogeneous catalyst or a homogeneous catalyst. The heterogeneous catalyst can be used as it is as a metal or a metal compound, or supported on a carrier.
担体としては、 活性炭、 けいそう土、 マグネシア、 シリカ、 アルミナ、 シリカ —マグネシア、 シリカ一ジルコニァ、 けいそう土一ジルコユア、 アルミナージル コ-ァなどが挙げられる。 担体上の上記金属の担持量は、 通常 0 . 0 1 〜 8 0重 量%である。  Examples of the carrier include activated carbon, diatomaceous earth, magnesia, silica, alumina, silica-magnesia, silica-zirconia, diatomaceous earth-zirconia, and alumina-zirconia. The amount of the metal supported on the carrier is usually from 0.01 to 80% by weight.
均一系触媒としては、 たとえば、 ニッケル、 コバルト、 チタンまたは鉄などの 金属化合物と、 有機アルミニウムや有機リチウムのような有機金属化合物とを組 み合わせた触媒; ロジウム、 パラジウム、 ルテニウム、 レニウムなどの有機金属 錯体などを用いることができる。 金属化合物としては、 たとえば、 各金属のァセ チルアセトン塩、 ナフテン酸塩、 シクロペンタジェニル化合物、 シクロペンタジ ェニルジクロ口化合物などが用いられる。 有機アルミニウムとしては、 トリェチ ルアルミニウム、 トリイソプチルアルミニウムなどのアルキルアルミニウム;ジ ェチルアルミニウムクロリ ド、 ェチルアルミニウムジクロリ ドなどのノヽロゲンィ匕 アルキルアルミニウム;ジイソブチルアルミニウムハイドライドなどの水素化ァ ルキルアルミニウムなどが使用される。 有機金属錯体としては、 たとえば、 上記 各金属の" y—ジクロロ ー π—ベンゼン錯体、 ジクロロートリス (トリフエ-ノレホ スフィン) 錯体、 ヒ ドリ ッ ド一クロロートリス (トリフエニルホスフィン) 錯体 などが挙げられる。  As a homogeneous catalyst, for example, a catalyst in which a metal compound such as nickel, cobalt, titanium, or iron is combined with an organic metal compound such as organoaluminum or organolithium; an organic catalyst such as rhodium, palladium, ruthenium, or rhenium; A metal complex or the like can be used. As the metal compound, for example, an acetylacetone salt, a naphthenate, a cyclopentagenenyl compound, a cyclopentadienyl dichloro compound, etc. of each metal are used. Examples of the organoaluminum include alkyl aluminum such as triethylaluminum and triisobutylaluminum; alkylaluminum alkylaluminum such as dimethylaluminum chloride and ethylaluminum dichloride; and alkylaluminum hydride such as diisobutylaluminum hydride. Is used. Examples of the organometallic complex include a “y-dichloro-π-benzene complex”, a dichlorotris (triphenyl-norethosphine) complex, and a hydride-chlorotris (triphenylphosphine) complex of the above metals.
これらの水素化触媒は、 それぞれ単独で、 または 2種以上組み合わせて用いる ことができる。 水素化触媒の使用量は、 重合体 1 0 0重量部当たり、 通常 0 . 0 3 〜 5 0重量部、 好ましくは 0 . 1 6 〜 3 3重量部である。 水素化工程に用いる有機溶媒としては、 前述の溶液重合に用いた溶媒の他に、 アルコール類も挙げられる。 これらの有機溶媒は、 それぞれ単独で、 または 2種 以上組み合わせて用いることもできる。 有機溶媒の使用量は、 反応溶液中の重合 体濃度が、 通常 1〜50重量%、 好ましくは 3〜40重量%となる量である。 重合体の水素化反応は、 水素を水素化反応液中に導入することによって行われ、 たとえば、 重合体の有機溶媒溶液の撹拌下にて導入された水素を充分に重合体と 接触させる方法が好ましい。 These hydrogenation catalysts can be used alone or in combination of two or more. The amount of the hydrogenation catalyst to be used is generally 0.03 to 50 parts by weight, preferably 0.16 to 33 parts by weight, per 100 parts by weight of the polymer. Examples of the organic solvent used in the hydrogenation step include alcohols in addition to the solvent used in the solution polymerization described above. These organic solvents can be used alone or in combination of two or more. The amount of the organic solvent used is such that the concentration of the polymer in the reaction solution is usually 1 to 50% by weight, preferably 3 to 40% by weight. The hydrogenation reaction of the polymer is carried out by introducing hydrogen into the hydrogenation reaction solution. For example, a method of bringing the introduced hydrogen into sufficient contact with the polymer while stirring the organic solvent solution of the polymer is known. preferable.
水素化反応の温度は、 通常 10〜250°C、 好ましくは 50〜200°Cである。 水素圧力は、 通常l〜30MP a、 好ましくは 0. 5〜25MP aである。  The temperature of the hydrogenation reaction is usually 10 to 250 ° C, preferably 50 to 200 ° C. The hydrogen pressure is usually 1 to 30 MPa, preferably 0.5 to 25 MPa.
水素化後は、 反応溶液に濾過助剤を添加して、 水素化触媒および濾過助剤を濾 別して、 次の水素化工程での再利用に供することが好ましい。  After the hydrogenation, it is preferable to add a filter aid to the reaction solution, to separate the hydrogenation catalyst and the filter aid by filtration, and to reuse them in the next hydrogenation step.
濾過助剤は濾過される物質が濾材に目詰まりしにくくするために用いる、 化学 的に不活性な多孔質の粒子である。 濾過助剤としては、 たとえば、 けいそう土、 シリカ、 合成ゼオライ ト、 パーライ ト、 ラジオライトなどの不活性で溶剤に溶け ない粉状物が挙げられる。 濾過助剤の使い方としては、 濾過する懸濁液に予め添 加するボディフィード法、 濾材に濾過助剤のべッドを形成しておいてから濾過す るプリコート法などがあるが、 ボディフィード法が好ましい。 濾過助剤の使用量 は、 水素化触媒と同程度とすることが好ましい。 重合体についての次のバッチ Filter aids are chemically inert, porous particles that are used to reduce the likelihood of the filtered material from clogging the filter media. Examples of the filter aid include inert, solvent-insoluble powders such as diatomaceous earth, silica, synthetic zeolite, perlite, and radiolite. The filter aid is used in a body feed method in which a filter aid is added to the suspension to be filtered in advance, or a pre-coat method in which a filter aid is formed after a filter aid bed is formed and then filtered. The method is preferred. The amount of the filter aid used is preferably about the same as that of the hydrogenation catalyst. Next batch for polymer
(回分) の水素化反応に際しては、 回収された水素化触媒を濾過助剤が混入した 状態で、 水素化触媒として使用することが触媒の使用量の節約になるので好まし レ、。 必要に応じて、 回収された水素化触媒に加えて新たな水素化触媒や濾過助剤 を補充してもよい。 原因は明確でないが、 濾過助剤が混入したままの方が水素化 率の低下を防止することができる。 In the (batch) hydrogenation reaction, it is preferable to use the recovered hydrogenation catalyst as a hydrogenation catalyst in a state in which a filter aid is mixed, since this saves the amount of catalyst used. If necessary, a new hydrogenation catalyst or a filter aid may be supplemented in addition to the recovered hydrogenation catalyst. Although the cause is not clear, the reduction of the hydrogenation rate can be prevented by keeping the filter aid mixed.
水素化工程で得られる重合体の分子量は、 使用目的に応じて適宜選択されるが、 テトラヒドロフラン (THF) 溶液のゲノレ ·パーミエーション 'クロマトグラフ ィ一で測定したポリスチレン換算の重量平均分子量 (Mw) で、 好ましくは 10 000以上、 より好ましくは 30000〜 280000、 さらに好ましくは 50 000〜 250000である。  The molecular weight of the polymer obtained in the hydrogenation step is appropriately selected depending on the purpose of use, but the genole permeation of a tetrahydrofuran (THF) solution 'weight average molecular weight (Mw) in terms of polystyrene measured by chromatography. Preferably, it is 10 000 or more, more preferably 30,000 to 280,000, further preferably 50 000 to 250,000.
水素化工程で得られる重合体の分子量分布 MwZMnは、 好ましくは 2. 0以 下、 より好ましくは 1 . 7以下、 さらに好ましくは 1 . 5以下である。 The molecular weight distribution MwZMn of the polymer obtained in the hydrogenation step is preferably 2.0 or less. Below, more preferably 1.7 or less, still more preferably 1.5 or less.
水素化工程で得られる重合体のガラス転移温度 (T g ) は、 好ましくは 5 0〜 2 5 0 °C、 より好ましくは 7 0〜 2 2 0 °C、 さらに好ましくは 8 0〜 2 0 0 °Cで ある。  The glass transition temperature (T g) of the polymer obtained in the hydrogenation step is preferably 50 to 250 ° C., more preferably 70 to 220 ° C., and still more preferably 80 to 200 ° C. ° C.
なお、 本発明では、 前記水素化工程後の反応溶液から水素化触媒を除去するェ 程を含むことが好ましい。 なお、 前記重合触媒除去工程を行わずに、 水素化工程 後に重合触媒および水素化触媒の双方を一度に除去することとしても良い。 除去 方法や除去後の触媒残留量などについては前記重合触媒除去工程における場合と 同様にすればよレ、。  The present invention preferably includes a step of removing the hydrogenation catalyst from the reaction solution after the hydrogenation step. Note that both the polymerization catalyst and the hydrogenation catalyst may be removed at once after the hydrogenation step without performing the polymerization catalyst removal step. The removal method and the residual amount of the catalyst after the removal may be the same as those in the polymerization catalyst removal step.
揮発性成分除去工程  Volatile component removal process
次に、 上述した重合工程または水素化工程後の反応溶液を、 外部環境から異物 が混入しないような密閉系に供給し、 当該反応溶液から有機溶媒を主とする揮発 性成分を除去させて重合体を回収する。 なお、 蒸発除去した溶媒は、 凝縮装置に て液ィ匕して回収し、 再利用に供することも好ましい。  Next, the reaction solution after the above-described polymerization step or hydrogenation step is supplied to a closed system in which foreign substances do not enter from the external environment, and volatile components mainly including an organic solvent are removed from the reaction solution to obtain a heavy solution. Collect the coalesced. It is also preferable that the solvent removed by evaporation is collected by condensing in a condensing device and reused.
本発明における揮発性成分の除去には、 反応溶液を常圧以下で加熱して、 溶媒 その他の揮発性成分を蒸発除去させる直接乾燥法を用いる。  To remove volatile components in the present invention, a direct drying method is used in which the reaction solution is heated at normal pressure or lower to evaporate and remove solvents and other volatile components.
直接乾燥が行える減圧可能な溶媒除去装置には、 ベント付きスクリユー押出型 乾燥器や薄膜乾燥器も含まれるが、 機械的応力が原因で引き起こされる重合体分 子量の低下を考慮すると、 溶液中の重合体に加わる剪断応力が小さい薄膜乾燥器 が好ましく、 薄膜攪拌器を備えずかつ熱交換器を備えた減圧可能な溶媒除去装置 (たとえばプレートフィン型熱交換器を備えた減圧可能な溶媒除去装置など) が、 溶液中の重合体に加わる剪断応力がかからないので特に好ましい。 このような薄 膜攪拌器を備えずかつ熱交換器を備えた減圧可能な溶媒除去装置としては、 たと えばハイビスカスエバポレーター (三井造船社製) などが挙げられる。  Solvent removal equipment that can be directly dried and can be decompressed include vented screw extrusion dryers and thin film dryers, but considering the decrease in the amount of polymer molecules caused by mechanical stress, the It is preferable to use a thin film dryer that has a small shear stress applied to the polymer of the present invention. And the like) are particularly preferable because no shear stress is applied to the polymer in the solution. Examples of such a solvent removing device that does not include a thin film stirrer and includes a heat exchanger and that can be decompressed include a hibiscus evaporator (manufactured by Mitsui Engineering & Shipbuilding Co., Ltd.).
反応溶液に対する加熱温度は、 その下限が反応溶液に含まれる重合体のガラス 転移温度 (T g ) + 5 0 °Cであり、 その上限が 3 2 0 °Cである範囲が好ましく、 より好ましくは 2 4 0 °C以上 2 8 0 °C以下である。 反応溶液の加熱温度が低すぎ ると蒸発効率が悪くなり、 生産性の低下や重合体の熱劣化等の問題が生じる。 加 熱温度が高すぎると、 回収される重合体が熱劣化して分子量低下を引き起こすお それがある。 The heating temperature for the reaction solution is preferably such that the lower limit is the glass transition temperature (T g) of the polymer contained in the reaction solution + 50 ° C, and the upper limit is 320 ° C, more preferably It is 240 ° C or more and 280 ° C or less. If the heating temperature of the reaction solution is too low, the evaporation efficiency becomes poor, causing problems such as a decrease in productivity and thermal degradation of the polymer. If the heating temperature is too high, the polymer to be recovered will be thermally degraded, causing a decrease in molecular weight. There is it.
反応溶液を加熱する際の操作圧力、 すなわち容器内の圧力は、 低いほど揮発性 成分除去効果が増大する点で好ましく、 より好ましくは 1 5 k P a以下、 さらに 好ましくは 5 k P a以下である。 操作圧力が高すぎると、 溶液の蒸発効率が悪く なり、 乾燥後の重合体中の揮発性成分含有量が多くなる。  The operating pressure at the time of heating the reaction solution, that is, the pressure in the vessel, is preferably such that the effect of removing volatile components increases as the pressure decreases, more preferably 15 kPa or less, and further preferably 5 kPa or less. is there. If the operating pressure is too high, the evaporation efficiency of the solution will be poor and the content of volatile components in the polymer after drying will be high.
反応溶液を、 常圧以下で加熱し始めてから (具体的には、 前記減年可能な溶媒 除去装置に導入してから) 、 重合体を回収するまで (具体的には、 たとえば、 前 記溶媒除去装置外に導出された後に冷却固化され、 ペレット化されるまで) の時 間 (装置内滞留時間) は、 好ましくは 2時間以下であり、 より好ましくは 1時間 以下である。 装置内滞留時間が長すぎると、 回収される重合体が熱劣化して分子 量低下を引き起こすおそれがある。  After the reaction solution is started to be heated at normal pressure or lower (specifically, after being introduced into the solvent removing device capable of reducing the life), until the polymer is recovered (specifically, for example, the solvent The time (remaining time in the device) after being taken out of the removing device and cooled and solidified and then pelletized is preferably 2 hours or less, more preferably 1 hour or less. If the residence time in the apparatus is too long, the polymer to be recovered may be thermally degraded and cause a decrease in molecular weight.
本発明における直接乾燥では、 前記減圧可能な溶媒除去装置を 2基以上用いて もよく、 この場合、 それぞれの装置ごとに異なる操作圧力おょぴ加熱温度にして もよい。  In the direct drying in the present invention, two or more solvent removing devices capable of reducing the pressure may be used, and in this case, the operating pressure and the heating temperature may be different for each device.
なお、 揮発性成分除去工程に供給され、 常圧以下で加熱する際の反応溶液の重 合体濃度が 8 0 %未満である場合には、 反応溶液に含まれる揮発性成分の一部を 除去して重合体濃度が 8 0 %以上、 好ましくは 8 5 %以上になるように予め濃縮 する工程 (予備濃縮工程) をさらに有することが好ましい。 予備濃縮の方法とし ては、 特に限定されず、 反応溶液を常圧下におくことのみで濃縮する方法;反応 溶液を常圧下で加熱して濃縮する方法 (加熱濃縮方法) ;常圧以上に加圧した反 応溶液を常圧の系内に開放し、 圧力差によって揮発性成分のみを飛散 ·分離させ 反応溶液を濃縮する方法 (フラッシュ濃縮法) ;などが挙げられるが、 濃縮効率 と工業的な生産性が良い点からフラッシュ濃縮法が好ましく、 加熱濃縮法とフラ ッシュ濃縮法を組み合わせた加熱フラッシュ濃縮法が特に好ましい。 フラッシュ 濃縮法に用いる装置としては、 たとえばフラッシュボックス、 フラッシュセパレ —ター (三井造船社製) などが挙げられる。  When the polymer concentration of the reaction solution supplied to the volatile component removal step and heated at normal pressure or lower is less than 80%, a part of the volatile component contained in the reaction solution is removed. It is preferred that the method further comprises a step of pre-concentration (pre-concentration step) so that the polymer concentration becomes 80% or more, preferably 85% or more. The preconcentration method is not particularly limited, and is a method in which the reaction solution is concentrated only at normal pressure; a method in which the reaction solution is heated and concentrated under normal pressure (heating concentration method); A method in which the pressurized reaction solution is released into a system under normal pressure, and only the volatile components are scattered and separated by the pressure difference to concentrate the reaction solution (flash concentration method). The flash concentration method is preferred from the viewpoint of good productivity, and the heat flash concentration method combining the heat concentration method and the flash concentration method is particularly preferred. Examples of the apparatus used for the flash concentration method include a flash box and a flash separator (manufactured by Mitsui Engineering & Shipbuilding Co., Ltd.).
なお、 予備濃縮を行う場合であっても、 予備濃縮前に反応溶液を予め加熱する 工程 (予備加熱工程) をさらに有することとしてもよい。 予備濃縮前に反応溶液 を予め加熱しておくことにより、 重合体の濃縮効率が向上する。 予備加熱の方法 としては、 濃縮前の反応溶液の貯蔵容器および Zまたは該貯蔵容器から溶媒除去 装置に至る移送配管をジャケット式加熱装置にて加温する方法や、 多管式熱交換 器やプレートフィン型熱交換器などの既知の熱交換器を使用する方法などが挙げ られる。 予備加熱の際の溶液の温度は、 通常5 0〜4 0 0 ° 、 好ましくは 7 0〜 3 5 0 °Cである。 In addition, even when performing pre-concentration, the method may further include a step of pre-heating the reaction solution before pre-concentration (pre-heating step). By preheating the reaction solution before the preconcentration, the concentration efficiency of the polymer is improved. Preheating method The method includes heating the storage container for the reaction solution before concentration and the transfer pipe from the storage container or Z to the solvent removal device with a jacket-type heating device, or using a multi-tube heat exchanger or plate-fin heat exchanger. Method using a known heat exchanger such as a heat exchanger. The temperature of the solution at the time of preheating is usually 50 to 400 ° C, preferably 70 to 350 ° C.
本発明では、 上述した揮発性成分の除去を低酸素濃度雰囲気で行うことが好ま しい。 低酸素濃度雰囲気で行うことにより、 最終的に回収される重合体の着色を 効果的に防止できる。 低酸素濃度雰囲気としては、 好ましくは酸素濃度が 1 0容 量 °/0以下、 より好ましくは 8容量 °/0以下の雰囲気となるよう調整する。 酸素濃度 がより低い作業雰囲気とすることにより、 重合体の酸化が防止され、 得られる成 形体の着色が防止される。 低酸素濃度雰囲気を作る具体的な手段としては、 揮発 性成分の除去に用いる装置内を、 窒素やヘリゥム等の不活性ガス雰囲気にするな どの方法が挙げられる。 In the present invention, it is preferable that the above-mentioned removal of volatile components is performed in a low oxygen concentration atmosphere. By performing the treatment in a low oxygen concentration atmosphere, the coloring of the polymer finally recovered can be effectively prevented. The low oxygen concentration atmosphere, preferably oxygen concentration of 1 0 Capacity ° / 0 or less, more preferably adjusted 8 vol ° / 0 following atmosphere so as. By setting the working atmosphere to have a lower oxygen concentration, oxidation of the polymer is prevented, and coloring of the obtained molded body is prevented. As a specific means for creating a low oxygen concentration atmosphere, there is a method of setting the inside of an apparatus used for removing volatile components to an atmosphere of an inert gas such as nitrogen or helium.
以上のような揮発性成分除去工程を経ることにより、 回収される重合体中の揮 発性成分含有量を、 好ましくは 1 0 0 0 0 p p m以下、 より好ましくは 5 0 0 0 p p m以下にできる。 回収される重合体中の揮発性成分含有量を 1 0 0 0 0 p p m以下とすることにより、 成形体にシルパーストリークゃボイ ドなどの成形不良 が生じるおそれは少ない。  Through the above volatile component removal step, the volatile component content in the recovered polymer can be reduced to preferably 1000 ppm or less, more preferably 500 ppm or less. . By setting the content of the volatile component in the polymer to be recovered to 100 000 ppm or less, there is little possibility that molding failure such as sylper streak void occurs in the molded product.
各種配合剤  Various compounding agents
本発明方法で得られるビュル脂環式炭化水素重合体には、 必要に応じて各種配 合剤を添加することができる。 各種配合剤としては、 樹脂工業で一般的に用いら れるものであれば格別な限定はないが、 たとえば、 フヱノール系、 フォスフアイ ト系、 チォエーテル系などの酸化防止剤; ヒンダードフエノール系などの紫外線 吸収剤;脂肪族アルコール、 脂肪族エステル、 芳香族エステル、 トリグリセライ ド類、 フッ素系界面活性剤、 高級脂肪酸金属塩などの離型剤;その他の滑剤、 防 曇剤、 可塑剤、 顔料、 近赤外吸収剤、 帯電防止剤などが挙げられる。 これらの配 合剤はそれぞれ単独で或いは 2種以上を組み合わせて用いられる。 配合剤の使用 量は、 本発明の範囲を損ねない範囲で適宜選択される。 各種配合剤が添加され るビュル脂環式炭化水素重合体は、 単独あるいは 2種類以上組み合わせて用いら れる。 Various binders can be added to the bullet alicyclic hydrocarbon polymer obtained by the method of the present invention, if necessary. The various compounding agents are not particularly limited as long as they are generally used in the resin industry. For example, antioxidants such as phenol-based, phosphite-based, and thioether-based compounds; and ultraviolet rays such as hindered phenol-based compounds Absorbents; mold release agents such as aliphatic alcohols, aliphatic esters, aromatic esters, triglycerides, fluorinated surfactants and higher fatty acid metal salts; other lubricants, anti-fog agents, plasticizers, pigments, near red External absorbents, antistatic agents and the like. These combinations may be used alone or in combination of two or more. The amount of the compounding agent is appropriately selected within a range that does not impair the scope of the present invention. Bull alicyclic hydrocarbon polymers to which various compounding agents are added may be used alone or in combination of two or more. It is.
成形  Molding
本発明方法で得られるビュル脂環式炭化水素重合体は、 製造後に二軸押出機等 の溶融状態で混練して、 ペレットとして用いることができる。 そして、 周知の方 法、 たとえば、 射出成形、 押し出し成形、 キャスト成形、 インフレーション成形、 ブロー成形、 真空成形、 プレス成形、 圧縮成形、 回転成形、 カレンダー成形、 圧 延成形、 切削成形等によって成形加工することができる。  The bullet alicyclic hydrocarbon polymer obtained by the method of the present invention can be kneaded in a molten state using a twin-screw extruder or the like after production, and used as pellets. Then, molding is performed by a known method, for example, injection molding, extrusion molding, cast molding, inflation molding, blow molding, vacuum molding, press molding, compression molding, rotational molding, calendar molding, rolling molding, cutting molding, or the like. be able to.
用途  Use
本発明方法で得られるビュル脂環式炭化水素重合体は、 光学材料をはじめとし て各種成形体として広範な分野において有用である。  The bullet alicyclic hydrocarbon polymer obtained by the method of the present invention is useful in a wide range of fields as various molded articles including optical materials.
たとえば、 光ディスク、 光学レンズ、 プリズム、 光拡散板、 光カード、 光ファ ィバー、 光学ミラー、 液晶表示素子基板、 導光板、 偏光フィルム、 位相差フィル ムなどの光学材料;液体薬品容器、 アンプル、 バイアル、 プレフィルドシリンジ、 輸液用バッグ、 密封薬袋、 プレス · スルー ·パッケージ、 固体薬品容器、 点眼薬 容器などの液体、 粉体、 または固体薬品の容器、 食品容器、 血液検査用サンプリ ング試験管、 薬品容器用キャップ、 採血管、 検体容器などのサンプリング容器、 注射器などの医療器具、 メス、 鉗子、 ガーゼ、 コンタク トレンズなどの医療器具 などの滅菌容器、 ビーカー、 シャーレ、 フラスコ、 試験管、 遠心管などの実験 ' 分析器具、 医療検查用プラスチックレンズなどの医療用光学部品、 医療用輸液チ ュ一プ、 配管、 継ぎ手、 パルプなどの配管材料、 義歯床、 人工心臓、 人造歯根な どの人工臓器やその部品などの医療用器材;  For example, optical materials such as optical disks, optical lenses, prisms, light diffusion plates, optical cards, optical fibers, optical mirrors, liquid crystal display element substrates, light guide plates, polarizing films, retardation films; liquid chemical containers, ampoules, and vials , Prefilled syringes, infusion bags, sealed medicine bags, press-through packages, solid medicine containers, eye drop containers, etc. for liquid, powder or solid medicine containers, food containers, blood test sampling test tubes, medicine containers Caps, blood collection tubes, sampling containers such as sample containers, medical instruments such as syringes, sterile containers such as scalpels, forceps, gauze, contact lenses, etc., beakers, petri dishes, flasks, flasks, test tubes, centrifuge tubes, etc. '' Medical optical components such as analytical instruments, plastic lenses for medical inspection, Ryoyo infusion Chi Interview one flop, pipes, fittings, piping materials such as pulp, denture, medical equipment, such as artificial hearts, artificial tooth root of any artificial organs or parts thereof;
タンク、 トレイ、 キャリア、 ケースなどの処理用または移送用容器、 キャリア テープ、 セパレーシヨン ' フィルムなどの保護材、 パイプ、 チューブ、 パルプ、 シッパー流量計、 フィルター、 ポンプなどの配管類、 サンプリング容器、 ボトル、 アンプルバッグなどの液体用容器類などの電子部品処理用器材;電線、 ケーブル 用被覆材、 民生用 '産業用電子機器、 複写機、 コンピュータ一、 プリンターなど の O A機器、 計器類などの一般絶縁材料;硬質プリント基板、 フレキシブルプリ ント基板、 多層プリント配線板などの回路基板、 特に高周波特性が要求される衛 星通信機器用などの高周波回路基板;液晶基板、 光メモリ一、 自動車や航空機の デフロスタなどの面発熱体などの透明導電性フィルムの基材、 トランジスタ、 I C、 LS I , LEDなどの電気 ·導体封止材ゃ部品、 モーター、 コンデンサー、 スィツチ、 センサーなどの電気 ·電子部品の封止材、 テレビやビデオカメラなど のボディ材料、 パラボラアンテナ、 フラットアンテナ、 レーダードームの構造部 材などの電気絶縁材料;包装フィルム、 農業用フィルムなどのフィルム;磁気フ 口ッピーディスク、 磁気ハードディスクなどの情報記録用基板などが挙げられる。 中でも、 成形体の着色を嫌う光学材料に適用して好ましい。 Processing or transfer containers such as tanks, trays, carriers, cases, etc., protective materials such as carrier tapes, separation films, pipes, tubes, pulp, shipper flowmeters, piping such as filters and pumps, sampling containers, and bottles Equipment for processing electronic components such as liquid containers such as liquid and ampoule bags; covering materials for electric wires and cables; general-purpose insulation such as OA equipment such as industrial electronic equipment, copying machines, computers, and printers, and instruments Materials; Rigid printed circuit boards, flexible printed circuit boards, multilayer printed wiring boards, and other circuit boards, especially high-frequency circuit boards for satellite communications equipment that require high-frequency characteristics; liquid crystal substrates, optical memories, automobiles and aircraft Substrate of transparent conductive film such as surface heating element such as defroster, electric and conductor sealing materials such as transistors, ICs, LSIs, LEDs, etc.Sealing of electric and electronic parts such as components, motors, capacitors, switches, and sensors Electrical insulation materials such as sealing materials, body materials such as TVs and video cameras, parabolic antennas, flat antennas, structural members of radar dome; films such as packaging films and agricultural films; information such as magnetic flip-up disks and magnetic hard disks A recording substrate may be used. Above all, it is preferable to apply to an optical material which does not like coloring of a molded article.
以上、 本発明の実施形態について説明してきたが、 本発明はこうした実施形態 に何等限定されるものではなく、 本発明の要旨を逸脱しない範囲内において種々 なる態様で実施し得ることは勿論である。  The embodiments of the present invention have been described above. However, the present invention is not limited to these embodiments at all, and it is needless to say that the present invention can be implemented in various modes without departing from the gist of the present invention. .
以下、 本発明をさらに詳細な実施例に基づき説明するが、 本発明はこれら実施 例に限定されない。 以下の例では、 特に断りのない限り、 部おょぴ%は重量基準 である。  Hereinafter, the present invention will be described based on more detailed examples, but the present invention is not limited to these examples. In the following examples, parts by weight are based on weight unless otherwise specified.
なお、 数平均分子量 (Mn) および重量平均分子量 (Mw) は特に断りのない 限り、 シクロへキサンを移動層としたゲルパーミエーション 'クロマトグラフィ 一 (ポリスチレン換算) により測定した。 水素化率は、 — NMRにより測定 した。  In addition, the number average molecular weight (Mn) and the weight average molecular weight (Mw) were measured by gel permeation using a cyclohexane as a moving layer (chromatography-one in terms of polystyrene) unless otherwise specified. Hydrogenation rates were measured by — NMR.
製造例 1 (反応溶液の製造例)  Production example 1 (Production example of reaction solution)
攪拌機、 加熱おょぴ冷却のためのジャケットを備えた、 内容積 1. 5m3 の反 応器内を窒素ガスにより置換し、 モノマーとしてスチレンを 200 k g、 溶剤と してシクロへキサンを 600 k g、 重合促進剤としてジブチルエーテルを 0. 4 k gを反応器内に供給し、 更に、 重合触媒として n—プチルリチウムの 15重量 %n—へキサン溶液 0. 5 O k gを加え、 60°Cで 2時間、 重合反応を行った。 その後、 重合停止剤としてイソプロパノールを 0. 2 k g加え、 重合工程を完了 し、 スチレン重合体を得た。 この重合反応におけるスチレンモノマーの、 スチレ ン重合体への転化率は 99. 9 %であつた。 Stirrer, equipped with a jacket for heating your Yopi cooling, internal volume 1. varus応器of 5 m 3 was replaced by nitrogen gas, styrene as monomer 200 kg, hexane and 600 kg in a solvent cyclohexane Then, 0.4 kg of dibutyl ether as a polymerization accelerator is supplied into the reactor, and 0.5 O kg of a 15% by weight n-hexane solution of n-butyllithium as a polymerization catalyst is added at 60 ° C. The polymerization reaction was performed for 2 hours. Thereafter, 0.2 kg of isopropanol was added as a polymerization terminator, and the polymerization step was completed to obtain a styrene polymer. The conversion of the styrene monomer into a styrene polymer in this polymerization reaction was 99.9%.
得られたスチレン重合体の溶液を加圧可能な反応器に移し、 水素化触媒として ニッケルーシリ力担持触媒 (E 22U: 日揮化学 (株) 社製) を 20 k g加え、 反応器内の水素圧力を 4. 5MP a、 温度 1 60°Cで 6時間水素化反応を行い、 ビ-ルシクロへキサン重合体を得た。 得られたビュルシクロへキサン重合体の水 素化率は 99. 9%、 ガラス転移温度は 145°Cであった。 The resulting styrene polymer solution was transferred to a pressurizable reactor, and 20 kg of a nickel-silicone supported catalyst (E22U, manufactured by JGC Corporation) was added as a hydrogenation catalyst, and the hydrogen pressure in the reactor was reduced. 4. Perform hydrogenation reaction at 5MPa, temperature 160 ° C for 6 hours, A vinylcyclohexane polymer was obtained. The hydrogenation rate of the obtained bulcyclohexane polymer was 99.9%, and the glass transition temperature was 145 ° C.
製造例 2 (反応溶液の製造例)  Production Example 2 (Production example of reaction solution)
攪拌機、 加熱おょぴ冷却のためのジャケットを備えた、 内容積 1. 5m3 の反 応器内を窒素ガスにより置換し、 脱水シクロへキサン 600 k g、 スチレン 60 k gおよぴジプチルエーテル 0. 4 k gを仕込み、 60°Cで撹拌しながら、 II一 プチルリチウム溶液 ( 1 5。/。含有へキサン溶液) 0. 9 k gを添加して重合反応 を開始し、 そのまま 1時間重合反応を行つた。 この時点で重合転化率は 99 %以 上であった。 次いで、 反応溶液中に、 スチレン 40 k gとブタジエン 40 k gと からなる混合モノマー 80 k gを添加し、 さらに 1時間重合反応を行った。 この 時点で重合転化率は 99%以上であった。 その後、 反応溶液中にスチレン 60 k gをさらに添加して、 さらに 1時間重合反応を行った後、 反応溶液にィソプロピ ノレアノレコール 0. 4 k gを添加して反応を停止させた。 重合転化率は 99%以上 であった。 Stirrer, equipped with a jacket for heating your Yopi cooling, the varus応器having an inner volume of 1. 5 m 3 was replaced by nitrogen gas, hexane 600 kg to dehydration cycloalkyl, styrene 60 kg Oyopi Djibouti ether 0. 4 kg, and while stirring at 60 ° C, add 0.9 kg of II-butyllithium solution (15./. Containing hexane solution) to start the polymerization reaction, and carry out the polymerization reaction as it is for 1 hour. I got it. At this time, the polymerization conversion was 99% or more. Next, 80 kg of a mixed monomer composed of 40 kg of styrene and 40 kg of butadiene was added to the reaction solution, and the polymerization reaction was further performed for 1 hour. At this time, the polymerization conversion was 99% or more. Thereafter, 60 kg of styrene was further added to the reaction solution, and the polymerization reaction was further performed for 1 hour. Then, 0.4 kg of isopropinoleanololecol was added to the reaction solution to stop the reaction. The polymerization conversion was 99% or more.
得られたスチレン一スチレン /プタジェン一スチレンブロック共重合体の溶液 を、 加圧可能な反応器に移し、 水素化触媒としてニッケル一シリカ担持触媒 (E 22U: 日揮化学 (株) 社製) 18 k gを加え、 反応器内の水素圧力を 4. 5M P a、 温度 1 70°Cで 6時間水素化反応を行い、 水素化—スチレン重合体 (ビエ ルシクロへキサン重合体) ブロック、 水素化一スチレンノブタジエン共重合体ブ ロック、 およぴ水素化一スチレン重合体ブロックからなる 3元ブロック共重合体 を得た。 得られたブロック共重合体の水素化率は 99. 9°/0、 ガラス転移温度は 140°Cであった。 The obtained styrene-styrene / ptadene-styrene block copolymer solution was transferred to a pressurizable reactor, and a nickel-silica supported catalyst (E22U: Nikki Chemical Co., Ltd.) was used as a hydrogenation catalyst. 18 kg The hydrogenation reaction was performed for 6 hours at a hydrogen pressure in the reactor of 4.5 MPa and a temperature of 170 ° C for 6 hours, and the hydrogenation-styrene polymer (viercyclohexane polymer) block, hydrogenated monostyrene A ternary block copolymer comprising a nobutadiene copolymer block and a hydrogenated monostyrene polymer block was obtained. The hydrogenation rate of the obtained block copolymer was 99.9 ° / 0 , and the glass transition temperature was 140 ° C.
実施例 1  Example 1
濃縮工程  Concentration process
製造例 1により得られたビニルシク口へキサン反応溶液中の水素化触媒を濾過 により分離除去したのち、 該反応溶液にフエノール系酸ィヒ防止剤としてィルガノ ックス 1010 (チパガイギ一社製) 0. 5 k gを添加した。  After the hydrogenation catalyst in the vinyl-necked hexane reaction solution obtained in Production Example 1 was separated and removed by filtration, the reaction solution was subjected to ilganox 1010 (manufactured by CHIPAGIGI CORPORATION) as a phenolic acid inhibitor. kg was added.
上記反応溶液 (濃度 25%) を 220°Cに加熱したのち、 加圧可能な円筒型の 溶液濃縮機 (内径 550mm、 高さ 500mm、 BUS S社製) に、 毎時 40 k gで導入した。 導入時の操作として、 反応溶液の導入圧力を 3 0 0 0 k P a、 排 気圧力を 3 0 0 k P aとして圧力差をつけることにより、 反応溶液中の溶媒の一 部をフラッシュ分離法により分離除去して反応溶液の予備濃縮を行った。 分離蒸 発した溶媒は排気口より熱交換器に移送された後、 凝縮により回収された。 得ら れた反応溶液の重合体濃度は 8 5 %であった。 After heating the above reaction solution (25% concentration) to 220 ° C, it is applied to a pressurizable cylindrical solution concentrator (550 mm ID, 500 mm height, manufactured by BUSS) at 40 k / h. Introduced in g. As an operation at the time of introduction, a part of the solvent in the reaction solution is flash-separated by creating a pressure difference by setting the introduction pressure of the reaction solution to 300 kPa and the exhaust pressure to 300 kPa. The reaction solution was preliminarily concentrated. The separated and evaporated solvent was transferred to the heat exchanger from the exhaust port and then recovered by condensation. The polymer concentration of the obtained reaction solution was 85%.
乾燥工程  Drying process
上記方法により予備濃縮された反応溶液を、 プレートフィン型熱交換器 (幅 2 7 O mm, 高さ 2 0 O mm、 奥行き 2 5 5 mm, 伝熱面積 4 . 3 m2 ) を備えた 溶媒除去装置 (B U S S社製) に、 上記円筒型濃縮機の排出口から、 2 7 0 °Cの 熱媒を通した二重管の内部を通じてギアポンプで直接導入し、 加熱温度 2 7 0 °C、 装置内の操作圧力 1 k P aにて、 加熱減圧により、 溶媒などの揮発性成分の除去 処理を行った。 蒸発した溶媒 (シクロへキサン) は排気口より真空ポンプで吸引 され熱交換器により凝縮させて回収された。 装置底部に溜まった溶融状態のビニ ルシクロへキサン重合体は、 ギアポンプにより連続的に装置外に導出され、 スト ランド状に押出された後に冷却固化され、 ペレタイザ一にてペレツト状に成形さ れた。 前記一連の操作において、 濃縮溶液の装置内への導入からペレット化まで の時間 (装置内滞留時間) は 1時間であった。 The reaction solution pre-concentrated by the above method was converted to a solvent equipped with a plate-fin heat exchanger (width 27 O mm, height 20 O mm, depth 255 mm, heat transfer area 4.3 m 2 ). The gas was directly introduced into the removal device (manufactured by BUSS) from the outlet of the cylindrical concentrator through the inside of the double pipe through which the heating medium at 270 ° C passed, and the heating temperature was set at 270 ° C. At an operating pressure of 1 kPa in the apparatus, a process of removing volatile components such as solvents was performed by heating and decompression. The evaporated solvent (cyclohexane) was suctioned from the exhaust port by a vacuum pump and condensed by a heat exchanger and recovered. The vinylcyclohexane polymer in the molten state accumulated at the bottom of the equipment was continuously led out of the equipment by a gear pump, extruded into strands, cooled and solidified, and formed into pellets by a pelletizer. . In the above series of operations, the time from introduction of the concentrated solution into the device to pelletization (residence time in the device) was 1 hour.
得られたペレツト状のビュルシク口へキサン重合体中の残留揮発性成分濃度を、 ガスクロマトグラフィ一により測定したところ、 8 0 p p mであった。  The concentration of the volatile components remaining in the obtained pellet-shaped bush hex polymer was measured by gas chromatography and found to be 80 ppm.
また、 このビュルシクロへキサン重合体の重量平均分子量 (Mw) を、 ゲルパ 一ミエーシヨンクロマトグラフィー (G P C ) により、 ポリスチレン換算で求め たところ、 溶媒除去処理前では 1 3 2 0 0 0、 溶媒除去処理後では 1 1 9 0 0 0 であり、 減少率は 1 0 %であった。  The weight average molecular weight (Mw) of the bulcyclohexane polymer was determined in terms of polystyrene by gel permeation chromatography (GPC). After the treatment, it was 11.90000, and the reduction rate was 10%.
実施例 2  Example 2
乾燥工程にて、 加熱温度を 2 2 0 °Cとし、 ビュルシクロへキサン重合体の装置 内滞留時間を 2時間とした以外は、 実施例 1と同様にし、 ペレッ ト状のビニルシ ク口へキサン重合体を得た。 得られたビュルシクロへキサン重合体の揮発性成分 濃度は 1 0 0 p p m、 Mwは、 溶媒除去処理前では 1 3 2 0 0 0、 溶媒除去処理 後では 1 2 3 0 0 0であり、 減少率は 7 %であった。 実施例 3 In the drying step, the same procedure as in Example 1 was carried out except that the heating temperature was set at 220 ° C. and the residence time of the bulcyclohexane polymer in the apparatus was set at 2 hours. A coalescence was obtained. The volatile component concentration of the obtained bulcyclohexane polymer was 100 ppm, and Mw was 132 000 before the solvent removal treatment and 123 000 after the solvent removal treatment. Was 7%. Example 3
乾燥工程にて、 装置内圧力を 1 5 k P aにした以外は、 実施例 1と同様にし、 ペレツト状のビ ルシクロへキサン重合体を得た。 得られたビエルシクロへキサ ン重合体中の揮発性成分濃度は 1 6 0 p p m、 Mwは、 溶媒除去処理前では 1 3 2 0 0 0、 溶媒除去処理後では 1 1 9 0 0 0であり、 減少率は 1 0 %であった。  A pellet-like bicyclohexane polymer was obtained in the same manner as in Example 1 except that the internal pressure of the apparatus was changed to 15 kPa in the drying step. The volatile component concentration in the obtained Biercyclohexane polymer was 160 ppm, and Mw was 1320000 before the solvent removal treatment, and 1190 000 after the solvent removal treatment. The decrease was 10%.
実施例 4  Example 4
製造例 1で得られたビュルシクロへキサン反応溶液から、 水素化触媒を濾過に よって分離除去したのち、 該反応溶液に、 フエノール系酸ィヒ防止剤であるィルガ ノックス 1 0 1 0 (チパガイギ一社製) 0 . 5 k gを添加した。  After separating and removing the hydrogenation catalyst from the bulcyclohexane reaction solution obtained in Production Example 1 by filtration, the reaction solution was added to a phenolic acid inhibitor, ilganox 100 (Chipagaigi Co., Ltd.). 0.5 kg).
得られたビニルシクロへキサン反応溶液 (濃度 2 5 %) を、 濃縮工程を経ずに、 実施例 1で用いた溶媒除去装置に毎時 4 0 k gで導入し、 加熱温度 2 7 0 °C、 装 置内圧力 1 k P aにて、 加熱減圧による溶媒除去処理を行った。 蒸発した溶媒を 排気口より真空ポンプで吸引し、 熱交換器により凝縮させて回収した。 装置底部 に溜まつた溶融状態のビュルシクロへキサン系重合体をギアポンプにより装置か ら連続的に導出し、 ス トランド状に押出しながら冷却固化し、 ペレタイザ一にて ペレツト状に成形した。 ビュルシクロへキサン重合体の装置内滞留時間は 6時間 であった。 得られたビニルシクロへキサン重合体中の揮発性成分濃度は 2 0 0 p p m、 Mwは、 溶媒除去処理前では 1 3 2 0 0 0、 溶媒除去処理後では 1 1 2 0 0 0であり、 減少率は 1 5 %であった。  The obtained vinylcyclohexane reaction solution (concentration: 25%) was introduced into the solvent removing apparatus used in Example 1 at 40 kg / h without passing through the concentration step, and was heated at a heating temperature of 270 ° C. At an internal pressure of 1 kPa, a solvent removal treatment was performed by heating under reduced pressure. The evaporated solvent was sucked from the exhaust port by a vacuum pump, and was condensed and recovered by a heat exchanger. The molten cyclohexane-based polymer collected at the bottom of the apparatus was continuously drawn out of the apparatus by a gear pump, solidified by cooling while extruding into a strand, and formed into a pellet by a pelletizer. The residence time of the bulcyclohexane polymer in the apparatus was 6 hours. The volatile component concentration in the obtained vinylcyclohexane polymer was 200 ppm, and Mw was 132,000 before the solvent removal treatment, and 112,000 after the solvent removal treatment, and decreased. The rate was 15%.
実施例 5  Example 5
濃縮工程を経ず、 かつ乾燥工程におけるビニルシク口へキサン重合体の装置内 滞留時間を 1 0時間にした以外は、 実施例 1と同様にしペレツト状のビニルシク 口へキサン重合体を得た。 得られたビュルシク口へキサン系重合体中の揮発性成 分濃度は 1 0 0 p p mであり、 Mwは、 溶媒除去処理前では 1 3 2 0 0 0、 溶媒 除去処理後では 1 1 0 0 0 0であり、 減少率は 1 7 %であった。  A pellet-shaped vinyl hexane polymer was obtained in the same manner as in Example 1 except that the concentration step was not performed, and the residence time of the vinyl siloxane polymer in the drying step in the apparatus was set to 10 hours. The volatile component concentration in the obtained bursik-mouth hexane-based polymer was 100 ppm, and the Mw was 13200000 before the solvent removal treatment and 11000000 after the solvent removal treatment. 0, a decrease of 17%.
実施例 6  Example 6
濃縮工程を経ず、 かつ乾燥工程における加熱温度を 2 2 0 °Cにした以外は、 実 施例 1と同様にし、 ペレッ ト状のビニルシクロへキサン重合体を得た。 得られた ビュルシクロへキサン重合体中の揮発性成分濃度は 2 5 0 p mであり、 Mwは、 溶媒除去処理前では 1 3 2 0 0 0、 溶媒除去処理後では 1 1 0 0 0 0であり、 減 少率は 1 3。/。であった。 A pellet-shaped vinylcyclohexane polymer was obtained in the same manner as in Example 1 except that the concentration step was not performed and the heating temperature in the drying step was 220 ° C. The volatile component concentration in the obtained bulcyclohexane polymer was 250 pm, and Mw was Before the solvent removal treatment, it was 132,000, and after the solvent removal treatment, it was 110,000, and the reduction rate was 13. /. Met.
実施例 7  Example 7
製造例 2で得られたブロック共重合体溶液を用いた以外は、 実施例 1と同様に し、 ペレッ ト状のビュルシクロへキサン重合体を得た。 得られたビュルシク口へ キサン重合体中の揮発性成分濃度は 7 0 p p mであり、 Mwは、 溶媒除去処理前 では 7 5 0 0 0、 溶媒除去処理後では 7 1 5 0 0であり、 減少率は 5。/。であった。  A pellet-shaped bulcyclohexane polymer was obtained in the same manner as in Example 1 except that the block copolymer solution obtained in Production Example 2 was used. The concentration of volatile components in the obtained polymer was 70 ppm, and Mw was 7500 before the solvent removal treatment and 7150 after the solvent removal treatment, and decreased. Rate is 5. /. Met.
比較例 1  Comparative Example 1
製造例 1で得られたビエルシク口へキサン反応溶液から、 凝固乾燥法によりビ -ルシクロへキサン重合体を回収した。 すなわち、 製造例 1で得られたビュルシ クロへキサン反応溶液中の水素化触媒を濾過により分離除去した後、 次いで 1 0 m3 の攪拌器付き容器内に反応溶液 1重量部に対し、 3重量部のイソプロパノー ルを入れ、 ィソプロパノールの攪拌下において反応溶液を毎時 4 0 k gで導入し、 ビニノレシク口へキサン重合体を凝固させビエルシクロへキサン重合体のスラリ一 を得た。 A bicyclohexane polymer was recovered from the Bielsik-mouth reaction solution obtained in Production Example 1 by a coagulation drying method. That is, after the hydrogenation catalyst hexane reaction solution to Byurushi black obtained in Preparation Example 1 was separated off by filtration and then to the reaction solution 1 part by weight to 1 0 m 3 of agitator with container, 3 weight A part of isopropanol was added, and the reaction solution was introduced at 40 kg / h under stirring of isopropanol to coagulate the hexane polymer at the mouth of the vininole resin to obtain a slurry of a bielcyclohexane polymer.
次いで、 ビュルシクロへキサン重合体のスラリーを濾過器に送り、 大部分のィ ソプロパノールゃシクロへキサン等の揮発性成分を分離し、 ビュルシクロへキサ ン重合体を既知設備である熱風乾燥器に移送し、 熱風の温度は 6 0 °Cであり、 乾 燥時間は 2時間の条件下で乾燥させた。  Next, the slurry of the bulcyclohexane polymer is sent to a filter to separate most volatile components such as isopropanol / cyclohexane, and the bulcyclohexane polymer is transferred to a hot air dryer, which is a known facility. The temperature of the hot air was 60 ° C, and the drying time was 2 hours.
得られたビニルシクロへキサン重合体中の揮発性成分濃度は 2 0 0 0 p で あり、 Mwは、 溶媒除去処理前では 1 3 2 0 0 0、 溶媒除去処理後では 1 3 2 0 0 0であり、 減少率は 0 %であった。  The volatile component concentration in the obtained vinylcyclohexane polymer was 20000 p, and Mw was 13200000 before the solvent removal treatment, and 1320000 after the solvent removal treatment. Yes, the reduction rate was 0%.
比較例 2  Comparative Example 2
製造例 2で得られたブロック共重合体溶液を用いた以外は、 比較例 1と同様に し、 乾燥したブロック共重合体を得た。 得られたブロック共重合体中の揮発性成 分濃度は 1 6 0 0 p p mであり、 Mwは、 溶媒除去処理前では 7 5 0 0 0、 溶媒 除去処理後では 7 5 0 0 0であり、 減少率は 0 %であった。  A dried block copolymer was obtained in the same manner as in Comparative Example 1, except that the block copolymer solution obtained in Production Example 2 was used. The volatile component concentration in the obtained block copolymer was 1,600 ppm, and Mw was 7,500,000 before the solvent removal treatment, and 7,500,000 after the solvent removal treatment. The decrease was 0%.
以上の実施例 1〜 7および比較例 1〜 2の結果を、 併せて表 1に示す。 表 1 Table 1 also shows the results of Examples 1 to 7 and Comparative Examples 1 and 2. table 1
■TU闬 ^3 ftn埶 :gKlBUエノ」 • f "ォ |BJ 彈? El土 A%刀 M iviw w: 小虚 重合体 ■ TU 闬 ^ 3 ftn 埶: gKlBU eno ”• f“ o | BJ Elastic? El earth A% sword M iviw w: Koima polymer
濃度 (%) (°C) (kPa) (h) 濃度 (ppm) (%) 実施例 1 製造例 1 85 270 1 1 80 10 実施例 2 製造例 1 85 220 1 2 100 7 実施例 3 製造例 1 85 270 15 1 160 10 実施例 4 製造例 1 濃縮なし 270 1 6 200 15 実施例 5 製造例 1 濃縮なし 270 1 10 100 17 実施例 6 製造例 1 濃縮なし 220 1 6 250 13 実施例 7 製造例 2 85 270 1 1 70 5 比較例 1 製造例 1 濃縮なし 2000 0 比較例 2 製造例 2 濃縮なし 1600 0 Concentration (%) (° C) (kPa) (h) Concentration (ppm) (%) Example 1 Production Example 1 85 270 1 1 80 10 Example 2 Production Example 1 85 220 1 2 100 7 Example 3 Production Example 1 85 270 15 1 160 10 Example 4 Production Example 1 No concentration 270 1 6 200 15 Example 5 Production Example 1 No concentration 270 1 10 100 17 Example 6 Production Example 1 No concentration 220 1 6 250 13 Example 7 Production Example 2 85 270 1 1 70 5 Comparative Example 1 Production Example 1 No concentration 2000 0 Comparative Example 2 Production Example 2 No concentration 1600 0
表 1に示される結果から、 比較例 1〜2のように常圧以下における加熱を行わ ないと、 Mw減少率は 0 %であるが、 残留揮発性成分濃度が高くなる。 これに対 し、 常圧以下における加熱を行った実施例 1〜 7では、 Mw減少率を抑えつつ、 残留揮発性成分濃度を低下できることが確認できた。 From the results shown in Table 1, if heating is not performed at normal pressure or lower as in Comparative Examples 1 and 2, the Mw reduction rate is 0%, but the residual volatile component concentration increases. In contrast, in Examples 1 to 7 in which heating was performed at normal pressure or lower, it was confirmed that the residual volatile component concentration could be reduced while suppressing the Mw reduction rate.
また、 実施例 1〜3および 7と、 実施例 4〜 6との比較において、 実施例 1〜 3および 7のように常圧以下における加熱前に予備濃縮を行って反応溶液に含ま れる重合体濃度を予め高めておいた場合には、 予備濃縮を行わずに常圧以下にお ける加熱を行った実施例 4〜 6の場合と比較して、 その後の加熱減圧時の滞留時 間を 1〜 2時間と短くでき、 その結果、 Mw減少率を抑えつつ、 残留揮発性成分 濃度を低下できることが確認できた。  Further, in comparison between Examples 1 to 3 and 7 and Examples 4 to 6, the polymer contained in the reaction solution was subjected to pre-concentration before heating at normal pressure or lower, as in Examples 1 to 3 and 7, When the concentration was increased in advance, the residence time during heating and depressurization after heating was reduced by 1 compared to the case of Examples 4 to 6 in which heating was performed at normal pressure or lower without preconcentration. As a result, it was confirmed that the residual volatile component concentration could be reduced while suppressing the Mw reduction rate.

Claims

請求の範囲 The scope of the claims
1 . ビュル脂環式炭化水素重合体を含有する反応溶液を、 常圧以下 で加熱して揮発性成分を蒸発除去させて重合体を回収することを特徴とするビ- ル脂環式炭化水素重合体の製造方法。 1. A bicyclic alicyclic hydrocarbon characterized in that a reaction solution containing a bicyclic alicyclic hydrocarbon polymer is heated at normal pressure or lower to evaporate and remove volatile components to recover the polymer. A method for producing a polymer.
2 . ビュル脂環式炭化水素重合体が、 芳香族ビニル重合体の芳香環 部分の水素化物、 脂環族ビュル重合体、 または脂環族ビニル重合体の水素化物を 含む請求項 1に記載のビュル脂環式炭化水素重合体の製造方法。  2. The butyl alicyclic hydrocarbon polymer according to claim 1, comprising a hydride of an aromatic ring portion of an aromatic vinyl polymer, an alicyclic butyl polymer, or a hydride of an alicyclic vinyl polymer. A process for producing a bullet alicyclic hydrocarbon polymer.
3 . 芳香族ビュル化合物および/または脂環族ビニル化合物を重合 触媒の存在下で重合する工程と、 該重合工程により得られる重合体を水素化触媒 の存在下で水素化する工程とを含む請求項 1または 2に記載のビュル脂環式炭化 水素重合体の製造方法。  3. A method comprising a step of polymerizing an aromatic vinyl compound and / or an alicyclic vinyl compound in the presence of a polymerization catalyst, and a step of hydrogenating the polymer obtained in the polymerization step in the presence of a hydrogenation catalyst. Item 3. The process for producing a bullet alicyclic hydrocarbon polymer according to item 1 or 2.
4 . ビニル脂環式炭化水素重合体が、 芳香族ビュル化合物および/ または脂環族ビュル化合物と、 該化合物と共重合可能な単量体との共重合体であ る請求項 1〜 3のいずれかに記載のビュル脂環式炭化水素重合体の製造方法。  4. The vinyl alicyclic hydrocarbon polymer is a copolymer of an aromatic butyl compound and / or an alicyclic butyl compound and a monomer copolymerizable with the compound. A method for producing the butyl alicyclic hydrocarbon polymer according to any one of the above.
5 . ビュル脂環式炭化水素重合体の分子量が、 ゲル'パーミエーシ ヨン 'クロマトグラフィーで測定したポリスチレン換算の重量平均分子量 (Mw) で、 1 0 0 0 0以上である請求項 1〜 4のいずれかに記載のビュル脂環式炭化水 素重合体の製造方法。  5. The molecular weight of the butyl alicyclic hydrocarbon polymer is 100,000 or more in terms of polystyrene equivalent weight average molecular weight (Mw) measured by gel 'permeation' chromatography. The process for producing a butyl alicyclic hydrocarbon polymer according to any one of the above.
6 . ビュル脂環式炭化水素重合体の分子量分布が、 ゲル ·パーミェ ーシヨン 'クロマトグラフィ一で測定したポリスチレン換算の重量平均分子量 6. The molecular weight distribution of the Bull alicyclic hydrocarbon polymer is determined by gel permeation 'chromatography.
(Mw) と数平均分子量 (M n ) との比 (Mw/M n ) で、 2 . 0以下である請 求項 1〜 5のいずれかに記載のビュル脂環式炭化水素重合体の製造方法。 The production of a butyl alicyclic hydrocarbon polymer according to any one of claims 1 to 5, wherein the ratio (Mw / Mn) of (Mw) to the number average molecular weight (Mn) is 2.0 or less. Method.
7 . ビニル脂環式炭化水素重合体のガラス転移温度 (T g ) 力 5 0〜 2 5 0 °Cである請求項 1〜 6のいずれかに記載のビニル脂環式炭化水素重合 体の製造方法。  7. The production of a vinyl alicyclic hydrocarbon polymer according to any one of claims 1 to 6, wherein the vinyl alicyclic hydrocarbon polymer has a glass transition temperature (Tg) force of 50 to 250 ° C. Method.
8 . 前記反応溶液を常圧以下で加熱する前に、 前記反応溶液を濃縮 する請求項 1〜 7のいずれかに記載のビュル脂環式炭化水素重合体の製造方法。  8. The method for producing a butyl alicyclic hydrocarbon polymer according to any one of claims 1 to 7, wherein the reaction solution is concentrated before the reaction solution is heated at normal pressure or lower.
9 . 重合体濃度が 8 5 %以上となるように前記反応溶液を濃縮する 請求項 8に記載のビュル脂環式炭化水素重合体の製造方法。 9. Concentrate the reaction solution so that the polymer concentration is 85% or more 9. A method for producing the bullet alicyclic hydrocarbon polymer according to claim 8.
1 0 . 前記反応溶液を常圧以上に加圧した後、 常圧の系内に開放し て、 前記反応溶液を濃縮する請求項 8または 9に記載のビュル脂環式炭化水素重 合体の製造方法。  10. The production of the butyl alicyclic hydrocarbon polymer according to claim 8 or 9, wherein after the reaction solution is pressurized to a normal pressure or higher, the reaction solution is concentrated by releasing the reaction solution into a normal pressure system. Method.
1 1 . 前記反応溶液を濃縮する前に、 前記反応溶液を加熱する請求 項 8〜 1 0のいずれかに記載のビニル脂環式炭化水素重合体の製造方法。  11. The method for producing a vinyl alicyclic hydrocarbon polymer according to any one of claims 8 to 10, wherein the reaction solution is heated before the reaction solution is concentrated.
1 2 . 前記反応溶液を 5 0〜 4 0 0 °Cに加熱する請求項 1 1に記載 のビュル脂環式炭化水素重合体の製造方法。  12. The method for producing a bullet alicyclic hydrocarbon polymer according to claim 11, wherein the reaction solution is heated to 50 to 400 ° C.
1 3 . 熱交換器を備えた減圧可能な溶媒除去装置を用いて、 前記反 応溶液の常圧以下での加熱を行う請求項 1〜 1 2のいずれかに記載のビュル脂環 式炭化水素重合体の製造方法。  13. The butyl alicyclic hydrocarbon according to any one of claims 1 to 12, wherein the reaction solution is heated at a normal pressure or lower using a solvent removal device capable of reducing pressure provided with a heat exchanger. A method for producing a polymer.
1 4 . 前記反応溶液を常圧以下で加熱する際の加熱温度の下限が反 応溶液に含まれる重合体のガラス転移温度 (T g ) + 5 0 °Cであり、 前記加熱温 度の上限が 3 2 0 °Cである請求項 1〜1 3のいずれかに記載のビニル脂環式炭化 水素重合体の製造方法。  14. The lower limit of the heating temperature when heating the reaction solution at normal pressure or lower is the glass transition temperature (T g) of the polymer contained in the reaction solution + 50 ° C, and the upper limit of the heating temperature. The method for producing a vinyl alicyclic hydrocarbon polymer according to any one of claims 1 to 13, wherein the temperature is 320 ° C.
1 5 . 前記反応溶液を常圧以下で加熱する際の操作圧力が 1 5 k P a以下である請求項 1〜 1 3のいずれかに記載のビニル脂環式炭化水素重合体の 製造方法。  15. The method for producing a vinyl alicyclic hydrocarbon polymer according to any one of claims 1 to 13, wherein an operating pressure for heating the reaction solution at normal pressure or lower is 15 kPa or lower.
1 6 . 前記反応溶液を常圧以下で加熱し始めてから、 重合体を回収 するまでの時間が 2時間以下である請求項 1〜1 3のいずれかに記載のビュル脂 環式炭化水素重合体の製造方法。  16. The butyl alicyclic hydrocarbon polymer according to any one of claims 1 to 13, wherein the time from starting heating the reaction solution at normal pressure or lower to recovering the polymer is 2 hours or shorter. Manufacturing method.
1 7 . ビュル脂環式炭化水素重合体を含有する反応溶液を、 常圧以 下で加熱して揮発性成分を蒸発除去させ、 回収して得られるビニル脂環式炭化水 素重合体。  17. A vinyl alicyclic hydrocarbon polymer obtained by heating a reaction solution containing a butyl alicyclic hydrocarbon polymer under normal pressure to remove volatile components by evaporation, and recovering the reaction solution.
1 8 . 請求項 1 7に記載のビニル脂環式炭化水素重合体からなる成 形体。  18. A molded article comprising the vinyl alicyclic hydrocarbon polymer according to claim 17.
PCT/JP2001/007273 2000-08-25 2001-08-24 Process for producing vinyl alicyclic hydrocarbon polymer and molded object WO2002016447A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-255661 2000-08-25
JP2000255661 2000-08-25

Publications (1)

Publication Number Publication Date
WO2002016447A1 true WO2002016447A1 (en) 2002-02-28

Family

ID=18744402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007273 WO2002016447A1 (en) 2000-08-25 2001-08-24 Process for producing vinyl alicyclic hydrocarbon polymer and molded object

Country Status (1)

Country Link
WO (1) WO2002016447A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043708A1 (en) 2010-09-29 2012-04-05 日本ゼオン株式会社 Hydrogenated block copolymer having alkoxysilyl group, and use therefor
JP2020117651A (en) * 2019-01-28 2020-08-06 Mcppイノベーション合同会社 Millimeter wave module and its component part

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034340A1 (en) * 1998-12-04 2000-06-15 Nippon Zeon Co., Ltd. Hydrogenated polymers, resin composition, and process for producing substrate for information-recording medium
JP2001272534A (en) * 2000-03-24 2001-10-05 Mitsui Chemicals Inc Protective film for polarizing plate and polarizing plate formed by using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034340A1 (en) * 1998-12-04 2000-06-15 Nippon Zeon Co., Ltd. Hydrogenated polymers, resin composition, and process for producing substrate for information-recording medium
JP2001272534A (en) * 2000-03-24 2001-10-05 Mitsui Chemicals Inc Protective film for polarizing plate and polarizing plate formed by using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043708A1 (en) 2010-09-29 2012-04-05 日本ゼオン株式会社 Hydrogenated block copolymer having alkoxysilyl group, and use therefor
JP2020117651A (en) * 2019-01-28 2020-08-06 Mcppイノベーション合同会社 Millimeter wave module and its component part

Similar Documents

Publication Publication Date Title
AU752141B2 (en) Vinylcyclohexane-based block copolymers
WO1996010596A1 (en) Hydrogenated ring-opening polymer
WO2004081062A1 (en) Method for producing modified polyolefin solution
EP0713893A1 (en) Hydrogenated norbornene-base ring-opening polymer, process for producing the same, and use thereof
CN110669207A (en) Cycloolefin copolymer and preparation method and application thereof
EP2264078B1 (en) Hydrogenated beta-pinene-based polymer and molded article comprising the same
JPWO2003018656A1 (en) Block copolymer, method for producing the same, and molded article
JP3360335B2 (en) Molding material composed of vinylated cyclic hydrocarbon polymer
JP5682321B2 (en) Norbornene-based ring-opening copolymer hydride and use thereof
US20090292088A1 (en) Process for production of cyclic olefin addition polymer
WO2002016447A1 (en) Process for producing vinyl alicyclic hydrocarbon polymer and molded object
JPH06136057A (en) Hydrogenated cyclopentadiene resin, its production and optical material, medical material, electrical insulation material and electronic part treating material made from the resin
JP4447224B2 (en) Optical materials and optical products
TW200948835A (en) β-pipene based copolymer and producing method thereof
JPH0892357A (en) Production of modified norbornene resin
JP4288991B2 (en) Polymer purification method
JP3277568B2 (en) Vinylated cyclic hydrocarbon copolymer, its hydrogenated product, optical material composed of hydrogenated product, medical equipment, electrical insulating material, and equipment for processing electronic components
JP2010007006A (en) Method for producing vinyl alicyclic hydrocarbon polymer
JP2002003524A (en) Method for producing aromatic vinyl polymer hydrogenation product or cycloalkene vinyl polymer hydrogenation product
JP2002003506A (en) Method for producing aromatic vinyl polymer hydrogenation product or cycloalkene vinyl polymer hydrogenation product and starting monomer thereof
JP2010254910A (en) Method for producing cyclic olefin addition polymer
JP2003082113A (en) Non-staining flexible resin molding
WO2002057324A1 (en) Hydrogenated styrene polymer, process for producing the same, and molded object obtained therefrom
JP2013048560A (en) Culture vessel
JP2004244594A (en) Cyclic conjugated diene copolymer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 521542

Kind code of ref document: A

Format of ref document f/p: F