WO2002013203A2 - Composicion dielectrica para la fabricacion de estructuras aislantes - Google Patents

Composicion dielectrica para la fabricacion de estructuras aislantes Download PDF

Info

Publication number
WO2002013203A2
WO2002013203A2 PCT/MX2001/000056 MX0100056W WO0213203A2 WO 2002013203 A2 WO2002013203 A2 WO 2002013203A2 MX 0100056 W MX0100056 W MX 0100056W WO 0213203 A2 WO0213203 A2 WO 0213203A2
Authority
WO
WIPO (PCT)
Prior art keywords
insulating structure
dielectric
further characterized
structure according
preparation
Prior art date
Application number
PCT/MX2001/000056
Other languages
English (en)
French (fr)
Other versions
WO2002013203A3 (es
Inventor
Gerardo Pagaza Melero
Saturnino Enrique Martinez Herrera
Victor Pagaza Melero
Original Assignee
Gerardo Pagaza Melero
Martinez Herrera Saturnino Enr
Victor Pagaza Melero
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from MXPA/A/2000/007626A external-priority patent/MXPA00007626A/es
Application filed by Gerardo Pagaza Melero, Martinez Herrera Saturnino Enr, Victor Pagaza Melero filed Critical Gerardo Pagaza Melero
Priority to AU2001280255A priority Critical patent/AU2001280255A1/en
Priority to BR0107116-5A priority patent/BR0107116A/pt
Publication of WO2002013203A2 publication Critical patent/WO2002013203A2/es
Priority to US10/114,361 priority patent/US20020165320A1/en
Publication of WO2002013203A3 publication Critical patent/WO2002013203A3/es

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes

Definitions

  • the present invention is related to the techniques for the elaboration of dielectric materials, and more particularly it is related to a dielectric composition for the manufacture of insulating structures.
  • insulating structures to coatings, products and / or materials that allow electrically isolate a person who is near a high voltage source, or, that allow electrically isolate various objects, devices , machines, tools, devices and / or equipment from a high voltage source.
  • insulating structures in the form of a mat or platform, which isolate users who handle high-voltage equipment, most of which are manufactured from fiberglass.
  • Another material that could be used in the manufacture of mats or insulating pallets is wood.
  • this material has the disadvantage of suffering deterioration in a very short time due to handling and humidity, among other factors, so it does not guarantee reliable insulation after a short useful life, putting the user at risk by being susceptible to absorb moisture
  • Figure 1 is a cross-sectional view of an insulating structure constructed in accordance with the principles of the present invention.
  • Figure 2 is a cross-sectional view of a second embodiment of an insulating structure constructed in accordance with the principles of the present invention.
  • Figure 3 is a cross-sectional view of a third embodiment of an insulating structure constructed in accordance with the principles of the present invention.
  • Figure 4 is a cross-sectional view of a fourth embodiment of an insulating structure in accordance with the principles of the present invention.
  • Figure 5 is a bottom plan view of a fifth embodiment of an insulating structure in accordance with the principles of the present invention.
  • Figure 6 is a cross-sectional view of a sixth embodiment of an insulating structure constructed in accordance with the principles of the present invention.
  • Figures 7 a , 7B and 7C are electrical diagrams of assemblies for a dielectric strength test using high direct current voltage.
  • Figures 8A and 8B are electrical assembly diagrams for a dielectric strength test using high alternating current voltage.
  • Figure 9 is an electrical diagram of the assembly used for a dielectric strength test using high voltage of a pulse generator.
  • Figure 10 is an electrical diagram of the assembly used for an insulation resistance test.
  • thermofix polymer preferably vulcanized rubber
  • dielectric resin preferably selected from polyurethanes, epoxy resins, polyester resins, and / or combinations thereof, despite being treated of a mixture of materials in different phases that are capable of forming hollow spaces with each other when mixed, it is capable of withstanding a voltage of at least 45,000 volts, which is suitable to protect a user from high voltage equipment, which generally work at 23000 volts.
  • mixing the thermofix polymer with polymers that give off gases during polymerization does not significantly decrease the dielectric capacity of the material.
  • thermofix polymer composition with a dielectric resin preferably comprises granules of the thermofix polymer with a size in the range of 0.17mm (80 mesh) to 1 1.2mm (7/16 mesh) and a dielectric resin in a thermofix / resin polymer ratio dielectric on the scale of 2: 1 to 20: 1, preferably 5: 1.
  • the thermofix polymer is a vulcanized rubber preferably selected from EPDM; styrene-butadiene rubber (SBR); synthetic natural rubber; and / or combinations thereof, preferably obtained by recycling waste.
  • the dielectric resin is selected from polyurethanes, epoxy resins, polyester resins and / or combinations thereof, more preferably, polyurethanes obtained from toluene diisocyanate isomers and a molecular weight polyol of approximately 3300 are used. In a preferred embodiment, 5 to 40 parts of toluene diisocyanate isomers are used per 100 parts of polyol, approximately; preferably 8 to 33 parts of toluene diisocyanate isomer are used per 100 parts of polyol.
  • the process of making the composition comprises a mixing step in which the thermoset polymer is mixed with the dielectric resin in the preferred proportions; and, a step of applying and curing the thermofix polymer / dielectric resin mixture preferably selected from casting, spraying, injection, calendering, surface dispersion, immersion and extrusion, among others.
  • the application and curing step is carried out by means of empty molding, depositing the mixture in a mold with a design suitable for the final product, which can be carried out with heat application or not, allowing the resin to cure polymerizing Preferably heat and pressure are applied so that the cure is faster and the compaction of the material is also achieved.
  • temperatures on the scale of about 50 to 150 ° C are used, and pressures on the scale of about 0 to 400 lb / in 2 , although such conditions are not necessary to obtain the desired electrical insulation properties. in the composition, unlike other known compositions.
  • the application and curing step is carried out by immersion of a product in the granulated vulcanized rubber / resin mixture that wishes to be electrically isolated.
  • an insulating structure capable of withstanding a voltage of at least 45,000 volts is formed. It should be noted that the maximum voltage normally found in high-voltage areas where people or equipment can be found is 23000 volts.
  • the insulating structure is complemented 'with a second layer of dielectric resin in at least one of the surfaces of the' insulating structure on a seal, selected from polyurethanes, epoxy, polyester resins and / or combinations thereof, preferably polyurethane, to thereby achieve the total dielectric strength of the material. More preferably, polyurethanes obtained from toluene diisocyanate isomers and a polyol with molecular weight of about 3300 are used. In a preferred embodiment, 5 to 40 parts of toluene diisocyanate isomers are used per 100 parts of polyol, approximately; preferably 8 to 33 parts of toluene diisocyanate isomer are used per 100 parts of polyol.
  • the possibility that the insulating structure obtained finally allowed the passage of current is optimized, since it prevents the passage of air through the hollow spaces that could exist due to to the chemical reaction itself that is carried out during curing or to the lack of homogeneity of the mixture in the mixing stage, thus ensuring the total dielectric capacity of the material.
  • the application and curing stage can be divided into several stages, depending on the position in which it is desired that the second resin layer is located.
  • an insulating structure 100 of the present invention which comprises at least one dielectric substrate 1 10 formed from the composition of the present invention, which in turn comprises granules 1 1 1 of thermofix polymer and dielectric resin 1 12.
  • the insulating structure further comprises a dielectric resin substrate 120 attached to the substrate 1 10.
  • the application and curing step is carried out in accordance with the above described, applying a layer of dielectric resin on at least one of the surfaces of the insulating structure once the curing of the ter optic polymer / dielectric resin mixture was carried out.
  • the application and curing stage can be divided into two stages, a first application and curing stage in accordance with that described above to form the first substrate 1 13, an application stage of dielectric resin 120 on at least one of the surfaces of the first substrate, to finish with a second stage of application and curing in accordance with what is described above to form the second substrate 1 14 of thermofix polymer / dielectric resin mixture.
  • a third embodiment of the insulating structure 100 is shown, in which a thermo-fixed polymer / dielectric resin substrate 100 located between a first and second resin substrates 121 and 122 is presented.
  • the application and curing stage can be divided again into three stages, one of application and curing in accordance with the above described to form the substrate 10, a first stage of application of dielectric resin 121 on at least one of the surfaces of the substrate 110 and a second stage of application of dielectric resin on the surface of the first substrate opposite to dielectric resin 121 to form the second 122 of dielectric resin.
  • Figure 4 shows a fourth embodiment of the insulating structure 100, which is in the form of a mat and in which the thermo-fixed polymer / dielectric resin mixing substrate 1 10 has a plurality of supports 130, which in addition to giving the dielectric structure, allow the flow of water and non-retention of it when the structure is in use, making operation more efficient and preventing the material from coming into contact with water excessively.
  • the dielectric structure comprises a support edge 140 along the entire periphery of the lower part of the insulating structure 100 that serves as a reinforcement to the plurality of supports 130.
  • the support edge 140 includes a plurality of channels 150 that allow water flow of said structure.
  • FIG 6 a fifth embodiment of the insulating structure 100 is shown, in which the first substrate of the thermofix polymer / dielectric resin mixture 1 10 is placed as a coating of objects, devices, machines, tools, devices and / or equipment.
  • a post 200 is coated, with the thermo-fixed polymer substrate / dielectric resin 1 10, which in turn is coated by the dielectric resin substrate 120.
  • Dielectric strength is defined as the maximum intensity of the electric field that a dielectric material can withstand without breakage. To determine it, the following tests were performed:
  • a 1 mm thick sample of the insulating structure that was desired to be tested was subjected to a permanent direct current voltage according to the circuit 400 shown in Figures 7A, 7B and 7C. Through this circuit, the voltage was gradually increased by 3kV every second until trying to reach the breaking voltage, using a variable resistance 410 with values from 10 to 100 M ⁇ and a direct current source 420 of high voltage with which . provide voltages between 0 and 50 kV.
  • Test 2 It was subjected to a 1 mm thick sample of the insulating structure 300 that it was desired to test at a permanent alternating current voltage in accordance with circuit 400 shown in Figures 8A and 8B, in which the voltage was raised gradually at 3kV every second until trying to reach the breaking voltage, using a variable resistance 410 with values of 10 to 100 ⁇ and a high voltage alternating current source 421, which can provide voltages between 0 and 60 kV.
  • Test 3
  • the insulating structure that was desired to be tested at different voltages was subjected by means of a pulse generator operating in accordance with the circuit 500 shown in Figure 9, until the breaking voltage was reached.
  • the capacitor 540 was charged until the desired voltage was reached using the direct high current source 520 Voltage and variable resistance 510 with values from 10 to 100 M ⁇ . Once the desired voltage was reached, the capacitor voltage was discharged on the 1 mm sample of the structure 300 that was intended to be tested. This test is known as a pulse test to determine a breakdown voltage. Test 4:
  • the insulating structure made from the composition of the present invention was subjected to the four tests, as was an insulating structure formed from pure vulcanized rubber.
  • the insulating structure of the present invention contained vulcanized rubber granules with an approximate size of 1 mm, obtained from tire recycling, mixed with polyurethane, keeping a proportion of granulated vulcanized rubber / polyurethane in the 5: 1 scale.
  • test 1 when the electrical voltage rose, surprisingly there was no break in either of the two materials, although the voltage continued to rise until reaching 45kV. high above the 23kV that it must • support at least.
  • the same result was obtained by repeating this test with both structures using electrodes with different shapes, namely: tip electrodes 430 (figure A), hemispherical electrodes 431 (figure 7B) and flat electrodes 432 (figure 7C).
  • composition containing waste material supports the same voltage as virgin vulcanized rubber, since at first glance, the composition of the present invention seems very uneven and gives the impression that it would not withstand a voltage so high in a 1 mm thick sample.
  • test 2 the result of test 1 was repeated in it, so it was found that the composition works for both direct and alternating current.
  • test 2 was repeated with both structures using electrodes with different shapes, namely: tip electrodes 430 (figure 8A) and flat electrodes 432 (figure 8B). In all cases the same results were obtained.
  • test 3 allowed to observe a break in the 1 mm sample at voltages of the order of 45kV for the composition of the present invention.
  • a 1 mm thick sample of the natural rubber structure subjected to the same test observed the rupture at voltages of the order of 50kV. It is still surprising, therefore, that a material obtained from waste materials allows to obtain a high dielectric capacity of only 5 kV different from the virgin material.
  • insulation test 4 As regards insulation test 4, a decrease in insulation resistance of up to 30-40 M ⁇ was observed in areas where the mixture is not homogeneous, which, however, is sufficient to provide adequate protection in this type of materials, which must be 23kV, which require at least 20 M ⁇ . Similarly, in some areas of the structure made from the composition of the present invention, a very large insulation resistance (infinite indication) was achieved.
  • the insulating structure of the present invention constructed from recycled materials
  • the dielectric composition as well as the insulating structure obtained therewith have been designed to electrically isolate a user, and it will be apparent to any person skilled in the art that the modalities of the composition and structure Insulators described above and illustrated in the accompanying drawings are only illustrative but not limiting of the present invention, since numerous changes of consideration in their details are possible without departing from the scope of the invention, such as various methods of curing the composition, various coated materials or insulating structures obtained with various shapes.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

La presente invención está relacionada con una composición dieléctrica para la elaboración de una estructura aislante del tipo que comprende por lo menos una resina dieléctrica. La composición comprende gránulos de un polímero termofijo y una resina dieléctrica en una relación de polímero termofijo/resina dieléctrica en la escala de 2:1 a 20:1, lo cual le permite soportar voltajes de por lo menos 45kV y tener resistencias por lo menos 25MΦ. La invención comprende también estructuras dieléctricas obtenidas a partir de la composición, a las cuales se les puede aumentar la rigidez dieléctrica por medio de una capa de resina dieléctrica.

Description

"COMPOSICIÓN DIELÉCTRICA PARA LA FABRICACIÓN DE ESTRUCTURAS
AISLANTES"
CAMPO DE LA INVENCIÓN
La presente invención está relacionada con las técnicas para la elaboración de materias dieléctricas, y más particularmente está relacionada con una composición dieléctrica para la fabricación de estructuras aislantes.
ANTECEDENTES DE LA INVENCIÓN
Como es conocido, existe una gran variedad de composiciones dieléctricas fabricadas a partir de diversas resinas para su aplicación dentro de la industria eléctrica, por ejemplo en la manufactura de recubrimientos aislantes para conductores de alta tensión.
Por otra parte, la reparación y mantenimiento de equipos de alta tensión, tales como las sub-estaciones eléctricas, demanda la necesidad de contar con un material aislante para que el personal encargado de manipular los equipos de alta tensión pueda trabajar sin riesgo de choque eléctrico por contacto con el suelo. Para los fines de la presente invención, se denomina estructuras aislantes a los recubrimientos, productos y/o materiales que permitan aislar eléctricamente a una persona que se encuentra cerca de una fuente de alto voltaje, o bien, que permitan aislar eléctricamente diversos objetos, aparatos, máquinas, herramientas, dispositivos y/o equipos de una fuente de alto voltaje.
Por ejemplo, actualmente existen algunas estructuras aislantes con forma de tapete o tarima, las cuales aislan a los usuarios que manipulan equipos de alta tensión, la mayoría de las cuales se fabrican a partir de fibra de vidrio.
Ciertamente, la fibra de vidrio tiene una gran capacidad aislante. Sin embargo, las tarimas hechas con este material tienen el inconveniente de ser resbalosas; poniendo en riesgo al usuario de la misma. Adicionalmente, la fabricación de tales tarimas tiene un costo elevado, ya que para lograr que la fibra de vidrio no deje huecos por los que el aire se pueda infiltrar, requiere someter dicha fibra a muy altas presiones, lo cual complica su procesamiento.
Existen otros materiales cuya capacidad dieléctrica es conocida, como los utilizados para recubrir cables de cobre o de otros metales conductores de electricidad. Sin embargo, la mayoría no se utilizan para aplicaciones de alta tensión debido al alto costo o a la dificultad para aplicar los materiales a las superficies que se desea aislar. Adicionalmente, se ha descartado el uso de materiales reciclados debido a su falta de homogeneidad, toda vez que no es posible saber a ciencia cierta la composición de los materiales utilizados, además de dar lugar a la posibilidad de formar huecos que pudieran reducir la capacidad dieléctrica del material y de estructuras aislantes fabricadas con el mismo.
Otro material que pudiera ser utilizado en la fabricación de tapetes o tarimas aislantes es la madera. Sin embargo, dicho material presenta el inconveniente de sufrir deterioro en muy corto tiempo debido al manejo y la humedad, entre otros factores, por lo que no garantiza un aislamiento confiable después de una corta vida útil, poniendo en riesgo al usuario al ser susceptible de absorber humedad.
Por consecuencia de lo anterior, se ha buscado suprimir los inconvenientes que presentan las estructuras aislantes utilizadas en la actualidad, desarrollando una estructura aislante que, a\ mismo tiempo que muestre una gran capacidad aislante, sea de menor costo al utilizar materiales reciclados, además de contar con propiedades antiderrapantes adecuadas para la fabricación de tarimas o tapetes, entre otras estructuras aislantes.
OBJETOS DE LA INVENCIÓN
Teniendo en cuenta los defectos de la técnica anterior, es un objeto de la presente invención proveer una composición dieléctrica para la elaboración de estructuras aislantes a partir de material reciclado.
Es otro objeto de la presente invención, proveer una estructura aislante con gran capacidad dieléctrica que sea capaz de resguardar eléctricamente con seguridad a un usuario que trabaja con equipos de alta tensión.
Es un objeto adicional de la presente invención, proveer una estructura aislante con gran capacidad dieléctrica que sea capaz de resguardar eléctricamente diversos objetos, aparatos, máquinas, herramientas, dispositivos y/o equipos cercanos a fuentes de alta tensión. Es un objeto más de la presente invención, proveer una estructura aislante que sea antiderrapante y no resbale respecto del piso o de algún usuario.
Es todavía un objeto más de la presente invención, proporcionar una estructura aislante que no guarde humedad. BREVE DESCRIPCIÓN DE LAS FIGURAS
Los aspectos novedosos que se consideran característicos de la presente invención, se establecerán con particularidad en las reivindicaciones anexas. Sin embargo, la operación, conjuntamente con otros objetos y ventajas de la misma, se comprenderá mejor en la siguiente descripción detallada de una modalidad especifica, cuando se lea en relación con los dibujos anexos, en los cuales:
La Figura 1 es una vista en sección transversal de una estructura aislante construida de conformidad con los principios de la presente invención. La Figura 2 es una vista en sección transversal de una segunda modalidad de una estructura aislante construida de conformidad con los principios de la presente invención.
La figura 3 es una vista en sección transversal de una tercera modalidad de una estructura aislante construida de conformidad con los principios de la presente invención.
La figura 4 es una vista en sección transversal de una cuarta modalidad de una estructura aislante de conformidad con los principios de la presente invención.
La figura 5 es una vista en planta inferior de una quinta modalidad de una estructura aislante de conformidad con los principios de la presente invención.
La figura 6 es una vista en sección transversal de una sexta modalidad de una estructura aislante construida de conformidad con los principios de la presente invención. Las figuras 7a, 7B y 7C son diagramas eléctricos de montajes para una prueba de rigidez dieléctrica utilizando alta tensión de corriente directa.
Las figuras 8A y 8B son diagramas eléctricos de montajes para una prueba de rigidez dieléctrica utilizando alta tensión de corriente alterna.
La figura 9 es un diagrama eléctrico del montaje utilizado para una prueba de rigidez dieléctrica utilizando alta tensión de un generador de impulso.
La figura 10 es un diagrama eléctrico del montaje utilizado para una prueba de resistencia de aislamiento.
DESCRIPCIÓN DETALLADA
Se ha encontrado sorprendentemente mediante pruebas de laboratorio, que una mezcla de granulos de un polímero termofijo, preferiblemente hule vulcanizado, con una resina dieléctrica seleccionada preferiblemente entre poliuretanos, resinas epóxicas, resinas poliéster, y/o combinaciones de las mismas, a pesar de tratarse de una mezcla de materiales en diferente fase que son susceptibles de formar espacios huecos entre sí al mezclarse, es capaz de resistir un voltaje de por lo menos 45000 voltios, lo cual es adecuado para proteger a un usuario de equipos de alta tensión, los cuales trabajan generalmente a 23000 voltios. Más aún, se encontró sorprendentemente que la mezcla del polímero termofijo con polímeros que desprenden gases durante su polimerización, como es el caso de los poliuretanos, no disminuye la capacidad dieléctrica del material sensiblemente.
La composición de polímero termofijo con una resina dieléctrica comprende preferiblemente granulos del polímero termofijo con un tamaño en la escala de 0.17mm (malla 80) a 1 1 .2mm (malla 7/16) y una resina dieléctrica en una proporción polímero termofijo / resina dieléctrica en la escala de 2: 1 a 20: 1 , preferiblemente 5: 1. En una modalidad preferida, el polímero termofijo es un hule vulcanizado seleccionado preferiblemente entre EPDM; hule estireno-butadieno (SBR); hules naturales sintéticos; y/o combinaciones de los mismos, preferiblemente obtenidos por reciclaje de desperdicios.
Por su parte, la resina dieléctrica se selecciona entre poliuretanos, resinas epóxicas, resinas poliester y/o combinaciones de las mismas, más preferiblemente, se utilizan poliuretanos obtenidos a partir de isómeros de toluen-diisocianato y un poliol con peso molecular de aproximadamente 3300. En una modalidad preferida, se utilizan de 5 a 40 partes de isómeros de toluen-diísociaηato por cada 100 partes de poliol, aproximadamente; preferiblemente se utilizan de 8 a 33 partes de isómero de toluen- diisocianato por cada 100 partes de poliol.
El proceso de elaboración de la composición comprende una etapa de mezclado en la que se mezcla el polímero termofijo con la resina dieléctrica en las proporciones preferidas; y, una etapa de aplicación y curado de la mezcla polímero termofij o/resina dieléctrica seleccionada preferiblemente entre moldeo por vaciado, rociado, inyección, calandreado, dispersión superficial, inmersión y extrusión, entre otras.
En una modalidad preferida la etapa de aplicación y curado se realiza por medio de moldeo por vaciado, depositando la mezcla en un molde con un diseño adecuado para el producto final, la cual puede realizarse con aplicación o no de calor, permitiendo que la resina cure polimerizando. Preferiblemente se aplica calor y presión para que el curado sea más rápido y se logre también la compactación del material. En una modalidad preferida, se utilizan temperaturas en la escala de 50 a 150°C, aproximadamente, y presiones en la escala de 0 a 400 lb/in2, aproximadamente, aunque tales condiciones no son necesarias para obtener las propiedades de aislamiento eléctrico deseadas en la composición, a diferencia de otras composiciones conocidas. En otra modalidad adicional, la etapa de aplicación y curado se realiza mediante inmersión de un producto en la mezcla hule vulcanizado granulado/resina que desea aislarse eléctricamente.
Una vez curada la mezcla, se forma una estructura aislante capaz de resistir un voltaje de por lo menos 45000 volts. Cabe remarcar que el voltaje máximo que normalmente se encuentra en zonas de alto voltaje en las que se pueden encontrar personas o equipos es de 23000 volts.
En una modalidad adicional, la estructura aislante se complementa ' con una segunda capa de resina dieléctrica en por lo menos una de las superficies de la' estructura aislante a manera de sello, seleccionada entre poliuretanos, resinas epóxicas, resinas poliester, y/o combinaciones de las mismas, preferiblemente poliuretano, para lograr de ese modo la rigidez dieléctrica total del material. Más preferiblemente, se utilizan poliuretanos obtenidos a partir de isómeros de toluen-diisocianato y un poliol con peso molecular de aproximadamente 3300. En una modalidad preferida, se utilizan de 5 a 40 partes de isómeros de toluen-diisocianato por cada 100 partes de poliol, aproximadamente; preferiblemente se utilizan de 8 a 33 partes de isómero de toluen- diisocianato por cada 100 partes de poliol.
Una vez aplicada la segunda capa de resina dieléctrica sobre la estructura aislante, la posibilidad de que la estructura aislante obtenida finalmente permitida el paso de corriente se optimiza, toda vez que se impide el paso de aire a través de los espacios huecos que pudieran existir debido a la propia reacción química que se efectúa durante el curado o a la falta de homogeneidad de la mezcla en la etapa de mezclado, asegurando de este modo la capacidad dieléctrica total del material.
En esta modalidad en la que se realiza una segunda capa de resina dieléctrica, la etapa de aplicación y curado puede dividirse en varias etapas, dependiendo de la posición en la que se desea que se encuentre la segunda capa de resina.
Haciendo referencia en forma particular a los dibujos anexos, y más específicamente a la figura 1 de los mismo, en ésta se muestra una modalidad preferida de una estructura aislante 100 de la presente invención, la cual comprende por lo menos un sustrato dieléctrico 1 10 formado a partir de la composición de la presente invención, que a su vez comprende granulos 1 1 1 de polímero termofijo y resina dieléctrica 1 12. En la modalidad que se muestra en la figura, la estructura aislante además comprende un sustrato de resina dieléctrica 120 unido al sustrato 1 10.
En este caso, la etapa de aplicación y curado se realiza de acuerdo con lo descrito anteriormente, aplicándose una capa de resina dieléctrica sobre por lo menos una de las superficies de la estructura aislante una vez que se realizó el curado de la mezcla polímero ter ofijo/resina dieléctrica.
Haciendo ahora referencia a la figura 2, en ésta se muestra una segunda modalidad de la estructura aislante 100, en la cual se presenta un sustrato de resina dieléctrica 120 localizado entre un primer sustrato 1 13 y un segundo sustrato 114 de mezcla polímero termofijo/resina dieléctrica. En esta modalidad, la etapa de aplicación y curado se puede dividir en dos etapas, una primera etapa de aplicación y curado de acuerdo con lo descrito anteriormente para formar el primer sustrato 1 13, una etapa de aplicación de resina dieléctrica 120 sobre por lo menos una de las superficies del primer sustrato, para terminar con una segunda etapa de aplicación y curado de acuerdo con lo descrito anteriormente para forma el segundo sustrato 1 14 de mezcla polímero termofijo/resina dieléctrica.
En la figura 3, se muestra una tercera modalidad de la estructura aislante 100, en la cual se presenta un sustrato de polímero termofijo/resina dieléctrica 100 localizado entre un primero y segundo sustratos de resina 121 y 122. En la modalidad que se describe, la etapa de aplicación y curado se puede dividir nuevamente en tres etapas, una de aplicación y curado de acuerdo con lo descrito anteriormente para formar el sustrato 1 10, una primera etapa de aplicación de resina dieléctrica 121 sobre por lo menos una de las superficies del sustrato 110 y una segunda etapa de aplicación de resina dieléctrica en la superficie del primer sustrato opuesta a la resina dieléctrica 121 para formar el segundo 122 de resina dieléctrica.
Ahora bien, la figura 4 muestra una cuarta modalidad de la estructura aislante 100, que tiene forma de tapete y en la cual el sustrato de mezcla polímero termofijo/resina dieléctrica 1 10 presenta una pluralidad de soportes 130, los cuales además de dar a la estructura dieléctrica, permiten el flujo de agua y la no-retención de la misma cuando la estructura se encuentra en uso, haciendo más eficiente el funcionamiento y evitando que el material entre en contacto con el agua excesivamente. En una modalidad adicional, la estructura dieléctrica comprende una orilla de soporte 140 en toda la periferia de la parte inferior de la estructura aislante 100 que sirve de refuerzo a la pluralidad de soportes 130. Como se puede observar en la figura 5, la cual muestra una vista en planta inferior de la estructura aislante 100 de la figura 4, en una modalidad adicional, la orilla de soporte 140 incluye una pluralidad de canales 150 que permiten el flujo de agua de dicha estructura.
Por otra parte, en la figura 6, se muestra una quinta modalidad de la estructura aislante 100, en la cual se coloca el primer sustrato de la mezcla polímero termofijo/resina dieléctrica 1 10 como recubrimiento de objetos, aparatos, máquinas, herramientas, dispositivos y/o equipos. En la modalidad que se muestra en la figura 6, se recubre un poste 200, con el sustrato de polímero termofijo/resina dieléctrica 1 10, el cual a su vez se encuentra recubierto por el sustrato de resina dieléctrica 120. en esta modalidad, se aplica la mezcla polímero termofijo/resina dieléctrica 1 10 sobre la superficie del poste y se deja curar, para posteriormente aplicar la resina dieléctrica sobre la superficie del sustrato 1 10, formando así el 120.
Los siguientes ejemplos están destinados a ilustrar el alcance de la presente invención en todos sus aspectos, los cuales se presentan con propósitos ilustrativos, por lo que no la limitan.
EJEMPLOS
La rigidez dieléctrica se define como la intensidad máxima del campo eléctrico que un material dieléctrico puede soportar sin rotura. Para determinarla se realizaron las siguientes pruebas:
Prueba 1 :
Se sometió una muestra de 1 mm de espesor de la estructura aislante que se deseaba probar a una tensión permanente de corriente directa de acuerdo con el circuito 400 mostrado en las figuras 7A, 7B y 7C. Mediante dicho circuito se elevó la tensión paulatinamente en 3kV cada segundo hasta tratar de alcanzar el voltaje de ruptura, utilizando para ello una resistencia variable 410 con valores de 10 a 100 MΩ y una fuente de corriente directa 420 de alta tensión con lo que se pueden . proveer voltajes entre 0 y 50 kV. Prueba 2: Se sometió a una muestra de 1 mm de espesor de la estructura aislante 300 que se deseaba probar a una tensión permanente de corriente alterna de acuerdo con el circuito 400 mostrado en las figuras 8A y 8B, en la cual se elevó la tensión paulatinamente en 3kV cada segundo hasta tratar de alcanzar el voltaje de ruptura, utilizando para ello una resistencia variable 410 con valores de 10 a 100Ω y una fuente de corriente alterna 421 de alta tensión, con lo que se pueden proveer voltajes entre Oy 60 kV. Prueba 3:
Se sometió la estructura aislante que se deseaba probar a diferentes tensiones por medio de un generador de impulsos que funcionan de acuerdo con el circuito 500 mostrado en la figura 9, hasta alcanzar la tensión de ruptura. El capacitor 540 se cargó hasta alcanzar la tensión deseada utilizando la fuente de corriente directa 520 de alto voltaje y la resistencia variable 510 con valores de 10 a 100 MΩ. Una vez alcanzada la tensión deseada, se descargó el voltaje del capacitor sobre la muestra de 1 mm de la estructura 300 que se seseaba probar. Esta prueba se conoce como prueba de impulso para determinar una tensión de ruptura. Prueba 4:
Utilizando un megohmetro 610 tipo Yocogawa de acuerdo con el circuito 600 mostrado en la figura 10, se midió la resistencia de aislamiento de una muestra de 1 mm de espesor de la estructura aislante 300 que se deseaba probar.
Se sometió una estructura aislante elaborada a partir de la composición de la presente invención a las cuatro pruebas, al igual que una estructura aislante formada a partir de hule vulcanizado puro. La estructura aislante de la presente invención, contenía granulos de hule vulcanizado con un tamaño aproximado de 1 mm, obtenido a partir de reciclaje de llantas, mezclados con poliuretano, guardándose una proporción hule vulcanizado granulado/poliuretano en la escala de 5:1. Por lo que se refiere a la prueba 1 , al elevarse la tensión eléctrica, sorpresivamente no se presentó ruptura en ninguno de los dos materiales, a pesar de que se continuó elevando la tensión hasta alcanzar 45kV. muy arriba de los 23kV que debe •soportar como mínimo. El mismo resultado se obtuvo al repetir esta prueba con ambas estructuras utilizando electrodos con diferentes formas, a saber: electrodos de punta 430 (figura A), electrodos semiesféricos 431 (figura 7B) y electrodos planos 432 (figura 7C).
Cabe resaltar que resulta inesperado que la composición que contiene material de desecho soporte el mismo voltaje que el hule vulcanizado virgen, toda vez que a simple vista, la composición de la presente invención parece muy poco homogénea y da la impresión de que no soportaría un voltaje tan elevado en una muestra de 1 mm de espesor.
En cuanto a la prueba 2, en ésta se repitió el resultado de la prueba 1 , por lo que se constató que la composición funciona tanto para corriente directa como para corriente alterna.
Al igual que para la prueba 1 , la prueba 2 fue repetida con ambas estructuras utilizando electrodos con diferentes formas, a saber: electrodos de punta 430 (figura 8A) y electrodos planos 432 (figura 8B). En todos los casos se obtuvieron los mismos resultados.
Ahora bien, la prueba 3 permitió observar una ruptura en la muestra de 1 mm a tensiones del orden de 45kV para la composición de la presente invención. Sin embargo, una muestra de 1 mm de espesor de la estructura de hule natural sometida a la misma prueba, observó la ruptura a tensiones del orden de 50kV. No deja de ser sorprendente, por lo tanto, que un material obtenido a partir de materiales de desecho permita obtener una capacidad dieléctrica alta, de solamente 5 kV de diferente con respecto al material virgen.
Por lo que se refiere a la prueba 4 de aislamiento, se observó una disminución en la resistencia de aislamiento hasta de 30-40 MΩ en zonas donde la mezcla no es homogénea, lo cual sin embargo, es suficiente para brindar una protección adecuada en este tipo de materiales, la cual debe ser de 23kV, que requieren por lo menos 20 MΩ. De igual manera, en algunas zonas de la estructura hecha a partir de la composición de la presente invención, se alcanzó una resistencia de aislamiento muy grande (indicación infinita)
Como se puede observar de los ejemplos anteriores, la estructura aislante de la presente invención, construida a partir de materiales reciclados
Presenta propiedades de aislamiento muy similares a las del hule vulcanizado puro, por lo que puede ser fácilmente utilizada para resguardas- eléctricamente a un usuario de equipo de alta tensión, ya que generalmente dichos equipos manejan un voltaje en el orden de 23 kV, lo cual es sobrepasado sin dificultad por los 45 kV que puede soportar por lo menos la estructura aislante de la presente invención.
De conformidad con lo anteriormente descrito, se podrá observar que la composición dieléctrica así como la estructura aislante obtenida con la misma han sido ideadas para aislar eléctricamente a un usuario, y será evidente para cualquier experto en la materia que las modalidades de la composición y estructura aislante descritas anteriormente e ilustradas en los dibujos que se acompañan, son, únicamente ilustrativas más no limitativas de la presente invención, ya que son posibles numerosos cambios de consideración en sus detalles sin apartarse del alcance de la invención, tales como diversos métodos de curado de la composición, diversos materiales recubiertos o estructuras aislantes obtenidas con diversas formas.
Aún cuando se ha ilustrado y. descrito una modalidad específica de la invención, debe hacerse hincapié en que son posibles numerosas modificaciones a la misma, como pueden ser el uso de diversos materiales de desecho o, inclusive de materiales vírgenes granulados con el objetivo de ser utilizados en la composición de la presente invención.
Por lo tanto, la presente invención no deberá considerarse, como restringida excepto por lo que exija la técnica anterior y por el espíritu de las reivindicaciones anexas.

Claims

NOVEDAD DE LA INVENCIÓN REIVINDICACIONES
1. Una composición dieléctrica para la elaboración de una estructura aislante del tipo que comprende por lo menos una resina dieléctrica, caracterizada porque comprende granulos de un polímero termofijo y una resina dieléctrica en una relación de polímero termofijo/resina dieléctrica en la escala de 2:1 a 20:1 , lo cual le permite soportar voltajes de por lo menos 45 kV y tener resistencias de por lo menos 25 MΩ.
2. Una composición dieléctrica para la elaboración de una estructura aislante, de conformidad con la reivindicación 1 , caracterizada además porque la relación de polímero termofijo/resina dieléctrica es 5:1.
3. Una composición dieléctrica para la elaboración de una estructura aislante, de conformidad con la reivindicación 1 , caracterizada además porque el polímero termofijo es hule vulcanizado.
4. Una composición dieléctrica para la elaboración de una estructura aislante, de conformidad con la reivindicación 2, caracterizada además porque el hule se selecciona entre EPDM, SBR, hules naturales, hules sintéticos, y/o combinaciones de los mismos.
5. Una composición dieléctrica para la elaboración de una estructura aislante, de conformidad con la reivindicación 2, caracterizada además porque el hule se obtiene por reciclaje de desperdicios.
6. Una composición dieléctrica para la elaboración de una estructura aislante, de conformidad con la reivindicación 1 , caracterizada además porque los granulos tienen un tamaño de granulo en el rango de 0.17 mm (malla 80) a 11.2 mm ( malla 7/16).
7. Una composición dieléctrica para la elaboración de una estructura aislante, de conformidad con la reivindicación 1 , caracterizada además porque la resina dieléctrica se selecciona entre poliuretanos, resinas epóxicas, resinas poliéster y/o combinaciones de las mismas.
8. Una combinación dieléctrica para la elaboración de una estructura aislante, de conformidad con la reivindicación 7, caracterizada además porque la resina dieléctrica es un poliuretano.
9. Una composición dieléctrica para la elaboración de una estructura aislante, de conformidad con la reivindicación 8, caracterizada además porque el poliuretano se obtiene a partir de isómeros de toluen-diisocianato y un poliol con peso molecular de aproximadamente 3300.
10. Una composición dieléctrica para la elaboración de una estructura aislante, de conformidad con la reivindicación 9, caracterizada además porque se utilizan de 5 a 40 partes de isómeros de toluen-diisocianato por cada 100 partes de poliol, aproximadamente.
1 1. Una composición dieléctrica para la elaboración de una estructura aislante, de conformidad con la reivindicación 10, caracterizada además porque se utilizan de 8 a 33 partes de isómero de toluen-diisocianato por cada 100 partes de poliol.
12. Una estructura aislante del tipo que comprende por lo menos una resina dieléctrica caracterizada porque comprende por lo menos un primer sustrato formado a partir de una mezcla de un polímero termofijo con una resina dieléctrica en una relación polímero termofijo/resina dieléctrica en la escala de 2: 1 a 20: 1 , lo cual le permite soportar voltajes de por lo menos 45 kV y tener resistencias de por lo menos 25 MΩ.
13. Una estructura aislante, de conformidad con la reivindicación 12, caracterizada además porque la relación de polímeros termofijo/resina dieléctrica es 5:1.
14. Una estructura aislante, de conformidad con la reivindicación 13, caracterizada además porque el polímero termofijo es hule vulcanizado.
15. Una estructura aislante, de conformidad con la reivindicación 14, caracterizada además porque el hule se selecciona entre EPDM, SBR, hules naturales, hules sintéticos, y/o combinaciones de los mismos.
16. Una estructura aislante, de conformidad con la reivindicación 12, caracterizada además porque el hule se obtiene por reciclaje de desperdicios.
17. una estructura aislante, de conformidad con la reivindicación 12, caracterizada además porque los granulos tienen un tamaño de granulo en el rango de 0.17mm
(mallaδO) a 1 1.2mm(malla 7/16).
18. Una estructura aislante, de, conformidad con la reivindicación 12, caracterizada además porque la resina dieléctrica se selecciona entre poliuretanos, resinas epóxicas, resinas poliéster y/o combinaciones de las mismas.
19. Una composición dieléctrica para la elaboración de una estructura aislante, de conformidad con la reivindicación 18, caracterizada además porque la resina dieléctrica es un poliuretano.
20. una composición dieléctrica para la elaboración de una estructura aislante, de conformidad con la reivindicación 19, caracterizada demás porque el poliuretano se obtiene a partir de isómeros de toluen-diisocianato y un poliol con peso molecular de aproximadamente 3300.
21. Una composición dieléctrica para la elaboración de una estructura aislante, de conformidad con la reivindicación 20, caracterizada además porque se utilizan de 5 a 40 partes de isómeros de toluen-diisocianato por cada 100 partes de poliol, aproximadamente.
22. Una composición dieléctrica para la elaboración de una estructura aislante, de conformidad con la reivindicación 21 , caracterizada además porque se utilizan de 8 a 33 partes de isómeros de toluen-diisocianato por cada 100 partes de poliol.
23 Una estructura aislante, de conformidad con cualquiera de las reivindicaciones 13 a 22, caracterizada además porque comprende por lo menos un sustrato de resina dieléctrica para lograr una rigidez dieléctrica adecuada de la estructura aislante.
24. Una estructura aislante, de conformidad con la reivindicación 23, caracterizada además porque la estructura aislante comprende un primer sustrato de polímero termofijo/resina dieléctrica; un segundo sustrato de polímero termofijo/resina dieléctrica entre el primero y segundo sustratos de polímero termofijo/resina dieléctrica.
25. Una estructura aislante, de conformidad con la reivindicación 23, caracterizada además porque comprende un sustrato obtenido a partir de una mezcla polímero termofijo/resina dieléctrica: un primer ssutrato de resina dilectrica colocado sobre una de las superficies del sustrato de mezcla polímero termofijo/resina dieléctrica; y un segundo sustrato de resina dieléctrica clocado en una superficie del sustrato de mezcla polímero termofijo7resina dieléctrica opuesta a la superficie en la que se encuentra el primer sustrato.
26. Una estructura aislante de conformidad con la reivindicación 23, caracterizada además porque la resina dieléctrica se selecciona entre poliuretanos, resinas epóxicas, resinas poliéster y/o combinaciones de las mismas.
27. Una combinación dieléctrica para la elaboración de una estructura aislante, de conformidad con la reivindicación 26, caracterizada además porque la resina dieléctrica es un poliuretano.
28. Una composición dieléctrica para la elaboración de una estructura aislante, de conformidad con la reivindicación 27, caracterizada además porque el poliuretano se obtiene a partir de isómeros de toluen-diisocianato y un poliol con peso molecular de aproximadamente 3300.
29. una composición dieléctrica para la elaboración de una estructura aislante, de conformidad con la reivindicación 28, caracterizada además porque se utilizan de 5 a 40 partes de isómeros de toluen-diisocianato por cada 100 partes de poliol, aproximadamente.
30. una composición dieléctrica para la elaboración de una estructura aislante, de conformidad con la reivindicación 29, caracterizada además porque se utilizan de 8 a 33 partes de isómeros de toluen-diisocianato por cada 100 partes de poliol.
PCT/MX2001/000056 2000-08-02 2001-08-02 Composicion dielectrica para la fabricacion de estructuras aislantes WO2002013203A2 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2001280255A AU2001280255A1 (en) 2000-08-02 2001-08-02 Dielectric composition for manufacturing insulating structures
BR0107116-5A BR0107116A (pt) 2000-08-02 2001-08-02 Composição dielétrica para fabricar estruturas isolantes
US10/114,361 US20020165320A1 (en) 2000-08-02 2002-04-02 Dielectronic composition for manufacturing insulating structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXPA/A/2000/007626A MXPA00007626A (es) 2000-08-02 Composicion dielectrica para la fabricacion de estructuras aislantes
MX007626 2000-08-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/114,361 Continuation US20020165320A1 (en) 2000-08-02 2002-04-02 Dielectronic composition for manufacturing insulating structures

Publications (2)

Publication Number Publication Date
WO2002013203A2 true WO2002013203A2 (es) 2002-02-14
WO2002013203A3 WO2002013203A3 (es) 2002-06-13

Family

ID=34101926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2001/000056 WO2002013203A2 (es) 2000-08-02 2001-08-02 Composicion dielectrica para la fabricacion de estructuras aislantes

Country Status (4)

Country Link
US (1) US20020165320A1 (es)
AU (1) AU2001280255A1 (es)
BR (1) BR0107116A (es)
WO (1) WO2002013203A2 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3005780B1 (fr) * 2013-05-16 2015-06-05 Sibille Fameca Electric Tapis isolant, notamment pour electricien de reseau

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0005473A1 (de) * 1978-05-12 1979-11-28 Bayer Ag Verfahren zur Herstellung von Schichtstoffen sowie ein zur Durchführung des Verfahrens geeignetes Bindemittel
EP0358084A2 (en) * 1988-09-09 1990-03-14 Bridgestone/Firestone, Inc. An adhesive system for bonding uncured rubber to cured polyurethane
WO1997032319A1 (en) * 1996-03-01 1997-09-04 Cooper Industries, Inc. Self-compressive surge arrester module and method of making same
EP0931809A2 (en) * 1998-01-26 1999-07-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Rubber composition and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1029494A (en) * 1973-07-27 1978-04-11 Fritz Ehrhard Shaped polyurethane articles and a method for making them
JPS61138636A (ja) * 1984-12-10 1986-06-26 Kinugawa Rubber Ind Co Ltd 高分子弾性体の表面処理用塗料組成物
US5284889A (en) * 1992-11-20 1994-02-08 Minnesota Mining And Manufacturing Company Electrically insulating film backing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0005473A1 (de) * 1978-05-12 1979-11-28 Bayer Ag Verfahren zur Herstellung von Schichtstoffen sowie ein zur Durchführung des Verfahrens geeignetes Bindemittel
EP0358084A2 (en) * 1988-09-09 1990-03-14 Bridgestone/Firestone, Inc. An adhesive system for bonding uncured rubber to cured polyurethane
WO1997032319A1 (en) * 1996-03-01 1997-09-04 Cooper Industries, Inc. Self-compressive surge arrester module and method of making same
EP0931809A2 (en) * 1998-01-26 1999-07-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Rubber composition and method for producing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch, Derwent Publications Ltd., London, GB; Class A85, AN 1973-15742U XP002902345 & JP 48 008422 B (HITACHI WIRE AND CABLE LT), 14 Marzo 1964 (1964-03-14) *
DATABASE WPI Section PQ, Week 198617 Derwent Publications Ltd., London, GB; Class Q66, AN 1986-107389 XP002902340 & JP 61 138636 A (KINUGA WA RUBBER IND CO LTD), 26 Junio 1986 (1986-06-26) *

Also Published As

Publication number Publication date
WO2002013203A3 (es) 2002-06-13
BR0107116A (pt) 2002-06-25
US20020165320A1 (en) 2002-11-07
AU2001280255A1 (en) 2002-02-18

Similar Documents

Publication Publication Date Title
Ma et al. Evaluating resistance of polymeric materials for outdoor applications to corona and ozone
Nelson et al. The impact of nanocomposite formulations on electrical voltage endurance
US9437347B2 (en) Method for manufacturing an electrostatic discharge device
ES2428416T3 (es) Recubrimiento con capacidad de derivación
US4343966A (en) Electric line insulator made of organic material and having an inner semi-conductive part extending between end anchor fittings
Youn et al. Surface degradation of HTV silicone rubber and EPDM used for outdoor insulators under accelerated ultraviolet weathering condition
Haque et al. Electrical properties of different polymeric materials and their applications: The influence of electric field
CN1423287A (zh) 单层及多层可变电压保护装置及其制作方法
AU2017259758B2 (en) Treatment arrangement and method for producing a treatment arrangement
ES2437869T3 (es) Método de fabricación de un neumático antiestático que no deja marcas y neumático obtenido de este modo
JPS62500130A (ja) ゲロイドの導電性およびストレス勾配緩和用途
US11043797B2 (en) Cable fitting for HVDC cables
WO2002013203A2 (es) Composicion dielectrica para la fabricacion de estructuras aislantes
ES2225418T3 (es) Revestimiento para suelos electricamente conductor.
JPS6010847Y2 (ja) 電気伝導性ウエブ
Athawale et al. Electronic applications of ethylene propylene diene monomer rubber and its composites
MXPA00007626A (es) Composicion dielectrica para la fabricacion de estructuras aislantes
EP0626814B1 (en) Antistatic footwear of intrinsically conductive polymers or blends thereof
ITTO951013A1 (it) Composizioni di mescole includenti silice ed un agente antistatico e vulcanizzabili con zolfo, in particolare per la realizzazione di
CN109411137A (zh) 一种分流用高韧性复合型电线结构
McPherson Electrical properties of elastomers and related polymers
AU731896B2 (en) Electrical insulator having sheds
Vinh‐Tung et al. Dielectric studies of phase separation induced by chemical reaction in thermoplastic modified epoxy
EP0055894A3 (en) Conductive plastic compositions
Świerzyna et al. Modification of the composition and technology of the processing of ceramic-polymer insulators

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10114361

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP