JP4239589B2 - Block copolymer production method, block copolymer obtained and use thereof - Google Patents

Block copolymer production method, block copolymer obtained and use thereof Download PDF

Info

Publication number
JP4239589B2
JP4239589B2 JP2002519536A JP2002519536A JP4239589B2 JP 4239589 B2 JP4239589 B2 JP 4239589B2 JP 2002519536 A JP2002519536 A JP 2002519536A JP 2002519536 A JP2002519536 A JP 2002519536A JP 4239589 B2 JP4239589 B2 JP 4239589B2
Authority
JP
Japan
Prior art keywords
group
block copolymer
compound
carbon atoms
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002519536A
Other languages
Japanese (ja)
Inventor
寛 松谷
宏政 河合
晴昭 陶
秀康 立木
俊彦 高崎
尚 熊木
鋼志 丸山
茂樹 加藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Application granted granted Critical
Publication of JP4239589B2 publication Critical patent/JP4239589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J165/00Adhesives based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Adhesives based on derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)

Description

技術分野
本発明は、メタセシス重合反応を用いた均質なブロック共重合体の製造法、その製造法により得られるブロック共重合体、並びにこのブロック共重合体の用途に関する。本発明で得られるブロック共重合体は、半導体パッケージ等の電気・電子部品に使用される回路接続用接着材、その他の用途に有用に使用される。
背景技術
2成分系メタセシス重合触媒(タングステンやモリブデンの塩化物とその活性化剤)を用いて、炭素−炭素2重結合を有する2種類のメタセシス重合性モノマを交互に添加し、ブロック共重合体を合成することは知られている(例えば、特開昭52−51500号公報)。
また、メタセシス重合触媒の金属カルベン錯体を用いて、構造が類似したメタセシス重合性モノマ同士のブロック共重合体を合成した例は知られている(Macrololecules 第28巻,第4709頁,1995年、Macrololecules 第30巻,第3137頁,1997年、Journal of the American Chemical Society 第118巻,第784頁,1996年)。
エレクトロニクスの分野では、その部品に使用される材料(半導体パッケージ材料、光学材料等)の特性は、近年の情報通信、マルチメディア、パーソナルコンピュータ等の技術進歩とともに、日々に更に高いものが要求されている。要求特性の項目は、電子材料用接着材を例にとれば、低温接着性、短時間接着性、耐湿性、埋め込み性、フィルム形成能等であり、これらの特性は同時に高いレベルを満足しなければならない。
また、ブロック共重合体の各ブロック(そのブロック源のモノマ)同士が混ざり合わない(性質の異なる)二つの分子鎖をもつブロック共重合体はミクロ相分離構造を形成して、特異な性質を示すことが知られている。一例として、スチレン−ブタジエン−スチレンブロック共重合体(SBS樹脂)は、ポリスチレン由来の剛直な分子鎖(ハードセグメント)とポリブタジエン由来の柔軟な分子鎖(ソフトセグメント)とからなるミクロ相分離構造を形成するブロック共重合体である。このSBS樹脂は、常温ではハードセグメントが架橋点として作用し、ソフトセグメントがゴム成分として働く熱可塑性樹脂のひとつである(高分子学会編、高分子データハンドブック応用編、培風館、1986、p.299−307参照)。
また、ポリエチレン−ポリエチレングリコールブロック共重合体の例は、非極性の分子鎖と極性の分子鎖とを有する非イオン系高分子界面活性剤であり、これは乳化剤や消泡剤として利用されている(シグマ−アルドリッチ社ホームページやCASレジストリー番号:97953−22−5参照)。
上記特開昭52−51500号公報に示された方法は、2成分混合後の触媒の空気・湿気に対する不安定性や乾燥した窒素雰囲気を要する等の取扱い性の問題があり、使用できる原料モノマの官能基や溶媒の選択幅にも制約がある。また、プロトン放出能の高い官能基や、ホルミル基、ケトン基又はエステル基をもつ原料モノマ(又は溶媒)は、停止反応を誘発し触媒毒となるのでこの反応系では使えない(高分子学会編「高分子の合成と反応(1)」第393頁(共立出版、1990年発行))。
また、金属カルベン錯体を用いたブロック共重合体の合成では、構造が類似した2種類のモノマでの合成例は知られているが、構造が大きく異なる2種類のモノマを用いたブロック共重合体の製造法は未だ知られていない。
互いに構造及び/又は極性が大きく異なる2種類のメタセシス重合性モノマからブロック共重合体が得られるならば、そのブロック共重合体はミクロ相分離構造形成能をもつであろうし、また、極性基をもつ分子鎖からなるポリマ領域は金属との接着力を促進することが期待できる。また、ポリアルキレン鎖等の非極性分子鎖からなるポリマ領域は、エラストマとして作用し、ポリマ自体を低弾性化し、接着力強化に寄与することも期待できる。
更に、二つの原料モノマの種類をいろいろ変えることで、ブロック共重合体の低吸水率、低誘電率、低弾性、透明性等の諸物性を更に向上させることも期待できる。また更に、原料モノマの仕込量を変化させることでその物性を微妙にコントロールすることも期待できる。
発明の開示
本発明の目的は、構造及び/又は極性が大きく異なる2種類のメタセシス重合性モノマを原料として用いた場合でも、均質なブロック共重合体を容易に合成できる製造法を提供することであり、更には、それにより得られたブロック共重合体を、半導体パッケージ等の電気・電子部品の回路接続用接着材等に利用することを目的とする。
本発明者らは、安定でかつ高活性なルテニウムカルベン錯体触媒を用いて、合成原料のノルボルネン誘導体とシクロアルケンとを共重合反応させる際に、初めに、シクロアルケン及び必要なルテニウムカルベン錯体触媒の全量を反応させ、その後に、ノルボルネン誘導体を加え反応させると、所望の均質なブロック共重合体が安定して得られることを見出し、これを端緒として、以下の発明を完成するに至った。
本発明は、メタセシス重合可能な不飽和単環化合物(A)と、メタセシス重合可能な不飽和多環化合物(B)とを、金属カルベン錯体触媒(C)を用いてメタセシス重合反応させる際、初めに、不飽和単環化合物(A)及び必要な金属カルベン錯体触媒(C)の全量を混ぜ反応させ、その後に、不飽和多環化合物(B)を加え反応させるブロック共重合体の製造法である。
このとき、上記反応のあとに更に、反応停止剤を加えて重合反応を停止させると共に、重合体の一端に結合した触媒(C)由来の触媒活性部位を外し、触媒(C)の中心金属に配位したハロゲン原子等を除くことが好ましい。
また、本発明は、上記製造法で製造されるブロック共重合体にも関する。
製造されるブロック共重合体の一つのタイプは、その共重合体のブロックの一つが、無置換又は置換されたメチレン基を主鎖に有する分子種(A)がm個鎖状に連なる分子鎖(mA;−AAA…AAA−;ブロックA)から成り、他のブロックは、シクロ環構造を主鎖に有する分子種(B)がn個鎖状に連なる分子鎖(nB;−BBB…BBB−;ブロックB)から成っていて、更にその共重合体分子の一端には、金属カルベン錯体触媒(C)由来の触媒活性部位以外の残基が結合しているブロック共重合体である。
製造される別のタイプのブロック共重合体は、上記共重合体分子の他端に、更に、金属カルベン錯体触媒(C)由来の触媒活性部位が結合している共重合体である。
本発明の製造法において、重合反応を停止させることができ、かつ、触媒(C)の触媒活性部位を外すことができる重合反応停止剤を用いた場合は、前者のタイプのブロック共重合体を与える。
上記製造法において、反応停止剤を加える前又は反応停止剤を加えない場合、あるいは、重合反応を停止させるが重合体の一端に結合した触媒(C)由来の触媒活性部位を外せない反応停止剤を用いた場合、後者のタイプの共重合体を与える。
上記ブロック共重合体の分子量分布の分散度は、通常、1.0以上2.5以下、好ましくは、1.0以上2.0以下を示す。ここで、分子量分布の分散度は、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で計算される値である。
また、上記いずれのブロック共重合体についても、好ましいものは、ブロック共重合体の一つのブロックが、無置換又は非極性基で置換されたメチレン基を主鎖に有する分子種(A)がm個鎖状に連なる非極性かつ柔軟な分子鎖(mA)から成り、他のブロックは、シクロ環構造を主鎖に含み、そのシクロ環上に極性置換基を有する分子種(B)がn個鎖状に連なる極性かつ剛直な分子鎖(nB)から成っているブロック共重合体である。
また、本発明は、無置換又は非極性基で置換されたメチレン基を主鎖に有する分子種(A)がm個鎖状に連なる非極性かつ柔軟な分子鎖(mA)と、シクロアルカン誘導体、シクロアルケン誘導体、オキサシクロアルカン誘導体、オキサシクロアルケン誘導体、チアシクロアルカン誘導体又はチアシクロアルケン誘導体のいずれかのシクロ環構造を主鎖に含み、そのシクロ環上に極性置換基を有する分子種(B)がn個鎖状に連なる極性かつ剛直な分子鎖(nB)とを含んで成るブロック共重合体でもある。
更に、本発明は、上記ブロック共重合体を含有する回路接続用接着材にも関する。
発明を実施するための最良の形態
先ず、ブロック共重合体の製造法について説明する。製造法は、通常、次の工程(i)及び工程(ii)から成る。
工程(i):メタセシス重合可能な不飽和単環化合物(A;モノマA;分子種Aともいう)と、金属カルベン錯体触媒(C;Catalystともいう)の必要量の全量とを加え混合し、開環メタセシス重合させる。末端に金属カルベン錯体触媒由来の触媒活性部位(Cata)をもつ分子鎖(すなわち、Cata−AAA…AAA−lyst)を生成する。なお、Cataは、金属カルベン錯体触媒由来の触媒活性部位で金属を含む部位を意味し、lystはその残基を意味する。
工程(ii):続いて、上記反応系に、メタセシス重合可能な不飽和多環化合物(B;モノマB;分子種Bともいう)を加え、混合する。前記分子鎖(Cata−AAA…AAA)の触媒活性部位(Cata)末端から、順次、モノマBを取り込むようにして、BBB…BBB鎖が伸長し、末端に触媒活性部位(Cata)をもつジブロック共重合体(Cata−BBB…BBB−AAA…AAA−lyst)が生成する。
なお、モノマBと触媒(C)の全量とを加えて混合・反応させ、続いて、モノマAを加え反応させても、均質なジブロック共重合体は生成しない。また、仮にCata−AAA…AAA−BBB…BBB−lystで表されるジブロック共重合体が部分的に生成したとしてもその収量又は収率は低い。
本発明の製造法で、このようなジブロック共重合体(Cata−BBB…BBB−AAA…AAA−lyst)を収率よく合成できる理由は、触媒(C)が促進するモノマAの重合開始反応速度は重合伸長反応速度よりも大きく、そのため、工程(i)の生成物の大部分はCata−AAA…AAA−lystであり、単独の触媒(C)としては残っていないからと推定している。
一方、触媒(C)が促進するモノマBの重合伸長反応速度は重合開始反応速度よりも大きいので、逆の順序、すなわち初めにモノマBと触媒(C)の全量とを加えた場合、工程(i)では未反応の触媒(C)を残しつつCata−BBB…BBB−lystが生成することとなる。この残った触媒(C)が次の工程(ii)で反応触媒となってCata−AAA…AAA−lystを生成させ、ジブロック共重合体(Cata−AAA…AAA−BBB…BBB−lyst)の収率を下げ、生成物は不均質な重合体となると考えられる。
なお、工程(ii)に続いて、更にモノマAを反応系に添加すれば、上記ジブロック共重合体(Cata−BBB…BBB−AAA…AAA−lyst)の触媒活性部位から、順次、モノマAを取り込み、トリブロック共重合体(Cata−AAA…AAA−BBB…BBB−AAA…AAA−lyst)を生成させることもできる。
また、上記工程(ii)に続いて、好ましくは、反応停止剤を加えてメタセシス重合反応を停止させる工程(工程(iii))を加える。
反応停止剤としては、メタセシス重合反応を停止するとともに重合体の一端に結合した触媒(C)由来の触媒活性部位も外すもの、例えば、分子末端に二重結合を有しその隣接位置に電子吸引性基を有する酢酸ビニル、エチルビニルエーテル、フェニルビニルスルフィド、N−ビニルピロリドン等のビニルオレフィン化合物、4−ビニルピリジン等の電子供与能の大きな配位性化合物、あるいはエキソメチレン化合物などがある。これらの中でも酢酸ビニルやエチルビニルエーテルが好ましく使用される。また、メタセシス重合反応を停止させるが重合体の一端に結合した触媒(C)由来の触媒活性部位を外さないものとして、イミダゾール、2,2’−ビピリジン、4−メチルピリジン等がある。
以下に、本発明に用いるモノマA、モノマB及び触媒(C)を順に説明する。
本発明に用いる不飽和単環化合物(モノマA)としては、開環メタセシス重合可能で、開環重合ののちには環構造をもたない重合体を与える化合物が挙げられる。好ましくは、分子中に炭素−炭素二重結合を有する置換又は無置換のシクロアルケン誘導体が挙げられる。
シクロアルケン誘導体のシクロ環を構成する元素は、通常、3〜14個の炭素原子、好ましくは、4〜9個の炭素原子であり、炭素原子の一部はケイ素原子又はホウ素原子で置き換わっていてもよい。また、シクロ環を構成する一部の炭素原子に代えて、酸素原子、硫黄原子、窒素原子又はリン原子としてもよいが、この場合は、分子鎖mA(ブロックA)は極性を示す。
シクロ環上に置換基がある場合の置換基Yとしては、炭素原子数1〜20のアルキル基やハロゲン原子などが挙げられるが、好ましくは炭素原子数1〜20のアルキル基である。
上記置換基の他に、カルボニル基、シアノ基、イソシアノ基、ニトロ基、シロキシ基、炭素原子数2〜20のアルコキシカルボニル基、炭素原子数2〜20のアルキルカルボニルオキシ基、アミノ基、アミド基、ホルミル基、水酸基、炭素原子数1〜20のヒドロキシアルキル基、炭素原子数2〜20のアルコキシアルキル基、炭素原子数3〜20のアシロキシアルキル基、炭素原子数2〜20のシアノアルキル基、炭素原子数1〜20のアルコキシ基、炭素原子数1〜20のアルキルチオ基、炭素原子数1〜20のアルキルスルフィニル基、炭素原子数1〜20のアルキルスルホニル基、炭素原子数1〜20のアルキルセレノ基、炭素原子数6〜20のアルキルセレネニニル基又は炭素原子数1〜20のアルキルセレノニル基などもある。この場合は、分子鎖mA(ブロックA)は極性を示す。
本発明に使用されるシクロアルケン誘導体の具体的化合物としては、例えば、シクロブテン、シクロペンテン、シクロオクテン、シクロドデセン、5−メトキシ−1−シクロオクテン、5−ブロモ−1−シクロオクテン、5−イソプロポキシ−1−シクロオクテン、5−ホルミル−1−シクロオクテン、エチルシクロオクト−1−エン−5−カルボキシレート、トリメチルシリル=シクロオクト−1−エン−5−カルボキシレート等のシクロオレフィン類などが挙げられ、好ましくは、シクロペンテン及び/又はシクロオクテンが使用される。
その他、二重結合を2以上有する不飽和単環化合物も使用することができる。このような不飽和単環化合物としては、例えば、1,5−シクロオクタジエン、1,3,5,7−シクロオクタテトラエン、1,5,7−シクロドデカトリエン等が挙げられる。
本発明で使用される不飽和多環化合物(B)としては、メタセシス重合可能で、開環重合ののちも主鎖に環構造をもつ重合体を与える化合物が挙げられる。そのような化合物として、好ましいものの一つは、置換又は無置換のノルボルネン誘導体であり、例えば、下記式(III)で示されるものが挙げられる。

Figure 0004239589
式(III)中、mは0〜3の整数を示し、0〜2が好ましく、0又は1がより好ましい。
〜Rは、それぞれ独立に、水素原子、炭素原子数1〜20のアルキル基、炭素原子数3〜20のシクロアルキル基、炭素原子数6〜20のアリール基、ハロゲン原子、カルボニル基、シアノ基、イソシアノ基、ニトロ基、シロキシ基、炭素原子数2〜20のアルコキシカルボニル基、炭素原子数2〜20のアルキルカルボニルオキシ基、アミノ基、アミド基、ホルミル基、水酸基、炭素原子数1〜20のヒドロキシアルキル基、炭素原子数2〜20のアルコキシアルキル基、炭素原子数3〜20のアシロキシアルキル基、炭素原子数2〜20のシアノアルキル基、炭素原子数1〜20のアルコキシ基、炭素原子数1〜20のアルキルチオ基、炭素原子数1〜20のアルキルスルフィニル基、炭素原子数1〜20のアルキルスルホニル基、炭素原子数1〜20のアルキルセレノ基、炭素原子数1〜20のアルキルセレネニニル基及び炭素原子数1〜20のアルキルセレノニル基から選ばれ、少なくとも1つは水素原子である。なかでも、水素原子、炭素原子数1〜10のアルキル基、炭素原子数3〜12のシクロアルキル基、炭素原子数6〜12のアリール基、ハロゲン原子、カルボニル基、シアノ基、ニトロ基、シロキシ基、炭素原子数2〜10のアルコキシカルボニル基、アミド基、ホルミル基、水酸基から選ばれることが好ましく、水素原子、カルボニル基、シロキシ基、炭素原子数2〜10のアルコキシカルボニル基、アミド基から選ばれることがより好ましい。
また、R〜Rのいずれか2つが1組又は2組結合して−CO−O−CO−基(酸無水物)、−CO−O−基(ラクトン)、−CO−NR−CO−基(イミド)及び−CO−NR−基(ラクタム)から選ばれる基となっていてもよい。ここで、Rは水素原子、炭素原子数1〜4のアルキル基、炭素原子数3〜6のシクロアルキル基及び炭素原子数6〜20のアリール基から選ばれる。なかでも、−CO−O−CO−基(酸無水物)又は−CO−NR−CO−基(イミド)が好ましく、イミドの場合、Rは水素原子、炭素原子数1〜4のアルキル基又は炭素原子数6〜12のアリール基が好ましく、炭素原子数1〜4のアルキル基がより好ましい。
及びXは、それぞれ、酸素原子、硫黄原子及びC(R10から独立に選ばれる。2個のR10は同一でも異なっていてもよく、それぞれ、水素原子、ハロゲン原子、炭素原子数1〜4のアルキル基、炭素原子数3〜6のシクロアルキル基及び炭素原子数6〜20のアリール基から選ばれる。2個のR10が結合して3〜8員環の環構造を形成していてもよく、スピロ環を形成していてもよい。R10は水素原子又はハロゲン原子以外の場合、炭素原子数1〜3のアルキル基、ハロゲン原子、シアノ基、カルボキシル基、アミノ基及びアミド基のいずれかで置換されていてもよい。なかでも、酸素原子又はC(R10が好ましく、R10としては、水素原子、炭素原子数1〜4のアルキル基又は炭素原子数3〜6のシクロアルキル基が好ましく、水素原子又はメチル基がより好ましい。また、X及びXは同一であることが好ましい。
式(III)で示される具体的化合物としては、例えば、ノルボルネン、メチルノルボルネン、ジメチルノルボルネン、エチルノルボルネン、エチリデンノルボルネン、ブチルノルボルネン、5−アセチル−2−ノルボルネン、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミド、5−ノルボルネン−2−カルボニトリル、5−ノルボルネン−2−カルボアルデヒド、5−ノルボルネン−2,3−ジカルボン酸モノメチルエステル、5−ノルボルネン−2,3−ジカルボン酸ジメチルエステル、5−ノルボルネン−2,3−ジカルボン酸ジエチルエステル、5−ノルボルネン−2,3−ジカルボン酸ジ−n−ブチルエステル、5−ノルボルネン−2,3−ジカルボン酸ジシクロヘキシルエステル、5−ノルボルネン−2,3−ジカルボン酸ジベンジルエステル、5−ノルボルネン−2,3−ジカルボン酸無水物、5−ノルボルネン−2,3−ジカルボン酸、5−ノルボルネン−2−メタノール、5−ノルボルネン−2,3−ジメタノール、2,3−ビス(メトキシメチル)−5−ノルボルネン、N−メチル−5−ノルボルネン−2,3−カルボキシイミド、6−トリエトキシシリル−2−ノルボルネン、5−ノルボルネン−2−オール等の二環ノルボルネン、ジシクロペンタジエン(シクロペンタジエンの二量体)、ジヒドロジシクロペンタジエン、メチルジシクロペンタジエン、ジメチルジシクロペンタジエン等の三環ノルボルネン、テトラシクロドデセン、メチルテトラシクロドデセン、ジメチルシクロテトラドデセン等の四環ノルボルネン、トリシクロペンタジエン(シクロペンタジエンの三量体)、テトラシクロペンタジエン(シクロペンタジエンの四量体)等の五環以上のノルボルネン、テトラシクロドデカジエン、対称型トリシクロペンタジエン等の2個以上のノルボルネン基を有する化合物などが挙げられる。
なかでも、極性基を有し、反応性の高くない5−ノルボルネン−2,3−ジカルボン酸モノメチルエステル、5−ノルボルネン−2,3−ジカルボン酸ジメチルエステル、5−ノルボルネン−2,3−ジカルボン酸ジエチルエステル、5−ノルボルネン−2,3−ジカルボン酸ジシクロヘキシルエステル及び5−ノルボルネン−2,3−ジカルボン酸ジベンジルエステルが好ましく、5−ノルボルネン−2,3−ジカルボン酸ジメチルエステル、5−ノルボルネン−2,3−ジカルボン酸ジエチルエステル及び5−ノルボルネン−2,3−ジカルボン酸ジシクロヘキシルエステルがより好ましい。
この他に、7−オキサビシクロ[2.2.1]ヘプタ−5−エン−2,3−ジカルボン酸無水物、7−オキサビシクロ[2.2.1]ヘプタ−5−エン−2,3−ジカルボン酸、2−カルボキシ−3−メトキシカルボニル−7−オキサビシクロ[2.2.1]ヘプタ−5−エン、2,3−ジメトキシカルボニル−7−オキサビシクロ[2.2.1]ヘプタ−5−エン、2,3−ジエトキシカルボニル−7−オキサビシクロ[2.2.1]ヘプタ−5−エン、2,3−ジヘキシルオキシカルボニル−7−オキサビシクロ[2.2.1]ヘプタ−5−エン、2,3−ジベンジルオキシカルボニル−7−オキサビシクロ[2.2.1]ヘプタ−5−エン、2,3−ビス(ヒドロキシメチル)−7−オキサビシクロ[2.2.1]ヘプタ−5−エン、2,3−ビス(メトキシメチル)−7−オキサビシクロ[2.2.1]ヘプタ−5−エン、N−メチル−7−オキサビシクロ[2.2.1]ヘプタ−5−エン−2,3−カルボキシイミド、7−チアビシクロ[2.2.1]ヘプタ−5−エン−2,3−ジカルボン酸無水物、2−カルボキシ−3−メトキシカルボニル−7−チアビシクロ[2.2.1]ヘプタ−5−エン、2,3−ジメトキシカルボニル−7−チアサビシクロ[2.2.1]ヘプタ−5−エン、2,3−ビス(ヒドロキシメチル)−7−チアビシクロ[2.2.1]ヘプタ−5−エン、等も式(III)の具体的化合物として例示することができる。
また、2,3−ビス(メトキシカルボニル)ビシクロ[2.2.1]ヘプタ−2,5−ジエン、2,3−ビス(メトキシカルボニル)−7−オキサビシクロ[2.2.1]ヘプタ−2,5−ジエン、2,3−ビス(メトキシカルボニル)−7−チアビシクロ[2.2.1]ヘプタ−2,5−ジエン等の二重結合を2個(それ以上)含む化合物も用いられる。
なお、式(III)で示される化合物をモノマに用いた場合、メタセシス重合反応により開環した分子鎖中には、次の式(IIIa)で示される炭素−炭素二重結合が存在する。
Figure 0004239589
式中、m、R〜R、X、Xは式(III)中におけると同義である。
不飽和単環化合物(A)及び不飽和多環化合物(B)の各々の使用量は、目的とするブロック共重合体に応じて決定すればよい。このとき、用いた不飽和単環化合物(A)及び不飽和多環化合物(B)のモル比にほぼ等しい構成比(A/B)のブロック共重合体が得られることを考慮する。
本発明で使用される金属カルベン錯体触媒(C)としては、不飽和単環化合物(A)と不飽和多環化合物(B)とをそれぞれ原料としてメタセシス重合反応を触媒するものであればよい。好ましいものとしては、次の式(I)又は式(II)で示される化合物が挙げられる。これらの化合物は、酸素や水分に対して安定であるとともに、性質の異なる2種のモノマ同士の共重合に優れている。そのため、重合反応は、不活性ガス雰囲気中はもとより、大気中でも可能である。金属カルベン錯体触媒(C)は、単独で用いても複数のものを組み合わせて用いてもよい。
Figure 0004239589
式(I)及び(II)中、Mはルテニウム、オスミウム又は鉄であり、好ましくは、ルテニウムである。
〜Xは、中心金属Mへ配位可能でその配位原子上に陰電荷をもつアニオン性配位子(原子又は原子団)であり、例えば、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、CFCO−、CHCO−、CFHCO−、CFHCO−、(CHCO−、(CF(CH)CO−、(CF)(CHCO−、炭素原子数1〜5の直鎖又は分岐アルコキシ基、置換又は無置換のフェノキシ基、トリフルオロメタンスルホナート基等が挙げられ、なかでもハロゲン原子が好ましく、塩素原子が更に好ましい。XとX、及びXとXとがいずれも(塩素原子等の)ハロゲン原子であることが更に好ましい。
〜Lは中心金属Mへ配位可能な中性の電子供与基を示し、例えば、PR111213(ここで、R11〜R13は、それぞれ独立して、置換又は無置換の炭素原子数6〜20のアリール基、炭素原子数1〜10の直鎖又は分岐アルキル基及び炭素原子数3〜10のシクロアルキル基から選ばれる)で示されるホスフィン、置換又は無置換のピリジン、1,3−ジ置換イミダゾール等のイミダゾール化合物等が挙げられる。なかでもトリシクロヘキシルホスフィン、トリシクロペンチルホスフィン、トリイソプロピルホスフィン等のホスフィン、1,3−ジメシチルイミダゾール−2−イリデン、4,5−ジヒドロ−1,3−ジメシチルイミダゾール−2−イリデン等のイミダゾール化合物が好ましく、トリシクロヘキシルホスフィンが更に好ましい。
〜Rは、それぞれ独立に、水素原子、炭素原子数1〜20のアルキル基、炭素原子数2〜20のアルケニル基、炭素原子数2〜20のアルキニル基、炭素原子数6〜20のアリール基、炭素原子数1〜20のカルボキシレート基、炭素原子数1〜20のアルコキシ基、炭素原子数2〜20のアルケニルオキシ基、炭素原子数6〜20のアリールオキシ基、炭素原子数2〜20のアルコキシカルボニル基、炭素原子数1〜20のアルキルチオ基、炭素原子数1〜20のアルキルスルホニル基、炭素原子数1〜20のアルキルスルフィニル基、炭素原子数1〜20のアルキルセレノ基、炭素原子数1〜20のアルキルセレニニル基、又は炭素原子数1〜20のアルキルセレノニル基から選ばれ、それぞれは炭素原子数1〜5のアルキル基、ハロゲン原子、炭素原子数1〜5のアルコキシ基又は炭素原子数6〜20のアリール基で置換されていても良く、前記アリール基はハロゲン原子、炭素原子数1〜5のアルキル基又は炭素原子数1〜5のアルコキシ基で置換されていてもよい。
上記の式(I)又は式(II)で示される具体的化合物としては、例えば、下記式(V)〜(XIV)で示される化合物等があり、中でも式(V)、(VI)、(VII)又は(VIII)で示される化合物が好ましく用いられる。
Figure 0004239589
Figure 0004239589
金属カルベン錯体触媒(C)の使用量は、希望するブロック共重合体の分子量を考慮して決定される。使用量が多いほどブロック共重合体の分子量は小さくなる。不飽和単環化合物(A)及び不飽和多環化合物(B)の総量100重量部に対して、通常、0.001〜20重量部、好ましくは0.001〜10重量部、更に好ましくは0.05〜10重量部である。
本発明における重合反応では、初めに、不飽和単環化合物(A)及び必要な金属カルベン錯体触媒(C)の全量を混合・反応させ、その後に、反応系に不飽和多環化合物(B)を加え反応させること以外は、一般的な重合反応の条件を用いることができる。
重合反応の反応時間は、ブロック共重合体が得られる限り、特に制限されない。反応時間は、工程(i)においては、10分〜6時間、好ましくは、0.5〜2時間であり、工程(ii)においては、(i)の反応後に更に1〜6時間、好ましくは、2〜6時間反応させる。
重合反応の反応温度は、ブロック共重合体が得られる限り、特に制限はなく、反応性の観点からは、好ましくは−20〜200℃、更に好ましくは0〜100℃である。
重合反応においては、溶媒を用いることが好ましい。本発明で使用される溶媒としては、不飽和単環化合物(A)、不飽和多環化合物(B)及び触媒(C)を溶解可能なものであれば特に制限されない。このような溶媒としては、例えば、アセトン、2−ブタノン、2−ペンタノン、3−ペンタノン、4−メチル−3−ペンタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン等のケトン系溶媒、ジエチルエーテル、メチル−tert−ブチルエーテル、テトラヒドロフラン、1,4−ジオキサン、エチレングリコールジメチルエーテル等のエーテル系溶剤が挙げられる。
溶媒を用いる場合、その使用量は、重合反応の容易性の観点から、反応系全体(モノマAとB、触媒及び溶媒の合計量)に対して、好ましくは60〜95重量%、更に好ましくは70〜90重量%、特に好ましくは80〜90重量%である。なお、触媒(C)を溶媒に溶解した状態で長時間放置すると分解反応が少しずつ進行するので、不飽和単環化合物(A)を溶媒に溶解した後に(粉末状の)触媒(C)を添加するか、単環化合物(A)の溶解に用いた溶媒と同じ溶媒(少量)に溶解した触媒溶液を用いることが好ましい。
工程(i)及び工程(ii)、更に工程(iii)を経て合成された共重合体中には、なお炭素−炭素二重結合が存在する。この二重結合に起因する経日変化(酸化による劣化や他の分子との架橋反応等)を避けるため、得られた共重合体に更に水素添加し、重合体分子中に残存する不飽和結合を飽和させることが好ましい。
水素添加反応は公知の金属触媒を用いた接触還元法やヒドラジン還元法等の公知の方法を用いて行うことができる。
上記製造法で得られるブロック共重合体は、原料モノマを選ぶことにより、無置換又は非極性基で置換されたメチレン基を主鎖に有する分子種(A)がm個鎖状に連なる非極性かつ柔軟な分子鎖(mA、すなわち、−AAA…AAA−)と、シクロアルカン誘導体、シクロアルケン誘導体、オキサシクロアルカン誘導体、オキサシクロアルケン誘導体、チアシクロアルカン誘導体又はチアシクロアルケン誘導体のいずれかのシクロ環構造を主鎖に含み、そのシクロ環上に極性置換基を有する分子種(B)がn個鎖状に連なる極性かつ剛直な分子鎖(nB、すなわち、−BBB…BBB−)とを含んで成るブロック共重合体となり、そのブロック共重合体の分子量分布の分散度が1.0〜2.5の均質性を示すブロック共重合体が得られる。これらには変形のブロック共重合体、すなわち、分子鎖mA−分子鎖nB−分子鎖mA等のブロック共重合体(トリブロック共重合体)等も含まれる。
このようなブロック共重合体(ジブロック共重合体)の分子種(A)の繰返し数m、及び分子種(B)の繰返し数nは、基本的には、原料(モノマA、モノマB及び触媒C)の使用量により決まる。繰返し数m及びnは、通常は、それぞれ、5〜5000、好ましくは、10〜1000である。5未満では、分子鎖mA及び分子鎖nBの特性、すなわち、分子鎖mAの柔軟性(ソフトセグメント)及び分子鎖nBの剛直性(ハードセグメント)をそれぞれ発揮させることが難しくなる。また、分子鎖mAの極性及び分子鎖nBの非極性をそれぞれ発揮させることも難しくなる。一方、5000を越えるものでは、合成反応に時間がかかる。また、繰返し数のmとnの比(m/n)は、互いにバランスをとった数とし、通常、95/5〜5/95であり、好ましくは90/10〜10/90である。
分子鎖mAと分子鎖nBの各々の極性については、有機概念図を指針としてその原料モノマを選ぶことができる。有機概念図は、有機化合物の化学構造から種々の物理化学的性状を予測する有効な手法である(甲田善生著、有機概念図−基礎と応用−、三共出版(1984)参照)。即ち、有機概念図とは、化合物の性質を「共有結合性を表わす有機性値」と「イオン結合性を表わす無機性値」に分け、すべての有機化合物を有機軸と無機軸と名づけた直交座標上の1点づつに位置づけて示すものである。これに基づく有機性値とは、有機性の数値の大小は分子内のメチレン基を単位とし、そのメチレン基を代表する炭素原子の数で測ることができるとし、基本になる炭素数1個の数値は、直鎖化合物の炭素数5〜10付近での炭素が1個加わることによる沸点上昇の平均値20℃を取り、これを基準に20と定めた値である。一方、無機性値とは、種々の置換基の沸点への影響力の大小を、水酸基を基準に定め、直鎖アルコールの沸点曲線と直鎖パラフィンの沸点曲線との沸点差を炭素数5の付近でとると約100℃となるので、水酸基1個の影響力を数値で100と定めた値である。これを基準として、他の官能基の影響力もこれに比例した値として定める。この無機性値と有機性値は、グラフ上で1対1に対応するように定めてある。有機化合物の無機性値及び有機性値はこれらの値から算出するものである。無機性値の大きい有機化合物は極性が高く、有機性値の大きい有機化合物は極性が低い。
有機概念図を指針とした場合、本発明における分子種(A)の無機性対有機性の比(無機性/有機性)は、通常、0〜0.3であり、好ましくは0〜0.25である。分子種(A)がメチレンであるときの無機性対有機性の比は0であり、分子鎖mAのポリメチレン鎖は非極性かつ柔軟な特性をもつことを意味する。
また、分子鎖(nB)において、シクロ環上にある極性置換基は、Hammettの置換基定数σから分離された「極性基効果に基づく置換基定数」σIを指針として選択することができる(M.Charton,Prog.Phys.Org.Chem.,13,119−251(1981)参照)。σIは水素原子を0として、置換基の極性が高いほど大きな値となる。分子鎖(nB)におけるシクロ環上の極性置換基のσIは、通常+0.05〜+0.80であり、好ましくは+0.10〜+0.80である。
なお、分子種(B)の有機概念図上の無機性対有機性の比は、通常、0.4〜10.0であり、好ましくは0.45〜7.5である。
得られたブロック共重合体の用途としては、これに、硬化性化合物及び硬化剤を加え、更に必要に応じて、ベース樹脂、その他の添加剤を適量加え、回路接続用接着材とすることができる。接着材は用途に応じて種々の形態、例えば、フィルム状、シート状、テープ状、液状、ペースト状などにすることができる。
なお、回路接続用接着材を調製する場合、各々の配合比は、硬化性化合物100重量部に対して、硬化剤は、約1〜約100重量部(マイクロカプセル化したものを用いた場合は、100重量部を超えて配合することもある)であり、ブロック共重合体は、約5〜約500重量部程度である。
i)硬化性化合物
硬化性化合物は硬化剤(次に説明)により重合可能な官能基を有する物質であり、モノマでもオリゴマーでもよい。具体的には、イオン重合性のエポキシ化合物、ラジカル重合性のアクリレート化合物やメタクリレート化合物等が挙げられる。
ii)硬化剤
硬化剤は前述の硬化性化合物の重合を開始する化合物である。通常、加熱又はエネルギー線の照射により、重合活性種を発生させる硬化剤が使用される。そのような硬化剤としては、潜在性を有するイミダゾール誘導体(マイクロカプセル化したものがある)やスルホニウム塩類等のイオン重合性モノマ、有機過酸化物、アゾ化合物などの加熱によりラジカルを発生するラジカル重合性モノマ等がある。
iii)ベース樹脂
ベース樹脂としては、フィルム形成能が高く、硬化時の応力緩和に優れ、高接着性のものが使用できる。そのような樹脂としては、例えば、分子内に水酸基を有する分子量10,000以上のフェノキシ樹脂等が挙げられる。
iv)その他の添加剤
回路電極の高さやばらつきを吸収するため、また、異方導電性を積極的に付与する目的で導電粒子を添加・分散することができる。また、接続信頼性等の向上を目的として、カップリング剤、充填剤、老化防止剤等を添加することもできる。
実施例
実施例1(仕込モノマのA/B=50/50(モル比)、使用溶媒:シクロヘキサノン)
Figure 0004239589
100mlのガラス製三ツ口フラスコ中、モノマAとしてのシクロオクテン0.791g(7.13mmol)をシクロヘキサノン8mlに溶解して60℃に加熱後、式(V)のルテニウムカルベン錯体(STREM CHEMICAL社製)39.2mg(0.048mmol)を添加し、60℃でメカニカルスターラーで攪拌しながら1時間反応させた(工程(i))。反応中、反応系中から少量の反応溶液を抜き取り、それに酢酸ビニルを加えて反応を停止したものをGPC測定用試料とした。
その後、モノマBとしてのendo−5−ノルボルネン−2,3−ジメチルエステル(endo−DME、Lancaster社製)1.50g(7.13mmol)を添加し、さらに2時間反応させた(工程(ii))。反応中、反応系中から少量の反応溶液を抜き取り、酢酸ビニルを加えて反応を停止したものをGPC測定用試料とした。
その後、酢酸ビニル0.55ml(6.0mmol)及びシクロヘキサノン6mlを添加して5分間反応させ(工程(iii))、放冷した反応液をメタノール200ml中に注いで白色の沈殿物(重合体)を得た。収率は63%であった。
得られた重合体をテトラヒドロフラン(和光純薬製、HPLC用)に溶解して、テトラヒドロフランを溶離液として用いたGPCより分子量を測定したところ、標準ポリスチレン換算で数平均分子量Mnは74,000、重量平均分子量Mwは143,000、分子量分布の分散度は1.93であった。GPCの測定は、GL−A150カラム(日立化成製ゲルパック、排除限界5×10)を使用し、流速1cm/分、カラム温度40℃で行った。GPCクロマトグラムを第1図に示した。
また、得られた重合体を重クロロホルム溶液とし、H−NMRスペクトルを測定した。結果を第2図に示した。
シクロオクテンが開環して生じたメチレン水素Hの積分値とendo−DMEが開環した部分のメトキシ基のメチル水素の積分値との比から、重合体中の各原料成分モル比を算出した結果、シクロオクテン/endo−DMEのモル比は52/48であった。
なお、得られた重合体のポリ(シクロオクテン)−block−ポリ(endo−5−ノルボルネン−2,3−ジカルボン酸ジメチル)におけるシクロオクテン開環重合鎖の有機概念図上の無機性/有機性値は0.01と計算され、シクロヘキサン環上のメトキシカルボニル基の極性基効果に基づく置換基定数σIは+0.32である。
実施例2(仕込モノマのA/B=20/80(モル比))
シクロオクテンの使用量を0.319g(2.85mmol)、endo−5−ノルボルネン−2,3−ジメチルエステルの使用量を2.41g(11.4mmol)とした以外は実施例1と同様にして、重合体を得た。収率は82%、Mnは52,000、Mwは105,560、分子量分布の分散度は2.03であった。また、実施例1と同様に各原料成分モル比を算出した結果、重合体中のシクロオクテン/endo−DMEのモル比は18/82であった。
実施例3(仕込モノマのA/B=80/20(モル比))
シクロオクテンの使用量を1.257g(11.4mmol)、endo−5−ノルボルネン−2,3−ジメチルエステルの使用量を0.60g(2.85mmol)とした以外は実施例1と同様にして、重合体を得た。収率は86%、標準ポリスチレン換算のMnは60,700、Mwは105,618、分子量分布の分散度は1.74であった。また、実施例1と同様に各原料成分モル比を算出した結果、シクロオクテン/endo−DMEのモル比は81/19であった。
比較例1
100mlのガラス製三ツ口フラスコ中、モノマBとしてのendo−5−ノルボルネン−2,3−ジメチルエステル(endo−DME、Lancaster社製)1.50g(7.13mmol)をシクロヘキサノン8mlに溶解して60℃に加熱後、式(V)のルテニウムカルベン錯体(STREM CHEMICAL社製)39.2mg(0.048mmol)を添加し、60℃でメカニカルスターラーで攪拌しながら1時間反応させた。その後、モノマAとしてのシクロオクテン0.791g(7.13mmol)を添加し、さらに2時間反応させた後、反応停止剤として酢酸ビニル0.55ml(6.0mmol)及びシクロヘキサノン6mlを添加して5分間反応させ、その後放冷した反応液をメタノール200ml中に注いで白色の沈殿物(重合体)を得た。
実施例と同様に測定した比較例1の重合体のGPCクロマトグラムを第1図に示した。また、実施例1と同様に測定した重合体中のシクロオクテン/endo−DMEのモル比は46/54であった。
比較例2
100mlのガラス製三ツ口フラスコ中で、モノマAとしてのシクロオクテン0.791g(7.13mmol)をシクロヘキサノン8mlに溶解して60℃に加熱後、式(V)のルテニウムカルベン錯体(STREM CHEMICAL社製)39.2mg(0.048mmol)を添加し、60℃でメカニカルスターラーで攪拌しながら1時間反応させた後、反応停止剤として酢酸ビニル0.55ml(6.0mmol)及びシクロヘキサノン6mlを添加して5分間反応させ、その後放冷した反応液をメタノール200ml中に注いで白色の沈殿物(モノマAからの重合体)を得た。
実施例と同様に測定した比較例2の重合体のGPCクロマトグラムを第1図に示す。
比較例1では、2つのピークが見られることから、これらは2種類のポリマ(ホモポリマ又はコポリマ)の混合物であり、少なくとも均質なブロック共重合体は得られていないことが分かる。これに対して、実施例1では、比較例2(モノマAのみの重合)より高分子量側へシフトした1つのピークとなっていることから、モノマA及びモノマBの混合物ではなく共重合体が得られたことが確認できた。また、実施例1の重合体をフィルム化して、動的粘弾性測定装置(レオメトリック社製)を用いてガラス転移温度(Tg)を測定したところ、−55℃と108℃付近の2点にあったことから、実施例1の重合体は、ランダム共重合体ではなく、ブロック共重合体であることが確認できた。
実施例2及び3の重合体も、実施例1と同様にGPCとTgの測定結果からブロック共重合体であることが確認できた。
また、実施例1〜3では、いずれも原料モノマの仕込モル比にほぼ等しい原料成分モル比(共重合比)を有するブロック共重合体が得られた。
実施例4(仕込モノマのA/B=50/50(モル比)、使用溶媒:テトラヒドロフラン)
使用溶媒としてテトラヒドロフランを用い、シクロオクテンの使用量を11g(100mmol)とし、endo−5−ノルボルネン−2,3−ジメチルエステルの使用量を21g(100mol)とし、式(V)のルテニウムカルベン錯体の使用量を0.27g(0.33mmol)とし、実施例1と同様にして、重合体を得た。収率は収率90%、標準ポリスチレン換算のMnは103,000、分子量分布の分散度は1.91であった。また、実施例1と同様に各原料成分モル比を算出した結果、重合体中のシクロオクテン/endo−DMEのモル比は50:50であった。これは両モノマの仕込み比に一致していた。
実施例5(仕込モノマのA/B=80/20(モル比))
シクロオクテンの使用量を70g(640mmol)とし、endo−5−ノルボルネン−2,3−ジメチルエステルの使用量を34g(160mmol)とした以外は実施例4と同様にし(式(V)のルテニウムカルベン錯体の使用量は0.33mmol)、重合体を得た。収率は85%、標準ポリスチレン換算のMnは75,000、分子量分布の分散度は1.6であった。また、実施例1と同様に各原料成分モル比を算出した結果、重合体中のシクロオクテン/endo−DMEのモル比は78:22であった。
実施例6(仕込モノマのA/B=50/50(モル比)、触媒を多量使用)
式(V)のルテニウムカルベン錯体の使用量を実施例4の10倍量の3.3mmolとした以外は実施例4と同様にして、重合体を得た。収率は90%、標準ポリスチレン換算のMnは33,000、分子量分布の分散度は1.9であった。また、実施例1と同様に各原料成分モル比を算出した結果、重合体中のシクロオクテン/endo−DMEのモル比は53:47であった。
実施例7(仕込モノマのA/B=80/20(モル比)、触媒を多量使用)
ルテニウムカルベン錯体の使用量を10g(13mmol)とした以外は実施例5と同様にして、重合体を得た。収率は88%、標準ポリスチレン換算のMnは24,000、分子量分布の分散度は1.9であった。また、実施例4と同様に各原料成分モル比を算出した結果、重合体中のシクロオクテン/endo−DMEのモル比は79:21であった。
実施例8 回路接続用フィルム状接着材の調製
PKHC(フェノキシ樹脂、ユニオンカーバイト社製)20gと、エピコートYL−983U(ビスフェノールF型液状エポキシ樹脂、油化シェルエポキシ社製)30g及び実施例4で調製したブロック共重合体(数平均分子量103,000、分子量分布1.91)20gを秤量し、トルエン/酢酸エチル=50/50(重量比)の混合溶剤に溶解して、固形分40%の溶液とした。これに、ノバキュアHX−3941HP(潜在性硬化剤、旭チバ社製)30gを加え混合し、シランカップリング剤のエポキシシラン化合物(A−187、日本ユニカー社製)1.5gを加え混合した。その後、これに平均粒径10μm、比重2.0の導電性粒子(ポリスチレンを核とする粒子の表面に、厚み0.2μmのニッケル層を設け、このニッケル層の外側に、厚み0.02μmの金層を設けたもの)を、3体積%(固形分に対して)配合分散し、この混合液を厚み80μmのフッ素樹脂フィルムに塗工装置を用いて塗布し、70℃、10分の熱風乾燥によって、前記フッ素樹脂フィルム上に厚みが25μmの回路用接続用のフィルム状接着材を得た。
実施例9 回路接続体の作製
上で得た片面がフッ素樹脂フィルム上に覆われた回路接続用のフィルム状接着材(厚み25μm)を用いて、ライン幅50μm、ピッチ100μm、厚み18μmの銅回路を500本有するフレキシブル回路板(FPC)と、0.2μmの酸化インジウム(ITO)の薄層を形成したガラス(厚み1.1mm、表面抵抗20Ω)とを、180℃、4MPaで20秒間加熱加圧して幅2mmにわたり接続した。
このとき、あらかじめITOガラス上に、フィルム状接着材の接着面を70℃、0.5MPaで5秒間加熱加圧して仮接続した後、フッ素樹脂フィルムを剥離し、もう一方の被着体であるFPCと接続して接続体とした。
得られた接続体の隣接回路間の抵抗値を測定したところ、隣接回路間の抵抗150点の平均は2.7Ωであり、良好な接続特性を示した。
また、この接続体の接着強度をJIS−Z0237に準じて90度剥離法で測定しところ、接着強度は800N/mで、十分な接着強度を示した。なお、接着強度の測定装置は東洋ボールドウィン社製テンシロンUTM−4(剥離速度50mm/分、25℃)を使用した。
産業上の利用可能性
本発明のブロック共重合体の製造法によれば、二つの異なる原料モノマ(A,B)を用いて分子種A及び分子種Bがそれぞれ鎖状に塊となって連なるブロック共重合体が容易に得られる。また、二つの異なる原料モノマ(A,B)の構造は極端に異なるものであってもよい。また、共重合体に取り込まれる二つの分子種A及び分子種Bは、モノマの仕込量(モル)を反映するので、生成物(ブロック共重合体)を管理しやすい。さらに、ポリマ(ブロック共重合体)の構造設計も容易で、所望のブロック共重合体を有効に製造することができる。
本発明で得られるブロック共重合体は、新規なブロック共重合体である。また、低弾性で高強度、低応力、高接着性、耐湿性、耐熱性、フィルム形成能、更には他の成分との相溶性に優れる。そのため、半導体パッケージ等の電子材料向け接着材料や、相溶化剤、可とう化剤、あるいは非イオン系高分子界面活性剤等の分野で広く利用でき、その工業的価値は大きい。
本発明の回路接続用接着材は、半導体パッケージ等の電気・電子部品の回路接続に用いられ、良好な接続特性及び接着強度を示す。
【図面の簡単な説明】
第1図は、実施例1で得られた重合体及び比較例で得られた重合体のGPCクロマトグラムである。
第2図は、実施例1で得られた重合体のH−NMRスペクトルである。Technical field
The present invention relates to a method for producing a homogeneous block copolymer using a metathesis polymerization reaction, a block copolymer obtained by the production method, and uses of this block copolymer. The block copolymer obtained by the present invention is useful for adhesives for circuit connection used for electric / electronic parts such as semiconductor packages and other applications.
Background art
Using a two-component metathesis polymerization catalyst (tungsten or molybdenum chloride and its activator), two types of metathesis polymerizable monomers having a carbon-carbon double bond are added alternately to synthesize a block copolymer. It is known to do so (for example, JP-A-52-51500).
In addition, an example of synthesizing a block copolymer of metathesis polymerizable monomers having similar structures using a metal carbene complex of a metathesis polymerization catalyst is known (Macromolecules 28, 4709, 1995, Macromolecules). 30, 3137, 1997, Journal of the American Chemical Society 118, 784, 1996).
In the field of electronics, the characteristics of materials used for parts (semiconductor packaging materials, optical materials, etc.) are required to be higher every day along with recent technological advances in information communication, multimedia, personal computers, etc. Yes. The items of required characteristics are, for example, adhesives for electronic materials, low-temperature adhesion, short-time adhesion, moisture resistance, embedding, film forming ability, etc. These characteristics must satisfy high levels at the same time. I must.
In addition, each block of the block copolymer (the monomer of the block source) does not mix with each other (a different property), the block copolymer with two molecular chains forms a microphase separation structure and exhibits unique properties. It is known to show. As an example, a styrene-butadiene-styrene block copolymer (SBS resin) forms a microphase-separated structure consisting of rigid molecular chains derived from polystyrene (hard segments) and flexible molecular chains derived from polybutadiene (soft segments). Block copolymer. This SBS resin is one of the thermoplastic resins in which the hard segment acts as a crosslinking point at normal temperature and the soft segment acts as a rubber component (edited by Polymer Society, Applied Data Handbook, Bafukan, 1986, p. 299). -307).
An example of a polyethylene-polyethylene glycol block copolymer is a nonionic polymer surfactant having a nonpolar molecular chain and a polar molecular chain, which is used as an emulsifier or an antifoaming agent. (See Sigma-Aldrich website and CAS registry number: 97952-2-5).
The method disclosed in Japanese Patent Laid-Open No. 52-51500 has problems in handling such as the instability of the catalyst after mixing the two components with respect to air and moisture and the need for a dry nitrogen atmosphere. There are also restrictions on the selection range of functional groups and solvents. In addition, a raw material monomer (or solvent) having a functional group having a high proton releasing ability or a formyl group, a ketone group or an ester group induces a termination reaction and becomes a catalyst poison, so it cannot be used in this reaction system (edited by the Polymer Society). “Polymer synthesis and reaction (1)”, page 393 (Kyoritsu Shuppan, 1990)).
In addition, in the synthesis of block copolymers using metal carbene complexes, synthesis examples using two types of monomers having similar structures are known, but block copolymers using two types of monomers having greatly different structures are known. The manufacturing method is still unknown.
If a block copolymer is obtained from two kinds of metathesis polymerizable monomers having greatly different structures and / or polarities from each other, the block copolymer will have the ability to form a microphase-separated structure, and a polar group It can be expected that the polymer region consisting of the molecular chains possessed will promote the adhesion with the metal. In addition, a polymer region composed of a nonpolar molecular chain such as a polyalkylene chain can be expected to act as an elastomer, lower the elasticity of the polymer itself, and contribute to strengthening the adhesive strength.
Furthermore, it can be expected that various physical properties such as low water absorption, low dielectric constant, low elasticity and transparency of the block copolymer can be further improved by changing the types of the two raw material monomers. Furthermore, it is expected that the physical properties can be finely controlled by changing the amount of raw material monomer charged.
Disclosure of the invention
An object of the present invention is to provide a production method capable of easily synthesizing a homogeneous block copolymer even when two types of metathesis polymerizable monomers having greatly different structures and / or polarities are used as raw materials. An object of the present invention is to use the block copolymer obtained thereby as an adhesive for circuit connection of electrical / electronic components such as semiconductor packages.
When the present inventors copolymerize a norbornene derivative, which is a raw material for synthesis, with a cycloalkene using a stable and highly active ruthenium carbene complex catalyst, first, the cycloalkene and the necessary ruthenium carbene complex catalyst. It was found that when the whole amount was reacted and then the norbornene derivative was added and reacted, the desired homogeneous block copolymer could be stably obtained. With this as the beginning, the following invention was completed.
In the present invention, when a metathesis-polymerizable unsaturated monocyclic compound (A) and a metathesis-polymerizable unsaturated polycyclic compound (B) are subjected to a metathesis polymerization reaction using a metal carbene complex catalyst (C), In the block copolymer production method, the unsaturated monocyclic compound (A) and the necessary metal carbene complex catalyst (C) are mixed and reacted, and then the unsaturated polycyclic compound (B) is added and reacted. is there.
At this time, after the above reaction, a polymerization terminator is further added to stop the polymerization reaction, and the catalytic active site derived from the catalyst (C) bonded to one end of the polymer is removed, and the central metal of the catalyst (C) is removed. It is preferable to remove a coordinated halogen atom or the like.
The present invention also relates to a block copolymer produced by the above production method.
One type of block copolymer to be produced is a molecular chain in which one of the blocks of the copolymer is a chain of molecular species (A) having an unsubstituted or substituted methylene group in the main chain as a main chain. (MA; -AAA ... AAA-; block A), and the other block is a molecular chain (nB; -BBB ... BBB-) in which molecular species (B) having a cyclo ring structure in the main chain are linked in the form of n chains. A block copolymer comprising a block B) and having a residue other than the catalytically active site derived from the metal carbene complex catalyst (C) bonded to one end of the copolymer molecule.
Another type of block copolymer produced is a copolymer in which a catalytic active site derived from the metal carbene complex catalyst (C) is further bonded to the other end of the copolymer molecule.
In the production method of the present invention, when a polymerization reaction terminator capable of stopping the polymerization reaction and removing the catalyst active site of the catalyst (C) is used, the former type of block copolymer is used. give.
In the above production method, before adding the reaction terminator or when no reaction terminator is added, or when the reaction is terminated, the polymerization reaction is terminated but the catalyst active site derived from the catalyst (C) bonded to one end of the polymer cannot be removed. Is used to give the latter type of copolymer.
The degree of dispersion of the molecular weight distribution of the block copolymer is usually from 1.0 to 2.5, preferably from 1.0 to 2.0. Here, the degree of dispersion of the molecular weight distribution is a value calculated by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn).
In addition, for any of the above block copolymers, the molecular species (A) in which one block of the block copolymer has a methylene group substituted with an unsubstituted or nonpolar group in the main chain is m. It consists of nonpolar and flexible molecular chains (mA) connected in a single chain form, and the other block contains n molecular species (B) containing a cyclo ring structure in the main chain and having a polar substituent on the cyclo ring. It is a block copolymer composed of a chain of polar and rigid molecular chains (nB).
In addition, the present invention relates to a nonpolar and flexible molecular chain (mA) in which a molecular species (A) having a methylene group substituted with an unsubstituted or nonpolar group in the main chain is linked in a chain, and a cycloalkane derivative. , A cycloalkene derivative, an oxacycloalkane derivative, an oxacycloalkene derivative, a thiacycloalkane derivative, or a thiacycloalkene derivative having a cyclo ring structure in the main chain and having a polar substituent on the cyclo ring ( B) is also a block copolymer comprising polar and rigid molecular chains (nB) connected in an n-chain form.
Furthermore, this invention relates also to the adhesive agent for circuit connection containing the said block copolymer.
BEST MODE FOR CARRYING OUT THE INVENTION
First, the manufacturing method of a block copolymer is demonstrated. The production method usually comprises the following steps (i) and (ii).
Step (i): An unsaturated monocyclic compound capable of metathesis polymerization (A; monomer A; also referred to as molecular species A) and the total amount of metal carbene complex catalyst (C; also referred to as Catalyst) are added and mixed. Ring-opening metathesis polymerization. A molecular chain having a catalytic active site (Cata) derived from a metal carbene complex catalyst at the end (namely, Cata-AAA ... AAA-lyst) is generated. In addition, Cat means the site | part which contains a metal in the catalytic active site derived from a metal carbene complex catalyst, and lyst means the residue.
Step (ii): Subsequently, an unsaturated polycyclic compound capable of metathesis polymerization (B; monomer B; also referred to as molecular species B) is added to the reaction system and mixed. A diblock having a BBB chain extending from the end of the catalytic active site (Cata) of the molecular chain (Cata-AAA ... AAA) in order to incorporate the monomer B and having a catalytic active site (Cata) at the end. A copolymer (Cata-BBB ... BBB-AAA ... AAA-lyst) is produced.
Even if the monomer B and the total amount of the catalyst (C) are added and mixed and reacted, and then the monomer A is added and reacted, a homogeneous diblock copolymer is not produced. Even if a diblock copolymer represented by Cata-AAA ... AAA-BBB ... BBB-lyst is partially formed, the yield or yield is low.
The reason why such a diblock copolymer (Cata-BBB ... BBB-AAA ... AAA-lyst) can be synthesized in a high yield by the production method of the present invention is that the polymerization initiation reaction of monomer A promoted by catalyst (C) The rate is greater than the polymerization elongation reaction rate, so it is assumed that the majority of the product of step (i) is Cata-AAA ... AAA-lyst and does not remain as a single catalyst (C). .
On the other hand, the polymerization elongation reaction rate of the monomer B promoted by the catalyst (C) is larger than the polymerization initiation reaction rate. Therefore, in the reverse order, that is, when the total amount of the monomer B and the catalyst (C) is first added, In i), Cata-BBB... BBB-lyst is produced while leaving the unreacted catalyst (C). This remaining catalyst (C) becomes a reaction catalyst in the next step (ii) to produce Cata-AAA ... AAA-lyst, and a diblock copolymer (Cata-AAA ... AAA-BBB ... BBB-lyst) The yield is reduced and the product is believed to be a heterogeneous polymer.
If the monomer A is further added to the reaction system following the step (ii), the monomer A is sequentially formed from the catalytic active site of the diblock copolymer (Cata-BBB ... BBB-AAA ... AAA-lyst). And a triblock copolymer (Cata-AAA ... AAA-BBB ... BBB-AAA ... AAA-lyst) can be produced.
Further, following the step (ii), preferably, a step (step (iii)) of adding a reaction terminator to stop the metathesis polymerization reaction is added.
As the reaction terminator, the one that stops the metathesis polymerization reaction and also removes the catalytic active site derived from the catalyst (C) bonded to one end of the polymer, for example, has a double bond at the molecular end and has an electron withdrawing at the adjacent position. Examples thereof include vinyl olefin compounds such as vinyl acetate, ethyl vinyl ether, phenyl vinyl sulfide and N-vinyl pyrrolidone having a functional group, coordination compounds having a large electron donating ability such as 4-vinyl pyridine, and exomethylene compounds. Of these, vinyl acetate and ethyl vinyl ether are preferably used. Examples of those that stop the metathesis polymerization reaction but do not remove the catalytically active site derived from the catalyst (C) bonded to one end of the polymer include imidazole, 2,2′-bipyridine, and 4-methylpyridine.
Below, the monomer A, monomer B, and catalyst (C) used for this invention are demonstrated in order.
Examples of the unsaturated monocyclic compound (monomer A) used in the present invention include compounds capable of ring-opening metathesis polymerization and giving a polymer having no ring structure after the ring-opening polymerization. Preferably, the substituted or unsubstituted cycloalkene derivative which has a carbon-carbon double bond in a molecule | numerator is mentioned.
The element constituting the cyclo ring of the cycloalkene derivative is usually 3 to 14 carbon atoms, preferably 4 to 9 carbon atoms, and some of the carbon atoms are replaced by silicon atoms or boron atoms. Also good. Further, instead of some carbon atoms constituting the cyclo ring, an oxygen atom, a sulfur atom, a nitrogen atom, or a phosphorus atom may be used. In this case, the molecular chain mA (block A) exhibits polarity.
Substituent Y when there is a substituent on the cyclo ring 2 Examples of the alkyl group include an alkyl group having 1 to 20 carbon atoms and a halogen atom, and an alkyl group having 1 to 20 carbon atoms is preferable.
In addition to the above substituents, carbonyl group, cyano group, isocyano group, nitro group, siloxy group, alkoxycarbonyl group having 2 to 20 carbon atoms, alkylcarbonyloxy group having 2 to 20 carbon atoms, amino group, amide group , Formyl group, hydroxyl group, hydroxyalkyl group having 1 to 20 carbon atoms, alkoxyalkyl group having 2 to 20 carbon atoms, acyloxyalkyl group having 3 to 20 carbon atoms, cyanoalkyl group having 2 to 20 carbon atoms , An alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, an alkylsulfinyl group having 1 to 20 carbon atoms, an alkylsulfonyl group having 1 to 20 carbon atoms, and an alkyl group having 1 to 20 carbon atoms Examples thereof include an alkylseleno group, an alkylseleninyl group having 6 to 20 carbon atoms, and an alkylselenonyl group having 1 to 20 carbon atoms. In this case, the molecular chain mA (block A) exhibits polarity.
Specific examples of the cycloalkene derivative used in the present invention include, for example, cyclobutene, cyclopentene, cyclooctene, cyclododecene, 5-methoxy-1-cyclooctene, 5-bromo-1-cyclooctene, 5-isopropoxy- Preferred examples include cycloolefins such as 1-cyclooctene, 5-formyl-1-cyclooctene, ethylcyclooct-1-ene-5-carboxylate, and trimethylsilyl = cyclooct-1-ene-5-carboxylate. Is used cyclopentene and / or cyclooctene.
In addition, unsaturated monocyclic compounds having two or more double bonds can also be used. Examples of such unsaturated monocyclic compounds include 1,5-cyclooctadiene, 1,3,5,7-cyclooctatetraene, 1,5,7-cyclododecatriene, and the like.
Examples of the unsaturated polycyclic compound (B) used in the present invention include compounds that are capable of metathesis polymerization and give a polymer having a ring structure in the main chain after ring-opening polymerization. One preferable example of such a compound is a substituted or unsubstituted norbornene derivative, and examples thereof include those represented by the following formula (III).
Figure 0004239589
In formula (III), m represents an integer of 0 to 3, preferably 0 to 2, and more preferably 0 or 1.
R 5 ~ R 8 Each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, a halogen atom, a carbonyl group, a cyano group, or isocyano. Group, nitro group, siloxy group, alkoxycarbonyl group having 2 to 20 carbon atoms, alkylcarbonyloxy group having 2 to 20 carbon atoms, amino group, amide group, formyl group, hydroxyl group, hydroxy having 1 to 20 carbon atoms An alkyl group, an alkoxyalkyl group having 2 to 20 carbon atoms, an acyloxyalkyl group having 3 to 20 carbon atoms, a cyanoalkyl group having 2 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and the number of carbon atoms An alkylthio group having 1 to 20 carbon atoms, an alkylsulfinyl group having 1 to 20 carbon atoms, an alkylsulfonyl group having 1 to 20 carbon atoms, and a carbon atom 20 alkylseleno group, selected from alkyl seleno alkylsulfonyl group alkyl Selene Nini Le group and having 1 to 20 carbon atoms having 1 to 20 carbon atoms, at least one is a hydrogen atom. Among them, hydrogen atom, alkyl group having 1 to 10 carbon atoms, cycloalkyl group having 3 to 12 carbon atoms, aryl group having 6 to 12 carbon atoms, halogen atom, carbonyl group, cyano group, nitro group, siloxy Group, an alkoxycarbonyl group having 2 to 10 carbon atoms, an amide group, a formyl group, and a hydroxyl group, preferably selected from a hydrogen atom, a carbonyl group, a siloxy group, an alkoxycarbonyl group having 2 to 10 carbon atoms, and an amide group. More preferably, it is selected.
R 5 ~ R 8 Any two of these groups are bonded together to form a —CO—O—CO— group (anhydride), a —CO—O— group (lactone), or —CO—NR. 9 -CO- group (imide) and -CO-NR 9 -It may be a group selected from a group (lactam). Where R 9 Is selected from a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 20 carbon atoms. Among them, -CO-O-CO- group (acid anhydride) or -CO-NR 9 -CO- group (imide) is preferred. 9 Is preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms.
X 5 And X 6 Are respectively an oxygen atom, a sulfur atom and C (R 10 ) 2 Chosen independently. 2 R 10 May be the same or different and are each selected from a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and an aryl group having 6 to 20 carbon atoms. . 2 R 10 May combine to form a 3- to 8-membered ring structure, or may form a spiro ring. R 10 In the case other than a hydrogen atom or a halogen atom, it may be substituted with any of an alkyl group having 1 to 3 carbon atoms, a halogen atom, a cyano group, a carboxyl group, an amino group, and an amide group. Among them, oxygen atom or C (R 10 ) 2 Is preferred, R 10 Is preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a cycloalkyl group having 3 to 6 carbon atoms, more preferably a hydrogen atom or a methyl group. X 5 And X 6 Are preferably the same.
Specific examples of the compound represented by the formula (III) include, for example, norbornene, methylnorbornene, dimethylnorbornene, ethylnorbornene, ethylidenenorbornene, butylnorbornene, 5-acetyl-2-norbornene, N-hydroxy-5-norbornene-2, 3-dicarboximide, 5-norbornene-2-carbonitrile, 5-norbornene-2-carbaldehyde, 5-norbornene-2,3-dicarboxylic acid monomethyl ester, 5-norbornene-2,3-dicarboxylic acid dimethyl ester, 5-norbornene-2,3-dicarboxylic acid diethyl ester, 5-norbornene-2,3-dicarboxylic acid di-n-butyl ester, 5-norbornene-2,3-dicarboxylic acid dicyclohexyl ester, 5-norbornene-2,3 − Carboxylic acid dibenzyl ester, 5-norbornene-2,3-dicarboxylic anhydride, 5-norbornene-2,3-dicarboxylic acid, 5-norbornene-2-methanol, 5-norbornene-2,3-dimethanol, 2 , 3-bis (methoxymethyl) -5-norbornene, N-methyl-5-norbornene-2,3-carboximide, 6-triethoxysilyl-2-norbornene, 5-norbornen-2-ol, etc. , Dicyclopentadiene (cyclopentadiene dimer), dihydrodicyclopentadiene, methyldicyclopentadiene, dimethyldicyclopentadiene and other tricyclic norbornene, tetracyclododecene, methyltetracyclododecene, dimethylcyclotetradodecene Of tetracyclic norbornene and tricyclopenta Compounds having two or more norbornene groups such as norbornene having five or more rings such as ene (trimer of cyclopentadiene) and tetracyclopentadiene (tetramer of cyclopentadiene), tetracyclododecadiene, and symmetrical tricyclopentadiene Etc.
Among them, 5-norbornene-2,3-dicarboxylic acid monomethyl ester, 5-norbornene-2,3-dicarboxylic acid dimethyl ester, 5-norbornene-2,3-dicarboxylic acid which have a polar group and are not highly reactive Diethyl ester, 5-norbornene-2,3-dicarboxylic acid dicyclohexyl ester and 5-norbornene-2,3-dicarboxylic acid dibenzyl ester are preferred, 5-norbornene-2,3-dicarboxylic acid dimethyl ester, 5-norbornene-2 , 3-dicarboxylic acid diethyl ester and 5-norbornene-2,3-dicarboxylic acid dicyclohexyl ester are more preferred.
In addition, 7-oxabicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid anhydride, 7-oxabicyclo [2.2.1] hept-5-ene-2,3 -Dicarboxylic acid, 2-carboxy-3-methoxycarbonyl-7-oxabicyclo [2.2.1] hept-5-ene, 2,3-dimethoxycarbonyl-7-oxabicyclo [2.2.1] hepta- 5-ene, 2,3-diethoxycarbonyl-7-oxabicyclo [2.2.1] hept-5-ene, 2,3-dihexyloxycarbonyl-7-oxabicyclo [2.2.1] hepta 5-ene, 2,3-dibenzyloxycarbonyl-7-oxabicyclo [2.2.1] hept-5-ene, 2,3-bis (hydroxymethyl) -7-oxabicyclo [2.2.1 Hept-5-ene, , 3-Bis (methoxymethyl) -7-oxabicyclo [2.2.1] hept-5-ene, N-methyl-7-oxabicyclo [2.2.1] hept-5-ene-2,3 -Carboximide, 7-thiabicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic anhydride, 2-carboxy-3-methoxycarbonyl-7-thiabicyclo [2.2.1] hepta 5-ene, 2,3-dimethoxycarbonyl-7-thiasabicyclo [2.2.1] hept-5-ene, 2,3-bis (hydroxymethyl) -7-thiabicyclo [2.2.1] hepta-5 -Ene, etc. may also be exemplified as specific compounds of formula (III).
2,3-bis (methoxycarbonyl) bicyclo [2.2.1] hepta-2,5-diene, 2,3-bis (methoxycarbonyl) -7-oxabicyclo [2.2.1] hepta- Compounds containing two (or more) double bonds such as 2,5-diene and 2,3-bis (methoxycarbonyl) -7-thiabicyclo [2.2.1] hepta-2,5-diene are also used. .
When the compound represented by the formula (III) is used as a monomer, a carbon-carbon double bond represented by the following formula (IIIa) is present in the molecular chain opened by the metathesis polymerization reaction.
Figure 0004239589
Where m, R 5 ~ R 8 , X 5 , X 6 Is as defined in formula (III).
What is necessary is just to determine the usage-amount of each of an unsaturated monocyclic compound (A) and an unsaturated polycyclic compound (B) according to the target block copolymer. At this time, it is considered that a block copolymer having a constitutional ratio (A / B) substantially equal to the molar ratio of the unsaturated monocyclic compound (A) and the unsaturated polycyclic compound (B) used is obtained.
The metal carbene complex catalyst (C) used in the present invention may be any catalyst that catalyzes a metathesis polymerization reaction using an unsaturated monocyclic compound (A) and an unsaturated polycyclic compound (B) as raw materials. Preferable examples include compounds represented by the following formula (I) or formula (II). These compounds are stable against oxygen and moisture, and are excellent in copolymerization of two monomers having different properties. Therefore, the polymerization reaction can be performed not only in an inert gas atmosphere but also in the air. The metal carbene complex catalyst (C) may be used alone or in combination of two or more.
Figure 0004239589
In the formulas (I) and (II), M is ruthenium, osmium or iron, preferably ruthenium.
X 1 ~ X 4 Is an anionic ligand (atom or atomic group) that can be coordinated to the central metal M and has a negative charge on the coordination atom, such as a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom Halogen atom such as CF 3 CO 2 -, CH 3 CO 2 -, CF 2 HCO 2 -, CFH 2 CO 2 -, (CH 3 ) 3 CO-, (CF 3 ) 2 (CH 3 ) CO-, (CF 3 ) (CH 3 ) 2 Examples thereof include CO-, a linear or branched alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted phenoxy group, and a trifluoromethanesulfonate group. Among them, a halogen atom is preferable, and a chlorine atom is more preferable. X 1 And X 2 And X 3 And X 4 Is more preferably a halogen atom (such as a chlorine atom).
L 1 ~ L 4 Represents a neutral electron donating group capable of coordinating to the central metal M, for example, PR 11 R 12 R 13 (Where R 11 ~ R 13 Are each independently selected from a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a linear or branched alkyl group having 1 to 10 carbon atoms, and a cycloalkyl group having 3 to 10 carbon atoms) And imidazole compounds such as substituted or unsubstituted pyridine and 1,3-disubstituted imidazole. Among them, phosphines such as tricyclohexylphosphine, tricyclopentylphosphine, triisopropylphosphine, 1,3-dimesitylimidazol-2-ylidene, 4,5-dihydro-1,3-dimesitylimidazol-2-ylidene, etc. Imidazole compounds are preferred, and tricyclohexylphosphine is more preferred.
R 1 ~ R 4 Are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, carbon C1-C20 carboxylate group, C1-C20 alkoxy group, C2-C20 alkenyloxy group, C6-C20 aryloxy group, C2-C20 alkoxy Carbonyl group, alkylthio group having 1 to 20 carbon atoms, alkylsulfonyl group having 1 to 20 carbon atoms, alkylsulfinyl group having 1 to 20 carbon atoms, alkylseleno group having 1 to 20 carbon atoms, and 1 carbon atom -20 alkyl seleninyl groups or alkyl selenonyl groups having 1 to 20 carbon atoms, each of which is an alkyl group having 1 to 5 carbon atoms, a halogen atom The aryl group may be substituted with an alkoxy group having 1 to 5 carbon atoms or an aryl group having 6 to 20 carbon atoms, and the aryl group is a halogen atom, an alkyl group having 1 to 5 carbon atoms, or 1 to 1 carbon atoms. It may be substituted with 5 alkoxy groups.
Specific examples of the compound represented by the above formula (I) or formula (II) include, for example, compounds represented by the following formulas (V) to (XIV), among which formulas (V), (VI), ( A compound represented by (VII) or (VIII) is preferably used.
Figure 0004239589
Figure 0004239589
The amount of the metal carbene complex catalyst (C) used is determined in consideration of the molecular weight of the desired block copolymer. The larger the amount used, the smaller the molecular weight of the block copolymer. Usually, 0.001 to 20 parts by weight, preferably 0.001 to 10 parts by weight, and more preferably 0 to 100 parts by weight of the total amount of unsaturated monocyclic compound (A) and unsaturated polycyclic compound (B). .05 to 10 parts by weight.
In the polymerization reaction in the present invention, first, the unsaturated monocyclic compound (A) and the necessary metal carbene complex catalyst (C) are all mixed and reacted, and then the unsaturated polycyclic compound (B) is added to the reaction system. General polymerization reaction conditions can be used except for adding and reacting.
The reaction time of the polymerization reaction is not particularly limited as long as the block copolymer is obtained. In the step (i), the reaction time is 10 minutes to 6 hours, preferably 0.5 to 2 hours. In the step (ii), the reaction time is further 1 to 6 hours, preferably after the reaction (i). And react for 2 to 6 hours.
The reaction temperature of the polymerization reaction is not particularly limited as long as the block copolymer is obtained, and is preferably −20 to 200 ° C., more preferably 0 to 100 ° C. from the viewpoint of reactivity.
In the polymerization reaction, it is preferable to use a solvent. The solvent used in the present invention is not particularly limited as long as it can dissolve the unsaturated monocyclic compound (A), the unsaturated polycyclic compound (B), and the catalyst (C). Examples of such a solvent include ketone solvents such as acetone, 2-butanone, 2-pentanone, 3-pentanone, 4-methyl-3-pentanone, cyclopentanone, cyclohexanone, cycloheptanone, and cyclooctanone. Examples include ether solvents such as diethyl ether, methyl tert-butyl ether, tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether.
In the case of using a solvent, the amount used thereof is preferably 60 to 95% by weight, more preferably based on the total reaction system (total amount of monomers A and B, catalyst and solvent) from the viewpoint of easy polymerization reaction. 70 to 90% by weight, particularly preferably 80 to 90% by weight. Note that the decomposition reaction proceeds little by little when the catalyst (C) is dissolved in a solvent for a long time. Therefore, after the unsaturated monocyclic compound (A) is dissolved in the solvent, the (powdered) catalyst (C) is added. It is preferable to use a catalyst solution which is added or dissolved in the same solvent (small amount) as the solvent used for dissolving the monocyclic compound (A).
A carbon-carbon double bond still exists in the copolymer synthesized through the steps (i) and (ii) and further the step (iii). In order to avoid the change over time due to this double bond (degradation due to oxidation, cross-linking reaction with other molecules, etc.), the resulting copolymer is further hydrogenated, and the unsaturated bond remaining in the polymer molecule. Is preferably saturated.
The hydrogenation reaction can be performed using a known method such as a catalytic reduction method using a known metal catalyst or a hydrazine reduction method.
The block copolymer obtained by the above-mentioned production method is a non-polar molecule in which the molecular species (A) having a methylene group substituted with an unsubstituted or non-polar group in the main chain as a main chain is selected by selecting a raw material monomer. And a flexible molecular chain (mA, ie, -AAA ... AAA-) and a cycloalkane derivative, a cycloalkene derivative, an oxacycloalkane derivative, an oxacycloalkene derivative, a thiacycloalkene derivative or a thiacycloalkene derivative. The molecular chain (B) having a ring structure in the main chain and having a polar substituent on the cyclo ring includes a polar and rigid molecular chain (nB, ie, -BBB... BBB-) connected in the form of n chains. A block copolymer having a homogeneity with a degree of dispersion of the molecular weight distribution of 1.0 to 2.5 is obtained. These include modified block copolymers, that is, block copolymers (triblock copolymers) such as molecular chain mA-molecular chain nB-molecular chain mA.
The repeating number m of the molecular species (A) and the repeating number n of the molecular species (B) of such a block copolymer (diblock copolymer) are basically determined from the raw materials (monomer A, monomer B and It depends on the amount of catalyst C) used. The repetition numbers m and n are usually 5 to 5000, preferably 10 to 1000, respectively. If it is less than 5, it becomes difficult to exhibit the characteristics of the molecular chain mA and the molecular chain nB, that is, the flexibility (soft segment) of the molecular chain mA and the rigidity (hard segment) of the molecular chain nB. It also becomes difficult to exhibit the polarity of the molecular chain mA and the nonpolarity of the molecular chain nB. On the other hand, if it exceeds 5000, the synthesis reaction takes time. The ratio of the number of repetitions m to n (m / n) is a balanced number, and is usually 95/5 to 5/95, preferably 90/10 to 10/90.
For the polarities of the molecular chain mA and the molecular chain nB, the raw material monomer can be selected using the organic conceptual diagram as a guideline. An organic conceptual diagram is an effective technique for predicting various physicochemical properties from the chemical structure of an organic compound (see Yoshio Koda, Organic conceptual diagram-basics and applications, Sankyo Publishing (1984)). In other words, an organic conceptual diagram is the orthogonality in which the properties of a compound are divided into “organic values representing covalent bonds” and “inorganic values representing ionic bonds”, and all organic compounds are named organic and inorganic axes. Each point on the coordinates is shown. Based on this, the organic value is based on the number of carbon atoms that represent the methylene group in units of the methylene group in the molecule. The numerical value is a value determined as 20 on the basis of an average value of 20 ° C. of the boiling point increase due to the addition of one carbon in the vicinity of 5 to 10 carbon atoms of the linear compound. On the other hand, the inorganic value is determined based on the hydroxyl group based on the magnitude of the influence of various substituents on the boiling point, and the difference in boiling point between the boiling point curve of a linear alcohol and the boiling point curve of a linear paraffin is 5 carbon atoms. Since it is about 100 ° C. in the vicinity, the influence of one hydroxyl group is set to 100 as a numerical value. Based on this, the influence of other functional groups is also determined as a value proportional to this. The inorganic value and the organic value are determined so as to correspond one-to-one on the graph. The inorganic value and organic value of the organic compound are calculated from these values. An organic compound having a large inorganic value has high polarity, and an organic compound having a large organic value has low polarity.
When using an organic conceptual diagram as a guideline, the ratio of inorganic to organic (inorganic / organic) of the molecular species (A) in the present invention is usually 0 to 0.3, preferably 0 to 0.00. 25. When the molecular species (A) is methylene, the ratio of inorganic to organic is 0, which means that the polymethylene chain of the molecular chain mA has nonpolar and flexible properties.
In the molecular chain (nB), polar substituents on the cyclo ring can be selected using “substituent constant based on polar group effect” σI separated from Hammett's substituent constant σ as a guide (M Charton, Prog. Phys. Org. Chem., 13, 119-251 (1981)). σI takes a hydrogen atom as 0, and becomes larger as the polarity of the substituent is higher. The σI of the polar substituent on the cyclo ring in the molecular chain (nB) is usually +0.05 to +0.80, preferably +0.10 to +0.80.
In addition, the ratio of inorganic to organic on the organic conceptual diagram of the molecular species (B) is usually 0.4 to 10.0, preferably 0.45 to 7.5.
As an application of the obtained block copolymer, a curable compound and a curing agent are added to this, and further, if necessary, an appropriate amount of a base resin and other additives may be added to obtain an adhesive for circuit connection. it can. The adhesive can be in various forms depending on the application, for example, film, sheet, tape, liquid, or paste.
In addition, when preparing the adhesive for circuit connection, each compounding ratio is about 1 to about 100 parts by weight (when microencapsulated one is used) with respect to 100 parts by weight of the curable compound. In some cases, the amount of the block copolymer is about 5 to about 500 parts by weight.
i) Curable compound
The curable compound is a substance having a functional group that can be polymerized by a curing agent (described below), and may be a monomer or an oligomer. Specific examples include ion polymerizable epoxy compounds, radical polymerizable acrylate compounds and methacrylate compounds.
ii) curing agent
The curing agent is a compound that initiates polymerization of the curable compound described above. Usually, a curing agent that generates a polymerization active species by heating or irradiation with energy rays is used. Such curing agents include radical polymerization that generates radicals by heating ion-polymerizable monomers such as latent imidazole derivatives (microencapsulated) and sulfonium salts, organic peroxides, and azo compounds. There are sex monomers.
iii) Base resin
As the base resin, those having high film forming ability, excellent stress relaxation during curing, and having high adhesiveness can be used. Examples of such a resin include a phenoxy resin having a molecular weight of 10,000 or more and having a hydroxyl group in the molecule.
iv) Other additives
Conductive particles can be added and dispersed in order to absorb the height and variation of the circuit electrode and to positively impart anisotropic conductivity. In addition, for the purpose of improving connection reliability and the like, a coupling agent, a filler, an anti-aging agent, and the like can be added.
Example
Example 1 (A / B of charged monomer = 50/50 (molar ratio), solvent used: cyclohexanone)
Figure 0004239589
In a 100 ml glass three-necked flask, 0.791 g (7.13 mmol) of cyclooctene as monomer A was dissolved in 8 ml of cyclohexanone, heated to 60 ° C., and then a ruthenium carbene complex of the formula (V) (manufactured by STREM CHEMICAL) 39 .2 mg (0.048 mmol) was added and reacted at 60 ° C. for 1 hour with stirring with a mechanical stirrer (step (i)). During the reaction, a small amount of the reaction solution was extracted from the reaction system, and vinyl acetate was added thereto to stop the reaction, which was used as a sample for GPC measurement.
Thereafter, 1.50 g (7.13 mmol) of endo-5-norbornene-2,3-dimethyl ester (endo-DME, Lancaster) as monomer B was added, and the mixture was further reacted for 2 hours (step (ii)). ). During the reaction, a small amount of the reaction solution was withdrawn from the reaction system, and vinyl acetate was added to stop the reaction as a GPC measurement sample.
Thereafter, 0.55 ml (6.0 mmol) of vinyl acetate and 6 ml of cyclohexanone were added and reacted for 5 minutes (step (iii)), and the cooled reaction solution was poured into 200 ml of methanol to give a white precipitate (polymer). Got. The yield was 63%.
The obtained polymer was dissolved in tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd., HPLC), and the molecular weight was measured by GPC using tetrahydrofuran as an eluent. The number average molecular weight Mn in terms of standard polystyrene was 74,000, weight. The average molecular weight Mw was 143,000, and the degree of dispersion of the molecular weight distribution was 1.93. GPC measurement was performed using a GL-A150 column (Hitachi Chemical Gel Pack, exclusion limit 5 × 10). 5 ), Flow rate 1cm 3 / Min, at a column temperature of 40 ° C. The GPC chromatogram is shown in FIG.
In addition, the resulting polymer is a heavy chloroform solution, 1 1 H-NMR spectrum was measured. The results are shown in FIG.
Methylene hydrogen produced by ring opening of cyclooctene a As a result of calculating the molar ratio of each raw material component in the polymer from the ratio of the integral value of the methyl group and the integral value of methyl hydrogen of the methoxy group in the portion where endo-DME was opened, the molar ratio of cyclooctene / endo-DME is 52/48.
In addition, inorganic / organic property on the organic conceptual diagram of the cyclooctene ring-opening polymer chain in poly (cyclooctene) -block-poly (endo-5-norbornene-2,3-dicarboxylate dimethyl) of the obtained polymer The value is calculated to be 0.01, and the substituent constant σI based on the polar group effect of the methoxycarbonyl group on the cyclohexane ring is +0.32.
Example 2 (A / B of charged monomer = 20/80 (molar ratio))
Example 1 was used except that the amount of cyclooctene used was 0.319 g (2.85 mmol) and the amount of endo-5-norbornene-2,3-dimethyl ester was 2.41 g (11.4 mmol). A polymer was obtained. The yield was 82%, Mn was 52,000, Mw was 105,560, and the degree of dispersion of the molecular weight distribution was 2.03. Moreover, as a result of calculating each raw material component molar ratio like Example 1, the molar ratio of cyclooctene / endo-DME in a polymer was 18/82.
Example 3 (A / B of charged monomer = 80/20 (molar ratio))
Except that the amount of cyclooctene used was 1.257 g (11.4 mmol) and that of endo-5-norbornene-2,3-dimethyl ester was 0.60 g (2.85 mmol), the same procedure as in Example 1 was performed. A polymer was obtained. The yield was 86%, Mn in terms of standard polystyrene was 60,700, Mw was 105,618, and the degree of dispersion of the molecular weight distribution was 1.74. Moreover, as a result of calculating each raw material component molar ratio similarly to Example 1, the molar ratio of cyclooctene / endo-DME was 81/19.
Comparative Example 1
In a 100 ml glass three-necked flask, 1.50 g (7.13 mmol) of endo-5-norbornene-2,3-dimethyl ester (endo-DME, Lancaster) as monomer B was dissolved in 8 ml of cyclohexanone at 60 ° C. After heating, 39.2 mg (0.048 mmol) of a ruthenium carbene complex of the formula (V) (manufactured by STREM CHEMICAL) was added and reacted at 60 ° C. with stirring with a mechanical stirrer for 1 hour. Thereafter, 0.791 g (7.13 mmol) of cyclooctene as monomer A was added and reacted for another 2 hours, and then 0.55 ml (6.0 mmol) of vinyl acetate and 6 ml of cyclohexanone were added as reaction stoppers. The reaction solution was allowed to react for 1 minute and then allowed to cool, and then poured into 200 ml of methanol to obtain a white precipitate (polymer).
The GPC chromatogram of the polymer of Comparative Example 1 measured in the same manner as in the Examples is shown in FIG. Further, the molar ratio of cyclooctene / endo-DME in the polymer measured in the same manner as in Example 1 was 46/54.
Comparative Example 2
In a 100 ml glass three-necked flask, 0.791 g (7.13 mmol) of cyclooctene as monomer A was dissolved in 8 ml of cyclohexanone, heated to 60 ° C., and then a ruthenium carbene complex of the formula (V) (manufactured by STREM CHEMICAL) After adding 39.2 mg (0.048 mmol) and reacting at 60 ° C. with stirring with a mechanical stirrer for 1 hour, 0.55 ml (6.0 mmol) of vinyl acetate and 6 ml of cyclohexanone were added as reaction terminators. The reaction solution was allowed to react for 1 minute and then allowed to cool, and then poured into 200 ml of methanol to obtain a white precipitate (polymer from monomer A).
FIG. 1 shows a GPC chromatogram of the polymer of Comparative Example 2 measured in the same manner as in the Examples.
In Comparative Example 1, since two peaks are observed, it is understood that these are a mixture of two types of polymers (homopolymer or copolymer), and at least a homogeneous block copolymer has not been obtained. On the other hand, in Example 1, since it is one peak shifted to the higher molecular weight side than Comparative Example 2 (polymerization of monomer A only), the copolymer is not a mixture of monomer A and monomer B. It was confirmed that it was obtained. Moreover, when the polymer of Example 1 was made into a film and the glass transition temperature (Tg) was measured using a dynamic viscoelasticity measuring apparatus (manufactured by Rheometric Co., Ltd.), it was found to be at two points near -55 ° C and 108 ° C. Therefore, it was confirmed that the polymer of Example 1 was not a random copolymer but a block copolymer.
It was confirmed that the polymers of Examples 2 and 3 were also block copolymers from the GPC and Tg measurement results as in Example 1.
In Examples 1 to 3, a block copolymer having a raw material component molar ratio (copolymerization ratio) substantially equal to the charged molar ratio of the raw material monomer was obtained.
Example 4 (A / B of charged monomers = 50/50 (molar ratio), solvent used: tetrahydrofuran)
Tetrahydrofuran was used as the solvent used, the amount of cyclooctene used was 11 g (100 mmol), the amount of endo-5-norbornene-2,3-dimethyl ester was 21 g (100 mol), and the ruthenium carbene complex of formula (V) was used. The amount used was 0.27 g (0.33 mmol), and a polymer was obtained in the same manner as in Example 1. The yield was 90%, Mn in terms of standard polystyrene was 103,000, and the degree of dispersion of the molecular weight distribution was 1.91. Moreover, as a result of calculating each raw material component molar ratio like Example 1, the molar ratio of the cyclooctene / endo-DME in a polymer was 50:50. This was consistent with the charge ratio of both monomers.
Example 5 (A / B of charged monomers = 80/20 (molar ratio))
The ruthenium carbene of the formula (V) was the same as in Example 4 except that the amount of cyclooctene used was 70 g (640 mmol) and that of endo-5-norbornene-2,3-dimethyl ester was 34 g (160 mmol). The amount of complex used was 0.33 mmol), and a polymer was obtained. The yield was 85%, Mn in terms of standard polystyrene was 75,000, and the degree of dispersion of the molecular weight distribution was 1.6. Moreover, as a result of calculating each raw material component molar ratio similarly to Example 1, the molar ratio of cyclooctene / endo-DME in the polymer was 78:22.
Example 6 (A / B of charged monomer = 50/50 (molar ratio), using a large amount of catalyst)
A polymer was obtained in the same manner as in Example 4 except that the amount of the ruthenium carbene complex of the formula (V) was changed to 3.3 mmol which was 10 times the amount of Example 4. The yield was 90%, Mn in terms of standard polystyrene was 33,000, and the degree of dispersion of the molecular weight distribution was 1.9. Moreover, as a result of calculating each raw material component molar ratio like Example 1, the molar ratio of cyclooctene / endo-DME in a polymer was 53:47.
Example 7 (A / B of charged monomer = 80/20 (molar ratio), using a large amount of catalyst)
A polymer was obtained in the same manner as in Example 5 except that the amount of the ruthenium carbene complex was changed to 10 g (13 mmol). The yield was 88%, Mn in terms of standard polystyrene was 24,000, and the degree of dispersion of the molecular weight distribution was 1.9. Moreover, as a result of calculating each raw material component molar ratio similarly to Example 4, the molar ratio of cyclooctene / endo-DME in the polymer was 79:21.
Example 8 Preparation of film adhesive for circuit connection
20 g of PKHC (phenoxy resin, Union Carbide), 30 g of Epicoat YL-983U (Bisphenol F type liquid epoxy resin, Yuka Shell Epoxy) and the block copolymer prepared in Example 4 (number average molecular weight 103) 1,000, molecular weight distribution 1.91) 20 g was weighed and dissolved in a mixed solvent of toluene / ethyl acetate = 50/50 (weight ratio) to obtain a solution having a solid content of 40%. To this, 30 g of NovaCure HX-3941HP (latent curing agent, manufactured by Asahi Ciba) was added and mixed, and 1.5 g of an epoxy silane compound (A-187, manufactured by Nihon Unicar) of a silane coupling agent was added and mixed. Thereafter, conductive particles having an average particle size of 10 μm and a specific gravity of 2.0 (a nickel layer having a thickness of 0.2 μm is provided on the surface of particles having polystyrene as a core, and a thickness of 0.02 μm is provided outside the nickel layer. 3% by volume (based on the solid content) is mixed and dispersed, and this mixed solution is applied to a fluororesin film having a thickness of 80 μm using a coating apparatus, and hot air at 70 ° C. for 10 minutes. By drying, a film-like adhesive for circuit connection having a thickness of 25 μm was obtained on the fluororesin film.
Example 9 Fabrication of circuit connection body
A flexible circuit board having 500 copper circuits with a line width of 50 μm, a pitch of 100 μm, and a thickness of 18 μm using a film-like adhesive for circuit connection (thickness: 25 μm) with one side obtained above covered with a fluororesin film ( FPC) and glass (thickness 1.1 mm, surface resistance 20Ω) on which a thin layer of 0.2 μm indium oxide (ITO) was formed were heated and pressurized at 180 ° C. and 4 MPa for 20 seconds to be connected over a width of 2 mm.
At this time, the adhesive surface of the film adhesive is preliminarily connected to the ITO glass by heating and pressurizing at 70 ° C. and 0.5 MPa for 5 seconds, and then the fluororesin film is peeled off to form the other adherend. A connection body was formed by connecting to the FPC.
When the resistance value between adjacent circuits of the obtained connected body was measured, the average of 150 resistances between adjacent circuits was 2.7Ω, indicating good connection characteristics.
Moreover, when the adhesive strength of this connection body was measured by the 90 degree peeling method according to JIS-Z0237, the adhesive strength was 800 N / m, indicating a sufficient adhesive strength. The adhesive strength measuring device used was Tensilon UTM-4 (peeling speed 50 mm / min, 25 ° C.) manufactured by Toyo Baldwin.
Industrial applicability
According to the method for producing a block copolymer of the present invention, a block copolymer in which molecular species A and molecular species B are linked together in a chain form using two different raw material monomers (A, B) is easy. Is obtained. Moreover, the structure of two different raw material monomers (A, B) may be extremely different. Further, the two molecular species A and molecular species B incorporated into the copolymer reflect the charged amount (mole) of the monomer, so that the product (block copolymer) can be easily managed. Furthermore, the structural design of the polymer (block copolymer) is easy, and a desired block copolymer can be produced effectively.
The block copolymer obtained in the present invention is a novel block copolymer. In addition, it has low elasticity, high strength, low stress, high adhesiveness, moisture resistance, heat resistance, film forming ability, and compatibility with other components. Therefore, it can be widely used in the fields of adhesive materials for electronic materials such as semiconductor packages, compatibilizers, flexible agents, and nonionic polymer surfactants, and its industrial value is great.
The adhesive for circuit connection of the present invention is used for circuit connection of electrical / electronic components such as semiconductor packages and exhibits good connection characteristics and adhesive strength.
[Brief description of the drawings]
FIG. 1 is a GPC chromatogram of the polymer obtained in Example 1 and the polymer obtained in Comparative Example.
FIG. 2 shows the polymer obtained in Example 1. 1 It is a 1 H-NMR spectrum.

Claims (6)

メタセシス重合可能な不飽和単環化合物(A)と、メタセシス重合可能な不飽和多環化合物(B)とを、金属カルベン錯体触媒(C)を用いてメタセシス重合反応させる際、初めに、前記単環化合物(A)及び必要な金属カルベン錯体触媒(C)の全量を混ぜ反応させ、その後に、前記多環化合物(B)を加え反応させるブロック共重合体の製造法。  When the metathesis-polymerizable unsaturated monocyclic compound (A) and the metathesis-polymerizable unsaturated polycyclic compound (B) are subjected to a metathesis polymerization reaction using a metal carbene complex catalyst (C), first, A method for producing a block copolymer in which the total amount of a ring compound (A) and a necessary metal carbene complex catalyst (C) is mixed and reacted, and then the polycyclic compound (B) is added and reacted. 更に、反応停止剤として、分子末端に二重結合を有しその隣接位置に電子吸引性基を有する化合物、4−ビニルピリジン又はエキソメチレン化合物を加え、重合反応を停止させると共に、重合体の一端に結合した触媒(C)由来の触媒活性部位を外す工程を有する請求の範囲第1項のブロック共重合体の製造法。Furthermore, as a reaction terminator, a compound having a double bond at the molecular end and an electron-withdrawing group at the adjacent position, 4-vinylpyridine or an exomethylene compound is added to stop the polymerization reaction, and one end of the polymer. The method for producing a block copolymer according to claim 1, further comprising a step of removing the catalytic active site derived from the catalyst (C) bonded to the catalyst. 更に、水素添加反応によって残存する不飽和二重結合を飽和させる工程を有する請求の範囲第2項のブロック共重合体の製造法。  Furthermore, the manufacturing method of the block copolymer of Claim 2 which has the process of saturating the unsaturated double bond which remains by hydrogenation reaction. 不飽和単環化合物(A)が置換又は無置換のシクロアルケン化合物である請求の範囲第1項のブロック共重合体の製造法。  The method for producing a block copolymer according to claim 1, wherein the unsaturated monocyclic compound (A) is a substituted or unsubstituted cycloalkene compound. 不飽和多環化合物(B)が置換又は無置換のノルボルネン化合物である請求の範囲第1項のブロック共重合体の製造法。  The method for producing a block copolymer according to claim 1, wherein the unsaturated polycyclic compound (B) is a substituted or unsubstituted norbornene compound. 不飽和多環化合物(B)が環上に極性置換基を有するものである請求の範囲第1項〜第5項のいずれか一項のブロック共重合体の製造法。  The method for producing a block copolymer according to any one of claims 1 to 5, wherein the unsaturated polycyclic compound (B) has a polar substituent on the ring.
JP2002519536A 2000-08-11 2001-08-09 Block copolymer production method, block copolymer obtained and use thereof Expired - Fee Related JP4239589B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000244559 2000-08-11
JP2001102748 2001-04-02
PCT/JP2001/006845 WO2002014401A1 (en) 2000-08-11 2001-08-09 Process for the production of block copolymers, block copolymers produced by the process, and use of the copolymers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008281655A Division JP2009074093A (en) 2000-08-11 2008-10-31 Preparation method of block copolymer, block copolymer prepared thereby and application thereof

Publications (1)

Publication Number Publication Date
JP4239589B2 true JP4239589B2 (en) 2009-03-18

Family

ID=26597845

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2002519536A Expired - Fee Related JP4239589B2 (en) 2000-08-11 2001-08-09 Block copolymer production method, block copolymer obtained and use thereof
JP2008281655A Pending JP2009074093A (en) 2000-08-11 2008-10-31 Preparation method of block copolymer, block copolymer prepared thereby and application thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2008281655A Pending JP2009074093A (en) 2000-08-11 2008-10-31 Preparation method of block copolymer, block copolymer prepared thereby and application thereof

Country Status (5)

Country Link
JP (2) JP4239589B2 (en)
KR (1) KR100544525B1 (en)
CN (1) CN1237090C (en)
AU (1) AU2001278703A1 (en)
WO (1) WO2002014401A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363265A (en) * 2001-04-02 2002-12-18 Hitachi Chem Co Ltd New block copolymer, method for producing the same and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073664B (en) * 2022-07-04 2023-11-28 广东新华粤石化集团股份公司 Cycloolefin polymer film with optical anisotropy and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251500A (en) * 1975-10-22 1977-04-25 Japan Synthetic Rubber Co Ltd Process for preparing copolymers by ring opening
JPH05339327A (en) * 1992-02-22 1993-12-21 Hoechst Ag Cycloolefin block copolymer and its manufacture
JP2000504359A (en) * 1995-12-07 2000-04-11 アドバンスト ポリマー テクノロジーズ How to extend the pot life of olefin metathesis polymerization
JP2002121267A (en) * 2000-08-11 2002-04-23 Hitachi Chem Co Ltd Method for producing block copolymer
JP2002363265A (en) * 2001-04-02 2002-12-18 Hitachi Chem Co Ltd New block copolymer, method for producing the same and use thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3876482B2 (en) * 1997-06-06 2007-01-31 東洋製罐株式会社 Heat-sealable packaging container
JP3952102B2 (en) * 1998-03-31 2007-08-01 日本ゼオン株式会社 Norbornene polymer containing organic group

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251500A (en) * 1975-10-22 1977-04-25 Japan Synthetic Rubber Co Ltd Process for preparing copolymers by ring opening
JPH05339327A (en) * 1992-02-22 1993-12-21 Hoechst Ag Cycloolefin block copolymer and its manufacture
JP2000504359A (en) * 1995-12-07 2000-04-11 アドバンスト ポリマー テクノロジーズ How to extend the pot life of olefin metathesis polymerization
JP2002121267A (en) * 2000-08-11 2002-04-23 Hitachi Chem Co Ltd Method for producing block copolymer
JP2002363265A (en) * 2001-04-02 2002-12-18 Hitachi Chem Co Ltd New block copolymer, method for producing the same and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363265A (en) * 2001-04-02 2002-12-18 Hitachi Chem Co Ltd New block copolymer, method for producing the same and use thereof

Also Published As

Publication number Publication date
JP2009074093A (en) 2009-04-09
WO2002014401A8 (en) 2003-02-13
AU2001278703A1 (en) 2002-02-25
CN1237090C (en) 2006-01-18
KR100544525B1 (en) 2006-01-23
CN1446240A (en) 2003-10-01
KR20030022166A (en) 2003-03-15
WO2002014401A1 (en) 2002-02-21

Similar Documents

Publication Publication Date Title
Breslow Metathesis polymerization
WO2002100917A1 (en) Open-ring copolymer, hydrogenated open-ring copolymer, processes for production of both, and compositions
US7368509B2 (en) Functional norbornenes and polymeric derivatives and fabrication thereof
WO1999001519A1 (en) Adhesive for semiconductor components
JPWO2012132150A1 (en) Thermosetting crosslinked cyclic olefin resin composition, thermosetting crosslinked cyclic olefin resin film, method for producing thermosetting crosslinked cyclic olefin resin composition, and method for producing thermosetting crosslinked cyclic olefin resin film
WO2005016991A1 (en) Polymerizable compositions and molded articles produced by using the same
Lim et al. Facile syntheses, morphologies, and optical absorptions of P3HT coil‐rod‐coil triblock copolymers
JP4239589B2 (en) Block copolymer production method, block copolymer obtained and use thereof
WO2021024956A1 (en) Polymerizable composition, cycloolefin-based polymer, and metal/resin composite
JP4900633B2 (en) Novel block copolymer, production method and use thereof
JP2012007117A (en) Thermosetting crosslinked cyclic olefin resin film and its manufacturing method
JP2002317034A (en) Hydrogenated material of norbornene ring opening polymer having functional group at terminal and method for producing the same
JP6137187B2 (en) Manufacturing method of sealing material for secondary battery and manufacturing method of sealing material composition for secondary battery
KR20130065727A (en) Thermosetting crosslinked cycloolefin resin film and manufacturing process therefor
JP2002121267A (en) Method for producing block copolymer
CN114945644B (en) Adhesive composition
Liaw et al. Synthesis and characterization of new diblock copolymers of 5-(N-carbazolyl methyl) bicyclo [2.2. 1] hept-2-ene and 1, 5-cyclooctadiene using ring opening metathesis polymerization (ROMP)
JP2012188562A (en) Thermoset crosslinked cyclic olefin resin film, and method for manufacturing the same
JP5605276B2 (en) Thermosetting crosslinked cyclic olefin resin film and method for producing the same
JP2013129716A (en) Polymerizable composition
JP2001049126A (en) Resin composition
JP2012102274A (en) Thermosetting crosslinked cyclic olefin resin film and method for producing the same
JP2008150569A (en) Polymerizable composition and crosslinkable resin and method for producing the same
JP5382363B2 (en) Thermosetting crosslinked cyclic olefin resin film and method for producing the same
JP2003128766A (en) Method for producing ring-opened polymer and method for producing hydrogenated ring-opened polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees