JP4900633B2 - Novel block copolymer, production method and use thereof - Google Patents

Novel block copolymer, production method and use thereof Download PDF

Info

Publication number
JP4900633B2
JP4900633B2 JP2001259943A JP2001259943A JP4900633B2 JP 4900633 B2 JP4900633 B2 JP 4900633B2 JP 2001259943 A JP2001259943 A JP 2001259943A JP 2001259943 A JP2001259943 A JP 2001259943A JP 4900633 B2 JP4900633 B2 JP 4900633B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
chain
molecular
diblock copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001259943A
Other languages
Japanese (ja)
Other versions
JP2002363265A (en
Inventor
寛 松谷
晴昭 陶
秀康 立木
俊彦 高崎
尚 熊木
宏政 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2001259943A priority Critical patent/JP4900633B2/en
Publication of JP2002363265A publication Critical patent/JP2002363265A/en
Application granted granted Critical
Publication of JP4900633B2 publication Critical patent/JP4900633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規なブロック共重合体、その製造法及び用途に関する。本発明のブロック共重合体は、半導体パッケージ等の電気・電子部品の回路接続用接着材、その他の用途に有用である。
【0002】
【従来の技術】
電気・電子部品に用いられる電子材料、半導体パッケージ、光学材料等への要求特性は、近年の情報通信、マルチメディア、パーソナルコンピュータ等の技術進歩とともに、日々に厳しさを増している。電子材料用接着材料を例にとれば、要求特性は、低温接着性、短時間接着性、高耐湿性、埋め込み性、フィルム形成性等があり、これらの特性は同時に高いレベルに達することが求められる。
【0003】
一方、ブロック共重合体の各ブロック(換言すれば、そのブロック源の各モノマ)どうしが混ざり合わない(性質の異なる)二つの分子鎖をもつブロック共重合体はミクロ相分離構造を形成して、特異な性質を示すことが知られている。一例として、スチレン−ブタジエン−スチレンブロック共重合体(SBS樹脂)は、ポリスチレン由来の剛直な分子鎖(ハードセグメント)とポリブタジエン由来の柔軟な分子鎖(ソフトセグメント)とからなるミクロ相分離構造を形成するブロック共重合体である。このSBS樹脂は、常温ではハードセグメントが架橋点として作用し、ソフトセグメントがゴム成分として働く熱可塑性樹脂のひとつである(高分子学会編、高分子データハンドブック応用編、培風館、1986、pp.299−307参照)。
【0004】
他の例として、ポリエチレン−ポリエチレングリコールブロック共重合体は、非極性の分子鎖と極性の分子鎖とを有する非イオン系高分子界面活性剤で、これは乳化剤や消泡剤として利用されている(シグマ−アルドリッチ社ホームページ、製品情報(http://www.sigma-aldrich.com/saws.nsf/Technical+Library?OpenFrameset)やCASレジストリー番号:97953−22−5参照)。
【0005】
【本発明が解決しようとする課題】
本発明は、新規なブロック共重合体とその製造法を提供するとともに、半導体パッケージ等の電気・電子部品の回路接続用などに使用される接着材を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、非極性・柔軟な分子鎖(分子鎖mA)と極性・剛直な分子鎖(分子鎖nB)とが鎖状に連なっているブロック共重合体が得られるならば、これは今までに見られない新しい特性及び機能をもつに違いないとの着想から、種々検討して本願発明を完成するに至った。
【0007】
すなわち、本発明は、次のいくつかのブロック共重合体に関する。本発明におけるブロック共重合体の一つのタイプは、その共重合体のブロックの一つが、無置換又は置換されたメチレン基を主鎖に有する分子種(A)がm個鎖状に連なる分子鎖(mA;−AAA…AAA−;ブロックA)から成り、他のブロックは、シクロ環構造を主鎖に有する分子種(B)がn個鎖状に連なる分子鎖(nB;−BBB…BBB−;ブロックB)から成っていて、更にその共重合体分子の分子鎖(mA)の一端には、金属カルベン錯体触媒(C)由来の触媒活性部位以外の残基(lyst)が結合しているブロック共重合体である。
【0008】
本発明における別のタイプのブロック共重合体は、上記共重合体分子のもう一方の分子鎖(nB)の端部に、更に、金属カルベン錯体触媒(C)由来の触媒活性部位(Cata)が結合している、Cata-BBB…BBB−AAA…AAA-lystで示されるジブロック共重合体である。本発明は、また、前記のジブロック共重合体において、共重合体の分子量分布の分散度(重量平均分子量/数平均分子量)は、1.0以上2.5以下である、ジブロック共重合体に関する。
【0009】
ここで、重合反応の際、重合反応を停止させることができ、かつ、触媒(C)の触媒活性部位を外すことができる「重合反応停止剤」を用いた場合は、前者のタイプのブロック共重合体が得られる。
また、反応停止剤を加える前又は反応停止剤を加えない場合、あるいは、重合反応を停止させるが重合体の一端に結合した触媒(C)由来の触媒活性部位を外せない「反応停止剤」を用いた場合、後者のタイプの共重合体が得られる。
【0010】
更に、上記ブロック共重合体の好ましいものの一つは、共重合体の一つのブロック(ブロックA)は無置換又は非極性基で置換されたメチレン基を主鎖に有する分子種(A)がm個鎖状に連なる非極性かつ柔軟な分子鎖(mA)から成り、他のブロック(ブロックB)は、シクロ環構造を主鎖に含み、そのシクロ環上に極性置換基を有する分子種(B)がn個鎖状に連なる極性かつ剛直な分子鎖(nB)から成っているブロック共重合体である。
【0011】
本発明は、また、前記のジブロック共重合体において、無置換又は非極性基で置換されたメチレン基を主鎖に有する分子種(A)がm個鎖状に連なる非極性かつ柔軟な分子鎖(mA)と、シクロアルカン誘導体、シクロアルケン誘導体、オキサシクロアルカン誘導体、オキサシクロアルケン誘導体、チアシクロアルカン誘導体又はチアシクロアルケン誘導体のいずれかのシクロ環構造を主鎖に含み、そのシクロ環上に極性置換基を有する分子種(B)がn個鎖状に連なる極性かつ剛直な分子鎖(nB)とを含んで成るジブロック共重合体に関する。
【0012】
また、本発明は、前記のジブロック共重合体において、分子鎖mAの繰返し数m及び分子鎖nBの繰返し数nが、それぞれ5〜5000であり、mとnの比(m/n)が95/5〜5/95であるジブロック共重合体に関する。
【0013】
また、本発明は、前記のジブロック共重合体において、金属カルベン錯体触媒(C)が、式(5)又は(6)
【化1】

Figure 0004900633
(ここで、式(5)及び(6)中、Mはルテニウム、オスミウム又は鉄であり、X 〜X は、中心金属Mへ配位可能でその配位原子上に陰電荷をもつアニオン性配位子(原子又は原子団)であり、L 〜L は中心金属Mへ配位可能な中性の電子供与基を示し、R 〜R 10 は、それぞれ独立に、水素原子、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基、炭素数6〜20のアリール基、炭素数1〜20のカルボキシレート基、炭素数1〜20のアルコキシ基、炭素数2〜20のアルケニルオキシ基、炭素数6〜20のアリールオキシ基、炭素数2〜20のアルコキシカルボニル基、炭素数1〜20のアルキルチオ基、炭素数1〜20のアルキルスルホニル基、炭素数1〜20のアルキルスルフィニル基、炭素数1〜20のアルキルセレノ基、炭素数1〜20のアルキルセレニニル基、又は炭素数1〜20のアルキルセレノニル基から選ばれ、それぞれは炭素数1〜5のアルキル基、ハロゲン、炭素数1〜5のアルコキシ基又は炭素数6〜20のアリール基で置換されていても良く、前記アリール基はハロゲン、炭素数1〜5のアルキル基又は炭素数1〜5のアルコキシ基で置換されていてもよい。)で示されるジブロック共重合体に関する。
【0015】
【発明の実施の形態】
先ず、ブロック共重合体の製造法について説明する。製造法は、通常、次の工程(i)及び工程(ii)から成る。
工程(i):メタセシス重合可能な不飽和単環化合物(A;モノマA;分子種Aともいう)と、金属カルベン錯体触媒(C;Catalystともいう)の必要量の全量とを加え混合し、開環メタセシス重合させる。末端に金属カルベン錯体触媒由来の触媒活性部位(Cata)をもつ分子鎖(すなわち、Cata-AAA…AAA-lyst)を生成する。なお、Cataは、金属カルベン錯体触媒由来の触媒活性部位で金属を含む部位を意味し、lystはその残基を意味する。
【0016】
工程(ii):続いて、上記反応系に、メタセシス重合可能な不飽和多環化合物(B;モノマB;分子種Bともいう)を加え、混合する。前記分子鎖(Cata-AAA…AAA)の触媒活性部位(Cata)末端から、順次、モノマBを取り込むようにして、BBB…BBB鎖が伸長し、末端に触媒活性部位(Cata)をもつジブロック共重合体(Cata-BBB…BBB−AAA…AAA-lyst)が生成する。
【0017】
なお、モノマBと触媒(C)の全量とを加えて混合・反応させ、続いて、モノマAを加え反応させても、均質なジブロック共重合体は生成しない。また、仮にCata-AAA…AAA−BBB…BBB-lystで表されるジブロック共重合体が部分的に生成したとしてもその収量(又は収率)は低い。
【0018】
この製造法で、このようなジブロック共重合体(Cata-BBB…BBB−AAA…AAA-lyst)を収率よく合成できる理由は、触媒(C)が促進するモノマAの重合開始反応速度は重合伸長反応速度よりも大きく、そのため、工程(i)の生成物の大部分はCata-AAA…AAA-lystであり、単独の触媒(C)としては残っていないからと推定している。
一方、触媒(C)が促進するモノマBの重合伸長反応速度は重合開始反応速度よりも大きいので、逆の順序、すなわち初めにモノマBと触媒(C)の全量とを加えた場合、工程(i)では未反応の触媒(C)を残しつつCata-BBB…BBB-lystが生成することとなる。この残った触媒(C)が次の工程(ii)で反応触媒となってCata-AAA…AAA-lystを生成させ、ジブロック共重合体(Cata-AAA…AAA−BBB…BBB-lyst)の収率を下げ、生成物は不均質な重合体となると考えられる。
【0020】
上記工程(ii)に続いて、好ましくは、反応停止剤を加えてメタセシス重合反応を停止させる工程(工程(iii))を加える。
反応停止剤としては、メタセシス重合反応を停止するとともに重合体の一端に結合した触媒(C)由来の触媒活性部位も外すもの、例えば、分子末端に二重結合を有しその隣接位置に電子吸引性基を有する酢酸ビニル、エチルビニルエーテル、フェニルビニルスルフィド、N−ビニルピロリドン等のビニルオレフィン化合物、4−ビニルピリジン等の電子供与能の大きな配位性化合物、あるいはエキソメチレン化合物などがある。酢酸ビニルやエチルビニルエーテルが好ましく用いられる。また、メタセシス重合反応を停止させるが重合体の一端に結合した触媒(C)由来の触媒活性部位を外さないものとして、イミダゾール、2,2'−ビピリジン、4−メチルピリジン等がある。
【0021】
以下に、用いるモノマA、モノマB及び触媒(C)を順に説明する。
用いる不飽和単環化合物(モノマA)としては、開環メタセシス重合可能で、開環重合ののちには環構造をもたない重合体を与える化合物とする。好ましくは、置換又は無置換のシクロアルケン誘導体(分子中に炭素−炭素二重結合をもつ)である。
シクロアルケン誘導体のシクロ環を構成する元素は、通常、3〜14個(好ましくは、4〜9個)の炭素原子であり、炭素原子の一部はケイ素又はホウ素で置き換わっていてもよい。また、シクロ環を構成する一部の炭素原子に代えて、酸素原子、硫黄原子、窒素原子又はリン原子としてもよいが、この場合は、分子鎖mA(ブロックA)は極性を示す。
シクロアルケン誘導体としては、例えば、下記式(1)で示される化合物等が挙げられる。
【0022】
【化1】
Figure 0004900633
式(1)中、Y1は2価の有機基(好ましくは、炭素原子が1〜12の有機基)を示し、Y2は水素原子、ハロゲン又は炭素数1〜20のアルキル基(好ましくは、水素原子又は炭素数1〜10のアルキル基)を示す。不飽和単環化合物の炭素に結合する水素は、無置換であっても、炭素数1〜20のアルキル基又はハロゲンで置換されていてもよい。
【0023】
式(1)の具体的化合物としては、シクロブテン、シクロペンテン、シクロオクテン、シクロドデセン、1,5−シクロオクタジエン、1,3,5,7−シクロオクタテトラエン、1,5,7−シクロドデカトリエン、5,6−エポキシ−1−シクロオクテン、3,4−エポキシ−1−シクロオクテン、5−ブロモ−1−シクロオクテン等のシクロオレフィン類等があり、なかでも、シクロペンテン、シクロオクテン、1,5−シクロオクタジエンが好ましく用いられる。
【0024】
用いる金属カルベン錯体触媒(C)については、後述する。
【0025】
上記(i)の工程で開環メタセシス重合反応により合成された分子鎖中には、次の式(2)で示されるように、炭素−炭素二重結合が存在する。
【化2】
Figure 0004900633
〔式(2)中、Y1、Y2は式(1)中における意味と同じ。〕
【0026】
次の(ii)の工程で用いる不飽和多環化合物(B)は、メタセシス重合可能で、開環重合ののちも主鎖に環構造をもつ重合体を与える化合物とする。そのような化合物の好ましいものの一つは、置換又は無置換のノルボルネン誘導体であり、例えば、下記式(3)で示されるものである。
【0027】
【化3】
Figure 0004900633
【0028】
式中、pは0〜3の整数(好ましくは0〜2の整数、更に好ましくは0又は1)である。また、R1〜R4は、それぞれ独立に、水素原子、炭素数1〜20のアルキル基、炭素数3〜20のシクロアルキル基、炭素数6〜20のアリール基、ハロゲン、カルボニル基、シアノ基、イソシアノ基、ニトロ基、シロキシ基、炭素数2〜20のアルコキシカルボニル基、炭素数2〜20のアルキルカルボニルオキシ基、アミノ基、アミド基、ホルミル基、水酸基、炭素数1〜20のヒドロキシアルキル基、炭素数1〜20のアルコキシアルキル基、炭素数1〜20のアシロキシアルキル基、炭素数2〜20のシアノアルキル基、炭素数1〜20のアルコキシ基、炭素数1〜20のアルキルチオ基、炭素数1〜20のアルキルスルフィニル基、炭素数1〜20のアルキルスルホニル基、炭素数1〜20のアルキルセレノ基、炭素数1〜20のアルキルセレネニニル基、又は炭素数1〜20のアルキルセレノニル基等であり、少なくとも1つは水素原子であり、少なくとも1つは極性基である。R1〜R4のうちの2つずつで、1組又は2組が結合して−CO−O−CO−基(酸無水物)、−CO−O−基(ラクトン)、−CO−NR5−CO−基(イミド)又は−CO−NR5−基(ラクタム)となっていてもよい。
【0029】
ここで、R5は水素原子、炭素数1〜4のアルキル基、炭素数3〜6のシクロアルキル基又は炭素数6〜20のアリール基〔好ましくは、−CO−O−CO−基(酸無水物)又は−CO−NR5−CO−基(イミド)〕であり、イミドの場合は、R5は水素原子、炭素数1〜4のアルキル基又は炭素数6〜12のアリール基である。
【0030】
また、X1及びX2は、それぞれ独立に、酸素原子、硫黄原子又はC(R62であり、前記2個のR6は水素原子、ハロゲン、炭素数1〜4のアルキル基、炭素数3〜6のシクロアルキル基又は炭素数6〜20のアリール基から選ばれ、これらは同一でも異なっていてもよい。また、2個のR6が結合して3〜8員環の環構造を形成していてもよく、スピロ環を形成していてもよい。R6が水素原子でもハロゲンでもない場合は、炭素原子に結合する水素原子は炭素数1〜3のアルキル基、ハロゲン、シアノ基、カルボキシル基、アミノ基又はアミド基で置換されていてもよい。なかでも、酸素原子又はC(R62が好ましく、R6は水素原子、炭素数1〜4のアルキル基又は炭素数3〜6のシクロアルキル基が好ましく、水素原子又はメチル基が更に好ましい。また、X1、X2は同一であることが好ましい。
【0031】
上記の式(2)の具体的化合物としては、例えば、5−アセチル−2−ノルボルネン、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミド、5−ノルボルネン−2−カルボニトリル、5−ノルボルネン−2−カルボアルデヒド、5−ノルボルネン−2,3−ジカルボン酸モノメチルエステル、5−ノルボルネン−2,3−ジカルボン酸ジメチルエステル、5−ノルボルネン−2,3−ジカルボン酸ジエチルエステル、5−ノルボルネン−2,3−ジカルボン酸ジイソプロピルエステル、5−ノルボルネン−2,3−ジカルボン酸ジ−n−ブチルエステル、5−ノルボルネン−2,3−ジカルボン酸ジシクロヘキシルエステル、5−ノルボルネン−2,3−ジカルボン酸ジベンジルエステル、5−ノルボルネン−2,3−ジカルボン酸無水物、5−ノルボルネン−2,3−ジカルボン酸、5−ノルボルネン−2−メタノール、6−トリエトキシシリル−2−ノルボルネン、5−ノルボルネン−2−オール、5−ノルボルネン−2,3−ジメタノール、2,3−ビス(メトキシメチル)−5−ノルボルネン、N−メチル−5−ノルボルネン−2,3−カルボキシイミド等の二環ノルボルネン、極性基を有する三環ノルボルネン、極性基を有するテトラシクロドデセン、極性基を有するメチルテトラシクロドデセン、極性基を有するジメチルシクロテトラドデセン等の極性基を有する四環ノルボルネン、極性基を有する五環以上のノルボルネン、極性基を有するテトラシクロドデカジエン、極性基を有する対称型トリシクロペンタジエン等の2個以上のノルボルネン基を有する化合物等が挙げられる。
【0032】
この他に、7−オキサビシクロ[2.2.1]ヘプタ−5−エン−2,3−ジカルボン酸無水物、7−オキサビシクロ[2.2.1]ヘプタ−5−エン−2,3−ジカルボン酸、2−カルボキシ−3−メトキシカルボニル−7−オキサビシクロ[2.2.1]ヘプタ−5−エン、2,3−ジメトキシカルボニル−7−オキサビシクロ[2.2.1]ヘプタ−5−エン、2,3−ジエトキシカルボニル−7−オキサビシクロ[2.2.1]ヘプタ−5−エン、2,3−ジヘキシルオキシカルボニル−7−オキサビシクロ[2.2.1]ヘプタ−5−エン、2,3−ジベンジルオキシカルボニル−7−オキサビシクロ[2.2.1]ヘプタ−5−エン、2,3−ビス(ヒドロキシメチル)−7−オキサビシクロ[2.2.1]ヘプタ−5−エン、2,3−ビス(メトキシメチル)−7−オキサビシクロ[2.2.1]ヘプタ−5−エン、N−メチル−7−オキサビシクロ[2.2.1]ヘプタ−5−エン−2,3−カルボキシイミド、7−チアビシクロ[2.2.1]ヘプタ−5−エン−2,3−ジカルボン酸無水物、2−カルボキシ−3−メトキシカルボニル−7−チアビシクロ[2.2.1]ヘプタ−5−エン、2,3−ジメトキシカルボニル−7−チアサビシクロ[2.2.1]ヘプタ−5−エン、2,3−ビス(ヒドロキシメチル)−7−チアビシクロ[2.2.1]ヘプタ−5−エン、等も式(2)の具体的化合物として例示することができる。
【0033】
また、2,3−ビス(メトキシカルボニル)ビシクロ[2.2.1]へプタ−2,5−ジエン、2,3−ビス(メトキシカルボニル)−7−オキサビシクロ[2.2.1]へプタ−2,5−ジエン、2,3−ビス(メトキシカルボニル)−7−チアビシクロ[2.2.1]へプタ−2,5−ジエン等の二重結合を2個(それ以上)含む化合物も用いられる。
【0034】
この(ii)の工程の開環メタセシス重合反応により合成された分子鎖中には、次の式(4)で示されるように、炭素−炭素二重結合が存在する。
【化4】
Figure 0004900633
〔式(4)中、p、R1〜R4、X1、X2は式(3)中における意味と同じ。〕
【0035】
不飽和単環化合物(A)及び不飽和多環化合物(B)の各々の使用量は、目的とするブロック共重合体に応じて決定すればよい。このとき、用いた不飽和単環化合物(A)及び不飽和多環化合物(B)のモル比にほぼ等しい構成比(A/B)のブロック共重合体が得られることを考慮する。
【0036】
重合反応で用いるメタセシス重合反応触媒(C)は、様々な極性官能基が存在しても触媒が失活せずに反応を進行させる金属カルベン錯体触媒(T.M.Trnka and R.H.Grubbs,Acc.Chem.Res.,vol.34,18(2001)参照)が好ましく用いられる。
【0037】
そのような金属カルベン錯体触媒としては、式(5)や式(6)で示される化合物がある。性質の違うモノマ同士の共重合に優れ、種々の有機金属系重合触媒とは異なり、酸素、水分に対して安定である。そのため、重合反応は、不活性ガス雰囲気中はもとより、大気中でも可能である。これらは、単独で用いても、組み合わせて用いてもよい。
【0038】
【化5】
Figure 0004900633
ここで、式(5)及び(6)中、Mはルテニウム、オスミウム又は鉄で、好ましくは、ルテニウムであり、
3〜X6は、中心金属Mへ配位可能でその配位原子上に陰電荷をもつアニオン性配位子(原子又は原子団)であり、例えば、水素原子、フッ素、塩素、臭素、ヨウ素等のハロゲン、CF3CO2−、CH3CO2−、CF2HCO2−、CFH2CO2−、(CH33CO−、(CF32(CH3)CO−、(CF3)(CH32CO−、炭素1〜5の直鎖又は分岐アルコキシ基、置換又は無置換のフェノキシ基、トリフルオロメタンスルホナート基等が挙げられ、なかでもハロゲンが好ましく、塩素が更に好ましい。X3とX4、及びX5とX6とがいずれも(塩素等の)ハロゲンであることが更に好ましい。
【0039】
1〜L4は中心金属Mへ配位可能な中性の電子供与基を示し、例えば、PR111213(ここで、R11〜R13は、それぞれ独立して、置換又は無置換の炭素数6〜20のアリール基、炭素数1〜10の直鎖又は分岐アルキル基及び炭素数3〜10のシクロアルキル基から選ばれる)で示されるホスフィン、置換又は無置換のピリジン、1,3−ジ置換イミダゾール等のイミダゾール化合物等が挙げられる。なかでもトリシクロヘキシルホスフィン、トリシクロペンチルホスフィン、トリイソプロピルホスフィン等のホスフィン、1,3−ジメシチルイミダゾール−2−イリデン、4,5−ジヒドロ−1,3−ジメシチルイミダゾール−2−イリデン等のイミダゾール化合物が好ましく、トリシクロヘキシルホスフィンが更に好ましい。
【0040】
7〜R10は、それぞれ独立に、水素原子、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基、炭素数6〜20のアリール基、炭素数1〜20のカルボキシレート基、炭素数1〜20のアルコキシ基、炭素数2〜20のアルケニルオキシ基、炭素数6〜20のアリールオキシ基、炭素数2〜20のアルコキシカルボニル基、炭素数1〜20のアルキルチオ基、炭素数1〜20のアルキルスルホニル基、炭素数1〜20のアルキルスルフィニル基、炭素数1〜20のアルキルセレノ基、炭素数1〜20のアルキルセレニニル基、又は炭素数1〜20のアルキルセレノニル基から選ばれ、それぞれは炭素数1〜5のアルキル基、ハロゲン、炭素数1〜5のアルコキシ基又は炭素数6〜20のアリール基で置換されていても良く、前記アリール基はハロゲン、炭素数1〜5のアルキル基又は炭素数1〜5のアルコキシ基で置換されていてもよい。
【0041】
上記の式(5)又は式(6)で示される具体的化合物としては、例えば、下記式(7)〜(16)で示される化合物等があり、中でも式(7)、(8)、(9)、(10)又は(16)で示される化合物が好ましく用いられる。
【0042】
【化6】
Figure 0004900633
【0043】
【化7】
Figure 0004900633
【0044】
金属カルベン錯体触媒(C)の使用量は、希望するブロック共重合体の分子量を考慮して決める。使用量が多いほどブロック共重合体の分子量は小さくなる。不飽和単環化合物(A)及び不飽和多環化合物(B)の総量100重量部に対して、通常、0.001〜20重量部、好ましくは0.001〜10重量部、更に好ましくは0.05〜5重量部である。
【0045】
本発明における重合反応では、初めに、不飽和単環化合物(A)及び必要な金属カルベン錯体触媒(C)の全量を混合・反応させ、その後に、反応系に不飽和多環化合物(B)を加え反応させることのほかは、一般的な重合反応の条件を用いることができる。
メタセシス重合の温度及び反応時間としては、(i)の工程においては、開環メタセシス重合により、不飽和単環化合物(A)を原料として分子鎖末端に金属カルベン錯体由来の触媒活性部位をもつ分子鎖mAが得られる条件であればよく、(ii)の工程においては、前記分子鎖mAの触媒活性部位から、不飽和多環化合物(分子種B)を開環メタセシス重合させ、順次これを取り込みながら、分子鎖mAに続いて分子鎖nBを合成して(分子鎖mA−分子鎖nB)のブロック共重合体が得られる条件であればよい。重合反応の反応時間は、工程(i)においては、10分〜6時間(好ましくは、0.5〜2時間)であり、工程(ii)においては、(i)の反応後に更に1〜6時間(好ましくは、2〜6時間)反応させる。
重合反応の反応温度は、通常−20〜200℃、好ましくは0〜100℃である。
【0046】
メタセシス重合の雰囲気は、アルゴン、窒素等の不活性ガス雰囲気下でも行うことができるが、大気中でもよい。反応装置が簡略になり好都合である。
【0047】
必要に応じて、更に溶剤、例えば、金属カルベン錯体触媒や環上に極性置換基を有する不飽和多環化合物又は不飽和単環化合物を溶解させる溶剤を用いることができる。アセトン、2−ブタノン、2−ペンタノン、3−ペンタノン、4−メチル−3−ペンタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン等のケトン系溶剤、ジエチルエーテル、メチル−tert−ブチルエーテル、テトラヒドロフラン、1,4−ジオキサン、エチレングリコールジメチルエーテル等のエーテル系溶剤がある。
【0048】
溶剤の使用量は、反応系全体(不飽和単環化合物、不飽和多環化合物、金属カルベン錯体触媒及び溶剤の合計重量)に対して、通常50〜95重量%、好ましくは60〜90重量%程度とする。溶剤を用いた場合、加熱状態で長時間にわたり金属カルベン錯体触媒を溶液状態で放置すると分解反応が進みやすいため、不飽和単環化合物を溶剤に溶解した後に粉末状の金属カルベン錯体触媒を添加するか、あるいは少量の同じ溶媒に溶解した金属カルベン錯体触媒(溶液)を添加することが好ましい。
【0049】
上記(ii)の工程に続いて、前述のように、酢酸ビニルなどの反応停止剤を加え、メタセシス重合反応を停止させることができる(工程(iii))。
【0050】
また、前述のように、ここで得られた共重合体の分子鎖中には、前記式(3)及び式(4)で示されるように炭素−炭素二重結合が存在する。これが長期にわたり酸素雰囲気に曝されると、酸化反応が起こってその性能が変化する。また、高温下では、他の分子との付加反応や架橋反応等が起こり、物性が変化する。このような反応を避けるためには、得られた反応物を更に水素添加反応させ、重合体分子中に残存する不飽和結合を飽和させることが好ましい。
水素添加反応は公知の金属触媒を用いた接触還元法やヒドラジン還元法等の公知の方法を用いて行うことができる(日本化学会編、新実験化学講座 酸化と還元、丸善出版(1977)、西村、高木、接触水素化反応 有機合成への応用、東京化学同人(1987)等を参照)。
【0051】
反応終了後、生成物を反応容器から取り出すことにより、目的のブロック共重合体が得られる。必要に応じて、得られたブロック共重合体を水洗、蒸留、再沈殿等の既知の方法を用いて、触媒、溶剤等を除去し、精製することができる。
【0052】
上記の製造法によれば、その共重合体のブロックの一つが、無置換又は置換されたメチレン基を主鎖に有する分子種(A)がm個鎖状に連なる分子鎖(mA;−AAA…AAA−;ブロックA)から成り、他のブロックは、シクロ環構造を主鎖に有する分子種(B)がn個鎖状に連なる分子鎖(nB;−BBB…BBB−;ブロックB)から成っていて、更にその共重合体分子の一端には、金属カルベン錯体触媒(C)由来の触媒活性部位以外の残基が結合しているブロック共重合体が得られる。
【0053】
また、場合によっては、上記共重合体分子のもう一方の端に、金属カルベン錯体触媒(C)由来の触媒活性部位が結合している共重合体が得られる。
【0054】
上記ブロック共重合体の分子量分布の分散度は、通常、1.0以上2.5以下(好ましくは、1.0以上2.0以下)の均質性を示す。ここで、分子量分布の分散度は、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で計算される値である。
【0055】
上記製造法において、原料モノマを選べば、無置換又は非極性基で置換されたメチレン基を主鎖に有する分子種(A)がm個鎖状に連なる非極性かつ柔軟な分子鎖(mA、すなわち、−AAA…AAA−)と、シクロアルカン誘導体、シクロアルケン誘導体、オキサシクロアルカン誘導体、オキサシクロアルケン誘導体、チアシクロアルカン誘導体又はチアシクロアルケン誘導体のいずれかのシクロ環構造を主鎖に含み、そのシクロ環上に極性置換基を有する分子種(B)がn個鎖状に連なる極性かつ剛直な分子鎖(nB、すなわち、−BBB…BBB−)とを含んで成るブロック共重合体で、そのブロック共重合体の分子量分布の分散度が1.0〜2.5(好ましくは、1.0以上2.0以下)の均質性を示すブロック共重合体が得られる。
【0056】
このようなブロック共重合体(ジブロック共重合体)の分子種(A)の繰返し数m、及び分子種(B)の繰返し数nは、基本的には、原料(モノマA、モノマB及び触媒C)の使用量により決まる。通常は、それぞれ、5〜5000(好ましくは、10〜1000)である。5未満では、分子鎖mA及び分子鎖nBの特性、すなわち、分子鎖mAの柔軟性(ソフトセグメント)及び分子鎖nBの剛直性(ハードセグメント)をそれぞれ発揮させることが難しくなる。また、分子鎖mAの非極性及び分子鎖nBの極性をそれぞれ発揮させることも難しくなる。また、5000を越えるものでは、合成反応に時間がかかる。また、繰返し数のmとnの比(m/n)は、互いにバランスをとった数とし、通常95/5〜5/95(好ましくは90/10〜10/90)とする。そうすれば、界面活性剤的な作用により他の成分とよく相溶する。
【0057】
本発明のブロック共重合体において、分子種(A)は、好ましくは、非極性有機基(アルキル基等)で置換されていてもよいメチレン基を主鎖にもつものである。すなわち、メチレン炭素(sp3炭素原子を有するもの)を主鎖にもつ分子種であり、通常、主鎖中に環構造を含まないものである。柔軟な構造を維持できる範囲であれば、主鎖を構成する炭素原子の一部がsp2炭素原子やsp炭素原子であっても構わない。また、主鎖を構成する原子の一部が、炭素原子よりも電気陰性度の低い複素原子(例えば、ケイ素、ホウ素等)であっても構わない。
【0058】
本発明のブロック共重合体において、分子種(B)は、好ましくは、極性基で置換された環を主鎖にもつ分子種である。そのような分子種(B)としては、極性基で置換された飽和又は不飽和脂環式化合物、極性基で置換された芳香族化合物、極性基で置換された複素環化合物、電気陰性度が炭素より高い複素原子を含む未置換複素環化合物、等がある。
【0059】
分子鎖mAと分子鎖nBの各々の非極性/極性については、有機概念図を指針として適当な原料モノマを選ぶことができる。有機概念図は、有機化合物の化学構造から種々の物理化学的性状を予測する有効な手法である(甲田善生著、有機概念図−基礎と応用−、三共出版(1984)参照)。メチレン基の有機性値を20(その無機性値を0)とし、水酸基の無機性値を100(その有機性値を0)として、他の置換基の無機性値及び有機性値を定め、有機化合物の無機性値及び有機性値を算出するものである。無機性値の大きい有機化合物は極性が高く、有機性値の大きい有機化合物は極性が低い。
【0060】
有機概念図を指針とした場合、本発明のブロック共重合体の分子種(A)の無機性対有機性の比(無機性/有機性)は、通常、0〜0.3(好ましくは0〜0.25、更に好ましくは、0〜0.2)となる。分子種(A)がメチレンであるときの無機性対有機性の比は0で、分子鎖mAのポリメチレン鎖は非極性かつ柔軟な特性をもつことを意味する。
【0061】
また、分子鎖(nB)については、シクロ環上にある極性置換基は、Hammettの置換基定数σから分離された「極性基効果に基づく置換基定数」σIを指針として選択することができる(M.Charton,Prog.Phys.Org.Chem.,13,119−251(1981)参照)。σIは水素原子を0として、置換基の極性が高いほど大きな値となる。分子鎖(nB)におけるシクロ環上の極性置換基のσIは、通常+0.05以上+0.80以下(好ましくは+0.10以上+0.80以下、更に好ましくは+0.10以上+0.70以下)となる。
【0062】
なお、分子鎖(nB)の有機概念図上の無機性対有機性の比(無機性/有機性)は、通常、0.4以上10.0以下(好ましくは0.45以上7.5以下、更に好ましくは0.5以上5.0以下)である。
【0063】
分子鎖(nB)におけるシクロ環上の極性置換基としては、具体的には、カルボニル基、シアノ基、イソシアノ基、ニトロ基、シロキシ基、炭素数2〜20のアルコキシカルボニル基、炭素数2〜20のアルキルカルボニルオキシ基、アミノ基、アミド基、ホルミル基、水酸基、炭素数1〜20のヒドロキシアルキル基、炭素数1〜20のアルコキシアルキル基、炭素数1〜20のアシロキシアルキル基、炭素数2〜20のシアノアルキル基、炭素数1〜20のアルコキシ基、炭素数1〜20のアルキルチオ基、炭素数1〜20のアルキルスルフィニル基、炭素数1〜20のアルキルスルホニル基、炭素数1〜20のアルキルセレノ基、炭素数1〜20のアルキルセレネニニル基、又は炭素数1〜20のアルキルセレノニル基、−CO−O−CO−基(酸無水物)、−CO−O−基(ラクトン)などがある。
また、−CO−NR5−CO−基(イミド)や−CO−NR5−基(ラクタム)などもある。ここで、R5は水素原子、炭素数1〜4のアルキル基、炭素数3〜6のシクロアルキル基又は炭素数6〜20のアリール基であり、イミドの場合は、R5は水素原子、炭素数1〜4のアルキル基又は炭素数6〜12のアリール基である。
【0064】
得られたブロック共重合体の用途としては、これに、硬化性化合物及び硬化剤を加え、更に必要に応じて、ベース樹脂、その他の添加剤を適量加え、回路接続用接着材とすることができる。接着材は用途に応じて種々の形態(フィルム状、シート状、テープ状、液状、ペースト状など)とすることができる。
なお、回路接続用接着材を調製する場合、各々の配合比は、硬化性化合物100重量部に対して、硬化剤は概ね1〜100重量部(マイクロカプセル化したものを用いた場合は、100重量部を越えて配合することもある)、ブロック共重合体は概ね5〜500重量部程度である。
【0065】
i)硬化性化合物
硬化性化合物は硬化剤(次に説明)により重合可能な官能基をもつ物質であり、モノマでもオリゴマーでもよい。具体的には、イオン重合性のエポキシ化合物、ラジカル重合性のアクリレート、メタクリレート化合物等がある。
【0066】
ii)硬化剤
硬化剤は前述の硬化性化合物の重合を開始する化合物である。通常、加熱又はエネルギー線の照射により、重合活性種を発生させる硬化剤が用いられる。そのような硬化剤としては、潜在性を有するイミダゾール誘導体(マイクロカプセル化したものがある)やスルホニウム塩類等のイオン重合性モノマ、有機過酸化物、アゾ化合物などの加熱によりラジカルを発生するラジカル重合性モノマ等がある。
【0067】
iii)ベース樹脂
ベース樹脂としては、フィルム形成能が高く、硬化時の応力緩和に優れ、高接着性のものが使用できる。そのような樹脂としては、例えば、分子内に水酸基を有する分子量10,000以上のフェノキシ樹脂等がある。
【0068】
iv)その他の添加剤
回路電極の高さやばらつきを吸収するため、また、異方導電性を積極的に付与する目的で導電粒子を添加・分散することができる。また、接続信頼性等の向上を目的として、カップリング剤、充填剤、老化防止剤等を添加することもできる。
【0069】
【実施例】
以下、実施例により本発明を更に具体的に説明する。
実施例1 ポリ(シクロオクテン)−block−ポリ(endo−5−ノルボルネン−2,3−ジカルボン酸ジメチル)の合成:仕込モノマのA/Bが50/50(モル比)
【化8】
Figure 0004900633
【0070】
500mlの反応容器を窒素で置換し、テトラヒドロフラン(THF、和光純薬製)90ml及びシクロオクテン(東京化成製)11g(0.10mol)を加え、窒素雰囲気中で反応容器を60℃に加熱した。そこへ、式(7)のルテニウムカルベン錯体(ボールダーサイエンス社製)0.27g(0.33mmol)を加え、60℃で1時間攪拌した(反応(i))。反応系中から少量の反応溶液を抜き取り、それに酢酸ビニル(和光純薬製)を加えて反応を停止したものをGPC測定用試料とした。ひきつづき、反応液中にendo−5−ノルボルネン−2,3−ジカルボン酸ジメチル(endo-DME、ランカスター社製)21g(0.10mol)を加え、窒素雰囲気中60℃で4時間攪拌した(反応(ii))。その後、反応系中から少量の反応溶液を抜き取り、それに酢酸ビニルを加えて反応を停止したものをGPC測定用試料とした。反応容器中の反応溶液に酢酸ビニル6.0ml(66mmol)を加え、攪拌しながら反応容器を室温まで冷却した。生成物はTHF200mlで希釈し、メタノール(和光純薬製)1L中に投じた。生じた沈殿を濾取し、減圧乾燥することにより、無色の繊維状物28g(単離収率90%)を得た。
【0071】
重合反応をGPCで追跡した結果を図1に示す。GPCの測定条件は、カラム:TSKgelGMHXL−L(東ソー(株)製)2本、溶離液:THF、流速:1ml/min)、カラム温度:室温である。また、図1中、aはシクロオクテン重合開始1時間後(すなわち、反応(i)後)のチャートを示し、bは、endo−5−ノルボルネン−2,3−ジカルボン酸ジメチル添加後4時間経過後(すなわち、反応(ii)後)のチャートを示す。
【0072】
endo−5−ノルボルネン−2,3−ジカルボン酸ジメチル添加後は、反応物の分子量はシクロオクテン重合後のピーク形状を維持したまま、時間の経過と共に高分子量側にシフトしていて、ブロック共重合体が生成していると判断した。ピークの数平均分子量(ポリスチレン換算)は、シクロオクテン重合直後の45,000 からendo−5−ノルボルネン−2,3−ジカルボン酸ジメチル添加後には92,000となった。なお、単離したポリマの数平均分子量は103,000、分子量分布は1.91であった。
【0073】
得られたポリマの1H−NMRチャートを図2に示した。1H−NMRスペクトルの測定は、BrukerAC−250で、溶剤:クロロホルム−d1である。図は、δ1.3付近のメチレン鎖(図2の構造式中のHa)のプロトンに起因するピークと、δ3.6付近のメチルエステル由来のプロトン(図2の構造式中のHb)との積分比が8:6であることを示し、ポリ(シクロオクテン)鎖とポリ(endo−5−ノルボルネン−2,3−ジカルボン酸ジメチル)鎖の比は1:1であることが分かった。これは両モノマの仕込み比に一致していた。
【0074】
得られたポリ(シクロオクテン)−block−ポリ(endo−5−ノルボルネン−2,3−ジカルボン酸ジメチル)におけるシクロオクテン開環重合鎖の有機概念図上の無機性/有機性値は0.01であり、シクロヘキサン環上のメトキシカルボニル基の極性基効果に基づく置換基定数σIは+0.32である。したがって、このブロック共重合体の各ブロックはハードセグメントとソフトセグメントの差異が顕著であるとともに、極性と非極性の差も顕著である。
【0075】
実施例2 仕込モノマのA/Bは80/20(モル比)
シクロオクテンの使用量を70g(640mmol)とし、endo−5−ノルボルネン−2,3−ジメチルエステルの使用量を34g(160mmol)とした以外は実施例1と同様にし(式(7)のルテニウムカルベン錯体の使用量は0.33mmol)、重合体を得た。収率は85%、標準ポリスチレン換算のMnは75,000、分子量分布の分散度は1.6であった。また、実施例1と同様に各原料成分モル比を算出した結果、重合体中のシクロオクテン/endo-DMEのモル比は78:22であった。
【0076】
実施例3 仕込モノマのA/Bは50/50(モル比)で触媒を多量使用
式(7)のルテニウムカルベン錯体の使用量を実施例1の10倍量の3.3mmolとした以外は実施例1と同様にして、重合体を得た。収率は90%、標準ポリスチレン換算のMnは33,000、分子量分布の分散度は1.9であった。また、実施例1と同様に各原料成分モル比を算出した結果、重合体中のシクロオクテン/endo-DMEのモル比は53:47であった。
【0077】
実施例4 仕込モノマのA/Bは80/20(モル比)で触媒を多量使用
ルテニウムカルベン錯体の使用量を10g(13mmol)とした以外は実施例1と同様にして、重合体を得た。収率は88%、標準ポリスチレン換算のMnは24,000、分子量分布の分散度は1.9であった。また、実施例1と同様に各原料成分モル比を算出した結果、重合体中のシクロオクテン/endo-DMEのモル比は79:21であった。
【0078】
実施例5 回路接続用フィルム状接着材の調製
PKHC(フェノキシ樹脂、ユニオンカーバイト株式会社製商品名)20gと、エピコートYL−983U(ビスフェノールF型液状エポキシ樹脂、油化シェルエポキシ株式会社製商品名)30g及び実施例1で調製したブロック共重合体(数平均分子量103,000、分子量分布1.91)20gを秤量し、トルエン/酢酸エチル=50/50(重量比)の混合溶剤に溶解して、固形分40%の溶液とした。これに、ノバキュアHX−3941HP(潜在性硬化剤、旭チバ株式会社製商品名)30gを加え混合し、シランカップリング剤のエポキシシラン化合物(A−187、日本ユニカー株式会社製商品名)1.5gを加え混合した。その後、これに平均粒径10μm、比重2.0の導電性粒子(ポリスチレンを核とする粒子の表面に、厚み0.2μmのニッケル層を設け、このニッケル層の外側に、厚み0.02μmの金層を設けたもの)を、3体積%(固形分に対して)配合分散し、この混合液を厚み80μmのフッ素樹脂フィルムに塗工装置を用いて塗布し、70℃、10分の熱風乾燥によって、前記フッ素樹脂フィルム上に厚みが25μmの回路用接続用のフィルム状接着材を得た。
【0079】
実施例6 回路接続体の作製
実施例5で得た片面がフッ素樹脂フィルム上に覆われた回路接続用のフィルム状接着材(厚み25μm)を用いて、ライン幅50μm、ピッチ100μm、厚み18μmの銅回路を500本有するフレキシブル回路板(FPC)と、0.2μmの酸化インジウム(ITO)の薄層を形成したガラス(厚み1.1mm、表面抵抗20ohm)とを、180℃、4MPaで20秒間加熱加圧して幅2mmにわたり接続した。
このとき、あらかじめITOガラス上に、フィルム状回路接続材料の接着面を70℃、0.5MPaで5秒間加熱加圧して仮接続した後、フッ素樹脂フィルムを剥離し、もう一方の被着体であるFPCと接続して接続体とした。
得られた接続体の隣接回路間の抵抗値を測定したところ、隣接回路間の抵抗150点の平均は2.7ohmであり、良好な接続特性を示した。
また、この接続体の接着強度をJIS−Z0237に準じて90度剥離法で測定しところ、接着強度は800N/mで、十分な接着強度を示した。なお、接着強度の測定装置は東洋ボールドウィン株式会社製テンシロンUTM−4(剥離速度50mm/分、25℃)を使用した。
【0080】
実施例7 ポリ(シクロオクテン)−block−ポリ(endo−5−ノルボルネン−2,3−ジカルボン酸ジメチル)の合成:式(16)のルテニウムカルベン錯体触媒を使用
式(7)のルテニウムカルベン錯体に代えて、式(16)の錯体(シメテック社製)0.28g(0.33mmol)を用いた以外は実施例1と同様にして、重合体を得た。収率は91%、標準ポリスチレン換算のMnは68,000、分子量分布の分散度は1.6であった。また、実施例1と同様に各原料成分モル比を算出した結果、重合体中のシクロオクテン/endo−5−ノルボルネン−2,3−ジカルボン酸ジメチルのモル比は45:55であった。
【0081】
【発明の効果】
本発明のブロック共重合体は、新規なブロック共重合体である。また、本発明のブロック共重合体は、低弾性で高強度、低応力、高接着性、耐湿性、耐熱性、フィルム形成能、更には他の成分と相溶性に優れる。そのため、半導体パッケージ等の電子材料向け接着材料や、相溶化剤、可とう化剤、あるいは非イオン系高分子界面活性剤等に利用できる。
本発明の製造法により、本発明のブロック共重合体を容易に製造することができる。
本発明の回路接続用接着材は、半導体パッケージ等の電気・電子部品の回路接続として応用され、良好な接続特性及び接着強度を示す。
【図面の簡単な説明】
【図1】生成物のGPCチャートである。
【図2】生成物の1H−NMRスペクトルである。
【符号の説明】
a:シクロオクテン重合開始1時間後(endo−5−ノルボルネン−2,3−ジカルボン酸ジメチル添加直前)のもの
b:endo−5−ノルボルネン−2,3−ジカルボン酸ジメチル添加後4時間経過後のもの[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel block copolymer, a production method and use thereof. The block copolymer of the present invention is useful for adhesives for circuit connection of electrical / electronic components such as semiconductor packages and other applications.
[0002]
[Prior art]
The required characteristics of electronic materials, semiconductor packages, optical materials and the like used for electric and electronic parts are becoming stricter every day along with recent technological advances in information communication, multimedia, personal computers and the like. Taking adhesive materials for electronic materials as an example, the required properties include low temperature adhesion, short time adhesion, high moisture resistance, embedding property, film formability, etc., and these properties are required to reach a high level at the same time. It is done.
[0003]
On the other hand, each block of the block copolymer (in other words, each monomer of the block source) does not mix with each other, and the block copolymer having two molecular chains having different properties forms a micro phase separation structure. It is known to exhibit unique properties. As an example, a styrene-butadiene-styrene block copolymer (SBS resin) forms a microphase-separated structure consisting of rigid molecular chains derived from polystyrene (hard segments) and flexible molecular chains derived from polybutadiene (soft segments). Block copolymer. This SBS resin is one of the thermoplastic resins in which the hard segment acts as a crosslinking point at normal temperature and the soft segment acts as a rubber component (edited by the Society of Polymer Science, Applied Data Handbook, Bafukan, 1986, pp. 299). -307).
[0004]
As another example, a polyethylene-polyethylene glycol block copolymer is a nonionic polymer surfactant having a nonpolar molecular chain and a polar molecular chain, which is used as an emulsifier or an antifoaming agent. (Refer to Sigma-Aldrich website, product information (http://www.sigma-aldrich.com/saws.nsf/Technical+Library?OpenFrameset) and CAS registry number: 97952-2-5).
[0005]
[Problems to be solved by the present invention]
It is an object of the present invention to provide a novel block copolymer and a method for producing the same, and an adhesive used for circuit connection of electrical / electronic components such as semiconductor packages.
[0006]
[Means for Solving the Problems]
If the present inventors obtain a block copolymer in which a nonpolar / flexible molecular chain (molecular chain mA) and a polar / rigid molecular chain (molecular chain nB) are linked in a chain, From the idea that it must have new characteristics and functions that have not been seen so far, various studies have been made and the present invention has been completed.
[0007]
  That is, the present invention includes the following severalTheIt relates to a block copolymer. In the present inventionTheOne type of block copolymer is one in which one of the blocks of the copolymer is a molecular chain (mA;) in which molecular species (A) having an unsubstituted or substituted methylene group in the main chain are linked in the form of m chains. -AAA ... AAA-; block A), the other block is a molecular chain (nB; -BBB ... BBB-; block B) in which molecular species (B) having a cyclo ring structure in the main chain are linked in the form of n-chains Of the copolymer molecule.Of molecular chain (mA)At one end, a residue other than the catalytically active site derived from the metal carbene complex catalyst (C)(lyst)Are joinedTheIt is a block copolymer.
[0008]
  Another type of inventionTheThe block copolymer is the other side of the copolymer molecule.Of molecular chain (nB)Further, at the end, a catalytic active site derived from the metal carbene complex catalyst (C)(Cata)Are joined, Cata-BBB ... BBB-AAA ... Diblock indicated by AAA-lystIt is a copolymer.In the diblock copolymer, the dispersity (weight average molecular weight / number average molecular weight) of the molecular weight distribution of the copolymer is 1.0 or more and 2.5 or less. Regarding coalescence.
[0009]
Here, in the case of using a “polymerization reaction terminator” capable of stopping the polymerization reaction and removing the catalytically active site of the catalyst (C) during the polymerization reaction, the former type of block copolymer is used. A polymer is obtained.
In addition, before adding the reaction terminator or when no reaction terminator is added, or "reaction terminator" that terminates the polymerization reaction but cannot remove the catalyst active site derived from the catalyst (C) bonded to one end of the polymer. When used, the latter type of copolymer is obtained.
[0010]
  In addition, the aboveTheOne of the preferred block copolymers is that one block of the copolymer (block A) has a chain of m molecular species (A) having a methylene group substituted with an unsubstituted or nonpolar group in the main chain. The other block (Block B) is composed of a non-polar and flexible molecular chain (mA) connected to the main chain, and the molecular species (B) having a polar substituent on the cyclo ring includes a cyclo ring structure in the main chain. Consists of polar and rigid molecular chains (nB) connected in a chainTheIt is a block copolymer.
[0011]
  The present inventionIn the diblock copolymer, a nonpolar and flexible molecular chain (mA) in which m molecular groups (A) having a methylene group substituted with an unsubstituted or nonpolar group in the main chain are linked in a chain form. A cycloalkane derivative, a cycloalkene derivative, an oxacycloalkane derivative, an oxacycloalkene derivative, a thiacycloalkane derivative or a thiacycloalkene derivative in the main chain, and a polar substituent on the cycloring It relates to a diblock copolymer comprising a polar and rigid molecular chain (nB) in which the molecular species (B) having n has a chain of n chains.
[0012]
  In the diblock copolymer according to the present invention, the repeating number m of the molecular chain mA and the repeating number n of the molecular chain nB are each 5 to 5000, and the ratio of m to n (m / n) is It relates to a diblock copolymer which is 95/5 to 5/95.
[0013]
  In the diblock copolymer, the metal carbene complex catalyst (C) may have the formula (5) or (6).
[Chemical 1]
Figure 0004900633
(Wherein, in formulas (5) and (6), M is ruthenium, osmium or iron, and X 3 ~ X 6 Is an anionic ligand (atom or atomic group) capable of coordinating to the central metal M and having a negative charge on the coordination atom, 1 ~ L 4 Represents a neutral electron donating group capable of coordinating to the central metal M, R 7 ~ R 10 Are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or 1 to 20 carbon atoms. Carboxylate group, C 1-20 alkoxy group, C 2-20 alkenyloxy group, C 6-20 aryloxy group, C 2-20 alkoxycarbonyl group, C 1-20 carbon atom An alkylthio group, an alkylsulfonyl group having 1 to 20 carbon atoms, an alkylsulfinyl group having 1 to 20 carbon atoms, an alkylseleno group having 1 to 20 carbon atoms, an alkylseleninyl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms Each of which is substituted with an alkyl group having 1 to 5 carbon atoms, a halogen, an alkoxy group having 1 to 5 carbon atoms or an aryl group having 6 to 20 carbon atoms. Even if good, the aryl group is halogen, it may be substituted with an alkyl group or an alkoxy group having 1 to 5 carbon atoms of 1 to 5 carbon atoms. It is related with the diblock copolymer shown by this.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
First, the manufacturing method of a block copolymer is demonstrated. The production method usually comprises the following steps (i) and (ii).
Step (i): Metathesis-polymerizable unsaturated monocyclic compound (A; monomer A; also referred to as molecular species A) and the total amount of metal carbene complex catalyst (C; also referred to as Catalyst) are added and mixed. Ring-opening metathesis polymerization. A molecular chain having a catalytic active site (Cata) derived from a metal carbene complex catalyst at the end (ie, Cata-AAA ... AAA-lyst) is generated. Cata means a catalytically active site derived from a metal carbene complex catalyst and contains a metal, and lyst means the residue.
[0016]
Step (ii): Subsequently, an unsaturated polycyclic compound capable of metathesis polymerization (B; monomer B; also referred to as molecular species B) is added to the reaction system and mixed. A diblock having a BBB chain extending from the end of the catalytic active site (Cata) of the molecular chain (Cata-AAA ... AAA), with the BBB chain extending so that the catalytic active site (Cata) is at the end. A copolymer (Cata-BBB ... BBB-AAA ... AAA-lyst) is produced.
[0017]
Even if the monomer B and the total amount of the catalyst (C) are added and mixed and reacted, and then the monomer A is added and reacted, a homogeneous diblock copolymer is not produced. Even if a diblock copolymer represented by Cata-AAA ... AAA-BBB ... BBB-lyst is partially formed, the yield (or yield) is low.
[0018]
The reason why such a diblock copolymer (Cata-BBB ... BBB-AAA ... AAA-lyst) can be synthesized in a high yield by this production method is that the polymerization initiation rate of the monomer A promoted by the catalyst (C) is It is assumed that most of the product of step (i) is Cata-AAA ... AAA-lyst and does not remain as a single catalyst (C).
On the other hand, the polymerization elongation reaction rate of the monomer B promoted by the catalyst (C) is larger than the polymerization initiation reaction rate. Therefore, in the reverse order, that is, when the total amount of the monomer B and the catalyst (C) is first added, In i), Cata-BBB... BBB-lyst is produced while leaving the unreacted catalyst (C). This remaining catalyst (C) becomes a reaction catalyst in the next step (ii) to produce Cata-AAA ... AAA-lyst, and a diblock copolymer (Cata-AAA ... AAA-BBB ... BBB-lyst) The yield is reduced and the product is believed to be a heterogeneous polymer.
[0020]
Subsequent to the step (ii), preferably, a step (step (iii)) of adding a reaction terminator to stop the metathesis polymerization reaction is added.
As the reaction terminator, the one that stops the metathesis polymerization reaction and also removes the catalytic active site derived from the catalyst (C) bonded to one end of the polymer, for example, has a double bond at the molecular end and has an electron withdrawing at the adjacent position. Examples thereof include vinyl olefin compounds such as vinyl acetate, ethyl vinyl ether, phenyl vinyl sulfide and N-vinyl pyrrolidone having a functional group, coordination compounds having a large electron donating ability such as 4-vinyl pyridine, and exomethylene compounds. Vinyl acetate and ethyl vinyl ether are preferably used. Examples of those that stop the metathesis polymerization reaction but do not remove the catalytically active site derived from the catalyst (C) bonded to one end of the polymer include imidazole, 2,2′-bipyridine, and 4-methylpyridine.
[0021]
Below, the monomer A, monomer B, and catalyst (C) to be used are demonstrated in order.
The unsaturated monocyclic compound (monomer A) to be used is a compound capable of ring-opening metathesis polymerization and giving a polymer having no ring structure after the ring-opening polymerization. Preferably, it is a substituted or unsubstituted cycloalkene derivative (having a carbon-carbon double bond in the molecule).
The element constituting the cyclo ring of the cycloalkene derivative is usually 3 to 14 (preferably 4 to 9) carbon atoms, and some of the carbon atoms may be replaced with silicon or boron. Further, instead of some carbon atoms constituting the cyclo ring, an oxygen atom, a sulfur atom, a nitrogen atom, or a phosphorus atom may be used. In this case, the molecular chain mA (block A) exhibits polarity.
As a cycloalkene derivative, the compound etc. which are shown by following formula (1) are mentioned, for example.
[0022]
[Chemical 1]
Figure 0004900633
In formula (1), Y1Represents a divalent organic group (preferably an organic group having 1 to 12 carbon atoms), Y2Represents a hydrogen atom, a halogen or an alkyl group having 1 to 20 carbon atoms (preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms). The hydrogen bonded to the carbon of the unsaturated monocyclic compound may be unsubstituted or may be substituted with an alkyl group having 1 to 20 carbon atoms or a halogen.
[0023]
Specific compounds of formula (1) include cyclobutene, cyclopentene, cyclooctene, cyclododecene, 1,5-cyclooctadiene, 1,3,5,7-cyclooctatetraene, 1,5,7-cyclododecatriene. , 5,6-epoxy-1-cyclooctene, 3,4-epoxy-1-cyclooctene, 5-bromo-1-cyclooctene, and the like. Among them, cyclopentene, cyclooctene, 1, 5-cyclooctadiene is preferably used.
[0024]
The metal carbene complex catalyst (C) used will be described later.
[0025]
In the molecular chain synthesized by the ring-opening metathesis polymerization reaction in the step (i), a carbon-carbon double bond exists as shown in the following formula (2).
[Chemical 2]
Figure 0004900633
[In formula (2), Y1, Y2Has the same meaning as in formula (1). ]
[0026]
The unsaturated polycyclic compound (B) used in the next step (ii) is a compound capable of metathesis polymerization and giving a polymer having a ring structure in the main chain after ring-opening polymerization. One preferable example of such a compound is a substituted or unsubstituted norbornene derivative, for example, one represented by the following formula (3).
[0027]
[Chemical Formula 3]
Figure 0004900633
[0028]
In the formula, p is an integer of 0 to 3 (preferably an integer of 0 to 2, more preferably 0 or 1). R1~ RFourAre each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, a halogen, a carbonyl group, a cyano group, an isocyano group, or a nitro group. , Siloxy group, C2-C20 alkoxycarbonyl group, C2-C20 alkylcarbonyloxy group, amino group, amide group, formyl group, hydroxyl group, C1-C20 hydroxyalkyl group, C1-C1 20 alkoxyalkyl groups, C1-C20 acyloxyalkyl groups, C2-C20 cyanoalkyl groups, C1-C20 alkoxy groups, C1-C20 alkylthio groups, C1-C20 Alkylsulfinyl group, alkylsulfonyl group having 1 to 20 carbon atoms, alkylseleno group having 1 to 20 carbon atoms, alkylselene having 1 to 20 carbon atoms A group, or the like alkylseleno alkylsulfonyl group having 1 to 20 carbon atoms, at least one is a hydrogen atom, at least one is a polar group. R1~ RFourEach of which is bonded to one another or two pairs to form a —CO—O—CO— group (anhydride), —CO—O— group (lactone), —CO—NR.Five-CO- group (imide) or -CO-NRFive-It may be a group (lactam).
[0029]
Where RFiveIs a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an aryl group having 6 to 20 carbon atoms [preferably a -CO-O-CO- group (an acid anhydride) or- CO-NRFive-CO-group (imide)], and in the case of imide, RFiveIs a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
[0030]
X1And X2Each independently represents an oxygen atom, a sulfur atom or C (R6)2And the two R6Is selected from a hydrogen atom, halogen, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms or an aryl group having 6 to 20 carbon atoms, which may be the same or different. Two R6May combine to form a 3- to 8-membered ring structure, or may form a spiro ring. R6When is not a hydrogen atom or a halogen, the hydrogen atom bonded to the carbon atom may be substituted with an alkyl group having 1 to 3 carbon atoms, a halogen, a cyano group, a carboxyl group, an amino group, or an amide group. Among them, oxygen atom or C (R6)2Is preferred, R6Is preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a cycloalkyl group having 3 to 6 carbon atoms, more preferably a hydrogen atom or a methyl group. X1, X2Are preferably the same.
[0031]
Specific compounds of the above formula (2) include, for example, 5-acetyl-2-norbornene, N-hydroxy-5-norbornene-2,3-dicarboximide, 5-norbornene-2-carbonitrile, 5- Norbornene-2-carbaldehyde, 5-norbornene-2,3-dicarboxylic acid monomethyl ester, 5-norbornene-2,3-dicarboxylic acid dimethyl ester, 5-norbornene-2,3-dicarboxylic acid diethyl ester, 5-norbornene- 2,3-dicarboxylic acid diisopropyl ester, 5-norbornene-2,3-dicarboxylic acid di-n-butyl ester, 5-norbornene-2,3-dicarboxylic acid dicyclohexyl ester, 5-norbornene-2,3-dicarboxylic acid diester Benzyl ester, 5-norbornene-2,3-dicar Acid anhydride, 5-norbornene-2,3-dicarboxylic acid, 5-norbornene-2-methanol, 6-triethoxysilyl-2-norbornene, 5-norbornen-2-ol, 5-norbornene-2,3- Bicyclic norbornene such as dimethanol, 2,3-bis (methoxymethyl) -5-norbornene, N-methyl-5-norbornene-2,3-carboximide, tricyclic norbornene having a polar group, tetra having a polar group Cyclododecene, methyltetracyclododecene having a polar group, tetracyclic norbornene having a polar group such as dimethylcyclotetradodecene having a polar group, norbornene having five or more rings having a polar group, tetracyclododeca having a polar group It has two or more norbornene groups such as diene and symmetric tricyclopentadiene having a polar group. That compound.
[0032]
In addition, 7-oxabicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid anhydride, 7-oxabicyclo [2.2.1] hept-5-ene-2,3 -Dicarboxylic acid, 2-carboxy-3-methoxycarbonyl-7-oxabicyclo [2.2.1] hept-5-ene, 2,3-dimethoxycarbonyl-7-oxabicyclo [2.2.1] hepta- 5-ene, 2,3-diethoxycarbonyl-7-oxabicyclo [2.2.1] hept-5-ene, 2,3-dihexyloxycarbonyl-7-oxabicyclo [2.2.1] hepta 5-ene, 2,3-dibenzyloxycarbonyl-7-oxabicyclo [2.2.1] hept-5-ene, 2,3-bis (hydroxymethyl) -7-oxabicyclo [2.2.1 Hept-5-ene, , 3-Bis (methoxymethyl) -7-oxabicyclo [2.2.1] hept-5-ene, N-methyl-7-oxabicyclo [2.2.1] hept-5-ene-2,3 -Carboximide, 7-thiabicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic anhydride, 2-carboxy-3-methoxycarbonyl-7-thiabicyclo [2.2.1] hepta 5-ene, 2,3-dimethoxycarbonyl-7-thiasabicyclo [2.2.1] hept-5-ene, 2,3-bis (hydroxymethyl) -7-thiabicyclo [2.2.1] hepta-5 -Ene, etc. can also be illustrated as a specific compound of Formula (2).
[0033]
Also, to 2,3-bis (methoxycarbonyl) bicyclo [2.2.1] hepta-2,5-diene and 2,3-bis (methoxycarbonyl) -7-oxabicyclo [2.2.1]. Compounds containing two (or more) double bonds such as buta-2,5-diene and 2,3-bis (methoxycarbonyl) -7-thiabicyclo [2.2.1] hepta-2,5-diene Is also used.
[0034]
In the molecular chain synthesized by the ring-opening metathesis polymerization reaction in the step (ii), a carbon-carbon double bond exists as shown by the following formula (4).
[Formula 4]
Figure 0004900633
[In formula (4), p, R1~ RFour, X1, X2Has the same meaning as in formula (3). ]
[0035]
What is necessary is just to determine the usage-amount of each of an unsaturated monocyclic compound (A) and an unsaturated polycyclic compound (B) according to the target block copolymer. At this time, it is considered that a block copolymer having a constitutional ratio (A / B) substantially equal to the molar ratio of the unsaturated monocyclic compound (A) and the unsaturated polycyclic compound (B) used is obtained.
[0036]
The metathesis polymerization reaction catalyst (C) used in the polymerization reaction is a metal carbene complex catalyst (TM Trnka and RH Grubbs that allows the reaction to proceed without deactivation even in the presence of various polar functional groups. , Acc. Chem. Res., Vol. 34, 18 (2001)) is preferably used.
[0037]
As such a metal carbene complex catalyst, there are compounds represented by the formulas (5) and (6). It is excellent in copolymerization of monomers having different properties, and is stable against oxygen and moisture unlike various organometallic polymerization catalysts. Therefore, the polymerization reaction can be performed not only in an inert gas atmosphere but also in the air. These may be used alone or in combination.
[0038]
[Chemical formula 5]
Figure 0004900633
Here, in the formulas (5) and (6), M is ruthenium, osmium or iron, preferably ruthenium,
XThree~ X6Is an anionic ligand (atom or atomic group) capable of coordinating to the central metal M and having a negative charge on the coordination atom, for example, a hydrogen atom, halogen such as fluorine, chlorine, bromine, iodine, CFThreeCO2-, CHThreeCO2-, CF2HCO2-, CFH2CO2-, (CHThree)ThreeCO-, (CFThree)2(CHThree) CO-, (CFThree) (CHThree)2CO-, a linear or branched alkoxy group having 1 to 5 carbon atoms, a substituted or unsubstituted phenoxy group, a trifluoromethanesulfonate group, and the like can be given. Among them, halogen is preferable, and chlorine is more preferable. XThreeAnd XFourAnd XFiveAnd X6And are more preferably halogens (such as chlorine).
[0039]
L1~ LFourRepresents a neutral electron donating group capable of coordinating to the central metal M, for example, PR11R12R13(Where R11~ R13Are each independently selected from a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a linear or branched alkyl group having 1 to 10 carbon atoms, and a cycloalkyl group having 3 to 10 carbon atoms). Examples thereof include phosphine, substituted or unsubstituted pyridine, and imidazole compounds such as 1,3-disubstituted imidazole. Among them, phosphines such as tricyclohexylphosphine, tricyclopentylphosphine, triisopropylphosphine, 1,3-dimesitylimidazol-2-ylidene, 4,5-dihydro-1,3-dimesitylimidazol-2-ylidene, etc. Imidazole compounds are preferred, and tricyclohexylphosphine is more preferred.
[0040]
R7~ RTenAre each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or 1 to 20 carbon atoms. Carboxylate group, C 1-20 alkoxy group, C 2-20 alkenyloxy group, C 6-20 aryloxy group, C 2-20 alkoxycarbonyl group, C 1-20 carbon atom An alkylthio group, an alkylsulfonyl group having 1 to 20 carbon atoms, an alkylsulfinyl group having 1 to 20 carbon atoms, an alkylseleno group having 1 to 20 carbon atoms, an alkylseleninyl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms Each of which is substituted with an alkyl group having 1 to 5 carbon atoms, a halogen, an alkoxy group having 1 to 5 carbon atoms or an aryl group having 6 to 20 carbon atoms. Even if good, the aryl group is halogen, it may be substituted with an alkyl group or an alkoxy group having 1 to 5 carbon atoms of 1 to 5 carbon atoms.
[0041]
Specific compounds represented by the above formula (5) or formula (6) include, for example, compounds represented by the following formulas (7) to (16), among which formulas (7), (8), ( The compound represented by 9), (10) or (16) is preferably used.
[0042]
[Chemical 6]
Figure 0004900633
[0043]
[Chemical 7]
Figure 0004900633
[0044]
The amount of the metal carbene complex catalyst (C) used is determined in consideration of the molecular weight of the desired block copolymer. The larger the amount used, the smaller the molecular weight of the block copolymer. Usually, 0.001 to 20 parts by weight, preferably 0.001 to 10 parts by weight, and more preferably 0 to 100 parts by weight of the total amount of unsaturated monocyclic compound (A) and unsaturated polycyclic compound (B). 0.05 to 5 parts by weight.
[0045]
In the polymerization reaction in the present invention, first, the unsaturated monocyclic compound (A) and the necessary metal carbene complex catalyst (C) are all mixed and reacted, and then the unsaturated polycyclic compound (B) is added to the reaction system. Other than the reaction, general polymerization reaction conditions can be used.
As for the temperature and reaction time of the metathesis polymerization, in the step (i), a molecule having a catalytic active site derived from a metal carbene complex at the end of the molecular chain from the unsaturated monocyclic compound (A) by ring-opening metathesis polymerization. It is sufficient that the chain mA is obtained. In the step (ii), the unsaturated polycyclic compound (molecular species B) is subjected to ring-opening metathesis polymerization from the catalytically active site of the molecular chain mA, and these are sequentially taken in. However, the conditions may be sufficient as long as the molecular chain nB is synthesized following the molecular chain mA to obtain a block copolymer of (molecular chain mA-molecular chain nB). The reaction time of the polymerization reaction is 10 minutes to 6 hours (preferably 0.5 to 2 hours) in the step (i), and further 1 to 6 after the reaction of (i) in the step (ii). The reaction is performed for a time (preferably 2 to 6 hours).
The reaction temperature of the polymerization reaction is usually -20 to 200 ° C, preferably 0 to 100 ° C.
[0046]
The atmosphere of the metathesis polymerization can be performed in an atmosphere of an inert gas such as argon or nitrogen, but may be in the air. The reactor is simple and convenient.
[0047]
If necessary, a solvent such as a metal carbene complex catalyst or a solvent that dissolves an unsaturated polycyclic compound or unsaturated monocyclic compound having a polar substituent on the ring can be used. Ketone solvents such as acetone, 2-butanone, 2-pentanone, 3-pentanone, 4-methyl-3-pentanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, diethyl ether, methyl-tert-butyl ether, There are ether solvents such as tetrahydrofuran, 1,4-dioxane, and ethylene glycol dimethyl ether.
[0048]
The amount of solvent used is usually 50 to 95% by weight, preferably 60 to 90% by weight, based on the entire reaction system (total weight of unsaturated monocyclic compound, unsaturated polycyclic compound, metal carbene complex catalyst and solvent). To the extent. When a solvent is used, if the metal carbene complex catalyst is left in a heated state for a long time, the decomposition reaction is likely to proceed. Therefore, after adding the powdered metal carbene complex catalyst after dissolving the unsaturated monocyclic compound in the solvent Alternatively, it is preferable to add a metal carbene complex catalyst (solution) dissolved in a small amount of the same solvent.
[0049]
Subsequent to the step (ii), as described above, a reaction terminator such as vinyl acetate can be added to stop the metathesis polymerization reaction (step (iii)).
[0050]
Further, as described above, a carbon-carbon double bond is present in the molecular chain of the copolymer obtained here as shown in the above formulas (3) and (4). When this is exposed to an oxygen atmosphere for a long time, an oxidation reaction occurs and its performance changes. In addition, at high temperatures, addition reactions and cross-linking reactions with other molecules occur, and the physical properties change. In order to avoid such a reaction, it is preferable to further subject the obtained reactant to a hydrogenation reaction to saturate the unsaturated bond remaining in the polymer molecule.
The hydrogenation reaction can be performed using a known method such as a catalytic reduction method using a known metal catalyst or a hydrazine reduction method (Edited by the Chemical Society of Japan, New Experimental Chemistry Course, Oxidation and Reduction, Maruzen Publishing (1977), Nishimura, Takagi, catalytic hydrogenation reaction, see Application to organic synthesis, Tokyo Kagaku Dojin (1987), etc.).
[0051]
After completion of the reaction, the desired block copolymer is obtained by removing the product from the reaction vessel. If necessary, the obtained block copolymer can be purified by removing the catalyst, the solvent and the like using a known method such as washing with water, distillation, reprecipitation and the like.
[0052]
According to the above production method, one of the blocks of the copolymer is a molecular chain (mA; -AAA) in which the molecular species (A) having an unsubstituted or substituted methylene group in the main chain is linked in the form of m chains. ... AAA-; composed of block A), and the other blocks are composed of molecular chains (nB; -BBB ... BBB-; block B) in which molecular species (B) having a cyclic structure in the main chain are linked in an n-chain form. Further, a block copolymer in which a residue other than the catalytically active site derived from the metal carbene complex catalyst (C) is bonded to one end of the copolymer molecule is obtained.
[0053]
In some cases, a copolymer having a catalytic active site derived from the metal carbene complex catalyst (C) bonded to the other end of the copolymer molecule is obtained.
[0054]
The degree of dispersion of the molecular weight distribution of the block copolymer usually exhibits a homogeneity of 1.0 to 2.5 (preferably 1.0 to 2.0). Here, the degree of dispersion of the molecular weight distribution is a value calculated by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn).
[0055]
  In the above production method, if a raw material monomer is selected, a non-polar and flexible molecular chain (mA, having a molecular chain (A) having a methylene group substituted with an unsubstituted or non-polar group in the main chain in a chain form. That is, -AAA ... AAA-) and a cycloalkane derivative, a cycloalkene derivative, an oxacycloalkane derivative, an oxacycloalkene derivative, a thiacycloalkene derivative, or a thiacycloalkene derivative containing a cyclo ring structure in the main chain, A block copolymer comprising a polar and rigid molecular chain (nB, i.e., -BBB ... BBB-) in which molecular species (B) having a polar substituent on the cyclo ring is linked in an n-chain form, A block copolymer having a homogeneity in which the degree of dispersion of the molecular weight distribution of the block copolymer is 1.0 to 2.5 (preferably 1.0 to 2.0) is obtained.
[0056]
The repeating number m of the molecular species (A) and the repeating number n of the molecular species (B) of such a block copolymer (diblock copolymer) are basically determined from the raw materials (monomer A, monomer B and It depends on the amount of catalyst C) used. Usually, it is 5-5000 (preferably 10-1000), respectively. If it is less than 5, it becomes difficult to exhibit the characteristics of the molecular chain mA and the molecular chain nB, that is, the flexibility (soft segment) of the molecular chain mA and the rigidity (hard segment) of the molecular chain nB. It also becomes difficult to exhibit the nonpolarity of the molecular chain mA and the polarity of the molecular chain nB. If it exceeds 5000, the synthesis reaction takes time. In addition, the ratio (m / n) of the number of repetitions m and n is a number that is balanced with each other, and is usually 95/5 to 5/95 (preferably 90/10 to 10/90). Then, it is well compatible with other components due to the surfactant action.
[0057]
In the block copolymer of the present invention, the molecular species (A) preferably has a methylene group in the main chain which may be substituted with a nonpolar organic group (such as an alkyl group). That is, methylene carbon (spThreeA molecular species having a carbon atom) in the main chain, and usually not containing a ring structure in the main chain. As long as a flexible structure can be maintained, a part of carbon atoms constituting the main chain is sp.2It may be a carbon atom or sp carbon atom. Further, some of the atoms constituting the main chain may be heteroatoms (eg, silicon, boron, etc.) having a lower electronegativity than carbon atoms.
[0058]
In the block copolymer of the present invention, the molecular species (B) is preferably a molecular species having in its main chain a ring substituted with a polar group. Examples of such molecular species (B) include saturated or unsaturated alicyclic compounds substituted with polar groups, aromatic compounds substituted with polar groups, heterocyclic compounds substituted with polar groups, and electronegativity. And unsubstituted heterocyclic compounds containing higher heteroatoms than carbon.
[0059]
As for the nonpolarity / polarity of each of the molecular chain mA and the molecular chain nB, an appropriate raw material monomer can be selected using the organic conceptual diagram as a guideline. An organic conceptual diagram is an effective technique for predicting various physicochemical properties from the chemical structure of an organic compound (see Yoshio Koda, Organic conceptual diagram-basics and applications, Sankyo Publishing (1984)). The organic value of the methylene group is 20 (its inorganic value is 0), the inorganic value of the hydroxyl group is 100 (its organic value is 0), and the inorganic value and organic value of other substituents are determined. The inorganic value and organic value of an organic compound are calculated. An organic compound having a large inorganic value has high polarity, and an organic compound having a large organic value has low polarity.
[0060]
When the organic conceptual diagram is used as a guideline, the ratio of inorganic to organic (inorganic / organic) of the molecular species (A) of the block copolymer of the present invention is usually 0 to 0.3 (preferably 0). To 0.25, more preferably 0 to 0.2). When the molecular species (A) is methylene, the ratio of inorganic to organic is 0, which means that the polymethylene chain of the molecular chain mA has nonpolar and flexible properties.
[0061]
For the molecular chain (nB), the polar substituent on the cyclo ring can be selected using “substituent constant based on polar group effect” σI separated from Hammett's substituent constant σ as a guideline ( M. Charton, Prog. Phys. Org. Chem., 13, 119-251 (1981)). σI takes a hydrogen atom as 0, and becomes larger as the polarity of the substituent is higher. ΣI of the polar substituent on the cyclo ring in the molecular chain (nB) is usually +0.05 or more and +0.80 or less (preferably +0.10 or more and +0.80 or less, more preferably +0.10 or more and +0.70 or less) It becomes.
[0062]
The ratio of inorganic to organic (inorganic / organic) on the organic conceptual diagram of the molecular chain (nB) is usually 0.4 or more and 10.0 or less (preferably 0.45 or more and 7.5 or less). More preferably, it is 0.5 or more and 5.0 or less.
[0063]
Specific examples of the polar substituent on the cyclo ring in the molecular chain (nB) include a carbonyl group, a cyano group, an isocyano group, a nitro group, a siloxy group, an alkoxycarbonyl group having 2 to 20 carbon atoms, and a carbon number of 2 to 2. 20 alkylcarbonyloxy groups, amino groups, amide groups, formyl groups, hydroxyl groups, hydroxyalkyl groups having 1 to 20 carbon atoms, alkoxyalkyl groups having 1 to 20 carbon atoms, acyloxyalkyl groups having 1 to 20 carbon atoms, carbon C2-C20 cyanoalkyl group, C1-C20 alkoxy group, C1-C20 alkylthio group, C1-C20 alkylsulfinyl group, C1-C20 alkylsulfonyl group, C1-C1 -20 alkylseleno group, C1-C20 alkylseleninyl group, or C1-C20 alkylselenonyl group, -CO-O- O- group (acid anhydride), - CO-O- group (lactone) and the like.
In addition, -CO-NRFive-CO- group (imide) and -CO-NRFive-There is also a group (lactam). Where RFiveIs a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an aryl group having 6 to 20 carbon atoms.FiveIs a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
[0064]
As an application of the obtained block copolymer, a curable compound and a curing agent are added to this, and further, if necessary, an appropriate amount of a base resin and other additives may be added to obtain an adhesive for circuit connection. it can. The adhesive can be in various forms (film form, sheet form, tape form, liquid form, paste form, etc.) depending on the application.
In addition, when preparing the adhesive for circuit connection, each compounding ratio is 100 to 100 parts by weight of the curable compound, and the curing agent is approximately 1 to 100 parts by weight (in the case of using the microencapsulated, 100 The block copolymer is generally about 5 to 500 parts by weight.
[0065]
i) Curable compounds
The curable compound is a substance having a functional group that can be polymerized by a curing agent (described below), and may be a monomer or an oligomer. Specific examples include an ion polymerizable epoxy compound, a radical polymerizable acrylate, and a methacrylate compound.
[0066]
ii) Curing agent
The curing agent is a compound that initiates polymerization of the curable compound described above. Usually, a curing agent that generates polymerization active species by heating or irradiation with energy rays is used. Such curing agents include radical polymerization that generates radicals by heating ion-polymerizable monomers such as latent imidazole derivatives (microencapsulated) and sulfonium salts, organic peroxides, and azo compounds. There are sex monomers.
[0067]
iii) Base resin
As the base resin, those having high film forming ability, excellent stress relaxation during curing, and having high adhesiveness can be used. Examples of such a resin include a phenoxy resin having a hydroxyl group in the molecule and a molecular weight of 10,000 or more.
[0068]
iv) Other additives
Conductive particles can be added and dispersed in order to absorb the height and variation of the circuit electrode and to positively impart anisotropic conductivity. In addition, for the purpose of improving connection reliability and the like, a coupling agent, a filler, an antiaging agent, and the like can be added.
[0069]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1 Synthesis of poly (cyclooctene) -block-poly (endo-5-norbornene-2,3-dicarboxylate): A / B of monomer fed was 50/50 (molar ratio)
[Chemical 8]
Figure 0004900633
[0070]
The 500 ml reaction vessel was replaced with nitrogen, 90 ml of tetrahydrofuran (THF, manufactured by Wako Pure Chemical Industries) and 11 g (0.10 mol) of cyclooctene (manufactured by Tokyo Chemical Industry) were added, and the reaction vessel was heated to 60 ° C. in a nitrogen atmosphere. Thereto was added 0.27 g (0.33 mmol) of a ruthenium carbene complex of the formula (7) (manufactured by Boulder Science) and stirred at 60 ° C. for 1 hour (reaction (i)). A small amount of the reaction solution was extracted from the reaction system, and vinyl acetate (manufactured by Wako Pure Chemical Industries, Ltd.) was added thereto to stop the reaction, which was used as a GPC measurement sample. Subsequently, 21 g (0.10 mol) of dimethyl endo-5-norbornene-2,3-dicarboxylate (endo-DME, manufactured by Lancaster) was added to the reaction solution, and the mixture was stirred at 60 ° C. for 4 hours in a nitrogen atmosphere (reaction ( ii)). Thereafter, a small amount of the reaction solution was extracted from the reaction system, and vinyl acetate was added thereto to stop the reaction, which was used as a GPC measurement sample. To the reaction solution in the reaction vessel, 6.0 ml (66 mmol) of vinyl acetate was added, and the reaction vessel was cooled to room temperature while stirring. The product was diluted with 200 ml of THF and poured into 1 L of methanol (manufactured by Wako Pure Chemical Industries). The resulting precipitate was collected by filtration and dried under reduced pressure to obtain 28 g of colorless fibrous material (isolated yield 90%).
[0071]
The results of tracking the polymerization reaction by GPC are shown in FIG. The measurement conditions of GPC are: column: TSKgelGMHXL-L (manufactured by Tosoh Corporation), eluent: THF, flow rate: 1 ml / min), column temperature: room temperature. Further, in FIG. 1, a represents a chart 1 hour after the start of cyclooctene polymerization (that is, after reaction (i)), and b represents 4 hours after addition of dimethyl endo-5-norbornene-2,3-dicarboxylate. The chart after (ie after reaction (ii)) is shown.
[0072]
After the addition of dimethyl endo-5-norbornene-2,3-dicarboxylate, the molecular weight of the reaction product shifted to the high molecular weight side with the passage of time while maintaining the peak shape after cyclooctene polymerization. It was judged that coalescence was generated. The number average molecular weight (in terms of polystyrene) of the peak was from 45,000 immediately after cyclooctene polymerization to 92,000 after addition of dimethyl endo-5-norbornene-2,3-dicarboxylate. The isolated polymer had a number average molecular weight of 103,000 and a molecular weight distribution of 1.91.
[0073]
Of the resulting polymer1The H-NMR chart is shown in FIG.1The H-NMR spectrum was measured by Bruker AC-250, solvent: chloroform-d.1It is. The figure shows a peak derived from the proton of the methylene chain near δ1.3 (Ha in the structural formula of FIG. 2) and a proton derived from a methyl ester near δ3.6 (Hb in the structural formula of FIG. 2). The integration ratio was 8: 6, and the ratio of poly (cyclooctene) chain to poly (endo-5-norbornene-2,3-dicarboxylate) chain was found to be 1: 1. This was consistent with the charge ratio of both monomers.
[0074]
The inorganic / organic value on the organic conceptual diagram of the cyclooctene ring-opening polymer chain in the obtained poly (cyclooctene) -block-poly (endo-5-norbornene-2,3-dicarboxylate) is 0.01. The substituent constant σI based on the polar group effect of the methoxycarbonyl group on the cyclohexane ring is +0.32. Therefore, each block of this block copolymer has a significant difference between the hard segment and the soft segment, and also a significant difference between polarity and nonpolarity.
[0075]
Example 2 A / B of charged monomer is 80/20 (molar ratio)
The ruthenium carbene of formula (7) was used in the same manner as in Example 1 except that the amount of cyclooctene used was 70 g (640 mmol) and that of endo-5-norbornene-2,3-dimethyl ester was 34 g (160 mmol). The amount of complex used was 0.33 mmol), and a polymer was obtained. The yield was 85%, Mn in terms of standard polystyrene was 75,000, and the degree of dispersion of the molecular weight distribution was 1.6. Moreover, as a result of calculating each raw material component molar ratio similarly to Example 1, the molar ratio of cyclooctene / endo-DME in the polymer was 78:22.
[0076]
Example 3 A / B of charged monomer is 50/50 (molar ratio) and a large amount of catalyst is used.
A polymer was obtained in the same manner as in Example 1 except that the amount of the ruthenium carbene complex of the formula (7) was changed to 3.3 mmol which was 10 times the amount of Example 1. The yield was 90%, Mn in terms of standard polystyrene was 33,000, and the degree of dispersion of the molecular weight distribution was 1.9. Moreover, as a result of calculating each raw material component molar ratio similarly to Example 1, the molar ratio of cyclooctene / endo-DME in the polymer was 53:47.
[0077]
Example 4 A / B of charged monomer is 80/20 (molar ratio) and a large amount of catalyst is used.
A polymer was obtained in the same manner as in Example 1 except that the amount of the ruthenium carbene complex used was 10 g (13 mmol). The yield was 88%, Mn in terms of standard polystyrene was 24,000, and the degree of dispersion of the molecular weight distribution was 1.9. Moreover, as a result of calculating each raw material component molar ratio like Example 1, the molar ratio of cyclooctene / endo-DME in a polymer was 79:21.
[0078]
Example 5 Preparation of film adhesive for circuit connection
20 g of PKHC (phenoxy resin, trade name of Union Carbide Co., Ltd.), 30 g of Epicoat YL-983U (trade name of bisphenol F type liquid epoxy resin, Yuka Shell Epoxy Co., Ltd.) and the block co-polymer prepared in Example 1 20 g of a coalescence (number average molecular weight 103,000, molecular weight distribution 1.91) was weighed and dissolved in a mixed solvent of toluene / ethyl acetate = 50/50 (weight ratio) to obtain a solution having a solid content of 40%. To this, 30 g of NovaCure HX-3941HP (latent curing agent, trade name manufactured by Asahi Ciba Co., Ltd.) was added and mixed, and an epoxy silane compound (A-187, trade name manufactured by Nihon Unicar Co., Ltd.) of a silane coupling agent was obtained. 5 g was added and mixed. Thereafter, conductive particles having an average particle size of 10 μm and a specific gravity of 2.0 (a nickel layer having a thickness of 0.2 μm is provided on the surface of particles having polystyrene as a core, and a thickness of 0.02 μm is provided outside the nickel layer. 3% by volume (based on the solid content) is mixed and dispersed, and this mixed solution is applied to a fluororesin film having a thickness of 80 μm using a coating apparatus, and hot air at 70 ° C. for 10 minutes. By drying, a film-like adhesive for circuit connection having a thickness of 25 μm was obtained on the fluororesin film.
[0079]
Example 6 Fabrication of circuit connector
A flexible circuit having 500 copper circuits having a line width of 50 μm, a pitch of 100 μm, and a thickness of 18 μm, using a film-like adhesive for circuit connection (thickness: 25 μm) with one surface covered in a fluororesin film obtained in Example 5 A plate (FPC) and a glass (thickness 1.1 mm, surface resistance 20 ohm) formed with a thin layer of 0.2 μm indium oxide (ITO) are heated and pressurized at 180 ° C. and 4 MPa for 20 seconds over a width of 2 mm. did.
At this time, the adhesive surface of the film-like circuit connecting material is preliminarily connected to the ITO glass by heating and pressing at 70 ° C. and 0.5 MPa for 5 seconds, and then the fluororesin film is peeled off, and the other adherend is attached. It was connected to a certain FPC to form a connection body.
When the resistance value between adjacent circuits of the obtained connection body was measured, the average of 150 resistances between adjacent circuits was 2.7 ohms, indicating good connection characteristics.
Moreover, when the adhesive strength of this connection body was measured by the 90 degree peeling method according to JIS-Z0237, the adhesive strength was 800 N / m, indicating a sufficient adhesive strength. Note that Tensilon UTM-4 (peeling speed 50 mm / min, 25 ° C.) manufactured by Toyo Baldwin Co., Ltd. was used as a measuring device for adhesive strength.
[0080]
Example 7 Synthesis of poly (cyclooctene) -block-poly (endo-5-norbornene-2,3-dicarboxylate) using a ruthenium carbene complex catalyst of formula (16)
A polymer was obtained in the same manner as in Example 1 except that 0.28 g (0.33 mmol) of the complex of the formula (16) (manufactured by Cimetech) was used instead of the ruthenium carbene complex of the formula (7). The yield was 91%, Mn in terms of standard polystyrene was 68,000, and the degree of dispersion of the molecular weight distribution was 1.6. Moreover, as a result of calculating each raw material component molar ratio like Example 1, the molar ratio of cyclooctene / endo-5-norbornene-2,3-dicarboxylate in the polymer was 45:55.
[0081]
【The invention's effect】
The block copolymer of the present invention is a novel block copolymer. Further, the block copolymer of the present invention has low elasticity, high strength, low stress, high adhesion, moisture resistance, heat resistance, film forming ability, and compatibility with other components. Therefore, it can be used for adhesive materials for electronic materials such as semiconductor packages, compatibilizers, flexible agents, nonionic polymer surfactants, and the like.
The block copolymer of the present invention can be easily produced by the production method of the present invention.
The adhesive for circuit connection of the present invention is applied as a circuit connection for electrical / electronic parts such as semiconductor packages, and exhibits good connection characteristics and adhesive strength.
[Brief description of the drawings]
FIG. 1 is a GPC chart of a product.
FIG. 2 of the product1It is a 1 H-NMR spectrum.
[Explanation of symbols]
a: One hour after the start of cyclooctene polymerization (immediately before the addition of dimethyl endo-5-norbornene-2,3-dicarboxylate)
b: 4 hours after the addition of dimethyl endo-5-norbornene-2,3-dicarboxylate

Claims (7)

一つのブロックは、無置換又は置換されたメチレン基を主鎖に有する分子種(A)がm個鎖状に連なる分子鎖(mA)から成り、他のブロックは、シクロ環構造を主鎖に有する分子種(B)がn個鎖状に連なる分子鎖(nB)から成っているブロック共重合体であって、その共重合体分子の分子鎖(mA)の一端には、金属カルベン錯体触媒(C)由来の触媒活性部位以外の残基(lyst)が結合しているブロック共重合体。One block consists of a molecular chain (mA) in which the molecular species (A) having an unsubstituted or substituted methylene group in the main chain is connected in m chain form, and the other block has a cyclo ring structure as the main chain. A diblock copolymer in which the molecular species (B) is composed of molecular chains (nB) that are linked in an n-chain form, and at one end of the molecular chain (mA) of the copolymer molecule, a metal carbene complex A diblock copolymer to which a residue (lyst) other than the catalytically active site derived from the catalyst (C) is bonded. 請求項1のブロック共重合体において、その共重合体分子の分子鎖(nB)の端部には、更に、金属カルベン錯体触媒(C)由来の触媒活性部位(Cata)が結合している、Cata-BBB…BBB−AAA…AAA-lystで示されるジブロック共重合体。 The diblock copolymer according to claim 1, further comprising a catalytic active site (Cata) derived from the metal carbene complex catalyst (C) bound to the end of the molecular chain (nB) of the copolymer molecule. Cata-BBB ... BBB-AAA ... A diblock copolymer represented by AAA-lyst . 請求項1又は2のブロック共重合体において、共重合体の分子量分布の分散度(重量平均分子量/数平均分子量)は1.0以上2.5以下であるブロック共重合体。In the diblock copolymer according to claim 1 or 2, the degree of dispersion of the molecular weight distribution of the copolymer (weight average molecular weight / number average molecular weight) diblock copolymer is 1.0 to 2.5. 請求項1〜3の何れかに記載のジブロック共重合体において、一つのブロックは、無置換又は非極性基で置換されたメチレン基を主鎖に有する分子種(A)がm個鎖状に連なる非極性かつ柔軟な分子鎖(mA)から成り、他のブロックは、シクロ環構造を主鎖に含み、そのシクロ環上に極性置換基を有する分子種(B)がn個鎖状に連なる極性かつ剛直な分子鎖(nB)から成っているブロック共重合体。 The diblock copolymer according to any one of claims 1 to 3, wherein one block has m molecular species (A) having a methylene group substituted with an unsubstituted or nonpolar group in the main chain. The other block is composed of a nonpolar and flexible molecular chain (mA) connected to the main chain, and the molecular chain (B) having a polar substituent on the cycloring is included in a chain. A diblock copolymer comprising a series of polar and rigid molecular chains (nB). 請求項1〜4の何れかに記載のジブロック共重合体において、無置換又は非極性基で置換されたメチレン基を主鎖に有する分子種(A)がm個鎖状に連なる非極性かつ柔軟な分子鎖(mA)と、シクロアルカン誘導体、シクロアルケン誘導体、オキサシクロアルカン誘導体、オキサシクロアルケン誘導体、チアシクロアルカン誘導体又はチアシクロアルケン誘導体のいずれかのシクロ環構造を主鎖に含み、そのシクロ環上に極性置換基を有する分子種(B)がn個鎖状に連なる極性かつ剛直な分子鎖(nB)とを含んで成るブロック共重合体。 The diblock copolymer according to any one of claims 1 to 4, wherein the molecular species (A) having a methylene group substituted with an unsubstituted or nonpolar group in the main chain is a nonpolar and continuous in m chain form. The main chain includes a flexible molecular chain (mA) and a cycloalkane derivative, a cycloalkene derivative, an oxacycloalkane derivative, an oxacycloalkene derivative, a thiacycloalkane derivative, or a thiacycloalkene derivative. A diblock copolymer comprising a polar and rigid molecular chain (nB) in which molecular species (B) having a polar substituent on a cyclo ring are linked in the form of n chains. 請求項1〜5の何れかに記載のジブロック共重合体において、分子鎖mAの繰返し数m及び分子鎖nBの繰返し数nが、それぞれ5〜5000であり、mとnの比(m/n)が95/5〜5/95であるジブロック共重合体。The diblock copolymer according to any one of claims 1 to 5, wherein the repeating number m of the molecular chain mA and the repeating number n of the molecular chain nB are each 5 to 5000, and the ratio of m to n (m / n n) a diblock copolymer of 95/5 to 5/95. 金属カルベン錯体触媒(C)が、式(5)又は(6)The metal carbene complex catalyst (C) has the formula (5) or (6)
Figure 0004900633
Figure 0004900633
(ここで、式(5)及び(6)中、Mはルテニウム、オスミウム又は鉄であり、X(Wherein, in formulas (5) and (6), M is ruthenium, osmium or iron, and X 3 〜X~ X 6 は、中心金属Mへ配位可能でその配位原子上に陰電荷をもつアニオン性配位子(原子又は原子団)であり、LIs an anionic ligand (atom or atomic group) capable of coordinating to the central metal M and having a negative charge on the coordination atom, 1 〜L~ L 4 は中心金属Mへ配位可能な中性の電子供与基を示し、RRepresents a neutral electron donating group capable of coordinating to the central metal M, R 7 〜R~ R 1010 は、それぞれ独立に、水素原子、炭素数1〜20のアルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基、炭素数6〜20のアリール基、炭素数1〜20のカルボキシレート基、炭素数1〜20のアルコキシ基、炭素数2〜20のアルケニルオキシ基、炭素数6〜20のアリールオキシ基、炭素数2〜20のアルコキシカルボニル基、炭素数1〜20のアルキルチオ基、炭素数1〜20のアルキルスルホニル基、炭素数1〜20のアルキルスルフィニル基、炭素数1〜20のアルキルセレノ基、炭素数1〜20のアルキルセレニニル基、又は炭素数1〜20のアルキルセレノニル基から選ばれ、それぞれは炭素数1〜5のアルキル基、ハロゲン、炭素数1〜5のアルコキシ基又は炭素数6〜20のアリール基で置換されていても良く、前記アリール基はハロゲン、炭素数1〜5のアルキル基又は炭素数1〜5のアルコキシ基で置換されていてもよい。)で示されるものである請求項1〜6の何れかに記載のジブロック共重合体。Are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or 1 to 20 carbon atoms. Carboxylate group, C 1-20 alkoxy group, C 2-20 alkenyloxy group, C 6-20 aryloxy group, C 2-20 alkoxycarbonyl group, C 1-20 carbon atom An alkylthio group, an alkylsulfonyl group having 1 to 20 carbon atoms, an alkylsulfinyl group having 1 to 20 carbon atoms, an alkylseleno group having 1 to 20 carbon atoms, an alkylseleninyl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms Each of which is substituted with an alkyl group having 1 to 5 carbon atoms, a halogen, an alkoxy group having 1 to 5 carbon atoms or an aryl group having 6 to 20 carbon atoms. Even if good, the aryl group is halogen, it may be substituted with an alkyl group or an alkoxy group having 1 to 5 carbon atoms of 1 to 5 carbon atoms. The diblock copolymer according to any one of claims 1 to 6, wherein
JP2001259943A 2001-04-02 2001-08-29 Novel block copolymer, production method and use thereof Expired - Fee Related JP4900633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001259943A JP4900633B2 (en) 2001-04-02 2001-08-29 Novel block copolymer, production method and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001102748 2001-04-02
JP2001-102748 2001-04-02
JP2001102748 2001-04-02
JP2001259943A JP4900633B2 (en) 2001-04-02 2001-08-29 Novel block copolymer, production method and use thereof

Publications (2)

Publication Number Publication Date
JP2002363265A JP2002363265A (en) 2002-12-18
JP4900633B2 true JP4900633B2 (en) 2012-03-21

Family

ID=26612932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001259943A Expired - Fee Related JP4900633B2 (en) 2001-04-02 2001-08-29 Novel block copolymer, production method and use thereof

Country Status (1)

Country Link
JP (1) JP4900633B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544525B1 (en) * 2000-08-11 2006-01-23 히다치 가세고교 가부시끼가이샤 Process for the production of block copolymers, block copolymers produced by the process, and use of the copolymers
JP2006193666A (en) * 2005-01-14 2006-07-27 Sumitomo Bakelite Co Ltd Adhesive film for semiconductor, carrier material having adhesive film for semiconductor and semiconductor device
JPWO2006101069A1 (en) * 2005-03-22 2008-09-04 日本ゼオン株式会社 Thermoplastic resin, method for producing the same, and molding material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251500A (en) * 1975-10-22 1977-04-25 Japan Synthetic Rubber Co Ltd Process for preparing copolymers by ring opening
JPS6043365B2 (en) * 1976-02-17 1985-09-27 昭和電工株式会社 Improved method for producing ring-opened polymers
JPS6043366B2 (en) * 1976-03-17 1985-09-27 昭和電工株式会社 Method for producing ring-opening polymer
JP2000072857A (en) * 1998-08-31 2000-03-07 Hitachi Chem Co Ltd Production of cyclo-olefin polymer
JP2000256443A (en) * 1999-03-05 2000-09-19 Hitachi Chem Co Ltd Polymerization method
WO2000073366A1 (en) * 1999-05-31 2000-12-07 Nippon Zeon Co., Ltd. Process for producing hydrogenated ring-opening polymerization polymer of cycloolefin
KR100544525B1 (en) * 2000-08-11 2006-01-23 히다치 가세고교 가부시끼가이샤 Process for the production of block copolymers, block copolymers produced by the process, and use of the copolymers

Also Published As

Publication number Publication date
JP2002363265A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
WO2002100917A1 (en) Open-ring copolymer, hydrogenated open-ring copolymer, processes for production of both, and compositions
WO1999001519A1 (en) Adhesive for semiconductor components
WO2004003052A1 (en) Processes for producing thermoplastic resins, crosslinked resins and crosslinked resin composite materials
JP2003313305A (en) Manufacture of crosslinked particle from polymer having crosslinkable group capable of being activated
WO2012039457A1 (en) Adhesive film for organic electrolyte accumulator devices
JPWO2012132150A1 (en) Thermosetting crosslinked cyclic olefin resin composition, thermosetting crosslinked cyclic olefin resin film, method for producing thermosetting crosslinked cyclic olefin resin composition, and method for producing thermosetting crosslinked cyclic olefin resin film
WO2005016991A1 (en) Polymerizable compositions and molded articles produced by using the same
JP6135104B2 (en) Crystalline cyclic olefin resin film, laminated film and method for producing the same
JP4900633B2 (en) Novel block copolymer, production method and use thereof
WO2021024956A1 (en) Polymerizable composition, cycloolefin-based polymer, and metal/resin composite
JP4239589B2 (en) Block copolymer production method, block copolymer obtained and use thereof
JP2012007117A (en) Thermosetting crosslinked cyclic olefin resin film and its manufacturing method
KR102489414B1 (en) Semiconductor device manufacturing method
JP2002317034A (en) Hydrogenated material of norbornene ring opening polymer having functional group at terminal and method for producing the same
JP4288827B2 (en) Curable molding material, molded article and method for producing the same
WO2012063579A1 (en) Thermosetting crosslinked cycloolefin resin film and manufacturing process therefor
JP6137187B2 (en) Manufacturing method of sealing material for secondary battery and manufacturing method of sealing material composition for secondary battery
US8349999B2 (en) Pyrene-containing norbornene methylene amine and polymer thereof, and method for manufacturing the polymer
CN114945644B (en) Adhesive composition
JP2002121267A (en) Method for producing block copolymer
JP2012188562A (en) Thermoset crosslinked cyclic olefin resin film, and method for manufacturing the same
JP5605276B2 (en) Thermosetting crosslinked cyclic olefin resin film and method for producing the same
JP2009167433A (en) Ring-opened copolymer, hydrogenated product of ring-opened copolymer, method for producing the same, and composition thereof
JP3928407B2 (en) Ring-opening polymer and process for producing ring-opening polymer hydride
JP2012102274A (en) Thermosetting crosslinked cyclic olefin resin film and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R151 Written notification of patent or utility model registration

Ref document number: 4900633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees