WO2002014754A1 - Systeme d'energie chauffante ou refroidissante sous forme liquide a puits - Google Patents

Systeme d'energie chauffante ou refroidissante sous forme liquide a puits Download PDF

Info

Publication number
WO2002014754A1
WO2002014754A1 PCT/CN2001/000063 CN0100063W WO0214754A1 WO 2002014754 A1 WO2002014754 A1 WO 2002014754A1 CN 0100063 W CN0100063 W CN 0100063W WO 0214754 A1 WO0214754 A1 WO 0214754A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
well
pipe
heat exchange
way valve
Prior art date
Application number
PCT/CN2001/000063
Other languages
English (en)
French (fr)
Inventor
Shengheng Xu
Original Assignee
Shengheng Xu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shengheng Xu filed Critical Shengheng Xu
Priority to US10/333,529 priority Critical patent/US6925830B2/en
Priority to NZ523498A priority patent/NZ523498A/en
Priority to KR10-2003-7001368A priority patent/KR100525152B1/ko
Priority to AU2001229997A priority patent/AU2001229997A1/en
Priority to EP01902283A priority patent/EP1312878B1/en
Publication of WO2002014754A1 publication Critical patent/WO2002014754A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/20Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the invention relates to an energy system, in particular to a well-type liquid cold and heat source system. . Background technique
  • the heating systems used by people mainly use coal, natural gas or crude oil as energy sources.
  • Coal, natural gas and crude oil not only have limited reserves, but also produce a large amount of ash, dust or exhaust gas after combustion, which not only pollutes the environment, but also changes the nature of the atmosphere, causing the greenhouse effect, warming the earth, melting icebergs, and rising sea levels ... people
  • the refrigeration equipment used uses electric energy as the power source. Electric energy is not only expensive, but also part of the electric energy is derived from fuels such as coal, natural gas or crude oil. It also has the problems of polluting the environment and changing the nature of the atmosphere. There are a large number of low-level cold and heat sources stored in groundwater.
  • the well-type liquid cold and heat source system of the present invention comprises a water well, a liquid suction pump, an energy booster and a liquid discharge pump, wherein the water well is one, and a partition plate for separating the water well into upper and lower parts is provided in the well;
  • the liquid suction pump is placed on the lower part of the water well or on the partition;
  • the energy booster includes a system consisting of a compressor, a condenser, a liquid receiver, a drying filter, a restrictor, an evaporator, and a gas-liquid separator connected in sequence through pipes.
  • the well-type liquid cold and heat source system of the present invention further improves: it further includes two two-position four-way valves, and the liquid outlet pipe of the heat exchange pipeline coupled with the condenser is connected to the first two-position four-way valve.
  • the first interface of the valve is connected, and its liquid inlet pipe is connected to the first interface of the second two-position four-way valve;
  • the liquid inlet pipe of the load is connected to the second interface of the first two-position four-way valve, and the liquid return pipe of the load is connected to The fourth interface of the second two-position four-way valve is connected;
  • the water outlet pipe of the heat exchange pipeline coupled with the evaporator is connected to the third interface of the first two-position four-way ceramic, and its liquid inlet pipe is connected to the first
  • the third interface of the two-two-position four-way valve is connected;
  • the liquid return pipe of the water well is connected to the fourth interface of the first two-position four-way valve, and the liquid outlet pipe is connected to the second interface of the
  • the well type liquid cold and heat source system of the present invention is further improved in that the heat exchange circuit is filled with antifreeze.
  • a heat exchanger is provided between the water well and the energy booster.
  • the advantages of the well-type liquid cold and heat source system of the present invention are as follows: It uses a large number of low-level heat sources contained in groundwater as energy sources for heating and cooling (ie, loads), such as indoor heating in winter and cooling in summer. It does not produce any toxic and harmful substances when it works, no pollution and no pollution. In addition, one well is used to replace the pumping and return wells of two wells, thereby reducing the investment in wells.
  • FIG. 1 is one of the principle diagrams of the well type liquid cold and heat source system of the present invention
  • FIG. 2 is a second schematic diagram of a well-type liquid cold and heat source system according to the present invention.
  • Fig. 3 is a schematic diagram of the working principle of the energy booster of the well type liquid cold and heat source system of the present invention during heating in winter;
  • Fig. 4 is a schematic diagram of the working principle of the energy booster of the well type liquid cold and heat source system of the present invention during summer cooling .
  • the well type liquid cold and heat source system of the present invention includes a water well 20, an energy booster 10, an outlet pump 50 and a liquid extraction pump 60, and a water well 2 0 connected together by pipelines.
  • the liquid outlet pipe 12a and the liquid return pipe 12b are respectively connected to the liquid inlet pipe and the liquid return pipe of the energy booster 10.
  • the liquid suction pump 60 is placed in the lower part of the water well 20.
  • the outlet pipe 10 2 of the energy boost 10 is connected to the air conditioner (not shown in the figure).
  • the outlet pipe 10 2 is equipped with a liquid outlet pump 50, the return pipe 10 of the air conditioner and the energy
  • the condenser 2 of the lifter 1 Q is coupled to the liquid inlet pipe 2 b of the heat exchange pipe 30 (FIG. 3).
  • FIG. 3 is a working principle diagram of the energy booster 10 of the system during heating in winter.
  • the energy booster 10 includes a heating circuit and a heat exchange circuit, wherein the heating circuit is composed of a compressor 1, a condenser 2, a reservoir 3, a drying filter 4, a throttle 5, an evaporator 6, and a gas-liquid separator. 7 It is formed by connecting pipes in order.
  • This heating circuit is the same as the heating (cold) circuit used by ordinary air conditioners and refrigerators.
  • the heating circuit is filled with a working medium for the heating cycle R 2 2
  • two two-position four-way valves that is, a first two-position four-way valve 8 and a second two-position four-way valve 9 are provided.
  • the liquid outlet pipe 2 a of the heat exchange pipe 30 coupled with the condenser 2 is connected to the first interface 8 a of the first two-position four-way valve 8, and the liquid inlet pipe 2 b thereof is connected to the second two-position four
  • the first interface 9 a of the on-way valve 9 is connected;
  • the liquid inlet pipe 102 of the air conditioner is connected to the second interface 8 b of the first two-position four-way valve 8, and the liquid outlet pipe 103 thereof is connected to the second two-position four
  • the fourth port 9 d of the on-way valve 9 is connected;
  • the heat exchange pipe 40 0 liquid pipe 6 a coupled to the evaporator 6 is connected to the third port 8 c of the first two-position four-way valve 8, and its liquid inlet pipe 6 b is connected to the third interface 9 C of the second two-position four-way
  • the working process of the energy booster 10 during heating in winter is as follows:
  • the liquid working medium in the heat exchange circuit pipe absorbs the low-level thermal energy in the water well 2 Q and, under the action of the suction pump, passes through the second two-position four-way
  • the valve 9 and the liquid inlet pipe 6 b are sent to a heat exchange pipe 40 coupled with the evaporator 6. Heat is exchanged in the evaporator 6 to transfer heat to the evaporator 6.
  • the heat-exchanged liquid flows back to the water well 20 through the liquid outlet pipe 6a, the first two-position four-way valve 8, and the liquid return pipe 1 2b of the water well 20.
  • the working medium R 2 2 in the evaporator 6 is converted into a low-temperature and low-pressure gas by the action of the evaporator 6 and sent to the gas-liquid separator 7. After being separated in the gas-liquid separator 7, it is sent to compression Machine 1. Low-pressure low-temperature gas becomes high-temperature and high-pressure gas through the compressor and is sent to the condenser 2. In the condenser 2, the high-temperature and high-pressure gas sent from the compressor 1 and the working medium in the heat exchange line 30 coupled with the condenser 2 perform heat exchange.
  • Fig. 4 is the working principle diagram of the system energy booster 10 during summer cooling.
  • the first two-position four-way valve 8 and the second two-position four-way valve 9 are reversed.
  • the first two-position four-way valve 8 is connected to the liquid outlet pipe 6 a of the heat exchange pipe 40 coupled with the evaporator 6 and the liquid inlet pipe 1 Q 2 of the air conditioner, and is connected to the condenser 2 phase.
  • the liquid suction pump 60 is usually disposed at the lower part of the well 20.
  • the pump 60 can be placed on the partition plate 70 to draw water from the upper part of the well and return the lower part.
  • Such return water is pressured return water.
  • the temperature of the liquid output through the energy booster 10 can reach about 50 ° C.
  • the temperature of the liquid in the liquid return pipe 103 of the air conditioner is about 4 5 ° C
  • the temperature of the liquid in the water well return pipe 1 2 b is about 10 ° C. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

井式液体冷热源系统 技术领域
本发明涉及一种能源系统, 具体地说涉及一种井式液体冷热源系统。 . 背景技术
目前, 人们使用的供热系统主要以煤、 天然气或原油作能源。 煤、 天然气和原油不 仅储量有限, 而且燃烧后产生大量灰渣、 粉尘或废气, 不仅污染环境, 而且会改变大气 的性质, 造成温室效应, 使地球变暖, 冰山融化, 海平面上升……人们使用的制冷设备 是以电能作为电源, 电能不仅价格贵, 而且一部分电能也是取自煤、 天燃气或原油等燃 料, 同样存在污染环境, 改变大气性质等问题。 地下水中储存有大量的低位冷热源。 法 国西亚特 (C iA T ) 公司生产的一种水一水热泵系统, 就是以井水作为能源。 但其需要 建造二口水井, 其中一口井作为供水井, 另一口井作为回水井, 因此, 造价高。 发明内容
本发明的目的在于克服上述不足, 而提供一种只需一口水井的井式液体冷热源系统, 该系统无污染且造价钕低。
本发明的井式液体冷热源系统, 包括水井、 抽液泵、 能量提升器和出液泵, 其中水 井为一口, 在其内部设有一块将水井分隔成上、 下两部分的隔板; 抽液泵置于水井的下 部或隔板上; 能量提升器包括由压缩机、 冷凝器、 贮液器、 干燥过滤器、 节流器、 蒸发 器和气液分离器通过管道依次连接而组成的制热回路、 热交换回路, 所述热交换回路中 的与所述冷凝器相偶合的热交换管路的出液管通过负载的进液管和出液泵与负载相连, 所述负载的回液管和与所述冷凝器相偶合的热交换管路的进液管相连, 与所述蒸发器相 偶合的热交换管路的出液管与所述水井上部的回液管相连, 所述水井的出液管经置于水 井下部或隔板上的抽液泵和与所述蒸发器相偶合的热交换管路的进液管相连。
本发明井式液体冷热源系统, 其进一步改进之处在于: 还包括二个二位四通阀, 与 所述冷凝器相偶合的热交换管路的出液管与第一二位四通阀的第一接口相连, 其进液管 与第二二位四通阀的第一接口相连; 负载的进液管与第一二位四通阀的第二接口相连, 负载的回液管与第二二位四通阀的第四接口相连; 与所述蒸发器相偶合的热交换管路的 出水管与所述第一二位四通陶的第三接口相连, 其进液管与第二二位四通阀的第三接口 相连; 所述水井的回液管与第一二位四通阀的第四接口相连, 其出液管与第二二位四通 阀的第二接口相连。
本发明井式液体冷热源系.统, 其又一改进之处在于所述制热回路中填充有工质 R 2
2 α
本发明井式液体冷热源系统, 其再一改进之处在于所述热交换回路中填充有防冻液。 本发明井式液体冷热源系统, 其中在所述水井和能量提升器之间设置有换热器。 本发明井式液体冷热源系统的优点在于: 它以地下水所含有的大量低位热源作为能 源供冷热所需处 (即负载), 例如供室内冬季采暖, 夏季制冷使用。 其工作时不产生任何 有毒有害物质, 无公害, 无污染。 另外, 用一口水井代替两口水井的抽水井和回水井的 作用, 从而降低了水井的投资。 再有, 当回水不畅时, 可采用抽裤泵在水井隔板上的这 种设置, 这样可从水井的上部抽水, 下部回水, 使回水为有压回水。 附图简要说明
图 1是本发明井式液体冷热源系统的原理图之一;
图 2是本发明井式液体冷热源系统的原理图之二;
图 3是本发明井式液体冷热源系统的能量提升器在冬季制热时的工作原理示意图; 图 4是本发明井式液体冷热源系统的能量提升器在夏季制冷时的工作原理示意 图。
' 本发明的实施方式
下面结合附图对本发明的井式液体冷热源系统作进一步的说明。
如图 1所示, 本发明的井式液体冷热源系统, 包括由管路连接在一起的水井 2 0, 能量提升器 1 0, 出液泵 5 0和抽液泵 6 0 , 水井 2 0为能提供' 1 5 Ό左右低位冷热源 恒温井水的水井, 其出液管 1 2 a、 回液管 1 2 b分别与能量提升器 1 0的进液管和回液 管相连。 抽液泵 6 0置于水井 2 0的下部。 能量提升 1 0的出液管 1 0 2与空调器 (图 中未示出) 相接, 出液管 1 0 2上装有出液泵 5 0 , 空调器的回液管 1 0 3和与能量提 升器 1 Q的冷凝器 2相偶合的热交换管路 3 0的进液管 2 b相连 (图 3 )。
如图 2所示, 本发明的井式液体冷热源系统, 是在图 1所示的系统中在所述水井和 能量提升器之间设置有换热器 8 0。
图 3为本系统的能量提升器 1 0在冬季制热时的工作原理图。 能量提升器 1 0包括 制热回路和热交换回路, 其中, 制热回路由压缩机 1, 冷凝器 2, 贮液器 3 , 干燥过滤 器 4, 节流器 5, 蒸发器 6和气液分离器 7通过管道依次连接而成。 该制热回路与普通 空调, 冰箱采用的制热 (冷) 回路相同。 在制热回路中填充有用于制热循环的工质 R 2 2
在热交换回路中, 设有两个二位四通阀, 即第一二位四通阀 8和第二二位四通阀 9。 其中, 与冷凝器 2相偶合的热交换管路 3 0的出液管 2 a与第一二位四通阀 8的第一接口 8 a相连, 其进液管 2 b 与第二二位四通阀 9的第一接口 9 a相连; 空调器的进液管 1 0 2与第一二位四通阀 8的第二接口 8 b相连, 其出液管 1 0 3与第二二位四通阀 9的第四 接口 9 d相连; 与蒸发器 6相偶合的热交换管路 4 0出液管 6 a与第一二位四通阀 8的第 三接口 8 c相连, 其进液管 6 b 与第二二位四通阀 9的第三接口 9 C相连; 水井 2 0的回 液管 1 2 b 与第一二位四通阀 8的第四接口 8 d相连, 其出液管 1 2 a与第二二位四通阀 9的第二接口 9 b相连。 在热交换回路中填充有水或防冻液等工作介质,'本发明利用井水 作能源的液体冷热源系统供空调器使用时, 其热交换回路充填防冻液; 如只用于供应热 水, 其热交换回路则充填水作工作介质。
所述能量提升器 1 0在冬季制热时的工作过程如下: 热交换回路管道内的液体工作 介质吸收水井 2 Q中的低位热能并在抽液泵的作用下, 经第二二位四通阀 9、 进液管 6 b 送入与蒸发器 6相偶合的热交换管路 4 0。 在蒸发器 6内进行热交换, 将热量传递给蒸 发器 6。 经热交换后的液体经出液管 6 a, 第一二位四通阀 8、 水井 2 0的回液管 1 2 b 流回至水井 2 0。 与此同时, 蒸发器 6中的工质 R 2 2通过蒸发器 6的作用被转换为低 温低压气体送入气液分离器 7, 在气液分离器 7中经气液分离后被送入压缩机 1。 低压 低温气体通过压缩机变为高温高压气体并被送至冷凝器 2。 在冷凝器 2中, .由压缩机 1 送出的高温高压气体和与冷凝器 2相偶合的热交换管路 3 0内的工作介质进行热交换, 热交换后, 被加热的液体工作介质经出液管 2 a, 第一二位四通阀 8, 出液泵 5 0及空调 器的进液管 1 0 2流入空调器给室内空气升温。 经空调器散热后的液体工作介质通过空 调器的回液管 1 0 3, 第二二位四通阀 9, 进液管 2 b流回至与冷凝器 2相偶合的热交换 昝路 3 (3, 完成工作循环。
设置上文所述的两个二位四通阀的目的在于使本发明的井式液体冷热源系统适用于 冬夏二季的使用。 如果只作为冬季取暖, 则可不安装二位四通阀。
图 4为本系统能量提升器 1 0在夏季制冷时的工作原理图。 在该图中, 第一二位四 通阀 8和第二二位四通阀 9换向。 其中, 第一二位四通阀 8接通与蒸发器 6相偶合的热 交换管路 4 0的出液管 6 a和空调器的进液管 1 Q 2, 并接通与冷凝器 2相偶合的热交换 管路 3 0的出液管 2 a和水井 2 0的回液管 1 2 b; 同时, 第二二位四通阀 9接通与蒸发 器 6相偶合的热交换管路 4 0的进液管 6 b和空调器的回液管 1 0 3, 并接通与冷凝器 2 相偶合的热交换管路 3 0的进液管 2 b和水井 2 0的出液管 1 2 a, 使与蒸发器 6相偶合 的热交换管路 4 G内的低温工作介质与空调器相连, 从而实现向室内提供冷气。
显然, 本发明的井式液体冷热源系统, 也可直接用于向用户提供热水, 此时, 只需 要将空调器的进液管 1 0 2安装上阀门, 将空调器的回液管 1 Q 3与自来水管连接即可。
在图 1和图 2所示的情况下, 抽液泵 6 0通常设置在水井 2 0的下部。 在特殊情况 下, 当回水不畅时, 可将抽液泵 6 0置于隔板 7 0上, 从水井上部抽水, 下部回水, 这 样的回水为有压回水。
在冬季制热时, 进入能量提升器 1 0的液体温度例如约为 1 5 °C时, 经能量提升器 1 0输出的液体温度可达 5 0. °C左右。 经负载如空调器后, 在空调器回液管 1 0 3内液 体的温度约为 4 5 °C, 在水井回液管 1 2 b中液体的温度约为 1 0 °C。 .
在夏季制冷时, 进入能量提升器 1 0的液体温度例如同样约为 1 5 °C时, 经能量提 升器 1 0输出的液体温度约为 7 °C, 经负载如空调器后, 在空调器回液管 1 0 3内液体 的温度约为 1 2 Ό, 在水井回液管 1 2 b中液体的温度约为 2 0 °C。 工业实用性 本发明所述的系统以地下水所含的大量低位热源作为能源, 供例如室内冬季取暖, 夏季制冷的冷热所需之处。 该系统在工作时不产生任何有毒有害物质, 无公害, 无污染, 并用一口水井代替两口水井的抽水和回水的作用以及使用大量现成零部件, 因此投资较 低, 有利于推广应用。

Claims

权 利 要 求
1、 一种井式液体冷热源系统, 包.括水井 ( 2 0 ), 其特征在于: 还包括抽液泵 ( 6 0 )、 能量提升器 ( 1 0 ) 和出液泵 ( 5 0 ), 其中水井 ( 2 0 ) 为一口, 在其内部设有 一块将水井 ( 2 0 ) 分隔成上、 下两部分的隔板 ( 7 0 ); 抽液泵 ( 6 0 ) 置于水井 ( 2 0 ) 的下部或隔板 ( 7 0 ) 上; 能量提升器 ( 1 0 ) 包括由压缩机 ( 1 )、 冷凝器 ( 2 )、 贮液器 ( 3 )、 干燥过滤器 ( 4 )、 节流器 ( 5 )、 蒸发器 ( 6 ) 和气液分离器 ( 7 ) 通过 管道依次连接而组成的制热回路、 热交换回路, 所述热交换回路中的与所述冷凝器 (2 ) 相偶合的热交换管路 ( 3 0 ) 的出液管( 2 a) 通过负载的进液管( 1 0 2 ) 和出液泵( 5 0 ) 与负载相连, 所述负载的回液管 ( .1 0 3 ) 和与所述冷凝器 ( 2 ) 相偶合的热交换 管路 ( 3 0 ) 的进液管 ( 2 b) 相连, 与所述蒸发器 ( 6 ) 相偶合的热交换管路 (4 0 ) 的出液管 ( 6a) 与所述水井 (2 0 ) 上部的回液管 ( 1 2b) 相连, 所述水井 ( 2 0 ) 的 出液管 ( 1 2 a) 经置于水井 ( 2 0 ) 下部或隔板 ( 7 0 ) 上的抽液泵 ( 6 0 ) 和与所述 蒸发器 ( 6 ) 相偶合的热交换管路 (4 0 ) 的进液管 ( 6 b) 相连。
2、 按照权利要求 1 所述的井式液体冷热源系统, 其特征在于: 还包括二个二位四 通阀, 与所述冷凝器 ( 2 ) 相偶合的热交换管路 ( 3 0 ) 的出液管 ( 2 a) 与第一二位四 通阀 ( 8 ) 的第一接口 ( 8 a) 相连, 其进液管 ( 2b) 与第二二位四通阀 ( 9 ) 的第一接 口 ( 9a) 相连; 负载的进液管 ( 1 0 2 ) 与第一二位四通阖 ( 8 ) 的第二接口 ( 8b) 相 连, 负载的回液管 ( 1 0 3 ) 与第二二位四通阀 ( 9 ) 的第四接口 ( 9d) 相连; 与所述 蒸发器 ( 6 ) 相偶合的热交换管路 (4 0 ) 的出水管 ( 6 a) 与所述第一二位四通阀 ( 8 ) 的第三接口 ( 8c) 相连, 其进液管 ( 6b) 与第二二位四通阀 ( 9 ) 的第三接口 ( 9c) 相连; 所述水井( 2 0 ) 上部的回液管( 1 2b) 与第一二位四通阀 ( 8 ) 的第四接口 ( 8 d ) 相连, 其出液管 ( 1 2 a).与第二二位四通阖 ( 9 ) 的第二接口 ( 9b) 相连。
3、 按照权利要求 1或 2所述的井式液体冷热源系统, 其特征在于: 所述制热回路 中填充有工质 R 2 2。
4、 按照权利要求 3所述的井式液体冷热源系统, 其特征在于: 所述热交换回路中 填充有防冻液。
5、 根据权利要求 1、 2或 4所述的井式液体冷热源系统, 其特征在于: 在所述水 井 ( 2 0 ) 和能量提升器 ( 1 0 ) 之间设置有换热器 ( 8 0 )。 .
6、 根据权利要求 3所述的井式液体冷热源系统, 其特征在于: 在所述水井 ( 6 0 ) 和能量提升器 ( 1 0 ) 之间设置有换热器 ( 8 0 )。
PCT/CN2001/000063 2000-08-18 2001-01-18 Systeme d'energie chauffante ou refroidissante sous forme liquide a puits WO2002014754A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/333,529 US6925830B2 (en) 2000-08-18 2001-01-18 Well-water-type liquid cooling and heating resource system
NZ523498A NZ523498A (en) 2000-08-18 2001-01-18 Well water type liquid cooling and heating resource system
KR10-2003-7001368A KR100525152B1 (ko) 2000-08-18 2001-01-18 우물물형 액체 냉각 및 가열자원시스템
AU2001229997A AU2001229997A1 (en) 2000-08-18 2001-01-18 Well water type liquid cooling and heating resource system
EP01902283A EP1312878B1 (en) 2000-08-18 2001-01-18 Well water type liquid cooling and heating resource system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN00123494.3 2000-08-18
CN00123494A CN1122155C (zh) 2000-08-18 2000-08-18 井式液体冷热源系统

Publications (1)

Publication Number Publication Date
WO2002014754A1 true WO2002014754A1 (fr) 2002-02-21

Family

ID=4589912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2001/000063 WO2002014754A1 (fr) 2000-08-18 2001-01-18 Systeme d'energie chauffante ou refroidissante sous forme liquide a puits

Country Status (8)

Country Link
US (1) US6925830B2 (zh)
EP (1) EP1312878B1 (zh)
KR (1) KR100525152B1 (zh)
CN (1) CN1122155C (zh)
AU (1) AU2001229997A1 (zh)
HK (1) HK1043185B (zh)
NZ (1) NZ523498A (zh)
WO (1) WO2002014754A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20082077A1 (it) * 2008-11-21 2010-05-22 Fabio Baioni Sonda geotermica perfezionata

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320325C (zh) * 2004-10-26 2007-06-06 北京永源热泵有限责任公司 提取水能量的热泵系统
ATE541166T1 (de) * 2005-09-15 2012-01-15 Cotherm Of America Corp Energieübertragungssystem und zugehörige verfahren
US7597138B1 (en) 2006-01-25 2009-10-06 American Refining Group, Inc. Ground water heat transfer systems and deployment thereof
US7647773B1 (en) 2006-01-25 2010-01-19 American Refining Group, Inc. Ground source heat pump well field design and control strategy for large tonnage
JP3927593B1 (ja) * 2006-09-22 2007-06-13 博明 上山 二重管式地熱水循環装置
CN100465413C (zh) * 2008-01-29 2009-03-04 何满潮 深井热交换系统压力转换系统
US8820394B2 (en) * 2009-06-26 2014-09-02 Aztech Engineers, Inc. Convection enhanced closed loop geothermal heat pump well
CN102410670B (zh) * 2011-09-27 2013-01-09 北京矿大节能科技有限公司 一种煤矿废弃冻结管利用装置及其使用方法
CN103162410B (zh) * 2013-04-11 2015-11-25 李家海 一种利用井水热能补偿热源的节能热泵热水器
WO2014182922A1 (en) 2013-05-09 2014-11-13 Haupt Steven Ground water air conditioning systems and associated methods
CN104006478A (zh) * 2014-06-12 2014-08-27 天津大学 一种新型地源热泵系统与应用
KR102044678B1 (ko) * 2018-05-29 2019-11-14 주식회사 에너지컨설팅 지하수를 이용하는 히트 펌프 시스템
CN114110821A (zh) * 2021-11-15 2022-03-01 金国达科技(湖南)有限公司 一种中央空调的多级热回收新风系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2461449A (en) 1946-10-14 1949-02-08 Muncie Gear Works Inc Heat pump using deep well for a heat source
US4448237A (en) 1980-11-17 1984-05-15 William Riley System for efficiently exchanging heat with ground water in an aquifer
EP0499466A2 (en) * 1991-02-14 1992-08-19 Harrell, James Elton jr System for efficiently exchanging heat or cooling ground water in a deep well
CN1072010A (zh) * 1992-10-13 1993-05-12 上海桑菱环境能源研究所 一种热泵供热供冷系统
US5370182A (en) 1993-11-29 1994-12-06 Hickerson; Russell D. Thermal extraction system and method
US5671608A (en) 1996-04-19 1997-09-30 Geothermal Heat Pumps, Inc. Geothermal direct expansion heat pump system
FR2750480A1 (fr) * 1996-07-01 1998-01-02 Paquot Michel Systeme de chauffage et refroidissement d'un local et de production d'eau chaude sanitaire et d'eau brute
EP0967447A1 (en) 1998-05-20 1999-12-29 Itho B.V. Heat pump system
CN1239770A (zh) * 1999-03-10 1999-12-29 海阳市富尔达热工程有限公司 供热制冷两用系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2487959A2 (fr) * 1978-04-26 1982-02-05 Lenoir Jacques Procede et installation d'echanges thermiques par heliogeothermie
JPS59164854A (ja) * 1983-03-08 1984-09-18 Nippon Chikasui Kaihatsu Kk 地下水採取還元方法
JPS6111567A (ja) * 1984-06-27 1986-01-18 Mayekawa Mfg Co Ltd 地下水の熱回収装置
US4718248A (en) * 1986-05-05 1988-01-12 Stephen Fisher Four element refrigeration heat pump and geothermal control systems
US4876450A (en) * 1988-07-26 1989-10-24 Atlantic Richfield Company Cryosonde for well logging tool
US5386709A (en) * 1992-12-10 1995-02-07 Baltimore Aircoil Company, Inc. Subcooling and proportional control of subcooling of liquid refrigerant circuits with thermal storage or low temperature reservoirs
US5388419A (en) * 1993-04-23 1995-02-14 Maritime Geothermal Ltd. Staged cooling direct expansion geothermal heat pump
US6142215A (en) * 1998-08-14 2000-11-07 Edg, Incorporated Passive, thermocycling column heat-exchanger system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2461449A (en) 1946-10-14 1949-02-08 Muncie Gear Works Inc Heat pump using deep well for a heat source
US4448237A (en) 1980-11-17 1984-05-15 William Riley System for efficiently exchanging heat with ground water in an aquifer
EP0499466A2 (en) * 1991-02-14 1992-08-19 Harrell, James Elton jr System for efficiently exchanging heat or cooling ground water in a deep well
CN1072010A (zh) * 1992-10-13 1993-05-12 上海桑菱环境能源研究所 一种热泵供热供冷系统
US5370182A (en) 1993-11-29 1994-12-06 Hickerson; Russell D. Thermal extraction system and method
US5671608A (en) 1996-04-19 1997-09-30 Geothermal Heat Pumps, Inc. Geothermal direct expansion heat pump system
FR2750480A1 (fr) * 1996-07-01 1998-01-02 Paquot Michel Systeme de chauffage et refroidissement d'un local et de production d'eau chaude sanitaire et d'eau brute
EP0967447A1 (en) 1998-05-20 1999-12-29 Itho B.V. Heat pump system
CN1239770A (zh) * 1999-03-10 1999-12-29 海阳市富尔达热工程有限公司 供热制冷两用系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1312878A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20082077A1 (it) * 2008-11-21 2010-05-22 Fabio Baioni Sonda geotermica perfezionata

Also Published As

Publication number Publication date
HK1043185B (zh) 2004-01-21
CN1122155C (zh) 2003-09-24
KR100525152B1 (ko) 2005-11-02
AU2001229997A1 (en) 2002-02-25
EP1312878A1 (en) 2003-05-21
KR20030023724A (ko) 2003-03-19
CN1339680A (zh) 2002-03-13
EP1312878A4 (en) 2006-06-28
HK1043185A1 (en) 2002-09-06
US20040035552A1 (en) 2004-02-26
NZ523498A (en) 2003-05-30
EP1312878B1 (en) 2013-03-20
US6925830B2 (en) 2005-08-09

Similar Documents

Publication Publication Date Title
CN2884061Y (zh) 可实现双级压缩的并联压缩机低温空气源热泵装置
CN101839585B (zh) 适合低温气候的太阳能-空气源热泵复合系统
CN101387456B (zh) 寒冷地区冷暖浴一体的空气源热泵装置
WO2002014754A1 (fr) Systeme d'energie chauffante ou refroidissante sous forme liquide a puits
CN203657051U (zh) 一种直凝式空气源热泵地暖系统
CN110030769B (zh) 基于升温型吸收式-压缩式换热的中低温热能供热系统
CN202304098U (zh) 超高温水源热泵机组
CN201440013U (zh) 一种空调机组
JP2005500500A (ja) 蓄地熱空調システム
CN103925726B (zh) 一种地埋管式高温热泵机组
CN2599459Y (zh) 中央空调余热回收制热水装置
CN202361697U (zh) 一种直接膨胀式矿井回风源热泵系统
CN210004626U (zh) 一种带有高效节流系统的地源热泵热回收机组
CN203798007U (zh) 一种地埋管式高温热泵机组
CN202350266U (zh) 一种低碳型空调制冷与热水装置
CN219955604U (zh) 空调余热全热回收系统
CN219674438U (zh) 空调余热回收系统
CN113899110B (zh) 一种具有中间过程的吸收式冷热联供系统
CN206145978U (zh) 一种二级压缩高温热泵机组
CN214172433U (zh) 一种水源热泵地下水式涡旋内转换热回收机组
CN103148638A (zh) 一种污水源热泵系统
CN220624170U (zh) 一种光伏热泵机组
CN203177372U (zh) 一种污水源热泵系统
CN212987464U (zh) 一种热泵空调两用机组
CN209068589U (zh) 地源热泵系统

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 523498

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2001902283

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10333529

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020037001368

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037001368

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001902283

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 523498

Country of ref document: NZ

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 523498

Country of ref document: NZ

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 1020037001368

Country of ref document: KR