WO2002014401A1 - Process for the production of block copolymers, block copolymers produced by the process, and use of the copolymers - Google Patents

Process for the production of block copolymers, block copolymers produced by the process, and use of the copolymers Download PDF

Info

Publication number
WO2002014401A1
WO2002014401A1 PCT/JP2001/006845 JP0106845W WO0214401A1 WO 2002014401 A1 WO2002014401 A1 WO 2002014401A1 JP 0106845 W JP0106845 W JP 0106845W WO 0214401 A1 WO0214401 A1 WO 0214401A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
compound
group
molecular
chain
Prior art date
Application number
PCT/JP2001/006845
Other languages
French (fr)
Japanese (ja)
Other versions
WO2002014401A8 (en
Inventor
Hiroshi Matsutani
Hiromasa Kawai
Haruaki Sue
Hideyasu Tsuiki
Toshihiko Takasaki
Takashi Kumaki
Tetsushi Maruyama
Shigeki Katogi
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Priority to AU2001278703A priority Critical patent/AU2001278703A1/en
Priority to JP2002519536A priority patent/JP4239589B2/en
Priority to KR1020027017915A priority patent/KR100544525B1/en
Publication of WO2002014401A1 publication Critical patent/WO2002014401A1/en
Publication of WO2002014401A8 publication Critical patent/WO2002014401A8/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J165/00Adhesives based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Adhesives based on derivatives of such polymers

Definitions

  • the present invention relates to a method for producing a homogeneous block copolymer using a metathesis polymerization reaction, a block copolymer obtained by the production method, and uses of the block copolymer.
  • the block copolymer obtained by the present invention is usefully used for adhesives for circuit connection used for electric and electronic parts such as semiconductor packages, and other uses. Background art
  • the characteristics of materials used for such parts are becoming ever higher with the recent technological advances in information and communications, multimedia, and personal computers.
  • the required characteristic items that are required are, for example, adhesives for electronic materials, low-temperature adhesion, short-time adhesion, moisture resistance, embedding, film forming ability, etc. High levels must be met.
  • each block of the block copolymer (monomer of the block source) is mixed. It is known that block copolymers with two molecular chains that do not mix (have different properties) form a microphase-separated structure and exhibit unique properties.
  • SBS resin styrene-butadiene-styrene block copolymer
  • SBS resin has microphase separation consisting of rigid molecular chains (hard segments) derived from polystyrene and flexible molecular chains (soft segments) derived from polybutadiene. It is a block copolymer that forms a structure.
  • This SBS resin is one of the thermoplastic resins in which the hard segment acts as a cross-linking point at room temperature and the soft segment acts as a rubber component. (Polymer Society of Japan, Polymer Data Handbook Application, Baifukan, 1980) 6, p. 299-307). ,
  • polyethylene-polyethylene glycol block copolymer is a nonionic high molecular surfactant having a nonpolar molecular chain and a polar molecular chain, which is used as an anti-foaming agent or an antifoaming agent. (Refer to Sigma-Aldrich's home page and CAS Registry Number: 979953—22—5).
  • a block copolymer can be obtained from two types of metathesis-polymerizable monomers that have significantly different structures and / or polarities from each other, the block copolymer will have the ability to form a microphase-separated structure. It is expected that the polymer region consisting of a molecular chain having a molecular weight will promote adhesion to metal. In addition, a polymer region composed of a non-polar molecular chain such as a polyalkylene chain acts as an elastomer, and the polymer itself Can be expected to lower elasticity and contribute to strengthening of adhesive strength.
  • the present inventors have proposed that when a stable and highly active ruthenium carbene complex catalyst is used to carry out a copolymerization reaction between a norbornene derivative as a raw material for synthesis and a cycloalkene, a cycloalkene and a necessary ruthenium carbene are first used. It was found that a desired homogeneous block copolymer could be stably obtained by reacting the entire amount of the catalyst complex catalyst and then adding a norpolenene derivative, and the following invention was completed using this as a starting point. Reached.
  • the present invention provides a metathesis polymerization reaction between a metathesis-polymerizable unsaturated monocyclic compound (A) and a metathesis-polymerizable unsaturated polycyclic compound (B) using a metal carbene complex catalyst (C). At this time, first, the unsaturated monocyclic compound (A) and the required amount of the metal carbene complex catalyst (C) are mixed and reacted, and then the unsaturated polycyclic compound (B) is added and reacted. This is a method for producing a copolymer.
  • a polymerization terminator is further added to stop the polymerization reaction, and the catalytically active site derived from the catalyst (C) bonded to one end of the polymer is removed, and the center of the catalyst (C) is removed. It is preferable to remove halogen atoms and the like coordinated to the metal.
  • the present invention also relates to a block copolymer produced by the above production method.
  • One type of block copolymer produced is the block of the copolymer.
  • the other block consists of a molecular chain (mA; —AAA—AAA—; block A) in which m molecular species (A) having an unsubstituted or substituted methylene group in the main chain are linked in a chain.
  • the molecular species (B) having a cyclocyclic structure in the main chain is composed of n molecular chains (nB; —BBB—BBB—; block B), and at one end of the copolymer molecule, It is a block copolymer in which residues other than the catalytically active site derived from the metal carbene complex catalyst (C) are bonded.
  • Another type of block copolymer to be produced is a copolymer in which the other end of the copolymer molecule further has a catalytically active site derived from the metal carbene complex catalyst (C) bonded thereto.
  • C metal carbene complex catalyst
  • the degree of dispersion of the molecular weight distribution of the above block copolymer is usually from 1.0 to 2.5, preferably from 1.0 to 2.0.
  • the degree of dispersion of the molecular weight distribution is a value calculated by the ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn).
  • one block of the block copolymer has a molecular species (A) having a methylene group substituted or unsubstituted with a nonpolar group in its main chain.
  • the other block consists of a m-chain nonpolar and flexible molecular chain (mA), and the other block contains a cyclocyclic structure in the main chain and a molecular species (B) having a polar substituent on the cyclocyclic ring.
  • mA m-chain nonpolar and flexible molecular chain
  • B molecular species having a polar substituent on the cyclocyclic ring.
  • the present invention provides a nonpolar and flexible molecular chain (mA) in which a molecular species (A) having a methylene group substituted or unsubstituted with a nonpolar group in the main chain is connected in m chains.
  • the main chain contains any of cycloalkane derivatives, cycloalkene derivatives, oxacycloalkane derivatives, oxacycloalkene derivatives, thiacycloalkane derivatives, and thiacycloalkene derivatives, and a polar substituent on the cyclo ring.
  • n B polar and rigid molecular chain in which n molecular species (B) having the following structure are linked in a chain.
  • FIG. 1 is a GPC chromatogram of the polymer obtained in Example 1 and the polymer obtained in Comparative Example.
  • FIG. 2 is a 1 H-NMR spectrum of the polymer obtained in Example 1.
  • the manufacturing method usually comprises the following step (i) and step (ii).
  • a molecular chain having a catalytically active site (Cata) derived from a metal carbene complex catalyst at the end ie, Cata-AAA—A
  • Cata means a metal-containing site derived from the metal carbene complex catalyst and lyst means its residue.
  • B monomer B
  • metathesis-polymerizable unsaturated polycyclic compound
  • Cata-AAA ⁇ AAA-lyst is formed as a reaction catalyst in (ii), reducing the yield of diblock copolymer (Cata-AAA-AAA-BBB-BBB-lyst), and the product is heterogeneous It is considered that the polymer becomes
  • step (ii) if monomer A is further added to the reaction system, the monomer is sequentially added from the catalytically active site of the diblock copolymer (Cata-BBB to BBB-AAA-AAA-lyst). A can be incorporated to form a triblock copolymer (Cata-AA8... AA—BBB...: BBB—AAA to AAA-lyst).
  • a step (step (iii)) of adding a reaction terminator to terminate the metathesis polymerization reaction is added.
  • reaction terminator examples include those that stop the metathesis polymerization reaction and also remove the catalytically active site derived from the catalyst (C) bonded to one end of the polymer.
  • a double bond at the molecular end and electron withdrawing at the adjacent position Vinyl acetate, ethyl vinyl ether, phenyl vinyl sulfide, N-vinyl pyrrolidone, and other vinyl sulfide compounds having a functional group; coordinating compounds having a large electron donating ability, such as 4-vinyl pyridine; and exo methylene compounds. is there.
  • vinyl acetate and ethyl Vinyl ethers are preferably used.
  • the monomer A, the monomer B, and the catalyst (C) used in the present invention will be described in order.
  • the unsaturated monocyclic compound (monomer A) used in the present invention include compounds that can undergo ring-opening metathesis polymerization and give a polymer having no ring structure after ring-opening polymerization.
  • a substituted or unsubstituted cycloalkene derivative having a carbon-carbon double bond in the molecule is used.
  • the elements constituting the cyclo ring of the cycloalkene derivative are usually 3 to 14 carbon atoms, preferably 4 to 9 carbon atoms, and some of the carbon atoms are a silicon atom or a boron atom. May be replaced by An oxygen atom, a sulfur atom, a nitrogen atom or a phosphorus atom may be used instead of some of the carbon atoms constituting the cyclo ring.
  • the molecular chain mA (block A) shows polarity.
  • the substituent Y 2 in the case where there is a substituent on the cycloalkyl ring, but like an alkyl group or a halogen atom carbon atoms 1-2 0, is preferably an alkyl group of from 1 to 2 0 carbon atoms .
  • unsaturated monocyclic compounds having two or more double bonds can also be used.
  • Such unsaturated monocyclic compounds include, for example, 1,5-cyclooctadiene, 1,3,5,7 —Cyclooctatetraene, 1,5,7—cyclododecatriene and the like.
  • Examples of the unsaturated polycyclic compound (B) used in the present invention include a compound which is capable of metathesis polymerization and gives a polymer having a ring structure in the main chain after ring-opening polymerization.
  • One of the preferable examples is a substituted or unsubstituted norbornene derivative, for example, a compound represented by the following formula (III).
  • m represents an integer of 0 to 3, preferably 0 to 2, more preferably 0 or 1.
  • R 5 to R 8 are each independently a hydrogen atom, the number of carbon atoms; To 20 alkyl groups, cycloalkyl groups having 3 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, halogen atoms, carbonyl groups, cyano groups, isocyano groups, nitro groups, siloxy groups, carbon atoms Alkoxycarbonyl group having 2 to 20 carbon atoms, alkylcarbonyloxy group having 2 to 20 carbon atoms, amino group, amide group, formyl group, hydroxyl group, hydroxyalkyl group having 1 to 20 carbon atoms, carbon Alkoxyalkyl group having 2 to 20 atoms, acyloxyalkyl group having 3 to 20 carbon atoms, cyanoalkyl group having 2 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, 1 carbon atom ⁇ 2 0 alkylthio group, 1 to 20 carbon atom alkylsulfinyl group,
  • a hydrogen atom an alkyl group having 1 to 10 carbon atoms, a carbon atom, an alkyl group having 3 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, a halogen atom, a carbonyl group
  • It is preferably selected from a cyano group, a nitro group, a siloxy group, an alkoxycarbonyl group having 2 to 10 carbon atoms, an amide group, a formyl group, and a hydroxyl group.
  • the alkoxy group is selected from the group consisting of an alkoxy group and an amide group.
  • R 5 to R 8 are bonded to one or two groups to form one CO—0—CO— group (acid anhydride), one CO—0_ group (lactone), _CO—NR 9 —CO —Group (imide) and —CO—NR 9 —group (lactam).
  • R 9 is selected from a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 20 carbon atoms.
  • one CO—0—CO— group (acid anhydride) or one CO—NR 9 —CO— group (imide) is preferable.
  • R 9 is a hydrogen atom, and has 1 to 4 carbon atoms.
  • An alkyl group or an aryl group having 6 to 12 carbon atoms is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
  • X 5 and X 6 are each independently selected from an oxygen atom, a sulfur atom and C (R 10 ) 2 .
  • the two R 1Q s may be the same or different, and each represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and 6 to 20 carbon atoms. From the group of Ariel.
  • Two R 1Qs may combine to form a 3- to 8-membered ring structure, or may form a spiro ring.
  • R 1D When R 1D is other than a hydrogen atom or a halogen atom, it may be substituted with any of an alkyl group having 1 to 3 carbon atoms, a halogen atom, a cyano group, a carboxyl group, an amino group and an amide group.
  • an oxygen atom or C (R 10 ) 2 is preferable
  • R 1G is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a carbon atom.
  • a cycloalkyl group having 3 to 6 atoms is preferred, and a hydrogen atom or a methyl group is more preferred.
  • X 5 and X 6 are preferably the same.
  • Specific compounds represented by the formula (III) include, for example, norbornene, methylnorbornene, dimethylnorbornene, ethylnorportene, ethylidenenorbornene, butylnorbornene, 5-acetyl_2-norporene, N-hydroxyl 5-Norbornene-2,3-dicarboximid, 5-Norpolene-12-forced nitrile, 5-Norbornene-12-forced aldehyde, 5-norbornene-1,2,3-dicarboxylic acid monomethyl ester, 5-Norpolonene 1,2-dicarboxylic acid dimethyl ester, 5-norbornene-1,2,3-dicarboxylic acid getyl ester, 5-norbornene-1,2,3-dicarbonic acid di-n-butyl ester, 5-norbornene-2,3-dicarboxylic acid Acid dicyclohexyl ester, 5-norbornen
  • 5-methyl-norbornene-1,2,3-dicarboxylic acid monomethyl ester which has a polar group and is not highly reactive
  • m, R 5 to R 8 , X 5 and X 6 have the same meanings as in formula (III).
  • the amount of each of the unsaturated monocyclic compound (A) and the unsaturated polycyclic conjugate (B) may be determined according to the intended block copolymer. At this time, it is considered that a block copolymer having a composition ratio (A / B) substantially equal to the molar ratio of the unsaturated monocyclic compound (A) and the unsaturated polycyclic compound (B) used is obtained.
  • the metal carbene complex catalyst (C) used in the present invention is a catalyst that catalyzes a metathesis polymerization reaction using an unsaturated monocyclic compound (A) and an unsaturated polycyclic compound (B) as raw materials. I just need. Preferred are compounds represented by the following formula (I) or (II). These compounds, along with a stable to oxygen and moisture, therefore c is excellent in copolymerization of two monomers with each other with different properties, the polymerization reaction is carried out in an inert gas atmosphere, as well as possible in the air is there.
  • the metal carbene complex catalyst (C) may be used alone or in combination of two or more.
  • M is ruthenium, osmium or iron, preferably The other is ruthenium.
  • X 1 to X 4 are anionic ligands (atoms or atomic groups) capable of coordinating to the central metal M and having a negative charge on the coordinating atom, for example, a hydrogen atom, a fluorine atom, a chlorine atom , a bromine atom, a halogen atom such as iodine atom, CF 3 C0 2 _, CH 3 C0 2 -, CF 2 HC0 2 _, CFH 2 C0 2 -, (CH 3) 3 CO -, (CF 3) 2 (CH 3 ) CO—, (CF 3 ) (CH 3 ) 2 CO_, a linear or branched alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted phenoxy group, a trifluoromethanesulfonate group, and the like.
  • a halogen atom is preferred, and a chlorine atom is more preferred. More preferably, X 1 and X 2 and
  • L 1 ⁇ L 4 represents an electron donating group capable of coordinating neutral to the central metal M, for example, in p R ll R 12 R 13 (wherein, R "to R” are each independently a substituted or An unsubstituted aryl group having 6 to 20 carbon atoms, a linear or branched alkyl group having 1 to 10 carbon atoms and a cycloalkyl group having 3 to 10 carbon atoms).
  • Imidazole compounds such as substituted pyridine and 1,3-disubstituted imidazole;
  • phosphines such as tricyclohexylphosphine, tricyclopentylphosphine, and triisopropylphosphine;
  • imidazole compounds such as 1,3-dimesitylimidazole-2-ylidene and 4,5-dihydro-1,3dimesitylimidazole-2-iriten, and more preferred is tricyclohexylphosphine.
  • the aryl group may be substituted with an aryl group having a number of 6 to 20, and the aryl group may be substituted with a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. Is also good.
  • Specific conjugates represented by the above formula (I) or (II) include, for example, compounds represented by the following formulas (V) to (XIV), among which the formulas (V) and (VI) ), (VII) or (VIII) are preferably used.
  • the amount of the metal carbene complex catalyst (C) used is determined in consideration of the desired molecular weight of the block copolymer. The higher the amount used, the lower the molecular weight of the block copolymer. Usually, 0.001 to 20 parts by weight, preferably 0.001 to: 10 parts by weight, more preferably 100 parts by weight based on 100 parts by weight of the total of the unsaturated monocyclic compound (A) and the unsaturated polycyclic compound (B). Is 0.05-; L 0 parts by weight.
  • the entire amount of the unsaturated monocyclic compound (A) and the required metal carbene complex catalyst (C) are mixed and reacted, and thereafter, the unsaturated polycyclic compound (General polymerization reaction conditions can be used, except for adding and reacting B).
  • the reaction time of the polymerization reaction is not particularly limited as long as a block copolymer can be obtained.
  • the reaction time is 10 minutes to 6 hours, preferably 0.5 to 2 hours.
  • the reaction time is preferably 1 to 6 hours after the reaction of (i). Let react for 2-6 hours.
  • the reaction temperature of the polymerization reaction is not particularly limited as long as a block copolymer is obtained, and is preferably from _20 to 200 ° C, more preferably from 0 to 100 ° C, from the viewpoint of reactivity.
  • a solvent it is preferable to use a solvent.
  • the solvent used in the present invention includes an unsaturated monocyclic compound (A), an unsaturated polycyclic compound (B), and a catalyst.
  • (C) can be dissolved.
  • a solvent examples include ketone solvents such as acetone, 2-butanone, 2-pentanone, 3-pentanone, 4-methyl-3-pentanone, cyclopentanone, cyclohexanone, cycloheptanone, and cyclooctanone.
  • ether solvents such as dimethyl ether, methyl tert-butyl ether, tetrahydrofuran, 1,4-dioxane and ethylene glycol dimethyl ether.
  • the amount of the solvent is preferably 60 to 95% by weight based on the entire reaction system (the total amount of the monomers A and B, the catalyst and the solvent), from the viewpoint of easiness of the polymerization reaction. It is more preferably 70 to 90% by weight, particularly preferably 80 to 90% by weight. If the catalyst (C) is dissolved in a solvent and left for a long time, the decomposition reaction proceeds little by little. After dissolving the unsaturated monocyclic compound (A) in the solvent, the (powder-like) catalyst (C) Or a catalyst solution dissolved in the same solvent (small amount) as the solvent used for dissolving the monocyclic compound (A).
  • step (i), step (ii), and further step (iii) a carbon-carbon double bond still exists.
  • the obtained copolymer is further hydrogenated and remains in the polymer molecule.
  • the unsaturated bond is saturated.
  • the hydrogenation reaction can be performed using a known method such as a catalytic reduction method using a known metal catalyst ⁇ a hydrazine reduction method.
  • the block copolymer obtained by the above-mentioned production method can be obtained by selecting the starting monomer, and then selecting a non-polar, non-polar or m-type molecular species (A) having a methylene group substituted in the main chain.
  • cyclic ring structure of A block copolymer comprising a polar and rigid molecular chain (nB, ie, one BBB-BBB-) in which n molecular species (B) having a polar substituent on the top are connected in a chain form is obtained.
  • a block copolymer having homogeneity with a molecular weight distribution of the polymer of 1.0 to 2.5 can be obtained.
  • modified block copolymers that is, block copolymers (triblock copolymers) such as molecular chain mA—molecular chain nB—molecular chain mA.
  • the number of repetitions m of the molecular species (A) of such a block copolymer (diblock copolymer) and the number of repetitions n of the molecular species (B) are basically based on the raw materials (monomer A, Determined by the amount of NOMA B and catalyst C) used.
  • the number of repetitions m and n is usually between 5 and 5000, preferably between 10 and 1000, respectively. If it is less than 5, it is difficult to exhibit the properties of the molecular chain mA and the molecular chain nB, that is, the flexibility (soft segment) of the molecular chain mA and the rigidity (hard segment) of the molecular chain nB, respectively.
  • the ratio of the number of repetitions m and n (m / n) is a number balanced with each other, and is usually 95 to 5/95, preferably 90 to 10/90.
  • Organic conceptual maps are an effective method for predicting various physical properties from the chemical structure of organic compounds (see Yoshio Koda, Organic Conceptual Diagrams: Basics and Applications, Sankyo Publishing (1984)).
  • an organic conceptual diagram divides the properties of a compound into “organic value indicating covalent bonding” and “inorganic value indicating ionic bonding”, and all the organic compounds are regarded as an organic axis. It is shown as one point on the Cartesian coordinate system called the axis.
  • the organic value based on this is based on the assumption that the numerical value of the organic value can be measured by the number of carbon atoms representing the methylene group in the molecule as a unit, and the basic carbon number is 1
  • the numerical value is based on the average value of 20 ° C of the increase in boiling point due to the addition of one carbon atom near the carbon number of 5 to 10 in the linear compound, and is set to 20 based on this.
  • inorganic values The magnitude of the influence of the substituents on the boiling point is determined based on the hydroxyl group, and the difference between the boiling point curve of the linear alcohol and the boiling point curve of the normal paraffin near the carbon number of 5 is about 100 ° C.
  • the influence of one hydroxyl group is set to 100 numerically. Based on this, the influence of other functional groups is determined as a value proportional to this.
  • These inorganic values and organic values are set to correspond one-to-one on the graph. The inorganic value and the organic value of the organic compound are calculated from these values.
  • Organic compounds with high inorganic values have high polarity, and organic compounds with high organic values have low polarity.
  • the ratio of inorganic to organic of the molecular species (A) in the present invention is usually 0 to 0.3, preferably 0 to 0.3. 25.
  • the molecular species (A) is methylene
  • the ratio of inorganicity to organicity is 0, which means that the polymethylene chain of the molecular chain mA has nonpolar and flexible properties.
  • the polar substituent on the cyclo ring can be selected using the “substituent constant based on the polar group effect” and I, which are separated from the Hammett's substituent constant and the substituent constant. (See M. Chart 0 n, Prog. Phys. Org. Chem., 13, 119-251 (1981)).
  • the values of I and I are larger as the polarity of the substituent is higher, with the hydrogen atom being 0.
  • the polar substituent I on the cyclo ring in the molecular chain (nB) is usually from +0.05 to +0.80, preferably from +0.10 to +0.80.
  • the ratio of the inorganicity to the organicity of the molecular species (B) in the organic conceptual diagram is usually 0.4 to 10.0, and preferably 0.45 to 7.5.
  • the obtained block copolymer may be used in the following manner: a curable binder and a curing agent are added thereto, and if necessary, a base resin and other additives are added in an appropriate amount. can do.
  • the adhesive can be in various forms depending on the application, for example, a film, a sheet, a tape, a liquid, a paste, and the like.
  • the compounding ratio of each is 100 parts by weight of the curable compound and about 1 to about 100 parts by weight of the curing agent.
  • the amount may be more than 100 parts by weight), and the amount of the block copolymer is about 5 to about 500 parts by weight.
  • the curable compound is a substance having a functional group that can be polymerized by a curing agent (described below), and may be a monomer or an oligomer. Specific examples include an ionically polymerizable epoxy compound and a radically polymerizable acrylate compound / methacrylate compound.
  • a curing agent is a compound that initiates the polymerization of the curable compound described above.
  • a curing agent is used which generates polymerization active species by heating or irradiation with energy yarn.
  • examples of such a curing agent include radicals generated by heating an imidazole derivative having a latent potential (a microcapsule), an ionic polymerizable monomer such as a sulfonium salt, an organic peroxide, or an azoid compound. Radical polymerizable monomers.
  • the base resin a resin having high film forming ability, excellent stress relaxation at the time of hardening, and high adhesion can be used.
  • a resin having high film forming ability, excellent stress relaxation at the time of hardening, and high adhesion examples include a phenoxy resin having a hydroxyl group in the molecule and having a molecular weight of 100,000 or more.
  • Conductive particles can be added and dispersed in order to absorb the height and variations of the circuit electrodes and to positively impart anisotropic conductivity. Further, for the purpose of improving connection reliability and the like, a coupling agent, a filler, an antioxidant, and the like can be added.
  • step (iii) 0.55 ml (6. Ommo 1) of butyl acetate and 6 ml of cyclohexanone were added and reacted for 5 minutes (step (iii)), and the cooled reaction solution was added to 200 ml of methanol. And a white precipitate (polymer) was obtained at a yield of 63%.
  • the obtained polymer is dissolved in tetrahydrofuran (manufactured by Wako Pure Chemical Industries, HPLC), When the molecular weight was measured by GPC using tetrahydrofuran as an eluent, the number average molecular weight Mn was 74,000, the weight average molecular weight Mw was 143,000, and the polydispersity of the molecular weight distribution was 1.93 in terms of standard polystyrene.
  • GPC was measured using a GL-A150 column (Hitachi Kasei gel pack, exclusion limit 5 ⁇ 10 5 ) at a flow rate of lcm 3 Z and a column temperature of 40 ° C. The GPC chromatogram is shown in FIG.
  • the obtained polymer was used as a double-mouthed form solution, and the iH-NMR spectrum was measured. The results are shown in FIG.
  • the inorganic Z organic value in the organic conceptual diagram of the cyclooctene ring-opening polymer chain in the poly (cyclooctene) monoblock-poly (endo-5-norpolenene_2,3-dicarboxylate) of the obtained polymer is It is calculated to be 0.01, and the substituent constant and I based on the polar group effect of the methoxycarbonyl group on the cyclohexane ring are +0.32.
  • Example 1 except that the amount of cyclooctene used was 1.257 g (11.4 mmol) and the amount of endo-5-norportene 1,2,3-dimethyl ester was 0.60 g (2.85 mmol).
  • a polymer was obtained. 86% yield, Mn in standard polystyrene conversion was 60,700, Mw was 105,618, and the degree of molecular weight distribution was 1.74.
  • the molar ratio of each raw material component was calculated in the same manner as in Example 1. As a result, the molar ratio of cyclooctene Zendo-DME was 81/19. Comparative Example 1
  • Endo-5-norporene-1,2,3-dimethylester as monomer B (endo-DME, manufactured by Lancaster) in a 100-ml glass flask with 1.50 g (7.13 mmo 1) of cyclohexanone 8 Dissolve in m1 60. After heating to C, 39.2 mg (0.048 mmo 1) of a ruthenium carbene complex of the formula (V) (manufactured by STREM CHEMICAL) was added, and the mixture was reacted at 60 ° C. for 1 hour while stirring with a mechanical stirrer. .
  • FIG. 1 shows a GPC chromatogram of the polymer of Comparative Example 1 measured in the same manner as in the example.
  • the molar ratio of cyclooctene / endo-DE in the polymer measured in the same manner as in Example 1 was 46/54.
  • FIG. 1 shows a GPC chromatogram of the polymer of Comparative Example 2 measured in the same manner as in the example.
  • Comparative Example 1 two peaks are observed, indicating that these are a mixture of two types of polymers (homopolymers or copolymers), and that at least a homogeneous block copolymer has not been obtained.
  • Example 1 one peak shifted to the higher molecular weight side than Comparative Example 2 (polymerization of monomer A alone) was obtained, so that the copolymer was not a mixture of monomer A and monomer B but a copolymer. This was confirmed.
  • Example 1 was formed into a film, and the glass transition temperature (Tg) was measured using a dynamic viscoelasticity measuring device (manufactured by Rheometrics). From these two points, it was confirmed that the polymer of Example 1 was not a random copolymer but a block copolymer.
  • Example 2 the polymers of Examples 2 and 3 were confirmed to be block copolymers from the measurement results of GPC and Tg.
  • the amount of cyclooctene used is 11 g (lOOmmol)
  • the amount of endo-5-norbornene-2,3-dimethylester used is 21 g (10 Omo1)
  • the formula ( A polymer was obtained in the same manner as in Example 1 except that the amount of the ruthenium carbene complex used in V) was 0.27 g (0.33 mmo 1).
  • the yield was 90%
  • the Mn in terms of standard polystyrene was 103, 000
  • the ⁇ : degree in the molecular weight distribution was 1.91.
  • the molar ratio of each raw material component was calculated in the same manner as in Example 1.
  • the molar ratio of cyclooctene / endo-DME in the polymer was 50:50. This was consistent with the charge ratio of the rain monomer.
  • the amount of the ruthenium carbene complex of the formula (V) was changed to 3.3 mmo 1 which was 10 times the amount of Example 4
  • a polymer was obtained in the same manner as in Example 4, except that The yield was 90%, Mn in terms of standard polystyrene was 33,000, and the polydispersity of the molecular weight distribution was 1.9.
  • the molar ratio of each raw material component was calculated in the same manner as in Example 1. As a result, the molar ratio of cyclooctene Zendo-DME in the polymer was 53:47.
  • Example 7 ( ⁇ ⁇ ⁇ 0/20 of the charged monomer (molar ratio), use of a large amount of catalyst)
  • the amount of the ruthenium carbene complex used was changed to 10 g (13 mmo 1).
  • a polymer was obtained.
  • the yield was 8896
  • the Mn in terms of standard polystyrene was 24,000
  • the polydispersity of the molecular weight distribution was 1.9.
  • the molar ratio of each raw material component was calculated in the same manner as in Example 4, and as a result, the molar ratio of cyclooctene / endo-DME in the polymer was 79:21.
  • PKHC phenoxy resin, manufactured by Union Carbide
  • Epoxy YL-983 U bisphenol F type liquid epoxy resin, manufactured by Yuka Shellepoxy
  • the adhesive surface of the film adhesive was heated and pressed at 70 ° C and 0.5 MPa for 5 seconds on IT ⁇ glass for temporary connection, and then the fluororesin film was peeled off. It was connected to the FPC, which was the adherend, to form a connected body.
  • the adhesive strength of this connector was measured by a 90-degree peeling method in accordance with JIS Z0237.
  • the adhesive strength was 80 ON / m, indicating a sufficient adhesive strength.
  • the adhesive strength was measured using Toyo Baldwin's Tensilon UTM-4 (peeling speed 5 Omm / min, 25 ° C). Industrial applicability
  • a block copolymer in which molecular species A and molecular species B are respectively chained and connected using two different raw materials monomers (A, B) is obtained. Obtained easily. Also, the structures of the two different raw material monomers (A, B) may be extremely different. Also, the two molecular species A and ⁇ species B incorporated into the copolymer reflect the amount (mol) of monomer charged, so that the product (block copolymer) can be easily controlled. Further, the structural design of the polymer (block copolymer) is easy, and a desired block copolymer can be effectively produced.
  • the block copolymer obtained in the present invention is a novel block copolymer.
  • Ma has low elasticity, high strength, low stress, high adhesiveness, moisture resistance, heat resistance, film forming ability, and excellent compatibility with other components. Therefore, it can be widely used in the fields of adhesive materials for electronic materials such as semiconductor packages, compatibilizers, solubilizers, and nonionic polymer surfactants, and has great industrial value.
  • the adhesive for circuit connection of the present invention is used for circuit connection of electric and electronic components such as semiconductor packages, and exhibits good connection characteristics and adhesive strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)

Abstract

A process for the production of block copolymers which comprises metathesis-polymerizing a metathesis-polymerizable unsaturated monocyclic compound (A) with a metathesis -polymerizable unsaturated polycyclic compound (B) by the use of a metal-carbene complex catalyst (C), wherein the metathesis polymerization is conducted by mixing the whole of the component (A) with the whole of the component (C), making the obtained mixture react, and then adding the component (B) to the resulting mixture to conduct a reaction; block copolymers produced by this process; and use of the block copolymers.

Description

明 細 書 プロック共重合体の製造法、 得られるプロック共重合体及ぴその用途 技術分野  Description Process for producing block copolymers, resulting block copolymers and their applications
本発明は、 メタセシス重合反応を用いた均質なプロック共重合体の製造法、 その製造法により得られるプロック共重合体、 並びにこのプロック共重合体の 用途に関する。 本発明で得られるブロック共重合体は、 半導体パッケージ等の 電気 ·電子部品に使用される回路接続用接着材、 その他の用途に有用に使用さ れる。 背景技術  The present invention relates to a method for producing a homogeneous block copolymer using a metathesis polymerization reaction, a block copolymer obtained by the production method, and uses of the block copolymer. The block copolymer obtained by the present invention is usefully used for adhesives for circuit connection used for electric and electronic parts such as semiconductor packages, and other uses. Background art
2成分系メタセシス重合触媒 (タングステンやモリブデンの塩化物とその活 性化剤) を用いて、 炭素一炭素 2重結合を有する 2種類のメタセシス重合性モ ノマを交互に添カ卩し、 ブロック共重合体を合成することは知られている (例え ば、 特開昭 5 2— 5 1 5 0 0号公報)  Using a two-component metathesis polymerization catalyst (chloride of tungsten or molybdenum and its activator), two types of metathesis polymerizable monomers having a carbon-carbon double bond are alternately added, and the block is formed. It is known to synthesize polymers (for example, Japanese Patent Application Laid-Open No. 52-501500).
また、 メタセシス重合触媒の金属カルベン錯体を用いて、 構造が類似したメ タセシス重合性モノマ同士のブロック共重合体を合成した例は知られている (Macrololecules第 28卷,第 4709頁, 1995年、 Macro lolecules 第 30巻,第 3137 頁,1997年、 Journal of the American Chemical Society第 118卷,第 784頁, 1996年) 。  There is also known an example in which a metal carbene complex of a metathesis polymerization catalyst is used to synthesize a block copolymer of metathesis polymerizable monomers having similar structures (Macrololecules Vol. 28, p. 4709, 1995, Macro lolecules, Vol. 30, p. 3137, 1997, Journal of the American Chemical Society, Vol. 118, p. 784, 1996).
エレクトロニクスの分野では、 その部品に使用される材料 (半導体パッケ一 ジ材料、 光学材料等) の特性は、 近年の情報通信、 マルチメディア、 パ一ソナ ルコンピュータ等の技術進歩とともに、 日々に更に高いものが要求されている 要求特性の項目は、 電子材料用接着材を例にとれば、 低温接着性、 短時間接着 性、 耐湿性、 埋め込み性、 フィルム形成能等であり、 これらの特性は同時に高 いレベルを満足しなければならない。  In the field of electronics, the characteristics of materials used for such parts (semiconductor package materials, optical materials, etc.) are becoming ever higher with the recent technological advances in information and communications, multimedia, and personal computers. The required characteristic items that are required are, for example, adhesives for electronic materials, low-temperature adhesion, short-time adhesion, moisture resistance, embedding, film forming ability, etc. High levels must be met.
また、 ブロック共重合体の各ブロック (そのブロック源のモノマ) 同士が混 ざり合わない (性質の異なる) 二つの分子鎖をもつブロック共重合体はミクロ 相分離構造を形成して、 特異な性質を示すことが知られている。 一例として、 スチレン一ブタジエン一スチレンブロック共重合体 (S B S樹月旨) は、 ポリス チレン由来の剛直な分子鎖 (ハードセグメント) とポリブタジエン由来の柔軟 な分子鎖 (ソフトセグメント) とからなるミクロ相分離構造を形成するブロッ ク共重合体である。 この S B S樹脂は、 常温ではハードセグメントが架橋点と して作用し、 ソフトセグメントがゴム成分として働く熱可塑性樹脂のひとつで ある (高分子学会編、 高分子データハンドブック応用編、 培風館、 1 9 8 6、 p . 2 9 9— 3 0 7参照) 。 , Also, each block of the block copolymer (monomer of the block source) is mixed. It is known that block copolymers with two molecular chains that do not mix (have different properties) form a microphase-separated structure and exhibit unique properties. As an example, styrene-butadiene-styrene block copolymer (SBS resin) has microphase separation consisting of rigid molecular chains (hard segments) derived from polystyrene and flexible molecular chains (soft segments) derived from polybutadiene. It is a block copolymer that forms a structure. This SBS resin is one of the thermoplastic resins in which the hard segment acts as a cross-linking point at room temperature and the soft segment acts as a rubber component. (Polymer Society of Japan, Polymer Data Handbook Application, Baifukan, 1980) 6, p. 299-307). ,
また、 ポリエチレン一ポリエチレングリコールブロック共重合体の例は、 非 極性の分子鎖と極性の分子鎖とを有する非イオン系高分子界面活性剤であり、 これは乳ィ匕剤や消泡剤として利用されている (シグマ一アルドリツチ社ホーム ページや C A Sレジストリ一番号: 9 7 9 5 3— 2 2— 5参照) 。  An example of a polyethylene-polyethylene glycol block copolymer is a nonionic high molecular surfactant having a nonpolar molecular chain and a polar molecular chain, which is used as an anti-foaming agent or an antifoaming agent. (Refer to Sigma-Aldrich's home page and CAS Registry Number: 979953—22—5).
上記特開昭 5 2— 5 1 5 0 0号公報に示された方法は、 2成分混合後の触媒 の空気 ·湿気に対する不安定性や乾燥した窒素雰囲気を要する等の取扱い性の 問題があり、 使用できる原料モノマの官能基や溶媒の選択幅にも制約がある。 また、 プロトン放出能の高い官能基や、 ホルミル基、 ケトン基又はエステル基 をもつ原料モノマ (又は溶媒) は、 停止反応を誘発し触媒毒となるのでこの反 応系では使えない (高分子学会編 「高分子の合成と反応 (1 ) 」 第 3 9 3頁 (共立出版、 1 9 9 0年発行) ) 。  The method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 52-150500 has problems in handling such as instability of the catalyst after mixing the two components against air and moisture and necessity of a dry nitrogen atmosphere. There are also restrictions on the functional groups of the raw material monomers that can be used and the choice of solvents. In addition, starting monomers (or solvents) having a functional group with high proton releasing ability, formyl group, ketone group or ester group induce a termination reaction and become a catalyst poison and cannot be used in this reaction system. Ed., “Synthesis and Reaction of Polymer (1)”, p. 393 (Kyoritsu Shuppan, published in 1990)).
また、 金属カルベン鐯体を用いたブロック共重合体の合成では、 構造が類似 した 2種類のモノマでの合成例は知られているが、 構造が大きく異なる 2種類 のモノマを用いたプロック共重合体の製造法は未だ知られていない。  In the synthesis of block copolymers using metal carbene derivatives, examples of synthesis using two types of monomers having similar structures are known, but block copolymers using two types of monomers having greatly different structures are known. The production method of the union is not yet known.
互いに構造及び/又は極性が大きく異なる 2種類のメタセシス重合性モノマ からブロック共重合体が得られるならば、 そのブロック共重合体はミクロ相分 離構造形成能をもつであろうし、 また、 極性基をもつ分子鎖からなるポリマ領 域は金属との接着力を促進することが期待できる。 また、 ポリアルキレン鎖等 の非極性分子鎖からなるポリマ領域は、 エラストマとして作用し、 ポリマ自体 を低弾性化し、 接着力強化に寄与することも期待できる。 If a block copolymer can be obtained from two types of metathesis-polymerizable monomers that have significantly different structures and / or polarities from each other, the block copolymer will have the ability to form a microphase-separated structure. It is expected that the polymer region consisting of a molecular chain having a molecular weight will promote adhesion to metal. In addition, a polymer region composed of a non-polar molecular chain such as a polyalkylene chain acts as an elastomer, and the polymer itself Can be expected to lower elasticity and contribute to strengthening of adhesive strength.
更に、 二つの原料モノマの種類をいろいろ変えることで、 ブロック共重合体 の低吸水率、 低誘電率、 低弾性、 透明性等の諸物性を更に向上させることも期 待できる。 また更に、 原料モノマの仕込量を変ィ匕させることでその物性を微妙 にコントロールすることも期待できる。 発明の開示  Furthermore, by changing the types of the two raw materials in various ways, it is expected that various physical properties such as low water absorption, low dielectric constant, low elasticity, and transparency of the block copolymer can be further improved. Furthermore, it is expected that the physical properties of the monomer can be finely controlled by changing the amount of the raw material monomer. Disclosure of the invention
本発明の目的は、 構造及び/又は極性が大きく異なる 2種類のメタセシス重 合性モノマを原料として用いた場合でも、 均質なブロック共重合体を容易に合 成できる製造法を提供することであり、 更には、 それにより得られたブロック 共重合体を、 半導体パッケージ等の電気 ·電子部品の回路接続用接着材等に利 用することを目的とする。  An object of the present invention is to provide a production method capable of easily synthesizing a homogeneous block copolymer even when two types of metathesis polymerizable monomers having greatly different structures and / or polarities are used as raw materials. Still another object of the present invention is to use the obtained block copolymer as an adhesive for circuit connection of electric and electronic components such as semiconductor packages.
本発明者らは、 安定でかつ高活性なルテニウムカルべン錯体触媒を用いて、 合成原料のノルボルネン誘導体とシクロアルケンとを共重合反応させる際に、 初めに、 シクロアルケン及び必要なルテニウムカルべン錯体触媒の全量を反応 させ、 その後に、 ノルポルネン誘導体を加え反応させると、 所望の均質なプ ロック共重合体が安定して得られることを見出し、 これを端緒として、 以下の 発明を完成するに至った。  The present inventors have proposed that when a stable and highly active ruthenium carbene complex catalyst is used to carry out a copolymerization reaction between a norbornene derivative as a raw material for synthesis and a cycloalkene, a cycloalkene and a necessary ruthenium carbene are first used. It was found that a desired homogeneous block copolymer could be stably obtained by reacting the entire amount of the catalyst complex catalyst and then adding a norpolenene derivative, and the following invention was completed using this as a starting point. Reached.
本発明は、 メタセシス重合可能な不飽和単環化合物 (A) と、 メタセシス重 合可能な不飽和多環化合物 (B ) とを、 金属カルべン錯体触媒 (C ) を用いて メタセシス重合反応させる際、 初めに、 不飽和単環化合物 (A) 及び必要な金 属カルべン錯体触媒 (C ) の全量を混ぜ反応させ、 その後に、 不飽和多環化合 物 (B ) を加え反応させるブロック共重合体の製造法である。  The present invention provides a metathesis polymerization reaction between a metathesis-polymerizable unsaturated monocyclic compound (A) and a metathesis-polymerizable unsaturated polycyclic compound (B) using a metal carbene complex catalyst (C). At this time, first, the unsaturated monocyclic compound (A) and the required amount of the metal carbene complex catalyst (C) are mixed and reacted, and then the unsaturated polycyclic compound (B) is added and reacted. This is a method for producing a copolymer.
このとき、 上記反応のあとに更に、 反応停止剤を加えて重合反応を停止させ ると共に、 重合体の一端に結合した触媒 ( C ) 由来の触媒活性部位を外し、 触 媒 (C ) の中心金属に配位したハロゲン原子等を除くことが好ましい。  At this time, after the above reaction, a polymerization terminator is further added to stop the polymerization reaction, and the catalytically active site derived from the catalyst (C) bonded to one end of the polymer is removed, and the center of the catalyst (C) is removed. It is preferable to remove halogen atoms and the like coordinated to the metal.
また、 本発明は、 上記製造法で製造されるブロック共重合体にも関する。 製造されるブロック共重合体の一つのタイプは、 その共重合体のプロックの —つが、 無置換又は置換されたメチレン基を主鎖に有する分子種 (A) が m個 鎖状に連なる分子鎖 (mA;—AAA—AAA—;ブロック A) から成り、 他 のプロックは、 シクロ環構造を主鎖に有する分子種 (B) が n個鎖状に連なる 分子鎖 (nB ;— BBB— BBB—;ブロック B) から成っていて、 更にその 共重合体分子の一端には、 金属カルべン錯体触媒 (C) 由来の触媒活性部位以 外の残基が結合しているブロック共重合体である。 The present invention also relates to a block copolymer produced by the above production method. One type of block copolymer produced is the block of the copolymer. —The other block consists of a molecular chain (mA; —AAA—AAA—; block A) in which m molecular species (A) having an unsubstituted or substituted methylene group in the main chain are linked in a chain. The molecular species (B) having a cyclocyclic structure in the main chain is composed of n molecular chains (nB; —BBB—BBB—; block B), and at one end of the copolymer molecule, It is a block copolymer in which residues other than the catalytically active site derived from the metal carbene complex catalyst (C) are bonded.
製造される別のタイプのプロック共重合体は、 上記共重合体分子の他端に、 更に、 金属カルべン錯体触媒 (C) 由来の触媒活性部位が結合している共重合 体である。  Another type of block copolymer to be produced is a copolymer in which the other end of the copolymer molecule further has a catalytically active site derived from the metal carbene complex catalyst (C) bonded thereto.
本発明の製造法において、 重合反応を停止させることができ、 かつ、 触媒 (C) の触媒活性部位を外すことができる重合反応停止剤を用いた場合は、 前 者のタイプのブ口ック共重合体を与える。  In the production method of the present invention, when a polymerization reaction terminator capable of terminating the polymerization reaction and removing the catalytically active site of the catalyst (C) is used, a block of the former type is used. Give a copolymer.
上記製造法において、 反応停止剤を加える前又は反応停止剤を加えない場合、 あるいは、 重合反応を停止させるが重合体の一端に結合した触媒 (C) 由来の 触媒活性部位を外せない反応停止剤を用いた場合、 後者のタィプの共重合体を サ »る。  In the above production method, before adding a reaction terminator or without adding a reaction terminator, or a reaction terminator that terminates the polymerization reaction but cannot remove the catalytically active site derived from the catalyst (C) bonded to one end of the polymer In the case of using, the latter type of copolymer is used.
上記ブロック共重合体の分子量分布の分散度は、 通常、 1. 0以上 2. 5以 下、 好ましくは、 1. 0以上 2. 0以下を示す。 ここで、 分子量分布の分散度 は、 重量平均分子量 (Mw) と数平均分子量 (Mn) との比 (Mw/Mn) で 計算される値である。  The degree of dispersion of the molecular weight distribution of the above block copolymer is usually from 1.0 to 2.5, preferably from 1.0 to 2.0. Here, the degree of dispersion of the molecular weight distribution is a value calculated by the ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn).
また、 上記いずれのブロック共重合体についても、 好ましいものは、 ブロッ ク共重合体の一つのプロックが、 無置換又は非極性基で置換されたメチレン基 を主鎖に有する分子種 (A) が m個鎖状に連なる非極性かつ柔軟な分子鎖 (m A) から成り、 他のブロックは、 シクロ環構造を主鎖に含み、 そのシクロ環上 に極性置換基を有する分子種 (B) が n個鎖状に連なる極性かつ剛直な分子鎖 (nB) から成っているブロック共重合体である。  Further, with respect to any of the above block copolymers, it is preferable that one block of the block copolymer has a molecular species (A) having a methylene group substituted or unsubstituted with a nonpolar group in its main chain. The other block consists of a m-chain nonpolar and flexible molecular chain (mA), and the other block contains a cyclocyclic structure in the main chain and a molecular species (B) having a polar substituent on the cyclocyclic ring. It is a block copolymer composed of polar and rigid molecular chains (nB) linked in n chains.
また、 本発明は、 無置換又は非極性基で置換されたメチレン基を主鎖に有す る分子種 (A) が m個鎖状に連なる非極性かつ柔軟な分子鎖 (mA) と、 シク ロアルカン誘導体、 シクロアルケン誘導体、 ォキサシクロアルカン誘導体、 ォ キサシクロアルケン誘導体、 チアシクロアルカン誘導体又はチアシクロアルケ ン誘導体のいずれかのシクロ環構造を主鎖に含み、 そのシクロ環上に極性置換 基を有する分子種 (B) が n個鎖状に連なる極性かつ剛直な分子鎖 (n B) と を含んで成るブロック共重合体でもある。 In addition, the present invention provides a nonpolar and flexible molecular chain (mA) in which a molecular species (A) having a methylene group substituted or unsubstituted with a nonpolar group in the main chain is connected in m chains. The main chain contains any of cycloalkane derivatives, cycloalkene derivatives, oxacycloalkane derivatives, oxacycloalkene derivatives, thiacycloalkane derivatives, and thiacycloalkene derivatives, and a polar substituent on the cyclo ring. And a polar and rigid molecular chain (n B) in which n molecular species (B) having the following structure are linked in a chain.
更に、 本発明は、 上記プロック共重合体を含有する回路接続用接着材にも関 する。 図面の簡単な説明  Furthermore, the present invention relates to an adhesive for circuit connection containing the block copolymer. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 実施例 1で得られた重合体及び比較例で得られた重合体の G P C クロマトグラムである。  FIG. 1 is a GPC chromatogram of the polymer obtained in Example 1 and the polymer obtained in Comparative Example.
第 2図は、 実施例 1で得られた重合体の1 H— NMRスぺクトルである。 発明を実施するための最 の形態 FIG. 2 is a 1 H-NMR spectrum of the polymer obtained in Example 1. BEST MODE FOR CARRYING OUT THE INVENTION
先ず、 ブロック共重合体の製造法について説明する。 製造法は、 通常、 次の 工程 ( i ) 及び工程 (i i) から成る。  First, a method for producing a block copolymer will be described. The manufacturing method usually comprises the following step (i) and step (ii).
工程 ( i ) :メタセシス重合可能な不飽和単環化合物 (A;モノマ A;分子 種 Aともいう) と、 金属カルべン錯体触媒 (C ; Catalystともいう) の必要量 の全量とを加え混合し、 開環メタセシス重合させる。 末端に金属カルべン錯体 触媒由来の触媒活性部位 (Cata) をもつ分子鎖 (すなわち、 Cata- AAA— A Step (i): Metathesis-polymerizable unsaturated monocyclic compound (A; monomer A; also referred to as molecular species A) and the total amount of the required amount of metal carbene complex catalyst (C; also referred to as catalyst) are added and mixed. Then, ring-opening metathesis polymerization is performed. A molecular chain having a catalytically active site (Cata) derived from a metal carbene complex catalyst at the end (ie, Cata-AAA—A
AA-lyst) を生成する。 なお、 Cataは、 金属カルべン錯体触媒由来の触媒活 性部位で金属を含む部位を意味し、 lystはその残基を意味する。 AA-lyst). Here, Cata means a metal-containing site derived from the metal carbene complex catalyst and lyst means its residue.
工程 (i i) :続いて、 上記反応系に、 メタセシス重合可能な不飽和多環化合 物 (B ;モノマ B ;^"種 Bともいう) をカロえ、 混合する。 前記分子鎖  Step (ii): Subsequently, a metathesis-polymerizable unsaturated polycyclic compound (B; monomer B; also referred to as ^ "species B) is added to the reaction system and mixed.
(Cata- A AA〜 AA A) の触媒活性部位 (Cata) 末端から、 順次、 モノマ B を取り込むようにして、 B B B〜B B B鎖が伸長し、 末端に触媒活性部位 (Cata) をもつジブロック共重合体 (Cata- B B B…: B B B— AAA— AAA - lyst) が生成する。 なお、 モノマ Bと触媒 (C) の全量とを加えて混合'反応させ、 続いて、 モ ノマ Aを加え反応させても、 均質なジブロック共重合体は生成しない。 また、 仮に Cata - A A A〜A A A— B B B…: B B B- lystで表されるジブ口ック共重合 体が部分的に生成したとしてもその収量又は収率は低い。 From the catalytically active site (Cata) end of (Cata-AAA to AAA), the diblock having a catalytically active site (Cata) at the end, with the BBB to BBB chain extending to incorporate monomer B sequentially. Polymer (Cata-BBB…: BBB-AAA-AAA-lyst) is produced. Even if monomer B and the entire amount of catalyst (C) are added, mixed and reacted, and then monomer A is added and reacted, a homogeneous diblock copolymer is not formed. Also, even if the jib mouth copolymer represented by Cata-AAA to AAA-BBB ...: BBB-lyst is partially formed, the yield or yield is low.
本発明の製造法で、 このようなジプロック共重合体 (Cata-B B B… B B B — AAA〜AAA-lyst) を収率よく合成できる理由は、 触媒 (C) が促進す るモノマ Aの重合開始反応速度は重合伸長反応速度よりも大きく、 そのため、 工程 (i) の生成物の大部分は0&セ -八八八〜八八 - 3セでぁり、 単独の触媒 (C) としては残っていないからと推定している。  The reason that such a diblock copolymer (Cata-BBB ... BBB—AAA to AAA-lyst) can be synthesized with high yield by the production method of the present invention is that polymerization of monomer A promoted by catalyst (C) is started. The reaction rate is higher than the polymerization elongation reaction rate, so that the majority of the product in step (i) is 0 & 88-88-8-3 and remains as a single catalyst (C). It is estimated that there is not.
一方、 触媒 (C) が促進するモノマ Bの重合伸長反応速度は重合開始反応速 度よりも大きいので、 逆の順序、 すなわち初めにモノマ Bと触媒 (C) の全量 とを加えた場合、 工程 (i) では未反応の触媒 (C) を残しつつ Cata- BBB •••BBB- lystが生成することとなる。 この残った触媒 (C) が次の工程  On the other hand, since the polymerization elongation reaction rate of monomer B promoted by catalyst (C) is higher than the polymerization initiation reaction rate, the reverse order, ie, when monomer B and the total amount of catalyst (C) are added first, the process In (i), Cata-BBB ••• BBB-lyst is formed while leaving unreacted catalyst (C). The remaining catalyst (C) is used in the next step
(ii) で反応触媒となって Cata- A A A〜 A A A- lystを生成させ、 ジブロック 共重合体 (Cata- AAA— AAA— BBB— BBB- lyst) の収率を下げ、 生成 物は不均質な重合体となると考えられる。  Cata-AAA ~ AAA-lyst is formed as a reaction catalyst in (ii), reducing the yield of diblock copolymer (Cata-AAA-AAA-BBB-BBB-lyst), and the product is heterogeneous It is considered that the polymer becomes
なお、 工程 (ii) に続いて、 更にモノマ Aを反応系に添加すれば、 上記ジブ ロック共重合体 (Cata-BBB〜BBB— AAA— AAA - lyst) の触媒活性部 位から、 順次、 モノマ Aを取り込み、 トリブロック共重合体 (Cata - A A八… AAA— BBB…: BBB— AAA〜AAA- lyst) を生成させることもできる。 また、 上記工程 (ii) に続いて、 好ましくは、 反応停止剤を加えてメタセシ ス重合反応を停止させる工程 (工程 (iii) ) を加える。  After step (ii), if monomer A is further added to the reaction system, the monomer is sequentially added from the catalytically active site of the diblock copolymer (Cata-BBB to BBB-AAA-AAA-lyst). A can be incorporated to form a triblock copolymer (Cata-AA8… AA—BBB…: BBB—AAA to AAA-lyst). Following the above step (ii), preferably, a step (step (iii)) of adding a reaction terminator to terminate the metathesis polymerization reaction is added.
反応停止剤としては、 メタセシス重合反応を停止するとともに重合体の一端 に結合した触媒 (C) 由来の触媒活性部位も外すもの、 例えば、 分子末端に二 重結合を有しその隣接位置に電子吸引性基を有する酢酸ビニル、 ェチルビニル エーテル、 フエ二ルビニルスルフィ ド、 N—ビニルピロリ ドン等のビュルォレ フィン化合物、 4一ビニルピリジン等の電子供与能の大きな配位性化合物、 あ るいはェキソメチレン化合物などがある。 これらの中でも酢酸ビニルやェチル ビニルエーテルが好ましく使用される。 また、 メタセシス重合反応を停止させ るが重合体の一端に結合した触媒 (C ) 由来の触媒活性部位を外さないものと して、 イミダゾール、 2 , 2,ービピリジン、 4—メチルピリジン等がある。 以下に、 本発明に用いるモノマ A、 モノマ B及び触媒 (C) を順に説明する。 本発明に用いる不飽和単環化合物 (モノマ A) としては、 開環メタセシス重 合可能で、 開環重合ののちには環構造をもたない重合体を与える化合物が挙げ られる。 好ましくは、 分子中に炭素一炭素二重結合を有する置換又は無置換の シクロアルケン誘導体が挙げられる。 Examples of the reaction terminator include those that stop the metathesis polymerization reaction and also remove the catalytically active site derived from the catalyst (C) bonded to one end of the polymer. For example, a double bond at the molecular end and electron withdrawing at the adjacent position Vinyl acetate, ethyl vinyl ether, phenyl vinyl sulfide, N-vinyl pyrrolidone, and other vinyl sulfide compounds having a functional group; coordinating compounds having a large electron donating ability, such as 4-vinyl pyridine; and exo methylene compounds. is there. Among these, vinyl acetate and ethyl Vinyl ethers are preferably used. In addition, imidazole, 2,2, -bipyridine, 4-methylpyridine and the like that stop the metathesis polymerization reaction but do not remove the catalytically active site derived from the catalyst (C) bonded to one end of the polymer are included. Hereinafter, the monomer A, the monomer B, and the catalyst (C) used in the present invention will be described in order. Examples of the unsaturated monocyclic compound (monomer A) used in the present invention include compounds that can undergo ring-opening metathesis polymerization and give a polymer having no ring structure after ring-opening polymerization. Preferably, a substituted or unsubstituted cycloalkene derivative having a carbon-carbon double bond in the molecule is used.
シクロアルケン誘導体のシクロ環を構成する元素は、 通常、 3〜 1 4個の炭 素原子、 好ましくは、 4〜 9個の炭素原子であり、 炭素原子の一部はケィ素原 子又はホウ素原子で置き換わっていてもよい。 また、 シクロ環を構成する一部 の炭素原子に代えて、 酸素原子、 硫黄原子、 窒素原子又はリン原子としてもよ いが、 この場合は、 分子鎖 mA (ブロック A) は極性を示す。  The elements constituting the cyclo ring of the cycloalkene derivative are usually 3 to 14 carbon atoms, preferably 4 to 9 carbon atoms, and some of the carbon atoms are a silicon atom or a boron atom. May be replaced by An oxygen atom, a sulfur atom, a nitrogen atom or a phosphorus atom may be used instead of some of the carbon atoms constituting the cyclo ring. In this case, the molecular chain mA (block A) shows polarity.
シクロ環上に置換基がある場合の置換基 Y 2としては、 炭素原子数 1〜2 0 のアルキル基やハロゲン原子などが挙げられるが、 好ましくは炭素原子数 1〜 2 0のアルキル基である。 The substituent Y 2 in the case where there is a substituent on the cycloalkyl ring, but like an alkyl group or a halogen atom carbon atoms 1-2 0, is preferably an alkyl group of from 1 to 2 0 carbon atoms .
. 上記置換基の他に、 カルボ二ル基、 シァノ基、 イソシァノ基、 ニトロ基、 シ ロキシ基、 炭素原子数 2〜 2 0のアルコキシカルボ二ル基、 炭素原子数 2〜2 0のアルキルカルボニルォキシ基、 アミノ基、 アミ ド基、 ホルミル基、 水酸基、 炭素原子数 1〜2 0のヒドロキシアルキル基、 炭素原子数 2〜 2 0のアルコキ シアルキル基、 炭素原子数 3〜2 0のァシロキシアルキル基、 炭素原子数 2〜 2 0のシァノアルキル基、 炭素原子数 1〜2 0のアルコキシ基、 炭素原子数 1 〜2 0のアルキルチオ基、 炭素原子数 1〜 2 0のアルキルスルフィニル基、 炭 素原子数 1〜2 0のアルキルスルホニル基、 炭素原子数 1〜 2 0のアルキルセ レノ基、 炭素原子数 6〜 2 0のアルキルセレネニニル基又は炭素原子数 1〜2 0のアルキルセレノニル基などもある。 この場合は、 分子鎖 mA (ブロック A) は極性を示す。  In addition to the above substituents, carboxy, cyano, isocyano, nitro, siloxy, alkoxycarbonyl having 2 to 20 carbon atoms, alkylcarbonyl having 2 to 20 carbon atoms Hydroxy, amino, amide, formyl, hydroxyl, hydroxyalkyl having 1 to 20 carbon atoms, alkoxyalkyl having 2 to 20 carbons, acyloxy having 3 to 20 carbons Alkyl group, cyanoalkyl group having 2 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, alkylthio group having 1 to 20 carbon atoms, alkylsulfinyl group having 1 to 20 carbon atoms, carbon Alkyl sulfonyl groups having 1 to 20 atoms, alkyl sereno groups having 1 to 20 carbon atoms, alkyl seleninyl groups having 6 to 20 carbon atoms, and alkyl selenonyl groups having 1 to 20 carbon atoms, etc. is there. In this case, the molecular chain mA (block A) shows polarity.
本発明に使用されるシクロアルケン誘導体の具体的ィ匕合物としては、 例えば、 シクロブテン、 シクロペンテン、 シクロォクテン、 シクロドデセン、 5—メ ト キシ一 1—シクロォクテン、 5—プロモー 1—シクロォクテン、 5 _イソプロ ポキシ _ 1—シクロォクテン、 5 _ホルミル一 1—シクロォクテン、 ェチルシ クロォクトー 1—ェン一 5—カルボキシレート、 トリメチルシリル =シクロォ クト一 1一ェン一 5—カルボキシレート等のシクロォレフィン類などが挙げら れ、 好ましくは、 シクロペンテン及び/又はシクロォクテンが使用される。 その他、 二重結合を 2以上有する不飽和単環化合物も使用することができる c このような不飽和単環化合物としては、 例えば、 1, 5—シクロォクタジェン、 1, 3, 5, 7—シクロォクタテトラェン、 1, 5 , 7—シクロドデカトリェ ン等が挙げられる。 Specific examples of the cycloalkene derivative used in the present invention include, for example, Cyclobutene, cyclopentene, cyclooctene, cyclododecene, 5-methoxy-1-cyclooctene, 5-promo-1-cyclooctene, 5-isopropoxy_1-cyclooctene, 5-formyl1-1-cyclooctene, ethyl crooctone-1-5 —Carboxylate, trimethylsilyl = cyclooctene-5-carboxylate and the like; and cyclopentenes and / or cyclopentene is preferably used. In addition, unsaturated monocyclic compounds having two or more double bonds can also be used. C Such unsaturated monocyclic compounds include, for example, 1,5-cyclooctadiene, 1,3,5,7 —Cyclooctatetraene, 1,5,7—cyclododecatriene and the like.
本発明で使用される不飽和多環化合物 (B ) としては、 メタセシス重合可能 で、 開環重合ののちも主鎖に環構造をもつ重合体を与えるィ匕合物が挙げられる そのような化合物として、 好ましいものの一つは、 置換又は無置換のノルボル ネン誘導体であり、 例えば、 下記式 (III) で示されるものが挙げられる。  Examples of the unsaturated polycyclic compound (B) used in the present invention include a compound which is capable of metathesis polymerization and gives a polymer having a ring structure in the main chain after ring-opening polymerization. One of the preferable examples is a substituted or unsubstituted norbornene derivative, for example, a compound represented by the following formula (III).
Figure imgf000010_0001
Figure imgf000010_0001
式 (III) 中、 mは 0〜3の整数を示し、 0〜 2が好ましく、 0又は 1がよ り好ましい。  In the formula (III), m represents an integer of 0 to 3, preferably 0 to 2, more preferably 0 or 1.
R5〜R8は、 それぞれ独立に、 水素原子、 炭素原子数;!〜 2 0のアルキル基、 炭素原子数 3〜 2 0のシクロアルキル基、 炭素原子数 6〜 2 0のァリール基、 ハロゲン原子、 カルポニル基、 シァノ基、 イソシァノ基、 ニトロ基、 シロキシ 基、 炭素原子数 2〜2 0のアルコキシカルボニル基、 炭素原子数 2〜2 0のァ ルキルカルボニルォキシ基、 アミノ基、 アミ ド基、 ホルミル基、 水酸基、 炭素 原子数 1〜2 0のヒドロキシアルキル基、 炭素原子数 2〜 2 0のアルコキシァ ルキル基、 炭素原子数 3〜 2 0のァシロキシアルキル基、 炭素原子数 2〜 2 0 のシァノアルキル基、 炭素原子数 1〜 2 0のアルコキシ基、 炭素原子数 1〜2 0のアルキルチオ基、 炭素原子数 1〜20のアルキルスルフィニル基、 炭素原 子数 1〜20のアルキルスルホニル基、 炭素原子数 1〜 20のアルキルセレノ 基、 炭素原子数 1〜 20のアルキルセレネニニル基及び炭素原子数 1〜 20の アルキルセレノニル基から選ばれ、 少なくとも 1つは水素原子である。 なかで も、 水素原子、 炭素原子数 1〜10のアルキル基、 炭素原.子数 3〜12のシク 口アルキル基、 炭素原子数 6〜12のアリ^ "ル基、 ハロゲン原子、 カルボニル 基、 シァノ基、 ニトロ基、 シロキシ基、 炭素原子数 2〜10のアルコキシカル ポニル基、 アミド基、 ホルミル基、 水酸基から選ばれることが好ましく、 水素 原子、 カルボニル基、 シロキシ基、 炭素原子数 2〜 10のアルコキシ力ルポ二 ル基、 ァミド基から選ばれることがより好ましい。 R 5 to R 8 are each independently a hydrogen atom, the number of carbon atoms; To 20 alkyl groups, cycloalkyl groups having 3 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, halogen atoms, carbonyl groups, cyano groups, isocyano groups, nitro groups, siloxy groups, carbon atoms Alkoxycarbonyl group having 2 to 20 carbon atoms, alkylcarbonyloxy group having 2 to 20 carbon atoms, amino group, amide group, formyl group, hydroxyl group, hydroxyalkyl group having 1 to 20 carbon atoms, carbon Alkoxyalkyl group having 2 to 20 atoms, acyloxyalkyl group having 3 to 20 carbon atoms, cyanoalkyl group having 2 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, 1 carbon atom ~ 2 0 alkylthio group, 1 to 20 carbon atom alkylsulfinyl group, 1 to 20 carbon atom alkylsulfonyl group, 1 to 20 carbon atom alkylseleno group, 1 to 20 carbon atom alkylseleninyl group And an alkyl selenonyl group having 1 to 20 carbon atoms, at least one of which is a hydrogen atom. Among them, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a carbon atom, an alkyl group having 3 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, a halogen atom, a carbonyl group, It is preferably selected from a cyano group, a nitro group, a siloxy group, an alkoxycarbonyl group having 2 to 10 carbon atoms, an amide group, a formyl group, and a hydroxyl group. It is more preferable that the alkoxy group is selected from the group consisting of an alkoxy group and an amide group.
また、 R5〜 R8のいずれか 2つが 1組又は 2組結合して一 CO— 0— CO— 基 (酸無水物) 、 一CO— 0_基 (ラクトン) 、 _CO— NR9— CO—基 (イミド) 及ぴ一 CO— NR9—基 (ラクタム) から選ばれる基となっていて もよい。 ここで、 R9は水素原子、 炭素原子数 1〜 4のアルキル基、 炭素原子 数 3〜 6のシクロアルキル基及び炭素原子数 6〜 20のァリール基から選ばれ る。 なかでも、 一CO— 0— CO—基 (酸無水物) 又は一CO— NR9— CO —基 (イミド) が好ましく、 イミ ドの場合、 R9は水素原子、 炭素原子数 1〜 4のアルキル基又は炭素原子数 6〜 12のァリール基が好ましく、 炭素原子数 1〜4のアルキル基がより好ましい。 In addition, one or two of R 5 to R 8 are bonded to one or two groups to form one CO—0—CO— group (acid anhydride), one CO—0_ group (lactone), _CO—NR 9 —CO —Group (imide) and —CO—NR 9 —group (lactam). Here, R 9 is selected from a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 20 carbon atoms. Among them, one CO—0—CO— group (acid anhydride) or one CO—NR 9 —CO— group (imide) is preferable. In the case of imid, R 9 is a hydrogen atom, and has 1 to 4 carbon atoms. An alkyl group or an aryl group having 6 to 12 carbon atoms is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
X5及び X6は、 それぞれ、 酸素原子、 硫黄原子及び C (R10) 2から独立に 選ばれる。 2個の R1Qは同一でも異なっていてもよく、 それぞれ、 水素原子、 ハロゲン原子、 炭素原子数 1〜 4のアルキル基、 炭素原子数 3〜6のシクロア ルキル基及ぴ炭素原子数 6〜 20のァリール基から選ばれる。 2個の R1Qが結 合して 3〜 8員環の環構造を形成していてもよく、 スピロ環を形成していても よい。 R1Dは水素原子又はハロゲン原子以外の場合、 炭素原子数 1〜3のアル キル基、 ハロゲン原子、 シァノ基、 カルボキシル基、 アミノ基及びアミド基の いずれかで置換されていてもよい。 なかでも、 酸素原子又は C (R10) 2が好 ましく、 R1Gとしては、 水素原子、 炭素原子数 1〜 4のアルキル基又は炭素原 子数 3〜 6のシクロアルキル基が好ましく、 水素原子又はメチル基がより好ま しい。 また、 X5及び X6は同一であることが好ましい。 X 5 and X 6 are each independently selected from an oxygen atom, a sulfur atom and C (R 10 ) 2 . The two R 1Q s may be the same or different, and each represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and 6 to 20 carbon atoms. From the group of Ariel. Two R 1Qs may combine to form a 3- to 8-membered ring structure, or may form a spiro ring. When R 1D is other than a hydrogen atom or a halogen atom, it may be substituted with any of an alkyl group having 1 to 3 carbon atoms, a halogen atom, a cyano group, a carboxyl group, an amino group and an amide group. Among them, an oxygen atom or C (R 10 ) 2 is preferable, and R 1G is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a carbon atom. A cycloalkyl group having 3 to 6 atoms is preferred, and a hydrogen atom or a methyl group is more preferred. X 5 and X 6 are preferably the same.
式 (III) で示される具体的化合物としては、 例えば、 ノルボルネン、 メチ ルノルボルネン、 ジメチルノルポルネン、 ェチルノルポルネン、 ェチリデンノ ルボルネン、 ブチルノルボルネン、 5—ァセチル _ 2—ノルポルネン、 N—ヒ ドロキシ一 5—ノルボルネンー 2 , 3—ジカルポキシイミ ド、 5 _ノルポルネ ン一 2—力ルポ二トリル、 5—ノルボルネン一 2—力ルポアルデヒド、 5—ノ ルポルネン一 2, 3—ジカルボン酸モノメチルエステル、 5—ノルポルネン一 2, 3—ジカルボン酸ジメチルエステル、 5—ノルボルネン一 2, 3—ジカル ボン酸ジェチルエステル、 5—ノルボルネン一 2, 3—ジカルポン酸ジ一 n— ブチルエステル、 5—ノルボルネンー2, 3—ジカルボン酸ジシクロへキシル エステル、 5—ノルボルネン一 2, 3—ジカルボン酸ジベンジルエステル、 5 —ノルポルネンー 2, 3—ジカルボン酸無水物、 5 _ノルボルネン一 2, 3— ジカルボン酸、 5—ノルポルネンー 2—メタノール、 5—ノルボルネンー 2, 3—ジメタノール、 2, 3 _ビス (メ トキシメチル) 一 5—ノルボルネン、 N —メチルー 5 _ノルポルネンー 2 , 3—カルポキシイミ ド、 6 _トリエトキシ シリル一 2—ノルボルネン、 5—ノルポルネン一 2—オール等の二環ノルポル ネン、 ジシクロペンタジェン (シクロペンタジェンのニ量体) 、 ジヒドロジシ ェン等の三環ノルポルネン、 テトラシクロドデセン、 メチルテトラシクロドデ セン、 ジメチルシクロテトラドデセン等の四環ノルボルネン、 トリシクロペン タジェン (シクロペンタジェンの三量体) 、 テトラシクロペンタジェン (シク 口ペンタジェンの四量体) 等の五環以上のノルポルネン、 テトラシクロドデカ ジェン、 対称型トリシクロペンタジェン等の 2個以上のノルボルネン基を有す る化合物などが挙げられる。  Specific compounds represented by the formula (III) include, for example, norbornene, methylnorbornene, dimethylnorbornene, ethylnorportene, ethylidenenorbornene, butylnorbornene, 5-acetyl_2-norporene, N-hydroxyl 5-Norbornene-2,3-dicarboximid, 5-Norpolene-12-forced nitrile, 5-Norbornene-12-forced aldehyde, 5-norbornene-1,2,3-dicarboxylic acid monomethyl ester, 5-Norpolonene 1,2-dicarboxylic acid dimethyl ester, 5-norbornene-1,2,3-dicarboxylic acid getyl ester, 5-norbornene-1,2,3-dicarbonic acid di-n-butyl ester, 5-norbornene-2,3-dicarboxylic acid Acid dicyclohexyl ester, 5-norbornene-1,2,3-dicarboxylic acid dibe Benzyl ester, 5-norporene-2,3-dicarboxylic anhydride, 5-norbornene-1,2,3-dicarboxylic acid, 5-norbornene-2-methanol, 5-norbornene-2,3-dimethanol, 2,3-bis (methoxymethyl 1) 5-norbornene, N-methyl-5-norpolene-2,3-carboxyimid, 6-triethoxysilyl-12-norbornene, 5-norporen-12-ol, etc., bicyclic norpolene, dicyclopentadiene (cyclopentadiene) Tricyclic norbornene such as dihydrodisocyane, tetracyclic norbornene such as tetracyclododecene, methyltetracyclododecene and dimethylcyclotetradodecene; tricyclopentagene (trimer of cyclopentadiene); Tetracyclopentadiene (tetramer of cyclopentadiene Pentacyclic or more norbornene etc., tetracyclododecanyl Zhen, such compounds that have a two or more norbornene groups, such as symmetric tri cyclopentadiene.
なかでも、 極性基を有し、 反応性の高くない 5—ノルボルネン一 2 , 3—ジ カルボン酸モノメチルエステル、 5—ノルポルネンー 2, 3—ジカルポン酸ジ メチルエステル、 5—ノルボルネン一 2, 3—ジカルボン酸ジェチルエステル、 5—ノルボルネンー 2, 3ージカルボン酸ジシクロへキシルエステル及ぴ 5— ノルポルネン一2, 3—ジカルポン酸ジベンジルエステルが好ましく、 5—ノ ルポルネン _ 2, 3—ジカルポン酸ジメチルエステル、 5 _ノルボルネンー 2, 3—ジカルボン酸ジェチルエステル及び 5—ノルボルネン一 2, 3ージカルボ ン酸ジシクロへキシルエステルがより好ましい。 Among them, 5-methyl-norbornene-1,2,3-dicarboxylic acid monomethyl ester, which has a polar group and is not highly reactive, 5-norbornene-2,3-dicarboxylic acid methyl ester, 5-norbornene-1,2,3-dicarboxylic acid Acid acetyl ester, 5-Norbornene-2,3-dicarboxylic acid dicyclohexyl ester and 5-nornorpene-1,2,3-dicarponic acid dibenzyl ester are preferable, 5-norbornene_2,3-dicarponic acid dimethyl ester, 5-norbornene-2,3 —Getyl dicarboxylate and dicyclohexyl 5-norbornene-1,2,3-dicarboxylate are more preferred.
この他に、 7—ォキサビシクロ [2. 2. 1] ヘプター 5 _ェン一 2, 3— ジカルボン酸無水物、 7—ォキサビシクロ [2. .2. 1] ヘプタ一 5—ェン一 2, 3—ジカルボン酸、 2—カルボキシ一 3—メ トキシカルボニル一 7—ォキ サビシクロ [2. 2. 1] ヘプタ一 5—ェン、 2, 3—ジメ トキシカルポニル —7—ォキサビシクロ [2. 2. 1] ヘプタ一 5—ェン、 2, 3—ジエトキシ 力ルポニル一 7—ォキサビシクロ [2. 2. 1] ヘプター 5 _ェン、 2, 3— ジへキシルォキシカルボニル一 7—ォキサビシクロ [2. 2. 1] ヘプタ一 5 —ェン、 2, 3—ジベンジルォキシカルポ二ルー 7—ォキサビシクロ [2. 2. 1] ヘプタ _ 5 _ェン、 2, 3—ビス (ヒドロキシメチル) 一 7—ォキサビシ クロ [2. 2. 1] ヘプタ一 5—ェン、 2, 3_ビス (メ トキシメチル) ー7 ーォキサビシクロ [2. 2. 1] ヘプタ一 5—ェン、 N—メチル一7—ォキサ ビシクロ [2. 2. 1] ヘプタ一 5—ェンー 2, 3—カルボキシイミ ド、 7— チアビシクロ [2. 2. 1] ヘプタ一 5—ェンー 2, 3—ジカルボン酸無水物、 2—力ルポキシ _3—メ トキシカルボニル一 7—チアビシクロ [2. 2. 1] ヘプター 5—ェン、 2, 3—ジメ トキシカルボニル一 7—チアサビシクロ [2. 2. 1] ヘプタ一 5—ェン、 2, 3—ビス (ヒドロキシメチル) 一7—チアビ シクロ [2. 2. 1] ヘプタ一 5—ェン、 等も式 (III) の具体的化合物とし て例示することができる。  In addition, 7-oxabicyclo [2.2.1] hepter-5-one-1,2,3-dicarboxylic anhydride, 7-oxabicyclo [2.2.1.2.1] hepta-5-one-1,2,3 —Dicarboxylic acid, 2-carboxy-13-methoxycarbonyl-17-oxabicyclo [2.2.1] hept-1-5-ene, 2,3-dimethoxycarbonyl—7-oxabicyclo [2.2.1] ] Hepta-5-ene, 2,3-diethoxypropanol-1 7-oxabicyclo [2.2.1] Hepter 5-ene, 2,3-dihexyloxycarbonyl-17-oxabicyclo [2.2] 1] Hepta-5-ene, 2,3-dibenzyloxycarpinoru 7-oxabicyclo [2.2.1] Hepta_5_ene, 2,3-bis (hydroxymethyl) -17 Oxabicyclo [2.2.1] hepta-1-ene, 2,3_bis (methoxymethyl) -7-oxabicyclo [2.2.1] hepta-1-ene, N-methyl-1-oxabicyclo [2.2.1] hepta-5-ene-2,3-carboxyimide, 7-thiabicyclo [2.2.1] hepta-5-ene-2,3-dicarboxylic anhydride , 2-Felpoxy_3 -Methoxycarbonyl-1 7-thiabicyclo [2.2.1] hepter 5-ene, 2,3-Dimethoxycarbonyl-1 7-thiasabicyclo [2.2.1] Hepta-5 , 2,3-bis (hydroxymethyl) -17-thiabicyclo [2.2.1] hepta-15-ene, and the like can also be exemplified as specific compounds of the formula (III).
また、 2, 3—ビス (メ トキシカルボニル) ビシクロ [2. 2. 1] ヘプタ ー2, 5—ジェン、 2, 3—ビス (メ トキシカルボニル) 一7—ォキサピシク 口 [2. 2. 1] ヘプター 2, 5—ジェン、 2, 3—ビス (メ トキシカルポ二 ル) _ 7—チアビシクロ [2. 2. 1] ヘプタ一 2, 5—ジェン等の二重結合 を 2個 (それ以上) 含む化合物も用いられる。 なお、 式 (III) で示される化合物をモノマに用いた場合、 メタセシス重合 反応により開環した分子鎖中には、 次の式 (Ili a ) で示される炭素一炭素二 重結合が存在する。 In addition, 2,3-bis (methoxycarbonyl) bicyclo [2.2.1] hepta2,5-gen, 2,3-bis (methoxycarbonyl) 17-oxapisik [2.2.1] Compounds containing two (or more) double bonds, such as hepter 2,5-gen, 2,3-bis (methoxycarbol) _7-thiabicyclo [2.2.1] hepta-1,2,5-gen Is also used. When the compound represented by the formula (III) is used as a monomer, a carbon-carbon double bond represented by the following formula (Ilia) is present in the molecular chain opened by the metathesis polymerization reaction.
Figure imgf000014_0001
Figure imgf000014_0001
式中、 m、 R5〜R8、 X5、 X6は式 (III) 中におけると同義である。 不飽和単環化合物 (A) 及び不飽和多環ィ匕合物 (B) の各々の使用量は、 目 的とするブロック共重合体に応じて決定すればよい。 このとき、 用いた不飽和 単環化合物 (A) 及び不飽和多環化合物 (B ) のモル比にほぼ等しい構成比 (A/B) のブロック共重合体が得られることを考慮する。 In the formula, m, R 5 to R 8 , X 5 and X 6 have the same meanings as in formula (III). The amount of each of the unsaturated monocyclic compound (A) and the unsaturated polycyclic conjugate (B) may be determined according to the intended block copolymer. At this time, it is considered that a block copolymer having a composition ratio (A / B) substantially equal to the molar ratio of the unsaturated monocyclic compound (A) and the unsaturated polycyclic compound (B) used is obtained.
本発明で使用される金属カルべン錯体触媒 (C) としては、 不飽和単環化合 物 (A) と不飽和多環化合物 (B ) とをそれぞれ原料としてメタセシス重合反 応を触媒するものであればよい。 好ましいものとしては、 次の式 (I ) 又は式 (II) で示される化合物が挙げられる。 これらの化合物は、 酸素や水分に対し て安定であるとともに、 性質の異なる 2種のモノマ同士の共重合に優れている c そのため、 重合反応は、 不活性ガス雰囲気中はもとより、 大気中でも可能であ る。 金属カルべン錯体触媒 (C) は、 単独で用いても複数のものを組み合わせ て用いてもよい。 The metal carbene complex catalyst (C) used in the present invention is a catalyst that catalyzes a metathesis polymerization reaction using an unsaturated monocyclic compound (A) and an unsaturated polycyclic compound (B) as raw materials. I just need. Preferred are compounds represented by the following formula (I) or (II). These compounds, along with a stable to oxygen and moisture, therefore c is excellent in copolymerization of two monomers with each other with different properties, the polymerization reaction is carried out in an inert gas atmosphere, as well as possible in the air is there. The metal carbene complex catalyst (C) may be used alone or in combination of two or more.
Figure imgf000014_0002
Figure imgf000014_0002
式 (I ) 及ぴ (II) 中、 Mはルテニウム、 オスミウム又は鉄であり、 好まし くは、 ルテニウムである。 In the formulas (I) and (II), M is ruthenium, osmium or iron, preferably The other is ruthenium.
X1〜X4は、 中心金属 Mへ配位可能でその配位原子上に陰電荷をもつァニォ ン性配位子 (原子又は原子団) であり、 例えば、 水素原子、 フッ素原子、 塩素 原子、 臭素原子、 ヨウ素原子等のハロゲン原子、 CF3C02_、 CH3C02—、 CF2HC02_、 CFH2C02 -、 (CH3) 3CO -、 (CF3) 2 (CH3) CO—、 (CF3) (CH3) 2CO_、 炭素原子数 1〜 5の直鎖又は分岐アル コキシ基、 置換又は無置換のフエノキシ基、 トリフルォロメタンスルホナート 基等が挙げられ、 なかでもハロゲン原子が好ましく、 塩素原子が更に好ましい。 X1と X2、 及び X3と X4とがいずれも (塩素原子等の) ハロゲン原子であるこ とが更に好ましい。 X 1 to X 4 are anionic ligands (atoms or atomic groups) capable of coordinating to the central metal M and having a negative charge on the coordinating atom, for example, a hydrogen atom, a fluorine atom, a chlorine atom , a bromine atom, a halogen atom such as iodine atom, CF 3 C0 2 _, CH 3 C0 2 -, CF 2 HC0 2 _, CFH 2 C0 2 -, (CH 3) 3 CO -, (CF 3) 2 (CH 3 ) CO—, (CF 3 ) (CH 3 ) 2 CO_, a linear or branched alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted phenoxy group, a trifluoromethanesulfonate group, and the like. Of these, a halogen atom is preferred, and a chlorine atom is more preferred. More preferably, X 1 and X 2 and X 3 and X 4 are all halogen atoms (such as chlorine atoms).
L1〜 L4は中心金属 Mへ配位可能な中性の電子供与基を示し、 例えば、 pRll R12 R13 (ここで、 R"〜R "は、 それぞれ独立して、 置換又は無置換 の炭素原子数 6〜 20のァリール基、 炭素原子数 1〜10の直鎖又は分岐アル キル基及び炭素原子数 3〜10のシクロアルキル基から選ばれる) で示される ホスフィン、 置換又は無置換のピリジン、 1, 3—ジ置換ィミダゾール等のィ ミダゾール化合物等が挙げられる。 なかでもトリシクロへキシルホスフィン、 トリシクロペンチルホスフィン、 トリイソプロピルホスフィン等のホスフィン、L 1 ~ L 4 represents an electron donating group capable of coordinating neutral to the central metal M, for example, in p R ll R 12 R 13 (wherein, R "to R" are each independently a substituted or An unsubstituted aryl group having 6 to 20 carbon atoms, a linear or branched alkyl group having 1 to 10 carbon atoms and a cycloalkyl group having 3 to 10 carbon atoms). Imidazole compounds such as substituted pyridine and 1,3-disubstituted imidazole; In particular, phosphines such as tricyclohexylphosphine, tricyclopentylphosphine, and triisopropylphosphine;
1, 3—ジメシチルイミダゾールー 2—イリデン、 4, 5—ジヒドロ一 1, 3 ージメシチルイミダゾールー 2 _イリテン等のィミダゾール化合物が好ましく、 トリシクロへキシルホスフィンが更に好ましい。 Preferred are imidazole compounds such as 1,3-dimesitylimidazole-2-ylidene and 4,5-dihydro-1,3dimesitylimidazole-2-iriten, and more preferred is tricyclohexylphosphine.
〜 は、 それぞれ独立に、 水素原子、 炭素原子数 1〜20のアルキル基、 炭素原子数 2〜 20のアルケニル基、 炭素原子数 2〜 20のアルキニル基、 炭 素原子数 6〜20のァリール基、 炭素原子数 1〜20のカルボキシレート基、 炭素原子数 1〜 20のアルコキシ基、 炭素原子数 2〜 20のアルケニルォキシ 基、 炭素原子数 6〜20のァリールォキシ基、 炭素原子数 2〜 20のアルコキ シカルボ二ル基、 炭素原子数 1〜20のアルキルチオ基、 炭素原子数 1〜20 のアルキルスルホニル基、 炭素原子数 1〜20のアルキルスルフィニル基、 炭 素原子数 1〜20のアルキルセレノ基、 炭素原子数 1〜 20のアルキルセレニ ニル基、 又は炭素原子数 1〜2 0のアルキルセレノニル基から選ばれ、 それぞ れは炭素原子数 1〜 5のアルキル基、 ハロゲン原子、 炭素原子数 1〜 5のアル コキシ基又は炭素原子数 6〜 2 0のァリール基で置換されていても良く、 前記 ァリ一ル基はハロゲン原子、 炭素原子数 1〜 5のアルキル基又は炭素原子数 1 〜 5のアルコキシ基で置換されていてもよい。 Is independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms. A carboxylate group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkenyloxy group having 2 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and 2 to 20 carbon atoms Alkoxycarbonyl group, alkylthio group having 1 to 20 carbon atoms, alkylsulfonyl group having 1 to 20 carbon atoms, alkylsulfinyl group having 1 to 20 carbon atoms, alkylseleno group having 1 to 20 carbon atoms Alkyl selenis having 1 to 20 carbon atoms Selected from an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 5 carbon atoms, a halogen atom, an alkoxy group having 1 to 5 carbon atoms or a carbon atom. The aryl group may be substituted with an aryl group having a number of 6 to 20, and the aryl group may be substituted with a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. Is also good.
上記の式 (I ) 又は式 (I I ) で示される具体的ィ匕合物としては、 例えば、 下記式 (V) 〜 (XIV) で示される化合物等があり、 中でも式 (V) 、 (V I ) 、 (VII) 又は (VIII) で示される化合物が好ましく用いられる。  Specific conjugates represented by the above formula (I) or (II) include, for example, compounds represented by the following formulas (V) to (XIV), among which the formulas (V) and (VI) ), (VII) or (VIII) are preferably used.
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000016_0001
Figure imgf000017_0001
金属カルべン錯体触媒 (C) の使用量は、 希望するブロック共重合体の分子 量を考慮して決定される。使用量が多いほどプロック共重合体の分子量は小さ くなる。 不飽和単環化合物 (A) 及び不飽和多環化合物 (B) の総量 100重 量部に対して、 通常、 0. 001〜20重量部、 好ましくは 0. 001〜: 10 重量部、 更に好ましくは 0. 05〜; L 0重量部である。  The amount of the metal carbene complex catalyst (C) used is determined in consideration of the desired molecular weight of the block copolymer. The higher the amount used, the lower the molecular weight of the block copolymer. Usually, 0.001 to 20 parts by weight, preferably 0.001 to: 10 parts by weight, more preferably 100 parts by weight based on 100 parts by weight of the total of the unsaturated monocyclic compound (A) and the unsaturated polycyclic compound (B). Is 0.05-; L 0 parts by weight.
本発明における重合反応では、 初めに、 不飽和単環化合物 (A) 及び必要な 金属カルべン錯体触媒 (C) の全量を混合'反応させ、 その後に、 反応系に不 飽和多環化合物 (B) を加え反応させること以外は、 一般的な重合反応の条件 を用いることができる。  In the polymerization reaction of the present invention, first, the entire amount of the unsaturated monocyclic compound (A) and the required metal carbene complex catalyst (C) are mixed and reacted, and thereafter, the unsaturated polycyclic compound ( General polymerization reaction conditions can be used, except for adding and reacting B).
重合反応の反応時間は、 ブロック共重合体が得られる限り、 特に制限されな レ。 反応時間は、 工程 (i) においては、 10分〜 6時間、 好ましくは、 0. 5〜 2時間であり、 工程 (i i) においては、 (i) の反応後に更に 1〜 6時 間、 好ましくは、 2〜 6時間反応させる。  The reaction time of the polymerization reaction is not particularly limited as long as a block copolymer can be obtained. In step (i), the reaction time is 10 minutes to 6 hours, preferably 0.5 to 2 hours. In step (ii), the reaction time is preferably 1 to 6 hours after the reaction of (i). Let react for 2-6 hours.
重合反応の反応温度は、 ブロック共重合体が得られる限り、 特に制限はなく、 反応性の観点からは、 好ましくは _20〜200°C、 更に好ましくは 0〜10 0°Cである。 重合反応においては、 溶媒を用いることが好ましい。 本発明で使用される溶 媒としては、 不飽和単環化合物 (A) 、 不飽和多環化合物 (B ) 及び触媒 The reaction temperature of the polymerization reaction is not particularly limited as long as a block copolymer is obtained, and is preferably from _20 to 200 ° C, more preferably from 0 to 100 ° C, from the viewpoint of reactivity. In the polymerization reaction, it is preferable to use a solvent. The solvent used in the present invention includes an unsaturated monocyclic compound (A), an unsaturated polycyclic compound (B), and a catalyst.
(C) を溶解可能なものであれば特に制限されない。 このような溶媒としては、 例えば、 アセトン、 2—ブタノン、 2—ペンタノン、 3 _ペンタノン、 4—メ チルー 3—ペンタノン、 シクロペンタノン、 シクロへキサノン、 シクロへプタ ノン、 シクロォクタノン等のケトン系溶媒、 ジェチルエーテル、 メチル _ t e r t一ブチルエーテル、 テトラヒドロフラン、 1, 4一ジォキサン、 エチレン グリコールジメチルエーテル等のエーテル系溶剤が挙げられる。  There is no particular limitation as long as (C) can be dissolved. Examples of such a solvent include ketone solvents such as acetone, 2-butanone, 2-pentanone, 3-pentanone, 4-methyl-3-pentanone, cyclopentanone, cyclohexanone, cycloheptanone, and cyclooctanone. And ether solvents such as dimethyl ether, methyl tert-butyl ether, tetrahydrofuran, 1,4-dioxane and ethylene glycol dimethyl ether.
溶媒を用いる場合、 その使用量は、 重合反応の容易性の観点から、 反応系全 体 (モノマ Aと B、 触媒及び溶媒の合計量) に対して、 好ましくは 6 0〜9 5 重量%、 更に好ましくは 7 0〜 9 0重量%、 特に好ましくは 8 0〜 9 0重量% である。 なお、 触媒 (C) を溶媒に溶解した状態で長時間放置すると分解反応 が少しずつ進行するので、 不飽和単環化合物 (A) を溶媒に溶解した後に (粉 末状の) 触媒 (C) を添加するか、 単環化合物 (A) の溶解に用いた溶媒と同 じ溶媒 (少量) に溶解した触媒溶液を用いることが好ましい。  When a solvent is used, the amount of the solvent is preferably 60 to 95% by weight based on the entire reaction system (the total amount of the monomers A and B, the catalyst and the solvent), from the viewpoint of easiness of the polymerization reaction. It is more preferably 70 to 90% by weight, particularly preferably 80 to 90% by weight. If the catalyst (C) is dissolved in a solvent and left for a long time, the decomposition reaction proceeds little by little. After dissolving the unsaturated monocyclic compound (A) in the solvent, the (powder-like) catalyst (C) Or a catalyst solution dissolved in the same solvent (small amount) as the solvent used for dissolving the monocyclic compound (A).
工程 ( i ) 及び工程 (i i) 、 更に工程 (i i i) を経て合成された共重合体中 には、 なお炭素一炭素二重結合が存在する。 この二重結合に起因する経日変ィ匕 (酸ィ匕による劣化や他の分子との架橋反応等) を避けるため、 得られた共重合 体に更に水素添加し、 重合体分子中に残存する不飽和結合を飽和させることが 好ましい。  In the copolymer synthesized through step (i), step (ii), and further step (iii), a carbon-carbon double bond still exists. In order to avoid aging due to this double bond (degradation due to oxidation, cross-linking reaction with other molecules, etc.), the obtained copolymer is further hydrogenated and remains in the polymer molecule. Preferably, the unsaturated bond is saturated.
水素添加反応は公知の金属触媒を用いた接触還元法ゃヒドラジン還元法等の 公知の方法を用いて行うことができる。  The hydrogenation reaction can be performed using a known method such as a catalytic reduction method using a known metal catalyst 触媒 a hydrazine reduction method.
上記製造法で得られるプロック共重合体は、 原料モノマを選ぶことにより、 無置換又は非極性基で置換されたメチレン基を主鎖に有する分子種 (A) が m 個鎖状に連なる非極性かつ柔軟な分子鎖 (mA、 すなわち、 — AA A〜AA A -) と、 シクロアルカン誘導体、 シクロアルケン誘導体、 ォキサシクロアル力 ン誘導体、 ォキサシクロアルケン誘導体、 チアシクロアルカン誘導体又はチア シクロアルケン誘導体のいずれかのシク口環構造を主鎖に含み、 そのシクロ環 上に極性置換基を有する分子種 (B) が n個鎖状に連なる極性かつ剛直な分子 鎖 (nB、 すなわち、 一 BBB— BBB—) とを含んで成るブロック共重合体 となり、 そのブロック共重合体の分子量分布の分散度が 1. 0〜2. 5の均質 性を示すプロック共重合体が得られる。 これらには変形のプロック共重合体、 すなわち、 分子鎖 mA—分子鎖 nB—分子鎖 m A等のブロック共重合体 (トリ ブロック共重合体) 等も含まれる。 The block copolymer obtained by the above-mentioned production method can be obtained by selecting the starting monomer, and then selecting a non-polar, non-polar or m-type molecular species (A) having a methylene group substituted in the main chain. And flexible molecular chains (mA, ie —AA A-AA A-) and any of cycloalkane derivatives, cycloalkene derivatives, oxacycloalkyne derivatives, oxacycloalkene derivatives, thiacycloalkane derivatives or thiacycloalkene derivatives In the main chain, the cyclic ring structure of A block copolymer comprising a polar and rigid molecular chain (nB, ie, one BBB-BBB-) in which n molecular species (B) having a polar substituent on the top are connected in a chain form is obtained. A block copolymer having homogeneity with a molecular weight distribution of the polymer of 1.0 to 2.5 can be obtained. These also include modified block copolymers, that is, block copolymers (triblock copolymers) such as molecular chain mA—molecular chain nB—molecular chain mA.
このようなブロック共重合体 (ジブロック共重合体) の分子種 (A) の繰返 し数 m、 及び分子種 (B) の繰返し数 nは、 基本的には、 原料 (モノマ A、 モ ノマ B及び触媒 C) の使用量により決まる。 繰返し数 m及び nは、 通常は、 そ れぞれ、 5〜 5000、 好ましくは、 10〜1000でぁる。 5未満では、 分 子鎖 m A及び分子鎖 nBの特性、 すなわち、 分子鎖 mAの柔軟性 (ソフトセグ メント) 及び分子鎖 nBの剛直性 (ハードセグメント) をそれぞれ発揮させる ことが難しくなる。 また、 分子鎖 mAの極性及び分子鎖 nBの非極性をそれぞ れ発揮させることも難しくなる。 一方、 5000を越えるものでは、 合成反応 に時間がかかる。 また、 繰返し数の mと nの比 (m/n) は、 互いにバランス をとつた数とし、 通常、 95ノ 5〜 5/95であり、 好ましくは 90Z10〜 1 0/90である。  The number of repetitions m of the molecular species (A) of such a block copolymer (diblock copolymer) and the number of repetitions n of the molecular species (B) are basically based on the raw materials (monomer A, Determined by the amount of NOMA B and catalyst C) used. The number of repetitions m and n is usually between 5 and 5000, preferably between 10 and 1000, respectively. If it is less than 5, it is difficult to exhibit the properties of the molecular chain mA and the molecular chain nB, that is, the flexibility (soft segment) of the molecular chain mA and the rigidity (hard segment) of the molecular chain nB, respectively. It is also difficult to exert the polarity of the molecular chain mA and the non-polarity of the molecular chain nB. On the other hand, if it exceeds 5000, the synthesis reaction takes time. The ratio of the number of repetitions m and n (m / n) is a number balanced with each other, and is usually 95 to 5/95, preferably 90 to 10/90.
分子鎖 mAと分子鎖 nBの各々の極性については、 有機概念図を指針として その原料モノマを選ぶことができる。 有機概念図は、 有機化合物の化学構造か ら種々の物理ィヒ学的性状を予測する有効な手法である (甲田善生著、 有機概念 図—基礎と応用—、 三共出版 (1984) 参照) 。 即ち、 有機概念図とは、 化 合物の性質を 「共有結合性を表わす有機性値」 と 「イオン結合性を表わす無機 性値」 に分け、 すべての有機ィヒ合物を有機軸と無機軸と名づけた直交座標上の 1点づつに位置づけて示すものである。 これに基づく有機性値とは、 有機性の 数値の大小は分子内のメチレン基を単位とし、 そのメチレン基を代表する炭素 原子の数で測ることができるとし、 基本になる炭素数 1個の数値は、 直鎖化合 物の炭素数 5〜 10付近での炭素が 1個加わることによる沸点上昇の平均値 2 0°Cを取り、 これを基準に 20と定めた値である。 一方、 無機性値とは、 種々 の置換基の沸点への影響力の大小を、 水酸基を基準に定め、 直鎖アルコールの 沸点曲線と直鎖パラフィンの沸点曲線との沸点差を炭素数 5の付近でとると約 100°Cとなるので、 水酸基 1個の影響力を数値で 100と定めた値である。 これを基準として、 他の官能基の影響力もこれに比例した値として定める。 こ の無機性値と有機性値は、 グラフ上で 1対 1に対応するように定めてある。 有 機ィ匕合物の無機性値及び有機性値はこれらの値から算出するものである。 無機 性値の大きい有機化合物は極性が高く、 有機性値の大きい有機化合物は極性が 低い。 For the polarity of each of the molecular chain mA and molecular chain nB, the raw material monomer can be selected based on the organic conceptual diagram. Organic conceptual maps are an effective method for predicting various physical properties from the chemical structure of organic compounds (see Yoshio Koda, Organic Conceptual Diagrams: Basics and Applications, Sankyo Publishing (1984)). In other words, an organic conceptual diagram divides the properties of a compound into “organic value indicating covalent bonding” and “inorganic value indicating ionic bonding”, and all the organic compounds are regarded as an organic axis. It is shown as one point on the Cartesian coordinate system called the axis. The organic value based on this is based on the assumption that the numerical value of the organic value can be measured by the number of carbon atoms representing the methylene group in the molecule as a unit, and the basic carbon number is 1 The numerical value is based on the average value of 20 ° C of the increase in boiling point due to the addition of one carbon atom near the carbon number of 5 to 10 in the linear compound, and is set to 20 based on this. On the other hand, inorganic values The magnitude of the influence of the substituents on the boiling point is determined based on the hydroxyl group, and the difference between the boiling point curve of the linear alcohol and the boiling point curve of the normal paraffin near the carbon number of 5 is about 100 ° C. Therefore, the influence of one hydroxyl group is set to 100 numerically. Based on this, the influence of other functional groups is determined as a value proportional to this. These inorganic values and organic values are set to correspond one-to-one on the graph. The inorganic value and the organic value of the organic compound are calculated from these values. Organic compounds with high inorganic values have high polarity, and organic compounds with high organic values have low polarity.
有機概念図を指針とした場合、 本発明における分子種 (A) の無機性対有機 性の比 (無機性 Z有機性) は、 通常、 0〜0. 3であり、 好ましくは 0〜0. 25である。 分子種 (A) がメチレンであるときの無機性対有機性の比は 0で あり、 分子鎖 m Aのポリメチレン鎖は非極性かつ柔軟な特性をもつことを意味 一 9る。  When the organic conceptual diagram is used as a guide, the ratio of inorganic to organic of the molecular species (A) in the present invention (inorganic Z organic) is usually 0 to 0.3, preferably 0 to 0.3. 25. When the molecular species (A) is methylene, the ratio of inorganicity to organicity is 0, which means that the polymethylene chain of the molecular chain mA has nonpolar and flexible properties.
また、 分子鎖 (nB) において、 シクロ環上にある極性置換基は、 Hamm e t tの置換基定数びから分離された 「極性基効果に基づく置換基定数」 び I を指針として選択することができる (M. C h a r t 0 n, P r o g. P h y s. Or g. Ch em. , 13, 119-251 (1981 )参照) 。 び Iは水 素原子を 0として、 置換基の極性が高いほど大きな値となる。 分子鎖 (nB) におけるシクロ環上の極性置換基のび Iは、 通常 +0. 05〜+0. 80であ り、 好ましくは +0. 10〜+0. 80である。  In the molecular chain (nB), the polar substituent on the cyclo ring can be selected using the “substituent constant based on the polar group effect” and I, which are separated from the Hammett's substituent constant and the substituent constant. (See M. Chart 0 n, Prog. Phys. Org. Chem., 13, 119-251 (1981)). The values of I and I are larger as the polarity of the substituent is higher, with the hydrogen atom being 0. The polar substituent I on the cyclo ring in the molecular chain (nB) is usually from +0.05 to +0.80, preferably from +0.10 to +0.80.
なお、 分子種 (B) の有機概念図上の無機性対有機性の比は、 通常、 0. 4 〜; 10. 0であり、 好ましくは 0. 45〜7. 5である。  The ratio of the inorganicity to the organicity of the molecular species (B) in the organic conceptual diagram is usually 0.4 to 10.0, and preferably 0.45 to 7.5.
得られたブロック共重合体の用途としては、 これに、 硬化性ィ匕合物及び硬化 剤を加え、 更に必要に応じて、 ベース樹脂、 その他の添加剤を適量加え、 回路 接続用接着材とすることができる。接着材は用途に応じて種々の形態、 例えば、 フィルム状、 シート状、 テープ状、 液状、 ペースト状などにすることができる。 なお、 回路接続用接着材を調製する場合、 各々の配合比は、 硬化性化合物 1 00重量部に対して、 硬化剤は、 約 1〜約 100重量部 (マイクロカプセルィ匕 したものを用いた場合は、 1 0 0重量部を超えて配合することもある) であり、 プロック共重合体は、 約 5〜約 5 0 0重量部程度である。 The obtained block copolymer may be used in the following manner: a curable binder and a curing agent are added thereto, and if necessary, a base resin and other additives are added in an appropriate amount. can do. The adhesive can be in various forms depending on the application, for example, a film, a sheet, a tape, a liquid, a paste, and the like. When the adhesive for circuit connection is prepared, the compounding ratio of each is 100 parts by weight of the curable compound and about 1 to about 100 parts by weight of the curing agent. When the copolymer is used, the amount may be more than 100 parts by weight), and the amount of the block copolymer is about 5 to about 500 parts by weight.
i) 硬化性化合物 i) Curable compound
硬化性化合物は硬化剤 (次に説明) により重合可能な官能基を有する物質で あり、 モノマでもオリゴマーでもよい。 具体的には、 イオン重合性のエポキシ 化合物、 ラジカル重合性のァクリレート化合物ゃメタクリレート化合物等が挙 げられる。  The curable compound is a substance having a functional group that can be polymerized by a curing agent (described below), and may be a monomer or an oligomer. Specific examples include an ionically polymerizable epoxy compound and a radically polymerizable acrylate compound / methacrylate compound.
i i) 硬化剤 i i) Curing agent
硬化剤は前述の硬化性化合物の重合を開始する化合物である。 通常、 加熱又 はエネルギー糸泉の照射により、 重合活性種を発生させる硬化剤が使用される。 そのような硬化剤としては、 潜在性を有するイミダゾール誘導体 (マイクロ力 プセル化したものがある) やスルホニゥム塩類等のイオン重合性モノマ、 有機 過酸化物、 ァゾィ匕合物などの加熱によりラジカルを発生するラジカル重合性モ ノマ等がある。  A curing agent is a compound that initiates the polymerization of the curable compound described above. Usually, a curing agent is used which generates polymerization active species by heating or irradiation with energy yarn. Examples of such a curing agent include radicals generated by heating an imidazole derivative having a latent potential (a microcapsule), an ionic polymerizable monomer such as a sulfonium salt, an organic peroxide, or an azoid compound. Radical polymerizable monomers.
i i i) ベース樹脂 i i i) Base resin
ベース樹脂としては、 フィルム形成能が高く、 硬ィ匕時の応力緩和に優れ、 高 接着性のものが使用できる。 そのような樹脂としては、 例えば、 分子内に水酸 基を有する分子量 1 0 , 0 0 0以上のフエノキシ樹脂等が挙げられる。  As the base resin, a resin having high film forming ability, excellent stress relaxation at the time of hardening, and high adhesion can be used. Examples of such a resin include a phenoxy resin having a hydroxyl group in the molecule and having a molecular weight of 100,000 or more.
iv) その他の添加剤 iv) Other additives
回路電極の高さやばらつきを吸収するため、 また、 異方導電性を積極的に付 与する目的で導電粒子を添カ卩 ·分散することができる。 また、 接続信頼性等の 向上を目的として、 カップリング剤、 充填剤、 老化防止剤等を添加することも できる。 実施例  Conductive particles can be added and dispersed in order to absorb the height and variations of the circuit electrodes and to positively impart anisotropic conductivity. Further, for the purpose of improving connection reliability and the like, a coupling agent, a filler, an antioxidant, and the like can be added. Example
実施例 1 (仕込モノマの A/B = 5 0 Z 5 0 (モル比) 、 使用溶媒:シクロ へキサノン)
Figure imgf000022_0001
Example 1 (A / B of charged monomer = 50 Z50 (molar ratio), solvent used: cyclohexanone)
Figure imgf000022_0001
100m lのガラス製三ッロフラスコ中、 モノマ Aとしてのシクロォクテン 0. 791 g (7. 13 mmo 1) をシクロへキサノン 8m 1に溶解して 6 0でに加熱後、 式 (V) のルテニウムカルべン錯体 (STREM CHEMICAL社製) 3 9. 2 mg (0. 048mmo 1 ) を添カ卩し、 60 °Cでメカニカルスターラー で攪拌しながら 1時間反応させた (工程 ( i) ) 。 反応中、 反応系中から少量 の反応溶液を抜き取り、 それに酢酸ビニルを加えて反応を停止したものを G P C測定用試料とした。 In a 100 ml glass flask, 0.791 g (7.13 mmo 1) of cyclooctene as monomer A is dissolved in 8 ml of cyclohexanone and heated to 60, and then the ruthenium carbabe of the formula (V) is dissolved. 39.2 mg (0.048 mmo 1) was added to the mixture, and the mixture was reacted at 60 ° C. for 1 hour while stirring with a mechanical stirrer (step (i)). During the reaction, a small amount of the reaction solution was withdrawn from the reaction system, vinyl acetate was added thereto, and the reaction was stopped to obtain a sample for GPC measurement.
その後、 モノマ Bとしての endo— 5 _ノルポルネン _ 2, 3—ジメチルエス テル (endo-DME、 Lancaster社製) 1. 50 g (7. 13 mm o 1 ) を添加し、 さらに 2時間反応させた (工程 (ii) ) 。 反応中、 反応系中から少量の反応溶 液を抜き取り、 酢酸ビニルを加えて反応を停止したものを G PC測定用試料と した。  Thereafter, 1.50 g (7.13 mmo 1) of endo-5-norpolenene-2,3-dimethylester (endo-DME, manufactured by Lancaster) as monomer B was added, and the mixture was further reacted for 2 hours. (Step (ii)). During the reaction, a small amount of the reaction solution was withdrawn from the reaction system, and the reaction was stopped by adding vinyl acetate.
その後、 酢酸ビュル 0. 55m l (6. Ommo 1 ) 及ぴシクロへキサノン 6m 1を添加して 5分間反応させ (工程 (iii) ) 、 放冷した反応液をメタ ノ^"ル 200m 1中に注いで白色の沈殿物 (重合体) を得た。 収率は 63%で あつた  Thereafter, 0.55 ml (6. Ommo 1) of butyl acetate and 6 ml of cyclohexanone were added and reacted for 5 minutes (step (iii)), and the cooled reaction solution was added to 200 ml of methanol. And a white precipitate (polymer) was obtained at a yield of 63%.
得られた重合体をテトラヒドロフラン (和光純薬製、 HPLC用) に溶解して、 テトラヒドロフランを溶離液として用いた G P Cより分子量を測定したところ、 標準ポリスチレン換算で数平均分子量 M nは 74, 000、 重量平均分子量 M wは 143, 000、 分子量分布の分散度は 1. 93であった。 GPCの測定 は、 GL— A1 50カラム (日立化成製ゲルパック、 排除限界 5x105) を使 用し、 流速 l cm3 Z分、 カラム温度 40°Cで行った。 GPCクロマトグラム を第 1図に示した。 The obtained polymer is dissolved in tetrahydrofuran (manufactured by Wako Pure Chemical Industries, HPLC), When the molecular weight was measured by GPC using tetrahydrofuran as an eluent, the number average molecular weight Mn was 74,000, the weight average molecular weight Mw was 143,000, and the polydispersity of the molecular weight distribution was 1.93 in terms of standard polystyrene. Was. GPC was measured using a GL-A150 column (Hitachi Kasei gel pack, exclusion limit 5 × 10 5 ) at a flow rate of lcm 3 Z and a column temperature of 40 ° C. The GPC chromatogram is shown in FIG.
また、 得られた重合体を重クロ口ホルム溶液とし、 iH— NMRスペクトル を測定した。 結果を第 2図に示した。  The obtained polymer was used as a double-mouthed form solution, and the iH-NMR spectrum was measured. The results are shown in FIG.
シクロォクテンが開環して生じたメチレン水素 Haの積分値と endo- DMEが開環 した部分のメ トキシ基のメチル水素の積分値との比から、 重合体中の各原料成 分モル比を算出した結果、 シクロォクテン /endo- DMEのモル比は 52 / 48で あ Oた From the ratio of the integrated value and endo- integral value of methyl hydrogens main butoxy group portion DME was opened methylene hydrogen H a where Shikurookuten occurs by ring-opening, the respective raw materials Ingredient molar ratio in the polymer As a result of calculation, the molar ratio of cyclooctene / endo-DME was 52/48.
なお、 得られた重合体のポリ (シクロォクテン) 一block—ポリ (endo— 5 —ノルポルネン _ 2, 3—ジカルボン酸ジメチル) におけるシクロォクテン開 環重合鎖の有機概念図上の無機性 Z有機性値は 0. 01と計算され、 シクロへ キサン環上のメ トキシカルボニル基の極性基効果に基づく置換基定数び Iは + 0. 32である。  In addition, the inorganic Z organic value in the organic conceptual diagram of the cyclooctene ring-opening polymer chain in the poly (cyclooctene) monoblock-poly (endo-5-norpolenene_2,3-dicarboxylate) of the obtained polymer is It is calculated to be 0.01, and the substituent constant and I based on the polar group effect of the methoxycarbonyl group on the cyclohexane ring are +0.32.
実施例 2 (仕込モノマの A/B = 20ノ80 (モル比) )  Example 2 (A / B of charged monomer = 20 to 80 (molar ratio))
シクロォクテンの使用量を 0. 319 g (2. 85mmo 1) 、 endo— 5— ノルポルネン一 2, 3—ジメチルエステルの使用量を 2. 41 g (1 1. 4 m mo 1) とした以外は実施例 1と同様にして、 重合体を得た。 収率は 82%、 Mr i 52, 000、 Mwは 105, 560、 分子量分布の分散度は 2. 03 であった。 また、 実施例 1と同様に各原料成分モル比を算出した結果、 重合体 中のシクロォクテン /endo-DMEのモル比は 18 Z 82であった。  Conducted except that the amount of cyclooctene used was 0.319 g (2.85 mmo 1) and the amount of endo-5-norpolonene 1,2,3-dimethyl ester was 2.41 g (11.4 mmo 1) A polymer was obtained in the same manner as in Example 1. The yield was 82%, Mr i 52,000, Mw was 105,560, and the polydispersity of the molecular weight distribution was 2.03. The molar ratio of each raw material component was calculated in the same manner as in Example 1. As a result, the molar ratio of cyclooctene / endo-DME in the polymer was 18 Z 82.
実施例 3 (仕込モノマの A/B = 80Z20 (モル比) )  Example 3 (A / B of charged monomer = 80Z20 (molar ratio))
シクロォクテンの使用量を 1. 257 g (1 1. 4mmo l) 、 endo- 5 - ノルポルネン一 2, 3—ジメチルエステルの使用量を 0. 60 g (2. 85m mo 1) とした以外は実施例 1と同様にして、 重合体を得た。 収率は 86%、 標準ポリスチレン換算の Mnは 60, 700、 Mwは 105, 618、 分子量 分布の 度は 1. 74であった。 また、 実施例 1と同様に各原料成分モル比 を算出した結果、 シクロォクテン Zendo- DMEのモル比は 81 / 19であった。 比較例 1 Example except that the amount of cyclooctene used was 1.257 g (11.4 mmol) and the amount of endo-5-norportene 1,2,3-dimethyl ester was 0.60 g (2.85 mmol). In the same manner as in 1, a polymer was obtained. 86% yield, Mn in standard polystyrene conversion was 60,700, Mw was 105,618, and the degree of molecular weight distribution was 1.74. The molar ratio of each raw material component was calculated in the same manner as in Example 1. As a result, the molar ratio of cyclooctene Zendo-DME was 81/19. Comparative Example 1
100m 1のガラス製三ッロフラスコ中、 モノマ Bとしての endo— 5—ノル ポルネン一 2, 3—ジメチルエステル (endo- DME、 Lancaster社製) 1. 50 g (7. 13mmo 1) をシクロへキサノン 8 m 1に溶解して 60。Cに加熱後、 式 (V) のルテニウムカルべン錯体 (STREM CHEMICAL社製) 39. 2mg (0. 048mmo 1 ) を添加し、 60 °Cでメカニカルスターラーで携拌しながら 1 時間反応させた。 その後、 モノマ Aとしてのシクロォクテン 0. 791 g (7. 13mmo 1) を添加し、 さらに 2時間反応させた後、 反応停止剤として酢酸 ビニル 0. 55m l (6. Ommo 1 ) 及びシクロへキサノン 6m 1を添加し て 5分間反応させ、 その後放冷した反応液をメタノール 200 m 1中に注いで 白色の沈殿物 (重合体) を得た。  Endo-5-norporene-1,2,3-dimethylester as monomer B (endo-DME, manufactured by Lancaster) in a 100-ml glass flask with 1.50 g (7.13 mmo 1) of cyclohexanone 8 Dissolve in m1 60. After heating to C, 39.2 mg (0.048 mmo 1) of a ruthenium carbene complex of the formula (V) (manufactured by STREM CHEMICAL) was added, and the mixture was reacted at 60 ° C. for 1 hour while stirring with a mechanical stirrer. . Thereafter, 0.791 g (7.13 mmo 1) of cyclooctene as monomer A was added, and the mixture was further reacted for 2 hours.After that, 0.55 ml of vinyl acetate (6.Ommo 1) and 6 m of cyclohexanone were used as a reaction terminator. 1 was added and reacted for 5 minutes, and then the cooled reaction solution was poured into 200 ml of methanol to obtain a white precipitate (polymer).
実施例と同様に測定した比較例 1の重合体の GPCクロマトグラムを第 1図 に示した。,また、 実施例 1と同様に測定した重合体中のシクロォクテン/ endo- D Eのモル比は 46/54であった。  FIG. 1 shows a GPC chromatogram of the polymer of Comparative Example 1 measured in the same manner as in the example. The molar ratio of cyclooctene / endo-DE in the polymer measured in the same manner as in Example 1 was 46/54.
比較例 2  Comparative Example 2
100m lのガラス製三ッロフラスコ中で、 モノマ Aとしてのシクロォクテ ン 0. 791 g (7. 13mmo 1 ) をシクロへキサノン 8 m 1に溶解して 6 0°Cに加熱後、 式 (V) のルテニウムカルべン錯体 (STREM CHEMICAL社製) 3 9. 2mg (0. 048mmo 1 ) を添加し、 60 °Cでメカニカルスターラー で攪拌しながら 1時間反応させた後、 反応停止剤として酢酸ビニル 0. 55m 1 (6. Ommo 1) 及びシクロへキサノン 6m 1を添加して 5分間反応させ、 その後放冷した反応液をメタノール 200m l中に注いで白色の沈殿物 (モノ マ Aからの重合体) を得た。  In a 100 ml glass flask, 0.791 g (7.13 mmo 1) of cyclooctane as monomer A was dissolved in 8 ml of cyclohexanone and heated to 60 ° C. Ruthenium carbene complex (STREM CHEMICAL) 39.2 mg (0.048 mmo 1) was added, and the mixture was reacted at 60 ° C for 1 hour while stirring with a mechanical stirrer. 55 ml (6. Ommo 1) and 6 ml of cyclohexanone were added and reacted for 5 minutes. Then, the cooled reaction solution was poured into 200 ml of methanol and a white precipitate (polymer from monomer A) was added. I got
実施例と同様に測定した比較例 2の重合体の GPCクロマトグラムを第 1図 不す。 比較例 1では、 2つのピ クが見られることから、 これらは 2種類のポリマ (ホモポリマ又はコポリマ) の混合物であり、 少なくとも均質なブロック共重 合体は得られていないことが分かる。 これに対して、 実施例 1では、 比較例 2 (モノマ Aのみの重合) より高分子量側へシフトした 1つのピークとなってい ることから、 モノマ A及びモノマ Bの混合物ではなく共重合体が得られたこと が確認できた。 また、 実施例 1の重合体をフィルム化して、 動的粘弾性測定装 置 (レオメトリック社製) を用いてガラス転移温度 (Tg) を測定したところ、 一 55°Cと 1 08°C付近の 2点にあったことから、 実施例 1の重合体は、 ラン ダム共重合体ではなく、 プロック共重合体であることが確認できた。 FIG. 1 shows a GPC chromatogram of the polymer of Comparative Example 2 measured in the same manner as in the example. In Comparative Example 1, two peaks are observed, indicating that these are a mixture of two types of polymers (homopolymers or copolymers), and that at least a homogeneous block copolymer has not been obtained. On the other hand, in Example 1, one peak shifted to the higher molecular weight side than Comparative Example 2 (polymerization of monomer A alone) was obtained, so that the copolymer was not a mixture of monomer A and monomer B but a copolymer. This was confirmed. Further, the polymer of Example 1 was formed into a film, and the glass transition temperature (Tg) was measured using a dynamic viscoelasticity measuring device (manufactured by Rheometrics). From these two points, it was confirmed that the polymer of Example 1 was not a random copolymer but a block copolymer.
実施例 2及び 3の重合体も、 実施例 1と同様に GPCと Tgの測定結果から ブロック共重合体であることが確認できた。  As in Example 1, the polymers of Examples 2 and 3 were confirmed to be block copolymers from the measurement results of GPC and Tg.
また、 実施例:!〜 3では、 いずれも原料モノマの仕込モル比にほぼ等しい原 料成分モル比 (共重合比) を有するブロック共重合体が得られた。  Examples:! In Nos. 1 to 3, block copolymers having a raw material component molar ratio (copolymerization ratio) almost equal to the charged molar ratio of the raw material monomers were obtained.
実施例 4 (仕込モノマの A/B = 50/50 (モル比) 、 使用溶媒:テトラヒ ドロフラン) Example 4 (A / B of charged monomer = 50/50 (molar ratio), solvent used: tetrahydrofuran)
使用溶媒としてテトラヒドロフランを用い、 シクロォクテンの使用量を 1 1 g (l O Ommo l) とし、 endo— 5—ノルボルネンー 2, 3—ジメチルエス テルの使用量を 21 g ( 10 Omo 1 ) とし、 式 (V) のルテニウムカルベン 錯体の使用量を 0. 27 g (0. 33mmo 1) とし、 実施例 1と同様にして、 重合体を得た。 収率は収率 90%、 標準ポリスチレン換算の Mnは 103, 0 00、 分子量分布の^ :度は 1..91であった。 また、 実施例 1と同様に各原 料成分モル比を算出した結果、 重合体中のシクロォクテン /endo-DMEのモル比 は 50 : 50であった。 これは雨モノマの仕込み比に一致していた。  Using tetrahydrofuran as a solvent, the amount of cyclooctene used is 11 g (lOOmmol), the amount of endo-5-norbornene-2,3-dimethylester used is 21 g (10 Omo1), and the formula ( A polymer was obtained in the same manner as in Example 1 except that the amount of the ruthenium carbene complex used in V) was 0.27 g (0.33 mmo 1). The yield was 90%, the Mn in terms of standard polystyrene was 103, 000, and the ^: degree in the molecular weight distribution was 1.91. The molar ratio of each raw material component was calculated in the same manner as in Example 1. As a result, the molar ratio of cyclooctene / endo-DME in the polymer was 50:50. This was consistent with the charge ratio of the rain monomer.
実施例 5 (仕込モノマの A/B = 80ノ20 (モル比) ) Example 5 (A / B of charged monomer = 80 to 20 (molar ratio))
シクロォクテンの使用量を 70 g (640 mm 0 1 ) とし、 endo— 5—ノル ボルネン一 2, 3—ジメチルエステルの使用量を 34 g (16 Ommo 1 ) と した以外は実施例 4と同様にし (式 (V) のルテニウムカルべン錯体の使用量 は 0. 33mmo 1) 、 重合体を得た。 収率は 85%、 標準ポリスチレン換算 の1^11は75, 000、 分子量分布の分散度は 1. 6であった。 また、 実施例 1と同様に各原料成分モル比を算出した結果、 重合体中のシクロォクテン " endo- DMEのモル比は 78 : 22であった。 In the same manner as in Example 4 except that the amount of cyclooctene used was 70 g (640 mm 01) and the amount of endo-5-norbornene-1,2-dimethyl ester was 34 g (16 Ommo 1) ( The amount of the ruthenium carbene complex represented by the formula (V) was 0.33 mmo1), and a polymer was obtained. 85% yield, standard polystyrene equivalent 1 ^ 11 was 75,000, and the degree of dispersion of the molecular weight distribution was 1.6. The molar ratio of each raw material component was calculated in the same manner as in Example 1. As a result, the molar ratio of cyclooctene "endo-DME" in the polymer was 78:22.
実施例 6 (仕込モノマの AZB= 50/50 (モル比) 、 触媒を多量使用) 式 (V) のルテニウムカルべン錯体の使用量を実施例 4の 1 0倍量の 3. 3 mmo 1とした以外は実施例 4と同様にして、 重合体を得た。 収率は 90%、 標準ポリスチレン換算の M nは 33, 000、 分子量分布の分散度は 1. 9で あった。 また、 実施例 1と同様に各原料成分モル比を算出した結果、 重合体中 のシクロォクテン Zendo- DMEのモル比は 53 : 47であった。 Example 6 (AZB of charged monomer = 50/50 (molar ratio), use of a large amount of catalyst) The amount of the ruthenium carbene complex of the formula (V) was changed to 3.3 mmo 1 which was 10 times the amount of Example 4 A polymer was obtained in the same manner as in Example 4, except that The yield was 90%, Mn in terms of standard polystyrene was 33,000, and the polydispersity of the molecular weight distribution was 1.9. The molar ratio of each raw material component was calculated in the same manner as in Example 1. As a result, the molar ratio of cyclooctene Zendo-DME in the polymer was 53:47.
実施例 7 (仕込モノマの ΑΖΒ^δ 0/20 (モル比) 、 触媒を多量使用) ルテニウムカルべン錯体の使用量を 10 g (13mmo 1) とした以外は実 施例 5と同様にして、 重合体を得た。 収率は 8896、 標準ポリスチレン換算の Mnは 24, 000、 分子量分布の分散度は 1. 9であった。 また、 実施例 4 と同様に各原料成分モル比を算出した結果、 重合体中のシクロォクテン/ endo-DMEのモル比は 79 : 21であった。 Example 7 (ΑΖΒ ^ δ 0/20 of the charged monomer (molar ratio), use of a large amount of catalyst) In the same manner as in Example 5 except that the amount of the ruthenium carbene complex used was changed to 10 g (13 mmo 1). A polymer was obtained. The yield was 8896, the Mn in terms of standard polystyrene was 24,000, and the polydispersity of the molecular weight distribution was 1.9. The molar ratio of each raw material component was calculated in the same manner as in Example 4, and as a result, the molar ratio of cyclooctene / endo-DME in the polymer was 79:21.
実施例 8 回路接続用フィルム状接着材の調製 Example 8 Preparation of film-like adhesive for circuit connection
PKHC (フエノキシ樹脂、 ユニオンカーバイト社製) 20 gと、 ェピコ一 ト YL— 983 U (ビスフエノール F型液状エポキシ樹脂、 油化シェルェポキ シ社製) 30 g及び実施例 4で調製したブロック共重合体 (数平均分子量 10 3, 000、 分子量分布 1. 91) 20 gを枰量し、 トルエン/酢酸ェチル = 50/50 (重量比) の混合溶剤に溶解して、 固形分 40%の溶液とした。 こ れに、 ノバキユア HX—3941 HP (潜在性硬化剤、 旭チバ社製) 30 gを 加え混合し、 シラン力ップリング剤のエポキシシラン化合物 ( A _ 187、 日 本ュニカー社製) 1.5 gをカロえ混合した。 その後、 これに平均粒径 10/ m、 比重 2. 0の導電性粒子 (ポリスチレンを核とする粒子の表面に、 厚み 0. 2 mのニッケル層を設け、 このニッケル層の外側に、 厚み 0. 02 01の金層 を設けたもの) を、 3体積% (固形分に対して) 配合分散し、 この混合液を厚 み 80 / mのフッ素樹脂フィルムに塗工装置を用いて塗布し、 70°C、 10分 の熱風乾燥によって、 前記フッ素樹脂フィルム上に厚みが 25 の回路用接 続用のフィルム状接着材を得た。 20 g of PKHC (phenoxy resin, manufactured by Union Carbide), 30 g of Epoxy YL-983 U (bisphenol F type liquid epoxy resin, manufactured by Yuka Shellepoxy) and the block weight prepared in Example 4 Combine (number-average molecular weight: 103,000, molecular weight distribution: 1.91) weigh 20 g and dissolve in a mixed solvent of toluene / ethyl acetate = 50/50 (weight ratio) to obtain a solution with a solid content of 40%. did. To this, 30 g of Novakiure HX-3394 HP (latent curing agent, manufactured by Asahi Ciba) was added and mixed, and 1.5 g of epoxysilane compound (A_187, manufactured by Nihon Nikka Co., Ltd.) as a silane coupling agent was added Mixed. Then, a conductive layer having an average particle diameter of 10 / m and a specific gravity of 2.0 (a nickel layer having a thickness of 0.2 m is provided on the surface of particles having polystyrene cores). 2 01%) was mixed and dispersed at 3% by volume (based on the solid content), and this mixture was applied to a 80 / m thick fluororesin film using a coating device. 70 ° C, 10 minutes By hot air drying, a film-like adhesive for circuit connection having a thickness of 25 was obtained on the fluororesin film.
実施例 9 回路接続体の作製 Example 9 Preparation of circuit connector
上で得た片面がフッ素樹脂フィルム上に覆われた回路接続用のフィルム状接 着材 (厚み 25 m) を用いて、 ライン幅 50 m、 ピッチ 100 m、 厚み 18 inの銅回路を 500本有するフレキシブル回路板 (FP C) と、 0. 2 mの酸ィ匕インジウム (ITO) の薄層を形成したガラス (厚み 1. lmm、 表面抵抗 20 Ω) とを、 180°C、 4MP aで 20秒間加熱加圧して幅 2mm にわたり接続した。  Using the film-like adhesive (25 m thick) for circuit connection with one side covered with a fluororesin film obtained above, 500 copper circuits with a line width of 50 m, a pitch of 100 m, and a thickness of 18 in are used. Flexible circuit board (FPC) and glass (thickness: 1 lmm, surface resistance: 20 Ω) on which a thin layer of 0.2 m indium oxide (ITO) is formed at 180 ° C and 4 MPa. The connection was made by heating and pressing for 20 seconds over a width of 2 mm.
このとき、 あらかじめ I T〇ガラス上に、 フィルム状接着材の接着面を 7 0°C、 0. 5 MP aで 5秒間加熱加圧して仮接続した後、 フッ素樹脂フィルム を剥離し、 もう一方の被着体である F PCと接続して接続体とした。  At this time, the adhesive surface of the film adhesive was heated and pressed at 70 ° C and 0.5 MPa for 5 seconds on IT 仮 glass for temporary connection, and then the fluororesin film was peeled off. It was connected to the FPC, which was the adherend, to form a connected body.
得られた接続体の隣接回路間の抵抗値を測定したところ、 隣接回路間の抵抗 150点の平均は 2.7Ωであり、 良好な接続特性を示した。  When the resistance value between the adjacent circuits of the obtained connection body was measured, the average of the 150 points of the resistance between the adjacent circuits was 2.7Ω, indicating good connection characteristics.
また、 この接続体の接着強度を J I S— Z0237に準じて 90度剥離法で 測定しところ、 接着強度は 80 ON/mで、 十分な接着強度を示した。 なお、 接着強度の測定装置は東洋ボールドウィン社製テンシロン UTM— 4 (剥離速 度 5 Omm/分、 25 °C) を使用した。 産業上の利用可能性  The adhesive strength of this connector was measured by a 90-degree peeling method in accordance with JIS Z0237. The adhesive strength was 80 ON / m, indicating a sufficient adhesive strength. The adhesive strength was measured using Toyo Baldwin's Tensilon UTM-4 (peeling speed 5 Omm / min, 25 ° C). Industrial applicability
本発明のブロック共重合体の製造法によれば、 二つの異なる原料モノマ (A, B) を用いて分子種 A及び分子種 Bがそれぞれ鎖状に塊となって連なるプロッ ク共重合体が容易に得られる。 また、 二つの異なる原料モノマ (A, B) の構 造は極端に異なるものであってもよい。 また、 共重合体に取り込まれる二つの 分子種 A及び^^種 Bは、 モノマの仕込量 (モル) を反映するので、 生成物 (ブロック共重合体) を管理しやすい。 さらに、 ポリマ (ブロック共重合体) の構造設計も容易で、 所望のブロック共重合体を有効に製造することができる 本発明で得られるブロック共重合体は、 新規なブロック共重合体である。 ま た、 低弾性で高強度、 低応力、 高接着性、 耐湿性、 耐熱性、 フィルム形成能、 更には他の成分との相溶性に優れる。 そのため、 半導体パッケージ等の電子材 料向け接着材料や、 相溶化剤、 可とう化剤、 あるいは非イオン系高分子界面活 性剤等の分野で広く利用でき、 その工業的価値は大きい。 According to the method for producing a block copolymer of the present invention, a block copolymer in which molecular species A and molecular species B are respectively chained and connected using two different raw materials monomers (A, B) is obtained. Obtained easily. Also, the structures of the two different raw material monomers (A, B) may be extremely different. Also, the two molecular species A and ^^ species B incorporated into the copolymer reflect the amount (mol) of monomer charged, so that the product (block copolymer) can be easily controlled. Further, the structural design of the polymer (block copolymer) is easy, and a desired block copolymer can be effectively produced. The block copolymer obtained in the present invention is a novel block copolymer. Ma Also, it has low elasticity, high strength, low stress, high adhesiveness, moisture resistance, heat resistance, film forming ability, and excellent compatibility with other components. Therefore, it can be widely used in the fields of adhesive materials for electronic materials such as semiconductor packages, compatibilizers, solubilizers, and nonionic polymer surfactants, and has great industrial value.
本発明の回路接続用接着材は、 半導体パッケージ等の電気 ·電子部品の回路 接続に用いられ、 良好な接続特性及び接着強度を示す。  The adhesive for circuit connection of the present invention is used for circuit connection of electric and electronic components such as semiconductor packages, and exhibits good connection characteristics and adhesive strength.

Claims

請 求 の 範 囲 The scope of the claims
1 . メタセシス重合可能な不飽和単環化合物 (A) と、 メタセシス重合可能な 不飽和多環化合物 (B ) とを、 金属カルべン錯体触媒 (C ) を用いてメタセシ ス重合反応させる際、 初めに、 前記単環化合物 (A) 及び必要な金属カルベン 錯体触媒 (C ) の全量を混ぜ反応させ、 その後に、 前記多環化合物 (B ) を加 え反応させるプロック共重合体の製造法。 1. When performing a metathesis polymerization reaction between a metathesis-polymerizable unsaturated monocyclic compound (A) and a metathesis-polymerizable unsaturated polycyclic compound (B) using a metal carbene complex catalyst (C), First, a method of producing a block copolymer in which the entire amount of the monocyclic compound (A) and the required metal carbene complex catalyst (C) are mixed and reacted, and then the polycyclic compound (B) is added and reacted.
2 . 更に、 反応停止剤を加え、 重合反応を停止させると共に、 重合体の一端に 結合した触媒 (C ) 由来の触媒活性部位を外す工程を有する請求の範囲第 1項 のプロック共重合体の製造法。  2. The block copolymer according to claim 1, further comprising a step of adding a reaction terminator to terminate the polymerization reaction and removing a catalyst active site derived from the catalyst (C) bonded to one end of the polymer. Manufacturing method.
3 . 更に、 水素添加反応によって残存する不飽和二重結合を飽和させる工程を 有する請求の範囲第 2項のブロック共重合体の製造法。  3. The method for producing a block copolymer according to claim 2, further comprising a step of saturating the remaining unsaturated double bond by a hydrogenation reaction.
4 . 不飽和単環化合物 (A) が置換又は無置換のシクロアルケン化合物である 請求の範囲第 1項のプロック共重合体の製造法。  4. The process for producing a block copolymer according to claim 1, wherein the unsaturated monocyclic compound (A) is a substituted or unsubstituted cycloalkene compound.
5 . 不飽和多環化合物 (B ) が置換又は無置換のノルボルネン化合物である請 求の範囲第 1項のプロック共重合体の製造法。  5. The process for producing a block copolymer according to claim 1, wherein the unsaturated polycyclic compound (B) is a substituted or unsubstituted norbornene compound.
6 . 請求の範囲第 1項〜第 5項のいずれかの製造法で製造されるプロック共重 合体。  6. A block copolymer produced by the production method according to any one of claims 1 to 5.
7 . ブロック共重合体の一つのブロックが、 無置換又は置換されたメチレン基 を主鎖に有する分子種 (A) が m個鎖状に連なる分子鎖 (mA) から成り、 他のブロックが、 シクロ環構造を主鎖に有する分子種 (B) が n個鎖状に連 なる分子鎖 (n B ) から成るブロック共重合体であって、  7. One block of the block copolymer is composed of a molecular chain (mA) in which m kinds of molecular species (A) having an unsubstituted or substituted methylene group in the main chain are connected in a chain, and the other block is A block copolymer comprising a molecular chain (n B) in which molecular species (B) having a cyclocyclic structure in the main chain are linked in n chains,
その共重合体分子の一端には、 金属カルべン錯体触媒 (C) 由来の触媒活性 部位以外の残基が結合していることを特徴とするプロック共重合体。  A block copolymer characterized in that a residue other than the catalytically active site derived from the metal carbene complex catalyst (C) is bonded to one end of the copolymer molecule.
8 . その共重合体分子の他端には、 更に、 金属カルべン錯体触媒 (C ) 由来の 触媒活性部位が結合している請求の範囲第 7項のプロック共重合体。  8. The block copolymer according to claim 7, wherein a catalyst active site derived from the metal carbene complex catalyst (C) is further bonded to the other end of the copolymer molecule.
9 . 共重合体の分子量分布の分散度 (重量平均分子量 数平均分子量) が 1 . 9. The degree of dispersion of the molecular weight distribution of the copolymer (weight average molecular weight, number average molecular weight) is 1.
0以上 2 , 5以下である請求の範囲第 7項又は第 8項のプロック共重合体。 9. The block copolymer according to claim 7, which is 0 or more and 2.5 or less.
1 0 . ブロック共重合体の一つのブロックが、 無置換又は非極性基で置換され たメチレン基を主鎖に有する分子種 (A) が m個鎖状に連なる非極性かつ柔軟 な分子鎖 (mA) から成り、 10. A non-polar and flexible molecular chain in which one block of the block copolymer is composed of m molecular species (A) having a methylene group substituted or unsubstituted in the main chain in the main chain. mA)
他のブロックが、 シクロ環構造を主鎖に含み、 そのシクロ環上に極性置換基 を有する分子種 (B) が n個鎖状に連なる極性かつ剛直な分子鎖 (n B) から 成る請求の範囲第 7項のプロック共重合体。  The other block comprises a polar and rigid molecular chain (nB) in which the molecular species (B) having a cyclocyclic structure in the main chain and having a polar substituent on the cyclo ring is connected in n chains. A block copolymer according to item 7 above.
1 1 . 分子種 (A) は有機概念図上の無機性対有機性の比が 0以上 0 . 3以下 であり、 分子種 (B) のシクロ環上の極性置換基は、 置換基定数 ( び I ) が 0 . 0 5以上 0 . 8 0以下の基である請求の範囲第 1 0項のブロック共重合体。  11. The molecular species (A) has a ratio of inorganic to organic on the organic conceptual diagram of 0 to 0.3, and the polar substituent on the cyclo ring of the molecular species (B) has a substituent constant ( And the block copolymer according to claim 10, wherein I) is a group of not less than 0.05 and not more than 0.80.
1 2 . 無置換又は非極性基で置換されたメチレン基を主鎖に有する分子種 (A) が m個鎖状に連なる非極性かつ柔軟な分子鎖 (mA) と、 1 2. A nonpolar and flexible molecular chain (mA) in which m kinds of molecular species (A) having a methylene group substituted or unsubstituted by a nonpolar group in the main chain are connected in a m-chain form;
シクロアルカン化合物、 シクロアルケン化合物、 ォキサシクロアルカン化合 物、 ォキサシクロアルケン化合物、 チアシクロアルカン化合物又はチアシクロ アルケン化合物のいずれかのシクロ環構造を主鎖に含み、 そのシクロ環上に極 性置換基を有する分子種 (B) が n個鎖状に連なる極性かつ剛直な分子鎖 (n The main chain contains a cyclo ring structure of a cycloalkane compound, a cycloalkene compound, an oxacycloalkane compound, an oxacycloalkene compound, a thiacycloalkane compound, or a thiacycloalkene compound, and has a polar substitution on the cyclo ring. Polar and rigid molecular chains (n
B) とを含んで成ることを特徴とするブロック共重合体。 B) A block copolymer comprising:
1 3 . 分子種 (A) は有機概念図上の無機性対有機性の比が 0以上 0 . 3以下 であり、 分子種 (B) のシクロ環上の極性置換基は、 置換基定数 ( び I ) が 0 . 13. The molecular species (A) has a ratio of inorganic to organic on the organic conceptual diagram of 0 to 0.3, and the polar substituent on the cyclo ring of the molecular species (B) has a substituent constant ( And I) is 0.
0 5以上 0 . 8 0以下の基である請求の範囲第 1 2項のブロック共重合体。 13. The block copolymer according to claim 12, wherein the group is a group of not less than 0.5 and not more than 0.8.
1 4 . 請求の範囲第 6項〜第 1 3項のいずれか一項のブロック共重合体を含有 することを特徴とする回路接続用接着材。 14. An adhesive for circuit connection, comprising the block copolymer according to any one of claims 6 to 13.
PCT/JP2001/006845 2000-08-11 2001-08-09 Process for the production of block copolymers, block copolymers produced by the process, and use of the copolymers WO2002014401A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2001278703A AU2001278703A1 (en) 2000-08-11 2001-08-09 Process for the production of block copolymers, block copolymers produced by the process, and use of the copolymers
JP2002519536A JP4239589B2 (en) 2000-08-11 2001-08-09 Block copolymer production method, block copolymer obtained and use thereof
KR1020027017915A KR100544525B1 (en) 2000-08-11 2001-08-09 Process for the production of block copolymers, block copolymers produced by the process, and use of the copolymers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000244559 2000-08-11
JP2000-244559 2000-08-11
JP2001-102748 2001-04-02
JP2001102748 2001-04-02

Publications (2)

Publication Number Publication Date
WO2002014401A1 true WO2002014401A1 (en) 2002-02-21
WO2002014401A8 WO2002014401A8 (en) 2003-02-13

Family

ID=26597845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006845 WO2002014401A1 (en) 2000-08-11 2001-08-09 Process for the production of block copolymers, block copolymers produced by the process, and use of the copolymers

Country Status (5)

Country Link
JP (2) JP4239589B2 (en)
KR (1) KR100544525B1 (en)
CN (1) CN1237090C (en)
AU (1) AU2001278703A1 (en)
WO (1) WO2002014401A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900633B2 (en) * 2001-04-02 2012-03-21 日立化成工業株式会社 Novel block copolymer, production method and use thereof
CN115073664B (en) * 2022-07-04 2023-11-28 广东新华粤石化集团股份公司 Cycloolefin polymer film with optical anisotropy and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251500A (en) * 1975-10-22 1977-04-25 Japan Synthetic Rubber Co Ltd Process for preparing copolymers by ring opening

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW312695B (en) * 1992-02-22 1997-08-11 Hoechst Ag
US5939504A (en) * 1995-12-07 1999-08-17 Advanced Polymer Technologies Method for extending the pot life of an olefin metathesis polymerization reaction
JP3876482B2 (en) * 1997-06-06 2007-01-31 東洋製罐株式会社 Heat-sealable packaging container
JP3952102B2 (en) * 1998-03-31 2007-08-01 日本ゼオン株式会社 Norbornene polymer containing organic group
JP2002121267A (en) * 2000-08-11 2002-04-23 Hitachi Chem Co Ltd Method for producing block copolymer
JP4900633B2 (en) * 2001-04-02 2012-03-21 日立化成工業株式会社 Novel block copolymer, production method and use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251500A (en) * 1975-10-22 1977-04-25 Japan Synthetic Rubber Co Ltd Process for preparing copolymers by ring opening

Also Published As

Publication number Publication date
JP4239589B2 (en) 2009-03-18
KR20030022166A (en) 2003-03-15
KR100544525B1 (en) 2006-01-23
AU2001278703A1 (en) 2002-02-25
CN1446240A (en) 2003-10-01
JP2009074093A (en) 2009-04-09
WO2002014401A8 (en) 2003-02-13
CN1237090C (en) 2006-01-18

Similar Documents

Publication Publication Date Title
WO2002100917A1 (en) Open-ring copolymer, hydrogenated open-ring copolymer, processes for production of both, and compositions
JP5892167B2 (en) Polymerizable composition, resin molded body and method for producing the same, and laminate
WO2005016991A1 (en) Polymerizable compositions and molded articles produced by using the same
JP4714955B2 (en) Cyclic olefin addition polymer and process for producing the same
TW200848483A (en) Polyurethane imide resin and adhesive composition using this
WO2021024956A1 (en) Polymerizable composition, cycloolefin-based polymer, and metal/resin composite
TW593406B (en) Copolymer formed by ring-opening polymerization, hydrogenation product of copolymer formed by ring-opening polymerization, and process for producing these
JP2009255380A (en) Composite mold
WO2002014401A1 (en) Process for the production of block copolymers, block copolymers produced by the process, and use of the copolymers
N'Guyen et al. Norbornene‐functionalized PEO‐b‐PCL: A versatile platform for mikto‐arm star, umbrella‐like, and comb‐like graft copolymers
JP4900633B2 (en) Novel block copolymer, production method and use thereof
JP6331560B2 (en) Ring-opening polymer hydride
JP2002322185A (en) Trialkoxysilyl group-containing norbornene composition
JP2002317034A (en) Hydrogenated material of norbornene ring opening polymer having functional group at terminal and method for producing the same
JP2015063696A (en) Adducts of metathesis polymers and preparation thereof
JP4096487B2 (en) Method for producing ring-opening metathesis polymer hydride
JP2001253935A (en) Method of producing norbornene-based polymer, and norbornene-based polymer
JP6137187B2 (en) Manufacturing method of sealing material for secondary battery and manufacturing method of sealing material composition for secondary battery
WO2012063579A1 (en) Thermosetting crosslinked cycloolefin resin film and manufacturing process therefor
JP2002121267A (en) Method for producing block copolymer
JP2000327756A (en) Polymerization process and polymer
JP2008150569A (en) Polymerizable composition and crosslinkable resin and method for producing the same
WO2021153417A1 (en) Pressure-sensitive adhesive composition
JP2001049126A (en) Resin composition
JP2003128766A (en) Method for producing ring-opened polymer and method for producing hydrogenated ring-opened polymer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BG BR BZ CA CN CO CR CU CZ DM DZ EC EE GD GE HR HU ID IL IN IS JP KR LC LK LR LT LV MA MG MK MN MX NO NZ PL RO SG SI SK TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 519536

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027017915

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018140327

Country of ref document: CN

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i
WWP Wipo information: published in national office

Ref document number: 1020027017915

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWG Wipo information: grant in national office

Ref document number: 1020027017915

Country of ref document: KR