WO2002013212A1 - Inductance integree - Google Patents

Inductance integree Download PDF

Info

Publication number
WO2002013212A1
WO2002013212A1 PCT/FR2001/002546 FR0102546W WO0213212A1 WO 2002013212 A1 WO2002013212 A1 WO 2002013212A1 FR 0102546 W FR0102546 W FR 0102546W WO 0213212 A1 WO0213212 A1 WO 0213212A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
contact
level
inductor
turns
Prior art date
Application number
PCT/FR2001/002546
Other languages
English (en)
Inventor
Frédéric Lemaire
Original Assignee
Stmicroelectronics S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stmicroelectronics S.A. filed Critical Stmicroelectronics S.A.
Priority to EP01965316A priority Critical patent/EP1305808A1/fr
Priority to JP2002518480A priority patent/JP2004506320A/ja
Priority to US10/343,897 priority patent/US6791158B2/en
Priority to AU2001285983A priority patent/AU2001285983A1/en
Publication of WO2002013212A1 publication Critical patent/WO2002013212A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5227Inductive arrangements or effects of, or between, wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to the field of integrated circuits and more particularly to the production of an inductor formed above a semiconductor substrate.
  • FIGS. 1A and 1B represent, respectively seen from above and in section along the line BB 'of FIG. 1A, a classic example of an inductor 1 formed above a semiconductor substrate 2.
  • the inductor 1 comprises a certain number of turns or turns (at least one turn) generally concentric obtained by depositing a conductive element on an insulating layer 3 ( Figure IB).
  • the insulating layer 3, for example silicon oxide, rests on the last level of metalization 4 added to the substrate 2 after the formation of components integrated in this substrate.
  • two other metallization levels 5, 6 have been illustrated in dotted lines between the substrate 2 and the upper level 4. Each level is of course separated from the underlying level by an insulating layer, respectively 7 , 8.
  • the conductive element of inductance 1 is conventionally of constant width and thickness. It is deposited on the insulating layer 3, in the form of a flat winding from a first internal end 10 to a second external end 11. To allow a connection of the inductor 1 to the rest of the integrated circuit or to a terminal of a box, it is necessary to provide a contact resumption of the internal end 10 of the winding to the outside of this winding. Conventionally, this resumption of contact is obtained by using an underlying metallization level (generally the upper level 4). A conductive track 12 is formed there (generally rectilinear) between the plumb of the internal end 10 of the inductor 1 and the plumb of a stud 13 outside the winding.
  • the stud 13 is produced on the insulating layer 3 in the same conductive material as the winding of the inductor 1.
  • Vias 14 and 15 (for example, in tungsten) electrically connect the end 10 and the stud 13 at the respective ends of the underlying track 12.
  • the parasitic resistance (series resistance) of the inductor is a paramount parameter. To reduce the resistance of the conductive element to the passage of current, it is generally sought to maximize its section. It then increases not only the thickness but also the width of the turns of the inductor 1.
  • a drawback is that the resumption of contact with the internal end of the winding introduces a resistance in series which cancels the beneficial effects of the increase in cross section of this winding.
  • the thickness of the metal levels underlying the winding is imposed by the technology in which the other components integrated with the inductor are manufactured.
  • the metallization levels consist of aluminum deposited over a thickness of 0.8 to 1 ⁇ m.
  • the conductive level attached to the top of the structure and in which the turns are made has, in the case of aluminum, a thickness of the order of 2.5 ⁇ m.
  • such a an increase in thickness is only possible on the last level deposited.
  • the present invention aims to propose a new inductor in integrated circuit which overcomes the drawbacks of known integrated inductors.
  • the invention aims, more particularly, to solve the problems associated with the resumption of contact of the internal end of one inductor.
  • the invention aims to propose a solution to the problem of crossing, by resumption of contact in a lower level, of a flat winding of an inductor.
  • the present invention provides an integrated inductance, formed by a flat winding of at least one turn of a conductive material above a substrate provided with at least one underlying conductive level in which is achieved, by a contact recovery track, at least one crossing of the winding, the width of the coil being reduced directly above said contact recovery track.
  • the invention also provides an integrated inductance, formed by a winding of several turns, the width of at least one turn and / or at least one interval separating two turns being reduced in line with said recovery track of contact .
  • the crossing is used for the resumption of contact from an internal end of the winding to an external stud.
  • the layout of the turns is such that the outer turn is, at the level of contact resumption, closer to the center of the winding than the rest of this outer turn.
  • the resistance per square of the conductive material constituting the winding is substantially lower than the resistance per square of the underlying conductive level in which the contact is made, the thickness of the material conductor constituting the winding preferably being substantially greater than the thickness of the underlying conductor level.
  • the differences, in the alignment of the contact recovery, between the two connected winding parts, are minimized.
  • the length of the narrowed section or sections which is a function of the width of the contact recovery track, is chosen to be as short as possible.
  • the conductive material is aluminum, the underlying conductive level also being made of aluminum.
  • said conductive material is copper having a thickness of several tens of micrometers, the underlying conductive level being made of aluminum with a thickness of the order of a micrometer.
  • said conductive level consists of the upper level of metallization used for the interconnections of other components of the integrated circuit.
  • FIGS. 2A and 2B show, respectively from above and in section, an embodiment of an integrated inductor according to the present invention
  • FIGS. 3A and 3B illustrate, by representations of an integrated inductor, respectively from above and in section, alternative embodiments of the present invention.
  • a feature of the present invention is to provide a narrowing of the conductive element constituting a winding of an integrated inductor, directly above an underlying conductive track allowing, by contact recovery, a crossing of the 'winding.
  • Such localized narrowing of the winding turn (s) makes it possible to reduce the length of the underlying contact resumption section, therefore the series resistance of the inductor.
  • a characteristic of the invention is to provide, at the base of the underlying contact resumption, a narrowing of at least one turn of the conductive element and / or of at least an insulating interval between turns.
  • FIGS. 2A and 2B represent, respectively by a top view and by a section along the line BB 'in FIG. 2A, an embodiment of an integrated inductor according to the present invention.
  • an inductor 20 according to the invention consists of one or more turns of a conductive element deposited above a semiconductor substrate 2 in which integrated circuits have been formed.
  • the inductor 20 is deposited flat on an insulating layer 3 covering the last level of metallization 4 of the integrated circuit.
  • FIG. 2B shows the same metallic levels 5, 6 and insulators 7, 8 as in the example described previously in relation to FIG. IB.
  • the inductor 20 comprises three turns, a quarter of square shape.
  • an inductor according to the invention can have any shape (round, oval or polygonal) and any number of turns as well.
  • This resumption of contact is carried out by means of a conductive track 12 ′ obtained, for example, in the last level of metallization 4 underlying the conductive element constituting the inductor 20.
  • the internal end 10 and the stud 13 are connected to the respective ends of the track 12 ′ by means of vias 14, 15.
  • each turn 21, 22 or 23 which must pass over the contact recovery track 12 ′ has, at the base of this track 12 ′, a narrowed section, respectively 21 ', 22' and 23 '.
  • the narrowing 22 ′ of the intermediate turn 22 is, for example, in alignment with the rest of the straight section in which it is formed.
  • the narrowing 21 'and 23' are then not aligned with the rest of the corresponding sections of the turns 21 and 23 in order to bring the sections 21 'and 23' as close as possible to the section 22 '.
  • the connection between each narrowed section and the rest of the corresponding turn can have any shape (for example, oblique as shown, or at right angles).
  • the narrowing makes it possible to reduce the length of the track 12 'relative to the same track having to cross the sections 21, 22 and 23 in their non-narrowed portions.
  • the narrowed sections are mutually parallel and, for example, perpendicular to the contact recovery track, the length of which we want to minimize. Consequently, a contact recovery section according to the invention has a lower resistance than that of a conventional section in the same technology. By reducing the resistance of the contact recovery section, the overall series resistance of the inductor is reduced and its quality factor is therefore improved.
  • the narrowing provided by the invention is localized and as short as possible to minimize the resistance introduced into each turn.
  • this narrowing is not accompanied by a thinning, so that the section of the sections 21 ′, 22 ′ and 23 ′ remain relatively large (in particular compared to the underlying level).
  • integrated inductors are generally used for high frequency applications where the current in the inductor is essentially a function of the perimeter of its section (skin effect). Consequently, if the turns are sufficiently thick (thicker than wide), the inductance is not degraded by the narrowing provided for by the invention.
  • the minimum width of the conductive sections of the inductance and of the intervals between turns is essentially linked to the technological sector used as a function of the thickness of these conductive sections.
  • copper is also used which can then be deposited in a much thicker layer to make the inductor. Copper thicknesses of several tens of ⁇ m can then be obtained (for example, around 30 ⁇ m). With such technology, the minimum width and spacing are approximately half the thickness (i.e., about 15 ⁇ m, for example).
  • the width of the non-narrowed sections is for example of the order of
  • the underlying metallization levels remain, for example, aluminum.
  • FIGS. 3A and 3B illustrate alternative embodiments of an inductor according to the invention.
  • Figure 3A is a top view and Figure 3B is a sectional view along line B-B 'of Figure 3A.
  • FIGS. 3A and 3B is a hexagonal inductor 30 of four one-third turns, formed of rectilinear sections.
  • this embodiment includes another variant in the arrangement of the narrowing 31 ', 32', 33 'and 34' of the turns 31, 32, 33 and 34 directly above the track 12 'of transfer from the internal end 10 of the inductor 30 towards the external stud 13.
  • these narrowing are brought as close as possible to the internal end 10 of the inductor 30 while in the embodiment of FIGS. 2A and 2B, these narrowing make it possible to tighten the turns 21 and 23 symmetrically with respect to the second turn 22.
  • Other variants are possible. For example, provision may be made to tighten the narrowed sections towards the external turn
  • the inductance is said to be "symmetrical" and comprises a crossing approximately equidistant from the ends of the winding which are both outside of the latter. In the case of a winding with several turns, there are then several crossings, each resumption of contact passing under a single turn.
  • An advantage of the present invention is that it reduces the series resistance of the inductor compared to a conventional inductor.
  • the implementation of the invention reduces the parasitic capacities. On the one hand by reducing the length of the contact recovery track, the capacity between it is reduced and the substrate. On the other hand, by narrowing the turns, the capacity between the winding and the resumption of contact is reduced.
  • Another advantage of the invention is that it reduces the surface area of the integrated circuit in which the inductance is inscribed. Indeed, by tightening the turns inward at their narrowing, we bring the pad 13 of external connection, the center of the winding. This advantage is shown in particular in FIG. 3A.
  • the present invention is susceptible of various variants and modifications which will appear to those skilled in the art.
  • the respective dimensions of the sections of the inductor, of their narrowing and of the underlying contact resumption track depend on the application and are to be adapted on a case-by-case basis by those skilled in the art.
  • the level of contact recovery can be constituted by any level of metallization or polycrystalline silicon, or even by a region of the substrate.
  • the winding itself may include several conductive levels in parallel (connected by vias) provided that the winding has, at least in one of these levels, a linear resistance lower than that of the resumption of contact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

L'invention concerne une inductance intégrée (20), formée d'un enroulement à plat d'une ou plusieurs spires (21, 22, 23) en un matériau conducteur au-dessus d'un substrat pourvu d'au moins un niveau conducteur sous-jacent dans lequel est réalisé, par une piste (12') de reprise de contact, au moins un croisement de l'enroulement, la largeur d'au moins une spire et/ou d'au moins un intervalle entre deux spires étant réduite à l'aplomb de ladite piste de reprise de contact.

Description

INDUCTANCE INTEGREE
La présente invention concerne le domaine des circuits intégrés et plus particulièrement la réalisation d'une inductance formée au-dessus d'un substrat semiconducteur.
Les figures 1A et IB représentent, respectivement vu de dessus et en coupe selon la ligne B-B' de la figure 1A, un exemple classique d'une inductance 1 formée au-dessus d'un substrat semiconducteur 2. L ' inductance 1 comprend un certain nombre de tours ou spires (au moins une spire) généralement concentriques obtenus par le dépôt d'un élément conducteur sur une couche isolante 3 (figure IB) . La couche isolante 3, par exemple de l'oxyde de silicium, repose sur le dernier niveau de métal- lisation 4 rapporté sur le substrat 2 après formation de composants intégrés dans ce substrat. Dans l'exemple de la figure IB, deux autres niveaux de métallisations 5, 6 ont été illustrés en pointillés entre le substrat 2 et le niveau supérieur 4. Chaque niveau est bien sûr séparé du niveau sous-jacent par une couche isolante, respectivement 7, 8. L'élément conducteur de l'inductance 1 est classiquement de largeur et d'épaisseur constantes. Il est déposé sur la couche isolante 3, sous la forme d'un enroulement à plat depuis une première extrémité interne 10 jusqu'à une deuxième extrémité externe 11. Pour permettre un raccordement de l'inductance 1 au reste du circuit intégré ou à une borne d'un boîtier, il est nécessaire de prévoir une reprise de contact de l'extrémité interne 10 de l'enroulement jusqu'à l'extérieur de cet enrou- lement. Classiquement, cette reprise de contact est obtenue en utilisant un niveau de métallisation sous-jacent (généralement le niveau supérieur 4) . On y forme une piste conductrice 12 (généralement rectiligne) entre l'aplomb de l'extrémité interne 10 de l'inductance 1 et l'aplomb d'un plot 13 à l'extérieur de 1 ' enroulement . Le plot 13 est réalisé sur la couche isolante 3 dans le même matériau conducteur que l'enroulement de l'inductance 1. Des vias 14 et 15 (par exemple, en tungstène) relient électriquement l'extrémité 10 et le plot 13 aux extrémités respectives de la piste sous-jacente 12. Dans la réalisation d'une inductance, on cherche généralement à optimiser son facteur de qualité. Parmi les paramètres qui influent sur ce facteur de qualité, la résistance parasite (résistance série) de l'inductance est un paramètre primordial. Pour réduire la résistance de l'élément conducteur au passage du courant, on cherche généralement à maximiser sa section. On augmente alors non seulement l'épaisseur mais également la largeur des spires de 1 ' inductance 1.
Un inconvénient est que la reprise du contact de l'extrémité interne de l'enroulement introduit une résistance en série qui annule les effets bénéfiques de l'augmentation de section de cet enroulement. En effet, l'épaisseur des niveaux métalliques sous-jacents à l'enroulement est imposée par la technologie dans laquelle sont fabriqués les autres composants intégrés avec l'inductance. Par exemple, les niveaux de métallisations sont constitués en aluminium déposé sur une épaisseur de 0,8 à 1 μm. Le niveau conducteur rapporté sur le dessus de la structure et dans lequel sont réalisées les spires présente, dans le cas de l'aluminium, une épaisseur de l'ordre de 2,5 μm. Toutefois, pour ne pas nuire à la fabrication du circuit intégré, une telle augmentation d'épaisseur n'est envisageable que sur le dernier niveau déposé.
Ce problème se pose quel que soit le nombre de spires de 1 ' inductance et quel que soit les matériaux conducteurs utili- ses. En outre, il se rencontre plus généralement à chaque fois que l'on souhaite réaliser un croisement dans un enroulement d'une inductance intégrée.
La présente invention vise à proposer une nouvelle inductance en circuit intégré qui pallie les inconvénients des inductances intégrées connues.
L'invention vise, plus particulièrement, à résoudre les problèmes liés à la reprise de contact de l'extrémité interne de 1 ' inductance.
Plus généralement, l'invention vise à proposer une solution au problème de croisement, par reprise de contact dans un niveau inférieur, d'un enroulement à plat d'une inductance.
Pour atteindre ces objets, la présente invention prévoit une inductance intégrée, formée d'un enroulement à plat d'au moins une spire en un matériau conducteur au-dessus d'un substrat pourvu d'au moins un niveau conducteur sous-jacent dans lequel est réalisé, par une piste de reprise de contact, au moins un croisement de l'enroulement, la largeur de la spire étant réduite à l'aplomb de ladite piste de reprise de contact.
L'invention prévoit également une inductance intégrée, formée d'un enroulement de plusieurs spires, la largeur d'au moins une spire et/ou d'au moins un intervalle séparant deux spires étant réduite à l'aplomb de ladite piste de reprise de contact .
Selon un mode de réalisation de la présente invention, le croisement sert à la reprise de contact d'une extrémité interne de l'enroulement vers un plot externe.
Selon un mode de réalisation de la présente invention, le tracé des spires est tel que la spire externe est, au niveau de la reprise de contact, plus proche du centre de l'enroulement que le reste de cette spire externe. Selon un mode de réalisation de la présente invention, la résistance par carré du matériau conducteur constitutif de l'enroulement est sensiblement inférieure à la résistance par carré du niveau conducteur sous-jacent dans lequel est réalisée la reprise de contact, l'épaisseur du matériau conducteur constitutif de l'enroulement étant, de préférence, sensiblement supérieure à l'épaisseur du niveau conducteur sous-jacent.
Selon un mode de réalisation de la présente invention, les écarts, dans l'alignement de la reprise de contact, entre les deux parties d'enroulement raccordées, sont minimisés.
Selon un mode de réalisation de la présente invention, la longueur du ou des tronçons rétrécis, qui est fonction de la largeur de la piste de reprise de contact, est choisie pour être la plus courte possible. Selon un mode de réalisation de la présente invention, le matériau conducteur est de l'aluminium, le niveau conducteur sous-jacent étant également en aluminium.
Selon un mode de réalisation de la présente invention, ledit matériau conducteur est du cuivre ayant une épaisseur de plusieurs dizaines de micromètres, le niveau conducteur sous- jacent étant en aluminium d'une épaisseur de l'ordre du micromètre .
Selon un mode de réalisation de la présente invention, ledit niveau conducteur est constitué par le niveau supérieur de metallisation utilisé pour les interconnexions d'autres composants du circuit intégré.
Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles : les figures 1A et IB décrites précédemment représentent, respectivement de dessus et en coupe, un exemple classique d'une inductance en circuit intégré ; les figures 2A et 2B représentent, respectivement de dessus et en coupe, un mode de réalisation d'une inductance intégrée selon la présente invention ; et les figures 3A et 3B illustrent, par des repré- sentations d'une inductance intégrée, respectivement de dessus et en coupe, des variantes de réalisation de la présente invention.
Les mêmes éléments ont été désignés par les mêmes références aux différentes figures. Pour des raisons de clarté, seuls les éléments qui sont nécessaires à la compréhension de l'in- vention ont été représentés aux figures et seront décrits par la suite. En particulier, les composants avec lesquels sont intégrées une ou plusieurs inductances sur le substrat semiconducteur n'ont pas été représentés aux figures et ne font pas l'objet de la présente invention. Une caractéristique de la présente invention est de prévoir un rétrécissement de l'élément conducteur constitutif d'un enroulement d'une inductance intégrée, à l'aplomb d'une piste conductrice sous-jacente permettant, par reprise de contact, un croisement de l'enroulement. Un tel rétrécissement localisé de la ou des spires de l'enroulement permet de réduire la longueur du tronçon sous-jacent de reprise de contact, donc la résistance série de l'inductance. Dans une inductance à plusieurs spires, une caractéristique de l'invention est de prévoir, à l'aplomb de la reprise de contact sous-jacente, un rétrécissement d'au moins une spire de l'élément conducteur et/ou d'au moins un intervalle isolant entre spires.
L'invention sera décrite par la suite en relation avec des exemples de reprise de contact d'une extrémité interne de l'enroulement. Toutefois, tout ce qui sera exposé par la suite s'applique plus généralement à un croisement à n'importe quel endroit de l'enroulement.
Les figures 2A et 2B représentent, respectivement par une vue de dessus et par une coupe selon la ligne B-B' de la figure 2A, un mode de réalisation d'une inductance intégrée selon la présente invention. De façon classique, une inductance 20 selon l'invention est constituée d'une ou plusieurs spires d'un élément conducteur déposé au-dessus d'un substrat semiconducteur 2 dans lequel ont été formés des circuits intégrés. L'inductance 20 est déposée à plat sur une couche isolante 3 recouvrant le dernier niveau de metallisation 4 du circuit intégré. L'exemple de la figure 2B reprend les mêmes niveaux métalliques 5, 6 et isolants 7, 8 que dans l'exemple décrit précédemment en relation avec la figure IB. Dans l'exemple de la figure 2A, l'inductance 20 comporte trois spires un quart de forme carrée. Toutefois, une inductance selon l'invention peut présenter une forme quelconque (ronde, ovale ou polygonale) et un nombre de spires également quelconque. Le recours à des tronçons rectilignes simplifie cependant la réalisation. Comme précédemment, on prévoit une reprise de contact de l'extrémité 10 interne de l'enroulement vers un plot 13 externe à cet enroulement. Cette reprise de contact est effectuée au moyen d'une piste conductrice 12' obtenue, par exemple, dans le dernier niveau de metallisation 4 sous-jacent à l'élément conducteur constitutif de l'inductance 20. L'extrémité interne 10 et le plot 13 sont reliés aux extrémités respectives de la piste 12' au moyen de vias 14, 15.
En variante, dans un circuit à plusieurs niveaux de metallisations, on peut utiliser plusieurs pistes superposées dans les niveaux de metallisations successifs pour former la reprise de contact. Ces pistes sont alors connectées en parallèle au moyen de vias traversant les différentes couches isolantes 3, 4 et 8. En effet, ces niveaux de metallisation sont disponibles dans la mesure où l'inductance est généralement rapportée sur une partie du substrat dépourvue d'autres composants. Toutefois, cette solution conduit à utiliser des niveaux de plus en plus près du substrat, ce qui accroît les capacités parasites entre l'enroulement et le substrat. Le choix de cette variante dépend du compromis souhaité entre la diminution de la résistance série et l'augmentation de ces capacités. Selon une autre variante, le premier niveau de metallisation utilisé ne sera pas le niveau le plus près de l'enroulement. Dans ce cas, on diminue la capacité parasite entre l'enroulement et la reprise de contact.
Selon le mode de réalisation représenté aux figures 2A et 2B, chaque spire 21, 22 ou 23 qui doit passer au-dessus de la piste 12' de reprise de contact présente, à l'aplomb de cette piste 12', un tronçon rétréci, respectivement 21', 22' et 23'. Vue de dessus, le rétrécissement 22' de la spire intermédiaire 22 est, par exemple, dans l'alignement du reste du tronçon recti- ligne dans lequel il est formé. Les rétrécissements 21' et 23' ne sont alors pas alignés avec le reste des tronçons correspondants des spires 21 et 23 pour rapprocher le plus possible les tronçons 21' et 23' du tronçon 22'. La liaison entre chaque tronçon rétréci et le reste de la spire correspondante peut avoir une forme quelconque (par exemple, oblique comme cela est représenté, ou à angle droit) . Les rétrécissements permettent de réduire la longueur de la piste 12 ' par rapport à une même piste devant traverser les tronçons 21, 22 et 23 dans leurs portions non- rétrécies. Pour des spires à tronçons rectilignes, les tronçons rétrécis sont parallèles entre eux et, par exemple, perpendiculaires à la piste de reprise de contact dont on veut minimiser la longueur. Par conséquent, un tronçon de reprise de contact selon l'invention présente une résistance inférieure à celle d'un tronçon classique dans la même technologie. En rédui- sant la résistance du tronçon de reprise de contact, on diminue la résistance série globale de l'inductance et on améliore donc son facteur de qualité.
On aurait pu penser qu'en, rétrécissant les spires conductrices, on augmente la résistance série des tronçons correspondants d'une ampleur telle que la diminution de longueur de la piste de reprise de contact ne serve à rien. Or, il n'en est rien. Tout d'abord, le rétrécissement prévu par l'invention est localisé et le plus court possible pour minimiser la résistance introduite dans chaque spire. De plus, ce rétrécissement ne s'accompagne pas d'un amincissement, de sorte que la section des tronçons 21 ' , 22 ' et 23 ' reste relativement importante (notamment par rapport au niveau sous-jacent) . En outre, les inductances intégrées sont généralement utilisées pour des applications haute fréquence où le courant dans l'inductance est essentiellement fonction du périmètre de sa section (effet de peau) . Par conséquent, si les spires sont suffisamment épaisses (plus épaisses que larges), l'inductance n'est pas dégradée par les rétrécissements prévus par l'invention.
En reprenant l'exemple précédent d'un élément conduc- teur en aluminium d'une épaisseur de 2,5 μm rapporté sur un empilement de niveaux de metallisation en aluminium de 0, 8 μm, on peut prévoir un rétrécissement jusqu'à une largeur de 2 μm (si la résistance série alors introduite le permet) dans des spires ayant pour le reste une largeur donnée comprise, par exemple, entre une et quelques dizaines de μm.
Dans une variante (non représentée) où seuls les intervalles entre spires sont rétrécis à l'aplomb de la reprise de contact, la résistance série de l'enroulement n'est pas modifiée.
La largeur minimum des tronçons conducteurs de l'induc- tance et des intervalles entre spires est essentiellement liée à la filière technologique utilisée en fonction de l'épaisseur de ces tronçons conducteurs.
Par exemple, pour améliorer la conductivité de l'inductance, on utilise également du cuivre qui peut alors être déposé en couche nettement plus épaisse pour réaliser l'inductance. On peut alors obtenir des épaisseurs de cuivre de plusieurs dizaines de μm (par exemple, environ 30 μm) . Avec une telle technologie, la largeur minimum et l'espacement sont approximativement de la moitié de l'épaisseur (soit, par exemple, environ 15 μm) . La largeur des tronçons non-rétrécis est par exemple, de l'ordre de
30 à 40 μm. Les niveaux de metallisation sous-jacents restent, par exemple, en aluminium.
Bien entendu, on pourra jouer sur la nature du matériau et/ou sur son épaisseur. Ce qui est important, c'est que la résistance par carré de l'élément conducteur de l'enroulement soit inférieure à la résistance par carré du niveau de metallisation contenant la reprise de contact.
Les figures 3A et 3B illustrent des variantes de réalisation d'une inductance selon l'invention. La figure 3A est une vue de dessus et la figure 3B est une vue en coupe selon la ligne B-B' de la figure 3A.
Le mode de réalisation illustré par les figures 3A et 3B est une inductance hexagonale 30 de quatre spires un tiers, formées de tronçons rectilignes. Outre la variante de forme, ce mode de réalisation comprend une autre variante dans la disposition des rétrécissements 31', 32', 33' et 34' des spires 31, 32, 33 et 34 à l'aplomb de la piste 12' de report de l'extrémité interne 10 de l'inductance 30 vers le plot externe 13. Dans le mode de réalisation des figures 3A et 3B, ces rétrécissements sont ramenés le plus près possible de l'extrémité 10 interne de l'inductance 30 alors que dans le mode de réalisation des figures 2A et 2B, ces rétrécissements permettent de resserrer les spires 21 et 23 symétriquement par rapport à la deuxième spire 22. D'autres variantes sont envisageables. Par exemple, on pourra prévoir de resserrer les tronçons rétrécis vers la spire externe
34 plutôt que vers la spire interne 31. Dans ce cas, l'extrémité interne 10 de l'inductance est également rapprochée de la spire externe 34.
Selon un autre mode de réalisation non représenté, l'inductance est dite "symétrique" et comprend un croisement approximativement à équidistance des extrémités de l'enroulement qui sont toutes les deux à l'extérieur de celui-ci. Dans le cas d'un enroulement à plusieurs spires, il y a alors plusieurs croisements, chaque reprise de contact passant sous une seule spire.
Un avantage de la présente invention est qu'elle réduit la résistance série de l'inductance par rapport à une inductance classique. De plus, la mise en oeuvre de l'invention réduit les capacités parasites. D'une part en réduisant la longueur de la piste de reprise de contact, on réduit la capacité entre celle-ci et le substrat. D'autre part, en rétrécissant les spires, on réduit la capacité entre l'enroulement et la reprise de contact.
Un autre avantage de l'invention est qu'elle diminue la surface de circuit intégré dans laquelle s ' inscrit 1 ' inductance. En effet, en resserrant les spires vers l'intérieur au niveau de leur rétrécissement, on rapproche le plot 13 de connexion extérieur, du centre de l'enroulement. Cet avantage ressort en particulier de la figure 3A.
Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme de l'art. En particulier, les dimensionnements respectifs des tronçons de l'inductance, de leur rétrécissement et de la piste sous- jacente de reprise de contact dépendent de l'application et sont à adapter au cas par cas par l'homme de l'art. En outre, le niveau de reprise de contact pourra être constitué par n'importe quel niveau de metallisation ou de silicium polycristallin, voire par une région du substrat. Enfin, l'enroulement lui-même pourra comprendre plusieurs niveaux conducteurs en parallèle (reliés par des vias) pourvu que l'enroulement présente, au moins dans un de ces niveaux, une résistance linéique inférieure à celle de la reprise de contact.

Claims

REVENDICATIONS
1. Inductance intégrée (20 ; 30), formée d'un enroulement à plat d'au moins une spire (21, 22, 23 ; 31, 32, 33, 34) en un matériau conducteur au-dessus d'un substrat (2) pourvu d'au moins un niveau conducteur (4) sous-jacent dans lequel est réa- lise, par une piste (12') de reprise de contact, au moins un croisement de l'enroulement, caractérisée en ce que la largeur de la spire est réduite à l'aplomb de ladite piste de reprise de contact .
2. Inductance intégrée (20 ; 30), formée d'un enrou- lement à plat de plusieurs spires (21, 22, 23 ; 31, 32, 33, 34) en un matériau conducteur au-dessus d'un substrat (2) pourvu d'au moins un niveau conducteur (4) sous-jacent dans lequel est réalisé, par une piste (12') de reprise de contact, au moins un croisement de l'enroulement, caractérisée en ce que la largeur d'au moins une spire et/ou d'au moins un intervalle séparant deux spires est réduite à l'aplomb de ladite piste de reprise de contact .
3. Inductance selon la revendication 1 ou 2, caractérisée en ce que le croisement sert à la reprise de contact d'une extrémité interne (10) de l'enroulement vers un plot (13) externe .
4. Inductance selon les revendications 2 et 3, caractérisée en ce que le tracé des spires (21, 22, 23 ; 31, 32, 33, 34) est tel que la spire externe est, au niveau de la reprise de contact (12'), plus proche du centre de l'enroulement que le reste de cette spire externe.
5. Inductance selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la résistance par carré du matériau conducteur constitutif de l'enroulement est sensiblement infé- rieure à la résistance par carré du niveau conducteur (4) sous- jacent dans lequel est réalisée la reprise de contact (12'), l'épaisseur du matériau conducteur constitutif de l'enroulement étant, de préférence, sensiblement supérieure à l'épaisseur du niveau conducteur sous-jacent.
6. Inductance selon l'une quelconque des revendications 1 à 5, caractérisée en ce que les écarts, dans l'alignement de la reprise de contact, entre les deux parties d'enroulement raccordées, sont minimisés.
7. inductance selon l'une quelconque des revendications
1 à 6, caractérisée en ce que la longueur du ou des tronçons rétrécis (21', 22', 23' ; 31', 32', 33', 34'), qui est fonction de la largeur de la piste de reprise de contact (14'), est choisie pour être la plus courte possible.
8. Inductance selon l'une quelconque des revendications
1 à 7, caractérisée en ce que le matériau conducteur est de l'aluminium, le niveau conducteur sous-jacent (4) étant également en aluminium.
9. Inductance selon l'une quelconque des revendications l à 8, caractérisée en ce que ledit matériau conducteur est du cuivre ayant une épaisseur de plusieurs dizaines de micromètres, le niveau conducteur sous-jacent (4) étant en aluminium d'une épaisseur de l'ordre du micromètre.
10. Inductance selon l'une quelconque des reven- dications 1 à 9, caractérisée en ce que ledit niveau conducteur
(4) est constitué par le niveau supérieur de metallisation utilisé pour les interconnexions d'autres composants du circuit intégré .
PCT/FR2001/002546 2000-08-04 2001-08-03 Inductance integree WO2002013212A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01965316A EP1305808A1 (fr) 2000-08-04 2001-08-03 Inductance integree
JP2002518480A JP2004506320A (ja) 2000-08-04 2001-08-03 集積化インダクタンス
US10/343,897 US6791158B2 (en) 2000-08-04 2001-08-03 Integrated inductor
AU2001285983A AU2001285983A1 (en) 2000-08-04 2001-08-03 Integrated inductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/10340 2000-08-04
FR0010340A FR2812755B1 (fr) 2000-08-04 2000-08-04 Inductance integree

Publications (1)

Publication Number Publication Date
WO2002013212A1 true WO2002013212A1 (fr) 2002-02-14

Family

ID=8853325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/002546 WO2002013212A1 (fr) 2000-08-04 2001-08-03 Inductance integree

Country Status (6)

Country Link
US (1) US6791158B2 (fr)
EP (1) EP1305808A1 (fr)
JP (1) JP2004506320A (fr)
AU (1) AU2001285983A1 (fr)
FR (1) FR2812755B1 (fr)
WO (1) WO2002013212A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100407391C (zh) * 2002-03-19 2008-07-30 先进微装置公司 用以校准用于测量半导体装置特征尺寸的散射测量工具的方法以及结构

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6750750B2 (en) * 2001-12-28 2004-06-15 Chartered Semiconductor Manufacturing Ltd. Via/line inductor on semiconductor material
US20060088971A1 (en) * 2004-10-27 2006-04-27 Crawford Ankur M Integrated inductor and method of fabrication
US10840005B2 (en) 2013-01-25 2020-11-17 Vishay Dale Electronics, Llc Low profile high current composite transformer
US10998124B2 (en) * 2016-05-06 2021-05-04 Vishay Dale Electronics, Llc Nested flat wound coils forming windings for transformers and inductors
KR102464202B1 (ko) 2016-08-31 2022-11-04 비쉐이 데일 일렉트로닉스, 엘엘씨 낮은 직류 저항을 갖는 고전류 코일을 구비한 인덕터
US11948724B2 (en) 2021-06-18 2024-04-02 Vishay Dale Electronics, Llc Method for making a multi-thickness electro-magnetic device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08116031A (ja) * 1994-10-17 1996-05-07 Hitachi Ltd 半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169320B1 (en) * 1998-01-22 2001-01-02 Raytheon Company Spiral-shaped inductor structure for monolithic microwave integrated circuits having air gaps in underlying pedestal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08116031A (ja) * 1994-10-17 1996-05-07 Hitachi Ltd 半導体装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BURGHARTZ J N ET AL: "MONOLITHIC SPIRAL FABRICATED USING A VLSI CU-DAMASCENE INTERCONNECT TECHNOLOGY AND LOW-LOSS SUBSTRATES", INTERNATIONAL ELECTRON DEVICES MEETING (IEDM),US,NEW YORK, IEEE, 8 December 1996 (1996-12-08), pages 99 - 102, XP000753739, ISBN: 0-7803-3394-2 *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 09 30 September 1996 (1996-09-30) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100407391C (zh) * 2002-03-19 2008-07-30 先进微装置公司 用以校准用于测量半导体装置特征尺寸的散射测量工具的方法以及结构

Also Published As

Publication number Publication date
AU2001285983A1 (en) 2002-02-18
JP2004506320A (ja) 2004-02-26
US6791158B2 (en) 2004-09-14
FR2812755B1 (fr) 2002-10-31
US20030178694A1 (en) 2003-09-25
EP1305808A1 (fr) 2003-05-02
FR2812755A1 (fr) 2002-02-08

Similar Documents

Publication Publication Date Title
FR2968130A1 (fr) Dispositif semi-conducteur comprenant un condensateur et un via de connexion electrique et procede de fabrication
FR2495377A1 (fr) Encapsulation pour un circuit integre
CA2301988A1 (fr) Circuit integre monolithique incorporant un composant inductif et procede de fabrication d'un tel circuit integre
WO2002013212A1 (fr) Inductance integree
FR2983638A1 (fr) Procede de formation d'un circuit integre
FR2936349A1 (fr) Inductance a surface reduite et a capacite de conduction de forts courants amelioree.
EP0892442B1 (fr) Procédé de fabrication d'une capacité métal-métal au sein d'un circuit intégré, et circuit intégré correspondant
EP3182450A1 (fr) Dispositif d'inductance et son procédé de fabrication
EP3579255A1 (fr) Circuit integre comportant une inductance variable
EP1231615A1 (fr) Structure d'inductance intégrée
FR2961345A1 (fr) Circuit integre passif
EP1302955A1 (fr) Inductance et son procédé de fabrication
EP0903783B1 (fr) Réalisation d'un condensateur intermétallique
FR2925980A1 (fr) Plot de contact electrique
EP4141915A1 (fr) Procédé de fabrication d'une puce électronique encapsulée à l'échelle de la puce ainsi que le dispositif correspondant
EP0975018A1 (fr) Procédé de formation d'une capacité sur un circuit intégré
FR2638894A1 (fr) Dispositif et procede de connexion et de fixation de composants
FR2801425A1 (fr) Capacite integree a dielectrique hybride
CA2351790A1 (fr) Microcomposant du type micro-inductance ou microtransformateur
EP3037810A1 (fr) Capteur d'humidite ameliore
FR2908231A1 (fr) Noyau magnetique ferme en forme de spirale et micro-inductance integree comportant un tel noyau magnetique ferme
WO2018154242A2 (fr) Composant electronique muni d'un transistor et de doigts interdigites pour former au moins une partie d'un composant capacitif au sein du composant electronique
EP1054446B1 (fr) Procédé de mise en boítier d'une puce semiconductrice
EP4311395A1 (fr) Commutateur à base de matériau à changement de phase
FR2832855A1 (fr) Circuit monolithique double face

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002518480

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2001965316

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001965316

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10343897

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001965316

Country of ref document: EP